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These are lecture notes not in final form and will be continuously edited and/or corrected (as I am
sure it contains many typos). Please let me know if you find any typo/mistake. Also, I am posting the
open problems on my Blog, see [Ban15d].

9.1 Community Detection

Community detection in a network is a central problem in data science. A few lectures ago we discussed
clustering and gave a performance guarantee for spectral clustering (based on Cheeger’s Inequality)
that was guaranteed to hold for any graph. While these guarantees are remarkable, they are worst-case
guarantees and hence pessimistic in nature. In what follows we analyze the performance of a convex
relaxation based algorithm on typical instances of the community detection problem (where typical is
defined through some natural distribution of the input).

We focus on the problem of minimum graph bisection. The objective is to partition a graph in
two equal-sized disjoint sets (S, Sc) while minimizing cut(S) (note that in the previous lecture, for the
Max-Cut problem, we were maximizing it instead!).

9.2 Stochastic Block Model

We consider a random graph model that produces graphs that have a clustering structure. Let n be
an even positive integer. Given two sets of m = n

2 nodes consider the following random graph G: For
each pair (i, j) of nodes, (i, j) is an edge of G with probability p if i and j are in the same set, and
with probability q if they are in different sets. Each edge is drawn independently and p > q. This is
known as the Stochastic Block Model on two communities.

(Think of nodes as habitants of two different towns and edges representing friendships, in this
model, people leaving in the same town are more likely to be friends)

The goal will be to recover the original partition. This problem is clearly easy if p = 1 and q = 0
and hopeless if p = q. The question we will try to answer is for which values of p and q is it possible
to recover the partition (perhaps with high probability). As p > q, we will try to recover the original
partition by attempting to find the minimum bisection of the graph.
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9.3 What does the spike model suggest?

Motivated by what we saw in previous lectures, one approach could be to use a form of spectral
clustering to attempt to partition the graph.

Let A be the adjacency matrix of G, meaning that

Aij =

{
1 if (i, j) ∈ E(G)
0 otherwise.

(1)

Note that in our model, A is a random matrix. We would like to solve

max
∑
i,j

Aijxixj

s.t. xi = ±1,∀i (2)∑
j

xj = 0,

The intended solution x takes the value +1 in one cluster and −1 in the other.
Relaxing the condition xi = ±1, ∀i to ‖x‖22 = n would yield a spectral method

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (3)

1Tx = 0

The solution consists of taking the top eigenvector of the projection of A on the orthogonal of the
all-ones vector 1.

The matrix A is a random matrix whose expectation is given by

E[A] =

{
p if (i, j) ∈ E(G)
q otherwise.

Let g denote a vector that is +1 in one of the clusters and −1 in the other (note that this is the vector
we are trying to find!). Then we can write

E[A] =
p+ q

2
11T +

p− q
2

ggT ,

and

A =
(
A− E[A]

)
+
p+ q

2
11T +

p− q
2

ggT .

In order to remove the term p+q
2 11T we consider the random matrix

A = A− p+ q

2
11T .

It is easy to see that

A =
(
A− E[A]

)
+
p− q

2
ggT .
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This means that A is a superposition of a random matrix whose expected value is zero and a rank-1
matrix, i.e.

A = W + λvvT

where W =
(
A − E[A]

)
and λvvT = p−q

2 n
(

g√
n

)(
g√
n

)T
. In previous lectures we saw that for large

enough λ, the eigenvalue associated with λ pops outside the distribution of eigenvalues of W and
whenever this happens, the leading eigenvector has a non-trivial correlation with g (the eigenvector
associated with λ).

Note that since to obtain A we simply subtracted a multiple of 11T from A, problem (3) is
equivalent to

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (4)

1Tx = 0

Now that we removed a suitable multiple of 11T we will even drop the constraint 1Tx = 0, yielding

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n, (5)

whose solution is the top eigenvector of A.
Recall that if A − E[A] was a Wigner matrix with i.i.d entries with zero mean and variance σ2

then its empirical spectral density would follow the semicircle law and it will essentially be supported
in [−2σ

√
n, 2σ

√
n]. We would then expect the top eigenvector of A to correlate with g as long as

p− q
2

n >
2σ
√
n

2
. (6)

Unfortunately A−E[A] is not a Wigner matrix in general. In fact, half of its entries have variance
p(1− p) while the variance of the other half is q(1− q).

If we were to take σ2 = p(1−p)+q(1−q)
2 and use (6) it would suggest that the leading eigenvector of

A correlates with the true partition vector g as long as

p− q
2

>
1√
n

√
p(1− p) + q(1− q)

2
, (7)

However, this argument is not necessarily valid because the matrix is not a Wigner matrix. For the
special case q = 1 − p, all entries of A − E[A] have the same variance and they can be made to
be identically distributed by conjugating with ggT . This is still an impressive result, it says that if
p = 1− q then p− q needs only to be around 1√

n
to be able to make an estimate that correlates with

the original partitioning!
An interesting regime (motivated by friendship networks in social sciences) is when the average

degree of each node is constant. This can be achieved by taking p = a
n and q = b

n for constants a and
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b. While the argument presented to justify condition (7) is not valid in this setting, it nevertheless
suggests that the condition on a and b needed to be able to make an estimate that correlates with the
original partition is

(a− b)2 > 2(a+ b). (8)

Remarkably this was posed as conjecture by Decelle et al. [DKMZ11] and proved in a series of
works by Mossel et al. [MNS14b, MNS14a] and Massoulie [Mas14].

9.3.1 Three of more communities

The stochastic block model can be similarly defined for any k ≥ 2 communities: G is a graph on
n = km nodes divided on k groups of m nodes each. Similarly to the k = 2 case, for each pair (i, j) of
nodes, (i, j) is an edge of G with probability p if i and j are in the same set, and with probability q if
they are in different sets. Each edge is drawn independently and p > q. In the sparse regime, p = a

n

and q = b
n , the threshold at which it is possible to make an estimate that correlates with the original

partition is open.

Open Problem 9.1 Consider the balanced Stochastic Block Model for k > 3 (constant) communities
with inner probability p = a

n and outer probability q = b
n , what is the threshold at which it becomes

possible to make an estimate that correlates with the original partition is open (known as the par-
tial recovery or detection threshold). We refer the reader to [DKMZ11, ZMZ14, GZC+15] for more
information on this and many other interesting conjectures often motivated from statistical physics.

9.4 Exact recovery

We now turn our attention to the problem of recovering the cluster membership of every single node
correctly, not simply having an estimate that correlates with the true labels. We’ll restrict to two
communities for now. If the probability of intra-cluster edges is p = a

n then it is not hard to show that
each cluster will have isolated nodes making it impossible to recover the membership of every possible
node correctly. In fact this is the case whenever p� 2 logn

n . For that reason we focus on the regime

p =
α log(n)

n
and q =

β log(n)

n
, (9)

for some constants α > β.
Let x ∈ Rn with xi = ±1 representing the partition (note there is an ambiguity in the sense that

x and −x represent the same partition). Then, if we did not worry about efficiency then our guess
(which corresponds to the Maximum Likelihood Estimator) would be the solution of the minimum
bissection problem (2).

In fact, one can show (but this will not be the main focus of this lecture, see [ABH14] for a proof)
that if √

α−
√
β >
√

2, (10)

then, with high probability, (2) recovers the true partition. Moreover, if

√
α−

√
β <
√

2,
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no algorithm (efficient or not) can, with high probability, recover the true partition.
We’ll consider a semidefinite programming relaxation algorithm for SBM and derive conditions for

exact recovery. The main ingredient for the proof will be duality theory.

9.5 The algorithm

Note that if we remove the constraint that
∑

j xj = 0 in (2) then the optimal solution becomes x = 1.

Let us define B = 2A− (11T − I), meaning that

Bij =


0 if i = j
1 if (i, j) ∈ E(G)
−1 otherwise

(11)

It is clear that the problem

max
∑
i,j

Bijxixj

s.t. xi = ±1, ∀i (12)∑
j

xj = 0

has the same solution as (2). However, when the constraint is dropped,

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i, (13)

x = 1 is no longer an optimal solution. Intuitively, there is enough “−1” contribution to discourage
unbalanced partitions. In fact, (13) is the problem we’ll set ourselves to solve.

Unfortunately (13) is in general NP-hard (one can encode, for example, Max-Cut by picking an
appropriate B). We will relax it to an easier problem by the same technique used to approximate the
Max-Cut problem in the previous section (this technique is often known as matrix lifting). If we write
X = xxT then we can formulate the objective of (13) as∑

i,j

Bijxixj = xTBx = Tr(xTBx) = Tr(BxxT ) = Tr(BX)

Also, the condition xi = ±1 implies Xii = x2
i = 1. This means that (13) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (14)

X = xxT for some x ∈ Rn.
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The fact that X = xxT for some x ∈ Rn is equivalent to Rank(X) = 1 and X � 0.This means that
(13) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (15)

X � 0

Rank(X) = 1.

We now relax the problem by removing the non-convex rank constraint

max Tr(BX)

s.t. Xii = 1,∀i (16)

X � 0.

This is an SDP that can be solved (up to arbitrary precision) in polynomial time [VB96].
Since we removed the rank constraint, the solution to (16) is no longer guaranteed to be rank-1.

We will take a different approach from the one we used before to obtain an approximation ratio for
Max-Cut, which was a worst-case approximation ratio guarantee. What we will show is that, for some
values of α and β, with high probability, the solution to (16) not only satisfies the rank constraint
but it coincides with X = ggT where g corresponds to the true partition. After X is computed, g is
simply obtained as its leading eigenvector.

9.6 The analysis

Without loss of generality, we can assume that g = (1, . . . , 1,−1, . . . ,−1)T , meaning that the true
partition corresponds to the first n

2 nodes on one side and the other n
2 on the other.

9.6.1 Some preliminary definitions

Recall that the degree matrix D of a graph G is a diagonal matrix where each diagonal coefficient Dii

corresponds to the number of neighbours of vertex i and that λ2(M) is the second smallest eigenvalue
of a symmetric matrix M .

Definition 9.1 Let G+ (resp. G−) be the subgraph of G that includes the edges that link two nodes in
the same community (resp. in different communities) and A the adjacency matrix of G. We denote by
D+
G (resp. D−G ) the degree matrix of G+ (resp. G−) and define the Stochastic Block Model Laplacian

to be

LSBM = D+
G −D

−
G −A

9.7 Convex Duality

A standard technique to show that a candidate solution is the optimal one for a convex problem is to
use convex duality.
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We will describe duality with a game theoretical intuition in mind. The idea will be to rewrite (16)
without imposing constraints on X but rather have the constraints be implicitly enforced. Consider
the following optimization problem.

max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) (17)

Let us give it a game theoretical interpretation. Suppose that is a primal player (picking X) whose
objective is to maximize the objective and a dual player, picking Z and Q after seeing X, trying to
make the objective as small as possible. If the primal player does not pick X satistying the constraints
of (16) then we claim that the dual player is capable of driving the objective to −∞. Indeed, if there
is an i for which Xii 6= 1 then the dual player can simply pick Zii = −c 1

1−Xii
and make the objective

as small as desired by taking large enough c. Similarly, if X is not positive semidefinite, then the
dual player can take Q = cvvT where v is such that vTXv < 0. If, on the other hand, X satisfy the
constraints of (16) then

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) ,

since equality can be achieve if, for example, the dual player picks Q = 0n×n, then it is clear that the
values of (16) and (17) are the same:

max
X,

Xii ∀i
X�0

Tr(BX) = max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X))

With this game theoretical intuition in mind, it is clear that if we change the “rules of the game” and
have the dual player decide their variables before the primal player (meaning that the primal player
can pick X knowing the values of Z and Q) then it is clear that the objective can only increase, which
means that:

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

max
X

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) .

Note that we can rewrite

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) = Tr ((B +Q− Z)X) + Tr(Z).

When playing:
min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z),

if the dual player does not set B+Q−Z = 0n×n then the primal player can drive the objective value
to +∞, this means that the dual player is forced to chose Q = Z −B and so we can write

min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z) = min
Z,

Z is diagonal
Z−B�0

max
X

Tr(Z),
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which clearly does not depend on the choices of the primal player. This means that

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z,

Z is diagonal
Z−B�0

Tr(Z).

This is known as weak duality (strong duality says that, under some conditionsm the two optimal
values actually match, see, for example, [VB96], recall that we used strong duality when giving a
sum-of-squares interpretation to the Max-Cut approximation ratio, a similar interpretation can be
given in this problem, see [Ban15b]).

Also, the problem

min Tr(Z)

s.t. Z is diagonal (18)

Z −B � 0

is called the dual problem of (16).
The derivation above explains why the objective value of the dual is always larger or equal to

the primal. Nevertheless, there is a much simpler proof (although not as enlightening): let X,Z be
respectively a feasible point of (16) and (18). Since Z is diagonal and Xii = 1 then Tr(ZX) = Tr(Z).
Also, Z −B � 0 and X � 0, therefore Tr[(Z −B)X] ≥ 0. Altogether,

Tr(Z)− Tr(BX) = Tr[(Z −B)X] ≥ 0,

as stated.
Recall that we want to show that ggT is the optimal solution of (16). Then, if we find Z diagonal,

such that Z −B � 0 and

Tr[(Z −B)ggT ] = 0, (this condition is known as complementary slackness)

then X = ggT must be an optimal solution of (16). To ensure that ggT is the unique solution we
just have to ensure that the nullspace of Z −B only has dimension 1 (which corresponds to multiples
of g). Essentially, if this is the case, then for any other possible solution X one could not satisfy
complementary slackness.

This means that if we can find Z with the following properties:

1. Z is diagonal

2. Tr[(Z −B)ggT ] = 0

3. Z −B � 0

4. λ2(Z −B) > 0,

then ggT is the unique optima of (16) and so recovery of the true partition is possible (with an efficient
algorithm).

Z is known as the dual certificate, or dual witness.
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9.8 Building the dual certificate

The idea to build Z is to construct it to satisfy properties (1) and (2) and try to show that it satisfies
(3) and (4) using concentration.

If indeed Z − B � 0 then (2) becomes equivalent to (Z − B)g = 0. This means that we need to
construct Z such that Zii = 1

gi
B[i, :]g. Since B = 2A− (11T − I) we have

Zii =
1

gi
(2A− (11T − I))[i, :]g = 2

1

gi
(Ag)i + 1,

meaning that
Z = 2(D+

G −D
−
G ) + I

is our guess for the dual witness. As a result

Z −B = 2(D+
G −D

−
G )− I −

[
2A− (11T − I)

]
= 2LSBM + 11T

It trivially follows (by construction) that

(Z −B)g = 0.

Therefore

Lemma 9.2 If
λ2(2LSBM + 11T ) > 0, (19)

then the relaxation recovers the true partition.

Note that 2LSBM + 11T is a random matrix and so this boils down to “an exercise” in random matrix
theory.

9.9 Matrix Concentration

Clearly,
E
[
2LSBM + 11T

]
= 2ELSBM + 11T = 2ED+

G − 2ED−G − 2EA+ 11T ,

and ED+
G = n

2
α log(n)

n I, ED−G = n
2
β log(n)

n I, and EA is a matrix such with 4 n
2 ×

n
2 blocks where the

diagonal blocks have α log(n)
n and the off-diagonal blocks have β log(n)

n . We can write this as EA =
1
2

(
α log(n)

n + β log(n)
n

)
11T + 1

2

(
α log(n)

n − β log(n)
n

)
ggT

This means that

E
[
2LSBM + 11T

]
= ((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β)

log n

n
ggT .

Since 2LSBMg = 0 we can ignore what happens in the span of g and it is not hard to see that

λ2

[
((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β)

log n

n
ggT

]
= (α− β) log n.
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This means that it is enough to show that

‖LSBM − E [LSBM ]‖ < α− β
2

log n, (20)

which is a large deviations inequality. (‖ · ‖ denotes operator norm)
We will skip the details here (and refer the reader to [Ban15c] for the details), but the main idea is

to use an inequality similar to the ones presented in the lecture about concentration of measure (and,
in particular, matrix concentration). The main idea is to separate the diagonal from the non-diagonal
part of LSBM − E [LSBM ]. The diagonal part depends on in and out-degrees of each node and can
be handled with scalar concentration inequalities for trinomial distributions (as it was in [ABH14] to
obtain the information theoretical bounds). The non-diagonal part has independent entries and so its
spectral norm can be controlled by the following inequality:

Lemma 9.3 (Remark 3.13 in [BvH15]) Let X be the n × n symmetric matrix with independent
centered entries. Then there exists a universal constant c′, such that for every t ≥ 0

Prob[‖X‖ > 3σ + t] ≤ ne−t2/c′σ2
∞ , (21)

where we have defined

σ := max
i

√∑
j

E[X2
ij ], σ∞ := max

ij
‖Xij‖∞.

Using these techniques one can show (this result was independently shown in [Ban15c] and [HWX14],
with a slightly different approach)

Theorem 9.4 Let G be a random graph with n nodes drawn accordingly to the stochastic block model
on two communities with edge probabilities p and q. Let p = α logn

n and q = β logn
n , where α > β are

constants. Then, as long as √
α−

√
β >
√

2, (22)

the semidefinite program considered above coincides with the true partition with high probability.

Note that, if √
α−

√
β <
√

2,

then exact recovery of the communities is impossible, meaning that the SDP algorithm is optimal.
Furthermore, in this regime one can show that there will be a node on each community that is more
connected to the other community that to its own, meaning that a partition that swaps them would
have more likelihood. In fact, the fact that the SDP will start working essentially when this starts
happening appears naturally in the analysis; the diagonal part corresponds exactly to differences
between in and out-degrees and Lemma 9.3 allows one to show that the contributions of the off-
diagonal part are of lower order.

Remark 9.5 A simpler analysis (and seemingly more adaptable to other problems) can be carried out
by using by Matrix Bernstein’s inequality [Tro12] (described in the lecture about Matrix Concentration).
The idea is simply to write LSBM − E [LSBM ] as a sum of independent matrices (where each matrix
corresponds to a pair of nodes) and to apply Matrix Bernstein (see [ABH14]). Unfortunately, this only
shows exact recovery of a suboptimal threshold (suboptimal essentially by a factor of 2).
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9.10 More communities

A natural question is to understand what is the exact recovery threshold for the Stochastic Block
Model on k ≥ 2 communities. Recall the definition: The stochastic block model can be similarly
defined for any k ≥ 2 communities: G is a graph on n = km nodes divided on k groups of m nodes
each. Similarly to the k = 2 case, for each pair (i, j) of nodes, (i, j) is an edge of G with probability p
if i and j are in the same set, and with probability q if they are in different sets. Each edge is drawn
independently and p > q. In the logarithmic degree regime, we’ll define the parameters in a slightly
different way: p = α′ logm

m and q = β′ logm
m . Note that, for k = 2, we roughly have α = 2α′ and β = 2β′,

which means that the exact recovery threshold, for k = 2, reads as: for
√
α′ −

√
β′ > 1

recovery is possible (and with the SDP algorithm), and for
√
α′−
√
β′ < 1 exact recovery is impossible.

Clearly, for any k > 2, if
√
α′−
√
β′ < 1 then exact recovery will also be impossible (simply imagine

that n oracle tells us all of the community memberships except for those of two of the clusters, then
the problem reduces to the k = 2 case). The remarkable fact is that, for k = o(logm) this is enough,
not only for exact recovery to be possible, but also for an SDP based algorithm (very similar to the
one above) to achieve exact recovery (see [AS15, ABKK15, HWX15, PW15]). However, for k ≈ log n,
the situation is not understood.

Open Problem 9.2 What is the threshold for exact recovery on the balanced symmetric Stochas-
tic Block Model in k ≈ log n communities and at what threshold does the SDP succeed at exactly
determining the communities? (see [ABKK15]).

9.11 Euclidean Clustering

The stochastic block model, although having fascinating phenomena, is not always an accurate model
for clustering. The independence assumption assumed on the connections between pairs of vertices
may sometimes be too unrealistic. Also, the minimum bisection of multisection objective may not be
the most relevant in some applications.

One particularly popular form of clustering is k-means clustering. Given n points x1, . . . , xn
and pairwise distances d(xi, xj), the k-means objective attempts to partition the points in k clusters
A1, . . . , Ak (not necessarily of the same size) as to minimize the following objective1

min

k∑
t=1

1

|At|
∑

xi,xj∈At

d2(xi, xj).

A similar objective is the one in k-medians clustering, where for each cluster a center is picked (the
center has to be a point in the cluster) and the sum of the distances from all points in the cluster to
the center point are to be minimized, in other words, the objective to be minimized is:

min

k∑
t=1

min
ct∈At

∑
xi∈At

d(xi, ct).

1When the points are in Euclidean space there is an equivalent more common formulation in which each cluster is
assign a mean and the objective function is the sum of the distances squared to the center.
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In [ABC+15] both an Linear Programming (LP) relaxation for k-medians and a Semidefinite
Programming (SDP) relaxation for k-means are analyzed for a points in a generative model on which
there are k disjoint balls in Rd and, for every ball, points are drawn according to a isotropic distribution
on each of the balls. The goal is to establish exact recovery of these convex relaxations requiring the
least distance between the balls. This model (in this context) was first proposed and analyzed for
k-medians in [NW13], the conditions for k-medians were made optimal in [ABC+15] and conditions
for k-means were also given. More recently, the conditions on k-means were improved (made optimal
for large dimensions) in [IMPV15a, IMPV15b] which also coined the term “Stochastic Ball Model”.

For P the set of points, in order to formulate the k-medians LP we use variables yp indicat-
ing whether p is a center of its cluster or not and zpq indicating whether q is assigned to p or not
(see [ABC+15] for details), the LP then reads:

min
∑

p,q d(p, q)zpq,

s.t.
∑

p∈P zpq = 1, ∀q ∈ P
zpq ≤ yp∑
p∈P yp = k

zpq, yp ∈ [0, 1], ∀p, q ∈ P.

the solution corresponds to an actual k-means solution if it is integral.
The semidefinite program for k-means is written in terms of a PSD matrix X ∈ Rn×n (where n is

the total number of points), see [ABC+15] for details. The intended solution is

X =
1

n

k∑
t=1

1At1
T
At
,

where 1At is the indicator vector of the cluster At. The SDP reads as follows:

minX
∑

i,j d(i, j)Xij ,

s.t. Tr(X) = k,
X1 = 1
X ≥ 0
X � 0.

Inspired by simulations in the context of [NW13] and [ABC+15], Rachel Ward observed that the
k-medians LP tends to be integral even for point configurations where no planted partition existed,
and proposed the conjecture that k-medians is tight for typical point configurations. This was recorded
as Problem 6 in [Mix15]. We formulate it as an open problem here:

Open Problem 9.3 Is the LP relaxation for k-medians tight for a natural (random) generative model
of points even without a clustering planted structure (such as, say, gaussian independent points)?

Ideally, one would like to show that these relaxations (both the k-means SDP and the k-medians
LP) are integral in instances that have clustering structure and not necessarily arising from generative
random models. It is unclear however how to define what is meant by “clustering structure”. A
particularly interesting approach is through stability conditions (see, for example [AJP13]), the idea
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is that if a certain set of data points has a much larger k − 1-means (or medians) objective than a
k-means (or medians) one, and there is not much difference between the k and the k + 1 objectives,
then this is a good suggestion that the data is well explained by k clusters.

Open Problem 9.4 Given integrality conditions to either the k-medians LP or the k-means SDP
based on stability like conditions, as described above.

9.12 Probably Certifiably Correct algorithms

While the SDP described in this lecture for recovery in the Stochastic Block Model achieves exact
recovery in the optimal regime, SDPs (while polynomial time) tend to be slow in practice. There
are faster (quasi-linear) methods that are also able to achieve exact recovery at the same threshold.
However, the SDP has an added benefit of producing a posteriori certificates. Indeed, if the solution
from the SDP is integral (rank 1) then one is (a posteriori) sure to have found the minimum bisection.
This means that the SDP (above the threshold) will, with high probability, not only find the minimum
bisection but will also produce a posteriori certificate of such,. Such an algorithms are referred to as
Probably Certifiably Correct (PCC) [Ban15b]. Fortunately, one can get (in this case) get the best
of both worlds and get a fast PCC method for recovery in the Stochastic Block Model essentially by
using a fas method to find the solution and then using the SDP to only certify, which can be done
considerably faster (see [Ban15b]). More recently, a PCC algorithm was also analyzed for k-means
clustering (based on the SDP described above) [IMPV15b].

9.13 Another conjectured instance of tightness

The following problem is posed, by Andrea Montanari, in [Mon14], a description also appears in [Ban15a].
We briefly describe it here as well:

Given a symmetric matrix W ∈ Rn×n the positive principal component analysis problem can be
written as

max xTWx
s. t. ‖x‖ = 1

x ≥ 0
x ∈ Rn.

(23)

In the flavor of the semidefinite relaxations considered in this section, (23) can be rewritten (for
X ∈ Rn×n) as

max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0
Rank(X) = 1,

and further relaxed to the semidefinite program

max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0.

(24)
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This relaxation appears to have a remarkable tendency to be tight. In fact, numerical simulations
suggest that if W is taken to be a Wigner matrix (symmetric with i.i.d. standard Gaussian entries),
then the solution to (24) is rank 1 with high probability, but there is no explanation of this phenomenon.
If the Wigner matrix is normalized to have entries N (0, 1/n), it is known that the typical value of the
rank constraint problem is

√
2 (see [MR14]).

This motivates the last open problem of this section.

Open Problem 9.5 Let W be a gaussian Wigner matrix with entries N (0, 1/n). Consider the fol-
lowing Semidefinite Program:

max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0.

(25)

Prove or disprove the following conjectures.

1. The expected value of this program is
√

2 + o(1).

2. With high probability, the solution of this SDP is rank 1.

Remark 9.6 The dual of this SDP motivates a particularly interesting statement which is implied by
the conjecture. By duality, the value of the SDP is the same as the value of

min
Λ≥0

λmax (W + Λ) ,

which is thus conjectured to be
√

2 + o(1), although no bound better than 2 (obtained by simply taking
Λ = 0) is known.
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