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5.1 The Johnson-Lindenstrauss Lemma

Suppose one has n points, X = {x1, . . . , xn}, in Rd (with d large). If d > n, since the points have
to lie in a subspace of dimension n it is clear that one can consider the projection f : Rd → Rn of
the points to that subspace without distorting the geometry of X. In particular, for every xi and xj ,
‖f(xi)− f(xj)‖2 = ‖xi − xj‖2, meaning that f is an isometry in X.

Suppose now we allow a bit of distortion, and look for f : Rd → Rk that is an ε−isometry, meaning
that

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2. (1)

Can we do better than k = n?
In 1984, Johnson and Lindenstrauss [JL84] showed a remarkable Lemma (below) that answers this

question positively.

Theorem 5.1 (Johnson-Lindenstrauss Lemma [JL84]) For any 0 < ε < 1 and for any integer
n, let k be such that

k ≥ 4
1

ε2/2− ε3/3
log n.

Then, for any set X of n points in Rd, there is a linear map f : Rd → Rk that is an ε−isometry for
X (see (1)). This map can be found in randomized polynomial time.

We borrow, from [DG02], an elementary proof for the Theorem. We need a few concentration of
measure bounds, we will omit the proof of those but they are available in [DG02] and are essentially
the same ideas as those used to show Hoeffding’s inequality.

Lemma 5.2 (see [DG02]) Let y1, . . . , yd be i.i.d standard Gaussian random variables and Y =

(y1, . . . , yd). Let g : Rd → Rk be the projection into the first k coordinates and Z = g
(

Y
‖Y ‖

)
=

1



1
‖Y ‖(y1, . . . , yk) and L = ‖Z‖2. It is clear that EL = k

d . In fact, L is very concentrated around its
mean

• If β < 1,

Pr

[
L ≤ βk

d

]
≤ exp

(
k

2
(1− β + log β)

)
.

• If β > 1,

Pr

[
L ≥ βk

d

]
≤ exp

(
k

2
(1− β + log β)

)
.

Proof. [ of Johnson-Lindenstrauss Lemma ]
We will start by showing that, given a pair xi, xj a projection onto a random subspace of dimension

k will satisfy (after appropriate scaling) property (1) with high probability. WLOG, we can assume
that u = xi − xj has unit norm. Understanding what is the norm of the projection of u on a random
subspace of dimension k is the same as understanding the norm of the projection of a (uniformly)
random point on Sd−1 the unit sphere in Rd on a specific k−dimensional subspace, let’s say the one
generated by the first k canonical basis vectors.

This means that we are interested in the distribution of the norm of the first k entries of a random
vector drawn from the uniform distribution over Sd−1 – this distribution is the same as taking a
standard Gaussian vector in Rd and normalizing it to the unit sphere.

Let g : Rd → Rk be the projection on a random k−dimensional subspace and let f : Rd → Rk

defined as f = d
kg. Then (by the above discussion), given a pair of distinct xi and xj ,

‖f(xi)−f(xj)‖2
‖xi−xj‖2

has the same distribution as d
kL, as defined in Lemma 5.2. Using Lemma 5.2, we have, given a pair

xi, xj ,

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
k

2
(1− (1− ε) + log(1− ε))

)
,

since, for ε ≥ 0, log(1− ε) ≤ −ε− ε2/2 we have

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
−kε

2

4

)
≤ exp (−2 log n) =

1

n2
.

On the other hand,

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≥ (1 + ε)

]
≤ exp

(
k

2
(1− (1 + ε) + log(1 + ε))

)
.

since, for ε ≥ 0, log(1 + ε) ≤ ε− ε2/2 + ε3/3 we have

Prob

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
−
k
(
ε2 − 2ε3/3

)
4

)
≤ exp (−2 log n) =

1

n2
.
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By union bound it follows that

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2
.

Since there exist
(
n
2

)
such pairs, again, a simple union bound gives

Pr

[
∃i,j :

‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2

n(n− 1)

2
= 1− 1

n
.

Therefore, choosing f as a properly scaled projection onto a random k−dimensional subspace is an ε−
isometry on X (see (1)) with probability at least 1

n . We can achieve any desirable constant probability
of success by trying O(n) such random projections, meaning we can find an ε−isometry in randomized
polynomial time.

2

Note that by considering k slightly larger one can get a good projection on the first random attempt
with very good confidence. In fact, it’s trivial to adapt the proof above to obtain the following Lemma:

Lemma 5.3 For any 0 < ε < 1, τ > 0, and for any integer n, let k be such that

k ≥ (2 + τ)
2

ε2/2− ε3/3
log n.

Then, for any set X of n points in Rd, take f : Rd → Rk to be a suitably scaled projection on a random
subspace of dimension k, then f is an ε−isometry for X (see (1)) with probability at least 1− 1

nτ .

Lemma 5.3 is quite remarkable. Think about the situation where we are given a high-dimensional
data set in a streaming fashion – meaning that we get each data point at a time, consecutively. To run
a dimension-reduction technique like PCA or Diffusion maps we would need to wait until we received
the last data point and then compute the dimension reduction map (both PCA and Diffusion Maps
are, in some sense, data adaptive). Using Lemma 5.3 you can just choose a projection at random in
the beginning of the process (all ones needs to know is an estimate of the log of the size of the data
set) and just map each point using this projection matrix which can be done online – we don’t need
to see the next point to compute the projection of the current data point. Lemma 5.3 ensures that
this (seemingly näıve) procedure will, with high probably, not distort the data by more than ε.

5.1.1 Optimality of the Johnson-Lindenstrauss Lemma

It is natural to ask whether the dependency on ε and n in Lemma 5.3 can be improved. Noga
Alon [Alo03] showed that there are n points for which the smallest dimension k on which they can

be embedded with a distortion as in Lemma 5.3, satisfies k = Ω
(

1
log(1/ε)ε

−2 log n
)

, this was recently

improved by Larsen and Nelson [?], for linear maps, to Ω
(
ε−2 log n

)
, closing the gap.1

1An earlier version of these notes marked closing the gap as an open problem, this has been corrected.
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5.1.2 Fast Johnson-Lindenstrauss

(Disclaimer: the purpose of this section is just to provide a bit of intuition, there is a lot of hand-
waving!!)

Let’s continue thinking about the high-dimensional streaming data. After we draw the random
projection matrix, say M , for each data point x, we still have to compute Mx which, since M has
O(ε−2 log(n)d) entries, has a computational cost of O(ε−2 log(n)d). In some applications this might
be too expensive, can one do better? There is no hope of (significantly) reducing the number of rows
(Recall Open Problem ?? and the lower bound by Alon [Alo03]). The only hope is to speed up the
matrix-vector multiplication. If we were able to construct a sparse matrix M then we would definitely
speed up the computation of Mx but sparse matrices tend to distort sparse vectors, and the data
set may contain. Another option would be to exploit the Fast Fourier Transform and compute the
Fourier Transform of x (which takes O(d log d) time) and then multiply the Fourier Transform of x by
a sparse matrix. However, this again may not work because x might have a sparse Fourier Transform.
The solution comes from leveraging an uncertainty principle — it is impossible for both x and the FT
of x to be sparse simultaneously. The idea is that if, before one takes the Fourier Transform of x, one
flips (randomly) the signs of x, then the probably of obtaining a sparse vector is very small so a sparse
matrix can be used for projection. In a nutshell the algorithm has M be a matrix of the form PHD,
where D is a diagonal matrix that flips the signs of the vector randomly, H is a Fourier Transform
(or Hadamard transform) and P a sparse matrix. This method was proposed and analysed in [AC09]
and, roughly speaking, achieves a complexity of O(d log d), instead of the classical O(ε−2 log(n)d).

There is a very interesting line of work proposing fast Johnson Lindenstrauss projections based on
sparse matrices. In fact, this is, in some sense, the motivation for Open Problem 4.4. in [Ban15b].
We recommend these notes Jelani Nelson’s notes for more on the topic [Nel].

5.2 Gordon’s Theorem

In the last section we showed that, in order to approximately preserve the distances (up to 1 ± ε)
between n points it suffices to randomly project them to Θ

(
ε−2 log n

)
dimensions. The key argument

was that a random projection approximately preserves the norm of every point in a set S, in this case
the set of differences between pairs of n points. What we showed is that, in order to approximately
preserve the norm of every point in S it is enough to project to Θ

(
ε−2 log |S|

)
dimensions. The

question this section is meant to answer is: can this improved if S has a special structure? Given a
set S, what is the measure of complexity of S that explains how many dimensions one needs to take
on the projection to still approximately preserve the norms of points in S. Was we will see below, this
will be captured, via Gordon’s Theorem, by the so called Gaussian Width of S.

Definition 5.4 (Gaussian Width) Given a closed set S ⊂ Rd, its gaussian width ω(S) is define
as:

ω(S) = Emax
x∈S

[
gTd x

]
,

where gd ∼ N (0, Id×d).

Similarly to what we did in the proof of Theorem 5.1 we will restrict our attention to sets S of
unit norm vectors, meaning that S ⊂ Sd−1.
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Also, we will focus our attention not in random projections but in the similar model of random
linear maps G : Rd → Rk that are given by matrices with i.i.d. gaussian entries. For this reason the
following Proposition will be useful:

Proposition 5.5 Let gk ∼ N (0, Ik×k), and define

ak := E‖gk‖.

Then
√

k
k+1

√
k ≤ ak ≤

√
k.

We are now ready to present Gordon’s Theorem.

Theorem 5.6 (Gordon’s Theorem [Gor88]) Let G ∈ Rk×d a random matrix with independent
N (0, 1) entries and S ⊂ Sd−1 be a closed subset of the unit sphere in d dimensions. Then

Emax
x∈S

∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≤ 1 +
ω(S)

ak
,

and

Emin
x∈S

∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≥ 1− ω(S)

ak
,

where ak = E‖gk‖ and ω(S) is the gaussian width of S. Recall that
√

k
k+1

√
k ≤ ak ≤

√
k.

Before proving Gordon’s Theorem we’ll note some of it’s direct implications. It suggest that 1
ak
G

preserves the norm of the points in S up to 1± ω(S)
ak

, indeed we can make this precise with Gaussian
Concentration.

Note that the function F (G) = maxx∈S

∥∥∥ 1
ak
Gx
∥∥∥ is 1-Lipschitz. Indeed∣∣∣∣max

x1∈S
‖G1x1‖ −max

x2∈S
‖G2x2‖

∣∣∣∣ ≤ max
x∈S
|‖G1x‖ − ‖G2x‖| ≤ max

x∈S
‖(G1 −G2)x‖

= ‖G1 −G2‖ ≤ ‖G1 −G2‖F .

Similarly, one can show that F (G) = minx∈S

∥∥∥ 1
ak
Gx
∥∥∥ is 1-Lipschitz. Thus, one can use Gaussian

Concentration to get:

Prob

{
max
x∈S
‖Gx‖ ≥ ak + ω(S) + t

}
≤ exp

(
− t

2

2

)
, (2)

and

Prob

{
min
x∈S
‖Gx‖ ≤ ak − ω(S)− t

}
≤ exp

(
− t

2

2

)
. (3)

This gives us the following Theorem.
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Theorem 5.7 Let G ∈ Rk×d a random matrix with independent N (0, 1) entries and S ⊂ Sd−1 be

a closed subset of the unit sphere in d dimensions. Then, for ε >

√
ω(S)2

a2k
, with probability ≥ 1 −

2 exp

[
−k
(
ε− ω(S)

ak

)2
]

:

(1− ε)‖x‖ ≤
∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≤ (1 + ε)‖x‖,

for all x ∈ S.
Recall that k − k

k+1 ≤ a
2
k ≤ k.

Proof. This is readily obtained by taking ε = ω(S)+t
ak

, using (2), (3), and recalling that a2
k ≤ k. 2

Remark 5.8 Note that a simple use of a union bound2 shows that ω(S) .
√

2 log |S|, which means
that taking k to be of the order of log |S| suffices to ensure that 1

ak
G to have the Johnson Lindenstrauss

property. This observation shows that Theorem 5.7 essentially directly implies Theorem 5.1 (although
not exacly, since 1

ak
G is not a projection).

5.2.1 Gordon’s Escape Through a Mesh Theorem

Theorem 5.7 suggests that, if ω(S) ≤ ak, a uniformly chosen random subspace of Rn of dimension
(n− k) (which can be seen as the nullspace of G) avoids a set S with high probability. This is indeed
the case and is known as Gordon’s Escape Through a Mesh Theorem, it’s Corollary 3.4. in Gordon’s
original paper [Gor88]. See also [Mix14b] for a description of the proof. We include the Theorem
below for the sake of completeness.

Theorem 5.9 (Corollary 3.4. in [Gor88]) Let S ⊂ Sd−1 be a closed subset of the unit sphere in
d dimensions. If ω(S) < ak, then for a (n − k)-dimensional subspace Λ drawn uniformly from the
Grassmanian manifold we have

Prob {Λ ∩ S 6= ∅} ≤ 7

2

(
− 1

18
(ak − ω(S))2

)
,

where ω(S) is the gaussian width of S and ak = E‖gk‖ where gk ∼ N (0, Ik×k).

5.2.2 Proof of Gordon’s Theorem

In order to prove this Theorem we will use extensions of the Slepian’s Comparison Lemma.
Slepian’s Comparison Lemma, and the closely related Sudakov-Fernique inequality, are crucial

tools to compare Gaussian Processes. A Gaussian process is a family of gaussian random variables
indexed by some set T , {Xt}t∈T (if T is finite this is simply a gaussian vector). Given a gaussian
process Xt, a particular quantity of interest is E [maxt∈T Xt]. Intuitively, if we have two Gaussian
processes Xt and Yt with mean zero E [Xt] = E [Yt] = 0, for all t ∈ T , and the same variance, then the

2This follows from the fact that the maximum of n standard gaussian random variables is .
√

2 log |S|.
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process that has the “least correlations” should have a larger maximum (think the maximum entry
of vector with i.i.d. gaussian entries versus one always with the same gaussian entry). The following
inequality makes this intuition precise and extends it to processes with different variances. 3

Theorem 5.10 (Slepian/Sudakov-Fernique inequality) Let {Xu}u∈U and {Yu}u∈U be two (al-
most surely bounded) centered Gaussian processes indexed by the same (compact) set U . If, for every
u1, u2 ∈ U :

E [Xu1 −Xu2 ]2 ≤ E [Yu1 − Yu2 ]2 , (4)

then

E
[
max
u∈U

Xu

]
≤ E

[
max
u∈U

Yu

]
.

The following extension is due to Gordon [Gor85, Gor88].

Theorem 5.11 [Theorem A in [Gor88]] Let {Xt,u}(t,u)∈T×U and {Yt,u}(t,u)∈T×U be two (almost surely

bounded) centered Gaussian processes indexed by the same (compact) sets T and U . If, for every
t1, t2 ∈ T and u1, u2 ∈ U :

E [Xt1,u1 −Xt1,u2 ]2 ≤ E [Yt1,u1 − Yt1,u2 ]2 , (5)

and, for t1 6= t2,
E [Xt1,u1 −Xt2,u2 ]2 ≥ E [Yt1,u1 − Yt2,u2 ]2 , (6)

then

E
[
min
t∈T

max
u∈U

Xt,u

]
≤ E

[
min
t∈T

max
u∈U

Yt,u

]
.

Note that Theorem 5.10 easily follows by setting |T | = 1.
We are now ready to prove Gordon’s theorem.

Proof. [of Theorem 5.6]
Let G ∈ Rk×d with i.i.d. N (0, 1) entries. We define two gaussian processes: For v ∈ S ⊂ Sd−1 and

u ∈ Sk−1 let g ∼ N (0, Ik×k) and h ∼ N (0, Id×d) and define the following processes:

Au,v = gTu+ hT v,

and
Bu,v = uTGv.

For all v, v′ ∈ S ⊂ Sd−1 and u, u′ ∈ Sk−1,

E
∣∣Av,u −Av′,u′∣∣2 − E

∣∣Bv,u −Bv′,u′∣∣2 = 4− 2
(
uTu′ + vT v′

)
−
∑
ij

(
viuj − v′iu′j

)2
= 4− 2

(
uTu′ + vT v′

)
−
[
2− 2

(
vT v′

) (
uTu′

)]
= 2− 2

(
uTu′ + vT v′ − uTu′vT v′

)
= 2

(
1− uTu′

) (
1− vT v′

)
.

3Although intuitive in some sense, this turns out to be a delicate statement about Gaussian random variables, as it
does not hold in general for other distributions.

7



This means that E
∣∣Av,u −Av′,u′∣∣2−E ∣∣Bv,u −Bv′,u′∣∣2 ≥ 0 and E

∣∣Av,u −Av′,u′∣∣2−E ∣∣Bv,u −Bv′,u′∣∣2 =
0 if v = v′.

This means that we can use Theorem 5.11 with X = A and Y = B, to get

Emin
v∈S

max
u∈Sk−1

Av,u ≤ Emin
v∈S

max
u∈Sk−1

Bv,u.

Noting that
Emin
v∈S

max
u∈Sk−1

Bv,u = Emin
v∈S

max
u∈Sk−1

uTGv = Emin
v∈S
‖Gv‖ ,

and

E
[
min
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gTu+ Emin

v∈S
hT v = E max

u∈Sk−1
gTu− Emax

v∈S
(−hT v) = ak − ω(S),

gives the second part of the Theorem.
On the other hand, since E

∣∣Av,u −Av′,u′∣∣2 − E
∣∣Bv,u −Bv′,u′∣∣2 ≥ 0 then we can similarly use

Theorem 5.10 with X = B and Y = A, to get

Emax
v∈S

max
u∈Sk−1

Av,u ≥ Emax
v∈S

max
u∈Sk−1

Bv,u.

Noting that
Emax

v∈S
max
u∈Sk−1

Bv,u = Emax
v∈S

max
u∈Sk−1

uTGv = Emax
v∈S
‖Gv‖ ,

and

E
[
max
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gTu+ Emax

v∈S
hT v = ak + ω(S),

concludes the proof of the Theorem.
2

5.3 Sparse vectors and Low-rank matrices

In this Section we illustrate the utility of Gordon’s theorem by undertanding which projections are
expected to keep the norm of sparse vectors and low-rank matrices.

5.3.1 Gaussian width of k-sparse vectors

Say we have a signal (or image) x ∈ RN that we are interested in measuring with linear measurements
yi = aTi x, for ai ∈ RN . In general, it is clear that we would need N measurements to find x. The
idea behind Compressed Sensing [CRT06, Don06] is that one may be able to significantly decrease
the number of measurements needed if we know more about the structure of x, a prime example is
when x is known to have few non-zero entries (being sparse). Sparse signals do arise in countless
applications (for example, images are known to be sparse in the Wavelet basis; in fact this is the basis
of the JPEG2000 compression method).

8



We’ll revisit sparse recovery and Compressed Sensing next lecture but for now we’ll see how
Gordon’s Theorem can suggest us how many linear measurements are needed in order to reconstruct
a sparse vector. An efficient way of representing the measurements is to use a matrix

A =


— aT1 —
— aT2 —

...
— aTM —

 ,
and represent the linear measurements as

y = Ax.

In order to hope to be able to reconstruct x from y we need that A is injective on sparse vectors.
Let us assume that x is s-sparse, meaning that x has at most s non-zero entries (often written as
‖x‖0 ≤ s, where ‖ · ‖0 is called the 0-norm and counts the number of non-zero entries in a vector4).
It is also intuitive that, in order for reconstruction to be stable, one would like that not only A is
injective in s-sparse vectors but actually almost an isometry, meaning that the `2 distance between
Ax1 and Ax2 should be comparable to the distances between x1 and x2 if they are s-sparse. Since the
difference between two s-sparse vectors is a 2s-sparse vector, we can alternatively ask for A to keep
the norm of 2s sparse vectors. Gordon’s Theorem above suggests that we can take A ∈ RM×N to have
i.i.d. gaussian entries and to take M ≈ ω (S2s), where Sk =

{
x : x ∈ SN−1, ‖x‖0 ≤ k

}
is the set of 2s

sparse vectors, and ω (S2s) the gaussian width of S2s.

Proposition 5.12 If s ≤ N , the Gaussian Width ω (Ss) of Ss, the set of unit-norm vectors that are
at most s sparse, satisfies

ω (Ss) . s log

(
N

s

)
.

Proof.

ω (Ss) = max
v∈SSN−1, ‖v‖0≤s

gT v, log

(
N

s

)
,

where g ∼ N (0, IN×N ). We have
ω (Ss) = max

Γ⊂[N ], |Γ|=s
‖gΓ‖,

where gΓ is the restriction of g to the set of indices Γ.
Given a set Γ, Theorem 4.12 gives

Prob
{
‖gΓ‖2 ≥ s+ 2

√
s
√
t+ t

}
≤ exp(−t).

Union bounding over all Γ ⊂ [N ], |Γ| = s gives

Prob

{
max

Γ⊂[N ], |Γ|=s
‖gΓ‖2 ≥ s+ 2

√
s
√
t+ t

}
≤
(
N

s

)
exp(−t)

4It is important to note that ‖ · ‖0 is not actually a norm
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Taking u such that t = su, gives

Prob

{
max

Γ⊂[N ], |Γ|=s
‖gΓ‖2 ≥ s

(
1 + 2

√
u+ u

)}
≤ exp

[
−su+ s log

(
N

s

)]
. (7)

Taking u > log
(
N
s

)
it can be readily seen that the typical size of maxΓ⊂[N ], |Γ|=s ‖gΓ‖2 is .

s log
(
N
s

)
. The proof can be finished by integrating (7) in order to get a bound of the expectation of√

maxΓ⊂[N ], |Γ|=s ‖gΓ‖2.
2

This suggests that ≈ 2s log
(
N
2s

)
measurements suffice to identify a 2s-sparse vector. As we’ll see,

not only such a number of measurements suffices to identify a sparse vector but also for certain efficient
algorithms to do so.

5.3.2 The Restricted Isometry Property and a couple of open problems

Matrices perserving the norm of sparse vectors do play a central role in sparse recovery, they are said
to satisfy the Restricted Isometry Property. More precisely:

Definition 5.13 (The Restricted Isometry Property) An M ×N matrix A (with either real or
complex valued entries) is said to satisfy the (s, δ)-Restricted Isometry Property (RIP),

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2,

for all s-sparse x.

Using Proposition 5.12 and Theorem 5.7 one can readily show that matrices with Gaussian entries
satisfy the restricted isometry property with M ≈ s log

(
N
s

)
.

Theorem 5.14 Let A be an M × N matrix with i.i.d. standard gaussian entries, there exists a
constant C such that, if

M ≥ Cs log

(
N

s

)
,

then 1
aM
A satisfies the

(
s, 1

3

)
-RIP, with high probability.

Theorem 5.14 suggests that RIP matrices are abundant for s ≈ M
log(N) , however it appears to be

very difficult to deterministically construct matrices that are RIP for s�
√
M , known as the square

bottleneck [Tao07, BFMW13, BFMM14, BMM14, B+11, Mix14a]. The only known unconditional
construction that is able to break this bottleneck is due to Bourgain et al. [B+11] that achieves

s ≈ M
1
2

+ε for a small, but positive, ε. There is a conditional construction, based on the Paley
Equiangular Tight Frame, that will be briefly described in the next Lecture [BFMW13, BMM14].

Open Problem 5.1 Construct deterministic matrices A ∈ CM×N (or A ∈ CM×N ) satisfying (s, 1
3)-

RIP for s & M0.6

polylog(N .
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Open Problem 5.2 Theorem 5.14 guarantees that if we take A to have i.i.d. Gaussian entries then
it should be RIP for s ≈ M

log(N) . If we were able to, given A, certify that it indeed is RIP for some s

then one could have a randomized algorithm to build RIP matrices (but that is guaranteed to eventually
find one). This motives the following question

1. Let N = 2M , for which s is there a polynomial time algorithm that is guaranteed to, with high
probability, certify that a gaussian matrix A is

(
s, 1

3

)
-RIP?

2. In particular, a
(
s, 1

3

)
-RIP matrix has to not have s sparse vectors in its nullspace. This mo-

tivates a second question: Let N = 2M , for which s is there a polynomial time algorithm that
is guaranteed to, with high probability, certify that a gaussian matrix A does not have s-sparse
vectors in its nullspace?

The second question is tightly connected to the question of sparsest vector on a subspace (for which
s ≈
√
M is the best known answer), we refer the reader to [SWW12, QSW14, BKS13] for more on

this problem and recent advances. Note that checking whether a matrix has RIP or not is, in general,
NP-hard [BDMS13, TP13].

5.3.3 Gaussian width of rank-r matrices

Another structured set of interest is the set of low rank matrices. Low-rank matrices appear in
countless applications, a prime example being the Netflix Prize. In that particular example the matrix
in question is a matrix indexed by users of the Netflix service and movies. Given a user and a movie,
the corresponding entry of the matrix should correspond to the score that user would attribute to that
movie. This matrix is believed to be low-rank. The goal is then to estimate the score for user and
movie pairs that have not been rated yet from the ones that have, by exploiting the low-rank matrix
structure. This is known as low-rank matrix completion [CT10, CR09, Rec11].

In this short section, we will not address the problem of matrix completion but rather make a
comment about the problem of low-rank matrix sensing, where instead of observing some of the entries
of the matrix X ∈ Rn1×n2 one has access to linear measuremetns of it, of the form yi = Tr(ATi X).

In order to understand the number of measurements needed for the measurement procedure to
be a nearly isometry for rank r matrices, we can estimate the Gaussian Width of the set of matrices
X ∈∈ Rn1×n2 whose rank is smaller or equal to 2r (and use Gordon’s Theorem).

Proposition 5.15

ω
({
X : X ∈ Rn1×n2 , Rank(X) ≤ r

})
.
√
r(d1 + d2).

Proof.
ω
({
X : X ∈ Rn1×n2 , Rank(X) ≤ r

})
= E max

‖X‖F=1
Rank(X)≤r

Tr(GX).

Let X = UΣV T be the SVD decomposition of X, then

ω
({
X : X ∈ Rn1×n2 , Rank(X) ≤ r

})
= E max

UTU=V TV=Ir×r
Σ∈Rr×r diagonal ‖Σ‖F=1

Tr(Σ
(
V TGU

)
).
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This implies that

ω
({
X : X ∈ Rn1×n2 , Rank(X) ≤ r

})
≤ (Tr Σ) (E‖G‖) .

√
r (
√
n1 +

√
n1) ,

where the last inequality follows from bounds on the largest eigenvalue of a Wishart matrix, such as
the ones used on Lecture 1. 2
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