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These are not meant to be Lecture Notes. They are simply extended syllabi with the most
important definitions and results from the lecture. As such, they lack the intuition and motivation
and so they are not a good place to learn the material the first time, just to briefly review it. These
extended syllabi will also have references.

There are many amazing books about linear algebra and virtually all of them will contain the
material for this particular lecture, examples include the book suggested for the course [2]. Another
place you can read about some of this is the Lecture Notes from last years DSGA1002 [1].

Please let me know if you find any typos!

• Given a matrix L ∈ Rn×m (which means it is a linear transformation L : Rm → Rn) the rank of L
is

rank(L) = dim(Im(L)).

• A matrix L ∈ Rn×n has an inverse L−1 if and only if rank(L) = n.

• Rank is a very important concept in recommendation systems. As we will see later, data matrices
naturally arising in recommendation systems tend to be (approximately) low rank, and this can be
leveraged to make meaningful recommendations.

• Given a matrix L ∈ Rn×m we define its transpose LT ∈ Rm×n as(
LT
)
ij

= Lji.

• Given a matrix L ∈ Rn×m we have

rank(L) = rank(LT ).

• Given two matrices A ∈ Rn×m and B ∈ Rm×p we have

(AB)T = BTAT .

• Given two matrices A,B ∈ Rn×n both invertible (meaning that A−1 and B−1 exist) we have

(AB)−1 = B−1A−1.
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• A matrix L ∈ Rn×n is said to be symmetric if LT = L. They arise very naturally in Data Science
if, for example, entry i, j corresponds to some (symmetric) similarity measure (or, say, distance)
between i and j.

• A matrix L ∈ Rn×n is said to be anti-symmetric if LT = −L.

• Systems of Linear Equations, matrix representation, Inverse matrix, Triangular Systems, Gaussian
Elimination, LU factorization, See (for example) Chapter 2 of [2].

• Given a vector x ∈ Rn we define it’s norm ‖x‖ (distance to 0) as

‖x‖2 = xTx =
n∑
i=1

x2i .

• Given two vectors x, y ∈ Rn we define their inner product as

〈x, y〉 = xT y =

n∑
i=1

xiyi.

• We have

(i) ∀x,y∈Rn〈x, y〉 = 〈y, x〉
(ii) ∀x,y,z∈Rn〈x+ z, y〉 = 〈x, y〉+ 〈z, y〉

(iii) ∀x,y∈Rn∀α∈R〈αx, y〉 = α〈x, y〉

• Given a matrix L ∈ Rn×m, the matrix LT ∈ Rm×n is the matrix such that, for all x ∈ Rn and
y ∈ Rm we have:

〈x, Ly〉 = 〈LTx, y〉

• Interesting example: If we take the vector space of smooth functions from [0, 1] to R that satisfy
f(0) = 1 and f(1) = 1 and define the inner product

∠f, g〉 =

∫ 1

0
f(t)g(t)dt,

then integration by parts shows that the derivative (as a linear transformation) is anti-symmetric.
You can see example in, for example, Section 2.7. of [2].

• Cauchy-Schwartz inequality: ∀x,y∈Rn we have

|xT y| ≤ ‖x‖‖y‖.

To prove this, notice that
∥∥∥ x
‖x‖ −

y
‖y‖

∥∥∥2 ≥ 0 and
∥∥∥ x
‖x‖ + y

‖y‖

∥∥∥2 ≥ 0 and expand the norm square of

the sum...

• Triangular inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖
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• The Projection of y onto span of x is given by

P〈x〉(y) =
xT y

‖x‖2
x.

• If θ is the angle between x and y we have

cos(θ) =
xT y

‖x‖‖y‖

Note that, since −1 ≤ cos(θ) ≤ 1, this is an alternative proof of the Cauchy-Schwartz inequality.

• If xT y = 0 then the angle between them is π
2 and we say that the vectors are orthogonal. The

observation that in that case ‖x− y‖2 = ‖x‖2 + ‖y‖2 is Pythagoras theorem.
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