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Chapter 2

Curses, Blessings, and Surprises
in High Dimensions

This chapter discusses the curse of dimensionality, as well as many of its blessings.
The first is caused by the exponential increase in volume associated with adding
extra dimensions to Euclidean space. The latter is a manifestation of an intriguing
phenomenon called the concentration of measure. This concentration phenomenon
will give rise to many surprising facts about high dimensional geometry that we
will discuss. Since several of the results discussed in this chapter require basic tools
from probability, we will also review some fundamental probabilistic concepts.

2.1 The Curse of Dimensionality

The curse of dimensionality refers to the fact that many algorithmic approaches
to problems in Rd become exponentially more difficult as the dimension d grows.
The expression “curse of dimensionality” was coined by Bellman to describe the
problem caused by the exponential increase in volume associated with adding extra
dimensions to Euclidean space [28].

For instance, if we want to sample the unit interval such that the distance be-
tween adjacent points is at most 0.01, 100 evenly-spaced sample points suffice;
an equivalent sampling of a five-dimensional unit hypercube with a grid with a
spacing of 0.01 between adjacent points would require 1010 sample points. Thus, a
modest increase in dimensions results in a dramatic increase in required data points
to cover the space at the same density.

Intimately connected to the curse of dimensionality is the problem of overfit-
ting and underfitting. Here, overfitting refers to the issue that an algorithm may
show good performance on the training data, but poor generliazation to other data.
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8CHAPTER 2. CURSES, BLESSINGS, AND SURPRISES IN HIGH DIMENSIONS

Underfitting in turn, corresponds to poor performance on the training data (and
poor generalization to other data). This problem manifests itself in many machine
learning algorithms.

We will discuss a toy example from image classification in more detail to illus-
trate the underlying issues. Assume we want to classify images into two groups,
cars and bicycles, say. From the vast number of images depicting cars or bicycles,
we are only able to obtain a small number of training images, say five images of
cars and five images of bicycles. We want to train a simple linear classifier based
on these ten labeled training images to correctly classify the remaining unlabeled
car/bicycle images. We start with a simple feature, e.g. the amount or red pixels’
in each image. However, this is unlikely to give a linear separation of the training
data. We add more features and eventually the training images become linearly
separable. This might suggest that increasing the number of features until perfect
classification of the training data is achieved, is a sound strategy. However, as we
linearly increase the dimension of the feature space, the density of our training
data decreases exponentially with the feature dimension.

In other words, to maintain a comparable density of our training data, we would
need to increase the size of the datset exponentially – the curse of dimensionality.
Thus, we risk producing a model that could be very good at predicting the target
class on the training set, but it may fail miserably when faced with new data. This
means that our model does not generalize from the training data to the test data.

2.2 Surprises in High Dimensions

When we peel an orange, then after having removed the rind we are still left with
the majority of the orange. Suppose now we peel a d-dimensional orange for large
d, then after removing the orange peel we would be left with essentially noth-
ing. The reason for this – from a healthy nutrition viewpoint discouraging – fact
is that for a d-dimensional unit ball almost all of its volume is concentrated near
the boundary sphere. This is just one of many surprising phenomena in high di-
mensions. Many of these surprises are actually a manifestation of some form of
concentration of measure that we will analyze in more detail in the next section
(and then these surprises are not so surprising anymore ...).

When introducing data analysis concepts, we typically use few dimensions in
order to facilitate visualization. However, our intuition about space, which is nat-
urally based on two and three dimensions, can often be misleading in high di-
mensions. Many properties of even very basic objects become counterintuitive in
higher dimensions. Understanding these paradoxical properties is essential in data
analysis as it allows us to avoid pitfalls in the design of algorithms and statisti-
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cal methods for high-dimensional data. It is therefore instructive to analyze the
shape and properties of some basic geometric forms that we understand very well
in dimensions two and three, in high dimensions.

To that end, we will look at some of the properties of the sphere and the cube
as the dimension increases. The d-dimensional hyperball of radius R is defined by

Bd(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d ≤ R2},

the d-dimensional hypersphere (or d-sphere) of radius R is given by

Sd−1(R) = {x ∈ Rd : x2
1 + · · ·+ x2

d = R2},

and the d-dimensional hypercube with side length 2R is the subset of Rd defined
as the d-fold product of intervals [−R,R]:

Cd(R) = [−R,R]×·· ·× [−R,R]︸ ︷︷ ︸
d times

.

If there is no danger of confusion, we may write Bd for Bd(1), Sd−1 for Sd−1(1),
and Cd for Cd(1

2).

2.2.1 Geometry of spheres and balls in high dimension

Volume of the hyperball

Theorem 2.1 The volume of Bd(R) is given by

Vol(Bd(R)) =
π

d
2 Rd

d
2 Γ(d

2 )
. (2.1)

Proof. T 2

he volume of Bd(R) is given by

Vol(Bd(R)) =
ˆ R

0
sdrd−1dr =

sdRd

d
, (2.2)

where sd denotes the (hyper-)surface area of a unit d-sphere. A unit d-sphere must
satisfy

sd

ˆ
∞

0
e−r2

rd−1dr =
ˆ

∞

−∞

. . .

ˆ
∞

−∞︸ ︷︷ ︸
d times

e−(x
2
1+···+x2

d)dx1 . . .dxd =
(ˆ ∞

−∞

e−x2
dx
)d

.
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Recall that the Gamma function is given by

Γ(n) =
ˆ

∞

0
rn−1e−rdr = 2

ˆ
∞

0
e−r2

r2n−1dr,

hence
1
2

sdΓ(
d
2
) =

[
Γ(

1
2
)
]d

=
(
π

1
2
)d
,

and thus

sd =
2π

d
2

Γ(d
2 )
.

Plugging this expression into (2.2) gives

Vol(Bd(R)) =
π

d
2 Rd

d
2 Γ(d

2 )
. (2.3)

2

For positive integers n there holds Γ(n) = (n−1)!. Using Stirling’s Formula,

Γ(n)∼
√

2π

n

(n
e

)n

we obtain as approximation for the volume of the unit d-ball for large d

Vol(Bd)≈ 1√
2π

(2πe
d

) d
2
. (2.4)

Since the denominator in the parenthesis of equation (2.4) goes to infinity much
faster than the numerator, the volume of the unit d-sphere goes rapidly to 0 as the
dimension d increases to infinity, see also Figure 2.1.

Thus, unit spheres in high dimensions have almost no volume—compare this
to the unit cube, which has volume 1 in any dimension. For Bd(R) to have volume

equal to 1, its radius R must be approximately (asymptotically) equal to
√

d
2πe .

Concentration of the volume of a ball near its equator

If we take an orange and cut it into slices, then the slices near the center are larger
since the sphere is wider there. This effect increases dramatically (exponentially
with the dimension) with increasing dimension. Assume we want to cut off a slab
around the “equator1” of the d-unit ball such that 99% of its volume is contained

1To define the “equator” of a the d-dimensional ball, we need to pick a “north pole” as reference.
Without loss of generality we could pick the unit vector in the x1-direction as defining “north”.



2.2. SURPRISES IN HIGH DIMENSIONS 11

Figure 2.1: The volume of the unit d-ball using the exact formula in equation (2.3).
The volume reaches its maximum for d = 5 and decreases rapidly to zero with
increasing dimension d.

inside the slab. In two dimensions the width of the slab has to be almost 2, so
that 99% of the volume are captured by the slab. But as the dimension increases
the width of the slab gets rapidly smaller. Indeed, in high dimensions only a very
thin slab is required, since nearly all the volume of the unit ball lies a very small
distance away from the equator. The following theorem makes the considerations
above precise.

Theorem 2.2 Almost all the volume of Bd(R) lies near its equator.

Proof. I 2

t suffices to prove the result for the unit d-ball. Without loss of generality we
pick as “north” the direction x1. The intersection of the sphere with the plane
x1 = 0 forms our equator, which is formally given by the d−1-dimensional region
{x : ‖x‖ ≤ 1,x1 = 0}. This intersection is a sphere of dimension d−1 with volume
Vol(Bd−1) given by the (d−1)-analog of formula (2.3) with R = 1.

We now compute the volume of Bd that lies between x1 = 0 and x1 = p0. Let
P0 = {x : ‖x‖ ≤ 1,x1 ≥ p0} be the “polar cap”, i.e., part of the sphere above the
slab of width 2p0 around the equator. To compute the volume of the cap P we will
integrate over all slices of the cap from 0 to p0. Each such slice will be a sphere of
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dimension d− 1 and radius
√

1− p2, hence its volume is (1− p2)
d−1

2 Vol(Bd−1).
Therefore

Vol(P) =
ˆ 1

p0

(1− p2)
d−1

2 Vol(Bd−1)d p = Vol(Bd−1)

ˆ 1

p0

(1− p2)
d−1

2 d p.

Using ex ≥ 1+ x for all x we can upper bound this integral by

Vol(P)≤ Vol(Bd−1)

ˆ
∞

p0

e−
d−1

2 p2
d p≤ Vol(Bd−1)

d−1
e−

(d−1)p2
0

2 ,

where we have bounded the integral via the complementary error function erfc(x)
and used the fact that erfc(x)≤ e−x2

.

Recall, from (2.3) that Vol(Bd) = π
d
2

d
2 Γ( d

2 )
, so, for d large enough (since Γ( d

2 )

Γ( d−1
2 )
≈√

d
2 ),

Vol(Bd−1) =
π−1/2

d−1
d

Γ(d
2 )

Γ(d−1
2 )

Vol(Bd)≤ d−1
2

Vol(Bd).

Finally, a simple calculation shows that the ratio between the volume of the polar
caps and the entire hypersphere is bounded by

2Vol(P)
Vol(Bd)

≤ 2Vol(P)
Vol(Bd−1)

≤ e−
d−1

2 p2
0 .

The expression above shows that this ratio decreases exponentially as both d and
p increase, proving our claim that the volume of the sphere concentrates strongly
around its equator. 2

Concentration of the volume of a ball on shells

We consider two concentric balls Bd(1) and Bd(1− ε). Using equation (2.3), the
ratio of their volumes is

Vol(Bd(1− ε))

Vol(Bd(1))
= (1− ε)d .

Clearly, for every ε this ratio tends to zero as d→∞. This implies that the spherical
shell given by the region between Bd(1) and Bd(1− ε) will contain most of the
volume of Bd(1) for large enough d even if ε is very small. How quickly does the
volume concentrate at the surface of Bd(1)? We choose ε as a function of d, e.g.
ε = t

d , then
Vol(Bd(1− ε))

Vol(Bd(1))
= (1− t

d
)d → e−t .
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Thus, almost all the volume of Bd(R) is contained in an annulus of width R/d.
Therefore, if we peel a d-dimensional orange and even if we peel it very care-

fully so that we remove only a very thin layer of its peel, we will have removed
most of the orange and are left with almost nothing.

2.2.2 Geometry of the Hypercube

We have seen that most of the volume of the hypersphere is concentrated near its
surface. A similar result also holds for the hypercube, and in general for high-
dimensional geometric objects. Yet, the hypercube exhibits an even more interest-
ing volume concentration behavior, which we will establish below.

We start with a basic observation.

Proposition 2.3 The hypercube Cd has volume 1 and diameter
√

d.

The above proposition, although mathematically trivial, hints already at a some-
what counterintuitive behavior of the cube in high dimensions. Its corners seem to
get “stretched out” more and more, while the rest of the cube must “shrink” to keep
the volume constant. This property becomes even more striking when we compare
the cube with the sphere as the dimension increases.

0.5
√

2
21

Figure 2.2: 2-dimensional unit sphere and unit cube, centered at the origin.

In two dimensions (Figure 2.2), the unit square is completely contained in the
unit sphere. The distance from the center to a vertex (radius of the circumscribed
sphere) is

√
2

2 and the apothem (radius of the inscribed sphere) is 1
2 . In four di-

mensions (Figure 2.3), the distance from the center to a vertex is 1, so the vertices
of the cube touch the surface of the sphere. However, the apothem is still 1

2 . The
result, when projected in two dimensions no longer appears convex, however all
hypercubes are convex. This is part of the strangeness of higher dimensions - hy-
percubes are both convex and “pointy.” In dimensions greater than 4 the distance
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from the center to a vertex is
√

d
2 > 1, and thus the vertices of the hypercube extend

far outside the sphere, cf. Figure 2.4.

0.5 1

Figure 2.3: Projections of the 4-dimensional unit sphere and unit cube, centered at
the origin (4 of the 16 vertices of the hypercube are shown).

0.5
1

√
d/2

Figure 2.4: Projections of the d-dimensional unit sphere and unit cube, centered at
the origin (4 of the 2d vertices of the hypercube are shown).

The considerations above suggest the following observation:
“Most of the volume of the high-dimensional cube is located in its corners.”
We will prove this observation in Section 2.4.2 using probabilistic techniques

which we will introduce in the next sections.

2.3 Basic Concepts from Probability

We briefly review some fundamental concepts from probability theory, which are
helpful or necessary to understand the blessings of dimensionality and some of
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the surprises encountered in high dimensions. More advanced probabilistic con-
cepts will be presented in Chapter 6. We assume that the reader is familiar with
elementary probability as is covered in introductory probability courses (see, for
example [55, 114]).

The two most basic concepts in probability associated with a random variable
X are expectation (or mean) and variance, denoted by

E[X ] and Var(X) := E[X−E[X ]]2,

respectively. An important tool to describe probability distributions is the moment
generating function of X , defined by

MX(t) = E[etX ], t ∈ R,

the choice of nomenclature can be easily justified by expanding MX(t) in a series.
The p-th moment of X is defined by E[X p] for p > 0 and the p-th absolute moment
is E[|X |p].

We can introduce Lp-norms of random variables by taking the p-th root of
moments, i.e.,

‖X‖Lp :=
(
E[|X |p]

) 1
p , p ∈ [0,∞],

with the usual extension to p = ∞ by setting

‖X‖∞ := esssup |X |.

Let (Ω,Σ,P) be a probability space, where Σ denotes a σ -algebra on the sample
space Ω and P is a probability measure on (Ω,Σ). For fixed p the vector space
Lp(Ω,Σ,P) consists of all random variables X on Ω with finite Lp-norm, i.e.,

Lp(Ω,Σ,P) = {X : ‖X‖Lp < ∞}.

We will usually not mention the underlying probability space. For example, we
will often simply write Lp for Lp(Ω,Σ,P).

The case p = 2 deserves special attention since L2 is a Hilbert space with inner
product and norm

〈X ,Y 〉L2 = E[XY ], ‖X‖L2 =
(
E[X2]

) 1
2 ,

respectively. Note that the standard deviation σ(X) :=
√

Var(X) of X can be writ-
ten as

σ(X) = ‖X−E[X ]‖L2 .
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The covariance of the random variables X and Y is

cov(X ,Y ) = E[(X−E[X ])(Y −E[Y ])] = 〈X−E[X ],Y −E[Y ]〉L2 . (2.5)

We recall a few classical inequalities for random variables. Hölder’s inequality
states that for random variables X and Y on a common probability space and p,q≥
1 with 1/p+1/q = 1, there holds

|E[XY ]| ≤ ‖X‖Lp‖Y‖Lq . (2.6)

The special case p = q = 2 is the Cauchy-Schwarz inequality

|E[XY ]| ≤
√
E[|X |2]E[|Y |2]. (2.7)

Jenssen’s inequality states that for any random variable X and a convex func-
tion ϕ : R→ R, we have

ϕ(E[X ])≤ E[ϕ(X)]. (2.8)

Since ϕ(x) = xq/p is a convex function for q ≥ p ≥ 0, it follows immediately
from Jenssen’s inequality that

‖X‖Lp ≤ ‖X‖Lq for 0≤ p≤ q < ∞.

Minkovskii’s inequality states that for any p ∈ [0,∞] and any random variables
X ,Y , we have

‖X +Y‖Lp ≤ ‖X‖Lp +‖Y‖Lp , (2.9)

which can be viewed as the triangle inequality.

The cumulative distribution function of X is defined by

FX(t) = P(X ≤ t), t ∈ R.

We have P{X > t} = 1−FX(t), where the function t 7→ P{|X | ≥ t} is called the
tail of X . The following lemma establishes a close connection between expectation
and tails.

Proposition 2.4 (Integral identity) Let X be a non-negative random variable. Then

E[X ] =

ˆ
∞

0
P{X > t}dt.

The two sides of this identity are either finite or infinite simultaneously.
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Given an event E with non-zero probability,P(·|E) denotes conditional proba-
bility, furthermore for a random variable X we use E[X |E] to denote the conditional
expectation.

Markov’s inequality is a fundamental tool to bound the tail of a random variable
in terms of its expectation.

Proposition 2.5 For any non-negative random variable X : S→ R we have

P{X ≥ t} ≤ E[X ]

t
for all t > 0. (2.10)

We provide two versions of the same proof, one using the language of condi-
tional expectations.
Proof.

2

Let I denote the event {X ≥ t}. Then

E[X ] = ∑
s∈S

p(s)X(s) = ∑
s∈I

p(s)X(s)+ ∑
s∈I c

p(s)X(s),

where p(s) denotes the probability of s; in case of continuous variables this should
be replaced with the density function and ∑ with an integral.

Since X is non-negative, it holds ∑s∈I c p(s)X(s)≥ 0 and

E[X ]≥ ∑
s∈I

p(s)X(s)≥ t ∑
s∈I

p(s) = tP{I }.

Proof. [ 2

Using the language of conditional expectation]

E[X ] = P(X < t)E[X |X < t]+P(X > t)E[X |X ≥ t],

where we take the product to be zero if the probability is zero.
Since X is non-negative, it holds P(X < t)E[X |X < t]≥ 0. Also, E[X |X ≥ t]> t.

Hence,
E[X ]≥ P(X > t)E[X |X > t]≥ tP(X ≥ t).

An important consequence of Markov’s inequality is Chebyshev’s inequality.

Corollary 2.6 Let X be a random variable with mean µ and variance σ2. Then,
for any t > 0

P{|X−µ| ≥ t} ≤ σ2

t2 . (2.11)
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Chebyshev’s inequality, which follows by applying Markov’s inequality to the
non-negative random variable Y = (X−E[X ])2, is a form of concentration inequal-
ity, as it guarantees that X must be close to its mean µ whenever the variance of
X is small. Both, Markov’s and Chebyshev’s inequality are sharp, i.e., in general
they cannot be improved.

Markov’s inequality only requires the existence of the first moment. We can say
a bit more if in addition the random variable X has a moment generating function in
a neighborhood around zero, that is, there is a constant b > 0 such that E[eλ (X−µ)]
exists for all λ ∈ [0b]. In this case we can apply Markov’s inequality to the random
variable Y = eλ (X−µ) and obtain the generic Chernoff bound

P{X−µ ≥ t}= P{eλ (X−µ) ≥ eλ t} ≤ E[eλ (X−µ)]

eλ t . (2.12)

In particular, optimizing over λ in order to obtain the tightest bound in (2.12) gives

logP{X−µ ≥ t} ≤ − sup
λ∈[0,b]

{λ t− logE[eλ (X−µ)]}.

Gaussian random variables are among the most important random variables.
A Gaussian random variable X with mean µ and standard deviation σ has a prob-
ability density function given by

ψ(t) =
1√

2πσ2
exp
(
−(t−µ)2

2σ2

)
. (2.13)

We write X ∼N (µ,σ2). We call a Gaussian random variable X with E[X ] = 0
and E[X2] = 1 a standard Gaussian or standard normal (random variable). In this
case we have the following tail bound.

Proposition 2.7 (Gaussian tail bounds) Let X ∼N (µ,σ2). Then for all t > 0

P(X ≥ µ + t)≤ e−t2/2σ2
. (2.14)

Proof. W 2

e use the moment-generating function λ 7→ E[eλX ]. A simple calculation gives

E[eλX ] =
1√
2π

ˆ
∞

−∞

eλx−x2/2 dx =
1√
2π

eλ 2/2
ˆ

∞

−∞

e−(x−λ )2/2 dx = eλ 2/2,

where we have used the fact that
´

∞

−∞
e−(x−λ )2/2 dx is just the entire Gaussian inte-

gral shifted and therefore its value is
√

2π . We now apply Chernoff’s bound (2.12)
and obtain P(X > t)≤ E[eλX ]e−λ t . Minimizing this expression over λ gives λ = t
and thus P(X > t)≤ e−t2/2.
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Definition 2.8 A random variable X with mean µ = E[X ] is called sub-Gaussian
if there is a positive number σ such that

E[eλ (X−µ)]≤ eσ2λ 2/2, for all λ ∈ R.

If X satisfies the above definition, we also say that X is sub-Gaussian with pa-
rameter σ , or X is (µ,σ) sub-Gaussian in case we want to emphasize µ as well.
Clearly, owing to the symmetry in the definition,−X is sub-Gaussian if and only if
X is sub-Gaussian. Obviously, any Gaussian random variable with variance σ2 is
sub-Gaussian with parameter σ . We refer to [139] for other, equivalent, definitions
of sub-Gaussian random variables.

Combining the moment condition in Definition 2.8 with calculations similar to
those that lead us to the Gaussian tail bounds in 2.7, yields the following concen-
tration inequality for sub-Gaussian random variables.

Proposition 2.9 (Sub-Gaussian tail bounds) Assume X is sub-Gaussian with pa-
rameter σ . Then for all t > 0

P(|X−µ| ≥ t)≤ e−t2/2σ2
for all t ∈ R. (2.15)

An important example of non-Gaussian, but sub-Gaussian random variables
are Rademacher random variables. A Rademacher random variable ε takes on the
values ±1 with equal probability and is sub-Gaussian with parameter σ . . Indeed,
any bounded random variable is sub-Gaussian.

While many important random variables have a sub-Gaussian distribution, this
class does not include several frequently occurring distributions with heavier tails.
A classical example is the chi-squared distribution, which we will discuss at the
end of this section.

Relaxing slightly the condition on the moment-generating function in Defini-
tion 2.8 leads to the class of sub-exponential random variables.

Definition 2.10 A random variable X with mean µ =E[X ] is called sub-exponential
if there are parameters ν ,b such that

E[eλ (X−µ)]≤ eν2λ 2/2, for all λ ≤ 1
b

.

Clearly, a sub-Gaussian random variable is sub-exponential (set µ = σ and b = 0,
where 1/b is interpreted as +∞). However, the converse is not true. Take for
example X ∼ N (0,1) and consider the random variable Z = X2. For λ < 1

2 it
holds that

E[eλ (Z−1)] =
1√
2π

ˆ
∞

−∞

eλ (x2−1)e−x2/xdx =
e−λ

√
1−2λ

. (2.16)
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However, for λ ≥ 1
2 the moment-generating function does not exist, which implies

that X2 is not sub-Gaussian. But X2 is sub-exponential. Indeed, a brief computation
shows that

e−λ

√
1−2λ

≤ e2λ 2
= e4λ 2/2, for all |λ | ≤ 1/4,

which in turn implies that X2 is sub-exponential with parameters (µ,b) = (2,4).
Following a similar procedure that yielded sub-Gaussian tail bounds produces

concentration inequalities for sub-exponential random variables. However, in this
case we see two different types of concentration emerging, depending on the value
of t.

Proposition 2.11 (Sub-exponential tail bounds) Assume X is sub-exponential with
parameters (ν ,b). Then

P(X ≥ µ + t)≤

{
e−t2/2ν2

if 0≤ t ≤ ν2

b ,
e−t/2b if t > ν2

b .
(2.17)

Both the sub-Gaussian property and the sub-exponential property is preserved
under summation for independent random variables, and the associated parameters
transform in a simple manner.

A collection X1, . . . ,Xn of mutually independent random variables that all have
the same distribution is called independent identically distributed (i.i.d.). A random
variable X ′ is called an independent copy of X if X and X ′ are independent and have
the same distribution.

Since we are not able to improve Markov’s inequality and Chebyshev’s in-
equality in general, the question arises whether we can give a stronger statement
for a more restricted class of random variables. Of central importance in this con-
text is the case of a random variable that is the sum of a number of independent
random variables. This leads to the rich topic of concentration inequalities which
is discussed in the next sections in this chapter and in Chapter 6.

Before we dive right into a range of concentration inequalities in the next sec-
tion, we want to investigate one particular example. If X1, . . . ,Xn are independent,
standard normal random variables, then the sum of their squares, Z = ∑

n
k=1 X2

k is
distributed according to the chi-squared distribution with n degrees of freedom.
We denote this by Z ∼ χ2(n). Its probability density function is

ϕ(t) =


t

n
2−1e−

n
2

2
n
2 Γ( n

2 )
, t > 0.

0, else.
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Since the X2
k ,k = 1, . . . ,n are subexponential with parameters (2,4) and indepen-

dent, Z = ∑
n
k=1 X2

k is subexponential with parameters (2
√

n,4). Therefore, us-
ing (2.17), we obtain the χ2 tail bound

P

(
1
n

∣∣∣∣∣ n

∑
k=1

X2
k −1

∣∣∣∣∣≥ t

)
≤

{
2e−nt2/8 for t ∈ (0,1).
2e−nt/8 if t ≥ 1.

(2.18)

A variation of this bound is stated in Theorem 6.23.

2.4 Blessings of Dimensionality

Suppose we wish to predict the outcome of an event of interest. One natural ap-
proach would be to compute the expected value of the object. However, how can
we tell how good the expected value is to the actual outcome of the event? Without
further information of how well the actual outcome concentrates around its expec-
tation, the expected value is of little use. We would like to have an estimate for
the probability that the actual outcome deviates from its expectation by a certain
amount. This is exactly the role that concentration inequalities play in probability
and statistics.

The concentration of measure phenomenon was put forward by Vitali Milman
in the asymptotic geometry of Banach spaces regarding probabilities on product
spaces in high dimensions [94, 84].

The celebrated law of large numbers of classical probability theory is the most
well known form of concentration of measure; it states that sums of independent
random variables are, under very mild conditions, close to their expectation with
a large probability. We will see various quantitative versions of such concentra-
tion inequalities throughout this course. Some deal with sums of scalar random
variables, others with sums of random vectors or sums of random matrices. Such
concentration inequalities are instances of what is sometimes called Blessings of
dimensionality (cf. [51]). This expression refers to the fact that certain random
fluctuations can be well controlled in high dimensions, while it would be very
complicated to make such predictive statements in moderate dimensions.

2.4.1 Large Deviation Inequalities

Concentration and large deviations inequalities are among the most useful tools
when understanding the performance of some algorithms. We start with two of the
most fundamental results in probability. We refer to Sections 1.7 and 2.4 in [55]
for the proofs and variations.
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Theorem 2.12 (Strong law of large numbers) Let X1,X2, . . . be a sequence of i.i.d.
random variables with mean µ . Denote

Sn := X1 + · · ·+Xn.

Then, as n→ ∞
Sn

n
→ µ almost surely. (2.19)

The celebrated central limit theorem tells us that the limiting distribution of
a sum of i.i.d. random variables is always Gaussian. The best known version is
probably due to Lindeberg-Lévy.

Theorem 2.13 (Lindeberg-Lévy Central limit theorem) Let X1,X2, . . . be a se-
quence of i.i.d. random variables with mean µ and variance σ2. Denote

Sn := X1 + · · ·+Xn,

and consider the normalized random variable Zn with mean zero and variance one,
given by

Zn :=
Sn−E[Sn]√

VarSn
=

1
σ
√

n

n

∑
i=1

(Xi−µ).

Then, as n→ ∞

Zn→N (0,1) in distribution. (2.20)

The strong law of large numbers and the central limit theorem give us quali-
tative statements about the behavior of a sum of i.i.d. random variables. In many
applications it is desirable to be able to quantify how such a sum deviates around
its mean. This is where concentration inequalities come into play.

The intuitive idea is that if we have a sum of independent random variables

X = X1 + · · ·+Xn,

where Xi are i.i.d. centered random variables, then while the value of X can be of
order O(n) it will very likely be of order O(

√
n) (note that this is the order of its

standard deviation). The inequalities that follow are ways of very precisely con-
trolling the probability of X being larger (or smaller) than O(

√
n). While we could

use, for example, Chebyshev’s inequality for this, in the inequalities that follow
the probabilities will be exponentially small, rather than just quadratically small,
which will be crucial in many applications to come. Moreover, unlike the classical
central limit theorem, the concentration inequalities below are non-asymptotic in
the sense that they hold for all fixed n and not just for n→ ∞ (but the larger the n,
the stronger the inequalities become).
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Theorem 2.14 (Hoeffding’s Inequality) Let X1,X2, . . . ,Xn be independent bounded
random variables, i.e., |Xi| ≤ ai and E[Xi] = 0. Then,

Prob

{∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣> t

}
≤ 2exp

(
− t2

2∑
n
i=1 a2

i

)
.

The inequality implies that fluctuations larger than O (
√

n) have small proba-
bility. For example, if ai = a for all i, setting t = a

√
2n logn yields that the proba-

bility is at most 2
n .

Proof. We prove the result for the case |Xi| ≤ a, the extension to the case |Xi| ≤ ai

is straightforward. We first get a probability bound for the event ∑
n
i=1 Xi > t. The

proof, again, will follow from Markov. Since we want an exponentially small
probability, we use a classical trick that involves exponentiating with any λ > 0
and then choosing the optimal λ .

Prob

{
n

∑
i=1

Xi > t

}
= Prob

{
n

∑
i=1

Xi > t

}
(2.21)

= Prob
{

eλ ∑
n
i=1 Xi > eλ t

}
≤ E[eλ ∑

n
i=1 Xi ]

etλ

= e−tλ
n

∏
i=1

E[eλXi ], (2.22)

where the penultimate step follows from Markov’s inequality and the last equality
follows from independence of the Xi’s.

We now use the fact that |Xi| ≤ a to bound E[eλXi ]. Because the function f (x) =
eλx is convex,

eλx ≤ a+ x
2a

eλa +
a− x

2a
e−λa,

for all x ∈ [−a,a].
Since, for all i, E[Xi] = 0 we get

E[eλXi ]≤ E
[

a+Xi

2a
eλa +

a−Xi

2a
e−λa

]
≤ 1

2

(
eλa + e−λa

)
= cosh(λa)

Note that2

2This follows immediately from the Taylor expansions: cosh(x) =∑
∞
n=0

x2n

(2n)! , ex2/2 =∑
∞
n=0

x2n

2nn! ,
and (2n)!≥ 2nn!.
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cosh(x)≤ ex2/2, for all x ∈ R

Hence,
E[eλXi ]≤ e(λa)2/2.

Together with (2.21), this gives

Prob

{
n

∑
i=1

Xi > t

}
≤ e−tλ

n

∏
i=1

e(λa)2/2

= e−tλ en(λa)2/2

This inequality holds for any choice of λ ≥ 0, so we choose the value of λ that
minimizes

min
λ

{
n
(λa)2

2
− tλ

}
Differentiating readily shows that the minimizer is given by

λ =
t

na2 ,

which satisfies λ > 0. For this choice of λ ,

n(λa)2/2− tλ =
1
n

(
t2

2a2 −
t2

a2

)
=− t2

2na2

Thus,

Prob

{
n

∑
i=1

Xi > t

}
≤ e−

t2

2na2

By using the same argument on ∑
n
i=1 (−Xi), and union bounding over the two

events we get,

Prob

{∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣> t

}
≤ 2e−

t2

2na2

2
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Remark 2.15 Hoeffding’s inequality is suboptimal in a sense we now describe.
Let’s say that we have random variables r1, . . . ,rn i.i.d. distributed as

ri =


−1 with probability p/2

0 with probability 1− p
1 with probability p/2.

Then, E(ri) = 0 and |ri| ≤ 1 so Hoeffding’s inequality gives:

Prob

{∣∣∣∣∣ n

∑
i=1

ri

∣∣∣∣∣> t

}
≤ 2exp

(
− t2

2n

)
.

Intuitively, the smaller p is, the more concentrated |∑n
i=1 ri| should be, however

Hoeffding’s inequality does not capture this behaviour.

A natural way to attempt to capture this behaviour is by noting that the vari-
ance of ∑

n
i=1 ri depends on p as Var(ri) = p. The inequality that follows, Bern-

stein’s inequality, uses the variance of the summands to improve over Hoeffding’s
inequality.

The way this is going to be achieved is by strengthening the proof above, more
specifically in step (2.22) we will use the bound on the variance to get a better
estimate on E[eλXi ] essentially by realizing that if Xi is centered, EX2

i = σ2, and

|Xi| ≤ a then, for k ≥ 2, EXk
i ≤ E|Xi|k ≤ σ2E|Xi|k−2 ≤ σ2ak−2 =

(
σ2

a2

)
ak.

Theorem 2.16 (Bernstein’s Inequality) Let X1,X2, . . . ,Xn be independent centered
bounded random variables satisfying |Xi| ≤ a and E[X2

i ] = σ2. Then,

Prob

{∣∣∣∣∣ n

∑
i=1

Xi

∣∣∣∣∣> t

}
≤ 2exp

(
− t2

2nσ2 + 2
3 at

)
.

Remark 2.17 Before proving Bernstein’s inequality, note that on the example of
Remark 2.15 we get

Prob

{∣∣∣∣∣ n

∑
i=1

ri

∣∣∣∣∣> t

}
≤ 2exp

(
− t2

2np+ 2
3 t

)
,

which exhibits a dependence on p and, for small values of p is considerably smaller
than what Hoeffding’s inequality gives.

Proof.
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As before, we will prove

Prob

{
n

∑
i=1

Xi > t

}
≤ exp

(
− t2

2nσ2 + 2
3 at

)
,

and then union bound with the same result for −∑
n
i=1 Xi, to prove the Theorem.

For any λ > 0 we have

Prob

{
n

∑
i=1

Xi > t

}
= Prob{eλ ∑Xi > eλ t}

≤ E[eλ ∑Xi ]

eλ t

= e−λ t
n

∏
i=1

E[eλXi ]

The following calculations reveal the source of the improvement over Hoeffd-
ing’s inequality.

E[eλXi ] = E

[
1+λXi +

∞

∑
m=2

λ mXm
i

m!

]

≤ 1+
∞

∑
m=2

λ mam−2σ2

m!

= 1+
σ2

a2

∞

∑
m=2

(λa)m

m!

= 1+
σ2

a2

(
eλa−1−λa

)
Therefore,

Prob

{
n

∑
i=1

Xi > t

}
≤ e−λ t

[
1+

σ2

a2

(
eλa−1−λa

)]n

We will use a few simple inequalities (that can be easily proved with calculus)
such as3 1+ x≤ ex, for all x ∈ R.

This means that,

1+
σ2

a2

(
eλa−1−λa

)
≤ e

σ2

a2 (e
λa−1−λa),

3In fact y = 1+ x is a tangent line to the graph of f (x) = ex.
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which readily implies

Prob

{
n

∑
i=1

Xi > t

}
≤ e−λ te

nσ2

a2 (eλa−1−λa).

As before, we try to find the value of λ > 0 that minimizes

min
λ

{
−λ t +

nσ2

a2 (eλa−1−λa)
}

Differentiation gives

−t +
nσ2

a2 (aeλa−a) = 0

which implies that the optimal choice of λ is given by

λ
∗ =

1
a

log
(

1+
at

nσ2

)
If we set

u =
at

nσ2 , (2.23)

then λ ∗ = 1
a log(1+u).

Now, the value of the minimum is given by

−λ
∗t +

nσ2

a2 (eλß∗a−1−λ
∗a) =−nσ2

a2 [(1+u) log(1+u)−u] .

This means that

Prob

{
n

∑
i=1

Xi > t

}
≤ exp

(
−nσ2

a2 {(1+u) log(1+u)−u}
)

The rest of the proof follows by noting that, for every u > 0,

(1+u) log(1+u)−u≥ u
2
u +

2
3

, (2.24)

which implies:

Prob

{
n

∑
i=1

Xi > t

}
≤ exp

(
−nσ2

a2
u

2
u +

2
3

)

= exp

(
− t2

2nσ2 + 2
3 at

)
.

2

We refer to [139] for several useful variations of Bernstein’s inequality.
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2.4.2 The Geometry of the Hypercube Revisited

Equipped with the probabilistic tools from the previous sections, we are ready to
prove the somewhat counterintuitive properties of hypercubes in high dimensions
we discussed in Section 2.2.2.

Theorem 2.18 Almost all the volume of the high-dimensional cube is located in
its corners.

The proof of this statement will be based on a probabilistic argument, thereby
illustrating (again) the nice and fruitful connection between geometry and proba-
bility in high dimension. Pick a point at random in the box [−1,1]d . We want to
calculate the probability that the point is also in the sphere.

Let x = (x1, . . . ,xd) ∈ Rd and each xi ∈ [−1,1] is chosen uniformly at random.
The event that x also lies in the sphere means

‖x‖2 =

√
d

∑
i=1

x2
i ≤ 1.

Let zi = x2
i and note that

E[zi] =
1
2

ˆ 1

−1
t2 dt =

1
3

=⇒ E[‖x‖2
2] =

d
3

and

Var(zi) =
1
2

ˆ 1

−1
t4 dt− (

1
3
)2 =

1
5
− 1

9
=

4
45
≤ 1

10

Using Hoeffding’s inequality,

P(‖x‖2
2 ≤ 1) = P(

d

∑
i=1

x2
i ≤ 1)

= P(
d

∑
i=1

(zi−E[zi])≤ 1− d
3
)

≤ exp[−
(d

3 −1)2

2d
(2

3

)2 ]

≤ exp[−d
9
],
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for sufficiently large d. Since this value converges to 0 as the dimension d goes to
infinity, this shows random points in high cubes are most likely outside the sphere.
In other words, almost all the volume of a hypercube concentrates in its corners.

Since we now have gained a better understanding of the properties of the cube
in high dimensions, we can use this knowledge to our advantage. For instance, this
“pointiness” of the hypercube (in form of the `1-ball) turns out to very useful in the
areas of compressive sensing and sparse recovery, see Chapter 10.

2.4.3 How to Generate Random Points on a Sphere

How can we sample a point uniformly at random from Sd−1? The first approach
that may come to mind is the following method to generate random points on a
unit circle. Independently generate each coordinate uniformly at random from the
interval [−1,1]. This yields points that are distributed uniformly at random in a
square that contains the unit circle. We could now project all points onto the unit
circle. However, the resulting distribution will not be uniform since more points
fall on a line from the origin to a vertex of the square, than fall on a line from the
origin to the midpoint of an edge due to the difference in length of the diagonal of
the square to its side length.

To remedy this problem, we could discard all points outside the unit circle
and project the remaining points onto the circle. However, if we generalize this
technique to higher dimensions, the analysis in the previous section has shown
that the ratio of the volume of Sd−1(1) to the volume of Cd(1) decreases rapidly.
This makes this process not practical, since almost all the generated points will be
discarded in this process and we end up with essentially no points inside (and thus,
after projection, on) the sphere.

Instead we can proceed as follows. Recall that the multivariate Gaussian dis-
tribution is symmetric about the origin. This rotation invariance is exactly what we
need. We simply construct a vector in Rd whose entries are independently drawn
from a univariate Gaussian distribution. We then normalize the resulting vector to
lie on the sphere. This gives a distribution of points that is uniform over the sphere.

Picking a point x uniformly at random on the sphere Sd−1 is not too different
from picking a vector at random with entries of the form (± 1√

d
, . . . ,± 1√

d
), since

every point on the sphere has to fullfill x2
1 + · · ·+ x2

d = 1, hence the “average mag-
nitude” of xi will be 1√

d
.

Having a method of generating points uniformly at random on Sd−1 at our
disposal, we can now give a probabilistic proof that points on Sd−1 concentrate
near its equator. Without loss of generality we pick an arbitrary unit vector x1
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which represents the “north pole”, and the intersection of the sphere with the plane
x1 = 0 forms our equator. We extend x1 to an orthonormal basis x1, . . . ,xd . We
create a random vector by sampling (Z1, . . . ,Zd) ∼ N (0, Id) and normalize the
vector to get X = (X1, . . . ,Xd) =

1
∑

d
k=1 Z2

k
(Z1, . . . ,Zd). Because X is on the sphere, it

holds that ∑
d
k=1〈X ,xk〉2 = 1. Note that we also have E[∑d

k=1〈X ,xk〉2] = E[1] = 1.
Thus, by symmetry, E[〈X ,x1〉2] = 1

d . Applying Markov’s inequality (2.10) gives

P(|〈X ,x1〉|> ε) = P(〈X ,x1〉2 > ε
2)≤ E(〈X ,x1〉2)

ε2 =
1

dε2 .

For fixed ε we can make this probability arbitrarily small by increasing the dimen-
sion d. This proves our claim that points on the high-dimensional sphere concen-
trate near its equator.

2.4.4 Random Vectors in High Dimensions

Two basic geometric questions from a probabilistic point of view are: (i) What
length do we expect a random vector x ∈Rn to have? (ii) What angle do we expect
two random vectors x,y ∈ Rn to have?

Suppose that the coordinates x1, . . . ,xn of x are independent random variables
with zero mean and unit variances (and similarly for y). It holds that

E‖x‖2
2 = E

[
n

∑
k=1
|xk|2

]
=

n

∑
k=1

E[|xk|2] = n.

Hence, we expect the typical length ‖x‖2 of x to be approximately
√

n. But how
well does the length of a random vector concentrate around its “typical length”?

Assume for instance that the entries xk ∼N (0,1). In this case we can use the
χ2-concentration bound (2.18), which gives

P
(∣∣∣1

n
‖x‖2

2−1
∣∣∣≥ t

)
≤ 2exp

(
−n

8
min(t, t2)

)
. (2.25)

This represents a concentration inequality for ‖x‖2
2, but we aim for a concentration

inequality for the length ‖x‖. To do this we follow a simple but effective trick
used in the proof of Theorem 3.1.1 in [139]. We use the following elementary
observation that holds for all z≥ 0:

|z−1| ≥ δ implies |z2−1| ≥max(δ ,δ 2).

Using this observation we obtain for any δ > 0 that

P
(∣∣∣ 1√

n
‖x‖2−1

∣∣∣≥ δ

)
≤ P

(∣∣∣1
n
‖x‖2

2−1
∣∣∣≥max(δ ,δ 2)

)
≤ 2e−nt2/8, (2.26)
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where we have used t = max(δ ,δ 2) in (2.25).
With some minor modifications of these steps (and a slightly different constant)

one can extend this result to random vectors with sub-Gaussian coordinates, see
e.g. Theorem 3.1.1 in [139].

We now turn our attention to the expected angle between two random vectors.
We will show that two randomly drawn vectors in high dimensions are almost
perpendicular. The following theorem quantifies this statements. We denote the
angle θd between two vectors x,y by θx,y and recall that cosθx,y =

〈x,y〉
‖x‖2‖y‖2

.

Theorem 2.19 Let x,y ∈ Rd be two random vectors with i.i.d. Rademacher vari-
ables, i.e. the entries xi, ,yi take values ±1 with equal probability. Then

P

(
|cosθx,y| ≥

√
2logd

d

)
≤ 2

d
. (2.27)

Proof. N 2

ote that 〈x,y〉=∑i xiyi is the sum of i.i.d. Rademacher variables. Hence, E[〈x,y〉] =
∑iE[xiyi] = 0. Therefore, we can apply Hoeffding’s inequality. For any given t > 0

P(|〈x,y〉| ≥ t) = P
(
|〈x,y〉|
‖x‖2‖y‖2

≥ t
d

)
≤ 2exp

(
−t2

2d

)
.

To establish the bound (2.27), we set t =
√

2d logd and obtain

P

(
|cosθx,y|>

√
2logd

d

)
= P

(
|〈x,y〉|

d
≥
√

2logd
d

)
≤ 2exp(− logd) =

2
d
.

It is not surprising that a similar result holds for Gaussian random vectors in
Rd or random vectors chosen from the sphere Sd−1. Indeed, even more is true.
While we can have only d vectors that are exactly orthogonal in Rd , for large d we
can have exponentially many vectors that are almost orthogonal in Rd . To see this
we return to the setting of Theorem 2.19, choosing m random vectors x1, . . . ,xm

with i.i.d. Rademacher variables as their entries. We proceed as in the proof of
Theorem 2.19 but let t =

√
2d logc where c > 0 is a constant. This yields

P

(
|cosθxi,x j | ≥

√
2logc

d

)
≤ 2

c
.

Note that we need to consider θxi,X j for (m2−m)/2 such pairs (xi,x j). To make
things concrete, we can set for instance m =

√
c/4. Using the union bound we
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obtain that with probability at least 7
8 it holds that

max
i, j,i6= j

|cosθxi,x j | ≤
√

2logc
d

.

We can now choose e.g. c = e
d

200 and obtain that we have exponentially many (with
respect to d) vectors in Rd that are almost orthogonal in the sense that the cosine
of their pairwise angle is at most 1

100 .



Chapter 3

Singular Value Decomposition
and Principal Component
Analysis

Data is most often represented as a matrix, even network data and graphs are often
naturally represented by they adjacency matrix. For this reason Linear Algebra
is one of the key tools in data analysis. Perhaps more surprising is the fact that
spectral properties of matrices representing data play a crucial role in data analysis.
After a brief review of Linear Algebra we will illustrate this importance with a
discussion of Principal Component Analysis and tools from random matrix theory
to better understand its performance in the high dimensional regime.

3.1 Brief review of linear algebra tools

We recommend the reader [69] and [62] as base references in the linear algebra.

Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most useful tools for analyzing
data. Given a matrix M ∈ Rm×n, the SVD of M is given by

M =UΣV T , (3.1)

where U ∈O(m), V ∈O(n) are orthogonal matrices (meaning that UTU =UUT =
Im×m and V TV =VV T = In×n) and Σ ∈ Rm×n is a matrix with non-negative entries
on its diagonal and otherwise zero entries.

33
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The columns of U and V are referred to, respectively, as left and right singular
vectors of M and the diagonal elements of Σ as singular values of M. Through the
SVD, any matrix can be written as a sum of rank-1 matrices

M =
r

∑
k=1

σkukvT
k , (3.2)

where σ1 ≥ σ2 ≥ σr > 0 are the non-zero singular values of M, and uk and vk are
the corresponding left and right singular vectors. In particular, rank(M) = r, that
is, the number of non-zero singular values r is the rank of M.

Remark 3.1 Say m ≤ n, it is easy to see that we can also think of the SVD as
having U ∈ Rm×n where UUT = I, Σ ∈ Rn×n a diagonal matrix with non-negative
entries and V ∈ O(n).

Matrix norms and low rank matrix approximation

A very powerful modelling tool in data science is low rank matrices. In fact, we
will devote whole of Chapter ?? to this topic. As already suggested in the expan-
sion (3.2) the SVD will play an important role in this, being used to provide low
rank approximation of data matrices.

In order to be able to talk about low rank approximations of matrices, we need
a notion of distance between matrices. Just like with vectors, the distance between
matrices can be measured using a suitable norm of the difference. One popular
norm is the Frobenius norm, or the Hilbert-Schmidt norm, defined as

‖M‖F =
√

∑
i, j

M2
i j, (3.3)

which is simply the Euclidean norm of a vector of length mn of the matrix elements.
The Frobenius norm can also be expressed in terms of the singular values. To see
this, first express the Frobenius norm in terms of the trace of MT M as

‖M‖2
F = ∑

i, j
M2

i j = Tr(MT M), (3.4)

where we recall that the trace of a square matrix A is defined as

Tr(A) = ∑
i

Aii. (3.5)

A particularly important property of the trace is that for any A of size m×n and B
of size n×m

Tr(AB) = Tr(BA). (3.6)
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Note that this implies that, e.g., Tr(ABC) = Tr(CAB), but it does not imply that,
e.g., Tr(ABC) = Tr(ACB) which is not true in general. Now, plugging the SVD
(3.1) into (3.4) gives

‖M‖2
F = Tr(MT M) = Tr(V Σ

TUTUΣV T ) = Tr(ΣT
Σ) =

r

∑
k=1

σ
2
k , (3.7)

where we used the orthogonality of U and V and the trace property (3.6). We con-
clude that the Frobenius norm equals the Euclidean norm of the vector of singular
values.

A different way to define the size of a matrix is by viewing it as an operator and
measuring by how much it can dilate vectors. For example, the operator 2-norm is
defined as

‖M‖2 = sup
‖x‖=1

‖Mx‖. (3.8)

Again, this operator norm can be succinctly expressed in terms of the singular
values. Indeed, for any x ∈ Rn

Mx =
r

∑
k=1

σkuk(vT
k x). (3.9)

Using the orthogonality of the left singular vectors uk we get

‖Mx‖2 =
r

∑
k=1

σ
2
k 〈vk,x〉2 ≤ σ

2
1

r

∑
k=1
〈vk,x〉2 ≤ σ

2
1

n

∑
k=1
〈vk,x〉2 = σ

2
1 ‖x‖2, (3.10)

where the last equality is due to the orthogonality of the right singular vectors vk.
Moreover, we get equality by choosing x = v1. We conclude that the 2-norm is
simply the largest singular value

‖M‖2 = σ1. (3.11)

A very important property of the SVD is that it provides the best low rank
approximation of a matrix, when the approximation error is measured in terms of
the Frobenius norm. Specifically, for any 0 ≤ s ≤ r consider the rank-s matrix
Ms = ∑

s
k=1 σkukvT

k . Then, among all matrices of rank s, Ms best approximates M in
terms of the Frobenius norm error. Moreover, the approximation error is given in
terms of the remaining r− s smallest singular values as

‖M−Ms‖F = inf
B∈Rm×n,rank(B)≤s

‖M−B‖F =

√
r

∑
k=s+1

σ2
k (3.12)
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A similar result holds for the best low rank approximation in the 2-norm

‖M−Ms‖2 = inf
B∈Rm×n,rank(B)≤s

‖M−B‖2 = σs+1 (3.13)

In fact, Ms is the best low rank approximation for any univariate matrix norm satis-
fying ‖UMV‖= ‖M‖ for any U ∈O(m),V ∈O(n), that is, norms that are invariant
to multiplication by orthogonal matrices.

The low rank approximation property has a wide ranging implication on data
compression. The storage size of an m× n data matrix is mn. If that matrix is
of rank r, then storage size reduces from mn to (n+m+ 1)r (for storing r left
and right singular vectors and values). For r� min{n,m} this reduction can be
quite dramatic. For example, if r = 10 and n = m = 106, then storage reduces
from 1012 entries to just 2 · 107. But even if the matrix is not precisely of rank r,
but only approximately, in the sense that σr+1 � σ1, then we are guaranteed by
the above approximation results to incur only a small approximation due to com-
pression using the top r singular vectors and values. In many cases, the singular
values of large data matrices decrease very quickly, motivating this type of low
rank approximation which oftentimes is the only way to handle massive data sets
that otherwise cannot be stored and/or manipulated efficiently. Remarkably, even
treating an image as a matrix os pixel intensity values and compressing it this way
yields good image compression and de-noising algorithms (as it keeps mitigates
the noise corresponding to singular values that are truncated).

Remark 3.2 The computational complexity of computing the SVD of a matrix of
size m× n with m ≥ n is O(mn2). This cubic scaling could be prohibitive for
massive data matrices, and in Chapter ?? we discuss numerical algorithms that
use randomization for efficient computation the low rank approximation of such
large matrices.

Spectral Decomposition

If M ∈ Rn×n is symmetric then it admits a spectral decomposition

M =V ΛV T ,

where V ∈ O(n) is a matrix whose columns vk are the eigenvectors of M and Λ is
a diagonal matrix whose diagonal elements λk are the eigenvalues of M. Similarly,
we can write

M =
n

∑
k=1

λkvkvT
k .
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When all of the eigenvalues of M are non-negative we say that M is positive
semidefinite and write M � 0. In that case we can write

M =
(

V Λ
1/2
)(

V Λ
1/2
)T

.

A decomposition of M of the form M = UUT (such as the one above) is called a
Cholesky decomposition.

For symmetric matrices, the operator 2-norm is also known as the spectral
norm, given by

‖M‖= max
k
|λk(M)| .

Quadratic Forms

In both this and following chapters, we will be interested in solving problems of
the type

max
V∈Rn×d

V TV=Id×d

Tr
(
V T MV

)
,

where M is a symmetric n×n matrix.
Note that this is equivalent to

max
v1,...,vd∈Rn

vT
i v j=δi j

d

∑
k=1

vT
k Mvk, (3.14)

where δ is the Kronecker delta (δi j = 1 for i = j and δi j = 0 otherwise).
When d = 1 this reduces to the more familiar

max
v∈Rn

‖v‖2=1

vT Mv. (3.15)

It is easy to see (for example, using the spectral decomposition of M) that (3.15)
is maximized by the leading eigenvector of M and

max
v∈Rn

‖v‖2=1

vT Mv = λmax(M).

Furthermore (3.14) is maximized by taking v1, . . . ,vd to be the k leading eigen-
vectors of M and its value is simply the sum of the k largest eigenvalues of M. This
follows, for example, from a Theorem of Fan (see page 3 of [97]). A fortunate
consequence is that the solution to (3.14) can be computed sequentially: we can
first solve for d = 1, computing v1, then update the solution for d = 2 by simply
computing v2.

Remark 3.3 All of the tools and results above have natural analogues when the
matrices have complex entries (and are Hermitian instead of symmetric).
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3.2 Principal Component Analysis and Dimension Reduc-
tion

When faced with a high dimensional dataset, a natural approach is to attempt to
reduce its dimension, either by projecting it to a lower dimensional space or by
finding a better representation for the data using a small number of meaningful fea-
tures. Beyond data compression and visualization, dimension reduction facilitates
downstream analysis such as clustering and regression that perform significantly
better in lower dimensions. We will explore a few different ways of reducing the
dimension, both linearly and non-linearly.

We will start with the classical Principal Component Analysis (PCA). PCA
continues to be one of the most effective and simplest tools for exploratory data
analysis. Remarkably, it dates back to a 1901 paper by Karl Pearson [106].

Suppose we have n data points x1, . . . ,xn in Rp, for some p, and we are in-
terested in (linearly) projecting the data to d < p dimensions. This is particularly
useful if, say, one wants to visualize the data in two or three dimensions (d = 2,3).
There are a couple of seemingly different criteria we can use to choose this projec-
tion:

1. Finding the d-dimensional affine subspace for which the projections of x1, . . . ,xn

on it best approximate the original points x1, . . . ,xn.

2. Finding the d-dimensional projection of x1, . . . ,xn that preserves as much
variance of the data as possible.

As we will see below, these two approaches are equivalent and they correspond
to Principal Component Analysis.

Before proceeding, we recall a couple of simple statistical quantities associated
with x1, . . . ,xn, that will reappear below.

Given x1, . . . ,xn we define its sample mean as

µn =
1
n

n

∑
k=1

xk, (3.16)

and its sample covariance as

Σn =
1

n−1

n

∑
k=1

(xk−µn)(xk−µn)
T . (3.17)

Remark 3.4 If x1, . . . ,xn are independently sampled from a distribution, µn and
Σn are unbiased estimators for, respectively, the mean and covariance of the distri-
bution.
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PCA as the best d-dimensional affine fit

We start with the first interpretation of PCA and then show that it is equivalent to
the second. We are trying to approximate each xk by

xk ≈ µ +
d

∑
i=1

(βk)i vi, (3.18)

where v1, . . . ,vd is an orthonormal basis for the d-dimensional subspace, µ ∈ Rp

represents the translation, and βk ∈ Rd corresponds to the coefficients of xk. With-
out loss of generality we take

n

∑
k=1

βk = 0, (3.19)

as any joint translation of βk can be absorbed into µ .
If we represent the subspace by V = [v1 · · ·vd ]∈Rp×d then we can rewrite (3.20)

as
xk ≈ µ +V βk, (3.20)

where V TV = Id×d , because the vectors vi are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to solve

min
µ, V, βk
V TV=I

n

∑
k=1
‖xk− (µ +V βk)‖2

2 (3.21)

We start by optimizing for µ . It is easy to see that the first order condition for
µ corresponds to

∇µ

n

∑
k=1
‖xk− (µ +V βk)‖2

2 = 0⇔
n

∑
k=1

(xk− (µ +V βk)) = 0.

Thus, the optimal value µ∗ of µ satisfies(
n

∑
k=1

xk

)
−nµ

∗−V

(
n

∑
k=1

βk

)
= 0.

Since we assumed in (3.19) that ∑
n
k=1 βk = 0, we have that the optimal µ is given

by

µ
∗ =

1
n

n

∑
k=1

xk = µn,

the sample mean.
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We can then proceed to finding the solution for (3.21) by solving

min
V, βk

V TV=I

n

∑
k=1
‖xk−µn−V βk‖2

2 . (3.22)

Let us proceed by optimizing for βk. The problem almost fully decouples in
each k, the only constraint coupling them being (3.19). We will ignore this con-
straint, solve the decoupled problems, and verify that it is automatically satisfied.
Hence we focus on, for each k,

min
βk

‖xk−µn−V βk‖2
2 = min

βk

∥∥∥∥∥xk−µn−
d

∑
i=1

(βk)i vi

∥∥∥∥∥
2

2

. (3.23)

Since v1, . . . ,vd are orthonormal, it is easy to see that the solution is given by(
β ∗k
)

i = vT
i (xk−µn) which can be succinctly written as βk = V T (xk−µn), which

satisfied (3.19). Thus, (3.22) is equivalent to

min
V TV=I

n

∑
k=1

∥∥(xk−µn)−VV T (xk−µn)
∥∥2

2 . (3.24)

Note that∥∥(xk−µn)−VV T (xk−µn)
∥∥2

2 = (xk−µn)
T (xk−µn)

−2(xk−µn)
T VV T (xk−µn)

+(xk−µn)
T V
(
V TV

)
V T (xk−µn)

= (xk−µn)
T (xk−µn)

−(xk−µn)
T VV T (xk−µn) .

Since (xk−µn)
T (xk−µn) does not depend on V , minimizing (3.24) is equiva-

lent to

max
V TV=I

n

∑
k=1

(xk−µn)
T VV T (xk−µn) . (3.25)

A few algebraic manipulations using properties of the trace yields:
n

∑
k=1

(xk−µn)
T VV T (xk−µn) =

n

∑
k=1

Tr
[
(xk−µn)

T VV T (xk−µn)
]

=
n

∑
k=1

Tr
[
V T (xk−µn)(xk−µn)

T V
]

= Tr

[
V T

n

∑
k=1

(xk−µn)(xk−µn)
T V

]
= (n−1)Tr

[
V T

ΣnV
]
.
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This means that the solution to (3.25) is given by

max
V TV=I

Tr
[
V T

ΣnV
]
. (3.26)

As we saw above (recall (3.14)) the solution is given by V = [v1, · · · ,vd ] where
v1, . . . ,vd correspond to the d leading eigenvectors of Σn.

PCA as the d-dimensional projection that preserves the most variance

We now show that the alternative interpretation of PCA, of finding the d-dimensional
projection of x1, . . . ,xn that preserves the most variance, also arrives to the opti-
mization problem (3.26). We aim to find an orthonormal basis v1, . . . ,vd (organized
as V = [v1, . . . ,vd ] with V TV = Id×d) of a d-dimensional space such that the pro-
jection of x1, . . . ,xn onto this subspace has the most variance. Equivalently we can
ask for the points 

 vT
1 xk
...

vT
d xk




n

k=1

,

to have as much variance as possible. Hence, we are interested in solving

max
V TV=I

n

∑
k=1

∥∥∥∥∥V T xk−
1
n

n

∑
r=1

V T xr

∥∥∥∥∥
2

. (3.27)

Note that

n

∑
k=1

∥∥∥∥∥V T xk−
1
n

n

∑
r=1

V T xr

∥∥∥∥∥
2

=
n

∑
k=1

∥∥V T (xk−µn)
∥∥2

= (n−1)Tr
(
V T

ΣnV
)
,

showing that (3.27) is equivalent to (3.26) and that the two interpretations of PCA
are indeed equivalent.

Finding the Principal Components

When given a dataset x1, . . . ,xn ∈ Rp, in order to compute the Principal Compo-
nents one needs to compute the leading eigenvectors of

Σn =
1

n−1

n

∑
k=1

(xk−µn)(xk−µn)
T .

A naive way of doing this is to construct Σn (which takes O(np2) work) and then
finding its spectral decomposition (which takes O(p3) work). This means that
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the computational complexity of this procedure is O
(
max

{
np2, p3

})
(see [69]

or [62]).
An alternative is to use the Singular Value Decomposition (3.1). Let X =

[x1 · · ·xn] recall that,

Σn =
1

n−1
(
X−µn1T )(X−µn1T )T

.

Let us take the SVD of X −µn1T =ULDUT
R with UL ∈ O(p), D diagonal, and

UT
R UR = I. Then,

Σn =
1

n−1
(
X−µn1T )(X−µn1T )T

=ULDUT
R URDUT

L =ULD2UT
L ,

meaning that UL correspond to the eigenvectors of Σn. Computing the SVD of X−
µn1T takes O(min{n2 p, p2n}) work but if one is interested in simply computing the
top d eigenvectors then this computational costs reduces to O(dnp). This can be
further improved with randomized algorithms. There are randomized algorithms
that compute an approximate solution in O

(
pn logd +(p+n)d2

)
time (This will

be discussed in Chapter ??. See also, for example, [66, 113, 100]).
Numerical stability is another important reason why computing the principal

components using the SVD is preferable. Since the eigenvalues of Σn are propor-
tional to the squares of the singular values of X − µn1T , problems arise when the
ratio of singular values exceeds 108, causing the ratio of the corresponding eigen-
values of Σn to be larger than 1016. In this case, the smaller eigenvalue would be
rounded to zero (due to machine precision), which is certainly not desirable.

Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3
might make the most sense. However, PCA is useful for many other purposes, for
example:

1. Denoising: often times the data belongs to a lower dimensional space but
is corrupted by high dimensional noise. When using PCA it is oftentimes
possible to reduce the noise while keeping the signal.

2. Downstream analysis: One may be interested in running an algorithm (clus-
tering, regression, etc.) that would be too computationally expensive or too
statistically insignificant to run in high dimensions. Dimension reduction
using PCA may help there.
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In these applications (and many others) it is not clear how to pick d. A fairly
popular heuristic is to try to choose the cut-off at a component that has significantly
more variance than the one immediately after. Since the total variance is Tr(Σn) =

∑
p
k=1 λk, the proportion of variance in the i’th component is nothing but λi

Tr(Σn)
. A

plot of the values of the ordered eigenvalues, also known as a scree plot, helps
identify a reasonable choice of d. Here is an example:

It is common to then try to identify an “elbow” on the scree plot to choose
the cut-off. In the next Section we will look into Random Matrix Theory to better
understand the behavior of the eigenvalues of Σn and gain insight into choosing
cut-off values.

3.3 PCA in high dimensions and Marčenko-Pastur law

Let us assume that the data points x1, . . . ,xn ∈ Rp are independent draws of a zero
mean Gaussian random variable g ∼ N (0,Σ) with some covariance matrix Σ ∈
Rp×p. In this case, when we use PCA we are hoping to find a low dimensional
structure in the distribution, which should correspond to the large eigenvalues of
Σ (and their corresponding eigenvectors). For that reason, and since PCA depends
on the spectral properties of Σn, we would like to understand whether the spectral
properties of the sample covariance matrix Σn (eigenvalues and eigenvectors) are
close to the ones of Σ, also known as the population covariance.

Since EΣn = Σ, if p is fixed and n→ ∞ the law of large numbers guarantees
that indeed Σn→ Σ. However, in many modern applications it is not uncommon to
have p in the order of n (or, sometimes, even larger). For example, if our dataset
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is composed by images then n is the number of images and p the number of pixels
per image; it is conceivable that the number of pixels be on the order of the number
of images in a set. Unfortunately, in that case, it is no longer clear that Σn → Σ.
Dealing with this type of difficulties is the goal of high dimensional statistics.

For simplicity we will try to understand the spectral properties of

Sn =
1
n

XXT ,

where x1, . . . ,xn are the columns of X . Since x ∼N (0,Σ) we know that µn → 0
(and, clearly, n

n−1 → 1), hence the spectral properties of Sn will be essentially the
same as Σn.1

Let us start by looking into a simple example, Σ = I. In that case, the distribu-
tion has no low dimensional structure, as the distribution is rotation invariant. The
following is a histogram (left) and a scree plot of the eigenvalues of a sample of Sn

(when Σ = I) for p = 500 and n = 1000. The red line is the eigenvalue distribution
predicted by the Marčenko-Pastur distribution (3.28), that we will discuss below.

As one can see in the image, there are many eigenvalues considerably larger
than 1, as well as many eigenvalues significantly smaller than 1. Notice that, if
given this profile of eigenvalues of Σn one could potentially be led to believe that
the data has low dimensional structure, when in truth the distribution it was drawn
from is isotropic.

Understanding the distribution of eigenvalues of random matrices is in the core
of Random Matrix Theory (there are many good books on Random Matrix Theory,

1In this case, Sn is actually the maximum likelihood estimator for Σ; we will discuss maximum
likelihood estimation later in Chapter ??.
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e.g. [124] and [11]). This particular limiting distribution was first established in
1967 by Marčenko and Pastur [91] and is now referred to as the Marčenko-Pastur
distribution. They showed that, if p and n are both going to ∞ with their ratio fixed
p/n = γ ≤ 1, the sample distribution of the eigenvalues of Sn (like the histogram
above), in the limit, will be

dFγ(λ ) =
1

2π

√
(γ+−λ )(λ − γ−)

γλ
1[γ−,γ+](λ )dλ , (3.28)

with support [γ−,γ+], where γ− = (1− γ)2, γ+ = (1+ γ)2, and γ = p/n. This is
plotted as the red line in the figure above.

Remark 3.5 We will not provide the proof of the Marčenko-Pastur law here (you
can see, for example, [14] for several different proofs of it), but an approach to a
proof is using the so-called moment method. The central idea is to note that one
can compute moments of the eigenvalue distribution in two ways and note that (in
the limit) for any k,

1
p
ETr

[(
1
n

XXT
)k
]
=

1
p
ETr

(
Sk

n

)
= E

1
p

p

∑
i=1

λ
k
i (Sn) =

ˆ
γ+

γ−

λ
kdFγ(λ ),

and that the quantities 1
pETr

[(1
n XXT

)k
]

can be estimated (these estimates rely
essentially in combinatorics). The distribution dFγ(λ ) can then be computed from
its moments.

3.3.1 Spike Models and BBP phase transition

What if there actually is some (linear) low dimensional structure in the data? When
can we expect to capture it with PCA? A particularly simple, yet relevant, example
to analyze is when the covariance matrix Σ is an identity with a rank 1 perturbation,
which we refer to as a spike model Σ = I + βuuT , for u a unit norm vector and
β > 0.

One way to think about this instance is as each data point x consisting of a
signal part

√
βg0u where g0 is a one-dimensional standard Gaussian N (0,1) (i.e.

a normally distributed multiple of a fixed vector
√

βu) and a noise part g∼N (0, I)
(independent of g0). Then x = g+

√
βg0u is a Gaussian random variable

x∼N (0, I +βuuT ).

Whereas the signal part
√

βg0u resides on a central line in the direction of u, the
noise part is high dimensional and isotropic. We therefore refer to β as the signal-
to-noise ratio (SNR). Indeed, β is the ratio of the signal variance (in the u-direction)
to the noise variance (in each direction).
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A natural question is whether this rank-1 perturbation can be seen in Sn. Or
equivalently, can one detect the direction of the line u from corrupted measure-
ments in high dimension? Let us build some intuition with an example. The fol-
lowing is the histogram of the eigenvalues of a sample of Sn for p = 500, n = 1000,
u is the first element of the canonical basis u = e1, and β = 1.5:

The histogram suggests that there is an eigenvalue of Sn that “pops out” of the
support of the Marčenko-Pastur distribution (below we will estimate the location
of this eigenvalue, and that estimate corresponds to the red “x”). It is worth noting
that the largest eigenvalues of Σ is simply 1+β = 2.5 while the largest eigenvalue
of Sn appears considerably larger than that. Let us try now the same experiment for
β = 0.5:

It appears that, for β = 0.5, the histogram of the eigenvalues is indistinguishable
from when Σ = I. In particular, no eigenvalue is separated from the Marčenko-
Pastur distribution.

This motivates the following question:
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Question 3.6 For which values of γ and β do we expect to see an eigenvalue of
Sn popping out of the support of the Marčenko-Pastur distribution, and what is the
limit value that we expect it to take?

As we will see below, there is a critical value of β , denoted βc, below which we
do not expect to see a change in the distribution of eigenvalues and above which we
expect one of the eigenvalues to pop outside of the support. This phenomenon is
known as the BBP phase transition (after Baik, Ben Arous, and Péché [15]). There
are many very nice papers about this and similar phenomena, including [104, 73,
15, 105, 16, 74, 29, 30]. 2

In what follows we will find the critical value βc and estimate the location of
the largest eigenvalue of Sn for any β . While the argument we will use can be
made precise (and is borrowed from [104]) we will be ignoring a few details for
the sake of exposition. In other words, the argument below can be transformed into
a rigorous proof, but it is not one at the present form.

We want to understand the behavior of the leading eigenvalue of the sample
covariance matrix

Sn =
1
n

n

∑
i=1

xixT
i .

Since x∼N (0, I +βuuT ) we can write x = (I +βuuT )1/2z where z∼N (0, I) is
an isotropic Gaussian. Then,

Sn =
1
n

n

∑
i=1

(I +βuuT )1/2zizT
i (I +βuuT )1/2 = (I +βuuT )1/2Zn(I +βuuT )1/2,

where Zn = 1
n ∑

n
i=1 zizT

i is the sample covariance matrix of independent isotropic
Gaussians. The matrices Sn = (I+βuuT )1/2Zn(I+βuuT )1/2 and Zn(I+βuuT ) are
related by a similarity transformation, and therefore have exactly the same eigen-
values. Hence, it suffices to find the leading eigenvalue of the matrix Zn(I+βuuT ),
which is a rank-1 perturbation of Zn (indeed, Zn(I +βuuT ) = Zn +βZnuuT ). We
already know that the eigenvalues of Zn follow the Marčenko-Pastur distribution,
so we are left to understand the effect of a rank-1 perturbation on its eigenvalues.

To find the leading eigenvalue λ of Zn(I +βuuT ), let v be the corresponding
eigenvector, that is,

Zn(I +βuuT )v = λv.

2Notice that the Marčenko-Pastur theorem does not imply that all eigenvalues are actually in
the support of the Marčenko-Pastur distribution, it just rules out that a non-vanishing proportion are.
However, it is possible to show that indeed, in the limit, all eigenvalues will be in the support (see,
for example, [104]).
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Subtract Znv from both sides to get

βZnuuT v = (λ I−Zn)v.

Assuming λ is not an eigenvalue of Zn, we can multiply by (λ I−Zn)
−1 to get3

β (λ I−Zn)
−1ZnuuT v = v.

Our assumption also implies that uT v 6= 0, for otherwise v = 0. Multiplying by uT

gives
βuT (λ I−Zn)

−1Znu(uT v) = uT v.

Dividing by βuT v (which is not 0 as explained above) yields

uT (λ I−Zn)
−1Znu =

1
β
. (3.29)

Suppose w1, . . . ,wp are orthonormal eigenvectors of Zn (with corresponding eigen-
values λ1, . . . ,λp), and expand u in that basis:

u =
p

∑
i=1

αiwi.

Plugging this expansion in (3.29) gives
p

∑
i=1

λi

λ −λi
α

2
i =

1
β

(3.30)

For large p, each α2
i concentrates around its mean value E[α2

i ] =
1
p (again, this

statement can be made rigorous), and (3.30) becomes

lim
p→∞

1
p

p

∑
i=1

λi

λ −λi
=

1
β

(3.31)

Since the eigenvalues λ1,λp follow the Marčenko-Pastur distribution, the limit on
the left hand side can be replaced by the integral

ˆ
γ+

γ−

t
λ − t

dFγ(t) =
1
β

(3.32)

Using an integral table (or an integral software), we find that

1
β

=

ˆ
γ+

γ−

t
λ − t

dFγ(t) =
1
4γ

[
2λ − (γ−+ γ+)−2

√
(λ − γ−)(λ − γ+)

]
. (3.33)

3Intuitively, λ is larger than all the eigenvalues of Zn, because it corresponds to a perturbation
of Zn by a positive definite matrix βuuT ; yet, a formal justification is beyond the present discussion.
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For λ = γ+, that is, when the top eigenvalue touches the right edge of the
Marčenko-Pastur distribution, (3.33) becomes 1

4γ
(γ+ − γ−). This is the critical

point that one gets the pop out of the top eigenvalue from the bulk of the Marčenko-
Pastur distribution. To calculate the critical value βc, we recall that γ− = (1−√γ)2

and γ+ = (1+
√

γ)2, hence

1
βc

=
1
4γ

(
(1+
√

γ)2− (1−
√

γ)2) . (3.34)

Therefore, the critical SNR is

βc =
√

γ =

√
p
n
. (3.35)

When β >
√

p
n one can observe the pop out of the top eigenvalue from the bulk.

Eq. (3.35) illustrates the interplay of the SNR β , the number of samples n, and
the dimension p. Low SNR, small sample size, and high dimensionality are all
obstacles for detecting linear structure in noisy high dimensional data.

More generally, inverting the relationship between β and λ given by (3.33)
(which simply amounts to solving a quadratic), we find that the largest eigenvalue
λ of the sample covariance matrix Sn has the limiting value

λ →


(β +1)

(
1+ γ

β

)
for β ≥√γ,

(1+
√

γ)2 for β <
√

γ.

(3.36)

In the finite sample case λ will be fluctuating around that value.
Notice that the critical SNR value, βc =

√
γ is buried deep inside the support of

the Marčenko-Pastur distribution, because
√

γ < γ+ = (1+
√

γ)2. In other words,
the SNR does not have to be greater than the operator norm of the noise matrix in
order for it to pop out. We see that the noise effectively pushes the eigenvalue to
the right (indeed, λ > β ).

The asymptotic squared correlation |〈u,v〉|2 between the top eigenvector v of
the sample covariance matrix and true signal vector u can be calculated in a similar
fashion. The limiting correlation value turns out to be

|〈v,u〉|2→


1− γ

β2

1+ γ

β2
for β ≥√γ

0 for β <
√

γ

(3.37)

Notice that the correlation value tends to 1 as β → ∞, but is strictly less than 1 for
any finite SNR.
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Wigner matrices

Another very important random matrix model is the Wigner matrix (and it will
make appearances in Chapters 6 and 8). Given an integer n, a standard Gaus-
sian Wigner matrix W ∈ Rn×n is a symmetric matrix with independent N (0,1)
off-diagonal entries (except for the fact that Wi j = Wji) and jointly independent
N (0,2) diagonal entries. In the limit, the eigenvalues of 1√

nW are distributed
according to the so-called semi-circular law

dSC(x) =
1

2π

√
4− x21[−2,2](x)dx,

and there is also a BBP like transition for this matrix ensemble [57]. More pre-
cisely, if v is a unit-norm vector in Rn and ξ ≥ 0 then the largest eigenvalue of

1√
nW +ξ vvT satisfies

• If ξ ≤ 1 then

λmax

(
1√
n

W +ξ vvT
)
→ 2,

• and if ξ > 1 then

λmax

(
1√
n

W +ξ vvT
)
→ ξ +

1
ξ
. (3.38)

The typical correlation, with v, of the leading eigenvector vmax of 1√
nW +ξ vvT

is also known:

• If ξ ≤ 1 then
|〈vmax,v〉|2→ 0,

• and if ξ > 1 then

|〈vmax,v〉|2→ 1− 1
ξ 2 .

Form a statistical viewpoint, a central question is to understand for difference
distributions of matrices, when is it that it is possible to detect and estimate a spike
in a random matrix [107]. When the underlying random matrix corresponds to a
random graph and the spike to a bias on distribution of the graph, corresponding to
structural properties of the graph the estimates above are able to predict important
phase transitions in community detection in networks, as we will see in Chapter 8.
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3.3.2 Rank and covariance estimation

The spike model and random matrix theory thus offers a principled way for de-
termining the number of principal components, or equivalently of the rank of the
hidden linear structure: simply count the number of eigenvalues to the right of the
Marčenko-Pastur distribution. In practice, this approach for rank estimation is of-
ten too simplistic for several reasons. First, for actual datasets, n and p are finite,
and one needs to take into account non-asymptotic corrections and finite sample
fluctuations [78, 79]. Second, the noise may be heteroskedastic (that is, noise vari-
ance is different in different directions). Moreover, the noise statistics could also
be unknown and it can be non-Gaussian [88]. In some situations it might be pos-
sible to estimate the noise statistics directly from the data and to homogenize the
noise (a procedure sometimes known as “whitening”) [87]. These situations call
for careful analysis, and many open problems remain in the field.

Another popular method for rank estimation is using permutation methods. In
permutation methods, each column of the data matrix is randomly permutated, so
that the low-rank linear structure in the data is destroyed through scrambling, while
only the noise is preserved. The process can be repeated multiple times, and the
statistics of the singular values of the scrambled data matrices are then used to de-
termine the rank. In particular, only singular values of the original (unscrambled)
data matrix that are larger than the largest singular value of the scrambled matrices
(taking fluctuations into account of course) are considered as corresponding to sig-
nal and are counted towards the rank. The mathematical analysis of permutation
methods is another active field of research [48, 49].

In some applications, the objective is to estimate the low rank covariance matrix
of the clean signal Σ from the noisy measurements. We saw that in the spike model,
the eigenvalues of the sample covariance matrix are inflated due to noise. It is
therefore required to shrink the computed eigenvalues of Sn in order to obtain a
better estimate of the eigenvalues of Σ. That is, if

Sn =
p

∑
i=1

λivivT
i

is the spectral decomposition of Sn, then we seek an estimator of Σ, denoted Σ̂ of
the form

Σ̂ =
p

∑
i=1

η(λi)vivT
i .

The scalar nonlinearity η : R+ → R+ is known as the shrinkage function. An
obvious shrinkage procedure is to estimate β = η(λ ) from the computed λ by
inverting (3.36) (and setting β = 0 for λ < γ+). It turns out that this particular
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shrinker is optimal in terms of the operator norm loss. However, for other loss
functions (such as the Frobenius norm loss), the optimal shrinkage function takes
a different form [52]. The reason why the shrinker depends on the loss function is
that the eigenvectors of Sn are not perfectly correlated with those of Σ but rather
make some non-trivial angle, as in (3.37). In other words, the eigenvectors are
noisy, and it may require more aggressive shrinkage to account for that error in
the eigenvector. It can be shown that the eigenvector v of the sample covariance is
uniformly distributed in a cone around u whose opening angle is given by (3.37).
While we can improve the estimation of the eigenvalue via shrinkage, it is however
unclear how to improve the estimation of the eigenvector (without any a priori
knowledge about it). Finally, we remark that eigenvalue shrinkage also plays an
important role in denoising, as will be discussed in Chapter ??.



Chapter 4

Graphs, Networks, and
Clustering

A crucial part of data science consists of the studying of networks. Network sci-
ence, or graph theory, unifies the study of diverse types of networks, such as social
networks, protein-protein interaction networks, gene-regulation networks, and the
internet. In this chapter we introduce graph theory and treat the problem of clus-
tering, to identify similar data points, or vertices, in (network) data.

4.1 PageRank

Before we introduce the formalism of graph theory, we describe the celebrated
PageRank algorithm. This algorithm is a principal component1 behind the web
search algorithms, in particular in Google. The goal of PageRank is to quantita-
tively rate the importance of each page on the web, allowing the search algorithm
to rank the pages and thereby present to the user the more important pages first.
Search engines such as Google have to carry out three basic steps:2

• Crawl the web and locate all, or as many as possible, accessible webpages.

• Index the data of the webpages from step 1, so that they can be searched
efficiently for relevant key words or phrases.

• Rate the importance of each page in the database, so that when a user does a
search and the subset of pages in the database with the desired information
has been found, the more important pages can be presented first.

1It is difficult to resist using this pun.
2Another important component of modern search engines is personalization, which we do not

discuss here.

53
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Here, we will focus on the third step. We follow mainly the derivation in [?]. We
aim to develop a score of importance for each webpage. A score will be a non-
negative number. A key idea in assigning a score to any given webpage is that the
page’s score is derived from the links made to that page from other webpages —
“A person is important not if it knows a lot of people, but if a lot of people know
that person”.

Suppose the web of interest contains n pages, each page indexed by an integer
k, 1 ≤ k ≤ n. A typical example is illustrated in Figure 4.1, in which an arrow
from page k to page j indicates a link from page k to page j. Such a web is an
example of a directed graph. The links to a given page are called the backlinks for
that page. We will use xk to denote the importance score of page k in the web. xk is
nonnegative and x j > xk indicates that page j is more important than page k.

Figure 4.1: A toy example of the Internet

A very simple approach is to take xk as the number of backlinks for page k. In
the example in Figure 4.1, we have x1 = 2,x2 = 1,x3 = 3, and x4 = 2, so that page
3 is the most important, pages 1 and 4 tie for second, and page 2 is least important.
A link to page k becomes a vote for page k’s importance. This approach ignores
an important feature one would expect a ranking algorithm to have, namely, that a
link to page k from an important page should boost page k’s importance score more
than a link from an unimportant page. In the web of Figure 4.1, pages 1 and 4 both
have two backlinks: each links to the other, but the second backlink from page 1 is
from the seemingly important page 3, while the second backlink for page 4 is from
the relatively unimportant page 2. As such, perhaps the algorithm should rate the
importance of page 1 higher than that of page 4.

As a first attempt at incorporating this idea, let us compute the score of page j
as the sum of the scores of all pages linking to page j. For example, consider the
web in our toy example. The score of page 1 would be determined by the relation
x1 = x3 +x4. However, since x3 and x4 will depend on x1, this seems like a circular
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definition, since it is self-referential (it is exactly this self-referential property that
will establish a connection to eigenvector problems!).

We also seek a scheme in which a webpage does not gain extra influence simply
by linking to lots of other pages. We can do this by reducing the impact of each
link, as more and more outgoing links are added to a webpage. If page j contains
n j links, one of which links to page k, then we will boost page k’s score by x j/n j,
rather than by x j. In this scheme, each webpage gets a total of one vote, weighted
by that web page’s score, that is evenly divided up among all of its outgoing links.
To quantify this for a web of n pages, let Lk ⊂ {1,2, . . . ,n} denote the set of pages
with a link to page k, that is, Lk is the set of page k’s backlinks. For each k we
require

xk = ∑
j∈Lk

x j

n j
,

where n j is the number of outgoing links from page j.
If we apply these scheme to the toy example in Figure 4.1, then for page 1 we

have x1 = x3/1+x4/2, since pages 3 and 4 are backlinks for page 1 and page 3 con-
tains only one link, while page 4 contains two links (splitting its vote in half). Sim-
ilarly, x2 = x1/3,x3 = x1/3+x2/2+x4/2, and x4 = x1/3+x2/2. These conditions
can be expressed as linear system of equations Ax = x, where x = [x1,x2,x3,x4]

T

and

A =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0


Thus, we end up with an eigenvalue/eigenvector problem: Find the eigenvector x
of the matrix A, associated with the eigenvalue 1. We note that A is a column-
stochastic matrix, since it is a square matrix for which all of its entries are non-
negative and the entries in each column sum to 1. Stochastic matrices arise in the
study of Markov chains and in a variety of modelling problems in economics and
operations research. See e.g. [70] for more details on stochastic matrices. The fact
that 1 is an eigenvalue of A is not just coincidence in this example, but holds true
in general for stochastic matrices.

Theorem 4.1 A column-stochastic matrix A has an eigenvalue equal to 1 and 1 is
also its largest eigenvalue.

Proof. L 2

et A be an n× n column-stochastic matrix. We first note that A and AT have the
same eigenvalues (their eigenvector will usually be different though). Let 1 =
[1,1, . . . ,1]T be the vector of length n which has all ones as entries. Since A is
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column-stochastic, we have AT 1 = 1 (since all columns of A sum up to 1). Hence
1 is an eigenvector of AT (but not of A) with eigenvalue 1. Thus 1 is also an
eigenvalue of A.

To show that 1 is the largest eigenvalue of A we apply the Gershgorin Circle
Theorem [70] to AT . Consider row k of AT . Let us call the diagonal element ak,k
and the radius will be ∑i 6=k |ak,i| = ∑i 6=k ak,i since ak,i ≥ 0. This is a circle with its
center at ak,k ∈ [0,1] and with radius ∑i6=k ak,i = 1− ak,k. Hence, this circle has 1
on its perimeter. This holds for all Gershgorin circles for this matrix. Thus, since
all eigenvalues lie in the union of the Gershgorin circles, all eigenvalues λi satsify
|λi| ≤ 1.

In our example, we obtain as eigenvector x of A associated with eigenvalue 1
the vector x = [x1,x2,x3,x4]

T with entries x1 =
12
31 ,x2 =

4
31 ,x3 =

9
31 , and x4 =

6
31 .

Hence, perhaps somewhat surprisingly, page 3 is no longer the most important one,
but page 1. This can be explained by the fact, that the in principle quite important
page 3 (which has three webpages linking to it) has only one outgoing link, which
gets all its “voting power”, and that link points to page 1.

In reality, A can easily be of size a billion times a billion. Fortunately, we
do not need compute all eigenvectors of A, only the eigenvector associated with
the eigenvalue 1, which, as we know, is also the largest eigenvalue of A. This in
turn means we can resort to standard power iteration to compute x fairly efficiently
(and we can also make use of the fact that A will be a sparse matrix, i.e., many
of its entries will be zero). The actual PageRank algorithms adds some minor
modifications, but the essential idea is as described above.

4.2 Graph Theory

We now introduce the formalism for undirected3 graphs, one of the main objects of
study in what follows. A graph G = (V,E) contains a set of nodes V = {v1, . . . ,vn}
and edges E ⊆

(V
2

)
. An edge (i, j) ∈ E if vi and v j are connected. Here is one of

the graph theorists favorite examples, the Petersen graph4:
Let us recall some concepts about graphs that we will need.

• A graph is connected if, for all pairs of vertices, there is a path between these
vertices on the graph. The number of connected components is simply the
size of the smallest partition of the nodes into connected subgraphs. The
Petersen graph is connected (and thus it has only 1 connected component).

3The previous Section featured directed graphs, in which edges (links) have a meaningful direc-
tion. In what follows we will focus in undirected graphs in which an edge represents a connection,
without meaningful direction.

4The Peterson graph is often used as a counter-example in graph theory.
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Figure 4.2: The Petersen graph

• A clique of a graph G is a subset S of its nodes such that the subgraph corre-
sponding to it is complete. In other words S is a clique if all pairs of vertices
in S share an edge. The clique number c(G) of G is the size of the largest
clique of G. The Petersen graph has a clique number of 2.

• An independence set of a graph G is a subset S of its nodes such that no two
nodes in S share an edge. Equivalently it is a clique of the complement graph
Gc := (V,Ec). The independence number of G is simply the clique number
of Sc. The Petersen graph has an independence number of 4.

A particularly useful way to represent a graph is through its adjacency matrix.
Given a graph G = (V,E) on n nodes (|V | = n), we define its adjacency matrix
A ∈ Rn×n as the symmetric matrix with entries

Ai j =

{
1 if (i, j) ∈ E,
0 otherwise.

Sometime, we will consider weighted graphs G = (V,E,W ), where edges may
have weights wi j, we think of the weights as non-negative wi j ≥ 0 and symmetric
wi j = w ji.

Much of the sequel will deal with graphs. Chapter ?? will treat (network) data
visualization, dimension reduction, and embeddings of graphs on Euclidean space.
Chapter 8 will introduce and study important random graph models. The rest of
this Chapter will be devoted to clustering.
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4.3 Clustering

Clustering is one of the central tasks in machine learning. Given a set of data points,
or nodes of a graph, the purpose of clustering is to partition the data into a set of
clusters where data points assigned to the same cluster correspond to similar data
points (depending on the context, it could be for example having small distance to
each other if the points are in Euclidean space, or being connected if on a graph).
We will start with an example of clustering points in Euclidean space, and later
move back to graphs.

Figure 4.3: Examples of points separated in clusters.

4.3.1 k-means Clustering

One the most popular methods used for clustering is k-means clustering. Given
x1, . . . ,xn ∈ Rp the k-means clustering partitions the data points in clusters S1 ∪
·· ·∪Sk with centers µ1, . . . ,µk ∈ Rp as the solution to:

min
partition S1,...,Sk

µ1,...,µk

k

∑
l=1

∑
i∈Si

‖xi−µl‖2 . (4.1)

Note that, given the partition, the optimal centers are given by

µl =
1
|Sl| ∑i∈Sl

xi.

Lloyd’s algorithm [89] (also sometimes known as the k-means algorithm), is
an iterative algorithm that alternates between
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• Given centers µ1, . . . ,µk, assign each point xi to the cluster

l = argminl=1,...,k ‖xi−µl‖ .

• Update the centers µl =
1
|Sl | ∑i∈Sl

xi.

Unfortunately, Lloyd’s algorithm is not guaranteed to converge to the solution
of (4.1). Indeed, Lloyd’s algorithm oftentimes gets stuck in local optima of (4.1). In
the sequel we will discuss convex relaxations for clustering, which can be used as
an alternative algorithmic approach to Lloyd’s algorithm, but since optimizing (4.1)
is NP-hard there is no polynomial time algorithm that works in the worst-case
(assuming the widely believed conjecture P 6= NP, see also Chapter 7)

While popular, k-means clustering has some potential issues:

• One needs to set the number of clusters a priori (a typical way to overcome
this issue is by trying the algorithm for different number of clusters).

• The way (4.1) is defined it needs the points to be defined in an Euclidean
space, oftentimes we are interested in clustering data for which we only have
some measure of affinity between different data points, but not necessarily
an embedding in Rp (this issue can be overcome by reformulating (4.1) in
terms of distances only).

• The formulation is computationally hard, so algorithms may produce subop-
timal instances.

• The solutions of k-means are always convex clusters. This means that k-
means may have difficulty in finding cluster such as in Figure 4.4.

4.3.2 Spectral Clustering

A natural way to try to overcome the issues of k-means depicted in Figure 4.4 is
by using transforming the data into a graph and cluster the graph: Given the data
points we can construct a weighted graph G = (V,E,W ) using a similarity kernel
Kε , such as Kε(u) = exp

( 1
2ε

u2
)
, by associating each point to a vertex and, for

which pair of nodes, set the edge weight as

wi j = Kε (‖xi− x j‖) .

Other popular procedures to transform data into a graph is by constructing the
graph where data points are connected if they correspond to the nearest neighbours.
We note that this procedures only needs a measure of distance, or similarity, of data
points and not necessarily that they lie in Euclidean Space. Given this motivation,
and the prevalence of network data, we will now address the problem of clustering
the nodes of a graph.
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Figure 4.4: Because the solutions of k-means are always convex clusters, it is not
able to handle some cluster structures.

Normalized Cut

Given a graph G = (V,E,W ), the goal is to partition the graph in clusters in a way
that keeps as many of the edges, or connections, within the clusters and has as few
edges as possible across clusters. We will focus on the case of two clusters, and
briefly address extensions in the end of this chapter. A natural way to measure a
vertex partition (S,Sc) is

cut(S) = ∑
i∈S

∑
j∈Sc

wi j.

If we represent the partition by a vector y ∈ {±1}n where yi = 1 is i ∈ S, and
yi =−1 otherwise, then the cut is a quadratic form on the Graph Laplacian.

Definition 4.2 (Graph Laplacian and Degree Matrix) Let G=(V,E,W ) be a graph
and W the matrix of weights (or adjacency matrix if the graph is unweighted). The
degree matrix D is a diagonal matrix with diagonal entries

Dii = deg(i).

The graph Laplacian of G is given by

LG = D−W.

Equivalently
LG := ∑

i< j
wi j (ei− e j)(ei− e j)

T .
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Note that the entries of LG are given by

(LG)i j =

{
−wi j if i 6= j
deg(i) if i = j.

If S⊂V and y ∈ {±1}n such that yi = 1 is i ∈ S, and yi =−1 otherwise, then it
is easy to see that

cut(S) =
1
4 ∑

i< j
wi j(yi− y j)

2.

The following proposition establishes

cut(S) =
1
4

yT LGy, (4.2)

for y ∈ {±1}n such that yi = 1 if and only if i ∈ S.

Proposition 4.3 Let G = (V,E,W ) be a graph and LG its graph Laplacian, let
x ∈ Rn

xT LGx = ∑
i< j

wi j(xi− x j)
2

Proof.

∑
i< j

wi j (xi− x j)
2 = ∑

i< j
wi j [(ei− e j)x] [(ei− e j)x]T

= ∑
i< j

wi j

[
(ei− e j)

T x
]T [

(ei− e j)
T x
]

= ∑
i< j

wi jxT (ei− e j)(ei− e j)
T x

= xT

[
∑
i< j

wi j (ei− e j)(ei− e j)
T

]
x

2

While cut(S) is a good way of measuring the fit of a partition, it suffers from
an issue: the minimum cut is achieved for S = /0 (since cut( /0) = 0) which is a
rather meaningless choice of partition. Simply constraining the partition to be non-
trivial would still have soft versions of this issue, it would favour very unbalanced
partitions. Below we discuss how to promote (almost) balanced partitions.
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Remark 4.4 One simple way to address this is to simply ask for an exactly bal-
anced partition, |S| = |Sc| (let us assume the number of vertices n = |V | is even).
We can then identify a partition with a label vector y∈ {±1}n where yi = 1 is i∈ S,
and yi =−1 otherwise. Also, the balanced condition can be written as ∑

n
i=1 yi = 0.

This means that we can write the minimum balanced cut as

min
S⊂V
|S|=|Sc|

cut(S) =
1
4

min
y∈{−1,1}n

1T y=0

yT LGy,

which is suggestive of the connection between clustering and spectral properties of
LG. This connection will be made precise below.

Asking for the partition to be exactly balanced is too restrictive in many cases.
There are several ways to evaluate a partition that are variations of cut(S) that take
into account the intuition that one wants both S and Sc to not be too small (although
not necessarily equal to |V |/2). A prime example is Cheeger’s cut.

Definition 4.5 (Cheeger’s cut) Given a graph and a vertex partition (S,Sc), the
cheeger cut (also known as conductance, or expansion) of S is given by

h(S) =
cut(S)

min{vol(S),vol(Sc)}
,

where vol(S) = ∑i∈S deg(i).
Also, the Cheeger’s constant of G is given by

hG = min
S⊂V

h(S).

A similar object is the Normalized Cut, Ncut, which is given by

Ncut(S) =
cut(S)
vol(S)

+
cut(Sc)

vol(Sc)
.

Note that Ncut(S) and h(S) are tightly related, in fact it is easy to see that:

h(S)≤ Ncut(S)≤ 2h(S).

Normalized Cut as a spectral relaxation

Below we will show that Ncut can be written in terms of a minimization of a
quadratic form involving the graph Laplacian LG, analogously to the balanced par-
tition as described on Remark 4.4.
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Recall that balanced partition can be written as

1
4

min
y∈{−1,1}n

1T y=0

yT LGy.

An intuitive way to relax the balanced condition is to allow the labels y to take
values in two different real values a and b (e.g. yi = a if i ∈ S and y j = b if i /∈ S)
but not necessarily ±1. We can then use the notion of volume of a set to ensure a
less restrictive notion of balanced by asking that

avol(S)+bvol(Sc) = 0, (4.3)

where
vol(S) = ∑

i∈S
deg(i). (4.4)

Thus (4.3) corresponds to 1T Dy = 0.
We also need to fix a scale for a and b:

a2 vol(S)+b2 vol(Sc) = 1,

which corresponds to yT Dy = 1.
This suggests considering

min
y∈{a,b}n

1T Dy=0,yT Dy=1

yT LGy.

As we will see below, this corresponds precisely to Ncut.

Proposition 4.6 For a and b to satisfy avol(S)+ bvol(Sc) = 0 and a2 vol(S)+
b2 vol(Sc) = 1 it must be that

a =

(
vol(Sc)

vol(S)vol(G)

) 1
2

and b =−
(

vol(S)
vol(Sc)vol(G)

) 1
2

,

corresponding to

yi =


(

vol(Sc)
vol(S)vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc)vol(G)

) 1
2

if i ∈ Sc.

Note that vol is defined as (4.4).
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Proof. The proof involves only doing simple algebraic manipulations together
with noticing that vol(S)+vol(Sc) = vol(G). 2

Proposition 4.7
Ncut(S) = yT LGy,

where y is given by

yi =


(

vol(Sc)
vol(S)vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc)vol(G)

) 1
2

if i ∈ Sc.

Proof.

yT LGy =
1
2 ∑

i, j
wi j(yi− y j)

2

= ∑
i∈S

∑
j∈Sc

wi j(yi− y j)
2

= ∑
i∈S

∑
j∈Sc

wi j

[(
vol(Sc)

vol(S)vol(G)

) 1
2

+

(
vol(S)

vol(Sc)vol(G)

) 1
2
]2

= ∑
i∈S

∑
j∈Sc

wi j
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)
vol(Sc)

+2
]

= ∑
i∈S

∑
j∈Sc

wi j
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)
vol(Sc)

+
vol(S)
vol(S)

+
vol(Sc)

vol(Sc)

]
= ∑

i∈S
∑
j∈Sc

wi j

[
1

vol(S)
+

1
vol(Sc)

]
= cut(S)

[
1

vol(S)
+

1
vol(Sc)

]
= Ncut(S).

2

This means that finding the minimum Ncut corresponds to solving

min yT LGy
s. t. y ∈ {a,b}n for some a and b

yT Dy = 1
yT D1 = 0.

(4.5)
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Since solving (4.5) is, in general, NP-hard, we consider a similar problem
where the constraint that y can only take two values is removed:

min yT LGy
s. t. y ∈ Rn

yT Dy = 1
yT D1 = 0.

(4.6)

Given a solution of (4.6) we can round it to a partition by setting a threshold
τ and taking S = {i ∈V : yi ≤ τ}. We will see below that (4.6) is an eigenvector
problem (for this reason we call (4.6) a spectral relaxation).

In order to better see that (4.6) is an eigenvector problem (and thus computa-
tionally tractable), set z = D

1
2 y and

LG = D−
1
2 LGD−

1
2 , (4.7)

then (4.6) is equivalent

min zT LGz
s. t. z ∈ Rn

‖z‖2 = 1(
D

1
2 1
)T

z = 0.

(4.8)

Note that LG = I−D−
1
2 WD−

1
2 . We order its eigenvalues in increasing order

0 = λ1 (LG)≤ λ2 (LG)≤ ·· · ≤ λn (LG). The eigenvector associated to the small-
est eigenvector is given by D

1
2 1 this means that (by the variational interpretation of

the eigenvalues) that the minimum of (4.8) is λ2 (LG) and the minimizer is given
by the second smallest eigenvector of LG = I −D−

1
2 WD−

1
2 , which we call v2.

Note that this corresponds also to the second largest eigenvector of D−
1
2 WD−

1
2 .

This means that the optimal y in (4.6) is given by ϕ2 = D−
1
2 v2. This motivates

Algorithm 1, which is often referred to as Spectral Clustering:

Algorithm 1 Spectral Clustering
Given a graph G = (V,E,W ), let v2 be the eigenvector corresponding to the second
smallest eigenvalue of the normalized Laplacian LG, as defined in (4.7). Let ϕ2 =

D−
1
2 v2. Given a threshold τ (one can try all different possibilities, or run k-means

for k = 2), set
S = {i ∈V : ϕ2(i)≤ τ}.
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Because the relaxation (4.6) is obtained from (4.5) by removing a constraint
we immediately have that

λ2 (LG)≤min
S⊂V

Ncut(S).

This means that
1
2

λ2 (LG)≤ hG.

In what follows we will show a guarantee for Algorithm 1.

Lemma 4.8 There is a threshold τ producing a partition S such that

h(S)≤
√

2λ2 (LG).

This implies in particular that

h(S)≤
√

4hG,

meaning that Algorithm 1 is suboptimal at most by a square-root factor.
Note that this also directly implies the famous Cheeger’s Inequality

Theorem 4.9 (Cheeger’s Inequality) Recall the definitions above. The following
holds:

1
2

λ2 (LG)≤ hG ≤
√

2λ2 (LG).

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in
1970 [42], the graph version is due to Noga Alon and Vitaly Milman [7, 9] in
the mid 80s.

The upper bound in Cheeger’s inequality (corresponding to Lemma 4.8) is
more interesting but more difficult to prove, it is often referred to as the “the dif-
ficult part” of Cheeger’s inequality. We will prove this Lemma in what follows.
There are several proofs of this inequality (see [43] for four different proofs!). The
proof that follows is an adaptation of the proof in this blog post [128] for the case
of weighted graphs.
Proof. [of Lemma 4.8]

We will show that given y ∈ Rn satisfying

R(y) :=
yT LGy
yT Dy

≤ δ ,

and yT D1 = 0. there is a “rounding of it”, meaning a threshold τ and a correspond-
ing choice of partition

S = {i ∈V : yi ≤ τ}
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such that
h(S)≤

√
2δ ,

since y = ϕ2 satisfies the conditions and gives δ = λ2 (LG) this proves the Lemma.
We will pick this threshold at random and use the probabilistic method to show

that at least one of the thresholds works.
First we can, without loss of generality, assume that y1 ≤ ·≤ yn (we can simply

relabel the vertices). Also, note that scaling of y does not change the value of
R(y). Also, if yT D1 = 0 adding a multiple of 1 to y can only decrease the value of
R(y): the numerator does not change and the denominator (y+ c1)T D(y+ c1) =
yT Dy+ c21T D1≥ yT Dy.

This means that we can construct (from y by adding a multiple of 1 and scaling)
a vector x such that

x1 ≤ ...≤ xn, xm = 0, and x2
1 + x2

n = 1,

and
xT LGx
xT Dx

≤ δ ,

where m be the index for which vol({1, . . . ,m−1})≤ vol({m, . . . ,n}) but vol({1, . . . ,m})>
vol({m, . . . ,n}).

We consider a random construction of S with the following distribution. S =
{i ∈V : xi ≤ τ} where τ ∈ [x1,xn] is drawn at random with the distribution

Prob{τ ∈ [a,b]}=
ˆ b

a
2|τ|dτ,

where x1 ≤ a≤ b≤ xn.
It is not difficult to check that

Prob{τ ∈ [a,b]}=
{ ∣∣b2−a2

∣∣ if a and b have the same sign
a2 +b2 if a and b have different signs

Let us start by estimating Ecut(S).

Ecut(S) = E
1
2 ∑

i∈V
∑
j∈V

wi j1(S,Sc) cuts the edge (i, j)

=
1
2 ∑

i∈V
∑
j∈V

wi j Prob{(S,Sc) cuts the edge (i, j)}

Note that Prob{(S,Sc) cuts the edge (i, j)} is
∣∣∣x2

i − x2
j

∣∣∣ is xi and x j have the

same sign and x2
i + x2

j otherwise. Both cases can be conveniently upper bounded
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by
∣∣xi− x j

∣∣(|xi|+ |x j|). This means that

Ecut(S) ≤ 1
2 ∑

i, j
wi j
∣∣xi− x j

∣∣(|xi|+ |x j|)

≤ 1
2

√
∑
i j

wi j(xi− x j)2
√

∑
i j

wi j(|xi|+ |x j|)2,

where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x we know that

∑
i j

wi j(xi− x j)
2 = 2xT LGx≤ 2δxT Dx.

Also,

∑
i j

wi j(|xi|+|x j|)2≤∑
i j

wi j2x2
i +2x2

j .= 2

(
∑

i
deg(i)x2

i

)
+2

(
∑

j
deg( j)x2

j

)
= 4xT Dx.

This means that

Ecut(S)≤ 1
2

√
2δxT Dx

√
4xT Dx =

√
2δ xT Dx.

On the other hand,

Emin{volS,volSc}=
n

∑
i=1

deg(i)Prob{xi is in the smallest set (in terms of volume)},

to break ties, if vol(S) = vol(Sc) we take the “smallest” set to be the one with the
first indices.

Note that m is always in the largest set. Any vertex j < m is in the smallest set
if x j ≤ τ ≤ xm = 0 and any j > m is in the smallest set if 0 = xm ≤ τ ≤ x j. This
means that,

Prob{xi is in the smallest set (in terms of volume) = x2
j .

Which means that

Emin{volS,volSc}=
n

∑
i=1

deg(i)x2
i = xT Dx.

Hence,
Ecut(S)

Emin{volS,volSc}
≤
√

2δ .
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Note however that because Ecut(S)
Emin{volS,volSc} is not necessarily the same as E cut(S)

min{volS,volSc}
and so, we do not necessarily have

E
cut(S)

min{volS,volSc}
≤
√

2δ .

However, since both random variables are positive,

Ecut(S)≤ Emin{volS,volSc}
√

2δ ,

or equivalently
E
[
cut(S)−min{volS,volSc}

√
2δ

]
≤ 0,

which guarantees, by the probabilistic method, the existence of S such that

cut(S)≤min{volS,volSc}
√

2δ ,

which is equivalent to

h(S) =
cut(S)

min{volS,volSc}
≤
√

2δ ,

which concludes the proof of the Lemma. 2

Multiple Clusters

Much of the above can be easily adapted to multiple clusters. Algorithm 2 is a
natural extension of spectral clustering to multiple clusters.5

There is also an analogue of Cheeger’s inequality. A natural way of evaluating
k-way clustering is via the k-way expansion constant (see [86]):

ρG(k) = min
S1,...,Sk

max
l=1,...,k

{
cut(S)
vol(S)

}
,

where the maximum is over all choice of k disjoin subsets of V (but not necessarily
forming a partition).

Another natural definition is

ϕG(k) = min
S:volS≤ 1

k vol(G)

cut(S)
vol(S)

.

It is easy to see that
ϕG(k)≤ ρG(k).

The following are analogues of Cheeger’s inequality for multiple clusters.
5We will see in Chapter 5 that the map ϕ : V → Rk−1 defined in Algorithm 2 can also be used

for data visualization, not just clustering.
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Algorithm 2 Spectral Clustering
Given a graph G = (V,E,W ), let v2, . . . ,vk be the eigenvectors corresponding to the
second through (k−1)th eigenvalues of the normalized Laplacian LG, as defined
in (4.7). Let ϕm = D−

1
2 vm. Consider the map ϕ : V → Rk−1 defined as

ϕ(vi) =

 ϕ2(i)
...

ϕk(i)

 .
Cluster the n points in k−1 dimensions into k clusters using k-means.

Theorem 4.10 ([86]) Let G = (V,E,W ) be a graph and k a positive integer

ρG(k)≤O
(
k2)√

λk. (4.9)

Also,
ρG(k)≤ O

(√
λ2k logk

)
.



Chapter 5

Nonlinear Dimension Reduction
and Diffusion Maps

In Chapter 3 we discussed dimension reduction via Principal Component Analysis.
Many datasets however have low dimensional structure that is not linear. In this
chapter we will discuss nonlinear dimension reduction techniques. Just as with
Spectral Clustering in Chapter 4 we will focus on graph data while noting that
most types of data can be transform in a weighted graph by means of a similarity
kernel (Section 5.1.1). The goal of this chapter is to embed the nodes of a graph
in Euclidean space in a way that best preserves the intrinsic geometry of the graph
(or the data that gave rise to the graph).

5.1 Diffusion Maps

Diffusion Maps will allows us to represent (weighted) graphs G = (V,E,W ) in Rd ,
i.e. associating, to each node, a point in Rd . Before presenting Diffusion Maps,
we’ll introduce a few important notions. The reader may notice the similarities with
the objects described in the context of PageRank in Chapter 4, the main difference
is that here the connections between graphs have no direction, meaning that the
weight matrix W is symmetric; this will be crucial in the derivations below.

Given G = (V,E,W ) we consider a random walk (with independent steps) on
the vertices of V with transition probabilities:

Prob{X(t +1) = j|X(t) = i}=
wi j

deg(i)
,

71
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where deg(i) = ∑ j wi j. Let M be the matrix of these probabilities,

Mi j =
wi j

deg(i)
. (5.1)

It is easy to see that Mi j ≥ 0 and M1 = 1 (indeed, M is a transition probability
matrix). Recalling that D is the diagonal matrix with diagonal entries Dii = deg(i)
we have

M = D−1W.

If we start a random walker at node i (X(0) = 1) then the probability that, at
step t, is at node j is given by

Prob{X(t) = j|X(0) = i}=
(
Mt)

i j .

In other words, the probability cloud of the random walker at point t, given that it
started at node i is given by the row vector

Prob{X(t)|X(0) = i}= eT
i Mt = Mt [i, :].

Remark 5.1 A natural representation of the graph would be to associate each
vertex to the probability cloud above, meaning

i→Mt [i, :].

This would place nodes i1 and i2 for which the random walkers starting at i1 and
i2 have, after t steps, very similar distribution of locations. However, this would
require d = n. In what follows we will construct a similar mapping but for consid-
erably smaller d.

M is not symmetric, but a matrix similar to M, S = D
1
2 MD−

1
2 is, indeed S =

D−
1
2 WD−

1
2 . We consider the spectral decomposition of S

S =V ΛV T , (5.2)

where V = [v1, . . . ,vn] satisfies V TV = In×n and Λ is diagonal with diagonal ele-
ments Λkk = λk (and we organize them as λ1≥ λ2≥ ·· · ≥ λn). Note that Svk = λkvk.
Also,

M = D−
1
2 SD

1
2 = D−

1
2 V ΛV T D

1
2 =

(
D−

1
2 V
)

Λ

(
D

1
2 V
)T

.

We define Φ = D−
1
2 V with columns Φ = [ϕ1, . . . ,ϕn] and Ψ = D

1
2 V with columns

Ψ = [ψ1, . . . ,ψn]. Then
M = ΦΛΨ

T ,



5.1. DIFFUSION MAPS 73

and Φ, Ψ form a biorthogonal system in the sense that ΦT Ψ= In×n or, equivalently,
ϕT

j ψk = δ jk. Note that ϕk and ψk are, respectively right and left eigenvectors of M,
indeed, for all 1≤ k ≤ n:

Mϕk = λkϕk and ψ
T
k M = λkψ

T
k .

Also, we can rewrite this decomposition as

M =
n

∑
k=1

λkϕkψ
T
k .

and it is easy to see that

Mt =
n

∑
k=1

λ
t
kϕkψ

T
k . (5.3)

Let’s revisit the embedding suggested on Remark 5.1. It would correspond to

vi→Mt [i, :] =
n

∑
k=1

λ
t
kϕk(i)ψT

k ,

it is written in terms of the basis ψk. The Diffusion Map will essentially consist of
the representing a node i by the coefficients of the above map

vi→Mt [i, :] =


λ t

1ϕ1(i)
λ t

2ϕ2(i)
...

λ t
nϕn(i)

 , (5.4)

Note that M1= 1, meaning that one of the right eigenvectors ϕk is simply a multiple
of 1 and so it does not distinguish the different nodes of the graph. We will show
that this indeed corresponds to the the first eigenvalue.

Proposition 5.2 All eigenvalues λk of M satisfy |λk| ≤ 1.

Proof.
Let ϕk be a right eigenvector associated with λk whose largest entry in magni-

tude is positive ϕk (imax). Then,

λkϕk (imax) = Mϕk (imax) =
n

∑
j=1

Mimax, jϕk ( j) .

This means, by triangular inequality that, that

|λk|=
n

∑
j=1

∣∣Mimax, j
∣∣ |ϕk ( j)|
|ϕk (imax)|

≤
n

∑
j=1

∣∣Mimax, j
∣∣= 1.

2
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Remark 5.3 It is possible that there are other eigenvalues with magnitude 1 but
only if G is disconnected or if G is bipartite. Provided that G is disconnected, a
natural way to remove potential periodicity issues (like the graph being bipartite)
is to make the walk lazy, i.e. to add a certain probability of the walker to stay in
the current node. This can be conveniently achieved by taking, e.g.,

M′ =
1
2

M+
1
2

I.

By the proposition above we can take ϕ1 = 1, meaning that the first coordinate
of (5.4) does not help differentiate points on the graph. This suggests removing
that coordinate:

Definition 5.4 (Diffusion Map) Given a graph G = (V,E,W ) construct M and
its decomposition M = ΦΛΨT as described above. The Diffusion Map is a map
ϕt : V → Rn−1 given by

ϕt (vi) =


λ t

2ϕ2(i)
λ t

3ϕ3(i)
...

λ t
nϕn(i)

 .
This map is still a map to n−1 dimensions. But note now that each coordinate

has a factor of λ t
k which, if λk is small will be rather small for moderate values of t.

This motivates truncating the Diffusion Map by taking only the first d coefficients.

Definition 5.5 (Truncated Diffusion Map) Given a graph G = (V,E,W ) and di-
mension d, construct M and its decomposition M = ΦΛΨT as described above.
The Diffusion Map truncated to d dimensions is a map ϕt : V → Rd given by

ϕ
(d)
t (vi) =


λ t

2ϕ2(i)
λ t

3ϕ3(i)
...

λ t
d+1ϕd+1(i)

 .
In the following theorem we show that the euclidean distance in the diffusion

map coordinates (called diffusion distance) meaningfully measures distance be-
tween the probability clouds after t iterations.

Theorem 5.6 For any pair of nodes vi1 , vi2 we have

‖ϕt (vi1)−ϕt (vi2)‖
2 =

n

∑
j=1

1
deg( j)

[Prob{X(t) = j|X(0) = i1}−Prob{X(t) = j|X(0) = i2}]2 .
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Proof.
Note that ∑

n
j=1

1
deg( j) [Prob{X(t) = j|X(0) = i1}−Prob{X(t) = j|X(0) = i2}]2

can be rewritten as

n

∑
j=1

1
deg( j)

[
n

∑
k=1

λ
t
kϕk(i1)ψk( j)−

n

∑
k=1

λ
t
kϕk(i2)ψk( j)

]2

=
n

∑
j=1

1
deg( j)

[
n

∑
k=1

λ
t
k (ϕk(i1)−ϕk(i2))ψk( j)

]2

and

n

∑
j=1

1
deg( j)

[
n

∑
k=1

λ
t
k (ϕk(i1)−ϕk(i2))ψk( j)

]2

=
n

∑
j=1

[
n

∑
k=1

λ
t
k (ϕk(i1)−ϕk(i2))

ψk( j)√
deg( j)

]2

=

∥∥∥∥∥ n

∑
k=1

λ
t
k (ϕk(i1)−ϕk(i2))D−

1
2 ψk

∥∥∥∥∥
2

.

Note that D−
1
2 ψk = vk which forms an orthonormal basis, meaning that∥∥∥∥∥ n

∑
k=1

λ
t
k (ϕk(i1)−ϕk(i2))D−

1
2 ψk

∥∥∥∥∥
2

=
n

∑
k=1

(
λ

t
k (ϕk(i1)−ϕk(i2))

)2

=
n

∑
k=2

(
λ

t
kϕk(i1)−λ

t
kϕk(i2)

)2
,

where the last inequality follows from the fact that ϕ1 = 1 and concludes the
proof of the theorem.

2

5.1.1 Diffusion Maps of point clouds

Very often we are interested in embedding in Rd a point cloud of points x1, . . . ,xn ∈
Rp and not necessarily a graph. One optionis to use Principal Component Analysis
(PCA), but PCA is only designed to find linear structure of the data and the low
dimensionality of the dataset may be non-linear. For example, let us say that our
dataset is images of the face of someone taken from different angles and lighting
conditions, for example, the dimensionality of this dataset is limited by the amount
of muscles in the head and neck and by the degrees of freedom of the lighting
conditions (see Figure ??) but it is not clear that this low dimensional structure is
linearly apparent on the pixel values of the images.

Let us consider a point cloud that is sampled from a two dimensional swiss
roll embedded in three dimension (see Figure 5.2). In order to learn the two di-
mensional structure of this object we need to differentiate points that are near each



76CHAPTER 5. NONLINEAR DIMENSION REDUCTION AND DIFFUSION MAPS

Figure 5.1: The Diffusion Map of the ring graph gives a very natural way of dis-
playing (indeed, if one is asked to draw the ring graph, this is probably the drawing
that most people would do). It is actually not difficult to analytically compute the
Diffusion Map of this graph and confirm that it displays the points in a circle.

other because they are close by in the manifold and not simply because the mani-
fold is curved and the points appear nearby even when they really are distant in the
manifold (see Figure 5.2 for an example). We will achieve this by creating a graph
from the data points.

Figure 5.2: A swiss roll point cloud (see, for example, [125]). The points are sam-
pled from a two dimensional manifold curved in R3 and then a graph is constructed
where nodes correspond to points.

Our goal is for the graph to capture the structure of the manifold. To each data
point we will associate a node. For this we should only connect points that are close
in the manifold and not points that maybe appear close in Euclidean space simply
because of the curvature of the manifold. This is achieved by picking a small
scale and linking nodes if they correspond to points whose distance is smaller than
that scale. This is usually done smoothly via a kernel Kε , and to each edge (i, j)
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associating a weight

wi j = Kε (‖xi− x j‖2) ,

a common example of a Kernel is Kε(u) = exp
(
− 1

2ε
u2
)
, that gives essentially zero

weight to edges corresponding to pairs of nodes for which ‖xi− x j‖2�
√

ε . We
can then take the the Diffusion Maps of the resulting graph.

5.1.2 An illustrative simple example

A simple and illustrative example is to take images of a blob on a background
in different positions (image a white square on a black background and each data
point corresponds to the same white square in different positions). This dataset
is clearly intrinsically two dimensional, as each image can be described by the
(two-dimensional) position of the square. However, we don’t expect this two-
dimensional structure to be directly apparent from the vectors of pixel values of
each image; in particular we don’t expect these vectors to lie in a two dimensional
affine subspace!

Figure 5.3: The two-dimensional diffusion map of the dataset of the datase where
each data point is an image with the same vertical strip in different positions in the
x-axis, the circular structure is apparent.

Let’s start by experimenting with the above example for one dimension. In that
case the blob is a vertical stripe and simply moves left and right. We think of our
space as the in many arcade games, if the square or stripe moves to the right all
the way to the end of the screen, it shows up on the left side (and same for up-
down in the two-dimensional case). Not only this point cloud should have a one
dimensional structure but it should also exhibit a circular structure. Remarkably,
this structure is completely apparent when taking the two-dimensional Diffusion
Map of this dataset, see Figure 5.3.
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Figure 5.4: On the left the data set considered and on the right its three dimensional
diffusion map, the fact that the manifold is a torus is remarkably captured by the
embedding.

For the two dimensional example, we expect the structure of the underlying
manifold to be a two-dimensional torus. Indeed, Figure 5.4 shows that the three-
dimensional diffusion map captures the toroidal structure of the data.

5.1.3 Similar non-linear dimensional reduction techniques

There are several other similar non-linear dimensional reduction methods. A par-
ticularly popular one is ISOMAP [125]. The idea is to find an embedding in Rd
for which euclidean distances in the embedding correspond as much as possible to
geodesic distances in the graph. This can be achieved by, between pairs of nodes
vi, v j finding their geodesic distance and then using, for example, Multidimensional
Scaling to find points yi ∈ Rd that minimize (for example)

min
y1,...,yn∈Rd

∑
i, j

(
‖yi− y j‖2−δ

2
i j
)2
,

which can be done with spectral methods (it is a good exercise to compute the
optimal solution to the above optimization problem).

5.2 Connections between Diffusion Maps and Spectral Clus-
tering

Diffusion maps are tightly connected to Spectral Clustering (described in Chap-
ter 4). In fact, Spectral Clustering can be understood as simply performing k-means
on the embedding given by Diffusion Maps truncated to k−1 dimensions.
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Figure 5.5: The two dimensional represention of a data set of images of faces as ob-
tained in [125] using ISOMAP. Remarkably, the two dimensionals are interpretable

A natural way to try to overcome the issues of k-means depicted in Figure 4.4
is by using Diffusion Maps: Given the data points we construct a weighted graph
G = (V,E,W ) using a kernel Kε , such as Kε(u) = exp

( 1
2ε

u2
)
, by associating each

point to a vertex and, for which pair of nodes, set the edge weight as

wi j = Kε (‖xi− x j‖) .

Recall the construction of a matrix M = D−1W as the transition matrix of a
random walk

Prob{X(t +1) = j|X(t) = i}=
wi j

deg(i)
= Mi j,

where D is the diagonal with Dii = deg(i). The d-dimensional Diffusion Maps is
given by

ϕ
(d)
t (i) =

 λ t
2ϕ2(i)

...
λ t

d+1ϕd+1(i)

 ,
where M = ΦΛΨT where Λ is the diagonal matrix with the eigenvalues of M and
Φ and Ψ are, respectively, the right and left eigenvectors of M (note that they form
a bi-orthogonal system, ΦT Ψ = I).

If we want to cluster the vertices of the graph in k clusters, then it is natural to
truncate the Diffusion Map to have k−1 dimensions (since in k−1 dimensions we
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Figure 5.6: The two dimensional represention of a data set of images of human
hand as obtained in [125] using ISOMAP. Remarkably, the two dimensionals are
interpretable

can have k linearly separable sets). If indeed the clusters were linearly separable
after embedding then one could attempt to use k-means on the embedding to find
the clusters, this is precisely the motivation for Spectral Clustering.

Algorithm 3 Spectral Clustering described using Diffusion Maps.
Spectral Clustering: Given a graph G = (V,E,W ) and a number of clusters k (and
t), Spectral Clustering consists in taking a (k−1) dimensional Diffusion Map

ϕ
(k−1)
t (i) =

 λ t
2ϕ2(i)

...
λ t

kϕk(i)


and clustering the points ϕ

(k−1)
t (1),ϕ(k−1)

t (2), . . . ,ϕ(k−1)
t (n) ∈ Rk−1 using, for ex-

ample, k-means clustering. Usually, the scaling of λ t
m is ignored (corresponding to

t = 0).

In order to show that this indeed coincides with Algorithm 2, it is enough to
show that ϕm = D−

1
2 vm where vm is the eigenvector associated with the m-th small-

est eigenvalue of LG. This follows from the fact that S = D−
1
2 WD−

1
2 as defined

in (5.2) is related to LG by
LG = I−S,
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Figure 5.7: The two dimensional represention of a data set of handwritten digits
as obtained in [125] using ISOMAP. Remarkably, the two dimensionals are inter-
pretable

and Φ = D−1/2V .
Proposition 5.7 below establishes a connection between Ncut (as described in

Chapter 4) and the random walks introduced above. Let M as defined in (5.1)
denote the matrix of transition probabilities. Recall that M1 = 1, corresponding to
Mϕ1 = ϕ1, which means that ψT

1 M = ψT
1 , where

ψ1 = D
1
2 v1 = Dϕ1 = [deg(i)]1≤i≤n .

This means that
[

deg(i)
vol(G)

]
1≤i≤n

is the stationary distribution of this random walk.

Indeed it is easy to check that, if X(t) has a certain distribution pt then X(t+1) has
a distribution pt+1 given by pT

t+1 = pT
t M

Proposition 5.7 Given a graph G= (V,E,W ) and a partition (S,Sc) of V , Ncut(S)
corresponds to the probability, in the random walk associated with G, that a ran-
dom walker in the stationary distribution goes to Sc conditioned on being in S plus
the probability of going to S condition on being in Sc, more explicitly:

Ncut(S) = Prob{X(t +1) ∈ Sc|X(t) ∈ S}+Prob{X(t +1) ∈ S|X(t) ∈ Sc} ,

where Prob{X(t) = i}= deg(i)
vol(G) .
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Figure 5.8: For two clusters, spectral clustering consists in assigning to each vertex
i a real number ϕ2(i), then setting a threshold τ and taking S = {i ∈ V : ϕ2(i) ≤
τ}. This real number can both be interpreted through the spectrum of LG as in
Algorithm 1 or as the Diffusion Maps embedding as in Algorithm 3.

Proof. Without loss of generality we can take t = 0. Also, the second term in the
sum corresponds to the first with S replaced by Sc and vice-versa, so we’ll focus on
the first one. We have:

Prob{X(1) ∈ Sc|X(0) ∈ S} =
Prob{X(1) ∈ Sc∩X(0) ∈ S}

Prob{X(0) ∈ S}

=
∑i∈S ∑ j∈Sc Prob{X(1) ∈ j∩X(0) ∈ i}

∑i∈S Prob{X(0) = i}

=
∑i∈S ∑ j∈Sc

deg(i)
vol(G)

wi j
deg(i)

∑i∈S
deg(i)
vol(G)

=
∑i∈S ∑ j∈Sc wi j

∑i∈S deg(i)

=
cut(S)
vol(S)

.

Analogously,

Prob{X(t +1) ∈ S|X(t) ∈ Sc}= cut(S)
vol(Sc)

,

which concludes the proof. 2
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5.3 Semi-supervised learning

Classification is a central task in machine learning. In a supervised learning setting
we are given many labelled examples and want to use them to infer the label of
a new, unlabeled example. For simplicity, let us focus on the case of two labels,
{−1,+1}.

Figure 5.9: Given a few labeled points, the task is to label an unlabeled point.

Let us consider the task of labelling the point “?” in Figure 5.9 given the labeled
points. The natural label to give to the unlabeled point would be 1.

However, if we are given not just one unlabeled point, but many, as in Fig-
ure 5.10; then it starts being apparent that −1 is a more reasonable guess.

Figure 5.10: In this example we are given many unlabeled points, the unlabeled
points help us learn the geometry of the data.

Intuitively, the unlabeled data points allowed us to better learn the intrinsic
geometry of the dataset. That is the idea behind Semi-Supervised Learning (SSL),
to make use of the fact that often one has access to many unlabeled data points in
order to improve classification.

Just as above, we will use the data points to construct (via a kernel Kε ) a graph
G = (V,E,W ) where nodes correspond to points. More precisely, let l denote the
number of labeled points with labels f1, . . . , fl , and u the number of unlabeled
points (with n = l +u), the first l nodes v1, . . . ,vl correspond to labeled points and
the rest vl+1, . . . ,vn are unlabaled. We want to find a function f : V → {−1,1}
that agrees on labeled points: f (i) = fi for i = 1, . . . , l and that is “as smooth as
possible” the graph. A way to pose this is the following

min
f :V→{−1,1}: f (i)= fi i=1,...,l

∑
i< j

wi j ( f (i)− f ( j))2 .
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Instead of restricting ourselves to giving {−1,1} we allow ourselves to give real
valued labels, with the intuition that we can “round” later by, e.g., assigning the
sign of f (i) to node i.

We thus are interested in solving

min
f :V→R: f (i)= fi i=1,...,l

∑
i< j

wi j ( f (i)− f ( j))2 .

If we denote by f the vector (in Rn with the function values) then, recalling
Proposition 4.3, we are can rewrite the problem as

∑
i< j

wi j ( f (i)− f ( j))2 = f T LG f .

Remark 5.8 Consider an analogous example on the real line, where one would
want to minimize ˆ

f ′(x)2dx.

Integrating by parts
ˆ

f ′(x)2dx = Boundary Terms−
ˆ

f (x) f ′′(x)dx.

Analogously, in Rd:

ˆ
‖∇ f (x)‖2 dx=

ˆ d

∑
k=1

(
∂ f
∂xk

(x)
)2

dx=B. T.−
ˆ

f (x)
d

∑
k=1

∂ 2 f
∂x2

k
(x)dx=B. T.−

ˆ
f (x)∆ f (x)dx,

which helps motivate the use of the term graph Laplacian for LG.

Let us consider our problem

min
f :V→R: f (i)= fi i=1,...,l

f T LG f .

We can write

D=

[
Dl 0
0 Du

]
, W =

[
Wll Wlu
Wul Wuu

]
, LG =

[
Dl−Wll −Wlu
−Wul Du−Wuu

]
, and f =

[
fl
fu

]
.

Then we want to find (recall that Wul =W T
lu )

min
fu∈Ru

f T
l [Dl−Wll] fl−2 f T

u Wul fl + f T
u [Du−Wuu] fu.
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by first-order optimality conditions, it is easy to see that the optimal satisfies

(Du−Wuu) fu =Wul fl.

If Du−Wuu is invertible1 then

f ∗u = (Du−Wuu)
−1Wul fl.

Remark 5.9 The function f function constructed is called a harmonic extension.
Indeed, it shares properties with harmonic functions in euclidean space such as the
mean value property and maximum principles; if vi is an unlabeled point then

f (i) =
[
D−1

u (Wul fl +Wuu fu)
]

i =
1

deg(i)

n

∑
j=1

wi j f ( j),

which immediately implies that the maximum and minimum value of f needs to be
attained at a labeled point.

An interesting experience and the Sobolev Embedding Theorem

Let us try a simple experiment. Let’s say we have a grid on [−1,1]d dimensions
(with say md points for some large m) and we label the center as +1 and every
node that is at distance larger or equal to 1 to the center, as −1. We are interested
in understanding how the above algorithm will label the remaining points, hoping
that it will assign small numbers to points far away from the center (and close to
the boundary of the labeled points) and large numbers to points close to the center.

See the results for d = 1 in Figure 5.11, d = 2 in Figure 5.12, and d = 3 in
Figure 5.13. While for d ≤ 2 it appears to be smoothly interpolating between the
labels, for d = 3 it seems that the method simply learns essentially−1 on all points,
thus not being very meaningful. Let us turn to Rd for intuition:

Let’s say that we want to find a function in Rd that takes the value 1 at zero
and −1 at the unit sphere, that minimizes

´
B0(1)
‖∇ f (x)‖2dx. Let us consider the

following function on B0(1) (the ball centered at 0 with unit radius)

fε(x) =
{

1−2 |x|
ε

if|x| ≤ ε

−1 otherwise.

A quick calculation suggest that
ˆ

B0(1)
‖∇ fε(x)‖2dx =

ˆ
B0(ε)

1
ε2 dx = vol(B0(ε))

1
ε2 dx≈ ε

d−2,
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Figure 5.11: The d = 1 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 1 it appears to
smoothly interpolate between the labeled points.

meaning that, if d > 2, the performance of this function is improving as ε → 0,
explaining the results in Figure 5.13.

One way of thinking about what is going on is through the Sobolev Embedding
Theorem. Hm

(
Rd
)

is the space of function whose derivatives up to order m are
square-integrable in Rd , Sobolev Embedding Theorem says that if m > d

2 then,
if f ∈ Hm

(
Rd
)

then f must be continuous, which would rule out the behavior
observed in Figure 5.13. It also suggests that if we are able to control also second
derivates of f then this phenomenon should disappear (since 2 > 3

2 ). While we will
not describe it here in detail, there is, in fact, a way of doing this by minimizing not
f T L f but f T L2 f instead, Figure 5.14 shows the outcome of the same experiment
with the f T L f replaced by f T L2 f and confirms our intuition that the discontinuity
issue should disappear (see, e.g., [101] for more on this phenomenon).

1It is not difficult to see that unless the problem is in some form degenerate, such as the unlabeled
part of the graph being disconnected from the labeled one, then this matrix will indeed be invertible.
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Figure 5.12: The d = 2 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 2 it appears to
smoothly interpolate between the labeled points.

Figure 5.13: The d = 3 example of the use of this method to the example described
above, the value of the nodes is given by color coding. For d = 3 the solution
appears to only learn the label −1.

Figure 5.14: The d = 3 example of the use of this method with the extra regular-
ization f T L2 f to the example described above, the value of the nodes is given by
color coding. The extra regularization seems to fix the issue of discontinuities.
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Chapter 6

Concentration of Measure and
Matrix Inequalities

In this chapter we significantly expand on the concepts presented in Chapter 2,
showcasing several other instances of the Concentration of Measure phenomena
and focus on matrix versions of these inequalities that will be crucial in the forth-
coming chapters.

6.1 Matrix Bernstein Inequality

In many of the chapters that follow we will need to control the largest eigenvalue or
spectral norm of random matrices. Depending on the context, these matrices may
represent the noise whose effect in a spectral algorithm is controlled by its spectral
norm, or the size of a dual variable that needs to be controlled to show the exactness
of a convex relaxation. While some of the tools we developed in Chapter 2 could
be used to control the size of the entries of random matrices, which could translate
to spectral bounds, this would likely introduce many suboptimal dimensional fac-
tors. We will start by presenting a general use concentration inequality for sums
of independent random matrices, while noting that, as with scalars, many random
variables can be written as sums of independent random variables even when it’s
not trivially apparent.

Let us recall Bernsteins inequality (Theorem 2.16) copied here with slightly
different notation, and with only one of the tails: If X1,X2, . . . ,Xn are independent
centered random variables satisfying |Xi| ≤ r and E[X2

i ] =
1
n ν2. Then,

Prob

{
n

∑
i=1

Xi > t

}
≤ exp

(
− t2

2ν2 + 2
3 rt

)
. (6.1)

89
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A very useful generalization of this inequality exists for bounding the largest
eigenvalue of the sum of independent random matrices

Theorem 6.1 (Theorem 1.4 in [131]) Let {Xk}n
k=1 be a sequence of independent

random symmetric d×d matrices. Assume that each Xk satisfies:

EXk = 0 and λmax (Xk)≤ R almost surely.

Then, for all t ≥ 0,

Prob

{
λmax

(
n

∑
k=1

Xk

)
≥ t

}
≤ d · exp

(
−t2

2σ2 + 2
3 Rt

)
where σ

2 =

∥∥∥∥∥ n

∑
k=1

E
(
X2

k
)∥∥∥∥∥ .

Note that ‖A‖ denotes the spectral norm of A. Comparing with (6.1) the attentive
reader will notice an extra dimensional factor of d; a simple change of variables
shows that this corresponds to a poly-logarithmic factor on the random variable, a
factor that will be discussed later in this Chapter.

In what follows we will state and prove various matrix concentration results,
somewhat similar to Theorem 6.1. We will focus on understanding, and bound-
ing, the typical value of the spectral norm of random matrices by upper bounding
E‖X‖, as these tend to be high dimensional objects themselves they often have
enough concentration that tail bounds are then easy to obtain. In fact, in the next
Section we will illustration exactly this by deriving a tail bound for the spectral
norm of a Wigner matrix using Gaussian Concentration. For an approach to matrix
concentration that includes a direct proof of Theorem 6.1 we recommend Tropp’s
excellent monograph [133].

6.2 Gaussian Concentration and the Spectral norm of Wigner
Matrices

One of the most important results in concentration of measure is Gaussian con-
centration. Although being a concentration result specific for normally distributed
random variables, it will be very useful throughout this book. Intuitively it says
that if F : Rn→ R is a function that is stable in terms of its input then F(g) is very
well concentrated around its mean, where g ∈N (0, I). More precisely:

Theorem 6.2 (Gaussian Concentration) Let X = [X1, . . . ,Xn]
T be a vector with

i.i.d. standard Gaussian entries and F : Rn → R a σ -Lipschitz function (i.e.:
|F(x)−F(y)| ≤ σ‖x− y‖, for all x,y ∈ Rn). Then, for every t ≥ 0

Prob{|F(X)−EF(X)| ≥ t} ≤ 2exp
(
− t2

2σ2

)
.
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For the sake of simplicity we will show the proof for a slightly weaker bound:
Prob{|F(X)−EF(X)| ≥ t}≤ 2exp

(
− 2

π2
t2

σ2

)
. This exposition follows closely the

proof of Theorem 2.1.12 in [124] and the original argument is due to Maurey and
Pisier. For a proof with the optimal constants see, for example, Theorem 3.25
in [135]. We will also assume that the function F is smooth — this is actually not a
restriction, as a limiting argument can generalize the result from smooth functions
to general Lipschitz functions.
Proof.

If F is smooth, then it is easy to see that the Lipschitz property implies that, for
every x ∈ Rn, ‖∇F(x)‖2 ≤ σ . By subtracting a constant from F , we can assume
that EF(X) = 0. Also, it is enough to show a one-sided bound

Prob{F(X)−EF(X)≥ t} ≤ exp
(
− 2

π2
t2

σ2

)
,

since obtaining the same bound for −F(X) and taking a union bound would gives
the result.

We start by using the same idea as in the proof of the large deviation inequali-
ties above. For any λ > 0, Markov’s inequality implies that

Prob{F(X)≥ t} = Prob{exp(λF(X))≥ exp(λ t)}

≤ E [exp(λF(X))]

exp(λ t)

This means we need to upper bound E [exp(λF(X))] using a bound on ‖∇F‖.
The idea is to introduce a random independent copy Y of X . Since exp(λ ·) is
convex, Jensen’s inequality implies that

E [exp(−λF(Y ))]≥ exp(−EλF(Y )) = exp(0) = 1.

Hence, since X and Y are independent,

E [exp(λ [F(X)−F(Y )])] =E [exp(λF(X))]E [exp(−λF(Y ))]≥E [exp(λF(X))]

Now we use the Fundamental Theorem of Calculus in a circular arc from X to Y :

F(X)−F(Y ) =
ˆ π

2

0

∂

∂θ
F (Y cosθ +X sinθ)dθ .

The advantage of using the circular arc is that, for any θ , Xθ := Y cosθ +X sinθ

is another random variable with the same distribution. And this property holds for
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its derivative with respect to θ , X ′
θ
=−Y sinθ +X cosθ as well. Moreover, Xθ and

X ′
θ

are independent. In fact, note that

E
[
Xθ X ′θ

T
]
= E [Y cosθ +X sinθ ] [−Y sinθ +X cosθ ]T = 0.

We use Jensen’s inequality again (with respect to the integral now) to get:

exp(λ [F(X)−F(Y )]) = exp

(
λ

π

2
1

π/2

ˆ
π/2

0

∂

∂θ
F (Xθ )dθ

)

≤ 1
π/2

ˆ
π/2

0
exp
(

λ
π

2
∂

∂θ
F (Xθ )

)
dθ

Using the chain rule,

exp(λ [F(X)−F(Y )])≤ 2
π

ˆ
π/2

0
exp
(

λ
π

2
∇F (Xθ ) ·X ′θ

)
dθ ,

and taking expectations

Eexp(λ [F(X)−F(Y )])≤ 2
π

ˆ
π/2

0
Eexp

(
λ

π

2
∇F (Xθ ) ·X ′θ

)
dθ ,

If we condition on Xθ , since
∥∥λ

π

2 ∇F (Xθ )
∥∥≤ λ

π

2 σ , λ
π

2 ∇F (Xθ ) ·X ′θ is a gaussian
random variable with variance at most

(
λ

π

2 σ
)2. This directly implies that, for

every value of Xθ

EX ′
θ

exp
(

λ
π

2
∇F (Xθ ) ·X ′θ

)
≤ exp

[
1
2

(
λ

π

2
σ

)2
]

Taking expectation now over Xθ , and putting everything together, gives

E [exp(λF(X))]≤ exp
[

1
2

(
λ

π

2
σ

)2
]
,

which means that

Prob{F(X)≥ t} ≤ exp
[

1
2

(
λ

π

2
σ

)2
−λ t

]
,

Optimizing for λ gives λ ∗ =
( 2

π

)2 t
σ2 , which in turn gives

Prob{F(X)≥ t} ≤ exp
[
− 2

π2
t2

σ2

]
.

2
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6.2.1 Spectral norm of a Wigner Matrix

We give an illustrative example of the utility of Gaussian concentration. Let W ∈
Rn×n be a standard Gaussian Wigner matrix, a symmetric matrix with (otherwise)
independent Gaussian entries, the off-diagonal entries have unit variance and the
diagonal entries have variance 2. ‖W‖ depends on n(n+1)

2 independent (standard)
Gaussian random variables and it is easy to see that it is a

√
2-Lipschitz function

of these variables, since∣∣∣‖W (1)‖−‖W (2)‖
∣∣∣≤ ∥∥∥W (1)−W (2)

∥∥∥≤ ∥∥∥W (1)−W (2)
∥∥∥

F
.

The symmetry of the matrix and the variance 2 of the diagonal entries are respon-
sible for an extra factor of

√
2.

Using Gaussian Concentration (Theorem 6.2) we immediately get

Prob{‖W‖ ≥ E‖W‖+ t} ≤ 2exp
(
− t2

4

)
.

Since1 E‖W‖ ≤ 2
√

n we get

Proposition 6.3 Let W ∈ Rn×n be a standard Gaussian Wigner matrix, a symmet-
ric matrix with (otherwise) independent Gaussian entries, the off-diagonal entries
have unit variance and the diagonal entries have variance 2. Then,

Prob
{
‖W‖ ≥ 2

√
n+ t

}
≤ 2exp

(
− t2

4

)
.

Note that this gives an extremely precise control of the fluctuations of ‖W‖. In
fact, for t = 2

√
logn this gives

Prob
{
‖W‖ ≥ 2

√
n+2

√
logn

}
≤ 2exp

(
−4logn

4

)
=

2
n
.

6.2.2 Talagrand’s concentration inequality

A remarkable result by Talagrand [122], Talangrad’s concentration inequality, pro-
vides an analogue of Gaussian concentration for bounded random variables.

Theorem 6.4 (Talangrand concentration inequality, Theorem 2.1.13 [124]) Let
K > 0, and let X1, . . . ,Xn be independent bounded random variables with |Xi| ≤ K

1It is an excellent exercise to prove E‖W‖ ≤ 2
√

n using Slepian’s inequality.
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for all 1≤ i≤ n. Let F : Rn→ R be a σ -Lipschitz and convex function. Then, for
any t ≥ 0,

Prob{|F(X)−E [F(X)]| ≥ tK} ≤ c1 exp
(
−c2

t2

σ2

)
,

for positive constants c1, and c2.

Other useful similar inequalities (with explicit constants) are available in [92].

6.3 Non-Commutative Khintchine inequality

We start with a particularly important inequality involving the expected value of
a random matrix. It is intimately related to the non-commutative Khintchine in-
equality [108], and for that reason we will often refer to it as Non-commutative
Khintchine (see, for example, (4.9) in [131]).

Theorem 6.5 (Non-commutative Khintchine (NCK)) Let A1, . . . ,An ∈ Rd×d be
symmetric matrices and g1, . . . ,gn ∼N (0,1) i.i.d., then:

E

∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥≤ (2+2log(2d)
) 1

2
σ ,

where

σ
2 =

∥∥∥∥∥ n

∑
k=1

A2
k

∥∥∥∥∥ . (6.2)

Note that, akin to Proposition 6.3, we can also use Gaussian Concentration to
get a tail bound on ‖∑n

k=1 gkAk‖. We consider the function

F : Rn→

∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥ .
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We now estimate its Lipschitz constant; let g,h ∈ Rn then∣∣∣∣∣
∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥−
∥∥∥∥∥ n

∑
k=1

hkAk

∥∥∥∥∥
∣∣∣∣∣ ≤

∥∥∥∥∥
(

n

∑
k=1

gkAk

)
−

(
n

∑
k=1

hkAk

)∥∥∥∥∥
=

∥∥∥∥∥ n

∑
k=1

(gk−hk)Ak

∥∥∥∥∥
= max

v:‖v‖=1
vT

(
n

∑
k=1

(gk−hk)Ak

)
v

= max
v:‖v‖=1

n

∑
k=1

(gk−hk)
(
vT Akv

)
≤ max

v:‖v‖=1

√
n

∑
k=1

(gk−hk)2

√
n

∑
k=1

(vT Akv)2

=

√
max

v:‖v‖=1

n

∑
k=1

(vT Akv)2‖g−h‖2,

where in the first inequality we made use of the triangular inequality and in the last
one of the Cauchy-Schwarz inequality.

This motivates us to define a new parameter, the weak variance σ∗.

Definition 6.6 (Weak Variance (see, for example, [133])) Given A1, . . . ,An ∈Rd×d

symmetric matrices. We define the weak variance parameter as

σ
2
∗ = max

v:‖v‖=1

n

∑
k=1

(
vT Akv

)2
.

This means that, using Gaussian concentration (and setting t = uσ∗), we have

Prob

{∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥≥ (2+2log(2d)
) 1

2
σ +uσ∗

}
≤ exp

(
−1

2
u2
)
. (6.3)

Thus, although the expected value of ‖∑n
k=1 gkAk‖ is controlled by the parame-

ter σ , its fluctuations seem to be controlled by σ∗. We compare the two quantities
in the following proposition.

Proposition 6.7 Given A1, . . . ,An ∈ Rd×d symmetric matrices, recall that

σ =

√√√√∥∥∥∥∥ n

∑
k=1

A2
k

∥∥∥∥∥
2

and σ∗ =

√
max

v:‖v‖=1

n

∑
k=1

(vT Akv)2.
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We have
σ∗ ≤ σ .

Proof. Using the Cauchy-Schwarz inequality,

σ
2
∗ = max

v:‖v‖=1

n

∑
k=1

(
vT Akv

)2

= max
v:‖v‖=1

n

∑
k=1

(
vT [Akv]

)2

≤ max
v:‖v‖=1

n

∑
k=1

(‖v‖‖Akv‖)2

= max
v:‖v‖=1

n

∑
k=1
‖Akv‖2

= max
v:‖v‖=1

n

∑
k=1

vT A2
kv

=

∥∥∥∥∥ n

∑
k=1

A2
k

∥∥∥∥∥
= σ

2.

2

6.3.1 Optimality of matrix concentration result for Gaussian series

The following simple calculation is suggestive that the parameter σ in Theorem 6.5
is indeed the correct parameter to understand E‖∑n

k=1 gkAk‖.

E

∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
(

n

∑
k=1

gkAk

)2
∥∥∥∥∥∥= E max

v: ‖v‖=1
vT

(
n

∑
k=1

gkAk

)2

v

≥ max
v: ‖v‖=1

EvT

(
n

∑
k=1

gkAk

)2

v = max
v: ‖v‖=1

vT

(
n

∑
k=1

A2
k

)
v = σ

2.

But a natural question is whether the logarithmic term is needed. Motivated by
this question we will explore a couple of examples.

Example 6.8 We can write a d × d Wigner matrix W as a gaussian series, by
taking Ai j for i≤ j defined as

Ai j = eieT
j + e jeT

i ,
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if i 6= j, and
Aii =

√
2eieT

i .

It is not difficult to see that, in this case, ∑i≤ j A2
i j = (d + 1)Id×d , meaning that

σ =
√

d +1. This implies that Theorem 6.5 gives us

E‖W‖.
√

d logd,

however, we know that E‖W‖ �
√

d, meaning that the bound given by NCK (The-
orem 6.5) is, in this case, suboptimal by a logarithmic factor.2

The next example will show that the logarithmic factor is in fact needed in
some examples

Example 6.9 Consider Ak = ekeT
k ∈ Rd×d for k = 1, . . . ,d. The matrix ∑

n
k=1 gkAk

corresponds to a diagonal matrix with independent standard gaussian random
variables as diagonal entries, and so its spectral norm is given by maxk |gk|. It
is known that max1≤k≤d |gk| �

√
logd. On the other hand, a direct calculation

shows that σ = 1. This shows that the logarithmic factor cannot, in general, be
removed.

This motivates the question of trying to understand when is it that the extra
dimensional factor is needed. For both these examples, the resulting matrix X =

∑
n
k=1 gkAk has independent entries (except for the fact that it is symmetric). The

case of independent entries [112, 117, 82, 24] is now somewhat understood:

Theorem 6.10 ([24]) If X is a d×d random symmetric matrix with gaussian inde-
pendent entries (except for the symmetry constraint) whose entry i, j has variance
b2

i j then

E‖X‖.

√√√√max
1≤i≤d

d

∑
j=1

b2
i j +max

i j

∣∣bi j
∣∣√logd.

Remark 6.11 X in the theorem above can be written in terms of a Gaussian series
by taking

Ai j = bi j
(
eieT

j + e jeT
i
)
,

for i < j and Aii = biieieT
i . One can then compute σ and σ∗:

σ
2 = max

1≤i≤d

d

∑
j=1

b2
i j and σ

2
∗ � b2

i j.

2By a� b we mean a . b and a & b.
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This means that, when the random matrix in NCK (Theorem 6.5) has independent
entries (modulo symmetry) then

E‖X‖. σ +
√

logdσ∗. (6.4)

Theorem 6.10 together with a recent improvement of Theorem 6.5 by Tropp [134]3

motivate the bold possibility of (6.4) holding in more generality.

Conjecture 6.12 Let A1, . . . ,An ∈ Rd×d be symmetric matrices and g1, . . . ,gn ∼
N (0,1) i.i.d., then:

E

∥∥∥∥∥ n

∑
k=1

gkAk

∥∥∥∥∥. σ +(logd)
1
2 σ∗,

While it may very will be that Conjecture 6.12 is false, no counter example is
known, up to date.

6.4 Matrix concentration inequalities

In what follows, we closely follow [132] and present an elementary proof of a few
useful matrix concentration inequalities. We start with a Master Theorem of sorts
for Rademacher series (the Rademacher analogue of Theorem 6.5)

Theorem 6.13 Let H1, . . . ,Hn ∈ Rd×d be symmetric matrices and ε1, . . . ,εn i.i.d.
Rademacher random variables (meaning = +1 with probability 1/2 and = −1
with probability 1/2), then:

E

∥∥∥∥∥ n

∑
k=1

εkHk

∥∥∥∥∥≤ (1+2dlog(d)e
) 1

2
σ ,

where

σ
2 =

∥∥∥∥∥ n

∑
k=1

H2
k

∥∥∥∥∥
2

. (6.5)

Using Theorem 6.13, we will prove the following theorem.

Theorem 6.14 Let T1, . . . ,Tn ∈ Rd×d be random independent symmetric positive
semidefinite matrices, then

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥
1
2

+
√

C(d)
(
Emax

i
‖Ti‖

) 1
2

2

,

3We briefly discuss this improvement in Remark 6.20
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where
C(d) := 4+8dlogde. (6.6)

A key step in the proof of Theorem 6.14 is an idea that is extremely useful in
Probability, the trick of symmetrization. For this reason we isolate it in a lemma.

Lemma 6.15 (Symmetrization) Let T1, . . . ,Tn be independent random matrices
(note that they do not necessarily need to be positive semidefinite, for the sake of
this lemma) and ε1, . . . ,εn random i.i.d. Rademacher random variables (indepen-
dent also from the matrices). Then

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥+2E

∥∥∥∥∥ n

∑
i=1

εiTi

∥∥∥∥∥
Proof. The triangular inequality gives

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥+E

∥∥∥∥∥ n

∑
i=1

(Ti−ETi)

∥∥∥∥∥ .
Let us now introduce, for each i, a random matrix T ′i identically distributed to Ti

and independent (all 2n matrices are independent). Then

E

∥∥∥∥∥ n

∑
i=1

(Ti−ETi)

∥∥∥∥∥ = ET

∥∥∥∥∥ n

∑
i=1

(
Ti−ETi−ET ′i

[
T ′i −ET ′i T ′i

])∥∥∥∥∥
= ET

∥∥∥∥∥ET ′
n

∑
i=1

(
Ti−T ′i

)∥∥∥∥∥≤ E

∥∥∥∥∥ n

∑
i=1

(
Ti−T ′i

)∥∥∥∥∥ ,
where we use the notation Ea to mean that the expectation is taken with respect
to the variable a and the last step follows from Jensen’s inequality with respect to
ET ′ .

Since Ti−T ′i is a symmetric random variable,4 it is identically distributed to
εi (Ti−T ′i ), which gives

E

∥∥∥∥∥ n

∑
i=1

(
Ti−T ′i

)∥∥∥∥∥=E

∥∥∥∥∥ n

∑
i=1

εi
(
Ti−T ′i

)∥∥∥∥∥≤E

∥∥∥∥∥ n

∑
i=1

εiTi

∥∥∥∥∥+E

∥∥∥∥∥ n

∑
i=1

εiT ′i

∥∥∥∥∥= 2E

∥∥∥∥∥ n

∑
i=1

εiTi

∥∥∥∥∥ ,
concluding the proof. 2

4Note we use the notation “symmetric random variable to mean X ∼−X and symmetric matrix
to mean XT = X
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Proof. [of Theorem 6.14]
Using Lemma 6.15 and Theorem 6.13 we get

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥+√C(d)E

∥∥∥∥∥ n

∑
i=1

T 2
i

∥∥∥∥∥
1
2

The trick now is to make a term like the one in the LHS appear in the RHS. For
that we start by noting (you can see Fact 2.3 in [132] for an elementary proof) that,
since Ti � 0, ∥∥∥∥∥ n

∑
i=1

T 2
i

∥∥∥∥∥≤max
i
‖Ti‖

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥ .
This means that

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥+√C(d)E

(max
i
‖Ti‖

) 1
2

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥
1
2
 .

Furthermore, applying the Cauchy-Schwarz inequality for E gives,

E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥≤
∥∥∥∥∥ n

∑
i=1

ETi

∥∥∥∥∥+√C(d)
(
Emax

i
‖Ti‖

) 1
2
(
E

∥∥∥∥∥ n

∑
i=1

Ti

∥∥∥∥∥
) 1

2

,

Now that the term E‖∑n
i=1 Ti‖ appears in the RHS, the proof can be finished with a

simple application of the quadratic formula (see Section 6.1. in [132] for details).
2

We now show an inequality for general symmetric matrices

Theorem 6.16 Let Y1, . . . ,Yn ∈ Rd×d be random independent symmetric matrices
satisfying EYi = 0, then

E

∥∥∥∥∥ n

∑
i=1

Yi

∥∥∥∥∥≤√C(d)σ +C(d)L,

where,

σ
2 =

∥∥∥∥∥ n

∑
i=1

EY 2
i

∥∥∥∥∥ and L2 = Emax
i
‖Yi‖2 (6.7)

and, as in (6.6),
C(d) := 4+8dlogde.
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Proof.
Using Symmetrization (Lemma 6.15) and Theorem 6.13, we get

E

∥∥∥∥∥ n

∑
i=1

Yi

∥∥∥∥∥≤ 2EY

[
Eε

∥∥∥∥∥ n

∑
i=1

εiYi

∥∥∥∥∥
]
≤
√

C(d)E

∥∥∥∥∥ n

∑
i=1

Y 2
i

∥∥∥∥∥
1
2

.

Jensen’s inequality gives

E

∥∥∥∥∥ n

∑
i=1

Y 2
i

∥∥∥∥∥
1
2

≤

(
E

∥∥∥∥∥ n

∑
i=1

Y 2
i

∥∥∥∥∥
) 1

2

,

and the proof can be concluded by noting that Y 2
i � 0 and using Theorem 6.14. 2

Remark 6.17 (The rectangular case) One can extend Theorem 6.16 to general
rectangular matrices S1, . . . ,Sn ∈ Rd1×d2 by setting

Yi =

[
0 Si

ST
i 0

]
,

and noting that

∥∥Y 2
i

∥∥= ∥∥∥∥∥
[

0 Si

ST
i 0

]2
∥∥∥∥∥=

∥∥∥∥[ SiST
i 0

0 ST
i Si

]∥∥∥∥= max
{∥∥ST

i Si
∥∥ ,∥∥SiST

i

∥∥} .
For details we refer to [132].

In order to prove Theorem 6.13, we will use an arithmetic mean-geometric
mean (AM-GM) like inequality for matrices.

Lemma 6.18 Given symmetric matrices H,W,Y ∈Rd×d and non-negative integers
r,q satisfying q≤ 2r,

Tr
[
HW qHY 2r−q]+Tr

[
HW 2r−qHY q]≤ Tr

[
H2 (W 2r +Y 2r)] ,

and summing over q gives

2r

∑
q=0

Tr
[
HW qHY 2r−q]≤ (2r+1

2

)
Tr
[
H2 (W 2r +Y 2r)] .
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We refer to Fact 2.4 in [132] for an elementary proof but note that it is a matrix
analogue to the inequality,

µ
θ

λ
1−θ +µ

1−θ
λ

θ ≤ λ +µ

for µ,λ ≥ 0 and 0 ≤ θ ≤ 1, which can be easily shown by adding two AM-GM
inequalities

µ
θ

λ
1−θ ≤ θ µ +(1−θ)λ and µ

1−θ
λ

θ ≤ (1−θ)µ +θλ .

Proof. [of Theorem 6.13]
Let X = ∑

n
k=1 εkHk, then for any positive integer p,

E‖X‖ ≤
(
E‖X‖2p) 1

2p =
(
E‖X2p‖

) 1
2p ≤

(
ETrX2p) 1

2p ,

where the first inequality follows from Jensen’s inequality and the last from X2p �
0 and the observation that the trace of a positive semidefinite matrix is at least its
spectral norm. In the sequel, we upper bound ETrX2p. We introduce X+i and X−i

as X conditioned on εi being, respectively +1 or −1. More precisely

X+i = Hi +∑
j 6=i

ε jH j and X−i =−Hi +∑
j 6=i

ε jH j.

Then, we have

ETrX2p = ETr
[
XX2p−1]= E

n

∑
i=1

TrεiHiX2p−1.

Note that Eεi Tr
[
εiHiX2p−1

]
= 1

2 Tr
[
Hi

(
X2p−1
+i −X2p−1

−i

)]
, this means that

ETrX2p =
n

∑
i=1

E
1
2

Tr
[
Hi

(
X2p−1
+i −X2p−1

−i

)]
,

where the expectation can be taken over ε j for j 6= i.
Now we rewrite X2p−1

+i −X2p−1
−i as a telescopic sum:

X2p−1
+i −X2p−1

−i =
2p−2

∑
q=0

Xq
+i (X+i−X−i)X2p−2−q

−i ,

which gives

ETrX2p =
n

∑
i=1

2p−2

∑
q=0

E
1
2

Tr
[
HiX

q
+i (X+i−X−i)X2p−2−q

−i

]
.
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Since X+i−X−i = 2Hi we get

ETrX2p =
n

∑
i=1

2p−2

∑
q=0

ETr
[
HiX

q
+iHiX

2p−2−q
−i

]
. (6.8)

We now make use of Lemma 6.18 to get5 to get

ETrX2p ≤
n

∑
i=1

2p−1
2

ETr
[
H2

i

(
X2p−2
+i +X2p−2

−i

)]
. (6.9)

Hence,

n

∑
i=1

2p−1
2

ETr
[
H2

i

(
X2p−2
+i +X2p−2

−i

)]
= (2p−1)

n

∑
i=1

ETr

H2
i

(
X2p−2
+i +X2p−2

−i

)
2


= (2p−1)

n

∑
i=1

ETr
[
H2

i Eεi

[
X2p−2]]

= (2p−1)
n

∑
i=1

ETr
[
H2

i X2p−2]
= (2p−1)ETr

[(
n

∑
i=1

H2
i

)
X2p−2

]

Since X2p−2 � 0 we have

Tr

[(
n

∑
i=1

H2
i

)
X2p−2

]
≤

∥∥∥∥∥ n

∑
i=1

H2
i

∥∥∥∥∥TrX2p−2 = σ
2 TrX2p−2, (6.10)

which gives
ETrX2p ≤ σ

2(2p−1)ETrX2p−2. (6.11)

Applying this inequality, recursively, we get

ETrX2p ≤ [(2p−1)(2p−3) · · ·(3)(1)]σ2pETrX0 = (2p−1)!!σ2pd

Hence,

E‖X‖ ≤
(
ETrX2p) 1

2p ≤ [(2p−1)!!]
1

2p σd
1

2p .

5See Remark 6.20 regarding the suboptimality of this step.
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Taking p = dlogde and using the fact that (2p− 1)!! ≤
(

2p+1
e

)p
(see [132] for

an elementary proof consisting essentially of taking logarithms and comparing the
sum with an integral) we get

E‖X‖ ≤
(

2dlogde+1
e

) 1
2

σd
1

2dlogde ≤ (2dlogde+1)
1
2 σ .

.
2

Remark 6.19 A similar argument can be used to prove Theorem 6.5 (the Gaussian
series case) based on Gaussian integration by parts, see Section 7.2. in [134].

Remark 6.20 Note that, up until the step from (6.8) to (6.9) all steps are equali-
ties suggesting that this step may be the lossy step responsible by the suboptimal
dimensional factor in several cases (although (6.10) can also potentially be lossy,
it is not uncommon that ∑H2

i is a multiple of the identity matrix, which would
render this step also an equality).

In fact, Joel Tropp [134] recently proved an improvement over the NCK in-
equality that, essentially, consists in replacing inequality (6.9) with a tighter argu-
ment. In a nutshell, the idea is that, if the Hi’s are non-commutative, most sum-
mands in (6.8) are actually expected to be smaller than the ones corresponding to
q = 0 and q = 2p−2, which are the ones that appear in (6.9).

6.5 Other useful large deviation inequalities

This section contains several other useful scalar large deviation inequalities. We
defer the proofs to references.

6.5.1 Additive Chernoff Bound

The additive Chernoff bound, also known as Chernoff-Hoeffding theorem concerns
Bernoulli random variables.

Theorem 6.21 Given 0 < p < 1 and X1, . . . ,Xn i.i.d. random variables distributed
as Bernoulli(p) random variable (meaning that it is 1 with probability p and 0 with
probability 1− p), then, for any ε > 0:

• Prob

{
1
n

n

∑
i=1

Xi ≥ p+ ε

}
≤

[(
p

p+ ε

)p+ε( 1− p
1− p− ε

)1−p−ε
]n
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• Prob

{
1
n

n

∑
i=1

Xi ≤ p− ε

}
≤

[(
p

p− ε

)p−ε( 1− p
1− p+ ε

)1−p+ε
]n

6.5.2 Multiplicative Chernoff Bound

There is also a multiplicative version (see, for example Lemma 2.3.3. in [54]),
which is particularly useful.

Theorem 6.22 Let X1, . . . ,Xn be independent random variables taking values is
{0,1} (meaning they are Bernoulli distributed but not necessarily identically dis-
tributed). Let µ = E∑

n
i=1 Xi, then, for any δ > 0:

• Prob{X > (1+δ )µ}<

[
eδ

(1+δ )(1+δ )

]µ

• Prob{X < (1−δ )µ}<

[
e−δ

(1−δ )(1−δ )

]µ

6.5.3 Deviation bounds for χ2 variables

Another particularly useful deviation inequality is Lemma 1 in Laurent and Mas-
sart [83]:

Theorem 6.23 (Lemma 1 in Laurent and Massart [83]) Let X1, . . . ,Xn be i.i.d.
standard Gaussian random variables (N (0,1)), and a1, . . . ,an non-negative num-
bers. Let

Z =
n

∑
k=1

ak
(
X2

k −1
)
.

The following inequalities hold for any t > 0:

• Prob{Z ≥ 2‖a‖2
√

x+2‖a‖∞x} ≤ exp(−x),

• Prob{Z ≤−2‖a‖2
√

x} ≤ exp(−x),

where ‖a‖2
2 = ∑

n
k=1 a2

k and ‖a‖∞ = max1≤k≤n |ak|.

Note that if ak = 1, for all k, then Z is a χ2 random variable with n degrees of
freedom, so this theorem immediately gives a deviation inequality for χ2 random
variables, see also the tail bound (2.18).
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Chapter 7

Max Cut, Lifting, and
Approximation Algorithms

Many data analysis tasks include in them a step consisting of solving a compu-
tational problem, oftentimes in the form of finding a hidden parameter that best
explains the data, or model specifications that provide best-fits. Many such prob-
lems, including examples in previous chapters, are computationally intractable. In
complexity theory this is often captured by NP-hardness. Unless the widely be-
lieved P 6= NP conjecture is false, there is no polynomial algorithm that can solve
all instances of an NP-hard problem. Thus, when faced with an NP-hard problem
(such as the Max-Cut problem discussed below) one has three natural options: to
use an exponential type algorithm that solves exactly the problem in all instances,
to design polynomial time algorithms that only work for some of the instances
(hopefully relevant ones), or to design polynomial algorithms that, in all instances,
produce guaranteed approximate solutions. This section is about the third option,
another example of this approach is the earlier discussion on Spectral Clustering
and Cheeger’s inequality. The second option, of designing algorithms that work in
many, rather than all, instances is discussed in later chapters, notably these goals
are often achieved by the same algorithms.

The Max-Cut problem is defined as follows: Given a graph G = (V,E) with
non-negative weights wi j on the edges, find a set S ⊂ V for which cut(S) is max-
imal. Goemans and Williamson [61] introduced an approximation algorithm that
runs in polynomial time, has a randomized component in it, and is able to obtain a
cut whose expected value is guaranteed to be no smaller than a particular constant
αGW times the optimum cut. The constant αGW is referred to as the approximation
ratio.
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Let V = {1, . . . ,n}. One can restate Max-Cut as

max 1
2 ∑i< j wi j(1− yiy j)

s.t. |yi|= 1
(7.1)

The yi’s are binary variables that indicate set membership, i.e., yi = 1 if i ∈ S and
yi =−1 otherwise.

Consider the following relaxation of this problem:

max 1
2 ∑i< j wi j(1−uT

i u j)
s.t. ui ∈ Rn,‖ui‖= 1.

(7.2)

This is a relaxation because if we restrict ui to be a multiple of e1, the first element
of the canonical basis, then (7.2) is equivalent to (7.1). For this to be a useful
approach, the following two properties should hold:

(a) Problem (7.2) is easy to solve.

(b) The solution of (7.2) is, in some way, related to the solution of (7.1).

Definition 7.1 Given a graph G, we define MaxCut(G) as the optimal value of (7.1)
and RMaxCut(G) as the optimal value of (7.2).

We start with property (a). Set X to be the Gram matrix of u1, . . . ,un, that is,
X =UTU where the i’th column of U is ui. We can rewrite the objective function
of the relaxed problem as

1
2 ∑

i< j
wi j(1−Xi j)

One can exploit the fact that X having a decomposition of the form X = Y TY is
equivalent to being positive semidefinite, denoted X � 0. The set of PSD matrices
is a convex set. Also, the constraint ‖ui‖ = 1 can be expressed as Xii = 1. This
means that the relaxed problem is equivalent to the following semidefinite program
(SDP):

max 1
2 ∑i< j wi j(1−Xi j)

s.t. X � 0 and Xii = 1, i = 1, . . . ,n.
(7.3)

This SDP can be solved (up to ε accuracy) in time polynomial on the input size
and log(ε−1)[136].

There is an alternative way of viewing (7.3) as a relaxation of (7.1). By taking
X = yyT one can formulate a problem equivalent to (7.1)
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max 1
2 ∑i< j wi j(1−Xi j)

s.t. X � 0 , Xii = 1, i = 1, . . . ,n, and rank(X) = 1.
(7.4)

The SDP (7.3) can be regarded as a relaxation of (7.4) obtained by removing the
non-convex rank constraint. In fact, this is how we will later formulate a similar
relaxation for the minimum bisection problem, in Chapter 8.

We now turn to property (b), and consider the problem of forming a solution to
(7.1) from a solution to (7.3). From the solution {ui}i=1,...,n of the relaxed problem
(7.3), we produce a cut subset S′ by randomly picking a vector r ∈ Rn from the
uniform distribution on the unit sphere and setting

S′ = {i|rT ui ≥ 0}

In other words, we separate the vectors u1, . . . ,un by a random hyperplane (perpen-
dicular to r). We will show that the cut given by the set S′ is comparable to the
optimal one.

Figure 7.1: Illustration of the relationship between the angle between vectors and
their inner product, θ = arccos(uT

i u j)

Let W be the value of the cut produced by the procedure described above. Note
that W is a random variable, whose expectation is easily seen (see Figure 7.1) to be
given by

E[W ] = ∑
i< j

wi j Pr
{

sign(rT ui) 6= sign(rT u j)
}

= ∑
i< j

wi j
1
π

arccos(uT
i u j).
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If we define αGW as

αGW = min
−1≤x≤1

1
π

arccos(x)
1
2(1− x)

,

it can be shown that αGW > 0.87 (see, for example [61]).
By linearity of expectation

E[W ] = ∑
i< j

wi j
1
π

arccos(uT
i u j)≥ αGW

1
2 ∑

i< j
wi j(1−uT

i u j). (7.5)

Let MaxCut(G) be the maximum cut of G, meaning the maximum of the orig-
inal problem (7.1). Naturally, the optimal value of (7.2) is larger or equal than
MaxCut(G). Hence, an algorithm that solves (7.2) and uses the random rounding
procedure described above produces a cut W satisfying

MaxCut(G)≥ E[W ]≥ αGW
1
2 ∑

i< j
wi j(1−uT

i u j)≥ αGW MaxCut(G), (7.6)

thus having an approximation ratio (in expectation) of αGW . Note that one can run
the randomized rounding procedure several times and select the best cut.1 We thus
have

MaxCut(G)≥ E[W ]≥ αGW RMaxCut(G)≥ αGW MaxCut(G)

Can αGW be improved?

A natural question is to ask whether there exists a polynomial time algorithm that
has an approximation ratio better than αGW .

Figure 7.2: The Unique Games Problem

The unique games problem (as depicted in Figure 7.2) is the following: Given
a graph and a set of k colors, and, for each edge, a matching between the colors,

1It is worth noting that one is only guaranteed to solve 7.2 up to an approximation of ε from its
optimum value. However, since this ε can be made arbitrarily small, one can get the approximation
ratio arbitrarily close to αGW .
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the goal in the unique games problem is to color the vertices as to agree with as
high of a fraction of the edge matchings as possible. For example, in Figure 7.2 the
coloring agrees with 3

4 of the edge constraints, and it is easy to see that one cannot
do better.

The Unique Games Conjecture of Khot [75], has played a major role in hard-
ness of approximation results.

Conjecture 7.2 For any ε > 0, the problem of distinguishing whether an instance
of the Unique Games Problem is such that it is possible to agree with a ≥ 1− ε

fraction of the constraints or it is not possible to even agree with a ε fraction of
them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such in-
stances of the unique games problem [13], however no polynomial time algorithm
has been found so far. At the moment one of the strongest candidates to break the
Unique Games Conjecture is a relaxation based on the Sum-of-squares hierarchy
that we will discuss below.

Remarkably, approximating Max-Cut with an approximation ratio better than
αGW is as hard as refuting the Unique Games Conjecture (UG-hard) [76]. More
generality, if the Unique Games Conjecture is true, the semidefinite programming
approach described above produces optimal approximation ratios for a large class
of problems [109].

Not depending on the Unique Games Conjecture, there is a NP-hardness of
approximation of 16

17 for Max-Cut [67].

Remark 7.3 Note that a simple greedy method that assigns membership to each
vertex as to maximize the number of edges cut involving vertices already assigned
achieves an approximation ratio of 1

2 (even of 1
2 of the total number of edges, not

just of the optimal cut).

7.1 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained above.
Let us first slightly reformulate the problem (recall that wii = 0).

Recall from Proposition 4.3 that a cut can be rewritten as a quadratic form
involving the graph Laplcian. We can rewrite (7.1) as

max 1
4 yT LGy
yi =±1, i = 1, . . . ,n.

(7.7)

Similarly, (7.3) can be written (by taking X = yyT ) as
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max 1
4 Tr(LGX)

s.t. X � 0
Xii = 1, i = 1, . . . ,n.

(7.8)

In Chapter 8 we will derive the the dual program to (7.8) in the context of
recovery in the Stochastic Block Model. Here we will simply state it, and show
weak duality as it will be important for the argument that follows.

min Tr(D)
s.t. D is a diagonal matrix

D− 1
4 LG � 0.

(7.9)

Indeed, if X is a feasible solution to (7.8) and D a feasible solution to (7.9) then,
since X and D− 1

4 LG are both positive semidefinite Tr
[
X
(
D− 1

4 LG
)]
≥ 0 which

gives

0≤ Tr
[

X
(

D− 1
4

LG

)]
= Tr(XD)− 1

4
Tr(LGX) = Tr(D)− 1

4
Tr(LGX) ,

since D is diagonal and Xii = 1. This shows weak duality, the fact that the value
of (7.9) is larger than the one of (7.8).

If certain conditions, the so called Slater conditions [137, 136], are satisfied
then the optimal values of both programs are known to coincide, this is known
as strong duality. In this case, the Slater conditions ask whether there is a matrix
strictly positive definite that is feasible for (7.8), and the identity is such a matrix.
This means that there exists D\ feasible for (7.9) such that

Tr(D\) = RMaxCut.

Hence, for any y ∈ Rn we have

1
4

yT LGy = RMaxCut− yT
(

D\− 1
4

LG

)T

y+
n

∑
i=1

D\
ii

(
y2

i −1
)
. (7.10)

Note that (7.10) certifies that no cut of G is larger than RMaxCut. Indeed, if
y ∈ {±1}2 then y2

i = 1 and so

RMaxCut− 1
4

yT LGy = yT
(

D\− 1
4

LG

)T

y.

Since D\− 1
4 LG � 0, there exists V such that D\− 1

4 LG =VV T with the columns of

V denoted by v1, . . . ,vn, meaning that yT
(
D\− 1

4 LG
)T

y =
∥∥V T y

∥∥2
= ∑

n
k=1(v

T
k y)2.
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Hence, for any y ∈ {±1}2,

RMaxCut− 1
4

yT LGy =
n

∑
k=1

(vT
k y)2.

In other words, RMaxCut− 1
4 yT LGy is, for y in the hypercube (y∈ {±1}2), a sum-

of-squares of degree 2. This is known as a sum-of-squares certificate [27, 26, 103,
81, 118, 102]; indeed, if a real-valued polynomial is a sum-of-squares naturally it
is non-negative.

Note that, by definition, MaxCut− 1
4 yT LGy is always non-negative on the hy-

percube. This does not mean, however, that it needs to be a sum-of-squares2 of
degree 2.

The remarkable fact is that sum-of-squares certificates of at most a specified
degree can be found using Semidefinite programming [103, 81]. In fact, SDPs (7.8)
and (7.9) are finding the smallest real number Λ such that Λ− 1

4 yT LGy is a sum-
of-squares of degree 2 over the hypercube. The dual SDP is finding a certificate as
in (7.10) while the primal is in some sense constraining the degree 2 moments of y
Xi j = yiy j (we recommend [26] for nice lecture notes on sum-of-squares; see also
Remark 7.4). Many natural questions remain open towards a precise understanding
of the power of SDPs corresponding to higher degree sum-of-squares certificates.

Remark 7.4 (triangular inequalities and Sum of squares level 4) A natural follow-
up question is whether the relaxation of degree 4 is actually strictly tighter than the
one of degree 2 for Max-Cut (in the sense of forcing extra constraints). What fol-
lows is an interesting set of inequalities that degree 4 enforces and that degree 2
doesn’t, known as triangular inequalities. This example helps illustrate the differ-
ences between Sum-of-Squares certificates of different degree.

Since yi ∈ {±1} we naturally have that, for all i, j,k

yiy j + y jyk + ykyi ≥−1,

this would mean that, for Xi j = yiy j we would have,

Xi j +X jk +Xik ≥−1,

however it is not difficult to see that the SDP (7.8) of degree 2 is only able to
constraint

Xi j +X jk +Xik ≥−
3
2
,

which is considerably weaker. There are a few different ways of thinking about this,
one is that the three vector ui,u j,uk in the relaxation may be at an angle of 120

2This is related with Hilbert’s 17th problem [115] and Stengle’s Positivstellensatz [119]
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degrees with each other. Another way of thinking about this is that the inequality
yiy j + y jyk + ykyi ≥−3

2 can be proven using sum-of-squares proof with degree 2:

(yi + y j + yk)
2 ≥ 0 ⇒ yiy j + y jyk + ykyi ≥−

3
2

However, the stronger constraint cannot.
On the other hand, if degree 4 monomials are involved, (let’s say XS = ∏s∈S ys,

note that X/0 = 1 and Xi jXik = X jk) then the constraint
X/0
Xi j

X jk
Xki




X/0
Xi j

X jk
Xki


T

=


1 Xi j X jk Xki

Xi j 1 Xik X jk
X jk Xik 1 Xi j

Xki X jk Xi j 1

� 0

implies Xi j +X jk +Xik ≥−1 just by taking

1T


1 Xi j X jk Xki

Xi j 1 Xik X jk
X jk Xik 1 Xi j

Xki X jk Xi j 1

1≥ 0.

Also, note that the inequality yiy j + y jyk + ykyi ≥ −1 can indeed be proven using
sum-of-squares proof with degree 4 (recall that y2

i = 1):

(1+ yiy j + y jyk + ykyi)
2 ≥ 0 ⇒ yiy j + y jyk + ykyi ≥−1.

Interestingly, it is known [77] that these extra inequalities alone will not increase
the approximation power (in the worst case) of (7.3).



Chapter 8

Community Detection and the
Power of Convex Relaxations

The problem of detecting communities in network data is a central problem in data
science, examples of interest include social networks, the internet, or biological and
ecological networks. In Chapter 4 we discussed clustering in the context of graphs,
and described performance guarantees for spectral clustering (based on Cheeger’s
Inequality) that made no assumptions on the underlying graph. While these guar-
antees are remarkable, they are worst-case and hence pessimistic in nature. In an
effort to understand the performance of some of these approaches on more realistic
models of data, we will now analyze a generative model for graphs with commu-
nity structure, the stochastic block model. On the methodology side, we will focus
on convex relaxations, based on semidefinite programming (as in Chapter 7), and
will show that this approach achieves exact recovery of the communities on graphs
drawn from this model. The techniques developed to prove these guarantees mirror
the ones used to prove analogous guarantees for a variety of other problems where
convex relaxations yield exact recovery.

8.1 The Stochastic Block Model

The Stochastic Block Model is a random graph model that produces graphs with
a community structure. While, as with any model, we do not expect it to capture
all properties of a real world network (examples include network hubs, power-
law degree distributions, and other structures) the goal is to study a simple graph
model that produces community structure, as a test bed for understanding funda-
mental limits of community detection and analyzing the performance of recovery
algorithms.
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Definition 8.1 (Stochastic Block Model) Let n and k be positive integers repre-
senting respectively the number of nodes and communities, c ∈ [k]n be the vector
of community memberships for the different nodes, and P ∈ [0,1]k×k a symmet-
ric matrix of connectivity probabilities. A graph G is said to be drawn from the
Stochastic Block Model on n nodes, when for each pair of nodes (i, j) the proba-
bility that (i, j) ∈ E is independent from all other edges and given by Pci,c j .

We will focus on the special case of the two communities (k = 2) balanced
symmetric block model where n is even, both communities are of the same size,
and

P =

[
p q
q p

]
,

where p,q ∈ [0,1] are constants, cf. Figure 8.1. Furthermore, we will focus on the
associative case (p > q), while noting that all that follows can be easily adapted to
the disassociate case (q > p). . We note also that when p = q this model reduces
to the classical Erdős-Renyı́ model described in Chapter 4. Since there are only
two communities we will identify their membership labels with +1 and −1.

(a) (b)

Figure 8.1: A graph generated form the stochastic block model with 600 nodes and
2 communities, scrambled in Fig. 8.1(a), clustered and color-coded in Fig. 8.1(b).
Nodes in this graph connect with probability p = 6/600 within communities and
q = 0.1/600 across communities. (Image courtesy of Emmanuel Abbe.)

Many fascinating questions can be asked in the context of this model. Natural
questions include to characterize statistics of the model, such as number of triangles
or larger cliques. In this chapter, motivated by the problem of community detection,
we are interested in understanding when is it possible to reconstruct, or estimate,
the community memberships from an observation of the graph, and what efficient
algorithms succeed at this inference task.
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Before proceeding we note that the difficulty of this problem should certainly
depend on the value of p and q. As illustrative examples, this problem is trivial
when p= 1 and q= 0 and hopeless when p= q (notice that even in the easy case the
actual membership can only be determined up to a re-labeling of the communities).
As p > q, we will attempt to recover the original partition by trying to compute the
minimum bisection of the graph; while related to the Max-Cut problem described
in Chapter 7, notice how the objective here is to produce the minimum balanced
cut.

8.2 Spike Model Prediction

A natural approach is to draw motivation from Chapter 4 and to use a form of
spectral clustering to attempt to partition the graph.

Let A be the adjacency matrix of G,

Ai j =

{
1 if (i, j) ∈ E(G)
0 otherwise.

(8.1)

Note that in our model, A is a random matrix. We would like to solve

max ∑
i, j

Ai jxix j

s.t. xi =±1,∀i (8.2)

∑
j

x j = 0,

The optimal solution x of (8.2) takes the value +1 on one side of a partition and
−1 on the other side, where the partition is balanced and achieves the minimum
cut between the resulting clusters.

Relaxing the condition xi =±1, ∀i to ‖x‖2
2 = n would yield a spectral method

max ∑
i, j

Ai jxix j

s.t. ‖x‖2 =
√

n (8.3)

1T x = 0

The solution of (8.3) corresponds to the leading eigenvector of the matrix obtained
by projecting A on the orthogonal complement of the all-ones vector 1.
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The matrix A is a random matrix whose expectation is given1 by

E[A] =
{

p if i and j are in the same community
q otherwise.

Let g denote the vector corresponding to the true community memberships, with
entries +1 and −1; note that this is the vector we want to recover.2 We can write

E[A] =
p+q

2
11T +

p−q
2

ggT ,

and
A =

(
A−E[A]

)
+

p+q
2

11T +
p−q

2
ggT .

In order to remove the term p+q
2 11T we consider the random matrix

A = A− p+q
2

11T .

It is easy to see that

A =
(
A −E[A ]

)
+

p−q
2

ggT .

This means that A is the sum of a random matrix whose expected value is zero
and a rank-1 matrix, i.e.

A =W +λvvT

where W =
(
A −E[A ]

)
and λvvT = p−q

2 n
(

g√
n

)(
g√
n

)T
. In Chapter 3 we saw

that for a large enough rank-1 additive perturbation to a Wigner matrix, there is an
eigenvalue associated with the perturbation that pops outside of the distribution of
eigenvalues of a Wigner Gaussian matrix W . Moreover, whenever this happens,
we saw that the leading eigenvector has a non-trivial correlation with g.

Since A is simply A minus a multiple of 11T , problem (8.3) is equivalent to

max ∑
i, j

Ai jxix j

s.t. ‖x‖2 =
√

n (8.4)

1T x = 0

Since we have subtracted a multiple of 11T , we will drop the constraint 1T x= 0.
Notice how a deviation from 1T x = 0 would be penalized in the new objective, the

1For simplicity we assume that self-loops also have probability p. This does not affect any of
the conclusions, as it does not give information about the community memberships.

2We want to recover either g or −g, as they correspond to different labelings of the same com-
munity structure.
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fact that the multiple we subtracted is sufficient for us to drop the constraint will
be confirmed by the success of the new optimization problem, now given by

max ∑
i, j

Ai jxix j

s.t. ‖x‖2 =
√

n, (8.5)

whose solution corresponds to the leading eigenvector of A .
Recall that if A −E[A ] is a Wigner matrix with i.i.d. entries with zero mean

and variance σ2 then its empirical spectral density follows the semicircle law and it
is essentially supported in [−2σ

√
n,2σ

√
n]. We would then expect the top eigen-

vector of A to correlate with g as long as

p−q
2

n >
2σ
√

n
2

. (8.6)

Unfortunately A −E[A ] is not a Wigner matrix in general. In fact, half of its
entries have variance p(1− p) while the variance of the other half is q(1−q).

Putting rigor aside for a second, if we were to take σ2 = p(1−p)+q(1−q)
2 then

(8.6) would suggest that the leading eigenvector of A correlates with the true par-
tition vector g as long as

p−q
2

>
1√
n

√
p(1− p)+q(1−q)

2
, (8.7)

This argument is of course not valid, because the matrix in question is not a Wigner
matrix. The special case q = 1− p can be easily salvaged, since all entries of A −
E[A ] have the same variance and they can be made to be identically distributed
by conjugating with ggT . This is still an impressive result, it says that if p = 1−q
then p−q needs only to be around 1√

n to be able to make an estimate that correlates
with the original partitioning!

An interesting regime (motivated, for example, by friendship networks in social
sciences) is when the average degree of each node is constant. This can be achieved
by taking p = a

n and q = b
n for constants a and b. While the argument presented to

justify condition (8.7) is not valid in this setting, it nevertheless suggests that the
condition on a and b needed to be able to make an estimate that correlates with the
original partition, often referred to as partial recovery, is

(a−b)2 > 2(a+b). (8.8)

Remarkably this was posed as a conjecture by Decelle et al. [46] and proved
in a series of works by Mossel et al. [99, 98] and Massoulie [93]. While describ-
ing the proof of this conjecture is outside the scope of this book, we note that the
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conjectures were obtained by studying fixed points of a certain linearization of be-
lief propagation using techniques from statistical physics. The lower bound can be
proven by showing contiguity between the two models below the phase transition,
and the upper bound is obtained by analyzing an algorithm that is an adaptation of
belief propagation and studying the so-called non-backtracking operator. We refer
the reader to the excellent survey of Abbe [4] and references therein for further
reading.

Remark 8.2 (More than three communities) The balanced symmetric stochas-
tic block model with k> 3 communities is conjectured to have a fascinating statistical-
to-computational gap. In the sparse regime of inner probability p = a

n and outer
probability q = b

n it is believed that, for k > 3 there is a regime of the parame-
ters a and b such that the problem of partially recovering the community mem-
berships is statistically, or information-theoretically, possible but that there does
not exist a polynomial-time algorithm to perform this task. These conjectures are
based on insight obtained with tools from statistical physics. We refer the reader
to [46, 141, 60, 3] for further reading.

8.3 Exact recovery

We now turn our attention to the problem of recovering the cluster membership of
every single node correctly, not simply having an estimate that correlates with the
true labels. We will keep our focus on the balanced, symmetric, two communities
setting and briefly describe extensions later. If the inner-probability is p = a

n then it
is not hard to show that each cluster will have isolated nodes, making it impossible
to recover the membership of every possible node correctly. In fact this is the case
whenever p≤ (2−ε) logn

n , for some ε > 0. For that reason we focus on the regime

p =
α log(n)

n
and q =

β log(n)
n

, (8.9)

for some constants α > β .
A natural algorithm would be to compute the minimum bisection (8.2) which

corresponds to the Maximum Likelihood Estimator, and also the Maximum a Pos-
teriori Estimator when the community memberships are drawn uniformly at ran-
dom. In fact, it is known (see [1] for a proof) that if

√
α−

√
β >
√

2, (8.10)

then, with high probability, (8.2) recovers the true partition. Moreover, if
√

α−
√

β <
√

2,
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no algorithm can, with high probability, recover the true partition.
In this section we will analyze a semidefinite programming relaxation, analo-

gous to the ones described in Chapter 7 for Max-Cut. By making use of convex
duality, we will derive conditions for exact recovery with this particular algorithm,
reducing the problem to a problem in random matrix theory. We will present a so-
lution to the resulting random matrix question, using the matrix concentration tools
developed in Chapter 6. While not providing a the strongest known guarantee, this
approach is extremely adaptable and can be used to solve a large number of similar
questions.

8.4 A semidefinite relaxation

Let x ∈ Rn with xi = ±1 represent a partition of the nodes (recall that there is an
ambiguity in the sense that x and −x represent the same partition). Note that if we
remove the constraint ∑ j x j = 0 in (8.2) then the optimal solution becomes x = 1.
Let us define B = 2A− (11T − I), meaning that

Bi j =


0 if i = j
1 if (i, j) ∈ E(G)
−1 otherwise

(8.11)

It is clear that the problem

max ∑
i, j

Bi jxix j

s.t. xi =±1,∀i (8.12)

∑
j

x j = 0

has the same solution as (8.2). However, when the constraint is dropped,

max ∑
i, j

Bi jxix j

s.t. xi =±1,∀i, (8.13)

x= 1 is no longer an optimal solution. As with (8.5) above, the penalization created
by subtracting a large multiple of 11T will be enough to discourage unbalanced
partitions (the reader may notice the connection with Lagrangian duality). In fact,
(8.13) is the problem we will set ourselves to solve.
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Unfortunately (8.13) is in general NP-hard (one can encode, for example, Max-
Cut by picking an appropriate B). We will relax it to an easier problem by the same
technique used to approximate the Max-Cut problem in the previous section (this
technique is often known as matrix lifting). If we write X = xxT then we can
formulate the objective of (8.13) as

∑
i, j

Bi jxix j = xT Bx = Tr(xT Bx) = Tr(BxxT ) = Tr(BX)

Also, the condition xi =±1 implies Xii = x2
i = 1. This means that (8.13) is equiv-

alent to

max Tr(BX)

s.t. Xii = 1,∀i (8.14)

X = xxT for some x ∈ Rn.

The fact that X = xxT for some x ∈Rn is equivalent to rank(X) = 1 and X � 0.
This means that (8.13) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (8.15)

X � 0

rank(X) = 1.

We now relax the problem by removing the non-convex rank constraint

max Tr(BX)

s.t. Xii = 1,∀i (8.16)

X � 0.

This is an SDP that can be solved (up to arbitrary precision) in polynomial time [136].
Since we removed the rank constraint, the solution to (8.16) is no longer guar-

anteed to be rank-1. We will take a different approach from the one we used in
Chapter 7 to obtain an approximation ratio for Max-Cut, which was a worst-case
approximation ratio guarantee. What we will show is that, for some values of α and
β , with high probability, the solution to (8.16) not only satisfies the rank constraint
but it coincides with X = ggT where g corresponds to the true partition. From X
one can compute g by simply calculating its leading eigenvector.
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8.5 Convex Duality

A standard technique to show that a candidate solution is the optimal one for a
convex problem is to use convex duality.

We will describe duality with a game theoretical intuition in mind. The idea
will be to rewrite (8.16) without imposing constraints on X but rather have the
constraints be implicitly enforced. Consider the following optimization problem.

max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX)+Tr(QX)+Tr(Z (In×n−X)) . (8.17)

Let us provide a game theoretical interpretation for (8.17). Suppose that there
is a primal player (picking X) whose objective is to maximize the objective and a
dual player (picking Z and Q after seeing X) trying to make the objective as small
as possible. If the primal player does not pick X satisfying the constraints of (8.16)
then we claim that the dual player is capable of driving the objective to−∞. Indeed,
if there is an i for which Xii 6= 1 then the dual player can simply pick Zii =−c 1

1−Xii
and make the objective as small as desired by taking a large enough c. Similarly,
if X is not positive semidefinite, then the dual player can take Q = cvvT where v is
such that vT Xv < 0. If, on the other hand, X satisfies the constraints of (8.16) then

Tr(BX)≤ min
Z, Q

Z is diagonal
Q�0

Tr(BX)+Tr(QX)+Tr(Z (In×n−X)) .

Since equality can be achieved if for example the dual player picks Q = 0n×n, then
it is evident that the values of (8.16) and (8.17) are the same:

max
X ,

Xii ∀i
X�0

Tr(BX) = max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX)+Tr(QX)+Tr(Z (In×n−X))

With this game theoretical intuition in mind, it is clear that if we change the “rules
of the game” and have the dual player decide their variables before the primal
player (meaning that the primal player can pick X knowing the values of Z and Q)
then it is clear that the objective can only increase, which means that:

max
X ,

Xii ∀i
X�0

Tr(BX)≤ min
Z, Q

Z is diagonal
Q�0

max
X

Tr(BX)+Tr(QX)+Tr(Z (In×n−X)) .

Note that we can rewrite

Tr(BX)+Tr(QX)+Tr(Z (In×n−X)) = Tr((B+Q−Z)X)+Tr(Z).
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When playing:
min
Z, Q

Z is diagonal
Q�0

max
X

Tr((B+Q−Z)X)+Tr(Z),

if the dual player does not set B+Q−Z = 0n×n then the primal player can drive the
objective value to +∞, this means that the dual player is forced to chose Q = Z−B
and so we can write

min
Z, Q

Z is diagonal
Q�0

max
X

Tr((B+Q−Z)X)+Tr(Z) = min
Z,

Z is diagonal
Z−B�0

max
X

Tr(Z),

which clearly does not depend on the choices of the primal player. This means that

max
X ,

Xii ∀i
X�0

Tr(BX)≤ min
Z,

Z is diagonal
Z−B�0

Tr(Z).

This is known as weak duality (strong duality says that, under some conditions
the two optimal values actually match, see for example [136], recall that we used
strong duality when giving a sum-of-squares interpretation to the Max-Cut approx-
imation ratio, a similar interpretation can be given in this problem, see [18]).

Also, the problem

min Tr(Z)

s.t. Z is diagonal (8.18)

Z−B� 0

is called the dual problem of (8.16).
The derivation above explains why the objective value of the dual problem

is always greater or equal to the primal problem. Nevertheless, there is a much
simpler proof (although not as enlightening): let X ,Z be a feasible point of (8.16)
and (8.18), respectively. Since Z is diagonal and Xii = 1, it follows that Tr(ZX) =
Tr(Z). Also, Z−B� 0 and X � 0, therefore Tr[(Z−B)X ]≥ 0. Altogether,

Tr(Z)−Tr(BX) = Tr[(Z−B)X ]≥ 0,

as stated.
Recall that we want to show that ggT is the optimal solution of (8.16). Then, if

we find Z diagonal, such that Z−B� 0 and

Tr[(Z−B)ggT ] = 0, (this condition is known as complementary slackness)
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then X = ggT must be an optimal solution of (8.16). To ensure that ggT is the
unique solution we just have to ensure that the nullspace of Z−B only has dimen-
sion 1 (which corresponds to multiples of g). Essentially, if this is the case, then
for any other possible solution X one could not satisfy complementary slackness.

This means that if we can find Z with the following properties:

(1) Z is diagonal

(2) Tr[(Z−B)ggT ] = 0

(3) Z−B� 0

(4) λ2(Z−B)> 0,

then ggT is the unique optimum of (8.16) and so recovery of the true partition is
possible (with an efficient algorithm). Z is known as the dual certificate, or dual
witness.

8.6 Building the dual certificate

The idea to build Z is to construct it to satisfy properties (1) and (2) and try to show
that it satisfies (3) and (4) using concentration. In fact, since Z is diagonal this
design problem has n free variables. If Z−B � 0 then condition (2) is equivalent
to (Z−B)g = 0 which provides n equations, as the resulting linear system is non-
singular, the candidate arising from using conditions (1) and (2) will be unique.

A couple of preliminary definitions will be useful before writing out the can-
didate Z. Recall that the degree matrix D of a graph G is a diagonal matrix where
each diagonal coefficient Dii corresponds to the number of neighbors of vertex i
and that λ2(M) is the second smallest eigenvalue of a symmetric matrix M.

Definition 8.3 Let G+ (resp. G−) be the subgraph of G that includes the edges that
link two nodes in the same community (resp. in different communities) and A the
adjacency matrix of G. We denote by D+

G (resp. D−G ) the degree matrix of G+ (resp.
G−) and define the Stochastic Block Model Laplacian to be

LSBM = D+
G −D−G −A.

Note that the inclusion of self loops does not change LSBM. Also, we point out that
LSBM is not in general positive-semidefinite.

Now we are ready to construct the candidate Z. Condition (2) implies that we
need Zii =

1
gi

B[i, :]g. Since B = 2A− (11T − I) we have

Zii =
1
gi
(2A− (11T − I))[i, :]g = 2

1
gi
(Ag)i +1,
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meaning that
Z = 2(D+

G −D−G )+ I.

This is our candidate dual witness. As a result

Z−B = 2(D+
G −D−G )− I−

[
2A− (11T − I)

]
= 2LSBM +11T .

It trivially follows (by construction) that

(Z−B)g = 0.

This immediately gives the following lemma.

Lemma 8.4 Let LSBM denote the Stochastic Block Model Laplacian as defined in
Definition 8.3. If

λ2(2LSBM +11T )> 0, (8.19)

then the relaxation (8.14) recovers the true partition.

Note that 2LSBM +11T is a random matrix and so this reduces to “an exercise” in
random matrix theory.

8.7 Matrix Concentration

In this section we show how the resulting question amounts to controlling the
largest eigenvalue of a random matrix, which can be done with the matrix con-
centration tools described in Chapter 6.

Let us start by noting that

E
[
2LSBM +11T ]= 2ELSBM +11T = 2ED+

G −2ED−G −2EA+11T ,

and ED+
G = n

2
α log(n)

n I, ED−G = n
2

β log(n)
n I. Moreover, EA is a matrix with four n

2 ×
n
2

blocks where the diagonal blocks have entries α log(n)
n and the off-diagonal blocks

have entries β log(n)
n .3 In other words

EA =
1
2

(
α log(n)

n
+

β log(n)
n

)
11T +

1
2

(
α log(n)

n
− β log(n)

n

)
ggT .

This means that

E
[
2LSBM +11T ]=((α−β ) logn) I+

(
1− (α +β )

logn
n

)
11T−(α−β )

logn
n

ggT .

3For simplicity we assume the possibility of self-loops; notice however that the matrix in ques-
tion does not depend on this, only its decomposition in the degree matrices and A.
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Since 2LSBMg = 0 we can safely ignore what happens in the span of g, and it
is not hard to see that

λ2
(
E
[
2LSBM +11T ])= (α−β ) logn.

Thus, it is enough to show that

‖LSBM−E [LSBM]‖< α−β

2
logn, (8.20)

which is a large deviation inequality; recall that ‖ · ‖ denotes operator norm.
The idea is to write LSBM−E [LSBM] as a sum of independent random matrices

and use the Matrix Bernstein Inequality (Theorem 6.1). This gives an illustrative
example of the applicability of matrix concentration tools, as many random matri-
ces of interest can be rewritten as sums of independent matrices.

Let us start by defining, for i and j in the same community (i.e. gi = g j),

γ
+
i j =

{
1 if (i, j) ∈ E
0 otherwise,

and

∆
+
i j = (ei− e j)(ei− e j)

T ,

where ei (resp. e j) is the vector of all zeros except the ith (resp. jth) coefficient
which is 1.

For i and j in different communities (i.e. gi 6= g j), define

γ
−
i j =

{
1 if (i, j) ∈ E
0 otherwise,

and

∆
−
i j =−(ei + e j)(ei + e j)

T .

We have
LSBM = ∑

i< j:gi=g j

γ
+
i j ∆

+
i j + ∑

i< j:gi 6=g j

γ
−
i j ∆
−
i j .

We note how (γ+i j )i, j and (γ−i j )i, j are jointly independent random variables with

expectations E(γ+i j ) =
α logn

n and E(γ−i j ) =
β logn

n . ∆
+
i j and ∆

−
i j are deterministic ma-

trices. This means that

LSBM−ELSBM = ∑
i< j:

gi=g j

(
γ
+
i j −

α logn
n

)
∆
+
i j + ∑

i< j: gi 6=g j

(
γ
−
i j −

β logn
n

)
∆
−
i j .
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We can then use Theorem 6.1 by setting

σ
2 =

∥∥∥∥∥Var
[
γ
+
]

∑
i< j: gi=g j

(
∆
+
i j

)2
+Var

[
γ
−]

∑
i< j: gi 6=g j

(
∆
−
i j

)2
∥∥∥∥∥ , (8.21)

and R = 2, since
∥∥∥∆

+
i j

∥∥∥ =
∥∥∥∆
−
i j

∥∥∥ = 2 and both (γ+i j )i, j and (γ−i j )i, j take values in
[−1,1]. Note how this bound is for the spectral norm of the summands, not just the
largest eigenvalue, as our goal is to bound the spectral norm of the random matrix.
In order to compute σ2, we write

∑
i< j: gi=g j

(
∆
+
i j

)2
= nI−

(
11T +ggT ) ,

and

∑
i< j: gi 6=g j

(
∆
−
i j

)2
= nI +

(
11T −ggT )

.
Since Var [γ+] ≤ α logn

n , Var [γ−] ≤ β logn
n , and all the summands are positive

semidefinite we have

σ
2 ≤

∥∥∥∥(α +β ) logn
n

(
nI−ggT )− (α−β ) logn

n
11T
∥∥∥∥= (α +β ) logn.

Using Theorem 6.1 for t = α−β

2 logn on both the largest and smallest eigen-
value gives

Prob
{
‖LSBM−E [LSBM]‖< α−β

2
logn

}
≤

≤ 2n · exp

 −
(

α−β

2 logn
)2

2(α +β ) logn+ 4
3

(
α−β

2 logn
)


= 2 · exp

(
− (α−β )2 logn

8(α +β )+ 8
3 (α−β )

+ logn

)

= 2n
−
(

(α−β )2

8(α+β )+ 8
3 (α−β )

−1
)
.

Together with Lemma 8.4, this implies that as long as

(α−β )2 > 8(α +β )+
8
3
(α−β ) , (8.22)
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the semidefinite programming relaxation (8.14) recovers the true partition, with
probability tending to 1 as n increases.

While it is possible to obtain a stronger guarantee for this relaxation, the deriva-
tion above illustrates the matrix concentration technique in a simple, yet powerful,
instance. In fact, the analysis in [1] uses the same technique. In order to ob-
tain a sharp guarantee (Theorem 8.5 below) one needs more specialized tools.
We refer the interested reader to [17] or [65] for a discussion and proof of The-
orem 8.5; the main idea is to separate the diagonal from the non-diagonal part of
LSBM−E [LSBM], treating the former with scalar concentration inequalities, and the
latter with specialized matrix concentration inequalities such as the ones in [24].

Theorem 8.5 Let G be a random graph with n nodes drawn according to the
stochastic block model on two communities with edge probabilities p and q. Let
p = α logn

n and q = β logn
n , where α > β are constants. Then, as long as

√
α−

√
β >
√

2, (8.23)

the semidefinite program considered above coincides with the true partition with
high probability.

Note that, if √
α−

√
β <
√

2, (8.24)

then exact recovery of the communities is impossible, meaning that the SDP algo-
rithm is optimal. Furthermore, in this regime (8.24), one can show that there will be
a node on each community that is more connected to the other community than to
its own, meaning that a partition that swaps them would have more likelihood. The
fact that the SDP will start working essentially when this starts happening appears
naturally in the analysis in [17]. More recently it has been proven that the spectral
method (8.3), followed by a simple thresholding step, also gives exact recovery
of the communities [2]. An analogous analysis has recently been obtained for the
(normalized or unnormalized) graph Laplacian in place of the adjacency matrix,
see [47]. However, the proof techniques for the graph Laplacian are different and a
bit more involved, since—unlike the adjacency matrix—the graph Laplacian does
not exhibit row/column-wise independence.

Remark 8.6 An important advantage of semidefinite relaxations is that they are
often able to produce certificates of optimality. Indeed, if the solution of the relax-
ation (8.14) is rank 1 then the user is sure that it must be the solution of (8.13).
These advantages, and ways of producing such certificates while bypassing the
need to solve the semidefinite program are discussed in [18].
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Chapter 9

Linear Dimension Reduction via
Random Projections

In Chapters 3 and 5 we saw both linear and non-linear methods for dimension re-
duction. In this chapter we will see one of the most fascinating consequences of
the phenomenon of concentration of measure in high dimensions, one of the bless-
ings of high dimensions described in Chapter 2. When given a data set in high
dimensions, we will see that it is sometimes the case that a projection to a lower di-
mensional space, taken at random, preserves certain geometric features of the data
set. The remarkable aspect here is that this “lower” dimension can be strikingly
lower. This allows for significant computational savings in many data processing
tasks by including a random projection as a pre-processing step. There is how-
ever another less obvious implication of this phenomenon with important practical
implications: since the projection is agnostic of the data, it can be leveraged even
when the data set is not explicit, such as the set of all natural images or the set of
all “possible” brain scans; this is at the heart of Compressed Sensing.

9.1 The Johnson-Lindenstrauss Lemma

Suppose one has n points, X = {x1, . . . ,xn}, in Rp (with p large). If d > n, the
points actually lie in a subspace of dimension n, so the projection f : Rp→ Rn of
the points to that subspace acts without distorting the geometry of X . In particular,
for every xi and x j, ‖ f (xi)− f (x j)‖2 = ‖xi−x j‖2, meaning that f is an isometry in
X . Suppose instead we allow a bit of distortion, and look for a map f : Rp→ Rd

that is an ε−isometry, meaning that

(1− ε)‖xi− x j‖2 ≤ ‖ f (xi)− f (x j)‖2 ≤ (1+ ε)‖xi− x j‖2. (9.1)

131
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Can we do better than d = n?
In 1984, Johnson and Lindenstrauss [72] showed a remarkable lemma that an-

swers this question affirmatively.

Theorem 9.1 (Johnson-Lindenstrauss Lemma [72]) For any 0 < ε < 1 and for
any integer n, let d be such that

d ≥ 4
1

ε2/2− ε3/3
logn. (9.2)

Then, for any set X of n points in Rd , there is a linear map f : Rp→ Rd that is an
ε−isometry for X (see (9.1)). This map can be found in randomized polynomial
time.

We follow [45] for an elementary proof for the Theorem. We need a few con-
centration of measure bounds, we will omit the proof of those but they are available
in [45] and are essentially the same ideas as those used to show the concentration
inequalities in Chapter 2.

Lemma 9.2 (see [45]) Let y1, . . . ,yp be i.i.d standard Gaussian random variables
and Y = (y1, . . . ,yd). Let g : Rp→Rd be the projection into the first d coordinates
and Z = g

(
Y
‖Y‖

)
= 1
‖Y‖(y1, . . . ,yd) and L = ‖Z‖2. It is clear that EL = d

p . In fact,
L is very concentrated around its mean

• If β < 1,

Pr
[

L≤ β
d
p

]
≤ exp

(
d
2
(1−β + logβ )

)
.

• If β > 1,

Pr
[

L≥ β
d
p

]
≤ exp

(
d
2
(1−β + logβ )

)
.

Proof. [ of Johnson-Lindenstrauss Lemma]
We will start by showing that, given a pair xi,x j a projection onto a random

subspace of dimension k will satisfy (after appropriate scaling) property (9.1) with
high probability. Without loss of generality we can assume that u = xi−x j has unit
norm. Understanding what is the norm of the projection of u on a random subspace
of dimension d is the same as understanding the norm of the projection of a (uni-
formly) random point on Sp−1 the unit sphere in Rp on a specific d-dimensional
subspace—let us say the one generated by the first d canonical basis vectors.

This means that we are interested in the distribution of the norm of the first
k entries of a random vector drawn from the uniform distribution over Sp−1 – this
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distribution is the same as taking a standard Gaussian vector in Rp and normalizing
it to the unit sphere.

Let g : Rd → Rk be the projection on a random k−dimensional subspace and

let f : Rd → Rk defined as f =
√

d
k g. Then (by the above discussion), given a pair

of distinct xi and x j,
‖ f (xi)− f (x j)‖2

‖xi−x j‖2 has the same distribution as d
k L, as defined in

Lemma 9.2. Using Lemma 9.2, we have, given a pair xi,x j,

Pr
[
‖ f (xi)− f (x j)‖2

‖xi− x j‖2 ≤ (1− ε)

]
≤ exp

(
d
2
(1− (1− ε)+ log(1− ε))

)
,

since for ε ≥ 0, log(1− ε)≤−ε− ε2/2 we have

Pr
[
‖ f (xi)− f (x j)‖2

‖xi− x j‖2 ≤ (1− ε)

]
≤ exp

(
−kε2

4

)
≤ exp(−2logn) =

1
n2 .

On the other hand,

Pr
[
‖ f (xi)− f (x j)‖2

‖xi− x j‖2 ≥ (1+ ε)

]
≤ exp

(
k
2
(1− (1+ ε)+ log(1+ ε))

)
.

since for ε ≥ 0, log(1+ ε)≤ ε− ε2/2+ ε3/3 we have

Prob
[
‖ f (xi)− f (x j)‖2

‖xi− x j‖2 ≥ (1+ ε)

]
≤ exp

(
−

k
(
ε2−2ε3/3

)
4

)

≤ exp(−2logn) =
1
n2 .

By the union bound it follows that

Pr
[
‖ f (xi)− f (x j)‖2

‖xi− x j‖2 /∈ [1− ε,1+ ε]

]
≤ 2

n2 .

Since there exist
(n

2

)
such pairs, again, a simple union bound gives

Pr
[
∃i, j :

‖ f (xi)− f (x j)‖2

‖xi− x j‖2 /∈ [1− ε,1+ ε]

]
≤ 2

n2
n(n−1)

2
= 1− 1

n
.

Therefore, choosing f as a properly scaled projection onto a random k-dimensional
subspace gives an ε-isometry on X (see (9.1)) with probability at least 1

n . We can
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achieve any desirable constant probability of success by trying O(n) such random
projections, meaning we can find an ε−isometry in randomized polynomial time.

2

Note that by considering k slightly larger one can get a good projection on the
first random attempt with high confidence. In fact, it is trivial to adapt the proof
above to obtain the following lemma:

Lemma 9.3 For any 0 < ε < 1, τ > 0, and for any integer n, let k be such that

d ≥ 2(2+ τ)

ε2/2− ε3/3
logn.

Then, for any set X of n points in Rp, take f : Rp → Rd to be a suitably scaled
projection on a random subspace of dimension d, then f is an ε−isometry for X
(see (9.1)) with probability at least 1− 1

nτ .

Lemma 9.3 is quite remarkable. Consider the situation where we are given a
high-dimensional data set in a streaming fashion – meaning that we get each data
point at a time, consecutively. To run a dimension-reduction technique like PCA
or Diffusion maps we would need to wait until we received the last data point and
then compute the dimension reduction map (both PCA and Diffusion Maps are, in
some sense, data adaptive). Using Lemma 9.3 one can just choose a projection at
random in the beginning of the process (all one needs to know is an estimate of the
logarithm of the size of the data set) and just map each point using this projection
matrix which can be done online – we do not need to see the next point to compute
the projection of the current data point. Lemma 9.3 ensures that this (seemingly
naı̈ve) procedure will, with high probably, not distort the data by more than ε .

One might wonder if such low-dimensional embeddings as provided by the
Johson-Lindenstrauss Lemma also extend to other norms besides the Euclidean
norm. For the `1-norm there exist lower bounds which prevent such a dramatic
dimension reduction (see [85]), and for the `∞-norm one can easily construct ex-
amples that demonstrate the impossibility of dimension reduction. Hence, the
Johnson-Lindenstrauss Lemma seems to be a subtle result about the Euclidean
norm.

9.1.1 The Fast Johnson-Lindenstrauss transform and optimality

Let us continue thinking about our example of high-dimensional streaming data.
After we draw the random projection matrix1, say M, for each data point x, we

1An orthogonal projection P must satisfy P = P∗ and P2 = P. Here, it is not M that represents
a projection, but M∗M, yet for our purposes of approximate norm-preserving dimension reduction it
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still have to compute Mx which has a computational cost of O(ε−2 log(n)p) since
M has O(ε−2 log(n)p) entries (since M is a random matrix, generically it will
be a dense matrix). In some applications this might be too expensive, raising the
natural question of whether one can do better. Moreover, storing a large-scale dense
matrix M is not very desirable either. There is no hope of significantly reducing the
number of rows in general, as it is known that the Johnson-Lindenstrauss Lemma
is orderwise optimal [8, 80].

We might hope to replace the dense random matrix M by a sparse matrix S to
speed up the matrix-vector multiplication and to reduce the storage requirements.
This method was proposed and analyzed in [6]. Here we discuss a slightly simpli-
fied version, see also [44].

We let S be a very sparse k×d matrix, where each row of S has just one single
non-zero entry of value

√
d/p at a location drawn uniformly at random. Then, for

any vector x ∈ Rp

E
i
[(Sx)2

i ] =
d

∑
j=1

P(i = j) · d
k
· x2

j =
1
k
‖x‖2

2,

hence E[‖Sx‖2
2] = E[

k
∑

i=1
(Sxi)

2] = ‖x‖2
2. This result is satisfactory with respect to

expectation (even for k = 1), but not with respect to the variance of ‖Sx‖2
2. For

instance, if x has only one non-zero entry we need k∼O(p) to ensure that ‖Sx‖2
2 6=

0. More generally, if one coordinate of x is much larger (in absolute value) than all
its other coordinates, then we will need a rather large value for d to guarantee that
‖Sx‖2 ≈ ‖x‖2.

A natural way to quantify the “peakiness” of a vector x is via the peak-to-
average ratio2 measured by the quantity ‖x‖∞/‖x‖2. It is easy to see that we have
(assuming x is not the zero-vector)

1
√

p
≤ ‖x‖∞

‖x‖2
≤ 1.

The upper bounds is achieved by vectors with only one non-zero entry, while the

suffices to apply M instead of M∗M. However, with a slight abuse of terminology, we still refer to M
as projection.

2This quantity also plays an important role in wireless communications. There, one tries to
avoid transmitting signals with a large peak-to-average ratio, since such signals would suffer from
nonlinear distortions when they are passing through those cheap power amplifiers that are usually
installed in cell phones. The potentially large peak-to-average ratio of OFDM signals is one of the
alleged reasons why CDMA was dominant over OFDM for such a long time.
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lower bound is met by constant-modulus vectors. Thus, if

‖x‖∞

‖x‖2
≈ 1
√

p
, (9.3)

we can hope that sparse subsampling of x will still preserve its Euclidean norm.
Thus, this suggests to include a preprocessing step by applying a rotation so

that sparse vectors become non-sparse in the new basis, thereby reducing their ∞-
norm (while their 2-norm remains invariant under rotation). Two natural choices
for such a rotation are the Discrete Fourier transform (which maps unit-vectors
into constant modulus vectors) and its Z2-cousin, the Walsh-Hadamard matrix3.
But since the Fast Johnson-Lindenstrauss Transform (FJLT) has to work for all
vectors, we need to avoid that this rotation maps dense vectors into sparse vectors.
We can address this issue by “randomizing” the rotation, thereby ensuring with
overwhelming probability that dense vectors are not mapped into sparse vectors.
This can be accomplished in a numerically efficient manner (thus maintaining our
overall goal of numerical efficiency) by first randomizing the signs of x before
applying the rotation. Putting these steps together we arrive at the following map.

Definition 9.4 The Fast Johnson-Lindenstrauss Transform is the map Ψ : Rp →
Rd , defined by Ψ := SFD, where S and D are random matrices and F is a deter-
ministic matrix. In particular,

• S is a d× p matrix, where each row of S has just one single non-zero entry
of value

√
d/p at a location drawn uniformly at random.

• F is either the p× p DFT matrix or the p× p Hadamard matrix (if it exists),
in each case normalized by 1/

√
p to obtain a unitary matrix.

• D is a p× p diagonal matrix whose entries are drawn independently from
{−1,+1} with probability 1/2.

We can carry out the matrix-vector multiplication by the DFT matrix via the Fast
Fourier Transform (FFT) in O(p log p) operations; a similar algorithm exists for
the Walsh-Hadamard matrix. The FJLT allows for a dimension reduction that is
competitive with the Johnson-Lindenstrauss Lemma as manifested by the follow-
ing theorem.

Theorem 9.5 (Fast Johnson-Lindenstrauss Transform) There is a random ma-
trix Ψ of size d× p with d =O

(
log(d/δ ) log(1/δ )/ε2

)
such that, for each x∈Rp,

‖Ψx‖2 ∈ [1− ε,1+ ε] · ‖x‖2

3Hadamard matrices do not exist for all dimension d. But we can always pad x with zeroes to
achieve the desired length.
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holds with probability at least 1− δ . Matrix-vector multiplication with Ψ takes
O(p log p+d) operations.

The proof of this theorem follows from the two lemmas below. We first show
that with high probability the random rotation FD produces vectors with a suffi-
ciently low peak-to-average ratio.

Lemma 9.6 Let y = FDx, where F and D are as in Definition 9.4. Then

P
D

(
‖y‖∞

‖y‖2
≥ 2log(4p/δ )

p

)
≤ δ

2
. (9.4)

Proof. S 2

ince FD is unitary, the quantity ‖FDx‖∞/‖FDx‖2 is invariant under rescaling of x
and therefore we can assume ‖x‖2 = 1.

Let ξi =±1 be the i-th diagonal entry of D. We have yi = ∑
d
j=1 ε jFi jx j and note

that the terms of this sum are i.i.d. bounded random variables. We thus can apply
Hoeffding’s inequality. In the notation of Theorem 2.14, let X j = ε jFi jx j. We note
that X j =±Fi jx j, hence E[X j] = 0 and |X j| ≤ a j, where a j = Fi jx j. It holds that

d

∑
j=1

a2
j =

d

∑
j=1

F2
i jx

2
j =

d

∑
j=1

1
d

x2
j =
‖x‖2

2
d

=
1
d
.

We can now use Theorem 2.14 with t =
√

2log(4p/δ )/p and obtain

P

(
|yi|>

√
2log(4p/δ )

p

)
≤ 2exp

(
−2log(4p/δ )/p

2/p

)
=

δ

2d
.

Applying the union bound finishes the proof. 2

Lemma 9.7 Conditioned on the event that ‖y‖∞ & 2log(4p/δ )
p , it holds that

P
(
‖Sy‖2

2−1| ≤ ε
)
≤ 1− δ

2
.

Proof. W 2

e use the following Chernoff bound: Given independent random variables X1, . . . ,Xn,
X = ∑i Xi, µ = EX ,σ2 = E[(X−EX)2], and |Xi| ≤ K with probability 1,

P(|X−µ|> t). max{e−ct2/σ2
,e−ct/K}.
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We denote S ji =
√

d/kδ ji, where δ ji ∈ {0,1} is our random sample of the columns
for row j. Hence for all j, ∑

p
i=1 δ j,i = 1. We write z := Sy and compute

q j = z2
j

=
d
k

(
d

∑
i=1

δ jiyi

)2

=
d
k

(
∑

i
δ jiy2

i +∑
i 6=`

δ jiδ j`yiy`

)

=
d
k ∑

i
δ ji.

We care about z2 = ∑ j q j. Since the q j’s are independent, we can apply the afore-
mentioned Chernoff bound, provided we bound σ2 and K, which we will do now.

K ≤ p
d
‖y‖2

∞ .
log(p/δ )

d
.

σ
2 ≤ kE[q2

1] = kE

[
d2

k2 ∑
i

δi jy4
i

]
=

p
d ∑

i
y4

i

= ‖y‖2
∞

p
d ∑

i
y2

i

=
p
d
‖y‖∞

.
log(p/δ )

d
.

Plugging these terms into the Chernoff bound yields

P
(
|‖Sy‖2−1|> ε

)
= P

(∣∣∑
j

q j−1
∣∣> ε

)
. max

{
e−

cε2d
log(p/δ ) ,e−

cεd
log(p/δ )

}
.

Since the first term in the right hand side above dominates, we can choose k ∼
1/ε2 log(p/δ ) log(1/δ ) to get the desired δ/2-bound. 2

Combining Lemma 9.6 and Lemma 9.7 establishes Theorem 9.5.
Besides the potential speedup, another advantage of the FJLT is that it requires

significantly less memory compared to storing an unstructured random projection
matrix as is the case for the standard Johnson-Lindenstrauss approach.
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9.2 Gordon’s Theorem

In the last section we showed that in order to approximately preserve the distances
(up to 1±ε) between n points, it suffices to randomly project them to Θ

(
ε−2 logn

)
dimensions. The key argument was that a random projection approximately pre-
serves the norm of every point in a set S, in this case the set of differences between
pairs of n points. What we showed is that in order to approximately preserve the
norm of every point in S, it is enough to project to Θ

(
ε−2 log |S|

)
dimensions. The

question this section is meant to answer is: can this be improved if S has a spe-
cial structure? Given a set S, what is the measure of complexity of S that explains
how many dimensions one needs to project on to still approximately preserve the
norms of points in S. We shall see below that this will be captured—via Gordon’s
Theorem—by the so called Gaussian width of S.

Definition 9.8 (Gaussian width) Given a closed set S ⊂ Rp, its Gaussian width
ω(S) is define as:

ω(S) = Emax
x∈S

[
gT

p x
]
,

where gp ∼N (0, Ip×p).

Similarly to the proof of Theorem 9.1 we will restrict our attention to sets S of
unit norm vectors, meaning that S⊂ Sp−1.

Also, we will focus our attention not in random projections but in the similar
model of random linear maps G : Rp → Rd that are given by matrices with i.i.d.
Gaussian entries. For this reason the following proposition will be useful:

Proposition 9.9 Let gd ∼N (0, Id×d), and define

ad := E‖gd‖.

Then
√

d
d+1

√
d ≤ ad ≤

√
d.

We are now ready to present Gordon’s Theorem.

Theorem 9.10 (Gordon’s Theorem [64]) Let G∈Rd×p a random matrix with in-
dependent N (0,1) entries and S⊂ Sp−1 be a closed subset of the unit sphere in p
dimensions. Let x ∈ Rp. Then

Emax
x∈S

∥∥∥∥ 1
ad

Gx
∥∥∥∥≤ 1+

ω(S)
ad

,
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and

Emin
x∈S

∥∥∥∥ 1
ad

Gx
∥∥∥∥≥ 1− ω(S)

ad
,

where ad = E‖gd‖ and ω(S) is the Gaussian width of S. Recall that
√

d
d+1

√
d ≤

ad ≤
√

d.

Before proving Gordon’s Theorem we will note some of its direct implications.
The theorem suggests that 1

ad
G preserves the norm of the points in S up to 1± ω(S)

ad
,

indeed we can make this precise with Gaussian concentration (Theorem 6.2).
Note that the function F(G) = maxx∈S ‖Gx‖ is 1-Lipschitz. Indeed∣∣∣∣max

x1∈S
‖G1x1‖−max

x2∈S
‖G2x2‖

∣∣∣∣ ≤ max
x∈S
|‖G1x‖−‖G2x‖| ≤max

x∈S
‖(G1−G2)x‖

= ‖G1−G2‖ ≤ ‖G1−G2‖F .

Similarly, one can show that F(G) = minx∈S ‖Gx‖ is 1-Lipschitz. Thus, one
can use Gaussian concentration to get

Prob
{

max
x∈S
‖Gx‖ ≥ ad +ω(S)+ t

}
≤ exp

(
− t2

2

)
, (9.5)

and

Prob
{

min
x∈S
‖Gx‖ ≤ ad−ω(S)− t

}
≤ exp

(
− t2

2

)
. (9.6)

This gives us the following theorem.

Theorem 9.11 Let G ∈ Rd×p a random matrix with independent N (0,1) entries
and S ⊂ Sp−1 be a closed subset of the unit sphere in p dimensions. Then, for

ε >

√
ω(S)2

a2
d

, with probability ≥ 1−2exp
[
−a2

d
2

(
ε− ω(S)

ad

)2
]

:

(1− ε)‖x‖ ≤
∥∥∥∥ 1

ad
Gx
∥∥∥∥≤ (1+ ε)‖x‖,

for all x ∈ S.
Recall that d d

d+1 ≤ a2
d ≤ k.

Proof. This is readily obtained by taking ε = ω(S)+t
ad

, using (9.5) and (9.6). 2
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Remark 9.12 Note that a simple use of a union bound4 shows that ω(S).
√

2log |S|,
which means that taking d to be of the order of log |S| suffices to ensure that 1

ad
G

to have the Johnson Lindenstrauss property. This observation shows that Theo-
rem 9.11 essentially directly implies Theorem 9.1 (although not exactly, since 1

ad
G

is not a projection).

9.2.1 Gordon’s Escape Through a Mesh Theorem

Theorem 9.11 suggests that, if ω(S) ≤ ad , a uniformly chosen random subspace
of Rn of dimension (n−d) (which can be seen as the nullspace of G) avoids a set
S with high probability. This is indeed the case and is known as Gordon’s Escape
Through a Mesh Theorem (Corollary 3.4. in Gordon’s original paper [64]). See
also [96] for a description of the proof. We include the Theorem below for the sake
of completeness.

Theorem 9.13 (Corollary 3.4. in [64]) Let S⊂ Sp−1 be a closed subset of the unit
sphere in p dimensions. If ω(S) < ad , then for a (p−d)-dimensional subspace Λ

drawn uniformly from the Grassmanian manifold we have

Prob{Λ∩S 6= /0} ≤ 7
2

exp
(
− 1

18
(ad−ω(S))2

)
,

where ω(S) is the Gaussian width of S and ad = E‖gd‖ where gk ∼N (0, Id×d).

9.2.2 Proof of Gordon’s Theorem

In order to prove this Theorem we will use extensions of the Slepian’s Compari-
son Lemma. This, and the closely related Sudakov-Fernique inequality, are crucial
tools to compare Gaussian processes. A Gaussian process is a family of Gaussian
random variables indexed by some set T , {Xt}t∈T (if T is finite this is simply a
Gaussian vector). Given a Gaussian process Xt , a particular quantity of interest is
E [maxt∈T Xt ]. Intuitively, if we have two Gaussian processes Xt and Yt with mean
zero E [Xt ] = E [Yt ] = 0, for all t ∈ T , and the same variance, then the process that
has the “least correlations” should have a larger maximum (think the maximum
entry of vector with i.i.d. Gaussian entries versus one always with the same Gaus-
sian entry). The following inequality makes this intuition precise and extends it to
processes with different variances.5

4This follows from the fact that the maximum of n standard Gaussian random variables is .√
2logn.

5Although intuitive in some sense, this turns out to be a delicate statement about Gaussian ran-
dom variables, as it does not hold in general for other distributions.
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Theorem 9.14 (Slepian/Sudakov-Fernique inequality) Let {Xu}u∈U and {Yu}u∈U
be two (almost surely bounded) centered Gaussian processes indexed by the same
(compact) set U. If, for every u1,u2 ∈U:

E [Xu1−Xu2 ]
2 ≤ E [Yu1−Yu2 ]

2 , (9.7)

then

E
[

max
u∈U

Xu

]
≤ E

[
max
u∈U

Yu

]
.

The following extension is due to Gordon [63, 64].

Theorem 9.15 [Theorem A in [64]] Let {Xt,u}(t,u)∈T×U and {Yt,u}(t,u)∈T×U be two
(almost surely bounded) centered Gaussian processes indexed by the same (com-
pact) sets T and U. If, for every t1, t2 ∈ T and u1,u2 ∈U:

E [Xt1,u1−Xt1,u2 ]
2 ≤ E [Yt1,u1−Yt1,u2 ]

2 , (9.8)

and, for t1 6= t2,
E [Xt1,u1−Xt2,u2 ]

2 ≥ E [Yt1,u1−Yt2,u2 ]
2 , (9.9)

then

E
[

min
t∈T

max
u∈U

Xt,u

]
≤ E

[
min
t∈T

max
u∈U

Yt,u

]
.

Note that Theorem 9.14 easily follows by setting |T |= 1.
We are now ready to prove Gordon’s Theorem.

Proof. [of Theorem 9.10]
Let G ∈ Rd×p with i.i.d. N (0,1) entries. We define two Gaussian processes:

For v ∈ S⊂ Sp−1 and u ∈ Sd−1 let g∼N (0, Id×d) and h∼N (0, Ip×p) and define
the following processes:

Au,v = gT u+hT v,

and
Bu,v = uT Gv.

For all v,v′ ∈ S⊂ Sp−1 and u,u′ ∈ Sd−1,

E
∣∣Av,u−Av′,u′

∣∣2−E
∣∣Bv,u−Bv′,u′

∣∣2 = 4−2
(
uT u′+ vT v′

)
−∑

i j

(
viu j− v′iu

′
j
)2

= 4−2
(
uT u′+ vT v′

)
−
[
2−2

(
vT v′

)(
uT u′

)]
= 2−2

(
uT u′+ vT v′−uT u′vT v′

)
= 2

(
1−uT u′

)(
1− vT v′

)
.
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This means that E
∣∣Av,u−Av′,u′

∣∣2−E ∣∣Bv,u−Bv′,u′
∣∣2≥ 0 and E

∣∣Av,u−Av′,u′
∣∣2−E ∣∣Bv,u−Bv′,u′

∣∣2 =
0 if v = v′. This implies that we can use Theorem 9.15 with X = A and Y = B, to
get

Emin
v∈S

max
u∈Skd1

Av,u ≤ Emin
v∈S

max
u∈Sd−1

Bv,u.

Noting that

Emin
v∈S

max
u∈Sk−1

Bv,u = Emin
v∈S

max
u∈Sk−1

uT Gv = Emin
v∈S
‖Gv‖ ,

and

E
[

min
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gT u+Emin

v∈S
hT v

= E max
u∈Sk−1

gT u−Emax
v∈S

(−hT v) = ak−ω(S),

gives the second part of the theorem.
On the other hand, since E

∣∣Av,u−Av′,u′
∣∣2−E

∣∣Bv,u−Bv′,u′
∣∣2 ≥ 0 then we can

similarly use Theorem 9.14 with X = B and Y = A, to get

Emax
v∈S

max
u∈Sd−1

Av,u ≥ Emax
v∈S

max
u∈Sd−1

Bv,u.

Noting that

Emax
v∈S

max
u∈Sd−1

Bv,u = Emax
v∈S

max
u∈Sd−1

uT Gv = Emax
v∈S
‖Gv‖ ,

and

E
[

max
v∈S

max
u∈Sd−1

Av,u

]
= E max

u∈Sd−1
gT u+Emax

v∈S
hT v = ad +ω(S),

concludes the proof of the theorem.
2

9.3 Random projections and Compressed Sensing: Sparse
vectors and Low-rank matrices

A remarkable application of Gordon’s Theorem is that one can use it for abstract
sets S such as the set of all natural images or the set of all plausible user-product
ranking matrices. In these cases Gordon’s Theorem suggests that a measurements
corresponding just to a random projection may be enough to keep geometric prop-
erties of the data set in question, in particular, it may allow for reconstruction of
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the data point from just the projection. These phenomenon and the sensing savings
that arrises from it is at the heart of Compressed Sensing and several recommenda-
tion system algorithms, among many other data processing techniques. Motivated
by these two applications we will focus in this section on understanding which pro-
jections are expected to preserve the norm of sparse vectors and low-rank matrices.
Both Compressed Sensing and Low-rank Matrix Modelling will be discussed in
length in, respectively, Chapters 10 and ??.

9.3.1 Gaussian width of s-sparse vectors

Let x∈Rp represent a signal (or image) that we wish to acquire via linear measure-
ments yi = aT

i x, for ai ∈ Rp. In general, one would need p linear one-dimensional
measurements to find x, one for each coordinate. The idea behind Compressed
Sensing [32, 50] is that one may be able to significantly decrease the number of
measurements needed if we know more about the structure of x, a prime example
is when x is known to be sparse, i.e. to have few non-zero entries. Sparse sig-
nals arise in countless applications: for example, natural images tend to be sparse
in the wavelet basis6, while audio signals tend to be sparse in local Fourier-type
expansions7.

We will revisit sparse recovery and Compressed Sensing on Chapter 10. For
now, we will see how Gordon’s Theorem can suggest how many linear measure-
ments are needed in order to reconstruct a sparse vector. An efficient way of rep-
resenting the measurements is to use a matrix

A =


— aT

1 —
— aT

2 —
...

— aT
m —

 ,
and represent the linear measurements as

y = Ax.

In order to be able to reconstruct x from y we need at the very least that A is
injective on sparse vectors. Let us assume that x is s-sparse, meaning that x has
at most s non-zero entries (often written as ‖x‖0 ≤ s, where ‖ · ‖0 is called the
0-norm and counts the number of non-zero entries in a vector8). Furthermore, in

6The approximate sparsity of natural images in the wavelet bases is leveraged in the JPEG2000
compression method.

7This approximate sparsity is utilized in MP3 audio compression.
8It is important to note that ‖·‖0 is not actually a norm, as it does not necessarily rescale linearly

with a rescaling of x.



9.3. RANDOM PROJECTIONS AND COMPRESSED SENSING: SPARSE VECTORS AND LOW-RANK MATRICES145

order for reconstruction to be stable, one should ask not only A is injective in s-
sparse vectors but actually that it is almost an isometry, meaning that the `2 distance
between Ax1 and Ax2 should be comparable to the distances between x1 and x2, if
they are s-sparse. Since the difference between two s-sparse vectors is a 2s-sparse
vector, we can alternatively ask for A to approximately keep the norm of 2s sparse
vectors. Gordon’s Theorem above suggests that we can take A∈Rm×p to have i.i.d.
Gaussian entries and to take m≈ω2 (S2s), where S2s =

{
x : x ∈ Sp−1, ‖x‖0 ≤ 2s

}
is the set of 2s sparse vectors, and ω (S2s) the Gaussian width of S2s.

Proposition 9.16 If s≤ p, the Gaussian width ω (Ss) of Ss, the set of unit-norm
vectors that are at most s sparse, satisfies

ω (Ss)
2 . s log

( p
s

)
.

Proof.
ω (Ss) = E max

v∈Sp−1,‖v‖0≤s
gT v,

where g∼N (0, Ip×p). We have

ω (Ss) = E max
Γ⊂[p], |Γ|=s

‖gΓ‖,

where gΓ is the restriction of g to the set of indices Γ.
Given a set Γ, Theorem 6.23 yields

Prob
{
‖gΓ‖2 ≥ s+2

√
s
√

t +2t
}
≤ exp(−t).

Union bounding over all Γ⊂ [p], |Γ|= s gives

Prob
{

max
Γ⊂[p], |Γ|=s

‖gΓ‖2 ≥ s+2
√

s
√

t +2t
}
≤
(

p
s

)
exp(−t)

Taking u such that t = su, gives

Prob
{

max
Γ⊂[p], |Γ|=s

‖gΓ‖2 ≥ s
(
1+2

√
u+2u

)}
≤ exp

[
−su+ s log

(
e

p
s

)]
. (9.10)

Taking u> log
(
e p

s

)
it can be readily seen that the typical size of maxΓ⊂[p], |Γ|=s ‖gΓ‖2

is . s log
( p

s

)
. The proof can be finished by integrating (9.10) in order to get a

bound of the expectation of
√

maxΓ⊂[p], |Γ|=s ‖gΓ‖2.
2

This suggests that ≈ 2s log
( p

2s

)
measurements suffice to stably identify a 2s-

sparse vector. As we will see in Chapter 10, dedicated to Compressed Sensing, this
number of measurement is also sufficient to guarantee that the signal in question
can be recover with efficient algorithms.
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9.3.2 Gaussian width of rank-r matrices

Another structured set of interest is the set of low rank matrices. Low-rank matrices
appear in countless applications, a prime example being recommendation systems
such as in the celebrated Netflix Prize. In this case the matrix in question is a
matrix indexed by users of a service and items, such as movies. Given a user and
an item, the corresponding entry of the matrix should correspond to the score that
user would attribute to that item. This matrix is believed to be low-rank. The goal is
then to estimate the score for user and item pairs that have not been rated yet from
the ones that have, by exploiting the low-rank matrix structure. This is known as
low-rank matrix completion [36, 38, 111].

In this short section, we will not address the problem of matrix completion
but rather make a comment about the problem of low-rank matrix sensing, where
instead of observing some of the entries of the matrix X ∈ Rn1×n2 one has access
to linear measurements of it, of the form yi = Tr(AT

i X), the problem of Matrix
Completion will be addressed in Chapter ??.

In order to understand the number of measurements needed for the measure-
ment procedure to be a nearly isometry for rank r matrices, we can estimate the
Gaussian width of the set of matrices X ∈Rn1×n2 whose rank is smaller or equal to
2r, and use Gordon’s Theorem.

Proposition 9.17

ω
({

X : X ∈ Rn1×n2 , rank(X)≤ r, ‖X‖F = 1
})

.
√

r(n1 +n2).

Proof.

ω
({

X : X ∈ Rn1×n2 , rank(X)≤ r, ‖X‖F = 1
})

= E max
‖X‖F=1

rank(X)≤r

Tr(GX).

Let X =UΣV T be the SVD decomposition of X , then

ω
({

X : X ∈ Rn1×n2 , rank(X)≤ r, ‖X‖F = 1
})

= E max
UTU=V TV=Ir×r
Σ∈Rr×r‖Σ‖F=1

Σ is diagonal

Tr(Σ
(
V T GU

)
).

This implies that

ω
({

X : X ∈ Rn1×n2 , rank(X)≤ r, ‖X‖F = 1
})
≤ (TrΣ)(E‖G‖).

√
r (
√

n1 +
√

n1) ,

where the last inequality follows from bounds on the largest eigenvalue of a Wishart
matrix. 2
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This suggests that the number of measurements needed to identify an n1× n2
rank r matrix is on the order of r (n1 +n2), rather than the n1n2 measurements that
would be needed without a low-rank assumption. As we will see in Chapter ??,
these savings play an important role in Matrix Sensing, Matrix Completion, and
many recommendation system algorithms.
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Chapter 10

Compressive Sensing and
Sparsity

Most of us have noticed how saving an image in JPEG dramatically reduces the
space it occupies in our hard drives (as opposed to file types that save the value of
each pixel in the image). The idea behind these compression methods is to exploit
known structure in the images; although our cameras will record the value (even
three values in RGB) for each pixel, it is clear that most collections of pixel values
will not correspond to pictures that we would expect to see. Natural images do not
correspond to arbitrary arrays of pixel values, but have some specific structure to
them. It is this special structure one aims to exploit by choosing a proper represen-
tation of the image. Indeed, natural images are known to be approximately sparse
in certain bases (such as the wavelet bases) and this is the core idea behind JPEG
(actually, JPEG2000; JPEG uses a different basis).

Let us think of x ∈ Cp as the signal corresponding to the image already rep-
resented in the basis in which it is sparse. The modeling assumption is that x is
s-sparse, or ‖x‖0 ≤ s, meaning that x has at most s non-zero components and, usu-
ally, s� p. The `0-norm1 ‖x‖0 of a vector x is the number of non-zero entries of x.
This means that when we take a picture, our camera makes p measurements (each
corresponding to a pixel) but then, after an appropriate change of basis, it keeps
only s� p non-zero coefficients and drops the others. This seems a rather waste-
ful procedure and thus motivates the question: “If only a few degrees of freedom
are kept after compression, why not in the first place measure in a more efficient
way and take considerably less than p measurements?”.

The question whether we can carry out data acquisition and compression si-
multaneously is at the heart of Compressive Sensing [32, 33, 34, 35, 50, 58]. It

1We recall that the `0 norm is not actually a norm.

149



150 CHAPTER 10. COMPRESSIVE SENSING AND SPARSITY

is particularly important in MRI imaging [90, 56], as fewer measurements poten-
tially means shorter data acquisition time. Indeed, current MRI technology based
on concepts from compressive sensing can reduce the time needed to collect the
data by a factor of six or more [90], which has significant benefits especially in
pediatric MR imaging [138]. We recommend the book [58] as a great in-depth
reference about compressive sensing.

In mathematical terms, the acquired measurements y∈Cm are connected to the
signal of interest x ∈ Cp, with m� p, via

 y

=

 A




x


. (10.1)

The matrix A ∈Cm×p models the linear measurement (information) process. Clas-
sical linear algebra tells us that if m < p, then the linear system (10.1) is underde-
termined and that there are infinitely many solutions (assuming that there exists at
least one solution). In other words, without additional information, it is impossible
to recover x from y in the case m < p.

In this chapter we assume that x is s-sparse with s < m� p. The goal is to
recover x from this underdetermined system. We emphasize that we do not know
the location of the non-zero coefficients of x a priori2, otherwise the task would be
trivial.

In the previous chapter we used Gordon’s Theorem (Theorem 9.10) to show
that when using random Gaussian measurements, on the order of s log

( p
s

)
mea-

surements suffice to have all considerably different s-sparse signals correspond to
considerably different sets of measurements. This suggests that m≈ s log

( p
s

)
may

be enough to recover x. While Gordon’s Theorem guarantees that this number of
measurements will suffice for sparse vectors to be uniquely determined by these
random measurements, it does not offer any insight into whether it is possible to
recover the signal of interest in a numerically efficient manner. Remarkably, as we
will see below, this is indeed possible.

Since the system is underdetermined and we know that x is sparse, the natural

2And therein lies the challenge, since s-sparse signals do not form a linear subspace of Rp (the
sum of two s-sparse signals is in general no longer s-sparse but 2s-sparse).
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approach to try to recover x is to solve

min ‖z‖0
s.t. Az = y,

(10.2)

and hope that the optimal solution z corresponds to the signal in question x. How-
ever the optimization problem (10.2) is NP-hard in general [58]. Instead, the ap-
proach usually taken in sparse recovery is to consider a convex surrogate of the `0
norm, namely the `1 norm: ‖z‖1 = ∑

p
i=1 |zi|. Figure 10.1 depicts the `p balls and

illustrates how the `1 norm can be seen as a convex surrogate of the `0 norm due
to the pointiness of the `1 ball in the direction of the basis vectors, i.e. in “sparse”
directions.

(a) p = 0 (b) p = 1
2 (c) p = 1 (d) p = 2 (e) p = ∞

Figure 10.1: `p norm unit balls with different values for p

The process of `p minimization can be understood as inflating the `p ball un-
til one hits the affine subspace of interest. Figure 10.2 illustrates how `1 norm
minimization promotes sparsity, while `2 norm minimization does not favor sparse
solutions. We have seen in Chapter 2.2.2 that the `1 ball becomes “increasingly
pointy” with increasing dimension. This behavior works in our favor in compres-
sive sensing—another manifestation of the blessings of dimensionality.

This motivates one to consider the following optimization problem (surrogate
to (10.2)):

min ‖z‖1
s.t. Az = y,

(10.3)

In order for (10.3) to be a good procedure for sparse recovery we need two
things: for the solution of it to be meaningful (hopefully to coincide with x) and
for (10.3) to be efficiently solved.

We will consider for the moment the real-valued case x ∈ Rp,A ∈ Rm×p and
formulate (10.3) as a linear program3 (and thus show that it is efficiently solvable).
Let us think of ω+ as the positive part of z and ω− as the symmetric of the negative
part of it, meaning that z = ω+−ω− and, for each i, either ω

−
i or ω

+
i is zero. Note

3In the complex case, we are dealing with a quadratic program.
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(a) p = 1 (b) p = 2

Figure 10.2: A two-dimensional depiction of `1 and `2 minimization. In `p mini-
mization, one inflates the `p ball until it hits the affine subspace of interest. This
image conveys how the `1 norm (left) promotes sparsity due to the “pointiness” of
the `1 ball. In contract, `2 norm minimization (right) does not favor sparse solu-
tions.

that, in that case,

‖z‖1 =
p

∑
i=1

ω
+
i +ω

−
i = 1T (

ω
++ω

−) .
Motivated by this, we consider:

min 1T (ω++ω−)
s.t. A(ω+−ω−) = y

ω+ ≥ 0
ω− ≥ 0,

(10.4)

which is a linear program. It is not difficult to see that the optimal solution of (10.4)
will indeed satisfy that, for each i, either ω

−
i or ω

+
i is zero and it is indeed equiva-

lent to (10.3); if both ω
−
i and ω

+
i are non-zero, one can lower the objective while

keep satisfying the constraints by reducing both variables. Since linear programs
are efficiently solvable [137], this implies that the `1-optimization problem (10.3)
is efficiently solvable.

In what follows we will discuss under which circumstances one can guarantee
that the solution of (10.3) coincides with the sparse signal of interest. We will dis-
cuss a couple of different strategies to show this, as different strategies generalize
better to other problems of interest. Later in this chapter we discuss strategies for
constructing sensing matrices.
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10.1 Null Space Property and Exact Recovery

Given a s-sparse vector x, our goal is to show that under certain conditions x is the
unique optimal solution to

min ‖z‖1
s.t. Az = y,

(10.5)

Let S = supp(x), with |S| = s.4 If x is not the unique optimal solution of the
`1 minimization problem, there exists z 6= x as optimal solution. Let v = z− x, it
satisfies

‖v+ x‖1 ≤ ‖x‖1 and A(v+ x) = Ax,

this means that Av = 0. Also,

‖x‖S = ‖x‖1 ≥ ‖v+ x‖1 = ‖(v+ x)S ‖1 +‖vSc‖1 ≥ ‖x‖S−‖vS‖1 +‖v‖Sc ,

where the last inequality follows by the triangle inequality. This means that ‖vS‖1≥
‖vSc‖1, but since |S| � N it is unlikely for A to have vectors in its nullspace that
are so concentrated on such few entries. This motivates the following definition.

Definition 10.1 (Null Space Property) A is said to satisfy the s-Null Space Prop-
erty (A ∈ s-NSP) if, for all v in ker(A) (the nullspace of A) and all |S| = s, we
have

‖vS‖1 < ‖vSc‖1.

From the argument above, it is clear that if A satisfies the Null Space Property
for s, then x will indeed be the unique optimal solution to (10.3). In fact, as the
property is described in terms of any set S of size s, it implies recovery for any
s-sparse vector.

Theorem 10.2 Let x be an s-sparse vector. If A ∈ s-NSP then x is the unique
solution to the `1 optimization problem (10.3) with y = Ax.

The Null Space Property is a statement about certain vectors not belonging to
the null space of A, thus we can again resort to Gordon’s Theorem (Theorem 9.10)
to establish recovery guarantees for Gaussian sensing matrices. Let us define the
intersection with the unit-sphere of the cone of such vectors

Cs :=
{

v ∈ Sp−1 : ∃S⊂[p], |S|=s ‖vS‖1 ≥ ‖vSc‖1
}
. (10.6)

4If x has support size strictly smaller than s, for what follows, we can simply take a superset of
it with size s
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Since for a matrix A, A ∈ s-NSP is equivalent to ker(A)∩Cs = /0, Gordon’s
Theorem, or more specifically Gordon’s Escape Through a Mesh Theorem (Theo-
rem 9.13), implies that there exists a universal C > 0 such that if A is drawn with
iid Gaussian entries, it will satisfy the s-NSP with high probability provided that
M ≥Cω2 (Cs), where ω (Cs) is the Gaussian width of Cs.

Proposition 10.3 Let s≤ p and Cs ⊂ Sp−1 defined in (10.6), there exists a univer-
sal constant C such that

ω (Cs)≤C
√

s log
( p

s

)
,

where ω (Cs) is the Gaussian width of Cs.

Proof. The goal is to bound upper bound

ω (Cs) = Emax
v∈Cs

vT g,

for g∼N (0, I). Note that Cs is invariant under permutations of the indices. Thus,
the maximizer v ∈Cs will have its largest entries (in absolute value) in the coordi-
nates g has it largest entries (in absolute value). Let S be the set of the s coordinates
with largest absolute value of g. We have

Emax
v∈Cs

vT g = E max
v:‖vS‖1≥‖vSc‖1,‖v‖2=1

vT
S gS + vT

ScgSc .

The key idea is to notice that the condition ‖vS‖1 ≥ ‖vSc‖1 imposes a strong bound
on the `1 norm of vSc via ‖vSc‖1 ≤ ‖vS‖1 ≤

√
s‖vS‖2 ≤

√
s. This can be leveraged

by noticing that

vT
S gS + vT

ScgSc ≤ ‖vS‖2 ‖gS‖2 +‖vSc‖1 ‖gSc‖
∞
.

This gives
ω (Cs)≤ E‖gS‖2 +

√
s‖gSc‖

∞
,

where S corresponds to the set of the s coordinates with largest absolute value of g.
We saw in the proof of Proposition 9.16, in the context of computing the

Gaussian width of the set of sparse vectors, that E‖gS‖2 .
√

s log
( p

s

)
. Since

all entries of gSc are smaller, in absolute value, that any entry in gS we have

that ‖gSc‖2
∞
≤ 1

s ‖gS‖2
2. This implies that E‖gSc‖

∞
.
√

log
( p

s

)
, concluding the

proof. 2

Together with Theorem 10.2 this implies the following recovery guarantee,
matching the order of number of measurements suggested by the Gaussian width
of sparse vectors.
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Theorem 10.4 There exists a universal constant C ≥ 0 such that if A is a m× p
matrix with iid Gaussian entries the following holds with high probability: For any
x an s-sparse vector, x is the unique solution to the `1-optimization problem (10.3)
with y = Ax.

Remark 10.5 If one is interested in understanding the probability of exact recov-
ery of a specific sparse vector, and not a uniform guarantee on all sparse vectors
simultaneously, then it is possible to do a more refined version of the arguments
above that are able to predict the exact asymptotics of the number of measure-
ments required; see [41] for an approach based on Gaussian widths and [10] for
an approach based on Integral Geometry [10].

10.1.1 The Restricted Isometry Property

A classical approach to establishing exact recovery via `1-minimization is through
the Restricted Isometry Property (RIP), which corresponds precisely with the prop-
erty of approximately preserving the length of sparse vectors.

Definition 10.6 (Restricted Isometry Property (RIP)) An m× p matrix A (with
either real or complex valued entries) is said to satisfy the (s,δ )-Restricted Isome-
try Property (RIP),

(1−δ )‖x‖2 ≤ ‖Ax‖2 ≤ (1+δ )‖x‖2,

for all s-sparse x.

If A satisfies the RIP for sparsity 2s, it means that it approximately preserves
distances between s-sparse vectors (hence the name RIP). This can be leveraged to
show that A satisfies the NSP.

Theorem 10.7 ([39]) Let y = Ax where x is an s-sparse vector. Assume that A
satisfies the RIP property with δ2s <

1
3 , then the solution x∗ to the `1-minimization

problem
min

z
‖z‖1, subject to Az = y = Ax

becomes x exactly, i.e., x∗ = x

To prove this theorem we need the following lemma.

Lemma 10.8 ([39]) We have

|〈Ax,Ax′〉| ≤ δs+s′‖x‖2‖x′‖2

for all x,x′ supported on disjoint subsets S,S′ ⊆ [1, · · · , p], x,x′ ∈ Rp, and |S| ≤ s,
|S′| ≤ s′
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Proof.
2

Without loss of generality, we can assume ‖x‖2 = ‖x′‖2 = 1, so that the right hand
size of the inequality becomes just δs+s′ . Since A satisfies the RIP property, we
have

(1−δs+s′)‖x± x′‖2
2 ≤ ‖A(x± x′)‖2

2 ≤ (1+δs+s′)‖x± x′‖2
2.

Since x and x′ have disjoint support, ‖x±x′‖2
2 = ‖x‖2

2+‖x‖2
2 = 2; the RIP property

then becomes
2(1−δs+s′)≤ ‖Ax±Ax′‖2

2.≤ 2(1+δs+s′)

The polarization identity implies:

|〈Ax,Ax′〉|= 1
4

∣∣∣‖Ax+Ax′‖2
2−‖Ax−Ax′‖2

2

∣∣∣
≤ 1

4

∣∣∣2(1+δs+s′)−2(1−δs+s′)
∣∣∣

= δs+s′ .

To prove Theorem 10.7, we simply need to show that the Null Space Property
holds for the given conditions.
Proof. [ 2

of Theorem 10.7] Take h∈ (A)\0. Let index set S0 be the set of indices of s largest
entries (by modulus) of h. Let index sets S1,S2, · · · be index sets corresponding to
the next s to 2s, 2s to 3s, · · · largest entries of h.

Since A satisfies the RIP, we have

‖hS0‖2
2 ≤

1
1−δs

‖AhS0‖2 (10.7)

=
1

1−δs
∑
j≥1
〈AhS0 ,A(−hS j)〉 (because hS0 = ∑

j≥1
(−hS j)) (10.8)

≤ 1
1−δs

∑
j≥1

δ2s‖hS0‖2‖hS j‖2 (by Lemma 10.8) (10.9)

≤ δ2s

1−δs
‖hS0‖2 ∑

j≥1
‖hS j‖2 (10.10)

‖hS0‖2 ≤
δ2s

1−δs
∑
j≥1
‖hS j‖2. (10.11)

Note that
‖hS j‖2 ≤ s

1
2 ‖hS j‖∞ ≤ s−

1
2 ‖hS j−1‖1.
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We can rewrite (10.11) as

‖hS0‖2 ≤
δ2s

1−δs
s−

1
2 ∑

j≥1
‖hS j−1‖1 (10.12)

=
δ2s

1−δs
s−

1
2 ‖h‖1. (10.13)

Also, by the Cauchy-Schwarz inequality,

‖hS0‖1 = ∑
i∈S0

1×|hi| ≤
√

∑
i∈S0

12
√

∑
i∈S0

h2
i =
√

s‖hS0‖2. (10.14)

We have δ2s <
1
3 as a condition, so

δ2s

1−δs
<

δ2s

1−δ2s
<

1
2

for δ2s <
1
3
. (10.15)

Combining (10.13), (10.14), and (10.15), we get

‖hS0‖1 <
1
2
‖h‖1. (10.16)

Now we show that (10.16) is equivalent to ‖hS‖1 < ‖hSC‖1:

‖hS‖1 < ‖hSC‖1

⇔ 2‖hS‖1 < ‖hSC‖1 +‖hS‖1

⇔ 2‖hS‖1 < ‖h‖1

⇔ ‖hS‖1 <
1
2
‖h‖1.

Thus, we have shown that ‖hS0‖1 < ‖hSC‖1, which is the Null Space Property
and by virtue of Theorem 10.2 our proof is complete. 2

Many results in compressive sensing (such as Theorem 10.7) can be extended
will little extra effort to the case where x is not exactly s-sparse, but only ap-
proximately s-sparse, a property that is sometimes referred to as compressible.
See [37, 58] for a detailed discussion.

Which matrices do satisfy the RIP under favorable conditions? Clearly, we
want the number of measurements necessary to recover a sparse vector with `1-
minimization to be as small as possible.

In Chapter 9 we computed the number of rows needed for a Gaussian matrix to
approximately preserve the norm of sparse vectors, via estimates of the Gaussian
width of the set of sparse vectors. In fact, using Proposition 9.16 and Theorem 9.11,
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one can readily show5 that matrices with Gaussian entries satisfy the RIP with
m≈ s log

( p
s

)
.

Theorem 10.9 Let A be an m× p matrix with i.i.d. standard Gaussian entries,
there exists a constant C such that, if

m≥Cs log
( p

s

)
,

then 1√
m A satisfies the

(
s, 1

3

)
-RIP with high probability.

We point out an important aspect in this context. Theorem 10.9 combined with
Theorem 10.7 yields a uniform recovery guarantee for sparse vectors with Gaus-
sian sensing matrices. Once a Gaussian matrix satisfies the RIP (which it will for
certain parameters with high probability), then exact recovery via `1-minimization
holds uniformly for all sufficiently sparse vectors.

While there are obvious similarities between Johnson-Lindenstrauss projec-
tions and sensing matrices that satisfy the RIP, there are also important differences.
We note that for JL dimension reduction to be applicable (an upper estimate of ) the
number of vectors must be known a priori (and this number if finite). JL projection
preserves (up to ε) pairwise distances between these vectors, but the vectors do not
have to be sparse. As a consequence, JL projections P are a one-way street, as in
general one cannot recover x from y = Px. In contrast, a matrix that satisfies the
RIP works for infinitely many vectors, however with the caveat that these vectors
must be sparse. Moreover, one can recover such sparse vectors x from y = Ax (and
can do so numerically efficiently).

As a consequence of these considerations, a matrix that satisfies the RIP does
not necessarily have to satisfy the Johnson-Lindenstrauss Lemma. While a Gaus-
sian random matrix does indeed satisfy both, RIP and the Johnson-Lindenstrauss
Lemma, other matrices do not satisfy both simultaneously. For example, take a
randomly subsampled Fourier matrix A of dimensions m× p. In the notation of the
definition of the Fast Johnson-Lindenstrauss transform, this matrix A would cor-
respond to A = SF , but without the diagonal matrix D that randomizes phases (or
signs) of x. This matrix A will not meet the Johnson-Lindenstrauss properties of
Theorem 9.1. But the absence of the phase randomization matrix D is not a hurdle
for A = SF to satisfy the RIP.

It is known [35] that if m = Ωδ (spolylog p), then the partial Fourier matrix
satisfies the RIP with high probability. The exact number of logarithmic factors
needed is the object of much research with the best known upper bound due to

5Note that the 1± δ term in the RIP property corresponds to (1± ε)2 in Gordon’s Theorem.
Since the RIP is a stronger property when δ is smaller, one can simply use ε = 1

3 δ .
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Haviv and Regev [68], giving an upper bound of m=Ωδ (s log2 s log p). On the side
of lower bounds it is know that the asymptotics established for Gaussian matrices
of m = Θδ (s log(p/s)) are not achievable in general [22].

Checking whether a matrix satisfies the RIP or not is in general NP-hard [19,
127]. While Theorem 10.9 suggests that RIP matrices are abundant for s≈ m

log(p) , it
appears to be very difficult to deterministically construct matrices that satisfy RIP
for s�

√
m, known as the square bottleneck [123, 21, 20, 23, 31, 95]. The only

known unconditional construction that is able to break this bottleneck is due to
Bourgain et al. [31]; their construction achieves s≈m

1
2+ε for a small, but positive,

ε . There is also a conditional construction, based on the Paley Equiangular Tight
Frame [21, 23].

In Section 10.3 we will consider more practical conditions for designing sens-
ing matrices. These conditions, which are better suited for applications, are based
on the concept of the coherence of a matrix. Interestingly, the phase randomiza-
tion of x that is notably absent in the partial Fourier matrix mentioned above, will
reappear in this context in connection with nonuniform recovery guarantees.

10.2 Duality and exact recovery

In this section we describe yet another approach to show exact recovery of sparse
vectors via (10.3). In this section we take an approach based on duality, the same
strategy we took on Chapter 8 to show exact recovery in the Stochastic Block
Model. The approach presented here is essentially the same as the one followed
in [59] for the real case, and in [129] for the complex case.

Let us start by presenting duality in Linear Programming with a game theoretic
view point, similarly to how we did for Semidefinite Programming in Chapter 8.
The idea is again to to reformulate (10.4) without constraints, by adding a dual
player that wants to maximize the objective and would exploit a deviation from the
original constraints (by, for example, giving the dual player a variable u and adding
to to the objective uT (y−A(ω+−ω−))). More precisely consider the following

min
ω+

ω−

max
u

v+≥0
v−≥0

1T (
ω

++ω
−)− (v+)T

ω
+−

(
v−
)T

ω
−+uT (y−A

(
ω

+−ω
−)) .
(10.17)

Indeed, if the primal player (picking ω+ and ω− and attempting to minimize
the objective) picks variables that do not satisfy the original constraints, then the
dual player (picking u,v+, and v− and trying to maximize the objective) will be
able to make the objective value as large as possible. It is then clear that (10.4) =
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(10.17).
If the order with which the players choose variable values, this can only benefit

the primal player, that now gets to see the value of the dual variables before picking
the primal variables, meaning that (10.17)≥ (10.18), where (10.18) is given by:

max
u

v+≥0
v−≥0

min
ω+

ω−

1T (
ω

++ω
−)− (v+)T

ω
+−

(
v−
)T

ω
−+uT (y−A

(
ω

+−ω
−)) .
(10.18)

Rewriting

max
u

v+≥0
v−≥0

min
ω+

ω−

(
1− v+−AT u

)T
ω

++
(
1− v−+AT u

)T
ω
−+uT y (10.19)

With this formulation, it becomes clear that the dual players needs to set 1−
v+−AT u = 0, 1− v−+AT u = 0 and thus (10.19) is equivalent to

max
u

v+≥0
v−≥0

1−v+−AT u=0
1−v−+AT u=0

uT y

or equivalently,

maxu uT y
s.t. −1≤ AT u≤ 1. (10.20)

The linear program (10.20) is known as the dual program to (10.4). The dis-
cussion above shows that (10.20) ≤ (10.4) which is known as weak duality. More
remarkably, strong duality guarantees that the optimal values of the two programs
match.

There is a considerably easier way to show weak duality (although not as en-
lightening as the one above). If ω− and ω+ are primal feasible and u is dual
feasible, then

0 ≤
(
1T −uT A

)
ω

++
(
1T +uT A

)
ω
− (10.21)

= 1T (
ω

++ω
−)−uT [A(ω+−ω

−)]= 1T (
ω

++ω
−)−uT y,

showing that (10.20)≤ (10.4).
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10.2.1 Finding a dual certificate

In order to show that ω+−ω− = x is an optimal solution6 to (10.4), we will find a
dual feasible point u for which the dual matches the value of ω+−ω− = x in the
primal, u is known as a dual certificate or dual witness.

From (10.21) it is clear that u must satisfy
(
1T −uT A

)
ω+= 0 and

(
1T +uT A

)
ω−=

0, this is known as complementary slackness. This means that we must take the en-
tries of AT u be +1 or −1 when x is non-zero (and be +1 when it is positive and
−1 when it is negative), in other words(

AT u
)

S = sign(xS) ,

where S = supp(x), and
∥∥AT u

∥∥
∞
≤ 1 (in order to be dual feasible).

Remark 10.10 It is not difficult to see that if we further ask that
∥∥(AT u

)
Sc

∥∥
∞
< 1

any optimal primal solution would have to have its support contained in the support
of x. This observation gives us the following Lemma.

Lemma 10.11 Consider the problem of sparse recovery discussed above. Let S =
supp(x), if AS is injective and there exists u ∈ RM such that(

AT u
)

S = sign(xS) ,

and ∥∥(AT u
)

Sc

∥∥
∞
< 1,

then x is the unique optimal solution to the `1-minimization problem (10.3).

Since we know that
(
AT u

)
S = sign(xS) (and that AS is injective), we try to

construct7 u by least squares and hope that it satisfies
∥∥(AT u

)
Sc

∥∥
∞
< 1. More

precisely, we take
u =

(
AT

S
)†

sign(xS) ,

where
(
AT

S

)†
= AS

(
AT

S AS
)−1 is the Moore Penrose pseudo-inverse of AT

S . This
gives the following Corollary.

Corollary 10.12 Consider the problem of sparse recovery discussed this lecture.
Let S = supp(x), if AS is injective and∥∥∥(AT

ScAS
(
AT

S AS
)−1

sign(xS)
)

Sc

∥∥∥
∞

< 1,

then x is the unique optimal solution to the `1-minimization problem (10.3).
6For now we will focus on showing that it is an optimal solution, see Remark 10.10 for a brief

discussion of how to strengthen the argument to show uniqueness.
7Note how this differs from the situation in Chapter 8 where the linear inequalities were enough

to determine a unique candidate for a dual certificate.
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Theorem 10.9 establishes that if m� s log
( p

s

)
and A ∈ Rm×p is drawn with

i.i.d. Gaussian entries N
(
0, 1

m

)
then8 it will, with high probability, satisfy the

(s,1/3)-RIP. Note that, if A satisfies the (s,1/3)-RIP then, for any |S| ≤ s one has

‖AS‖≤
√

1+ 1
3 and l

(
AT

S AS
)−1 ‖≤

(
1− 1

3

)−1
= 3

2 , where ‖·‖ denotes the operator
norm ‖B‖= max‖x‖=1 ‖Bx‖.

This means that if we take A random with i.i.d. N
(
0, 1

m

)
entries then, for any

|S| ≤ s we have that

‖AS
(
AT

S AS
)−1

sign(xS)‖ ≤
√

1+
1
3

3
2
√

s =
√

3
√

s,

and because of the independency among the entries of A, ASc is independent of this
vector and so for each j ∈ Sc we have

Prob
(∣∣∣AT

j AS
(
AT

S AS
)−1

sign(xS)
∣∣∣≥ 1√

M

√
3
√

st
)
≤ 2exp

(
− t2

2

)
,

where A j is the j-th column of A.
An application of the union bound gives

Prob
(∥∥∥AT

ScAS
(
AT

S AS
)−1

sign(xS)
∥∥∥

∞

≥ 1√
M

√
3
√

st
)
≤ 2N exp

(
− t2

2

)
,

which implies

Prob
(∥∥∥AT

ScAS
(
AT

S AS
)−1

sign(xS)
∥∥∥

∞

≥ 1
)
≤ 2pexp

−
(√

m√
3s

)2

2


= exp

(
−1

2

[m
3s
−2log(2p)

])
,

which means that we expect to exactly recover x via `1 minimization when m�
s log(p). While this can be asymptotically worse then the bound of m & s log

( p
s

)
,

and this guarantee is not uniformly obtained for all sparse vectors, the technique in
this section is generalizable to many circumstances and illustrates the flexibility of
approaches based in construction of dual witnesses.

8Note that the normalization here is taken slightly differently: entries are normalized by 1√
m ,

rather than 1
am

, but the difference is negligible for our purposes.
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10.3 Sensing matrices and incoherence

In applications, we usually cannot completely freely choose the sensing matrix to
our liking. This means that Gaussian random matrices play an important role as
benchmark, but from a practical viewpoint they play a marginal role. Clearly, ran-
domness in the sensing matrix seems to be very beneficial for compressive sensing.
However, in practice, there are many design constraints on the sensing matrix A, as
in many applications one only has access to structured measurement systems. For
example, we may still have the freedom to choose, say the positions of the antennas
in radar systems that employ multiple antennas or the position of sensors in MRI.
By choosing these randomly, we can still introduce randomness in our system. Or,
we can transmit random waveforms in sonar and radar systems. Yet, in all these
cases the overall structure of A is still dictated by the physics of wave propagation.
In other applications, it will be other physical constraints or design limitations that
will limit how much randomness we can introduce into sensing matrix.

While establishing the RIP for Gaussian or Bernoulli random matrices is not
too difficult, it is already significantly harder to do so for the partial Fourier ma-
trix [35, ?, 68], and time-frequency matrices [53], and even harder for more specific
sensing matrices.

A useful concept to overcome the practical limitations of the RIP is via the
concept of the (in)coherence of a matrix. This concept has proven to be widely
applicable in practice. While we want to avoid the constraints of the RIP, we nev-
ertheless take it as our point of departure. Recall that the RIP (Definition 10.6) asks
that any S⊂ [p], |S| ≤ s satisfies:

(1−δ )‖x‖2 ≤ ‖ASx‖2 ≤ (1+δ )‖x‖2,

for all x ∈ R|S|. This is equivalent to

max
x

xT
(
AT

S AS− I
)

x
xT x

≤ δ ,

or equivalently ∥∥AT
S AS− I

∥∥≤ δ .

If the columns of A are unit-norm vectors (in Rm), then the diagonal of AT
S AS

is all-ones, this means that AT
S AS− I consists only of the non-diagonal elements of

AT
S AS. If, moreover, for any two columns ai, a j, of A we have

∣∣aT
i a j
∣∣≤ µ for some

µ then, Gershgorin’s circle theorem tells us that
∥∥AT

S AS− I
∥∥≤ µ(s−1).

More precisely, given a symmetric matrix B, the Gershgorin’s Circle Theo-
rem [69] states that all of the eigenvalues of B are contained in the so called Gersh-
gorin discs (for each i, the Gershgorin disc corresponds to

{
λ : |λ −Bii| ≤ ∑ j 6=i

∣∣Bi j
∣∣}.

If B has zero diagonal, then this reads: ‖B‖ ≤ ∑ j 6=i
∣∣Bi j
∣∣.
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Given a set of p unit-norm vectors a1, . . . ,ap ∈ Rm we define its worst-case
coherence µ as

µ = max
i 6= j

∣∣aT
i a j
∣∣ . (10.22)

Given a set of unit-norm vectors a1, . . . ,ap ∈Rm with worst-case coherence µ ,
if we form a matrix with these vectors as columns, then it will be (s,µ(s−1))-RIP,
meaning that it will be

(
s, 1

3

)
- RIP for s≤ 1

3
1
µ

.
This motivates the problem of designing sets of vectors a1, . . . ,ap ∈ Rm with

smallest possible worst-case coherence. This is a central problem in Frame The-
ory [121, 40]. The smallest coherence of a set of p unit-norm vectors in m di-
mensions is bounded below by the Welch bound (see for example, [121, 21] for a
discussion) which reads:

µ ≥
√

p−m
m(p−1)

.

Due to this limitation, deterministic constructions based on coherence cannot yield
matrices that satisfy the RIP for s�

√
m, known as the square-root bottleneck [21,

123].
There are constructions that achieve the Welch bound, known as Equiangular

Tight Frames (ETFs), these are sets of vectors (frames) for which all inner products
between pairs of vectors have the same modulus µ =

√
p−m

m(p−1) , meaning that they
are “equiangular”, see [121]. It is known that for an ETF to exist an ETF in Cm

one needs p ≤ m2. For which dimensions m this bound is actually saturated is an
important question in Quantum Mechanics and intimately connected to the famous
Zauner’s Conjecture [140, 116, 12].

To overcome this square root bottleneck something has to give. One fruitful
direction is to sacrifice the uniform recovery granted by the RIP. Namely, once a
matrix satisfies the RIP, the `0-`1 equivalence is guaranteed to hold for all s-sparse
vectors. In contrast we can consider scenarios in which we are guaranteed the `0-`1
equivalence “only” for most s-sparse vectors. This leads to nonuniform recovery
results, which we will pursue below. The benefits are worth the sacrifice, since we
end up with theoretical guarantees that are much more practical.

Recall that we consider a general linear system of equations Ax = y, where
A ∈ Cm×p, x ∈ Cp and m≤ p. We introduce the following generic s-sparse model:

(i) The support I ⊂ {1, . . . ,m} of the s nonzero coefficients of x is selected uni-
formly at random.

(ii) The non-zero entries of sign(x) form a Steinhaus sequence, i.e., sign(xk) :=
xk/|xk|,k ∈ Is, is a complex random variable that is uniformly distributed on
the unit circle.
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To make our result even more practical, we will consider noisy measurements.
A standard approach to find a sparse (and under appropriate conditions the spars-
est) solution to a noisy system y = Ax+w is via

min
x

1
2
‖Ax− y‖2

2 +λ‖x‖1, (10.23)

which is also known as lasso [126]. Here λ > 0 is a regularization parameter.
We will consider the following two-step version of lasso as it often gives im-

proved performance. In the first step we compute an estimate Ĩ for the support of x
by solving (10.23). In the second step we estimate the amplitudes of x by solving
the reduced-size least squares problem min‖AĨxĨ− y‖2, where AĨ is the submatrix
of A consisting of the columns corresponding to the index set Ĩ, and similarly for xĨ .
This is a standard way to “debias” the solution, and we thus will call this approach
debiased lasso.

As an example for a theoretical performance guarantee of this debiased lasso
we state (without proof) the following theorem, which is a slightly extended version
of Theorem 1.3 in [37].

Theorem 10.13 Given y = Ax+w, where A∈Cm×p has all unit-`2-norm columns,
x ∈ Cp is drawn from the generic s-sparse model and wi ∼ C N (0,σ2). Assume
that

µ(A)≤ C0

log p
, (10.24)

where C0 > 0 is a constant independent of m, p. Furthermore, suppose

s≤ c0 p
‖A‖2

op log p
(10.25)

for some constant c0 > 0 and that

min
k∈Is
|xk|> 8σ

√
2log p. (10.26)

Then the solution x̂ to the debiased lasso computed with λ = 2σ
√

2log p obeys

supp(x̂) = supp(x), (10.27)

and
‖x̂− x‖2

‖x‖2
≤ σ
√

3n
‖y‖2

(10.28)

with probability at least

1−2p−1(2π log p+ sp−1)−O(p−2log2). (10.29)
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Various other versions of nonuniform recovery results can be found e.g., in [130,
37, 58]. See [120, 71] for some theoretical results geared towards applications.

How does Theorem 10.13 compare to RIP based conditions in terms of required
number of measurements? Assume that the columns of A form a unit-norm tight
frame. In this case it is easy to see that ‖A‖2

op =
p
m and condition (10.25) becomes

m & s log p. We emphasize that the condition on the coherence (10.24) is rather
mild. For example an m× p Gaussian random matrix would satisfy it as long as
the number of its columns is not exponentially larger than the number of its rows.
But the point of the coherence condition is of course not to apply to Gaussian
random matrices, but to structured random sensing matrices, see also [110].

There are various other efficient and rigorous methods to recover sparse vectors
from underdetermined systems besides `1-minimization. For example, homotopy
methods, greedy algorithms or methods based on approximate message passing.
We refer to [58] for a comprehensive discussion of these techniques. Moreover,
practice has shown that some adaptation of the random sampling pattern is highly
desirable to improve performance, see e.g. [90, 5]. Furthermore, we refer to [5]
for a thorough discussion of some subtle potential numerical stability issues one
should be aware of.
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