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This homework problem set is due on April 5, before class at the
homework dropbox in the CDS reception, or by email to the graders.

If you have questions about the homework feel free to contact me or
Shuyang, or stop by our office hours.

Try not to look up the answers, you’ll learn much more if you try to
think about the problems without looking up the solutions. If you need
hints, feel free to email me of Shuyang.

You can work in groups but each student must write his/her own
solution based on his/her own understanding of the problem. Please
list, on your submission, the students you work with for the homework
(this will not affect your grade).

Late submissions will be graded with a penalty of 10% per day late.

If you need to impose extra conditions on a problem to make it easier
(or consider specific cases of the question, like taking n to be 2, e.g.),
state explicitly that you have done so. Solutions where extra conditions
were assume, or where only special cases where treated, will also be
graded (probably scored as a partial answer).



Random Matrices

Recall the definition of a standard gaussian Wigner Matrix W: a symmetric
random matrix W € R™*™ whose diagonal and upper-diagonal entries are
independent Wj; ~ N (0,2) and, for ¢ < j, W;; ~ N (0,1). This random ma-
trix emsemble is invariant under orthogonal conjugation: UTWU ~ W for
any U € O(n). Also, the distribution of the eigenvalues of ﬁW converges

to the so-called semicircular law with support [—2, 2]

dSC(z) = V4 — 221_9 ().

(try it in Matlab, draw an histogram of the distribution of the eigenvalues

of ﬁW for, say n = 500.)

In the next problem, you will show that the largest eigenvalue of ﬁW
has expected value at most 2.! For that, we will make use of Slepian’s
Comparison Lemma.

Slepian’s Comparison Lemma is a crucial tool to compare Gaussian Pro-
cesses. A Gaussian process is a family of gaussian random variables indexed
by some set T, more precisely is a family of gaussian random variables
{Xt}er (f T is finite this is simply a gaussian vector). Given a gaussian pro-
cess Xy, a particular quantity of interest is E [maxycp X¢]. Intuitively, if we
have two Gaussian processes X; and Y; with mean zero E [X;| = E[Y{] =0,
for all t € T' and same variances E [Xf] =E [Ytz] then the process that has
the “least correlations” should have a larger maximum (think the maximum
entry of vector with i.i.d. gaussian entries versus one always with the same
gaussian entry). A simple version of Slepian’s Lemma makes this intuition
precise:?

In the conditions above, if for all t1,to € T

E [thth] <E [Yt1Y;f2] ’

then

E [maxXt} >E [max Yt] .
teT teT

A slightly more general version of it asks that the two Gaussian pro-
cesses X; and Y; have mean zero E [X;| = E[Y;] = 0, for all t € T' but not

Note that, a priori, there could be a very large eigenvalue and it would still not
contradict the semicircular law, since it does not predict what happens to a vanishing
fraction of the eigenvalues.

2 Although intuitive in some sense, this is a delicate statement about Gaussian random
variables, it turns out not to hold for other distributions.



necessarily the same variances. In that case it says that: If or all £t1,t5 € T
E[th _Xt2]2 ZE[KH _}/152]27 (1)

then

E [maxXt} > E [max Yt] .
teT teT

Problem 1.1 We will use Slepian’s Comparison Lemma to show that

Edmax (W) < 2¢/n.

1. Note that
Amax(W) = max o W,
v: |Jv]2=1
which means that, if we take for unit-norm v, Y, := v Wv we have
that

Amax(W) =E [ max YU] ,

vesn—1
2. Use Slepian to compare Y, with 2X, defined as
X, ="y,
where g ~ N (0, Lyxn)
3. Use Jensen’s inequality to upperbound E [max,cgn—1 Xy).

Problem 1.2 Given a centered® random symmetric matric X € R¥>4 we

define
o=/ |[EXZ],

0% = IIH18HX ) VE (vT Xv)?,

1. Show that o > o,.

and

2. If X has independent entries (except for the fact that X;; = Xj;) such
that X5 ~ N (0 b? ), show that

» Vg

n
e 0% = max g b?j
i
j=1

3Meaning that EX = 0.



* 0, < 2max |bjj]
ij

Note that || - || denotes spectral norm, and in expressions with E and a
power, the power binds first. For example, by EX?, we mean E [XQ] and,

by E (UTXU)Q, we mean E |:(UTX'U)2}

Multidimensional scaling

Problem 1.3 (Multidimensional Scaling) Suppose you want to repre-
sent n data points in R? and all you are given is estimates for their FEu-
clidean distances 6;; =~ ||x; — z;||3. Multidimensional scaling attempts to
find an d dimensions that agrees, as much as possible, with these estimates.
Organizing X = [1,...,x,] and consider the matriz A whose entries are

dij-
1. Show that, if §;; = ||z; — x;||3 then there is a choice of x; (note that

the solution is not unique, as a translation of the points will preserve
the pairwise distances, e.g.) for which

1
XTx = —§HAH,

where H = I — %llT.

2. If the goal is to find points in R?, how would you do it (keep part 1 of
the question, and Princical Component Analysis, in mind)?

(The procedure you have just derived is known as Multidimensional Scal-
ing)

This motivates a way to embed a graph in d dimensions. Given two nodes
we take 0;; to be the square of some natural distance on a graph such as, for
example, the geodesic distance (the distance of the shortest path between the
nodes) and then use the ideas above to find an embedding in RY for which
FEuclidean distances most resemble geodesic distances on the graph. This is
the motivation behind a dimension reduction technique called ISOMAP (J.
B. Tenenbaum, V. de Silva, and J. C. Langford, Science 2000).

Problem 1.4 Givenn i.i.d. non-negative random variables x1, . .., xy, show
that

1
Emax T g (E {xllogn}) logn )
(2



