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SYLLABUS

Introductory course to Mathematical aspects of Machine Learning, including Supervised Learn-

ing, Unsupervised Learning, Sparsity, and Online Learning.

Course Coordinator: Pedro Abdalla Teixeira

pedro.abdallateixeira@ifor.math.ethz.ch

The contents of the course will depend on the speed and feedback received during the semester,

a tentative plan is:

(1) Unsupervized Learning and Data Parsimony:
e Clustering and k-means
e Singular Value Decomposition
e Low Rank approximations and Eckart—Young—Mirsky Theorem
e Dimension Reduction and Principal Component Analysis
e Matrix Completion and the Netflix Prize
e Overcomplete Dictionaries and Finite Frame Theory
e Sparsity and Compressed Sensing
e Introduction to Spectral Graph Theory.
(2) Supervized and Online Learning:
e Introduction to Classification and Generalization of Classifiers
e Some concentration inequalities
e Stability and VC Dimension
e Online Learning: Learning with expert advice and exponential weights
e A short introduction to Optimization and Gradient Descent

Note for non-Mathematics students: this class requires a certain degree of mathematical maturity—

including abstract thinking and the ability to understand and write proofs.

Please visit the Forum at
https://forum.math.ethz.ch/c/spring-2021/mathematics-of-machine-learning/49
for more information.
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Please excuse the lack of polishing and typos in this draft. If you find any typos, please let us
know! This draft was last updated on August 16, 2021.

You will notice several questions along the way, separated into Challenges (and Exploratory
Challenges.

e Challenges are well-defined mathematical questions, of varying level of difficulty. Some
are very easy, and some are much harder than any homework problem.
e Exploratory Challenges are not necessarily well defined, but thinking about them should

improve your understanding of the material.

We also include a few “Further Reading” references in case you are interested in learning more

about a particular topic.

Some of the material in the first half of the notes is adapted from [BSS]. The book [BSS] is
more advanced and tends to have a probabilistic viewpoint, but you might enjoy reading through
it. The first author has written a set of lecture notes for a similar advanced course that contains
many open problems [Ban16].

The authors would like to thank the participants of the course for their useful comments and
valuable feedback. We are also grateful to Daniel Paleka for his help in proofreading the initial
draft.
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1. INTRODUCTION (25.02.2021)

We will study four areas of Machine Learning and Analysis of Data, focusing on the mathematical

aspects. The four areas are:

e Unsupervised Learning: The most common instance in exploratory data analysis is when
we receive data points without a priori known structure, think e.g. unlabeled images from
a databased, genomes of a population, etc. The natural first question is to ask if we can
learn the geometry of the data. Simple examples include: Does the data separate well
into clusters? Does the data naturally live in a smaller dimensional space? Sometimes the
dataset comes in the form of a network (or graph) and the same questions can be asked, an
approach in this case is with Spectral Graph Theory which we will cover if time permits.

e Parsimony and Sparsity: Sometimes, the information/signal we are after has a particular
structure. In the famous Netflix prize the goal is to predict the user-movie preferences
(before the user watches that particular movie) from ratings from other user-movie pairs;
the matrix of ratings is low-rank and this structure can be leveraged. Another common
form of parsimony is sparsity in a particular linear dictionary, such as natural images
in the Wavelet basis. We will present the basics of sparsity, Compressed Sensing, and
Matrix Completion, without requiring any advanced Probability Theory.

e Supervised Learning: Another common problem is that of classification. As an illustra-
tive example, consider one receives images of cats and dogs with the respective correct
labels, the goal is then to construct a classifier that generalises well, i.e. given a new un-
seen image predicts correctly whether it is a cat or a dog. Here basic notions of probability
and concentration of measure are used to understand generalisation via stability and VC
dimension. If time permits we will describe Neural networks and the back-propagation
algorithm.

e Online Learning: Some tasks need to be performed, and learned, in real time rather than
receiving all the data before starting the analysis. Examples include much of the adver-
tisement auctioning online, real time update of portfolios, etc. Here we will present the
basic of the Mathematics of Online learning, including learning with expert advice and
the multiplicative weights algorithm.



2. CLUSTERING AND k-MEANS (25.02.2021)

Clustering is one of the central tasks in machine learning. ! Given a set of data points, the purpose
of clustering is to partition the data into a set of clusters where data points assigned to the same
cluster correspond to similar data (for example, having small distance to each other if the points

are in Euclidean space).
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FIGURE 1. Examples of points separated in clusters.

2.0.1. k-means Clustering. One the most popular methods used for clustering is k-means cluster-

ing. Given x1,...,x, € R?, the k-means clustering partitions the data points in clusters Sy, ...,S
with centers UUy,..., U; € R? as the solution to:

L 2
@) min -} Y [l -l

partition i; :::'jfj;c I=1i€s;

A popular algorithm attempts to minimize (1), Lloyd’s Algorithm [L1082] (this is also sometimes
referred to as simply “the k-means algorithm”). It relies on the following two observations

Proposition 2.1.

e Given a choice for the partition S1 U - - - U Sy, the centers that minimize (1) are given by

1
M= o7 Z Xj.
’Sl| i€s,
e Given the centers li,..., W € RP, the partition that minimizes (1) assigns each point x;

to the closest center L.

Challenge 2.1. Prove this fact.



Lloyd’s Algorithm is an iterative algorithm that starts with an arbitrary choice of centers and
iteratively alternates between

e Given centers lUj,..., U, assign each point x; to the cluster
I =argming_; g [lxi —wll-
e Update the centers y; = |S—11‘ Yics, Xis

until no update is taken.

Unfortunately, Lloyd’s algorithm is not guaranteed to converge to the solution of (1). Indeed,
Lloyd’s algorithm oftentimes gets stuck in local optima of (1). In fact optimizing (1) is NP-hard
and so there is no polynomial time algorithm that works in the worst-case (assuming the widely
believed conjecture P # NP).

Challenge 2.2. Show that Lloyd’s algorithm converges® (even if not always to the minimum

of (1)).

Challenge 2.3. Can you find an example of points and starting centers for which Lloyd’s algo-

rithm does not converge to the optimal solution of (1)?

“«

Exploratory Challenge 2.4. How would you try to “fix” Lloyd’s Algorithm to avoid it getting

stuck in the example you constructed in Challenge 2.3?
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FIGURE 2. Because the solutions of k-means are always convex clusters, it is not
able to handle some cluster structures.

While popular, k-means clustering has some potential issues:
e One needs to set the number of clusters a priori. . A typical way to overcome this issue is
to try the algorithm for different numbers of clusters.

I This section is less mathematical, it is a “warm-up” for the course.
21n the sense that it stops after a finite number of iterations.



e The way the formula (1) is defined needs the points to be defined in an Euclidean space.
Often we are interested in clustering data for which we only have some measure of affinity
between different data points, but not necessarily an embedding in R” (this issue can be
overcome by reformulating (1) in terms of distances only — you will do this on the first
homework problem set.).

e The formulation is computationally hard, so algorithms may produce suboptimal in-
stances.

e The solutions of k-means are always convex clusters. This means that k-means cannot

find clusters such as in Figure 2.

Further Reading 2.5. On the computational side, there are many interesting questions
regarding when the k-means objective can be efficiently approximated, you can see a few

open problems on this in [Banl6] (for example Open Problem 9.4).



3. THE SINGULAR VALUE DECOMPOSITION (04.03.2021)

Data is often presented as a d x n matrix whose columns correspond to n data points in R¢. Other
examples include matrices of interactions where the entry (i, j) of a matrix contains information

about an interaction, or similarity, between an item (or entity) i and j.
The Singular Value Decomposition is one of the most powerful tools to analyze matrix data.
Given a matrix X € R™, its Singular Value Decomposition is given by

X =UxvT,

where U € O(n) and V € O(m) are orthogonal matrices, and £ € R"*™ is a rectangular diagonal
matrix, in the sense that X;; = 0 for i # j, and whose diagonal entries are non-negative.

The diagonal entries 61 > G2 > ..., Opin{n,m} Of X are called the singular values® of X. Recall that
unlike eigenvalues they must be real and non-negative. The columns u; and v, of respectively U

and V are called, respectively, the left and right singular vectors of X.
Proposition 3.1 (Some basic properties of SVD).

e rank(X) is equal to the number of non-zero singular values of X.
o Ifn < m, then the singular values of X are the square roots of the eigenvalues of XXT. If

m < n they are the square roots of the eigenvalues of X' X.

Challenge 3.1. Prove this fact.

The SVD can also be written in more economic ways. For example, if rank(X) = r then we can
instead write

X=Uzv",
where UTU =1, VIV =1I.,, and X is a non-singular r X r diagonal matrix matrix. Note that
this representation only requires r(n+m+ 1) numbers, which if r < min{n,m}, is considerable

savings when compared to nm.

It is also useful to write the SVD as
-
X = Z Gkukv]{,
k=1
where oy is the k-th largest singular value, and u; and vy are the corresponding left and right

singular vectors.

3The most common convention is that the singular values are ordered in decreasing order, it is the convention
we observe here.
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4. LOW RANK APPROXIMATION OF MATRIX DATA (04.03.2021)

A key observation in Machine Learning and Data Science is that (matrix) data is oftentimes
well approximated by low-rank matrices. You will see examples of this phenomenon both in the

lecture and the code simulations available on the class webpage.

In order to talk about what it means for a matrix B to approximate another matrix A, we need to
have a notion of distance between matrices of the same dimensions, or equivalently a notion of

norm of A — B. Let us start with some classical norms.
Definition 4.1 (Spectral Norm). The spectral norm of X € R"*™ is given by

1X]I = max [[Xv]},

vi|v||=1

or equivalently || X|| = o1(X).

Challenge 4.1. Show that the two definitions above are equivalent.

Another common matrix norm is the Frobenius norm.

Definition 4.2 (Frobenius norm (or Hilbert-Schmidt norm)). The Frobenius norm of X € R"*"
is given by
2 S 2
IXIF=Y Y X7
i=1j=1
Challenge 4.2. Show that

) min{n,m} )
IXIF= Y oix)".
i=1

Challenge 4.3. Show that the two norms defined above are indeed norms.
Note that by solving Challenges 4.1 and 4.3 you have shown also that for any two matrices
X,Y e R™,

(2) c1(X+Y)<o1(X)+o(Y).

There is a natural generalization of the two norms above, the so called Schatten p-norms.

Definition 4.3 (Schatten p-norm). Given a matrix X € R™"™ and 1 < p < oo, the Schatten p-norm
of X is given by

min{n,m} 1/p
HXH(S,p)=< ) Gi(X)p> = o)l

i=1
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where 6 (X) corresponds to the vector whose entries are the singular values of X.

For p = oo, this corresponds to the spectral norm and we often simply use || X || without a subscript,
X1 = X 5.0 = 01 ().

For p =2 this corresponds to the commonly used Frobenius norm.

Challenge 4.4. Show that the Schatten p-norm is a norm. (proving triangular inequality for

general p is non-trivial).

For p =2 and p = o this corresponds to the familiar Frobenius and spectral/operator norms, as

justified in the proposition below.

Another key insight in this section is that, since the rank of a matrix X is the number of non-zero
singular values, a natural rank r approximation for a matrix X is to replace all singular values but
the largest r singular values of X with zero. This is often referred to as the truncated SVD. Let

us be more precise.

Definition 4.4. Let X € R™" and X = ULV be its SVD. We define X, = U,L,V, the truncated
SVD of X by setting U, € R™" and V, € R™*" to be, respectively, the first r columns of U and V ;
and ¥, € R™" to be a diagonal matrix with the first r singular values of X (notice this are the

largest ones, due to the way we defined SVD).

Warning: The notation X, for low-rank approximations is not standard.
Note that rank(X,) = r and 01 (X — X;-) = 041 (X).

It turns out that this way to approximate a matrix by a low rank matrix is optimal is a very
strong sense, this is captured by the celebrated Eckart—Young—Mirsky Theorem, we start with a

particular case of it.

Lemma 4.5 (Eckart—Young—Mirsky Theorem for Spectral norm). The truncated SVD provides

the best low rank approximation in spectral norm. In other words:
Let X € R™"™ and r < min{n,m}. Let X, be as in Definition 4.4, then:
1X =Bl = [[X = X/[],
for any rank r matrix B.
Proof. Let X = ULV be the SVD of X. Since rank(B) = r there must exist a vector w in the

span of the first » 4 1 right singular vectors vy,...,v,;+1 of X in the kernel of B. Without loss of

generality let w have unit norm.
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Let us write w = Z,’;i oy vi. Since w is unit-norm and the v;’s are orthonormal we have o, = v,{w

and Y/l o2 = 1.

Finally,

r+1

IX =Bl > |(X = B)wl2 = [Xwll2 = 1=V wll2 = || ) 67 (X) e > 041 (X) = X — X, .
k=1

Challenge 4.5. If you think the existence of the vector w in the start of the proof above is not

obvious (or any other step), try to prove it.

The inequality (2) is a particular case of a more general set of inequalities, the Weyl inequalities,
named after Hermann Weyl (a brilliant Mathematician who spent many years at ETH). Here we
focus on the inequalities for singular values, the more classical ones are for eigenvalues; it is
worth noting also that these follow from the ones for eigenvalues since the singular values of X

are the square-roots of the eigenvalues of X7 X.
Theorem 4.6 (Weyl inequalities for singular values).
Oit+j—1(X +Y) < 6i(X) + 0;(Y),
forall 1 <i,j, < min{n,m} satisfying i+ j— 1 < min{n,m}
Proof. Let X;_1 and Y;_; be, respectively, the rank i — 1 and j — 1 approximation of X and Y (as
in Definition 4.4). By (2) we have
o (X—Xi—1)+ (Y =Yi—1)) <o (X—Xi—1)+0 (Y —-Y,_1) = 6i(X) + 0j(Y).
Since X; 1 +Y;_ has rank at most i + j — 2, Lemma 4.5 implies that
Oirji1(X+Y) =01 (X+Y = (X+Y)ipj2) <o (X+Y — (Xim1+Yj1)).
Putting both inequalities together we get

Oirjr1(X+Y) <o (X+Y —Xim1 —Yj1) < 6i(X) +0;(Y).

Challenge 4.6. There is another simple proof of this Theorem based on the Courant-Fischer

minimax variational characterization of singular values:

3) o (X) = max min || Xv||,
VCR" dim(V)=k veV,|v|=1

4 O X) = min max Xv||.
@ 1 (X) VCRM dim(V)=m—k  veV,|v|=1 Xl
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try to prove it that way.
We are now ready to prove the main Theorem in this Section

Theorem 4.7 (Eckart—Young—Mirsky Theorem). The truncated SVD provides the best low rank

approximation in any Schatten p-norm. In other words:
Let X € R r <min{n,m}, and 1 < p < oo. Let X, be as in Definition 4.4, then:
1X = Bll(s,p) = IX =X ll(s5,p)-

for any rank r matrix B.

Proof. We have already proved this for p = o (Lemma 4.5). The proof of the general result
follows from Weyl’s inequalities (Theorem 4.6).

Let X € R and B a rank r matrix. We use Theorem 4.6 for X — B and B:
Oitj-1(X) < 6i{(X —B) + 0;(B),

Taking j = r+ 1, for and i > 1 satisfying i+ (r+ 1) — 1 < min{n,m} we have

(5) ci+(X) < 0i(X —B),

since G,+1(B) = 0. Thus

min{n,m} min{n,m}—r
IX = BI[{s ) = Y o/x-B)> Y ol(X-B).
k=1 k=1
Finally, by (5):
min{n,m}—r min{n,m}—r min{n,m}

Y ox-B> Y o, 0= Y o) =IX-XIf,.
1 k=1 k=r+1
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5. DIMENSION REDUCTION AND PRINCIPAL COMPONENT ANALYSIS (11.03.2021)
A classical problem in data analysis is that of dimension reduction. Given m points in R?,
Viy---3Ym € va

the goal is to find their best d-dimensional representation. In this Section we will describe Prin-
cipal Component Analysis, connect it to truncated SVD, and describe an interpretation of the left

and right singular vectors in the truncated SVD.

Let us start by centering the points (so that the approximation is by a subspace and not by an

affine subspace), consider:

Xk =Yk — MU,
where 1 = %Z;":l Vi 1s the empirical average of yy,. .., yg.
We are looking for points z, ...,z lying in a d-dimensional subspace such that Y7, ||zx — x|

is minimum. Let us consider the matrices

Z: Zl . e Zm and X: xl . e xm
| | | |

The condition that zj, ..., 7, are in a d-dimensional is equivalent to rank(Z) < d and
S 2 2
Y o=l = 12— X3
k=1

Hence we are looking for the solution of

min  ||Z—X]||F,
Z: rank(Z)<d

which, by Theorem 4.7, corresponds to the truncated SVD of X. This means that
Z=Usx4V/,

where U; € R? x d, ¥; € R4 and V € R™*4_ This means that

(6) Yk ~ UgBe+ 1,

is a d-dimensional approximation of the original dataset, where By = L v and v € R? is the k-th
row of V. This is Principal Component Analysis (PCA) (see, for example, Chapter 3.2 in [BSS]

for an alternative derivation, not based on SVD).

Remark 5.1. Notice how the left singular vectors U, and the right singular vectors V; have two
different interpertations, each of one corresponds to a different way of presenting PCA, as we

will do below.
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e The singular vectors U, correspond to the basis in which to project the original points
(after centering).

e The singular vectors Vy (after scaling entries by ¥;) correspond to low dimensional co-

ordinates for the points.

Challenge 5.1. Instead of centering the points at the start, we could have asked for the best
approximation in the sense of picking By € R%, a matrix Uy whose columns are a basis for a d-
dimensional subspace, and . € R? such that (6) is the best possible approximation (in the sense

of sum of squares of distances). Show that the vector W in this case is indeed the empirical mean.

5.1. Principal Component Analysis - description 1. One way to describe PCA (see, for exam-
ple, Chapter 3.2. of [BSS]) is to build the sample covariance matrix of the data:

m
%XXT = ﬁk;(yk—ﬂ)(m—ﬂ)T,
where U is the empirical mean of the y;’s.
PCA then consists in writing the data in the subspace generated by the leading eigenvectors of
XXT (recall that the scaling of ﬁ is not relevant). This is the same as above:

xx" =usvT (usvT) = U7,
where X = UXV7 is the SVD of X. Thus the leading eigenvectors of XX correspond to the

leading left singular vectors of X.

5.2. Principal Component Analysis - description 2. The second interpretation of Principal
Component Analysis will be in terms of the right singular vectors of X. Although, without the
connection with truncated PCA, this description seems less natural, we will see in Subsection 5.3

it has a surprising advantage.

For simplicity let us consider the centered points xi,...,x,. The idea is to build a matrix M €

R™M*M whose entries are
(7) M;j = (xi,x}),

and use its leading eigenvectors as low dimensional coordinates. To be more precise if A; is the

i-th largest eigenvalue of M, and v; the corresponding eigenvector, for each point y; we use the
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following d-dimensional coordinates

VA (j)

® \//1_2:/2(1')

)

Aava(J)
sometimes the scaling by the eingenvalues is a different one (since it is only shrinking or expand-

ing coordinates it is usually not important).

Since XTX = (U ZVT) TUsvT = vE2vT this is equivalent to the interpertation of the right sin-

gular vectors of X as (perhaps scaled) low dimensional coordinates.

5.3. A short mention of Kernel PCA. One can interpret the matrix M in (7) as M;; measuring
affinity between point i and j; indeed xiTx j 1s larger if x; and x; are more similar. The advantage
is that with this interpretation is that it allows to perform versions of PCA with other notions of
affinity

Mij = K (xi,xj),
where the affinity function K is often called a Kernel. This is the idea behind Kernel PCA. Notice
that this can be defined even when the data points are not in Euclidean space (see Remark 5.2)

Further Reading 5.2. A common choice of Kernel is the so-called Gaussian kernel K (x;,x;) =
exp (—||x; —xj||2/£2), for € > 0. The intuition of why one would use this notion of affinity is
that it tends to ignore distances at a scale larger than €; if data has a low dimensional structure
embedded, with some curvature, in a larger dimensional ambient space then small distances in
the ambient space should be similar to intrinsic distances, but larger distances are less reliable

(recall Figure 2); see Chapter 5 in [BSS] for more on this, and some illustrative pictures.

In order for the interpretation above to apply we need M > 0 (M > 0 means M is positive semidef-
inite, all eigenvalues are non-negative; we only use the notation M > 0 for symmetric matrices).

When this is the case, we can write the Cholesky decomposition of M as
M=To,
for some matrix ®. If ¢; is the i-th column of ® then
Mi; = (@i, 9;),

for this reason ¢; is commonly referred to, in the Machine Learning community, referred to as

the feature vector of i.

Challenge 5.3. Show that the resulting matrix M is always positive definite for the Gaussian
Kernel K (x;,x;) = exp (—||xi —x;|*/€?).
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Further Reading 5.4. There are several interesting Mathematical questions arising from this
short section, unfortunately their answers need more background than the pre-requisites in this

course, in any case we leave a few notes for further reading here:

e A very natural question is whether the features @; depend only on the kernel K and not
on the data points (as it was described), this is related to the celebrated Mercer Theorem
(essentially a spectral theorem for positive semidefinite kernels).

e A beautiful theorem in this area is Bochner’s Theorem. In the special case of kernels that
are a function of the difference between the points, relates a kernel being positive with
properties of its Fourier Transform. This theorem can be used to solve Challenge 5.3 (but

there are other ways).

Remark 5.2. In the next section we do, in a sense, a version of the idea described here for a net-
work, where the matrix M will simply discriminate whether nodes i and j are, or not, connected

in a network.
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6. THE GRAPH LAPLACIAN (11.03.2021)

In this section we will study networks, also called graphs.

Definition 6.1 (Graph). A graph is a mathematical object consisting of a set of vertices V and a
set of edges E C (‘2/) We will focus on undirected graphs. We say that i ~ j, i is connected to j,
if (i,]) € E. We assume graphs have no loops, i.e. (i,i) ¢ E for all i.

In what follows the graph will have n nodes (|V| = n). It is sometimes useful to consider a
weighted graph, in which and edge (i, j) has a non-negative weight w;; . Essentially everything
remains the same if considering weighted graphs, we focus on unweighted graphs to lighten the
notation (See Chapter 4 in [BSS] for a similar treatment that includes weighted graphs).

A useful way to represent a graph is via its adjacency matrix. Given a graph G = (V,E) on n

nodes (|V| = n), we define its adjacency matrix A € R"*" as the symmetric matrix with entries
A 1 if(i,j) €E,
Y 0 otherwise.

Remark 6.2. As foreshadowed on Remark 5.2 this can be viewed in the same way as the kernels
above (ignoring the diagonal of the matrix). In fact, there are many ways to transform data into
a graph: examples include considering it as a weighted graph where the weights are given by a

kernel, or connecting data points if they correspond to nearest neighbors.

A few definitions will be useful.

Definition 6.3 (Graph Laplacian and Degree Matrix). Let G = (V,E) be a graph and A its adja-

cency matrix. The degree matrix D is a diagonal matrix with diagonal entries
D;; = deg(i),

where deg(i) is the degree of node i, the number of neighbors of i.

The graph Laplacian of G is given by
L;=D—A.

Equivalently

Lg:= Z (e,-—ej) (ei—ej)T.

(i.j)€E
Definition 6.4 (Cut, Volume, and Connectivity). Given a subset S C 'V of the vertices, we call
S¢ =V \ S the complement of S and we define

cut($) =Y Y 1 ek

i€S jese
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as the number of edges “cut” by the partition (S,S), where 1x is the indicator of X. Also,

vol(S) = Z deg(i),

=
we sometimes abuse notation and use vol(G) to denote the total volume.

Furthermore, we say that a graph G is disconnected if there exists 0 C S CV such that cut(S) = 0.

The following is one of the most important properties of the graph Laplacian.

Proposition 6.5. Let G = (V,E) be a graph and Lg its graph Laplacian, let x € R". Then

x Lox = Z (xi—xj)2
(i.j)€E

Note that each edge is appearing in the sum only once.

Proof.

An immediate consequence of this is that
L>0.
Note also that, due to Proposition 6.5 we have
Ls1 =0,

where 1 is the all-ones vector (notice that the Proposition implies that 17 L;1 = 0 but since Lg > 0
this implies that L1 = 0). This means that \/Lﬁl is the eigenvector of Lg corresponding to its

smallest eigenvalue.

Because in the definition of graph Laplacian, the matrix A appears with a negative sign, the

important eigenvalues become the smallest ones of L, not the largest ones as in the previous
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section. Since L; >~ 0 we can order them®*

0="2A(Ls) <A(Llg) <+ < Mu(Lg).

Now we prove the first Theorem relating the geometry of a graph with the spectrum of its Lapla-

cian.

Theorem 6.6. Let G = (V,E) be a graph and Lg its graph Laplacian. A;(Lg) = 0 if and only if

G is disconnected.

Proof.  Since the eigenvector corresponding to A;(Lg) is vi(Lg) = \/Lﬁ then A»(Lg) = 0 if and
only if there exists nonzero y € R” such that y L 1 and y' Ly = 0.

Let us assume that A,(Lg) = 0, and let y be a vector as described above. Let S = {i € V|y; > 0},
because y is non-zero and y L 1 we have that® C S C V. Also,
Y Lgy = Y, i —y;)%,
(i.j)€E
so for this sum to be zero, all its terms need to be zero. For i € S and j # S we have (y; —y j)2 >0
thus (i, j) # E; this means that cut(S) = 0.

For the converse, suppose that there exists @ C S C V such that cut(S) and take y = 15 the indica-
tor of S. It is easy to see that 1 € ker(Lg) and 1g L 1, thus dimker(Lg) > 2. O

This already suggests that eigenvalues of Ls contain information about the graph, in particular
about whether there are two sets of nodes in the graph that cluster, without there being edges
between clusters. In the next section we will show a quantitative version of this theorem, which

is the motivation behind the popular method of Spectral Clustering.

Challenge 6.1. Prove a version of Theorem 6.6 for other eigenvalues Ay (Lg). What does 4. (Lg) =
0 say about the geometry of the graph G for k > 2?

4Notice the different ordering than above, it is because the smallest eigenvalue of L is the one associated with
the largest one of A, however in Spectral Graph Theory is it more convenient to work with the graph Laplacian.
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7. CHEEGER INEQUALITY AND SPECTRAL CLUSTERING (18.03.2021)

Let us suppose that the graph G does indeed have a non-trivial® partition of its nodes (S,S¢) with
a small number of edges connecting nodes in S with nodes in $¢. We know that if the number
of edges is zero this implies that A;(G) = 0 (by Theorem 6.6), in this section we will investigate
what happens if the cut is small, but not necessarily zero.

We start by normalizing the graph Laplacian to alleviate the dependency of the spectrum on the
number of edges. We will assume throughout this section that the graph has no isolated nodes,
i.e. deg(i) # 0 for all i € V. We define the normalized graph Laplacian as

Ly =DLgD" I =[—D 2AD"2.

Note that % > 0 and that Dile ker(-%). Similarly we consider the eigenvalues ordered as

0=MA(L) < (L) < < (L)

We will show the following relationship
Theorem 7.1. Let G = (V, E) be a graph without isolated nodes and £ its normalized Laplacian
Lo =1—D"2AD" 7 then

cut(S) = cut(S)
ML) < 0CSCV vol(S)  vol(S¢)’

The quantity on the RHS is often referred to as the Normalized Cut of G.

Proof.

The key idea in this proof is that of a relaxation — when a complicated minimization problem is
lower bounded by taking the minimization over a larger, but simpler, set.

By the Courant-Fischer variational principal of eigenvalues we know that

M (Le) = thlinl I Loz,
=1
ZJ.V] (fg)

where v (%) is the eigenvector corresponding to the smallest eigenvalue of ., which we know

is a multiple of D?1. Tt will be helpful to write y = D’%z, we then have:

. T 1 1 . T . 2
M(Z5)= min y D2.%;D2y= min y Lgy= min Z (vi—yj)"
y'Dy=1, y'Dy=1 yIDy=1 ;"
(i.j))EE
yI'D1=0 y'D1=0 yI'D1=0

SNon-trivial here simply means that neither part is the empty set.
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The key argument is that the Normalized Cut will correspond to minimum of this when we restrict

the vector y to take only two different values, one in S and another in S°.

For a non-trivial subset S C V, let us consider the vector y € R" such that

) oa ifiesS
MY b ifiese

For the constraints y? Dy = 1 and y? D1 = 0 to be satisfied we must have (see Challenge 7.1)
1
vol(S) 2 L.
<vol(S) vol(G)) ifies

1
vol(S) 2 .. c
- <—vol(S(C))(vol(G)) ifi €S

®) Vi =

The rest of the proof proceeds by computing y’ Ly for y of the form (9):

1
YiLey = 5 ), (i)’
(i,j)EE
= Y Y lipeeti—y)?
i€S jese
1 192
- Y'Y 1 vol($) )2 N vol(S) 2
== EIEE ] \vol(S) vol(G) vol(8¢) vol(G)
_ 1 [vol(S) ~ vol(S)
N é jg’cl(l’J)eEvol(G) {vol( S) T vol(s) +2

B 1 vol(S¢) ~ vol(S)  vol(S)  vol(S9)
= Z.EZS%C””J)GEVOMG) {VO]() vol(5) V01(5)+vo1(sc)}

1 1
_ Z Z Li jek {vol(S) + VOI(SC)}

i€S jese

= cut(S) {VO]I(S) + Vo&sc)}

Finally
(10)
. t(S)  cut(S)
M (% mln =y )< min ;—v:)> = min cu +
2( G) VT Dy— 1( X)‘éE(y y]) — VT Dy—1. y' D1=0 (l%‘éE(y y]) 0CSCV VOI(S) VOI(SC)

yI'D1=0 ye{a,b}" for a,pcR >’
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Challenge 7.1. Show that for any non-trivial subset S C 'V, the vector 'y € R" such that
_Joa ifies
TN b ifies

satisfies y' Dy = 1 and y" D1 = 0 if and only if
1

vol(S) 2 L.
(—vol(g) vol(G)> ifies

o s\
vo o c
o (VO](SC)VOI(G)> ifie S

—_

Hint: Recall that vol(G) = vol(S) 4 vol(5¢).

There are (at least) two consequential ideas illustrated in (10):

(1) The way cuts of partitions are measured in (10) promotes somewhat balanced partitions
(so that neither vol(S) nor vol(S¢) are too small), this turns out to be beneficial and to
avoid trivial solutions such as partition a graph by splitting just one nodes from all the
others.

(2) There is an important algorithmic consequence of (10): when we want to cluster a net-
work, what we want to minimize is the RHS of (10), this is unfortunately computationally
intractable (in fact, it is known to be NP-hard). However, the LHS of the inequality is a
spectral problem and so computationally tractable (we would compute z the eigenvector
of £ and then compute y = D’%z). This is the idea behind the popular algorithm of
Spectral clustering ( Algorithm 1).

Algorithm 1 Spectral Clustering
Given a graph G = (V,E, W), let v, be the eigenvector corresponding to the second smallest

eigenvalue of the normalized Laplacian 7. Let ¢ = D’%vz. Given a threshold 7 (one can try
all different possibilities, or run k-means in the entries of ¢, for k = 2), set

S={ieV: @<t}

A natural question is whether one can give a guarantee for this algorithm: “Does Algorithm 1 pro-
duce a partition whose normalized cut is comparable with A,(.%)?”, although the proof of such
a guarantee is outside the scope of this course, we will briefly describe it below, it corresponds to
the celebrated Cheeger’s Inequality.

It is best formulated in terms of the so called Cheeger cut and Cheeger constant.
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Definition 7.2 (Cheeger’s cut). Given a graph and a vertex partition (S,S¢), the Cheeger cut
(also known as conductance, or expansion) of S is given by
t(S
)= o
min{vol(S),vol(S¢)}

where vol(S) = Y ;cgdeg(i).
The Cheeger constant of G is given by

hg = minh(S).
G gg‘f}()

Note that the normalized cut and A(S) are tightly related, in fact it is easy to see that:
cut(S)  cut(S)

h(S) < mi < 2h(S).
( )_wggv vol(S) +Vol(SC) < 2h(S)

This means that we proved in Theorem 7.1 that
1
5212 (Q%G) S l’lG.
This is often referred to as the easy side of Cheeger’s inequality.

Theorem 7.3 (Cheeger’s Inequality). Recall the definitions above. The following holds:
1
512 (L) < hg <24 (L),

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in 1970 [Che70], the
graph version is due to Noga Alon and Vitaly Milman [Alo86, AMS85] in the mid 80s. The
upper bound in Cheeger’s inequality (corresponding to Lemma 7.4) is more difficult to prove and
outside of the scope of this course, it is often referred to as the “the difficult part” of Cheeger’s
inequality. There are several proofs of this inequality (see [Chul0] for four different proofs! You
can also see [BSS] for a proof in notation very close to these notes). We just mention that this

inequality can be proven via a guarantee to spectral clustering.

Lemma 7.4. There is a threshold 7, in Algorithm 1 producing a partition S such that
h(S) < /24 (L)

This implies in particular that
h(S) < V 4hG7

meaning that Algorithm 1 is suboptimal at most by a square-root factor.

Remark 7.5. Algorithm 1 can be used to cluster data into k > 2 clusters. In that case one

considers the k — 1 eigenvectors (from the 2nd to the kth) and to each nodes i we associate the
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k — 1 dimensional representation
. - N1 T
Vi — [(p2(l), %(1)7 T (Pk(l)] )
and uses k-means on this representation.

Remark 7.6. There is another powerful tool that follows from this: one can use the representation
described in Remark 7.5 to embed the graph in Euclidean space. This is oftentimes referred to as

“Diffusion Maps” or “Spectral Embedding”, see for example Chapter 5 in [BSS].

Notice also the relationship with Kernel PCA as described in the section above.
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8. INTRODUCTION TO FINITE FRAME THEORY (18.03.2021)

We will now start the portion of the course on Parsimony, focusing on sparsity and low rank
matrix completion. Before introducing those objects, it will be useful to go over the basics of
Finite dimensional frame theory, this is what we will do in this section. For a reference on this

topic, see for example the first Chapter of the book [Chr16].

Throughout this section we will use K4 to refer either RY or C¢. When the field matters, we will
point this out explicitly.

If @1,...,¢; € K? are a basis then any point x € K¢ is uniquely identified by the inner products
br = (@x,x). In particular if @,..., ¢, € K¢ are an orthonormal basis this representation satisfies
a Parseval identity

@] = el

Notice that in particular by using this identity on x — y this ensures stability in the representation.

Redundancy. : In signal processing and communication it is useful to include redundancy. If
instead of a basis one considers a redundant spanning set @, ..., @, € K¢ with m > d a few
advantages arise: for example, if in a communication channel one of the coefficients by gets
erased, it might still be possible to reconstruct x. Such sets are sometimes called redundant
dictionaries or overcomplete dictionaries.

Stability. : It is important to keep some form of stability of the type of the Parseval identity
above. While this is particularly important for infinite dimensional vector spaces (more precisely

Hilbert spaces) we will focus our exposition on finite dimensions.

Definition 8.1. A set @1,..., ¢, € K¢ is called a frame of K¢ if there exist non-zero finite con-
stants A and B such that, for all x € K¢

m
Allx* < Y [{orx)* < BlJx||*.
k=1

A and B are called respectively the lower and upper frame bound. The maximum A and the

minimum B are called the optimal frame bounds.
Challenge 8.1. Show that ¢y, ..., ¢, € K% is a frame if and only if it spans all of K<.

Further Reading 8.2. In infinite dimensions the situation is considerably more delicate than
suggested by Challenge 8.1, and it is tightly connected with the notion of stable sampling from

signal processing. You can see, e.g., [Chr16].
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Given a frame @, ..., ¢, € K9, let
(11) P=| ¢ - o

The following are classical definitions in the frame theory literature (although for finite dimen-
sions the objects are essentially just matrices involving ® and so the definitions are not as impor-
tant; also not that we are doing a slight abuse of notation using the same notation for a matrix and

the linear operator it represents — it will be clear from context which object we mean.)

Definition 8.2. Given a frame ¢, ..., ¢, € K% It is classical to call:

e The operator ® : K™ — K corresponding to the matrix ®, meaning ®(c) = Yi_, cvx,
is often called the Synthesis Operator.

e Its adjoint operator ®* : K¢ — K™ corresponding to the matrix ®*, meaning d(x) =
{(x, @)}y, is often called the Analysis Operator.

o The self-adjoint operator S : K¢ — K< given by § = ®®* is often called the Frame Oper-

ator.

Challenge 8.3. Show that S > 0 and that S is invertible.

The following are interesting (and useful) definitions:
Definition 8.3. A frame is called a tight frame if the frame bounds can be taken to be equal A = B.
Challenge 8.4. What can you say about the Frame Operator S for a tight frame?

Definition 8.4. A frame @1 ,..., @, € K¢ is said to be unit normed (or unit norm) if for all k € [m]
we have ||@g|| = 1.

Definition 8.5. The spark of a frame @, ..., @, € K¢, or matrix ®, is the minimum number of

elements of the frame, of columns of the matrix, that make up a linearly dependent set.

Challenge 8.5. For a matrix ®, show that spark(®) < rank(®) + 1. Can you prove it in a single

line?

Definition 8.6. Given a unit norm frame @, ..., ¢, € K¢ we call the worst-case coherence (some-

times also called dictionary coherence) the quantity
= max|(g;, ¢;)|.
i#]

Challenge 8.6. Can you give a relationship between the spark and the worst-case coherence of

a frame?
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9. PARSIMONY (25.03.2021)

Parsimony is an important principle in machine learning. The key idea is that oftentimes one
wants to learn (or recover) and object with special structure. As we will see in the second half of
the course, it is also important in supervised learning, the key idea there being that classifiers (or
regression rules, as you will see in a Statistics course) that are simple are in theory more likely to
generalize to unseen data. Observations of this type date back at least to eight centuries ago, the
most notable instance being William of Ockham’s celebrated Occam’s Razor: “Entia non-sunt
multiplicanda praeter necessitatem (Entities must not be multiplied beyond necessity)”, which is

today used as a synonim for parsimony.

One example that we will discuss is recommendation systems, in which the goal is to make
recommendations of a product to users based both on the particular user scores of other items,
and the scores other users gives to items. The score matrix whose rows correspond to users,
columns to items, and entries to scores is known to be low rank and this form of parsimony is key
to perform “matrix completion”, meaning to recover (or estimate) unseen scores (matrix entries)

from the ones that are available; we will revisit this problem in a couple of lectures.

A simpler form of parsimony is sparsity. Not only is sparsity present in many problems, including
signal and image processing, but the mathematics arising from its study are crucial also to solve
problems such as matrix completion. In what follows we will use image processing as the driving

motivation. ©

9.1. Sparse Recovery. Most of us have noticed how saving an image in JPEG dramatically
reduces the space it occupies in our hard drives (as oppose to file types that save the pixel value
of each pixel in the image). The idea behind these compression methods is to exploit known
structure in the images; although our cameras will record the pixel value (even three values in
RGB) for each pixel, it is clear that most collections of pixel values will not correspond to pictures
that we would expect to see. This special structure tends to exploited via sparsity. Indeed, natural
images are known to be sparse in certain bases (such as the wavelet bases) and this is the core idea
behind JPEG (actually, JPEG2000; JPEG uses a different basis). There is an example illustrating

this in the jupyter notebook accompanying the class.

Let us think of x € RV as the signal corresponding to the image already in the basis for which it
is sparse, meaning that it has few non-zero entries. We use the notation ||x||o for the number of
non-zero entries of x, it is common to refer to this as the £y norm, even though it is not actually a
norm. Let us assume that x € R" is s-sparse, or ||x||o < s, meaning that x has, at most, s non-zero

components and, usually, s < N. This means that, when we take a picture, our camera makes N

OIn this Section we follow parts of Section 6 in [Ban16], the exposition in [Ban16] is more advanced.
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measurements (each corresponding to a pixel) but then, after an appropriate change of basis, it
keeps only s < N non-zero coefficients and drops the others. This motivates the question: “If only
a few degrees of freedom are kept after compression, why not measure in a more efficient way
and take considerably less than N measurements?”. This question is in the heart of Compressed
Sensing. It is particularly important in MRI imaging as less measurements potentially means less
measurement time. The following book is a great reference on Compressed Sensing [FR13].

More precisely, given a s-sparse vector x, we take s < M < N linear measurements y; = a! x and
the goal is to recover x from the underdetermined system:
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10. COMPRESSED SENSING AND SPARSE RECOVERY (25.03.2021)

Recall the setting and consider again K to mean either the real numbers of the complex numbers:
given an s-sparse vector x € KV, we take s < d < N linear measurements and the goal is to

recover x from the underdetermined system:

Since the system is underdetermined and we know x is sparse, the natural thing to try, in order to

recover x, is to solve

- min- [Jzlo
s.t. dz=y,

and hope that the optimal solution z corresponds to the signal in question x.

Remark 10.1. There is another useful way to think about (12). We can think of the columns of ®
as a redundant dictionary or frame. In that case, the goal becomes to represent a vector y € K¢
as a linear combination of the dictionary elements. Due to the redundancy, a common choice is

to use the sparsest representation, corresponding to solving problem (12).

Proposition 10.2. If x is s-sparse and spark(®) > 2s then x is the unique solution to (12) for
y = Px.

Challenge 10.1. Can you construct ® with large spark, and small number of measurements d?

There are two significant issues with (12), stability (as the o norm is very brittle) and computa-
tion. In fact, (12) is known to be a computationally hard problem in general (provided P # NP).
Instead, the approach usually taken in sparse recovery is to consider a convex relaxation of the ¢
norm, the ¢; norm: ||z|j; = Y'Y, |z;|. Figure 3 depicts how the ¢; norm can be seen as a convex

relaxation of the £y norm and how it promotes sparsity.
This motivates one to consider the following optimization problem (surrogate to (12)):

min  |z[};

13
(13) st. Pz=y,
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FIGURE 3. A two-dimensional depiction of ¢y and ¢; minimization. In ¢; min-
imization (the picture of the right), one inflates the ¢ ball (the diamond) until it
hits the affine subspace of interest, this image conveys how this norm promotes
sparsity, due to the pointy corners on sparse vectors.

For (13) to be useful, two things are needed: (1) the solution of it needs to be meaningful (hope-
fully to coincide with x) and (2) (13) should be efficiently solved.

10.1. Computational efficiency. To address computational efficiency we will focus on the real
case (K =R) and formulate (13) as a Linear Program (and thus show that it is efficiently solvable).
Let us think of @™ as the positive part of x and @~ as the symmetric of the negative part of it,
meaning that x = o — o~ and, for each i, either ; or a);r is zero. Note that, in that case (for

x € RN),
N

Ixh =Y of +o7 =1" (0" + 7).
i=1
Motivated by this we consider:

min 17 (0" +o0™7)
st. AT —0 )=y
ot >0
o~ >0,

(14)

which is a linear program. It is not difficult to see that the optimal solution of (14) will indeed
satisfy that, for each i, either @, or wi+ is zero and it is indeed equivalent to (13). Since linear

programs are efficiently solvable [VB04], this means that (13) can be solved efficiently.

Remark 10.3. While (13) does not correspond to a linear program in the Complex case K = C
it is nonetheless efficient to solve, the key property is that it is a convex problem, but a general

discussion about convexity is outside the scope of this course.
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10.2. Exact recovery via /| minimization. The goal now is to show that, under certain con-
ditions, the solution of (13) indeed coincides with x. There are several approaches to this, we
refer to [BSS] for a few alternatives.” Here we will discuss a deterministic approach based on

coherence (from a couple of lecture ago).

Given x a sparse vector, we want to show that x is the unique optimal solution to (13) for y = ®x,

min  |z]s

st. Pz=y,

Let S = supp(x) and suppose that z # x is an optimal solution of the ¢; minimization problem.

Letv=z—x,s0z=v+xand
lv+x|i <|x|li and @D(v+x)=Dx,
this means that v = 0. Also,

[xells = [lxlly = [lv+xlly = [| (v +2)g [+ [[vselln = [bells = lIvslls + [[vllse,

1, but

since |S| < N it is unlikely for ® to have vectors in its nullspace that are this concentrated on

where the last inequality follows by triangular inequality. This means that ||vg||; > ||vse

such few entries. This motivates the following definition.

Definition 10.4 (Null Space Property). @ is said to satisfy the s-Null Space Property if, for all v
in ker(®) (the nullspace of ®) and all |S| = s we have

[[vslle < fvsells-

In the argument above, we have shown that if & satisfies the Null Space Property for s, then x
will indeed be the unique optimal solution to (13). In fact, the converse also holds

Theorem 10.5. The following are equivalent for ® € KI*N:

(1) For any s-sparse vector x, x is the unique optimal solution of (13) for y = ®x.
(2) @ satisfies the s-Null Space Property.

Challenge 10.2. We proved (1) < (2) in Theorem 10.5. Can you prove (1) = (2)?
We now prove the main Theorem of this section, which gives a sufficient condition for exact

recovery via £; minimization based on the worst case coherence of a matrix, or more precisely of
its columns (recall Definition 8.6).

"We thank Helmut Bolcskei for suggesting this approach.
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Theorem 10.6. If the worst case coherence U of a matrix @ with unit norm vectors satisfies
1 1

(15) s<—(1+—),
2 u

then @ satisfies the s-NSP.

Proof. Tf u = 0 then ker(®) = 0 and so it must satisfy the NSP for any s, so we focus on p > 0.

Let v € ker(®) and k € [N], recall that ¢y is the k-th column of ®, we have

N

Y ovi =0,

=1
and s0 @pvg = — Y24 @rvi- Since || @y || = 1 we have

Vi =@ <— Y <P1V1) = (- Y (05901V1> :
17k 17k
Thus,
el < | =X gcomi| <) il = p(lvll = vl)-
I#k I#k

This means that for all k € [N] we have

(1w vel < vl

Finally, for S C [N] of size s we have

u 1
lvslli =) [vel <'s vllr < 5Ivlls,
keS 1—'—“ 2

where the last inequality follows from the hypothesis (15) of the Theorem. Since ||v||; = ||vs||1 +
||vse||1 this completes the proof.

In the next lecture we will study matrices with low worst case coherence.

Remark 10.7. Different approaches roughly follow the following path: Since due to Theo-
rem 10.5 recovery is formulated in terms of certain vectors not belonging to the nullspace of
D, if one draws ® from an ensemble of random matrices the problem reduces to understanding
when a random subspace (the nullspace of the random matrix) avoids certain vectors, this is the
subject of the celebrated “Gordon’s Escape through a Mesh Theorem” (see [BSS]), you can see
versions of this approach also at [CRPW12] or, for an interesting approach based on Integral
Geometry [ALMT14].
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11. Low COHERENCE FRAMES (01.04.2021)

Motivated by Theorem 10.6 in this section we study the worst-case coherence of frames with the
goal of understanding how much savings (in measurements) one can achieve with the technique

described last section. We start with a lower bound.

Theorem 11.1 (Welch Bound). Let ¢1,..., @y € C? be N unit norm vectors (||@|| = 1). Let u
be their worst case coherence

u = max (@i, 9}
Then

Proof. Let G be the Gram matrix of the vectors, G;; = (@i, ¢;) = @ @;. In other words, G = P*P.
It is positive semi-definite and its rank is at most d. Let A1,..., A, denote the largest eigenvalues
of G, in particular this includes all non-zero ones. We have

2 d N
TGy (zzk) <d¥ A =a ¥ R =dlGIE,
k=1

k=1
where the inequality follows from Cauchy-Schwarz between the vectors with the 4;’s and the

all-ones vector.

Note that since the vectors are unit normed, Tr(G) = N, thus

1 N2

N
Y o) =G} > = (TrG)* = —

ij=1

W

Also,

N N N N
Y Koo Z (@i, @)+ Y (0, 01> =N+ Y [{9, 9))P <N+ (N> = N)u?.
i,j=1 i=1 i#j i#]

Putting everything together gives:

Remark 11.2. We used C for the Theorem above since it also follows for a frame in R by simply

viewing its vectors as elements of C.
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Remark 11.3. Notice that in the proof above there were two inequalities used, if we track the
cases when they are “equality” we can see for which frames the Welch bound is tight. The
Cauchy-Scwartz inequality is tight when the vector consisting in the first d eigenvalues of G
is a multiple of the all-ones vector, which is the case exactly when ® is a Tight Frame (recall
Definition 8.3). The second inequality is tight when all the terms in the sum Zé\; i (@i, @;)|? are
equal. The frames that satisfy these properties are called ETFs — Equiangular Tight Frames.

Definition 11.4 (Equiangular Tight Frame). A unit-normed Tight frame is called an Equiangular
Tight Frame if there exists | such that, for all i # j,

(i, @) | = 1.
Proposition 11.5. Let ¢y, ...,y by an equiangular tight frame in K¢ then

e IfK=C then N < d*

o IfK =R then N < 4l

Proof. Let y; = vec (i), these vectors® are unit norm and their inner products are
Wiy = (vec (@i97) ,vee (9,07)) = Tr ((0i9))" (9;97)) = (@i, 0)) 1 = 1°.
This means that their Gram matrix H is given by
H=(1-p?)1+p*11’.

Since 1 # 1 we have rank(H) = N. But the rank needs to be smaller or equal than the dimension
of the ¢;’s which

e For C? is at most d2,
e For RY, due to symmetry it is at most %d(d +1).

ThusNgdeorK:C,anngd(dz—ﬂ)forK:R. O

Further Reading 11.1. Equiangular Tight Frames in C¢ with N = d* are important objects is
Quantum Mechanics, where they are called STC-POVM: Symmetric, Informationally Complete,
Positive Operator-Valued Measure. It is a central open problem to prove that they exist in all
dimensions d, see Open Problem 6.3. in [Banl6] (the conjecture that they do exist is known as

Zauner’s Conjecture).

8Vec(M) for a matrix M corresponds to the vectors formed by the entries of M; in this case it is not important

how the indexing is done as long as consistent throughout.
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While constructions of Equiangular Tight Frames are outside the scope of this course,’ there are
simple families of vectors with worst case coherence (U ~ \/%l: Let F € C?*4 denote the Discrete
Fourier Transform matrix

F is an orthonormal basis for C¢. Notably any column of F has an inner product of - with the

Vd
canonical basis, this means that the d x 2d matrix
(16) P =[IF]

has worst case coherence —.
Vvd

Theorem 10.6 guarantees that, for ® given by (16), 1 achieves exact recovery for sparsity levels
1
Remark 11.6. There are many constructions of unit norm frames with low coherence, with re-
dundancy quotients (N/d) much larger than 2. There is a all field of research involving these
constructions, there is a “living” article keeping track of constructions [FM]. You can also take
a look at the PhD thesis of Dustin Mixon [Mix12] which describes part of this field, and discusses
connections to Compressed Sensing; Dustin Mixon also has a blog in part devoted to these ques-
tions [Mix]). We will not discuss these constructions here, but Exploratory Challenge 11.4 will

show that even randomly picked vectors do quite well (we will do this at the end of the course, as

we need some of the probability tools introduced later on).

Definition 11.7. Construction (16) suggest the notion of Mutually Unbiased Bases: Two or-
thonormal bases vi,...,vq and uy,...,ug of C? are called Mutually Unbiased if for all i, j we
have |viu;| = \/Lﬁ' A set of k bases are called Mutually Unbiased if every pair is Mutually Unbi-

ased.

Challenge 11.2. Show that a matrix formed with two orthonormal bases such as (16) cannot

have worst case coherence smaller than \/LE'

Further Reading 11.3. Mutually Unbiased basis are an important object in quantum mechan-
ics, communication, and signal processing, however there is still that is not understood about
them. My favourite question about them is: “How many mutually unbiased basis exist in 6 di-
mensions”? The best known upper bound is 7 (d + 1 is always an upper bound, and is known to
be tight for prime powers but not in general), the best known lower bound for 6 dimensions is 3.
See Open Problem 6.2. in [Banl16].

91 should point out though that there are fascinating connections with Number Theory, Graph Theory, and other
areas.
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Exploratory Challenge 11.4. This Challenge is special, it is meant to be solved later in the
course (we will likely put it in the homework). Towards the end of the course, equiped with a few
more tools of Probability, you’ll be able to show that by simply taking a frame made up of random
(independent) vectors in the unit norm sphere, the coherence is comparable to the Welch bound,
in particular you will show that N such vectors in d dimensions will have worst case coherence
%\/5(1\]), where polylog(N) means a polynomial of the logarithm of N (you will also work out
the actual dependency).

Further Reading 11.5. Turns out that with matrices consisting of random (independent) columns,

one can perform sparse recovery with {1 minimization for much larger levels of sparsity (s < —d__

log(n
rather than s < \V/d). Proving this however is outside the scope of this course, as it requires hegaiv)—
ier Probability Theory machinery. Interestingly, matching this performance with deterministic
constructions seems notoriously difficult, in fact there is only one known construction “breaking
the square-root bottleneck”. You can read more about this in Open Problem 5.1. in [Banl6] (and

references therein).
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12. MATRIX COMPLETION & RECOMMENDATION SYSTEMS (01.04.2021)

Recommendation Systems is a central application in Machine Learning. In this Section we will
focus on the problem of Matrix Completion and will use the Mathematics we developed in the
last few sections to motivate algorithms for this problem; while an analysis of these algorithms is
outside the scope of this course, they are essentially analogues of the ones developed for sparse
recovery. This section, which concludes the first half of the course, is less technical than the previ-
ous noes, and more devoted to describing algorithms and applications (and some “story-telling”).
Nonetheless we will include a guarantee for matrix completion as a “delayed” homework, as it

will be doable with techniques available at the end of the course.

12.1. Netflix Prize. The problem of matrix completion is often referred to as the Netflix prob-
lem. This is because a bit over a decade ago Netflix launched a contest to improve their rec-
ommendation algorithm; teams could have access to a training data set and propose algorithms,
the winning team (based on performance on an unseen test data set) received 1 Million dollars.
This lasted a few years and it is quite an incredible story. I couldn’t possibly describe it here
better than the professional press outlets, so I recommended taking a look at the context website:
https://netflixprize.com/index.html

You can also access the data here:

https://www.kaggle.com/netflix-inc/netflix-prize-data

Exploratory Challenge 12.1. I recommend, if you find the time, to try simple algorithms on this

dataset!

Here are a few articles with more information, it is quite the story!
https://www.thrillist.com/entertainment/nation/the-netflix-prize
https://www.wired.com/2009/09/how-the-netflix-prize-was-won/

https://en.wikipedia.org/wiki/Netflix_Prize

12.2. The Problem. Let’s use the Netflix problem as the driving example. Let M € R"*™ denote
the matrix of user/movie ratings (say in either 1 or 1 — —5 ratings), the goal is to estimate unseen
entries of M from a few observed entries. Much like the sparse recovery problem above, this is
impossible without (parsimony) assumptions on M. A classically used assumption is that M is
low rank (movies and users can be well described as linear combinations of a few “factors’). The

Mathematical probelm then becomes:
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Problem 12.1 (Low Rank Matrix Completion). Recover M € R"*"™ a low rank matrix (meaning
rank(M) < r for r < n,m) from observations Q C [n] X [m]:

M;j=yij, for (i,j)€Q

Central questions include

e How large does € need to be?

e What are efficient algorithms?

We will discuss the second question first, you can see [H15] for a nice discussion relating the
two algorithms we discuss here. A particularly simple algorithm is motivated by the first part of
the course, where we discussed truncated SVD. The idea is to start by setting all non-observed
entries to 0, and then update the estimator M by repeatedly alternative through the following two

iterations

(1) Perform truncated SVD on M

(2) “Correct” the observed Q entries of M to coincide with the observations.

Both iteration (1) will in general change the entries in € and iteration (2) will in general increase

the rank of M, so they need to be performed until convergence (or a stopping criteria is satisfied).

12.3. Nuclear Norm Minimization. Another algorithm appears as a natural generalization of
/1 minimization for sparse recovery. Since M is low rank, the vectors of singular values of M,
(M) is sparse. The tools developed in the sections above suggest minimizing the ¢; norm of
o (M), which we have seen is the Schatten-1 norm of M (recall Definition 4.3). This suggests the

following optimization problem

min - |[M|(s1)

(17) o
st. M;j=y;forall (i, j) € Q

This is known in the literature as Nuclear Norm miminization and is known to recover a low rank
matrix M, under certain incoherence assumptions, from only r(m + n)polylog(n + m) observa-
tions (note that if » is small this is significantly smaller than n x m). While guarantees for this
algorithm are outside the scope of this course, as they require tools from random matrix theory,
we point out that the key reasons for the success of the algorithm are analogous to the ones for ¢;
minimization in sparse recovery. There is a fascinating line of work establishing guarantees for
this algorithm [CT10, CR09, Recl1, Grol1]. We point out that solving (17) is indeed efficient, it
is a so called Semidefinite Program [VB04].
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12.4. Guarantees. Here we discuss a guarantee for a particularly simple, but already mathemat-
ically rich, example. Let us consider the case of r =1, thus M = uv! for some unknown vectors u
and v. Let us assume further that # and v have only non-zero entries (this is a particularly strong
version of the “incoherence assumptions” mentioned above). We are interested in understanding
when is it that M is uniquely determined by the set of observations Q C [n] X [m], we will relate
it with the connectivity of a a certain graph.

Recall that a bipartite graph is a graph with two sets of nodes such that all edges have an endpoint
in each of the sets. Given the set Q consider the graph G to be the bipartite graph on n+m
nodes (corresponding to rows and columns of M) where node i € [n] and j € [m] are connected if
and only if i, j € Q.

Theorem 12.2. A matrix M = uv’, with u and v both vectors in no zero entry, is uniquely deter-
mined by the entry values in Q C [n] X [m] if and only if Gg is connected.

Challenge 12.2. Prove this Theorem.

As ahomework problem layer in the course, you will show that roughly (m-+n)log(m+n) entries
independently picked at random are enough to uniquely determine M.

Exploratory Challenge 12.3. A bipartite Erdos-Renyi random graph G(n,m, p) is a bipartite
graph on n+ m nodes where every possible edge between the first n nodes and the last m nodes
appears, independently, with probability p. For which values of p is the graph connected with
high probability? (Similarly to Exploratory Challenge 11.4, this is meant to be solved later in the

course, when posted as homework it will contain more information and “stepping stones” ).

Exploratory Challenge 12.4. This result for random graph is more classical on not necessarily
bipartite graphs (which would correspond to a symmetric version of the matrix completion prob-
lem). An Erdds-Renyi random graph G(n,p) is a graph on n nodes where every possible edge
appears, independently, with probability p. For which values of p is the graph connected with
high probability? (Similarly to Exploratory Challenge 11.4, this is meant to be solved later in the

course, when posted as homework it will contain more information and “stepping stones”).

Remark 12.3. Although the connection with random matrix theory won’t be discussed here, it
likely will not be a complete surprise at this point, given that connectivity of a graph is related to
properties of the corresponding adjacency matrix. In the rank I case, there is no need for random

matrix theory and considerably simpler tools from probability theory will suffice.
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13. CLASSIFICATION THEORY: FINITE CLASSES (15.04.2021)

Theory of Classification is a foundational topic in Statistical Machine Learning. The direction
we are discussing in this part of the course was initiated by Vladimir Vapnik and Alexey Chervo-
nenkis in the mid-60s and independently by Leslie Valiant in the mid-80s. The results of Vapnik
and Chervonenkis lead to what we now call Vapnik—Chervonenkis Theory. From the early 70s
to the present day, their work has an ongoing impact on Machine Learning, Statistics, Empirical
Process Theory, Computational Geometry and Combinatorics. In parallel, the work of Valiant
looked at a similar problem from a more computational perspective. In particular, Valiant de-
veloped the theory of Probably Approximately Correct (PAC) Learning that lead, among other
contributions, to his 2010 Turing Award.

In this part of the course, we study the following simple model. We are given a sequence of

independent identically distributed observations
X1y Xn

taking their values in 2~ C R” such that each X; is distributed according to some unknown dis-
tribution P '°. In our case each X; might be seen as an image or a feature vector. For example,
consider the problem of health diagnostics. In this case these vectors can describe some medical
information such as age, weight, blood pressure and so on. An important part of our analysis
is that the dimension of the space will not play any role, and classification is possible even in
abstract measurable spaces.

In contrast to clustering problems discussed earlier, we also observe labels

A (Xy),..., ff(Xp),

where f* is an (unknown to us) target classifier mapping R? — {0,1}. Depending on a partic-
ular problem, these labels can represent spam/not spam when classifying the emails, disease/no
disease when diagnosing the patient and so on. Of course, we put a standard measurability as-

sumption on f* so that e.g., { f*(x) = 1} is measurable. Using the labeled sample

(18) Sn:((Xlﬂf*(Xl))v"'a(Xnvf*(Xn)»

our aim is to construct a measurable classifier f: 2" — {0,1} that can be used to classify any
further element x € 2°. The risk or the error of a (measurable) classifier f: 2~ — {0,1} is
defined by

R(f) =Pr(f(X) # f*(X)).

10We assume that there is a probability space (2", F, P), where F is a Borel o-algebra.
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With this definition in mind, we want to consider classification rules that have their risk as small
as possible. Our second assumption is that f* belongs to some known class .# of (measurable)
classifiers mapping 2" to {0, 1}. We remark that in the Computer Science literature these classi-

fiers are usually called concepts.

Definition 13.1. We say that a classifier fAis consistent with the sample S, if foralli=1,...,n,

F(Xi) = (X))

Observe that to find a consistent classifier one should observe the labeled sample S, but no other
knowledge (except the fact that f* € .%) on f* is required.

Before presenting our next result, let us give its informal description. Given the sample S,,, the
most natural way is to choose any fe Z consistent with it. Our hope is that this classifier will
likely be close to the true classifier f*. Since the sample S, is random, we cannot guarantee
this definitely. Instead, we may only say that fis close to f* with high probability: this would
mean intuitively that for a large fraction of all random realizations of the sample S, any classifier
consistent with a particular realization of the sample has a small risk. There is an alternative and
equivalent way of looking at this. Instead of saying that with high probability any classifier that
is consistent with the sample has a small risk, one may argue that any classifier that has a large
risk cannot be consistent with the sample S,,. The latter idea will be central in our proofs.

Theorem 13.2. Assume that f* € %, and F is finite. For the confidence parameter 6 € (0,1)

and the precision parameter € € (0,1) fix the sample size

o
n>rog|a¢\+1 1-‘.

Zlog—
£0g5

Let ]?be any classifier in % consistent with the sample S,. Then,

-~

(19) Pr )(R(f)<e> >1-8.

(X[,...,X”

Equivalently, with probability at least 1 — 6, any classifier f such that its risk is larger than €
(that is, R(f) > €) cannot be consistent with the sample S,.

Although our proofs are usually based on the second principle, we present our result in the short
form (19).
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Proof. We follow the strategy discussed above. Fix any f € % such that R(f) = Pr(f(X) #
(X)) > €. We have,

< exp(—ne),

where in the last line we used 1 —x < exp(—x). Recall the union bound: for a set of events
Aq,...,A; we have Pr(A; U...UA;) <YX  Pr(A;). Now, using the union bound we have

( Pr )(there is f€.Z, R(f) > esuchthat f(X;) = f*(X;) fori=1,...,n)

X15e-sXn

<Y Pr_ (R(f)=eandf(X;)=f"(X;)fori=1,...,n)
fegr (X1 X)

< | F|exp(—ne),

where the last line follows from our bound for a single fixed classifier. We want this probability
to be small. We set |.7 | exp(—ne) = 8. Therefore, it is sufficient to take the sample size

1 1 1
£ £

0
to guarantee that, with probability at least 1 — &, any classifier f € .% consistent with the sample

has its risk smaller than €. Indeed, if n is chosen this way, we have

( Pr )(there is fe.Z, R(f) > esuchthat f(X;) = f*(X;) fori=1,...,n) < é.
Xy, X

Taking the complementary event proves the claim. U

One may rewrite the result of Theorem 13.2 as a risk bound. That is, we first fix the sample size n
and want to estimate the precision € of our classifier. Repeating the lines of the proof of Theorem
13.2, we have for any f consistent with S,,,

Y o
Pr (R(f)§10g|J|+llogl)21—5.
(X1, X0) n n o)

The result of Theorem 13.2 inspires the following definition. In what follows, PAC stands for
Probably Approximately Correct. Indeed, we showed that for any finite class .# any sample
consistent classifier is approximately correct (risk < €) with high probability.



44

Definition 13.3. A (possibly infinite) class % of classifiers is PAC-learnable with the sample
complexity n(8,€) if there is a mapping A : U7_o (2 x {0,1})™ — {0,1}% (called the learning
algorithm; given a sample S of any size it outputs a classifier A(S)) that satisfies the following
property: for every distribution P on 2, every 8,¢ € (0,1) and every target classifier f* € F,
if the sample size n is greater or equal than n(0,€), then

% F-r,Xn) (R(A(Sy)) <€) >1-36.

Remark 13.4. When considering finite classes we have little problems with measurability and
we may only request that for all f € F the set {f(x) = 1} is measurable. The notion of PAC-
learnability allows infinite classes. In this case the question of measurability is more subtle.
However, as a rule of thumb, one may argue that measurability issues will almost never appear
in the analysis of real-life algorithms. In particular, starting from late-80s there is a useful
and formal notion of well-behaved classes: these are essentially the classes for which these

measurability issues do not appear. We add some clarifying references thought the text.

An immediate outcome of Theorem 13.2 is the following result.

Corollary 13.5. Any finite class .7 is PAC learnable with the sample complexity
log|.#| 1 1
ne gl 1 W '

log <

€ o

Moreover, to learn this class, we simply need to output any consistent classifier f.

14. PAC-LEARNING FOR INFINITE CLASSES: STABILITY AND SAMPLE COMPRESSION
(15.04.2021)

An important limitation of Theorem 13.2 is that it only deals with finite classes. Working only
with discrete spaces of solutions is also somewhat impractical: many modern machine learning
techniques are based on the gradient descent methods that require that the class .% is parametrized
in a relatively smooth way by R”. In order to analyze infinite sets .%, we can use the following
simple argument that can be again attributed to Vapnik and Chervonenkis. Given f* € .%, con-

sider a non-random labeled sample of size n+ 1:

Sn1 = {1, 1 (x1)5 o5 (1, f (1)) }-

We use lowercase s to emphasize that this sample is non-random. Fori=1,...,n+4 1, let

o = S\ { (£ ()) -
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That is, we removed the i-th observation from the sample S. Let A be any learning algorithm, and
denote f7 = A(s' ). The Leave-One-Out error (LOO) is defined by

1 n+1
n+1 Z] 1J?i(xi)7éf* (x;)?

=

LOOA = LOOA (Sn—H) =

where as before 1 is an indicator of E. It is easy to see how LOO works: one by one we remove
this instances from the sample, construct a new classifier and test its performance on the removed
point. Even though the Leave-One-Out error is deterministic, we may also look at it as a random

variable by replacing all x; by corresponding independent identically distributed X;-s.

Theorem 14.1. For any learning algorithm A,

]Exly,XnR(A<Sn)) = Ele"'7Xn+1 LOOA (Sn+1 )'

Proof. Since the random variables X1, ..., X+ are independent and identically distributed, the

terms in the sum
1 n+1

porl Zi o2 x)

i=

LOOA(Sy+1) =

have the same distribution. Therefore, the expected values of each summand are the same. By
the linearity of expectation, we have
1 n+1
g 1K ; Lioaeron = Bx X d oo, -

Using the independence of X, ..., X1, we first take the expectation only with respect to X, |
(one may formally use either the conditional expectation argument or the Fubini theorem). This
implies
Znt1
EX17~-~7Xn+1 lfn+l(xn+l)7éf*(xn+l) = Ele-“»XnR(frH_ ) = EX17-~-7XHR(A(S”1))'
The claim follows. U

Example 14.2. Learning axis-aligned rectangles. The following simple example can be described
in words. Consider the class of classifiers .F induced by axis-aligned rectangles in R?: that is,
for each axis-aligned rectangle we build a classifier that labels its interior and border by 1 and its
exterior by 0. Assume that some unknown target rectangle f* € .% is chosen. We need to describe
our learning algorithm. Let the classifier fcorrespond to the smallest axis-aligned rectangle that

contains all instances labeled by 1. It is easy to check that for any deterministic sample of size n:

4
LOO < .
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Indeed, f’ can be wrong only when removing an instance with the label 1 on the border of the

described classifier trained on s, 1. Thus, by Theorem 14.1 we have

~

Ex, .. x,R(f) <

n+1

4=

Challenge 14.1. Using Example 14.2, prove directly that the class of axis-aligned rectangles is
PAC-learnable.

One of the drawbacks of Theorem 14.1 is that it only controls the expected risk. We show that
the ideas used in Example 14.2 can be used in full generality in order to provide high probability
sample complexity bounds. Observe that the rectangle fin Example 14.2 is defined by the four
instances that belong to its border. In particular, if we remove all instances in the sample except
these four, then the same classifier fis constructed. Moreover, this classifier will correctly label
the original learning sample. In some sense, we compress the information stored in the sample

into a small subsample. This motivates the following definition.

Definition 14.3. Consider a pair of functions: a compression function
K Upo(2 x{0,11)" = Up_o(2 < {0,1})"
(it is a function mapping a sample to a subsample of size £) and a reconstruction function

P Usg(2 x{0,11)" = {0,1}
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(it maps labeled samples to classifiers). The pair (p, ) defines the sample compression scheme
of size  for F if the following holds for any f* € F, any integer n and any sample s, =
((xlaf*(xl)a R (-xmf*(-xn)))

e it holds that x(s,) C s,. That is, compression functions always map to a subset of the
original sample;

e the size of a compression set satisfies |K(s,)| < ¢;

o the classifier f = p(K(sy)) satisfies for all i =1,...,n, f(x;) = f*(x;). That is, the re-
construction function applied to the compression set recovers the labels of s,. In other

words, f is consistent with the sample s,,.

Example 14.4. Check that Example 14.2 defines a sample compression scheme of size { = 4.

Of course, when considering statistical guarantees we always assume that p outputs a measurable

classifier.

Theorem 14.5. Assume that .7 admits a sample compression scheme (p,K) of size { and that p
is permutation invariant (does not depend on the order of input instances). For the confidence
parameter O € (0, 1) and the precision parameter € € (0, 1), fix the sample size

s i | Lroe @ 4 Liog L
n —log—+ —log—= | .
- € gé € g5

Then, for the classifier f = p(k(Sy)), it holds that

-~

P R(f)<e)>1-6.
(Xl,...r,Xn)( (N=e) =z

Proof. The proof is similar to the proof of Theorem 13.2. Consider without loss of generality
the first £ elements of S,,. This set is denoted by S,. This corresponds to the naive compression
function x that always maps to the first £ instances of S,,. Using the same arguments as in Theorem
13.2 we have (conditioned on X, ...,Xy)
. Pr . (R(p(S¢)) > eand p(Sy)(X;) = fF(Xi) fori=L+1,...,n) <exp(—&(n—1)).
L+15--9%n
Observe that this probability will only decrease if Sy is replaced by Si,k < ¢. Our idea is to prove

the statement no matter which subset is selected by k. Indeed, by our assumption kK always maps

> (7)=(4)

j=0

to one of at most (provided that n > /)
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subsets and since p is permutation invariant, we ignore the order of the elements in the corre-
sponding set. To verify the last inequality we use

=007 B0 0 -0 () =)

=0 \J i=o \ d 3\ d d n d
where we used the binomial theorem. Therefore, by the union bound, no matter which subset is

selected by the compression function x, we have

Pr_ (R(p(k(Sn))) > €)

X€+la"'7Xn

L
< (%) Ex,..x,  Pr (R(p(Sy) > € and p(Se)(X;) = f*(X;) fori=(+1,....n)

[Jrl,...,Xn

l
< () exp(—e(n—0).
The sample complexity bound follows by a simple computation. 0

Challenge 14.2. Prove an analog of Theorem 14.5 in the case where p is not permutation invari-

ant.

Observe that the existence of a sample compression scheme of finite size implies PAC-learnability.
Sample compression is a source of several major open problem in Learning Theory. We discuss
some of them later.

Remark 14.6. One may prove the following identity: for o, B,y > 0,n> 1 if afe?/* > 2, then
n>2y+2aln(af) implies n>7y+ alog(Bn).

See Corollary 4.1 in [Vid13]. Therefore, it is easy to verify that our requirement n > { + é log 7 +
%log% can be replaced by

200 e 2 1
20 > 20+ —log—+ —log =,
(20) n +log o+ Zlogs
The last condition does not contain n in the right-hand side.

Further Reading 14.3. Theorem 13.2 and the model we are studying appears in the work of
Vapnik and Chervonenkis [VC64a]. This work also provides a matching lower bound. See also
[Cov65b]. The work of Valiant [Val84] introduces the formal notion of PAC-learnability. Theo-
rem 14.1 appears explicitly in the first textbook of Vapnik and Chervonenkis [VC74], though the
argument was known in the mid-60s. See additional historical remarks on this result in [VPGI15,
Chapter I]. Theorem 14.5 is essentially due to Littlestone and Warmuth [LW86). Another recom-

mended reference with many related discussions is [HR21].
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15. PERCEPTRON (22.04.2021)

In this lecture, we analyze the Perceptron algorithm. This algorithm was invented in the late-50s
by Frank Rosenblatt. Even though it is one of the first learning algorithms, Perceptron has close
relations to multiple foundational methods and principles such as stochastic gradient descent
and sample compression schemes. Later in our course, we also make a connection with online
learning. Moreover, Perceptron is a building block of artificial neural networks.

For notational convenience, we work with the labels {—1,1} instead of {0, 1} when considering
the Perceptron algorithm.

Definition 15.1. We say that a set of labeled vectors W C RP x {1, —1} is linearly separable with
a margin y if there is a vector v € R? such that for any (x,y) € W, where x e RP andy € {1,—1},

it holds that
y{(v, x)
[v]]

> 7.

The intuition behind the margin is as follows. From linear algebra we know that the distance
from x to the separating hyperplane induced by v is equal to

[ 2]

vl
The margin assumption means that each (x,y) lives in a half-space corresponding to its label y
and the distance from x to the separating hyperplane is at least 7. In fact, for any vector w € R”
there is a natural way to define a classifier: we consider the mapping x — sign({w,x)). That is,
the vector w induces a half-space and is orthogonal to the separating hyperplane. In particular, w
misclassifies x € R” whenever
y{w,x) <O0.

Remark 15.2. For the sake of simplicity, in this lecture we focus on homogenous half-spaces.

That is, we assume that the separating hyperplane passes through the origin.

Our first aim will be the following: given a linearly separable sample of labeled vectors s, =
{(x1,y1),---,(xn,yn)}, find a vector w that certifies this linear separability. The following algo-
rithm is aiming to do so.

Perceptron Algorithm.

e Input: s, = {(x1,¥1),-- - (Xn,yn) }-
e Setw; =0.
e Fori=1,...,ndo
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(1) Ifyi<w,~,xi> S 0
(2) Wirl = Wi+ yiXi,
(3) Else
4) Wit = Wi,
e Return: wy41.

The simplest interpretation of this algorithm is as follows. Whenever w; misclassifies x;, we
update it by using the rule w;1 = w; + y;x;. This implies, in particular, that

VilWir1,Xi) = yi(wi, x;) +yi2||xiH2 = yi{wi, xi) + Hxi||2~

The additional positive term ||x;||> implies that w;, 1 is less likely to misclassify x;. The next result

is the basic error bounds for the Perceptron algorithm.

Theorem 15.3. Assume that we are given a finite set of labeled vectors s, = {(x1,y1), .., (Xn,¥n)}

in RP that is linearly separable with a margin 7. Let _max ||xi|| < r, for some r > 0. The number
i=l,...n

of updates (misclassifications) made by the Perceptron algorithm when processing s, is bounded

by r? /y*. This values does not depend on n.

Proof. Let J C {1,...,n} denote the set of indexes where the Perceptron algorithm updates the

weight vector. By W)

O and the linearity of the inner product, we have

i\V, Xi
]y < Zy< ).

icJ ||V||

By the Cauchy-Schwarz inequality and the definition of the update rule we obtain

Y vixi

icJ

Zyi<xi7v> <

e vl

Z(Wi+1 —wj)

ieJ

= ||Wmax(1)+l ||’

where in the last line equality we used telescopic sums (with wy = 0). Further, using telescopic

sums again, we have

Wmax()1 1l = /3 (Wit > = [wil2)
ieJ
= Y (Iwi+yixill? = [lwil|?)
ieJ

< Y 2yilwisxi) + [|xil?) (since y;(w;,x;) < 0)
icJ

< Y Il </l
ieJ
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Therefore, we have
Ty < WP = |7 <2 /7

The claim follows. 0

Observe that we only restrict the norms of the vectors that correspond to the instances misclassi-
fied by the Perceptron algorithm. These instances are usually called the support vectors. We are

ready to show that these support vectors define a sample compression scheme.

Proposition 15.4. Consider the case of linearly separable data with a margin y and such that the
norms of the vectors are restricted to the ball of radius r. Then, the Perceptron algorithm defines

a sample compression scheme of size £ < r*/y>.

Proof. The exposition of the proof is again simplified if we present it informally. We first need
to order the vectors in R”. For any x,y € R” we write x <y if x; < y;, where j € {I,...,p}
is the first index where x; # y;. Given a learning sample s,, we always first sort the instances
in ascending order according to <. Consider running the Perceptron algorithm through s, and
cycling through this ordered set repeatedly until it makes a full pass through it without making
any mistakes. This procedure will surely terminate since the sample s, is finite, and by Theorem

15.3, we only make a finite number of mistakes on a sample of arbitrary length.

Let s;, C s, denote the set of mistakes of the Perceptron algorithm executed as above. By Theorem
15.3 we have |s| < r?/v%. Therefore, the Perceptron algorithm defines a compression function of
size £ < r?/y?. This function maps s, to s*. We only need to construct a reconstruction function.
Fix any x € R? that does not have a labeled copy in s;,. We put the unlabeled x among s, and sort
them according <. We run the Perceptron algorithm on the ordered set s}, U {x} until the label
of x is determined. That is, the label of x is sign(({x,w)), where w is the current vector when x is
processed. For any x that has a copy in s}, we return its correct label. Indeed, in this case the label
of x is stored in s;. This defines (point-wise) the reconstruction function. By our construction for
any x € s, its label will be correctly classified by this reconstruction function. Thus, we defined
a sample compression scheme of size £ < r?/y. O

Challenge 15.1. Make this proof formal.

Challenge 15.2. Prove that alternatively one may use the following reconstruction function: run
the Perceptron algorithm through s;, and cycling through this ordered set repeatedly until it makes
a full pass through it without making any mistakes. Any new point x is now classified by the final
output vector w. Argue that in this case p(x(S,)) matches the output of the Perceptron algorithm
trained until it passes through S, without making any mistakes.

Remark 15.5. For the reconstruction function of Proposition 15.4 one may use a compression

function making only a single pass through the sample.
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Thus, in our setup the sample complexity bound (20) implies that if the sample size

>2r2_’_2r21 e+ 1
n>—%+——log—+—log—
Y2 ye EeTe %y

then the output classifier w of the Perceptron-based sample compression scheme of Proposition
15.4 satisfies
Pr (R(w)<eg)>1-4.
(X1>~~~,Xn)( ( ) N ) -
Challenge 15.3. Verify that the Leave-One-Out argument (Theorem 14.1) can also be used to

provide an in-expectation performance of the Perceptron algorithm.

The renowned Support-Vector Machine algorithm (SVM) was introduced in the early work of
Vapnik and Chervonenkis [VC64b] as a particular modification of the Perceptron algorithm. Due

to time restrictions and a more involved theoretical analysis, we omit this algorithm in this course.

16. BASIC CONCENTRATION INEQUALITIES (22.04.2021)

Before proceeding with more involved results we need to derive several technical results. First,
we need to introduce a moment generating function. Given a random variable define the real-
valued function My as

Mx(A) =Eexp(AX),
whenever this expectation exists. For example, it is standard to verify that if X is distributed

according to the normal law with mean 0 and variance 62, then
Eexp(AX) = exp(A262/2).

We show that a similar relation holds for any zero mean bounded random variable. This result is
originally due to Wassily Hoeffding. In this proof we use Jensen’s inequality: if X is an integrable

random variable and ¢ is a convex function, then ¢(EX) < E@(X).

Lemma 16.1. Let X be a zero mean random variable (EX = 0) such that X € [a,b] almost surely.
Then,
Mx(A) < exp(lz(b — a)2/8).

Proof. For the sake of presentation, we only provide a proof of a slightly weaker inequality:
My (L) < exp(A2(b—a)?/2).

Consider the random variable X’ that is an independent copy of X. When taking the expectation

with respect to this independent random variable, we write E’ instead of E. Observe that E'X’ = 0.
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Therefore, by the linearity of expectation and Jensen’s inequality we have
Mx(A) =Eexp(AX) = Eexp(A(X —E'X")) < EE'exp(A(X —X")).

We use the idea of symmetrization. Let € be a random variable independent of X and X’ and
taking the values +1 each with probability 1/2. This random variable is usually referred to as the

Rademacher random variable. By symmetry we have that
X-X'2x -xLex-X),

d . . .. .
where the symbol = denotes that corresponding random variables have the same distribution.

Because random variables with the same distribution have the same expectation, we have
My (1) < EEEcexp(Ae(X — X)),

and we can change the order of integration (taking the expectation) by the Fubini theorem. Let’s

take the expectation with respect to € first. We have
1
Eeexp(Ae(X —X')) = 3 (exp(A(X —X')) +exp(A(X' - X))) < exp(A*(X —X')?/2),

where we used that (exp(x) +exp(—x))/2 < exp(x?/2). Observe that |X — X’| < b — a almost

surely. Thus, we have
My (L) < EE exp(Ae(b—a)?/2) = exp(Ae(b—a)?/2).

The claim follows. [l

Let Y be a random variable. Denote its moment generating function by My. For any A,z > 0, we
have
Pr(Y > 1) =Pr(AY > Ar) = Pr(exp(AY) > exp(Ar)) < exp(—Ar)My(R),
where the last inequality follows from Markov’s inequality: for a random variable Z such that
Z > 0 almost surely and any ¢ > 0, it holds that Pr(Z > ) < [EZ/t. Therefore, we have
Pr(Y >1t) < inf exp(—At)My(1).
A>0
This relation is usually called the Chernoftf method. We are now ready to prove the basic concen-

tration inequality for bounded random variables.

Theorem 16.2 (Hoeffding’s inequality). Let Xi,...,X, be independent random variables such
that X; € |a;,b;] almost surely fori = 1,...,n. Then, for anyt > 0, it holds that

Pr n(X EX;) >t <ep( 2 )
—EXi)) >t | <exp| o———— | -
i—1 l lr'lzl(bi_al')2
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Similarly, we have

n —2l‘2
(EX; — X)) gap(______).
,gi ?:1([91' —a,-)2

Z\X EX;| >t <Zexp(i)
i=1 i l(b ai)2 .

Proof. We proceed with the following lines. For any A > 0, it holds that

ot

Moreover,

M=

1 i=1

~.

(Xi—EX;) > ) <exp(—At)Eexp ()L Zn:(X,- - EX,))
= exp (—Ar) ﬁEexp (A(X;—EX;)) (by independence)
i=1

<exp(—At) [Jexp (A*(bi —a;)*/8)  (by Hoeffding’s lemma)

= exp (—At)exp (),2 Xn:(bi - a,-)z/S) .

i=1
Observe that we used that the length of the interval to which X; — [EX; belongs is the same as the
corresponding length for X;. Choosing A = 4t/Y"_| (b; — a;)?, we prove the first inequality. The

proof of the second inequality follows the same lines. Finally, by the union bound

n n n
Pr (Z X; — EX;| > r) < Pr (Z(X,- —EX;) > ) +Pr (Z(EX,- -X;) > r)
i=1 i=1 i=1
212 )
<2exp| ——"—_ ).
= p(Z?Mh—mP
The claim follows. 0

Further Reading 16.1. The Perceptron algorithm appears first in [Ros57]. Theorem 15.3 is due
to Novikoff [Nov63]. The error bound for the Perceptron algorithm based on the leave-one-out
argument is due to Vapnik and Chervonenkis [VC74]. For more details on Perceptron and SVM,
see the textbook [MRT18]. The sharpest known high probability bounds for both algorithms
in the PAC model are presented in [BHMZ20, HK21]. Hoeffding’s inequality appears in the
foundational work of Hoeffding [Hoe63]. Similar techniques were used in 1920-s by Bernstein
and Kolmogorov [Kol29].
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17. UNIFORM CONVERGENCE OF FREQUENCIES OF EVENTS TO THEIR PROBABILITIES
(29.04.2021)

Assume that we are given a probability space (2", F,P). Let <7 be a collection of events. These

are measurable subsets of 2Z". Given a sample
X1y Xn

of independent random variables each distributed according to P, we define for any A € &7 the

frequency V4 of this event. That is, we set
1 n
vn(A) = Vn(Aaxla' . 7Xn) = Z Z lXiEAa
i=1

where 1f is an indicator of E. Observe that E1x.c4 = P(A). By the law of large numbers we
know that for any given event A,

va(A) —P(A) 23 0.
However, in what follows, we are interested in the analysis of this convergence uniformly over
all events in .«7. Therefore, we consider the random variable

sup [Va(A) — P(A)].

Acd
We always assume that this is a measurable function. As above, if <7 is finite or even countable,
then no problems of this sort appear. However, for infinite classes of events we need some
relatively mild assumptions to work with sup,. ., [V.(A) —P(A)|. We discuss them shortly in
what follows. When .7 is finite, combining the union bound and the Hoeffding inequality, we
have for any # > 0,

Pr (Egz)éwn(A) —P(A)| > r) gAé{Pr(yvn(A) —P(A)| >1)

< 2|.of | exp(—2nt?),

where we used that in our case b; = 1,a; =1 fori = 1,...,n. To present this result in a more con-
venient form, we set § = 2|.o7|exp(—2nt?). A simple computation shows that, with probability
at least 1 — 9, it holds that

X4

max |V, (A) — P(A)| < \/% (log(2|,52%|)—|—log é)

The analysis becomes more complicated when <7 is infinite. Indeed, in this case the term
log(2|<7|) is unbounded.
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Definition 17.1. Given a family of events </ the growth (shatter) function .%,; is defined by

Sy = sup [{(Ly,en,.... 1y cn) A€ Y|

X1y--09Xn

That is, the growth function bounds the number of projections of </ on the sample x1, ..., Xy.

Observe that ., (n) < 2". Let us give some simple examples:

(1) The growth function of a finite family of events satisfies .7, (n) < |.<7|.

(2) Assume that 2" = R and that .7 consists of the sets induced by all rays of the form x <7,
t € R. Then, .Zy(n) =n+1.

(3) Assume that 2" =R and .2 consists of all open sets in R. Then, .7,/ (n) = 2".

We are ready to formulate the main result of this lecture.

Theorem 17.2 (Vapnik-Chervonenkis Theorem). Consider a family of events </ with the growth
function /. For anyt > \/% it holds that

Pr (Asup |Va(A) —P(A)| > l) < 8.%,(n)exp(—nt*/32).
cd

In particular, with probability at least 1 — 0, we have

sup [V, (A) — P(A)| < 4\/% <10g(85@f(n)) + log%) :

Aced/

The main ingredient of the proof is the following lemma. First, recall that

1 n
IWM%PMNZZEX%Q—PMW-
i=1
Lemma 17.3 (Symmetrization lemma). Assume that €1, ...,€, are independent (from each other

and from X;, i =1,...,n) random variables taking the values +1 each with probability 1 /2. Then,

2;/4).

foranyt > \/g, it holds that

n

LY (1en - P(A))

ni=

1 n
- Z Elx,ca

ni=

>t <4 Pr sup
)217“~7)§n> Aca

15+-9€n

Pr su
X5 Xn (AEE.){
Proof. Assume that X/, ..., X is an independent copy of Xi,...,X, and set
/ ¢
va(A4) =~ Y Lyea
i=1

Given Xi,...,X, assume that a (random) A, C </ achieves the supremum. We may assume it

without loss of generality as otherwise there is A/, that gives an arbitrary close value and taking
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the limits carefully will give the same result. We have

sup [Vu(A) — P(A)| = [Va(Ay) — P(An)|
Acd

Further, for ¢+ > 0, we may write the following deterministic relation
Ly, ) —pian) e L vy an)—Pian) <t/2 < Tvi(an)—P(an) 1= 1vi(4n) - P(A) 21/2
< Ly, () —vi(an)21/2:
where is the last line we used the triangle inequality. Now we take the expectation of both sides
of this inequality with respect to X, ...,X,. We have,

P (|vn(An) = P(An)| < 1/2) < S (

12 n 12 *n

(1|Vn( n)_P(An)‘Zt) ) Vn(An) - v}{l(A"l)| 2 t/2) .

Observe that A, depends on Xj, ..., X, but does not depend on X,...,X,. Thus, by Chebyshev’s
inequity and independence of X{,...,X, we have

= 5
X!, X) Py nt

10 %n

Pr (|Vrlz(An)_P(An)| ZI/Z) = %Var (%i(IX{EAn_P(An») <

where we used that for a Bernoulli random variable taking its values in {0, 1} its variance is at

most zl;- Therefore, considering the complementary event we have

1
P (|vi(An) — P(An)| < 1/2) > 5

13098

whenever n]7 < 2. Thus, if t > \/%, we have

(L, an—panz) <2 P ([va(An) = vi(An)| > 1/2).

!
X/,.. X!

Taking the expectation with respect to Xi,...,X,, and using the symmetrization argument (that

is, 1x.ca — 1y/c4 has the same distribution as & (1x,ca — 1x7c4)) We obtain

Pr ([Va(An) —P(An)| > 1) <2 Pr (|va(An) = Vi(An)| > 1/2)

X17~~~7Xn X17~~-7Xn7
X!,...X!
<2 Pr (|va(An) = vi(An)| > 1/2)

<2 Pr (Asup [Va(An) — Vi (An)| > r/z)

Zt/2>,

1 n
=Y ei(lxea—yeq)

ni=

=2Pr | sup
Aco/
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where the last probability symbol corresponds to the joint distribution of X;, X/, & for all i =

1,...,n. Finally, using the triangle inequality and the union bound, we obtain
2PI‘ Sup Zgl 1X€A IXIEA) >t/2
Acd
n
<2Pr| sup Z&IXEA + sup Ze,lxgeA >t/4+1/4
Acot i=1 '
<4 Pr sup ZEzIXeA >t/4].
Xglv Ace
1y 7811
The claim follows. O

Proof. (of Theorem 17.2) Using the symmetrization lemma, we consider the term

4 Pr sup elxeal >1/4].
X1> 7£n7 (Aggf Z l <

€1,
Our key observation is that even though the set of events <7 is infinite, there are at most .%,,(n)

realizations of (1x,ca,...,1x,ca) for a given sample X,...,X,. Thus, using the union bound
together with the Hoeffding inequality (observe that €1x,c4 € [—1, 1] and zero mean), we have

! Zn: Elxeca| > t/4)
)

i3
<4Ex, x, | Zw(n)sup Pr | sup
’ Ac.o ElrEn

1 n
- Z gly,ca

Aeo |,

<A4E.Z(n)- (2exp(—2nt*/(4-16)))
=47/ (n)- (2exp(~2n%/(4-16)))
= 8.7,(n)exp(—nt*/32).
The claim follows. ([

Remark 17.4. The above results requires that the random variable sup |v,(A) —V'(A)| is mea-
Aed
surable. See Chapter 2 in [VPGI135] for a more detailed discussion and relevant references. We

additionally refer to Appendix A.1 in [BEHW89].

Challenge 17.1. Improve the constants in the uniform convergence theorem by directly analyzing
n
PI‘ (Sup % Z 81<1X16A — 1Xi/€A)
Aco

i=1
Further Reading 17.2. The uniform convergence theorem and the growth function appear in the

>t/ 2) instead of introducing Rademacher random signs €;.

foundational work of Vapnik and Chervonenkis [VCT1]. Symmetrization with random Rademacher
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signs appears in [GZ84). A modern presentation of similar results can be found in the textbook
[Ver18].
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18. THE VAPNIK-CHERVONENKIS DIMENSION (06.05.2021)

In this lecture, we introduce one of the key components of the theory of uniform convergence.

Definition 18.1. Given a family of events <f, the Vapnik Chervonenkis (VC) dimension of <7/ is
the largest integer d such that .7,y (d) = 2%. That is, it is the size of the largest subset of 2" such
that when <f is restricted on this set, all possible 2¢ projections are realized. If no such finite

integer exists, we set d = oo,

We say that a finite set {xi,...,x,,} C 2 is shattered by <7 if the number of restrictions of .o
on 2" (the size of the set {(1y,ea,...,1x,ca) : A € &7}) is equal to 2. In other words, the VC
dimension is the size of the largest shattered subset of Z". First, we consider several simple

examples.

Example 18.2. The VC dimension of the family of events induced by closed intervals in R is
equal to 2. This is because a pair of distinct points can be shattered. But there is no interval
that contains two points but does not contain a point between them. Thus, the set of three points

cannot be shattered.

Example 18.3. The VC dimension of the family of events induced by halfspaces in R? (not nec-
essarily passing through the origin) is equal to 3. Indeed, a set of three distinct points can be
shattered in all possible 23 ways. At the same time, for a set of 4 points it is impossible to shat-
ter the set in a way such that two diagonals of the corresponding rectangle are in two different

halfspaces.

The following result relates the VC dimension and the growth function. Quite surprisingly, this
theorem was shown by several authors independently around the same time. While Vapnik-
Chervonenkis were motivated by uniform convergence, other authors looked at it from a different

perspective. Currently there are several known techniques that can be used prove this result.

Theorem 18.4. (Sauer-Shelah-Vapnik-Chervonenkis) Assume that the VC dimension of </ is
equal to d. Then the following upper bound holds

() < i‘a (’;’)

Proof. We use the approach based on the shifting technique. Fix any set of points xp,...,x;, in
2. SetV ={(1yea,...,1x,ca) 1A € o7/} and observe that V C {0, 1}". Fori = 1,...,n consider
the shifting operator S; v acting on (vy,...,v,) € V as follows:
(vl,...,vifl,O,viH,...,v,,), if (V],...,Vl',l,O,v,'jL],...,vn) §é V;
S,-,V((vl yeue ,Vn)) =

(Viyeeeyvn), otherwise.
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That is, S; v changes the i-th coordinate 1 by O if this does not create two copies of the same
vector in V. Otherwise, no changes are made. Define S;(V) = {S;v(v) : v € V}. This means that
we apply the shifting operator to all vectors in V. By our construction we have |S;(V)| =V. More
importantly, any set I C {1,...,n} shattered by S;(V) is also shattered by V. To prove this we
take any set J shattered by S;(V). If i ¢ J, then the claim follows immediately since the shifting
operator does not affect this index. Otherwise, without loss of generality assume that j = 1 and
I={1,...,k}. Since I is shattered by S;(V), for any u € {0,1}* there is v € S1(V) such that
vi=u;fori=1,... k. If uy = 1, then both v and v/ = (0,vy,...,v,) belong to V since otherwise v
would have been shifted. Thus, for any u € {0, l}k thereisw € V such thatw; = u; fori=1,... k.
This means that / is also shattered by V.

Starting from the set V, we apply shifting repeatedly to all columns i until no shifts are possible.
That is, we reach the set V' such that S;(V') =V’ for all i = 1,...,n. This happens because
whenever a nontrivial shift happens, the total number of 1-s in V decreases. Finally, we prove
that V/ contains no vector with more than d 1-s. Indeed, if there is a vector v € V/ with k > d 1-s,
then V’ contains a shattered set supported on these k coordinates. It is easy to see that otherwise
shifting would have reduced the number of 1-s in v. This implies that the same subset of size
k > d is also shattered by V. We obtain a contradiction with the fact that the VC dimension of .o/

is equal to d. So, we have
d
ve£()
i=0 \!

The claim follows since |V | = |[V/|. O

We may now present a key corollary of this lemma.

Theorem 18.5. Consider a family of events </ with the VC dimension d. If n > d, then for any
t> \/% it holds that

Pr ( sup |va(A) — P(A)] > t> < 8(en/d)* exp(—nt*/32).
Aco

In particular, with probability at least 1 — O, we have

2 8en 1
::§|vn(A) —P(A)| < 4\/; (dlog (7> +log 5)

Proof. The proof uses the uniform convergence theorem together with Theorem 18.4. We use an

5 (1)< (4)"

i=0

elementary identity we used before
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whenever n > d. Further, we have
log(8.%.(n)) < log(8 (en/d)") < dlog(8en/d).

The claim follows. U

We are now extending Example 18.3.

Proposition 18.6. The VC dimension of the family of events induced by non-homogeneous half-
spaces in R? is equal to p + 1.

The proof is based on the following result.

Theorem 18.7. (Radon’s theorem) Assume that we are given a set xy,...,x,.2 of vectors in RP.

There is a way to partition this set into two sets whose convex hulls intersect.

Proof. For a set of real valued variables ay,...,a, 2 consider the following system of equations
with respect to these variables

p+2 p+2
Z aix; = 0 and Z a; = 0.
i=1 i=1

Observe that it is the system of p+ 1 equations with p + 2 variables having a trivial zero solution.

Thus, we know that there is at least one non-zero solution of this system of equations. We denote
p+2

itby by,...,bp 5. Since Y, b; = 0, there should be at least one positive and one negative value
i=1

among by,...,b,1> . In particular, both sets I, = {i € {1,...,p+2} :b; >0} and I_ = {i €

{1,...,p+2} :b; <0} are non-empty and Y b; =— Y b;. We denote b = Y. b;. We may
i€l icl_ icl,
write b b
i —bj

Z —X; = Z —Xj.

ier, b ier. b
Thus, the point ZI, %xi is a convex combination of points in {x; : i € I+ } and in {x;:i € [_}.

1ely

Therefore, it belongs to both convex hulls. The claim follows. OJ

Proof. (of Proposition 18.6) First, we show that the VC dimension of this family is at least p+ 1.
The idea is to show that any simplex can be shattered by halfpspaces. To do so, we consider the
set of vectors {0,e1,...,e,}, where ¢; is the i-th basis vector. For any (vo,vy,...,v,) € {0,1}7*!

define the d dimensional vector w = (2v; — 1,...,2v,; — 1) and consider the half-space
1
(x,w) +vo — 3 > 0.

By plugging any vector in {0,eq,...,e,} into this inequality, we show that the corresponding
vector belongs to the half-space if and only if v; = 1. Indeed, {e;,w) +vo— 3 = 2v; — 3/2+vg
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and the sign is only defined by the value of v;. Similarly, (0,w) +vy — 5 = vy — 1/2 and the sign
is defined by the value of vy.

Finally, Radon’s theorem implies that a set of d 4- 2 points cannot be shattered. Indeed, since the
the convex hulls of two distinct subset intersect, at least one of the binary vectors in the definition
of the VC dimension will not be realized. The claim follows. U

One may think that the VC dimension is closely related to the number of parameters. However,
there is a classical example of a family of events parametrized by a single parameter such that its

VC dimension is infinite.

Example 18.8. Consider the family of events </ consisting of all sets {x € R : sin(xt) > 0} for
all t > 0. One may easily verify that a set of any size can be shattered by this family of sets.

Therefore, its VC dimension is infinite.

For a set of binary valued classifiers .% one may define the growth function and the VC dimension
completely analogously. Indeed, the role of the events .7 are played by the sets where the corre-
sponding classifier predicts with 1. For example, the class of classifier induced by the halfspaces
in R? has the VC dimension d = p+ 1.

Theorem 18.9. Any class .% with the finite VC dimension d is PAC learnable by any algorithm

choosing a consistent classifier in .F.

Proof. For a classifier f, let R,(f) define its empirical risk. That is, we set
n

1
Ro(f) ==Y Lrxy e (x):

i3
Let fe 7 be any classifier consistent with f* on the sample S,,. We have Rn(f) = 0. Therefore,

R(f) = R(f) = Ra(f) < sup (R(f) = Ru(f)).

feF

Observe that sup (R(f) —R,(f)) can be controlled by the uniform convergence theorem or more
feF
precisely by Theorem 18.5. Consider the set of events .o/ induced by {x € 2" : f(x) # f*(x)} for

all f € .%. One can easily verify that the VC dimension of this set of events is the same as the
VC dimension of .# (corresponding events are of the form {x € 2" : f(x) = 1} for all f € F
Therefore, by Theorem 18.5 it holds that, with probability at least 1 — &,

R(f) < 4\/ (dlog (82n> +logé).

Hence if the sample size n(€, §) is such that 4\/ (dlog ( ") +log 5) < e, then R(f) < O
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Example 18.10. The classes .7 of halfspaces in RP, intervals and rays in R are PAC learnable.

So far we observed that either the existence of a finite sample compression scheme or the finite-
ness of the VC dimension imply the PAC-learnability. However, it is not immediately clear if
the VC dimension is related to sample compression. The following question is one of the oldest

conjectures in learning theory.

Exploratory Challenge 18.1. Prove that there is a universal constant ¢ > 0 such that for any
family of classifiers % with the VC dimension d there is a sample compression scheme of size at
most cd.

Further Reading 18.2. The Sauer-Shelah-Vapnik-Chervonenkis lemma appears independently
and in different contexts in [VCT1, Sau72, She72]. Further relations between PAC learning and
the VC dimensions were made in [ BEHWS89]. Radon’s Theorem appears in [Rad21]. The sample

compression conjecture is due to Warmuth [War03].
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19. CLASSIFICATION WITH NOISE (20.05.2021)

safs Up to date, we only discussed the classification setup where the label of X; is defined by some
unknown classifier in a deterministic manner. However, the label generating mechanism can have
some noise. This happens, for example, when the true label is flipped with constant probability
before being revealed to us. Thus, we assume that there is an unknown joint distribution of the
objects and the labels (X,Y). As before, X is a random vector in R”. In the noise-free case we
assume that there is a classifier f* such that Y = f*(X) almost surely. In the worst regime X and
Y are completely independent: the noise of the problem is so high, so that there is no reasonable
way to predict label Y given X. Of course, in practice people encounter an intermediate regime

where some strong correlation between X and Y is present.
The risk of a classifier f: 2" — {0,1} is now given by
R(f) =Pr(f(X) #Y),

where the probability is taken with respect to the joint distribution of X and Y. A natural question
is in finding a classifier that minimizes the risk R among all measurable functions. This classifier

is called the Bayes optimal classifier.

Theorem 19.1. Given a joint distribution (X,Y) the Bayes optimal classifier f; defined by

Fil) = I fPr(Y=1X=x)>1/2;

0 otherwise.

minimizes the risk R. That is, for any (measurable) classifier f : 2~ — {0,1} it holds that

R(fg) < R(f)-

Proof. Fix any x in the support of the distribution of X and any measurable classifier f. Denote
n(x) =Pr(Y = 1|X = x). We have
Pr(f(x) #Y|X =x) = 1 - Pr(f(x) = Y|X =x)
=1-PrY=1,fX)=1X=x)—Pr(Y =0,f(X) =0|X =x)
=1—1p— Pr(Y = 1|X = x) = 14— Pr(Y =0,|X = x)
=1—15)=1M(x) = Lpx)=o(1 =N (x)).
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Since the same equality works for fz, we have

Pr(f(x) #Y[X =x) = Pr(fp(x) #Y|X =x)

=N gz =1 = Lpw=1) + (1 =1(x)) (A sz =0 — 1 r(x)=0)
=(2n(x) = DA s 00=1 — Lrw)=1)

>0,

where the last line follows from the definition of f;. Indeed, whenever 1 (x) > 1/2 we have

f3(x) =1, and otherwise f5(x) = 0. We conclude by taking the expectation with respect to X:

R(f) = R(fp) = Ex (Pr(f(x) # Y[X) = Pr(fz(x) # Y|X)) = 0.
U

The proof reveals an even stronger property of the Bayes optimal classifier: in some sense it is
the best way to predict Y given any realization X = x. The issue is that the Bayes optimal rule
depends on the distribution, while in the typical classification setup we only observe

X1,71),- -, (X, Yn).

Direct estimation of the distribution Y|X is usually complicated, especially when the dimension
of X is high. Instead, we are hoping to construct an estimator f such that

R(f) —R(f5)
is small with high probability. At appears that even this problem is quite difficult. Indeed, the
standard method of classification is based on the assumption that one is choosing a classifier
fe 7 consistent with the observations. Thus, given the class .%, we may write

R(F)=R(f3) = R(f) = jnf R()+ inf R(f)=R(f3)-

N

-~ -~

estimation error approximation error

The following decomposition shows the so-called estimation-approximation tradeoff. The larger
the class .# is the smaller the approximation error is and vice versa. Indeed, from the upper
bounds we have that in the noise-free case we may guess that the estimation error becomes
larger as the size of class increases. In the limiting case if fz € .% , then flélfg R(f)—R(f3) =

0 and the approximation error is equal to zero. And the other way arouhd, if |.#| =1, then

R(f) — finf R(f) = 0 for the learning algorithm that always outputs a classifier in .%. In practice,
cF

one should choose a class .% such that both the estimation and the approximation errors are

-~

optimally balanced to minimize R(f) — R(f3).

The estimation error allows us to define the notion of agnostic PAC learnability.
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Definition 19.2. A (possibly infinite) class ¥ of classifiers is agnostic PAC-learnable with the
sample complexity n(8,€) if there is a mapping A : U%_o(Z x {0,1})™ — {0,1}% (called the
learning algorithm,; given a sample S of any size it outputs a classifier A(S)) that satisfies the
following property: for every distribution P on 2 x {0,1}, every 8,¢€ € (0, 1), if the sample size
n is greater or equal than n(9, €), then

Pr (R(A(S,))— inf R(f)<e)>1-86.
<x1,..ixn>( (A(S:)~ nt () s) 5

Of course, in the presence of the noise one cannot guarantee that there is a classifier in .# consis-
tent with the learning sample. Therefore, we introduce the Empirical Risk Minimization (ERM)
strategy. Given the sample S, define

n
Serm = argmin e 5§ L, 2y,
i=1
Thus, ]?ERM minimizes the number of misclassifications on the learning sample S,,. If there are
multiple minimizers, we always choose any of them. Of course, ERM generalizes the notion of a

consistent classifier. The following result holds.

Theorem 19.3. Any class ¥ with the finite VC dimension d is agnostic PAC learnable by any
ERM in .7 . Moreover, the following risk bound holds: with probability at least 1 — &,

8en

—~ 2 1
R(fErM) —fig;R(f) < 8\/; (dlog (7) +log g)

Proof. The proof is similar to the proof Theorem 18.9 and we borrow some notation from there.

Assume without loss of generality that finf R(f) is achieved at some f* € .%#. We have
eF

Rn(]/c;ERM) <R, (f").

Further, we can expand

R(ferm) — R(f*) = R(ferm) — R (fErm) + Ru(f*) = R(f*) + Ru(firm) — Ra(f*)
< R(ferm) — Ru(ferm) + R (f*) — R(f7)
2 sup (R(f) — Ru(f)),

fesz

)_
)_

IN

where in the last inequality we used that f *,]/%RM € .. From now on we used the argument of

Theorem 18.9 (check that the VC dimension of the corresponding family of events is also equal
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to d) to show that, with probability at least 1 — 0,

~ 2 8 1
R(ferm) —R(f") < 8\/; (dlog (%) +log g)

This implies that our class is agnostic PAC learnable. 0

One may observe that the error bound in the agnostic case scales as \/@ if only the dependence
on n is considered, whereas in the noise-free classification the rates of convergence are faster. For
example, the expected error in the case of axis-aligned rectangles is bounded by %. For large
enough n the latter approaches zero much faster. An interesting point is that both bounds are
essentially not improvable and agnostic learning is indeed more complicated than the noise free

case: it requires more observations to achieve the same estimation error.

20. ONLINE LEARNING: FOLLOW THE LEADER AND HALVING ALGORITHMS
(20.05.2021)

In this part of the course we discuss another standard setting of statistical learning called the
online learning. The Perceptron algorithm studied above is a particular instance of an online
algorithm. In particular, at each round we observe a vector x; and then make a prediction of the
label y;. These observations happen at rounds # = 1,...,7. Similarly to the PAC classification
model, we consider the case where there is an unknown classifier f* such that y; = f*(x;) for
i=1,...,T and f* belongs to some known set of classifiers .%. This case will be called the

realizable case.

Follow the Leader Algorithm.

e Input: a finite class .#.
o Set ¥ = 7.
e Fortr=1,...,T do
(1) Observe x;.
(2) Choose any f € .%;.
(3) Predict y; = f(x;).
(4) Observe the true label y, = f*(x;).
(5) Update Z;p1 ={f €.%: f(xi) =yi}.

The name Follow the Leader is motivated by the fact that at round ¢ we predict according to one

of the classifiers having the best performance on the currently observed points.
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Proposition 20.1. In the realizable case, for any number of rounds T and for any sequence of
the data points (which can be chosen adversarially), the Follow the Leader algorithm makes at

most || — 1 mistakes.

Proof. If our classifier makes a mistake, then at least one classifier in the current set .%; is re-
moved when we update it . Because we are in the realizable case we cannot remove all classifiers
as at least one classifier is always consistent with our observations. Thus, the number of mistakes
is bounded by || — 1. O

It appears that following the leader is not the best strategy in this setup. A much better result can
be achieved by the following prediction strategy.

Halving algorithm

e Input: a finite class .7 .

e Set 1 =%,

e Fortr=1,...,T do
(1) Observe x;.

(2) Predict y; = argmax |{f € .%; : f(x:) = y}|.
ye{0,1}
This is exactly the majority vote and the ties are broken arbitrary.

(3) Observe the true label y, = f*(x;).
(4) Update F; 11 ={f € Z; : f(x:) =y}

Proposition 20.2. In the realizable case, for any number of rounds T and for any sequence of
the data points, the Halving algorithm makes at most 1og, (|.% |) mistakes.

Proof. 1f the classifier makes a mistake, then at least half of the classifiers are removed from the
current set. We cannot remove all classifiers as at least one classifier is always consistent with
our observations. Thus, if M is the total number of mistakes we have the following inequality for
the number of classifiers remaining after making M mistakes

1< |72,
The claim follows. U

Further Reading 20.1. The notion of agnostic PAC learnability was essentially introduced in
[VC74]. An extension of the online classification setup to the case of infinite classes was done by
Littlestone [Lit88]. See also the textbook [SSBD14].
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21. EXPONENTIAL WEIGHTS ALGORITHM (27.05.2021)

We considered the online learning setup with zero labelling noise. A natural question is to extend
these results to the case where this restrictive assumption is not made. Some nontrivial results
are possible in this challenging setup if we introduce the notion of regret. It can be seen as an
online analog of the excess risk. Let 7" denote the number of rounds and our prediction at round
t is denoted by y;. As before, at each round we observe a vector x; and then make a prediction of
the label y;, and this happens at rounds ¢t = 1,...,7. We define the regret by

T T

T
R7 = max | N =Y 15, —min ) 1c_.+.,
f@?‘?zﬂ( Vi FVe yr#f(Xr)) ZZZI ViF Ve ez &= Vi#f (%)

and we want it to be as small as possible. By making the regret small, we try to predict as well
as the best classifier in the class (as if the best possible function in .% is known in advance).
The regret is trivially bounded by the number of rounds 7. However, the interesting regime is
when the dependence of the regret on T is sub-linear for any number of rounds and for any
(adversarially chosen) sequence of the data (xy,y;),...,(xr,yr). Unfortunately, at this level of
generality the problem is too complicated as shown by the following simple example.

Example 21.1 (Cover’s impossibility result). For .%# consisting of two functions fy =0 and f, =1
for any prediction strategy there is a sequence (x1,y1),...,(xr,yr) such Ry > T /2. That is, the

sub-linear regret is impossible.

The construction is the following: the adversarially chosen sequence takes our strategy into
account and our predictions are always wrong. That is, Zthl 15,2, = T. Inthis case, at least one
of the classifiers is wrong on at most half of the data. Therefore, min;c & Zszl 5 p) <T /2.
This proves that the regret is at least T /2.

Fortunately, if we give a little bit of extra power to our algorithm, this problem can be avoided.
In particular, we want to allow our algorithm to output a label that belongs to the interval [0, 1].

That is, y; € [0, 1] and our loss function is
Ve — ¥t

When both values are binary, we have |y; —y;| = 15,,, Any value y; € [0, 1] can be interpreted as

the randomized prediction where we predict 1 with probability y;. In this case,

y: — yt| is exactly
equal to an expected binary loss when predicting y, with a random label y,. As an example,
assume that y, = 0. If we output y; = 0.6, then we interpret this value as predicting 1 with
probability 0.6 and O with probability 0.4. The expected binary loss of such a prediction is
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0.6 x14+0.4x0=|y —y/| We will frequently use this probabilistic interpretation of [0, 1]-

valued predictors. Our modified notion of regret is

T
R7 = max Vi —=ye| = |y — f(xe)])-
r = max Y5 il b~ (x))
For this notion of regret we want to have a small regret with respect to any sequence of the data.
Our key algorithm is called the Exponential-Weights (or Weighted Majority) algorithm and is

defined as follows.

Exponential-Weights (Weighted Majority)

e Input: a finite class % = {fi,..., fv }; the number of rounds 7'; the rate > 0.
e Set the weights of each classifier to be equal to 1. Thatis, w' = (1,...,1) and w! € RV,
e Fortr=1,...,T do
(1) Observe x;.
(2) Predict 5, = %
(3) Observe the truelzlélb’el Vs
4) Fori=1,...,Ndo

(5) Update w§+1 = whexp(—n|y — fi(x)])-

The intuition behind this algorithm is quite simple. We always predict with a linear combination
of classifiers in .%. After observing a correct label, we update our weights so that each classifier
that was wrong has its weight decreased. The following key result shows that the regret of this
algorithm is sub-linear and scales as /7. This is much smaller than the naive upper bound 7.

Theorem 21.2. If n = \/8log(|.%|/T), then for any sequence of the data the regret
T
Ry = B — il = [y — .
T %g;(!yt vel =y = f(x)])

of the Exponential-Weights algorithm satisfies for any sequence of the data

Ry < /log([Z)T /2.

Remark 21.3. In this lecture we are focusing on 'y, € {0,1} and {0, 1}-valued classifiers. How-
ever, the proof goes through without changes even if y; € [0, 1] and the functions are [0, 1]-valued.

Proof. Define ®; = log Zﬁvzl wi. Using our update rule, we have

N t _ _f.
q)t+1_q)[:10g( i:IWieXp<Nn|);t ﬁ(xt)D) )
Yiliw;

For a pair (x;,y,) we may look at —|y, — fi(x;)| as a random variable (denote it by Z), where the

randomness comes when each i is chosen with probability w' /( ﬁvzl w!). In particular, E; means
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the expectation with respect to the random choice of the index i. Thus, we may write

log (Zév_l whexp(—nly — fi(x)])

N 1
i=1 Wi

) = toe(s;exp(n2)

= log(exp(NE;Z)E;exp(n(Z —EZ)))

2
< —nEily; — filx) |+ % (Hoeffding’s Lemma)
n?
< =Ny —Eifi(x)| + 3 (Jensen’s inequality)
2
~ . n
——nly -5+ T
Therefore,
T T R nzT
Pri1—P) = Z(CDH—I _q)t> <- Z nb’t _yt| + T
t=1 t=1
On the other hand, since w!' = (1,...,1) and, we have (using our update rule)

Y (—n N —fi(xr)|>> ~log(|7)

1=

Pri— Py =1log (
T

> log (maxeXp (—n Y Iy —ﬁ(&)l)) —log(|-#])
! =1

= —miin (TI ; |y _fi(xt)l) —log(|-#]).

Comparing the expressions for @7, — P, we have

T T nT
—min (0} [y~ filx)| | —log(|Z]) < =} nly =5+ 5~
=1 =1
Rearranging the terms, dividing by n > 0 and choosing 1 = /8log(|-#|)/T, we conclude the

proof. U

A natural question is if Exponential Weights perform as good as the halving algorithm in the case
where there is no classification noise. Let us assume that there is f* € .% such that y, = f*(x;)
fort =1,...,T. The following results shows that up to multiplicative constants factors the more
general Exponential Weights algorithm has the same performance as the halving algorithm.

Proposition 21.4. Assume that for some * € F we have y, = f*(x;) and consider the case where
v €{0,1} and fi(x;) € {0,1} for all i,t. If n = 1, then for any sequence of the data the regret of
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the Exponential-Weights algorithm satisfies

T
Ry =Y 5 =y < 2log(|.7]).

t=1

Proof. First, we modify several steps in the proof of Theorem 21.2. Our aim is to show the
following bound

21

N 1
i=1 Wi

N wiexp(— —fi 1 ~
log( lflwl XP( n|)’t f(xt)|)> S_E,r”yt_yt’

2
The key difference is that we added a multiplicative factor % but as a result removed the term %.
Consider the case where y; = 0. In this case, denoting x = }.;. £ (,)—=1 W}/ ( ¥, w') we have

{'\;1 W?eXp(—nlyt — filx:)])

N _:
Yo Wi

Observe that x € [0, 1] and by the definition of our prediction strategy we have y; = x. Thus, to

= (1 —x)+xexp(—n).

verify (21) we want to choose 1 such that for all x € [0, 1],

(1—x) +xexp(~1) < exp(~1x/2).

Let us prove that 1 = 1 is sufficient. The inequality is satisfied when x = 0. Taking the derivative

one observes that x — exp(—nx/2) — (1 —x) —xexp(—n) is non-decreasing whenever

1 >exp(—1n) -l—g.

This relation is clearly satisfied when 11 = 1. Consider now the case where y; = 1. In this case

Y whexp(=n |y — fi(x)])

N ¢
i=1Wi

— (1—x)+xexp(—1) = x+ (1 —x)exp(—1).
In this case we need to check that

x4 (1 =x)exp(—n) < exp(-n(1 -x)/2)

The same value of 1 implies this relation, since we can always reparametrize x by 1 — x. Repeat-

ing the lines of the proof of Theorem 21.2, we use min; (¥, [y, — f;(x/)|) = 0 and write
Bro1— By > —log(|. 7).
Altogether, we have .
~tog(|7]) < —3 Y15~

The claim follows. U
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The problem of the exponential weights algorithm in the general case is that the optimal choice
n= \/W depends on the time horizon 7. This can be eliminated by the following
approach called the doubling trick. For k = 0,1,... we divide the time periods in a sequence
of nonintersecting intervals [ = {2",2" +1,... 2k — 1} each consisting of 2% rounds. For
each period we run the algorithm with T = /8log(|.#|)/2*. The total number of splits is n =
log, (T + 1) (we assume without loss of generality that n is integer). We sum all regrets bounds
and get

T n n
Y =yl <Y min Y |f(x) = |+ Y \/log(|7])2 1,
=1 k=0/€F k=0

tely
Now, we use

n T
Z miérlz | f(x¢) — vt S}{Iggtz{ | f (xe) — el

=01€% 11,
n
Ry <Y y/log(|F7])2k~1.
k=0

S (1)) 12021 1 \2(T+1)—1

This implies

Finally, we have

,;) 2 V2-1 V2 V2-1

This implies that our regret bound is

Rr < /(17 (\% A 1) -

The difference with the previous results is only in slightly different constant factors.

One of the surprising properties of online algorithms is their sensitivity to the curvature of the
loss. For example, imagine that we are predicting a value in [0, 1] but this time our loss function
is quadratic. That is, instead of the binary loss 15,..,, or the absolute loss |y; —y;|, we use the
quadratic loss (y; — y;)?. For the rest of the lecture we also allow y; € [0,1] and f;(x;) € [0, 1]. In
this case we consider

~

Rr = ma)SZ(()Z _)’1)2 — (v —f(xt))z)-

fe7 15
Exponential-Weights (Squared loss)

e Input: a finite class .# = {f,..., fnv}; the number of rounds T; the rate n > 0.
e Set the weights of each classifier to be equal to 1. That is, w! = (1,...,1).
e Fort=1,...,T do

(1) Observe x;.

(2) Predict 3, = Zi=L /il

N 1
Yiw



75
(3) Observe the true label y;.
4) Fori=1,...,Ndo
(5) Update w’Jrl =whexp(—n (i — fi(x:))?).

Proposition 21.5. Consider the sequential prediction problem with the squared loss, where y; €
[0,1] and fi(x;) € [0,1] for all t,i. Fix n = 1/2, then for any sequence of the data the regret of
the Exponential-Weights algorithm satisfies

Ry < 2log(|.7).

Proof. We need minor modifications on the proof of Theorem 21.2. We want to prove a different

Y whexp(—n (i —fi(xt))z))
log< Zyﬂ”’?

kind of bound on

We show the following:
N

wex — fi(x))?
—1 P(N n (v — fi(x:))") <exp(—n(y yz) )-
L

To do so, we check that for any y € [0, 1] the function x — exp(—7(y — x)?) is concave for some
specifically chosen i > 0. By the properties of the concave functions (the weights w /YN | w!
are non-negative and sum up to 1) this will immediately imply the desired inequality. Proving the
concavity is standard: one takes the second derivative of the function x — exp(—1(y — x)?). We
have the following lines
d° ) d )
5,2 SXP(=n(y—x)7) = 5= (=2n(x —y)exp(—n(y —x)%))
= (4n*(x—y)* —2n) exp(~n (y —x)*).

Observe that 402 (x —y)? — 21 < 0 whenever 21 (x —y)? < 1. The function x — exp(—n(y —x)?)
is concave for all y if we choose 11 = 1/2. Thus, repeating the lines of the proof of Theorem 21.2

and choosing = 1/2, we have

T

—min (Z()’t—fi(xt)) > /2—1og(|7]) < Z

t=1

The claim follows.

Further Reading 21.1. Cover’s counterexample appears in [Cov65a]. The Exponential-Weights
algorithm is due to Littlestone and Warmuth [LW94] and Vovk [Vov90]. A detailed presentation
and generalizations of the above results can be found in the textbook [CBLO6].
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22. INTRODUCTION TO (STOCHASTIC) GRADIENT DESCENT (03.06.2021)

In this lecture, we discuss the Gradient Descent method. It is one of the main techniques standing
behind modern applications of machine learning. We already have some experience with a variant
of this method. Recall the Perceptron algorithm and our setup of classification in R”. For w € R”
there is a natural way to define a classifier: we consider the mapping x — sign({w,x)). That is,
the vector w induces a half-space and is orthogonal to the separating hyperplane. In particular, w
misclassifies x € R? whenever y(w,x) < 0.

Perceptron Algorithm.

e Input: s, = {(x1,)1),- -+, (Xn,¥n) }-
e Setw; =0.

e Fori=1,...,ndo
(1) If yi(wi,x;) <0
(2) Wil = Wi+ YiXi,
(3) Else
4) Wirl = Wi,
e Return: wy41.

Speaking informally, if the price for each misclassification is —y;(w;,x;) (it is positive if x; is
misclassified), then our update rule changes w; in the direction opposite to the direction of the
gradient V,, of —y;(w;,x;). This motivates a general analysis of similar update rules.

Let f: % — R be a differentiable convex function, where #  is a convex closed subset of R”
containing 0. Consider the update rule fort =1,...,T,

(22) Wi =w —nVf(w),

where 1) > 0 is a fixed parameter. We set w; = 0. This update rule makes a step in the direction
opposite to the direction of the greatest rate of increase of f. Assume that w* minimizes f over

# and define the averaged vector
T
W= Z wi.
t=1

where each w; is obtained by our update rule (22). The following result holds for Gradient
Descent (GD).
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Theorem 22.1. For the function f as above, if for some L > 0, it holds that sup ||[Vf(w)| <L
wew

and if sup ||w|| < B, then forn = -2,
wew LVT

fw)—=f(w) <

5z

Proof. Recall that one of the ways to define the convexity of a differentiable function f is to say

that for any x,y in the domain

(23) fO) = f(x) =2 (Vf(x),y—x).
We have

=
=
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In what follows, we analyze
T
Y (e wr —w*)
=1

for general vectors vy, ..., vy having ||v;|| < L and the update rule w;r; = w; — nv;. The following
lines hold for any 1 > 0,

M=

(e, we —w")

T
Z (Ve wy —w*) =
=1

3|~
-

I

N

(772||Vt||2 + |lwy —W*Hz —[lwy —w" — thHZ)

I
5|~
1=
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Nl:i

g 2
Z [ HW*H :

The claim immediately follows if we divide the last expression by 7" and fix 1 as in the statement.
O

Remark 22.2. For the sake of presentation we focus on differentiable functions. The general
case can be analyzed using the notion of subgradient. In this case, gradient descent is replaced

by the subgradient descent algorithm.

The analysis of gradient descent is very useful in many application. To observe this, we usually
have to go beyond the binary risk function.

Example 22.3 (Linear regression and GD). Consider the squared loss as in the previous lecture.

We may define the risk (and its empirical counterpart) of the real-valued x — (x,w),

R(w)=EY —(X,w))?> and Ry( :li — (X;,w))?

i=1

:

Here we also assumed that Y is real-valued and X is a random vector in RP. We can naturally

assume that we observe the gradients of the function f(-) = R,(-). Indeed,

ZX (X;,w) —Y;)

depends only on a given vector w and the observed sample. Assume that our distribution is such
that ||[VR,(w)|| < L forw € #'. Then, if we can prove (similar to the uniform convergence result

we showed for the families of events)

R(w) =~ R,(w), forall weW,

T
where W) is guaranteed to always contain w = % Y wy, then we can show that the solution
t=1
obtained by gradient descent method implies that R(w) is small.

The key problem is that in statistical applications it is hard to assume that we can observe a
gradient VR(w) of the true risk. Instead, gradient descent can be helpful if f stands for the
empirical risk. Then, gradient descent tells us that after ¢ iterations we are almost minimizing the

empirical error.

As we mentioned, in this case, the analysis of gradient descent should usually be combined with
uniform convergence. An alternative that avoids any uniform convergence results is Stochastic
Gradient Descent. It works as follows: instead of observing V f(w;) at each round, we observe a
random vector

ve, suchthat E(v/|lw,) =Vf(w,) almost surely.
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Our randomized updated rule is
Wil = W — Ny
We remark that we used the notion of conditional expectation since each w; is random (based
on previous radomized updates). Our assumption is that given w;, the random vector v; is a
good estimate of the true gradient V f(w;). We show that an analog of Theorem 22.1 holds in-
expectation for Stochastic Gradient Descent (SGD).

Theorem 22.4. For f as above, if for some L > 0, it holds that ||v¢|| < L almost surely and if

sup ||w|| < B, then forn = -2_,
wew LVT

E(f(w)) —f(w") <

Y

SE

where the expectation is taken with respect to the randomness of stochastic gradients.

Proof. A fully formal proof requires an introduction of martingale sequences. We instead make
it slightly informal and work directly with conditional probability. First, using the derivations of
the proof of Theorem 22.1 and the linearity of expectation, we have

T
E(f(w)— TZ (V(we),w; —w*).
We want to show that forr =1,...,T,
E(Vf(w),w, —w*) <E(v;,w; —w").

By the properties of conditional expectation and since E(v;|w;) = V f(w;) we have

E(ve,w —w*) = E(E((ve,w; —w")|w;)) (the law of total expectation)
E(
E(

E(ve|wy),w; —w*))  (since E(w;|w;) = wy)

Vf(we),we —w"))

(
(
Therefore,

vlawt

il
gl
=
=
g

HM’ﬂ

T
Z (Vf(wr),w —w*) <

T

From now on, we reproduce the proof of Theorem 22.1 for the term Y (v,,w, —w™*), as it works
=1

for any vectors v; such that ||v,|| < L. O

Stochastic Gradient Descent is useful in the following setup.

Example 22.5 (Linear regression and SGD). Assume that we have a sample (X1,Y1),...,(Xn,Yn)

of independent observations. Then, the gradient of the loss is observed at each point: that is, we
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see

2X:((Xis wi) = Yi),
where wy is constructed using an i.i.d. sample (X1,Y1),...,(X,,Y,). Each wy is constructed using
(X1,Y1),...,(Xi—1,Yi—1). So that whenever the derivative and the expectation are interchange-

able (a mild assumption) we have
E(2X:((Xiywr) —¥)lwi) = VE(Y — (X,w))? = VR(w).

In this case, we can write the bound of the form

BL
Observe that Stochastic Gradient Descent can be preferable from the computational perspective.
Indeed, for some large samples it is better to compute the gradient of the loss at point (X;,Y;)

rather than computing the gradient of the entire empirical risk R, (-).

Further Reading 22.1. Gradient descent is studied in optimization where various the relations
between properties of the functions as well as are studied. See the monograph [Bubl4] for
related results. Standard convergence results on Stochastic Gradient Descent can be found in the
textbook [SSBD14] as well as in [Oral9].
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