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These are not meant to be Lecture Notes. They are simply extended syllabi with the most
important definitions and results from the lecture. As such, they lack the intuition and motivation
and so they are not a good place to learn the material the first time, just to briefly review it. These
extended syllabi will also have references.

There are many amazing books about linear algebra and virtually all of them will contain the
material for this particular lecture, examples include the book suggested for the course [2]. Another
place you can read about some of these is the Lecture Notes for DSGA1002 [1].

Please let me know if you find any typos

• Given a matrix A ∈ Rm×n its Frobenius norm ‖A‖F is given by

‖A‖F =
√

Tr(ATA) =

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√√√√min(m,n)∑
i=1

σ2i ,

where σ1, . . . , σmin(m,n) are the singular values of A.

• Given a matrix A ∈ Rm×n its spectral norm ‖A‖ (also written ‖A‖s or ‖A‖2) is given by

‖A‖ = max
x 6=0

‖Ax‖
‖x‖

= max
‖x‖=1

‖Ax‖ = σ1,

where σ1 is the largest singular value of A.

• The following properties hold. [The last two look like Cauchy-Schwarz, but they are different.]

1. ‖A‖ ≤ ‖A‖F .

2. ‖Ax‖ ≤ ‖A‖‖x‖ for all A ∈ Rm×n and x ∈ Rn.

3. ‖AB‖ ≤ ‖A‖‖B‖ for all A ∈ Rm×n and B ∈ Rn×k.

• Let A ∈ Rn×n be invertible, and suppose that Ax = b for some x, b ∈ Rn. Then the solution x̃ to
the perturbed linear system

Ax̃ = b+ ε,
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for ε ∈ Rn satisfies

‖x̃− x‖ ≤ ‖A−1‖‖ε‖ =
‖ε‖
σn

,

where σn is the smallest singular value of A. If x, b 6= 0 we also have

‖x̃− x‖
‖x‖

≤ κ(A)
‖ε‖
‖b‖

where the condition number κ(A) is defined by

κ(A) = ‖A‖‖A−1‖ =
σ1
σn

with σ1 denoting the largest singular value of A.

• Numerical linear algebra libraries, like numpy, use the SVD to compute the rank of a matrix by
counting all singular values that are larger than some threshold.

• If A ∈ Rn×n has spectral decomposition V ΛV T then we have

Ak = V ΛkV T

for all k ≥ 0. More generally, if p(x) =
∑n

k=0 akx
k is a polynomial, then we have

p(A) = V p(Λ)V T

where

p(Λ) =


p(λ1)

p(λ2)
. . .

p(λn)

 .
• If A ∈ Rn×n can be written as A = V ΛV T = UDUT where U, V are orthogonal, and D,Λ are

diagonal, then D = Λ up to reordering of the columns. In other words, there are exactly n
eigenvalues (including repeats) that are uniquely determined by the matrix A.

• Similarly, if B ∈ Rm×n can be written as B = UΣV T = PDQT where U, V, P,Q are orthogonal
and Σ, D ∈ Rm×n are diagonal with non-negative entries, then Σ = D up to reordering.

• We can compute other functions of a symmetric matrix A = V ΛV T as well:

1. A1/2 = V Λ1/2V T if A � 0 where Λ1/2 is obtained by taking the square roots of the entries of
Λ.

2. (I −A)−1 =
∑∞

k=0A
k = V

(∑∞
k=0 Λk

)
V T if maxi |λi| < 1.

3. eA =
∑∞

k=0
1
k!A

k (used to solve systems of differential equations).

4. A−1 =
∑∞

k=0(I −A)k if the maximum absolute eigenvalue of I −A is strictly less than 1.
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• If A ∈ Rn×n is invertible we can solve Ax = b by writing

x = A−1b =
∞∑
k=0

(I −A)kb

if the largest absolute eigenvalue of I−A is strictly less than 1. This gives us the following iterative
method for solving the linear system:

1. Let x(0) = b.

2. For k = 1, 2, . . .

(a) Set x(k) = (I −A)x(k−1) + b.

(b) Stop if ‖Ax(k) − b‖ is sufficiently small.

Then we have

x(k) =

k∑
j=0

(I −A)kb→
∞∑
j=0

(I −A)kb = A−1b.

• Given an invertible matrix C ∈ Rn×n we can instead solve the equivalent system CAx = Cb. Our
iterative method converges for the new system if the largest absolute eigenvalue of I−CA is strictly
smaller than 1. The goal is to find an easy to compute C that makes the eigenvalues of I − CA
small. Such a C is called a preconditioner.
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