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This homework problem set is due on September 27, before class at
the homework dropbox in the CDS reception.

If you have any questions about the homework feel free to contact
Vlad Kobzar at vkobzar@cims.nyu.edu or myself at bandeira@cims.nyu.edu,
or stop by our office hours.

Try not to look up the answers, you’ll learn much more if you try to
think about the problems without looking up the solutions. If you need
hints, feel free to email me or Vlad.

You can work in groups but each student must write his/her own
solution based on his/her own understanding of the problem. Please
list, on your submission, the students you work with for the homework
(this will not affect your grade).

If you need to impose extra conditions on a problem to make it easier
(or consider specific cases of the question, like taking n to be 2, e.g.),
state explicitly that you have done so. Solutions where extra conditions
were assume, or where only special cases where treated, will also be
graded (probably scored as a partial answer).

Problems with a (∗) are extra credit, they will not (directly) con-
tribute to your score of this homework. However, for every 4 (four)
extra credit questions successfully answered you get a homework “bye”:
your lowest homework score (or one you did not hand in) gets replaced
by a perfect score.
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Problem 1.1 Show that for any n ≥ 2, any set of n+1 vectors in Rn needs
to be linearly dependent. (Vlad will use this fact to prove that dimension is
well-defined in the next Section)

Problem 1.2 Given a matrix L ∈ Rn×m (meaning that L is a linear trans-
formation L : Rm → Rn) show that

ker(L) = ker(LTL).

Problem 1.3 Use the result from the proof above (and the fundamental
theorem of linear algebra) to show that

Rank(L) = Rank(LT )

Hint: Start by showing that for any two matrices A,B we have Rank(A) ≥
Rank(AB).

Problem 1.4 (Essentially in Problem 45 on Section 3.5. of Strang’s book)
Let V and W be two subspaces in Rn. Show that if

dim(V ) + dim(W ) > n,

then there must exist a non-zero vector in the intersection of them, i.e.:
V ∩W 6= {0}.

(∗) Problem 1.5 (For Extra Credit) (Essentially in Problem 46 on Sec-
tion 3.5. of Strang’s book) Given a matrix A ∈ Rn×n satisfying A2 = 0 show
that Rank(A) ≤ bn/2c.
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