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These are not meant to be Lecture Notes. They are simply extended syllabi with the most
important definitions and results from the lecture. As such, they lack the intuition and motivation
and so they are not a good place to learn the material the first time, just to briefly review it. These
extended syllabi will also have references.

There are many amazing books about linear algebra and virtually all of them will contain the
material for this particular lecture, examples include the book suggested for the course [2]. Another
place you can read about some of these is the Lecture Notes for DSGA1002 [1].

Please let me know if you find any typos

• An orthogonal basis of a vector space is a set of vectors that span the vector space and are pairwise
orthogonal. If, moreover, each vector has norm 1 it is called an orthonormal basis.

• Given an orthonormal basis v1, . . . , vn ∈ Rn, the matrix V ∈ Rn×n whose columns are v1, . . . , vn
satisfies V TV = I (and V V T = I).

• When a matrix V ∈ Rn×n satisfies V TV = I it is called an orthogonal matrix.

• Given an orthonormal basis v1, . . . , vm ∈ Rn of a subspace U , the projection PU (y) of a vector y ∈ Rn
to U is easily writable as a linear combination of the basis as PU (y) = 〈y, v1〉v1 + · · ·+ 〈y, vm〉vm,
where 〈y, vk〉 = yvk denotes the Euclidean inner product.

• If v1, . . . , vn ∈ Rn are an orthonormal basis of Rn then u ∈ Rn is easily writable as a linear
combination of the basis as u = 〈u, v1〉v1 + · · ·+ 〈u, vn〉vn, where 〈u, vk〉 = uvk denotes the Euclidean
inner product.

• An orthogonal basis can be constructed using the Gram-Schmit process (see, for example [2]). Also
important, given a set of orthogonal vectors in a subspace, it is also possible to find an orthogonal
basis for that subspace containing the original vectors (by making use of the Gram-Schmit process).

• Two subspaces U, V ⊂ Rn are said to be orthogonal (U ⊥ V ) if, for all u ∈ U and all v ∈ V we
have uT v = 0.

• Given a matrix A ∈ Rn×m we have Im(A) ⊥ ker(AT ).
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• Given a subspace U ⊂ Rn, its orthogonal complement U⊥ is the subspace containing all vectors v
such that vTu = 0 for all u ∈ U .

• Given a matrix A ∈ Rn×m we have Im(A)⊥ = ker(AT ).

• Given a subspace U ⊂ Rn, dim(U) + dim(U⊥) = n.

• Notice that, since dim Im(A) = dim Im(AT ) the two statements above imply the fundamental
Theorem of Linear Algebra (just take A = BT ): For B ∈ Rp×q

dim Im(B) + dim ker(B) = q.

• Given a vector v ∈ Rn and a subspace U ⊂ Rn the projection of x in U , also called orthogonal
projection of x in U , and denoted by PU (x) is such that x− PU (x) is orthogonal to all elements of
U , meaning that x− PU (x) ∈ U⊥. (draw a picture!).

• Least Squares: For m < n, let A ∈ Rn×m and b ∈ Rn. The solution x\ of minx∈Rm ‖Ax − b‖2
satisfies ATAx\ = AT b.

There are two nice ways of proving this, one “by calculus”) simply differentiate ‖Ax − b‖22, and a
second one “by geometry”) notice that the point Ax should be the (orthogonal) projection of b on
Im(A) and so b − Ax should be orthogonal to Im(A) which is the same as being in ker(AT ) and
thus AT (Ax− b) = 0.

• Notice that this system always has a solution, since Im(AT ) = Im(ATA).

• A good example of a least squares problem is linear regression. Let’s say I have a function fR→ R
and that I have (possibly noisy) measurements f1, . . . , fn of f at the points t1, . . . , tn ∈ R. For
simplicity let us assume

∑n
k=1 tk = 0. If one believe that the function should be linear f(t) = µ+αt

then it makes sense to solve:

min
µ,α

n∑
k=1

|fk − (µ+ αtk)|2.

This is the same as

min
µ,α

∥∥∥∥∥∥∥∥∥∥∥
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which we know is given by the solution of
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which, because of the assumption is the same as

[
µ
α

]
=

[
n 0
0
∑n

k=1 t
2
k

]−1 [ ∑n
k=1 fk∑n
k=1 tkfk

]
=


1
n

∑n
k=1 fk∑n

k=1 tkfk∑n
k=1 t

2
k

 ,
provided that

∑n
k=1 t

2
k 6= 0. Notice that if

∑n
k=1 t

2
k = 0 then all the tk’s must be 0 and so there is

data about only one point.
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