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These are not meant to be Lecture Notes. They are simply extended syllabi with the most
important definitions and results from the lecture. As such, they lack the intuition and motivation
and so they are not a good place to learn the material the first time, just to briefly review it. These
extended syllabi will also have references.

There are many amazing books about linear algebra and virtually all of them will contain the
material for this particular lecture, examples include the book suggested for the course [2]. Another
place you can read about some of these is the Lecture Notes for DSGA1002 [1].

Please let me know if you find any typos

• Given a matrix L ∈ Rn×m, the matrix LT ∈ Rm×n is the matrix such that, for all x ∈ Rn and
y ∈ Rm we have:

〈x, Ly〉 = 〈LTx, y〉

• Interesting example: If we take the vector space of smooth functions from [0, 1] to R that satisfy
f(0) = 1 and f(1) = 1 and define the inner product

〈f, g〉 =

∫ 1

0
f(t)g(t)dt,

then integration by parts shows that the derivative (as a linear transformation) is anti-symmetric.
You can see example in, for example, Section 2.7. of [2].

• Cauchy-Schwartz inequality: ∀x,y∈Rn we have

|xT y| ≤ ‖x‖‖y‖.

To prove this, notice that
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥2 ≥ 0 and
∥∥∥ x
‖x‖ + y

‖y‖

∥∥∥2 ≥ 0 and expand the norm square of

the sum...

• Triangular inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖

• The Projection of y onto span of x is given by

P〈x〉(y) =
xT y

‖x‖2
x.
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• If θ is the angle between x and y we have

cos(θ) =
xT y

‖x‖‖y‖

Note that, since −1 ≤ cos(θ) ≤ 1, this is an alternative proof of the Cauchy-Schwartz inequality.

• If xT y = 0 then the angle between them is π
2 and we say that the vectors are orthogonal. The

observation that in that case ‖x− y‖2 = ‖x‖2 + ‖y‖2 is Pythagoras theorem.

• More generally, given y ∈ Rn and a subspace U ⊂ Rn the projection of y to U , PU (y), is given by
the vector u ∈ U that minimizes the distance to y, ‖u− y‖.

• An orthogonal basis of a vector space is a set of vectors that span the vector space and are pairwise
orthogonal. If, moreover, each vector has norm 1 it is called an orthonormal basis.

• Given an orthonormal basis v1, . . . , vm ∈ Rn of a subspace U , the projection PU (y) of a vector y ∈ Rn
to U is easily writable as a linear combination of the basis as PU (y) = 〈y, v1〉v1 + · · · + 〈y, vn〉vn,
where 〈y, vk〉 = yvk denotes the Euclidean inner product.

• If v1, . . . , vn ∈ Rn are an orthonormal basis of Rn then u ∈ Rn is easily writable as a linear
combination of the basis as u = 〈u, v1〉v1 + · · ·+ 〈u, vn〉vn, where 〈u, vk〉 = uvk denotes the Euclidean
inner product.

References

[1] Carlos Fernandez-Granda, Lecture Notes of DSGA1002, 2015 version available at http://www.cims.
nyu.edu/~cfgranda/pages/DSGA1002_fall15/notes.html, 2015

[2] Gilbert Strang, Introduction to Linear Algebra, Fifth Edition, 2016

2


