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Abstract

Many maximum likelihood estimation problems are known to be intractable in

the worst case. A common approach is to consider convex relaxations of the max-

imum likelihood estimator (MLE), and relaxations based on semidefinite program-

ming (SDP) are among the most popular. This thesis focuses on a certain class of

graph-based inverse problems, referred to as synchronization-type problems. These are

problems where the goal is to estimate a set of parameters from pairwise information

between them.

In this thesis, we investigate the performance of the SDP based approach for a

range of problems of this type. While for many such problems, such as multi-reference

alignment in signal processing, a precise explanation of their effectiveness remains a

fascinating open problem, we rigorously establish a couple of remarkable phenomena.

For example, in some instances (such as community detection under the stochas-

tic block model) the solution to the SDP matches the ground truth parameters (i.e.

achieves exact recovery) for information theoretically optimal regimes. This is estab-

lished by developing non-asymptotic bounds for the spectral norm of random matrices

with independent entries.

On other instances (such as angular synchronization), the MLE itself tends to not

coincide with the ground truth (although maintaining favorable statistical properties).

Remarkably, these relaxations are often still tight (meaning that the solution of the

SDP matches the MLE). For angular synchronization we establish this behavior by

analyzing the solutions of certain randomized Grothendieck problems.
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Chapter 1

Introduction

Extracting information from data is of paramount importance in our society. This

task is often posed in terms of estimation. Either as estimation of statistical pa-

rameters from observations or as recovery of a signal (or image) from measurements.

Many of these statistical (or signal) recovery problems are formulated as optimiza-

tion problems over a set of feasible parameters (or signals), where the objective to be

optimized represents, in some way or another, how much the parameters explain the

data. A prime example is the paradigm of maximum likelihood (ML) estimation.

This thesis focuses on synchronization-type problems. These are problems where

the goal is to estimate a set of parameters from data concerning relations or inter-

actions between pairs of them. A good example to have in mind is an important

problem in computer vision, known as structure from motion: the goal is to build

a three-dimensional model of an object from several two-dimensional photos of it

taken from unknown positions. Although one cannot directly estimate the positions,

one can compare pairs of pictures and gauge information on their relative position-

ing. The task of estimating the camera locations from this pairwise information is

a synchronization-type problem. Another example, from signal processing, is mul-

tireference alignment, which is the problem of estimating a signal from measuring
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multiple arbitrarily shifted copies of it that are corrupted with noise. One of the

most relevant instances of this type of problem arises in single particle reconstruction

from cryo-Electron Microscopy: to resolve the global structure of a certain molecule

by registering multiple images of the molecule at unknown orientations. Similarly,

one can infer pairwise information by comparing pairs of images. The high levels

of noise inherent to the imaging process make this problem particularly challenging.

Several other relevant examples will be described in Section 1.2.

We will formulate each of these problems as an estimation problem on a graph

G = (V�E). More precisely, we will associate each data unit (say, a photo, a cryo-

EM image, or a shifted signal) to a graph node i ∈ V . The problem can then be

formulated as estimating, for each node i ∈ V , a group element gi ∈ G, where the

group G is a group of transformations, such as translations, rotations, or permutations.

The pairwise data, which we identify with edges of the graph (i� j) ∈ E, reveals

information about the ratios gi(gj)
−1. In its simplest form, for each edge (i� j) ∈ E

of the graph, we have a noisy estimate of gi(gj)
−1 and the synchronization problem

consists of estimating the individual group elements g : V → G that are the most

consistent with the edge estimates, often corresponding to the ML estimator.

Unfortunately, in most of the relevant instances, the parameter space is expo-

nentially large and non-convex, often rendering an exact calculation of the estimator

intractable for even moderately sized instances. This is a common ocurrence in many

estimation problems, not special to synchronization-type problems. In such cases,

it is common to settle for heuristics, such as expectation maximization, simulated

annealing, genetic algorithms, or other global nonlinear optimization methods. Un-

fortunately, these methods often lack theoretical guarantees and it is not unusual for

them to get stuck in local optima. To make matters worse, it is often hard to check

whether the solution computed is the global optimum.

A popular alternative to these heuristics is the use of convex relaxations: to
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attempt optimizing (usually the log-likelihood) in a larger convex set that contains

the parameter set of interest. The motivation for this approach is that one can, in

many instances, solve the corresponding convex problems efficiently. The downside

is that the solution obtained may not be in the original feasible set, forcing one to

take an extra, potentially suboptimal, rounding step. An exceptional effort has been

ongoing in theoretical computer science to design rounding schemes with worst-case

approximation guarantees. Chapter 2 mostly treats this type of analysis.

The applied mathematics community has been focusing on a more optimistic

approach; instead of trying to establish guarantees in a worst case paradigm, one

tries to identify instances for which the solution to the convex relaxation matches

the parameter of interest, achieving exact recovery. The motivation being that “the

data is not the enemy” and that, despite the worst-case scenario hardness of the

task at hand, it is not unusual for typical instances of the problem to be solvable

efficiently. A particularly remarkable example (although not exactly an instance of

convex relaxation as described above) is sparse recovery, where the realization that

a sparse signal can be efficiently recovered by very few random linear measurements

(with high probability) spawned the fruitful field of compressed sensing (see, for

example, [65, 96]).

Convex relaxation based methods have an extra appeal: if the relaxation is tight

(meaning that its solution is in the original set of feasible parameters) then one

is sure that it coincides with the optimal solution for the original problem, thus

creating a certificate of optimality. Fortunately, it seems that in many instances,

convex relaxations do tend to be tight. In fact, several remarkable results exist

showing that, under a particular probabilistic distribution of the input data, certain

convex relaxations achieve, with high probability, exact recovery. The technique

most commonly used in this type of analysis is to show that the “ground truth”

parameter is the optimal solution to the convex problem, by leveraging convex duality.
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Chapter 3 will study this phenomenon for a class of synchronization problems over

the group of two elements, which includes the community detection problem with two

communities.

There are however many cases in which, often because of noise on the data, one

cannot hope to achieve exact recovery. In many such instances, one is still interested

in computing the ML estimator, or more generally, in solving the original optimiza-

tion problem. Unfortunately, the usual techniques to show tightness of the relaxation

seem to break down. On the other hand, it seems that the tightness tendency of

convex relaxations is still present. When dealing with semidefinite relaxations (de-

scribed in Section 1.3), the relaxation being tight is usually equivalent to the matrix

solution of the convex problem having a certain prescribed rank, so we refer to this

fascinating phenomenon as “rank recovery” (in fact, in these cases, the original prob-

lem can be shown to be equivalent to the convex relaxation plus an extra non-convex

rank constraint). This phenomenon is discussed in Chapter 5 and is, in Section 5.1,

established for the setting of synchronization of in-plane rotations.

One of the crucial tools used in the analysis of semidefinite relaxations for many

of the problems described above is random matrix theory. Since Eugene Wigner’s

remarkable finding, in the late 1950s [237], that the spectrum of a large class of ran-

dom matrices with independent and identically distributed entries (i.i.d.) is, in high

dimension, distributed essentially the same way,1 the study of spectral properties

of random matrices has spawned a panoply of fascinating research with important

implications in many areas.2 In much of the analysis carried out in this thesis one

needs to estimate the largest eigenvalue, or sometimes the spectral norm, of certain,

application dependent, random matrices. While the situation is very well understood

when the entries are i.i.d., many important examples fall outside of this setting. On

1Under mild assumptions the distribution of the spectrum of such matrices converges to the
so-called Wigner semicircle law [237]

2We refer the reader to the books [217, 22] for more on the subject of random matrices.
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the other hand, there are tools capable of bounding this quantity for an amazingly

broad class of examples, however, these inequalities are often asymptotically sub-

optimal (as it turns out to be the case in our applications). To address this issue,

we devote Chapter 4 to study the spectral norm of a broad class of random matri-

ces with independent, but not necessarily identically distributed, entries and develop

sharp nonasymptotic estimates. These estimates play a crucial role in the analysis,

described in Chapter 3, of semidefinite relaxations for synchronization over the group

of two elements.

1.1 Organization of this thesis

This thesis is organized as follows: In the rest of this chapter we give a general for-

mulation of synchronization problems, describe a number of important examples, and

discuss several algorithmic approachs to the problem. Chapter 2 is mostly devoted to

worst-case guarantees for both spectral and semidefinite programming based meth-

ods. In Chapter 3 we restrict ourselves to the group G ∼= Z2, and investigate exact

recovery of the semidefinite relaxation. Chapter 4 establishes bounds on eigenvalues

of certain random matrices that are heavily used in Chapter 3. Chapter 5 investi-

gates instances on which the semidefinite relaxation has a tendency to be tight, albeit

not achieving exact recovery. We discuss a larger class of problems, such as signal

alignment, in Chapter 6 and conclude with several open problems in Chapter 7.

1.2 Synchronization problems: formulation and ex-

amples

We recall the formulation, described above, of a synchronization-type problem. Con-

sider a graph G = (V�E) and a group G. One is given, for each edge of a graph
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G = (V�E), a noisy observation of gig
−1
j and asked for find the node labels g : V → G,

also referred to as the group potential, that most “agrees with measurements” (see

Figure 1.1). Naturally, the measure of “agreement” is application specific. For the

sake of generality, we will consider any type of edge measurement by thinking about

an edge measurement as associating, to each value of gig
−1
j , a cost to be minimized

(for example, minus the log-likelihood).

Figure 1.1: Given a graph G = (V�E) and a group G, the goal in synchronization-
type problems is to estimate node labels g : V → G from noisy edge measurements of
offsets gig

−1
j .

Problem 1.2.1. [General Synchronization-type problem] Given a graph G = (V�E),

a group G, and, for each edge (i� j) ∈ E, a function fij : G → R. The goal is to find

the group potential g : V → G that minimizes

min
g:V→G

�

�i�j)∈E

fij
�
gig

−1
j

�
. (1.1)

We remark that in the applications we consider compact groups G. In fact, it is

either finite or a (special) orthogonal group O(d) or SO(d). Moreover, when dealing

6



with infinite groups, the functions fij will be such that a minimizer of (1.1) exists.

Note that there is always a global shift ambiguity for the solution of (1.1) as, for any

h ∈ G, the group potential g : V → G and the one obtained by right-multiplying

every element by h, have the same cost.

We now describe a number of relevant problems that can be formulated as syn-

chornization problems, by an appropriate choice of G = (V�E), G, and functions

fij. Many of these are direct applications of our techniques as motivated a lot of the

developments in this thesis.

1.2.1 Angular Synchronization

We start with the example that motivated the use of the term synchronization. In

2011, Amit Singer [202] formulated the angular synchronization problem: to esti-

mate n unknown angles θ1� . . . � θn from m noisy measurements of their offsets θi− θj

mod 2π. This problem easily falls under the scope of synchronization-type problem

by taking a graph with a node for each θi, an edge associated with each measure-

ment, and taking the group to be G ∼= SO(2), the group of in-plane rotations. Some

of its applications include time-synchronization of distributed networks [113], signal

reconstruction from phaseless measurements (discussed in Section 2.2), and surface

reconstruction problems in computer vision [10] and optics [191]. We will discuss this

problem in greater detail in Section 5.1.

1.2.2 Orientation estimation in Cryo-EM

A particularly challenging application of this framework is the orientation estimation

problem in Cryo-Electron Microscopy [204].

Cryo-EM is a technique used to determine the three-dimensional structure of bi-

ological macromolecules. The molecules are rapidly frozen in a thin layer of ice and

imaged with an electron microscope, which gives 2-dimensional projections. One of
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Figure 1.2: An example of an instance of a synchronization-type problem. Given
noisy rotated copies of an image (corresponding to vertices of a graph), the goal is to
recover the rotations. By comparing pairs of images (corresponding to edges of the
graph), it is possible to estimate the relative rotations between them. The problem
of recovering the rotation of each image from these relative rotation estimates is an
instance of Angular synchronization.

the main difficulties with this imaging process is that these molecules are imaged

at different unknown orientations in the sheet of ice and each molecule can only be

imaged once (due to the destructive nature of the imaging process). More precisely,

each measurement consists of a tomographic projection of a rotated (by an unknown

rotation) copy of the molecule. The task is then to reconstruct the molecule density

from many such measurements. As the problem of recovering the molecule density

knowing the rotations fits in the framework of classical tomography—for which effec-

tive methods exist—we focus on determining the unknown rotations, the orientation

estimation problem. In Section 6.3 we will briefly describe a mechanism to, from

two such projections, obtain information between their orientation. The problem of

finding the orientation of each projection from such pairwise information naturally

fits in the framework of synchronization.
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Figure 1.3: Illustration of the Cryo-EM imaging process: A molecule is imaged af-
ter being frozen at a random (unknown) rotation and a tomographic 2-dimensional
projection is captured. Given a number of tomographic projections taken at un-
known rotations, we are interested in determining such rotations with the objective
of reconstructing the molecule density. Images courtesy of Amit Singer and Yoel
Shkolnisky [204].

1.2.3 Synchronization over the orthogonal group

A natural extension to the angular synchronization framework is Synchronization

over O(d), the group of d× d orthogonal matrices [41, 233]. It plays a major role in

an algorithm for the sensor network localization problem [89] and in structure from

motion [158, 125]. The similar problem of synchronization over SO(d), the group of

rotations in R
d (or d × d orthogonal matrices with determinant 1), also has several

applications, for example, the problem over SO(3) can be used for global alignment

of 3-d scans [224]. Chapter 2 will propose and analyze algorithmic frameworks for

this problem.

1.2.4 Synchronization over Z2

When d = 1, O(d) ∼= Z2 and Synchronization over O(d) reduces to a binary version

of the problem, treated in Chapter 3. This simplified version already includes many

applications of interest. Similarly to before, given a graph G = (V�E), the goal is
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recover unknown node labels g : V → Z2 (corresponding to memberships to two

clusters) from pairwise information. Each pairwise measurement either suggests the

two involved nodes are in the same cluster or in different ones. The task of clus-

tering the graph in order to agree, as much as possible, with these measurements is

tightly connected to correlation clustering [44] and has applications to determining

the orientation of a manifold [205].

In the case where all the measurements suggest that the involved nodes belong in

different communities, or in other words

fij(−1) ≤ fij(1)�

for all edges (i� j) ∈ E, then Problem 1.2.1 essentially reduces to the Max­Cut problem.

In fact, as we will see in Section 1.3, our algorithmic approach is motivated from that

of Michel Goemans and David Williamson [114] for the Max­Cut problem.

1.2.5 Community detection

A remarkable example of this framework is the problem of community detection, or

clustering, in a graph. Many real world graphs are known to have a community struc-

ture. A good example is the political blogosphere dataset [7]: the graph is composed

by blogs and edges are drawn whenever one blog contains a link to another. It was ob-

served [7] that blogs have a tendency to link more to blogs sharing political ideology,

resulting in a political blogosphere graph where two communities have considerably

more edges within them than across.

For many such graphs one is interested in recovering the communities from the

connectivity of the graph. As we can read each connection (or link) as a suggestion

that the two nodes should be in the same community, and the absence of such a

connection (or link) as suggestion that they belong to different communities (see
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Figure 1.4) it readily falls under the framework of Synchronization.

Figure 1.4: A graph generated form the stochastic block model (Definition 3.2.1)
with 600 nodes and 2 communities, scrambled on the left and clustered on the right.
The stochastic block model produces random graphs with community structure. In
this example, pairs of nodes are connected independently with probability p = 6/600
if they are in the same community and with probability q = 0.1/600 if they are in
different communities. The community detection problem consists in recovering the
node structure on an unlabeled graph [3].

For the setting of two communities this problem is tightly connected with Syn-

chronization over Z2 and will be the subject of Section 3.2. We will also briefly discuss

the setting of multiple communities in Section 6.2.

1.2.6 Procrustes Problem

Given n point clouds in R
d of k points each, the orthogonal Procrustes problem [198]

consists of finding n orthogonal transformations that best simultaneously align the

point clouds.

If the points are represented as the columns of matrices A1� . . . � An, where Ai ∈

R
d×k then the orthogonal Procrustes problem consists of solving

min
O1�...�On∈O�d)

n�

i�j=1

||OT
i Ai −OT

j Aj||
2
F . (1.2)

Since ||OT
i Ai−OT

j Aj||
2
F = �Ai�

2
F + �Aj�

2
F − 2Tr

�
(AiA

T
j )

TOiO
T
j

�
, (1.2) has the same
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solution as the complementary version of the problem

max
O1�...�On∈O�d)

n�

i�j=1

Tr
�
(AiA

T
j )

TOiO
T
j

�
� (1.3)

which can easily be formulated in the framework of Problem 1.2.1 by taking the group

to be G ∼= O(d).

1.2.7 Signal Alignment

In signal processing, the multireference alignment problem [32] consists of recovering

an unknown signal u ∈ R
L from n observations of the form

yi = Rliu+ σξi�

where Rli is a circulant permutation matrix that shifts u by li ∈ ZL coordinates, ξi

is a noise vector (which we will assume standard gaussian i.i.d. entries) and li are

unknown shifts.

If the shifts were known, the estimation of the signal u would reduce to a simple

denoising problem. For that reason, we will focus on estimating the shifts {li}
n
i=1. By

comparing two observations yi and yj we can obtain information about the relative

shift li − lj mod L. Using this intuition, in Section 6.1, we will formulate a quasi-

MLE estimator for the multireference alignment problem as particular instance of

Problem 1.2.1.

1.2.8 Other examples

Many other problems can be fruitfully considered through the synchronization frame-

work. We briefly describe a short list below.
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Unique-Games Problem

The unique games conjecture, posed by Khot in 2002 [138], plays a central role in

modern theoretical computer science.

Conjecture 1.2.2. [Unique Games Conjecture] For δ� ε > 0, it is impossible for a

polynomial-time algorithm to distinguish between δ-satisfiable and (1 − ε)-satisfiable

Unique­Games instances.

A Unique­Games instance consists of a graph along with a permutation for each

edge. The problem is to choose an assignment of labels to each vertex such that as

many of the edge permutations as possible are satisfied (see Figure 1.5).

Figure 1.5: The Unique Games problem can be formulated as a coloring problem:
Given a graph, a set of colors and, for each edge a permutation between the colors, the
goal is to color the vertices to satisfy as many of the edge constraints as possible. The
Unique Games Conjecture [138] states that, for any ε� δ > 0, it is hard to distinguish
between instances on which it is possible to satisfy a (1 − ε) fraction of the edge
constraints from instances on which it is impossible to satisfy a δ fraction. Image
courtesy of Wikipedia, uploaded by Thore Husfeldt.

One can view the permutations as giving pairwise information between the nodes

labels. In fact, the semidefinite programming based approach that we will develop

in Section 1.3.3 is in part motivated by the algorithmic approach used in the best

known polynomial time approximation to the Unique Games Problem [75].
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Matching in Computer Graphics

This framework has been successfully used by Chen, Huang, and Guibas [130, 79]

in the joint shape matching problem in Computer Graphics. The shape matching

problem consists of estimating a map between feature points of two different shapes

(perhaps corresponding to same object in different positions, and the goal is to identify

which points of one of the shapes corresponds to which point in the other — see

Figure 1.6). The idea of joint estimation is to use cycle consistency to help improve

the maps. An estimation of this type for a pair of images can be thought of as a

pairwise measurement between the labels of the feature points of the two images

involved and the approach of join estimation can be formulated as a synchronization-

type problem.

Figure 1.6: An important problem in Computer Graphics is that of Shape Matching:
given different shapes of an object, the goal is to match feature points between shapes.
Image courtesy of Qi-Xing Huang and Leonidas Guibas [130].

Euclidean Clustering

The problem of clustering a point cloud in a Euclidean space can also be formulated as

a synchronization problem. If the points are to be clustered in L clusters then one can

think of the task as assigning, to each data point xi a cluster label li ∈ ZL based on

pairwise distances between points. In fact, the min-sum k-clustering objective [239]

can be formulated as an instance of Problem 1.2.1 by taking, for each pair of points

xi and xj, fij (li − lj) to be equal to the distance squared between xi and xj if li �= lj

14



mod L and 0 otherwise. This will be discussed in more detailed in Section 6.2.

Sensor network localization

The sensor network localization (or distance geometry) problem [89, 211], consists in

estimating the position of a set of sensors from measurements of distances between

pairs of them.

Finding ground state of particles

Another important problem in this framework is in theoretical chemistry, the problem

of finding the ground state of a set of atoms. This is achieved by minimizing a poten-

tial that depends on the locations of all particles. In many instances, the potential

is given by summing, over all pairs, the Lennard-Jones potential [145] between two

of the atoms (which depends only on which atoms they are, and their distance). By

taking, for each pair of atoms i and j, fij to be a function of their distance repre-

senting the Lennard-Jones potential, we can formulate this problem as an instance of

Problem 1.2.1.

Other instances include the ranking problem [133], camera motion estimation in

computer vision [9], and many others.

1.3 Algorithmic approaches

In this section we will briefly describe several algorithmic approaches for these prob-

lems. Before describing both the spectral and semidefinite programming based ap-

proaches that we investigate in this thesis, we take make a few comments regarding

model bias.

15



1.3.1 The model bias pitfall

In some of the problems described above, such as the multireference alignment of

signals (or the orientation estimation problem in Cryo-EM), the alignment step is

only a subprocedure of the estimation of the underlying signal (or the 3d density of

the molecule). In fact, if the underlying signal was known, finding the shifts would

be nearly trivial: for the case of the signals, one could simply use match-filtering to

find the most likely shift li for measurement yi.

Figure 1.7: A simple experiment to illustrate the model bias phenomenon: Given
a picture of the mathematician Hermann Weyl (second picture of the top row) we
generate many images consisting of random rotations (we considered a discretization
of the rotations of the plane) of the image with added gaussian noise. An example
of one such measurements is the third image in the first row. We then proceeded
to align these images to a reference consisting of a famous image of Albert Einstein
(often used in the model bias discussions). After alignment, an estimator of the
original image was constructed by averaging the aligned measurements. The result,
first image on second row, clearly has more resemblance to the image of Einstein than
to that of Weyl, illustration the model bias issue. One the other hand, the method
proposed and analyzed in Chapter 6 produces the second image of the second row,
which shows no signs of suffering from model bias. As a benchmark, we also include
the reconstruction obtained by an oracle that is given the true rotations (third image
in the second row).

When the true signal is not known, a common approach is to choose a reference
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signal z that is not the true template but believed to share some properties with

it. Unfortunately, this creates a high risk of model bias: the reconstructed signal

û tends to capture characteristics of the reference z that are not present on the

actual original signal u (see Figure 1.3.1 for an illustration of this phenomenon).

This issue is well known among the biological imaging community [200, 127] (see, for

example, [84] for a particularly recent discussion of it). As the experiment shown

on Figure 1.3.1 suggests, the methods treated in this paper, based solely on pairwise

information between observations, do not suffer from model bias as they do not use

any information besides the data itself.

1.3.2 Spectral methods

Spectral graph partitioning, the use of the smallest eigenvector of the Laplacian ma-

trix to partition a graph [120], is a standard technique for clustering with analysis

both in worst case, through the celebrated Cheeger’s inequality [15, 17], and for

random instances [161]. The Max­Cut problem can also be tackled with a spectral

method [219].

Analogously, for angular synchronization, one can construct a matrix, the Connec-

tion Laplacian [206, 202], whose eigenvectors associated with the smallest eigenvalues

would provide the group potential if it were possible to satisfy all the edge constraints.

Under a model of random noise that prevents such a solution, a good solution can

still be obtained by rounding the smallest eigenvectors [202] (an analysis analogous

to the analysis of spectral partitioning for random instances [161]). Similar spectral

based algorithms were proposed in [89, 204] for SO(3). In Section 2.1 we establish a

Cheeger inequality for this operator, providing a worst-case analysis for the spectral

approach to some synchronization-type problems.

We refer to Section 2.1 for both a more detailed description of spectral methods

for O(d) synchronization, and a description of Cheeger’s inequality for spectral graph
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partitioning.

1.3.3 The semidefinite programming approach

Most of this thesis concerns the use of semidefinite relaxations to solve synchronization-

type problems. The use of semidefinite relaxations in combinatorial optimization

dates back to the late 1970s with the seminal work of László Lovász [150] in the

so-called Lovász theta function, this approach was shortly after made algorithmic

in [119]. In first half of the 1990s, interior point methods were adapted to solve

semidefinite programs [13, 175], providing reasonably efficient methods to solve this

type of problems. In 1995, Michel Goemans and David Williamson, devised the first

approximation algorithm based on semidefinite programming [114]. Their algorithm

gave the best known approximation ratio to the Max­Cut problem. Ever since, many

approximation algorithms have been designed based on semidefinite programming.

In fact, the algorithm we will analyze is greatly inspired by the semidefinite relax-

ation in [114]. Remarkably, an important conjecture of Khot [138] is known to imply

that, for a large class of problems including Max­Cut, this approach produces optimal

approximation ratios [185].

An approximation ratio [238] is a guarantee that, for any possible instance of the

input, the algorithm outputs a solution whose performance is at least a certain frac-

tion (the approximation ratio) of the optimal one, we will establish such a guarantee

for the Procrustes problem (among others) in Section 2.3. However, the worst-case

nature of this type of guarantee is often pessimistic. A popular alternative is to equip

the input with a distribution and give guarantees for most inputs. More precisely,

Chapter 3 is concerned with understanding when is it that the semidefinite relaxation

approach gives exactly the correct answer (for most inputs). In Chapter 5 we inves-

tigate the tendency for a large class of semidefinite relaxations to be tight, i.e. the

optimal solution of a semidefinite relaxation is the optimal solution of the original
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problem, and also establish such a phenomenon in instances for which exact recovery

is unrealistic.

A general semidefinite programming based approach for synchronization

type problems

We now describe a general semidefinite programming based approach to solving Prob-

lem 1.2.1. This is inspired by the algorithms in [114, 75, 32] and we will revisit it in

Chapter 6.

We will restrict our attention to compact groups G. We start by considering a

representation ρ of G into O(L), the group of L× L orthogonal matrices,

ρ : G → O(L). (1.4)

The key point is that we want a representation ρ for which, fij
�
gig

−1
j

�
in (1.1) is

a linear function of ρ (gi) ρ
�
g−1j

�
. More precisely, identifying ρ(gi) with ρi, we need

there to exist Cij ∈ R
L×L such that

fij
�
gig

−1
j

�
= Tr

�
Cijρiρ

T
j

�
�

recall that ρ−1j = ρTj , as ρj ∈ O(L). Note that if fij is an affine function instead,

which will happen in some of the settings, it can be made linear by an additive shift

which will not affect the optimizers of the problem.

We can then rewrite (1.1) as

min
�
�i�j)∈E Tr

�
Cijρiρ

T
j

�

s. t. ρi ∈ Im(ρ)� ∀i.
(1.5)

Note that, if G is finite, such a representation ρ always exists, perhaps by taking the

representation of G to the group of permutations of its own elements (which always
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exists by Cayley’s Theorem [190]).

We proceed by making use of the now standard lifting trick, to formulate (1.5) in

terms of

X =












ρ1

ρ2
...

ρn












�

ρT1 ρT2 · · · ρTn

�

∈ R
NL×NL. (1.6)

We use Xij ∈ R
L×L to denote the (i� j)-th L× L block of X.

It is clear that there exists C ∈ R
NL×NL for which

�

�i�j)∈E

Tr
�
Cijρiρ

T
j

�
= Tr(CX)�

meaning that we can rewrite (1.5) as

min Tr(CX)

s. t. X is of the form of (1.6)

with ρi ∈ Im(ρ)� ∀i.

(1.7)

Note that, if X is of the form of (1.6) with ρi ∈ Im(ρ)� ∀i, then we must have

that X � 0, rank(X) ≤ L, Xii = ρiρ
T
i = IL×L, and Xij = ρiρ

T
j ∈ Im(ρ). We will

replace the constraints in (1.7) by these

min Tr(CX)

s. t. Xii = IL×L

Xij ∈ Im(ρ)

X � 0

rank(X) ≤ L.

(1.8)

We then relax (1.8) by removing the non-convex rank constraint and by relaxing
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the Xij ∈ Im(ρ) to the linear constraint Xij ∈ aff
�
Im(ρ)

�
.

min Tr(CX)

s. t. Xii = IL×L

Xij ∈ aff
�
Im(ρ)

�

X � 0.

(1.9)

(1.9) is a semidefinite program (SDP) and can be solved, up to arbitrary precision,

in polynomial time using interior point methods [227].3

In the proceeding chapters we will analyze several instances of (1.9) in detail. For

now we remark that when G ∼= Z2, the natural representation to consider is {±1} and

so (1.9) coincides with the classical SDP for Max­Cut [114] which we will investigate,

in detail, in Chapter 3. We note that, in this case, the constraint Xij ∈ aff
�
± 1

�

simply corresponds to −1 ≤ Xij ≤ 1 and is a redundant constraint.

Since we require the functions fij to be linear in the representation, different

representations will allow for different objective functions. On the other hand, the

dimension L will greatly affect the computational complexity of solving (1.9). This

presents an important trade-off that will be discussed in Chapter 6 (see Remark 6.1.1).

In the same Chapter, we will also describe how to exploit properties of certain repre-

sentations to speed-up the solution of the SDP (see Remark 6.1.4).

1.4 Notation

We make use of several standard matrix and probability notation. For M a matrix

we denote its k-th smallest eigenvalue by λk(M), largest eigenvalue by λmax(M), its

spectral norm by �M� and its Frobenius norm by �M�F . �M�e�∞ = maxi�j |Mij|

is the entry-wise �∞ norm (largest entry in absolute value). Assuming further that

3For large scale problems it tends to be preferable to use methods based in alternating direction
method of multipliers �ADMM) such as the one described in [236].
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M is positive semi-definite we define the M -inner product of vectors x and y as

�x� y�M = xTMy (and say that two vectors are M -orthogonal if this inner product

is zero). Also, we define the M -norm of x as �x�M =
�
�x� x�M . diag(M) is used

to refer to a vector with the diagonal elements of M as entries. For x ∈ R
n a

vector, diag(x) denotes a diagonal matrix D ∈ R
n×n with Dii = xi. For a matrix

M , ddiag(M) = diag (diag (M)). 1n denotes the all-ones vector in R
n, we will drop

the subscript whenever there is no risk of ambiguity. We define DM as a diagonal

matrix whose diagonal entries are given by Dii = diag(M 1) =
�n

j=1Mij and LM a

Laplacian matrix defined as LM = DM −M .

For a scalar random variable Y , we refer to its p-norm as �Y �p = (E|Y |p)1/p and

infinity norm as �Y �∞ = inf {a : |Y | ≤ a a.s.}. a � b means that a ≤ Cb for a

universal constant C. If a � b and b � a, we write a � b. We write a∧ b := min(a� b)

and a ∨ b := max(a� b).

Given a graph, deg(i) will be used to denote the degree of node i. In the case of

the stochastic block model, degin(i) will be used for inner-cluster degree and degout(i)

for outer-cluster degree.

For a complex scalar a ∈ �, a denotes its complex conjugate and |a| =
√
aa

its modulus. �(M) and �(M) extract, respectively, the real and imaginary parts

of a matrix (or a vector, or a scalar). aff(S) denotes the affine hull of a set S and

Im(f) the image of a function f . Zn denotes the cyclic group on n elements and

[n] := {1� . . . � n}.

We say that an event E happens with high probability when

P [E ] = 1− n−Ω�1)�

where n is an underlying parameter that is thought of going to infinity, such as the

dimension of the matrices or the number of nodes in the graphs being studied.
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Chapter 2

Synchronization over groups of

orthogonal matrices: Worst-case

guarantees

2.1 A Cheeger inequality for the Connection Lapla-

cian

This section is devoted to a spectral method for O(d) Synchronization and a worst

case guarantee for it, through a Cheeger inequality for the connection Laplacian [41].

Our approach takes inspiration from [202], who proposed a version of this method for

angular synchronization, from techniques used to establish guarantees for a spectral

method for Max­Cut [219], and from the celebrated Cheeger’s inequality for partition-

ing [15, 17, 77]. This section is mostly based on [41].

Cheeger’s Inequality and the Graph Laplacian

Before considering the synchronization problem we will briefly present the classical

graph Cheeger’s inequality in the context of spectral partitioning. The material pre-
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sented here is well known but it will help motivate the ideas that follow.

Let G = (V�E) be an undirected weighted graph with n vertices. We will now

consider the problem of partitioning the vertices in two similarly sized sets in a way

that minimizes the cut: the volume of edges across the subsets (of the partition).

There are several ways to measure the performance of a particular partition of the

graph. For now, we will consider the one known as the Cheeger constant. Given a

partition (S� Sc) of V let

hS :=
cut(S)

min{vol(S)� vol(Sc)}
� (2.1)

where the value of the cut associated with S is cut(S) =
�

i∈S

�
j∈Sc wij, its volume

is vol(S) =
�

i∈S deg(i), and deg(i) =
�

j∈V wij is the weighted degree of vertex i.

We want to partition the graph so that hS is minimized, and the minimum value is

referred to as the Cheeger number of the graph, denoted hG = minS⊂V hS. Finding

the optimal S is known to be NP-hard, as it seems to require searching over an

exponential number of possible partitions.

There is another way to measure the performance of a partition (S� Sc) known as

the normalized cut:

Ncut(S) = cut(S)

�
1

vol(S)
+

1

vol(Sc)

�

.

As before, we want to find a subset with as small of an Ncut as possible. Note that

the normalized cut and the Cheeger constant are closely related:

1

2
Ncut(S) ≤ hS ≤ Ncut(S).

Let us introduce a few important definitions. Let A be the weighted adjacency matrix

of G andDG the degree matrix, a diagonal matrix with elements deg(i). If we consider
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a vector f ∈ R
n whose entries take only 2 possible values, one associated with vertices

in S and another in Sc, then the quadratic form Qf = 1
2

�
ij wij (fi − fj)

2 is of

fundamental importance as a measure of the cut between the sets. The symmetric

positive semi-definite matrix that corresponds to this quadratic form, LA, is known

as the graph Laplacian of G. It is defined as LG = DG−A and satisfies vTLGv = Qv

for any v ∈ R
n. It is also useful to consider the normalized graph Laplacian LG =

D
−1/2
G LGD

−1/2
G = I−D

−1/2
G WGD

−1/2
G , which is also a symmetric positive semi-definite

matrix.

Let us represent a partition (S� Sc) by a cut-function fS : V → R given by

fS(i) =






�
vol�Sc)

vol�S) vol�G)
if i ∈ S�

−
�

vol�Sc)
vol�S) vol�G)

if i ∈ Sc.

It is straightforward to show that QfS = fTS LGfS = Ncut(S), fTS DGfS = 1, and

fTS DG1 = 0, where 1 is the all-ones vector in R
n. This is the motivation for a

spectral method to approximate the minimum normalized cut problem. If we drop

the constraint that f needs to be a cut-function and simply enforce the properties

established above then one would formulate the following relaxed problem

min
f :V→R�fTDGf=1�fTDG�=0

fTLGf. (2.2)

Since 1TLG1 = 0, we know by the Courant-Fisher formula that (2.2) corresponds

to an eigenvector problem whose minimum is λ2(LG) and whose minimizer can be

obtained by the corresponding eigenvector.

Since problem (2.2) is a relaxation of the minimum Ncut problem we automatically

have 1
2
λ2(LG) ≤

1
2
minS⊂V Ncut ≤ hG. Remarkably one can show that the relaxation

is not far from the partitioning problem. In fact, one can round the solution of (2.2)

so that it corresponds to a partition (S� Sc) of G, whose hS we can control. This is
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made precise by the following classical result in spectral graph theory (several different

proofs for this inequality can be found in [81]):

Theorem 2.1.1 (Cheeger Inequality [15, 17]). Let G = (V�E) be a graph and LG its

normalized graph Laplacian. Then

1

2
λ2(LG) ≤ hG ≤

�
2λ2(LG)�

where hG is the Cheeger constant of G. Furthermore, the bound is constructive: using

the solution of the eigenvector problem one can produce partition (S� Sc) that achieves

the upper bound
�
2λ2(LG), such construction is referred to as the spectral clustering

algorithm.

On way to view spectral clustering is through the intuition that a random walk

on a graph tends to be trapped in sections of the graph which have few connections

to the rest of the vertices (this intuition is made more explicit in [156, 170]).

Frustration, Vector-Valued Walks and the Connection Laplacian

If, in addition to a graph, we are given an orthogonal transformation ρij ∈ O(d) for

each edge (i� j) ∈ E, we can consider a random walk that takes the transformations

into account. One way of doing this is by defining a random walk that, instead of

moving point masses, moves a vector from vertex to vertex and transforms it via

the orthogonal transformation associated with the edge. One can similarly define

a random walk that moves group elements on vertices. The Connection Laplacian

was defined by Singer and Wu [206] to measure the convergence of such random

walks. The construction requires that ρji = ρ−1ij = ρTij. Define the symmetric matrix

A�C) ∈ R
dn×dn so that the (i� j)-th d × d block is given by (A�C))ij = wijρij, where

wij is the weight of the edge (i� j). Also, let D�C) ∈ R
dn×dn, be the diagonal matrix

such that (D�C))ii = deg(i)Id×d. We assume deg(i) > 0, for every i. The graph
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Connection Laplacian L�C) is defined to be L�C) = D�C) − A�C), and the normalized

graph Connection Laplacian is

L�C) = I−D
−1/2
�C) A�C)D

−1/2
�C) .

If v : V → S
d−1 assigns a unit vector in R

d to each vertex, we may think of v as a

vector in dn dimensions. In this case the quadratic form

vTL�C)v =
�

�i�j)∈E

wij �vi − ρijvj�
2 =

1

2

�

i�j

wij �vi − ρijvj�
2

is a measure of how well v satisfies the edges. This will be zero if vi = ρijvj for all

edges (i� j). As wij = 0 when (i� j) /∈ E, we can sum over all pairs of vertices without

loss of generality. An assignment satisfying all edges will correspond to a stationary

distribution in the vector-valued random walk.

Following our analogy with Cheeger’s inequality for the normalized graph Lapla-

cian, we normalize this measure by defining the frustration of v as

η(v) =
vTL1v

vTD1v
=

1

2

�
i�j wij �vi − ρijvj�

2

�
i di �vi�

2 . (2.3)

We then define the S
d−1 frustration constant of G as

ηG = min
v:V→Sd−1

η(v). (2.4)

The smallest eigenvalue of L�C) provides a relaxation of ηG, as

λ1(L�C)) = min
z∈Rdn

zTL�C)z

zT z
= min

x∈Rdn

(D
1
2

�C)x)
TL�C)(D

1
2

�C)x)

(D
1
2

�C)x)
T (D

1
2

�C)x)

= min
x∈Rdn

xTL�C)x

xTD�C)x
= min

x:V→Rd
η(x).
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If there is a group potential g : V → O(d) that satisfies all the edges (which would

again correspond to a stationary distribution for the O(d)-valued random walk), then

we can obtain d orthogonal vectors on which the quadratic form defined by L�C) is

zero. For each 1 ≤ k ≤ d we obtain one of these vectors by setting v(i) to the kth

column of g(i) for all i ∈ V . In particular, this means that the columns of the matrices

of the group potential that satisfies all of the edges lie in the nullspace of L�C). Since

g(i) ∈ O(d) these vectors are orthogonal. If G is connected, one can show that these

are the only vectors in the nullspace of L�C). This observation is the motivation for

the use of a spectral algorithm for synchronization.

We define the frustration of a group potential g : V → O(d) to be

ν(g) =
1

2d

1

vol(G)

�

i�j

wij�gi − ρijgj�
2
F . (2.5)

We then define the O(d) frustration constant of G to be

νG = min
g:V→O�d)

ν(g).

In Theorem 2.1.10, we prove that this frustration constant is small if and only if the

sum of the first d eigenvalues of L�C) is small as well.

Since, �gi− ρijgj�
2
F = �gig

−1
j − ρij�

2
F , the frustration constant is simply the mini-

mum of Problem (1.1) when G ∼= O(d) and fij(gig
−1
j ) = �gig

−1
j − ρij�

2
F .

2.1.1 Cheeger’s type inequalities for the synchronization prob-

lem

We will now describe the the main results of this section. We present three spectral

algorithms to solve three different formulations of synchronization problems and ob-

tain for each a guarantee of performance in the form of a Cheeger’s type inequality.
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We will briefly summarize both the results and the ideas to obtain them, referring

the reader to [41] for the rigorous proofs.

We start by considering the S
d−1 synchronization problem 1. This corresponds

to finding, for each vertex i of the graph, a vector vi ∈ S
d−1 in way that for each

edge (i� j) the vectors agree with the edges, meaning vi = ρijvj. Since this might not

always be possible we look for a function v : V → S
d−1 for which the frustration η(v) is

minimum (see (2.3)). Motivated by an algorithm to solve Max­Cut by Trevisan [219],

we first consider a version of the problem for which we allows ourselves to synchronize

only a subset of the vertices, corresponding to the partial synchronization in S
d−1.

We then move on to consider the full synchronization problem in S
d−1.

Finally we will present our main result, an algorithm for O(d) synchronization

and a Cheeger-like inequality that equips it with a worst-case guarantee. Recall

that the O(d) synchronization corresponds to finding an assignment of an element

gi ∈ O(d) to each vertex i in a way that minimizes the discrepancy with the pairwise

measurements ρij ∼ gig
−1
j obtained for each edge. This corresponds to minimizing

the O(d) frustration, ν(g), (see (2.5)).

In the sequel, given x ∈
�
R
d
�n
, we will denote by xi the i-th d×1 block of x (that

will correspond to the value of x on the vertex i) and, for any u > 0 we define xu as

xui =






xi
�xi�

if �xi�
2 ≥ u�

0 if �xi�
2 < u.

(2.6)

1Note that the S
d−1 synchronization problem differs slightly from the other synchronization

problems considered in this thesis as the node labels do not belong to the same group as the edge
measurements, but as we will see it will provide a fruitful first step towards a guarantee for O�d)
Synchronization. Moreover S

2 synchronization corresponds to angular synchronization.
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Furthermore, for u = 0 we denote x0 by x̃, that is,

x̃i =






xi
�xi�

if xi �= 0�

0 if xi = 0.
(2.7)

Partial synchronization in S
d−1

The motivation for considering a spectral relaxation for the synchronization problem

in S
d−1 is the observation that λ1(L�C)) = minx:V→Rd η(x). In order to understand

how tight the relaxation is we need to relate λ1(L�C)) with ηG = minx:V→Sd−1 η(x).

Consider, however, the following example: a graph consisting of two disjoint com-

ponents, one whose ρij measurements are perfectly compatible and another one on

which they are not. Its graph Connection Laplacian would have a non-zero vector in

its null space, corresponding to synchronizations on the compatible component and

zero on the incompatible part (thus λ1(L�C)) = 0). On the other hand, the constraint

that v has to take values on S
d−1, will force it to try to synchronize the incompatible

part thereby bounding ηG away from zero. This example motivates a different for-

mulation of the S
d−1 synchronization problem where vertices are allowed not to be

labeled (labeled with 0). We thus define the partial Sd−1 frustration constant of G,

as the minimum possible frustration value for such an assignment,

η∗G = min
v:V→Sd−1∪{0}

η(v). (2.8)

We propose the following algorithm to solve the partial Sd−1 synchronization prob-

lem.

Algorithm 2.1.2. Given a graph G = (V�E) and a function ρ : E → O(d), construct

the normalized Connection Laplacian L�C) and the degree matrix D�C). Compute z,

the eigenvector corresponding to the smallest eigenvalue of L�C). Let x = D
− 1

2

�C)z. For

each vertex index i, let ui = �xi�, and set v
i : V → S

d−1 ∪ {0} as vi = xui, according
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to (2.6). Output v equal to the vi that minimizes η (vi).

We refer the reader to [41] for a proof of the following Lemma.

Lemma 2.1.3. Given x ∈ R
dn there exists u > 0 such that

η(xu) ≤
�
10η(x).

Moreover, if d = 1 the right-hand side can be replaced by
�
8η(x).

We note that it guarantees that the solution v given by Algorithm 2.1.2 satisfies

η(v) ≤
�
10η(x). Since x was computed so that η(x) = λ1(L�C)), Algorithm 2.1.2 is

guaranteed to output a solution v such that

η(v) ≤
�
10λ1(L�C)).

Note that λ1(L�C)) ≤ η∗G, which is the optimum value for the partial Sd−1 synchro-

nization problem (see (2.8)). The idea to show that the rounding, from x, to the

solution v done by Algorithm 2.1.2 produces a solution with η(v) ≤
�
10η(x) is to

use the probabilistic method. One considers a random rounding scheme by rounding

x as in Algorithm 2.1.2 and (2.6) but thresholding at a random value u, drawn from a

well-chosen distribution. One then shows that, in expectation, the frustration of the

rounded vector is bounded by
�
10η(x). This automatically ensures that there must

exist a value u that produces a solution with frustration bounded by
�
10η(x). The

rounding described in Algorithm 2.1.2 runs through all possible such roundings and

is thus guaranteed to produce a solution satisfying the bound (we refer the reader

to [41] for a proof of Lemma 2.1.3). An O(1) version of this algorithm and analysis

appeared in [219], when ρ is the constant function equal to −1, in the context of the

Max­Cut problem. In fact, if d = 1 the factor 10 can be substituted by 8 and the

stronger inequality holds η(v) ≤
�
8λ1(L�C)).
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The above performance guarantee for Algorithm 2.1.2 automatically implies the

following Cheeger-like inequality.

Theorem 2.1.4. Let G = (V�E) be a weighted graph. Given a function ρ : E →

O(d), let η∗G be the partial S
d−1 frustration constant of G and λ1(L�C)) the smallest

eigenvalue of the normalized graph Connection Laplacian. Then

λ1(L�C)) ≤ η∗G ≤
�
10λ1(L�C)). (2.9)

Furthermore, if d = 1, the stronger inequality holds, η∗G ≤
�
8λ1(L�C)).

We note that Trevisan [219], in the context of Max­Cut, iteratively performs

this partial synchronization procedure in the subgraph composed of the vertices left

unlabeled by the previous iteration, in order to label the entire graph. We, however,

consider only one iteration.

Full synchronization in S
d−1

In this section we adapt Algorithm 2.1.2 to solve (full) synchronization in S
d−1 and

show performance guarantees, under reasonable conditions, by obtaining bounds for

ηG, the frustration constant for synchronization in S
d−1. The intuition given to justify

the relaxation to partial Sd−1 synchronization was based on the possibility of poor

connectivity of the graph (small spectral gap). In this section we show that poor

connectivity, as measured by a small spectral gap in the normalized graph Laplacian,

is the only condition under which one can have large discrepancy between the frus-

tration constants and the spectra of the graph Connection Laplacian. We will show

that, as long as the spectral gap is bounded away from zero, one can in fact control

the full frustration constants.

Algorithm 2.1.5. Given a weighted graph G = (V�E) and a function ρ : E →

O(d), construct the normalized Connection Laplacian L�C) and the degree matrix D�C).
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Compute z, the eigenvector corresponding to the smallest eigenvalue of L�C). Let

x = D
− 1

2

�C)z. Output the solution x̃ : V → S
d−1 ∪ {0} where each x̃i is defined as

x̃i =
xi
�xi�

.

If xi = 0, have x̃i be any vector in S
d−1.

Similarly to Algorithm 2.1.2, the following lemma guarantees that the solution x̃

given by Algorithm 2.1.5 satisfies η(x̃) ≤ 44 1
λ2�LG)

η(x).

Lemma 2.1.6. For every x ∈ R
dn, η(x̃) ≤ 44

λ2�L0)
η(x).

Again, since x was computed so that η(x) = λ1(L�C)), then Algorithm 2.1.2 is

guaranteed to output a solution v such that

η(v) ≤ 44
λ1(L�C))

λ2(LG)
.

Recall that, trivially, λ1(L�C)) ≤ ηG, which is the optimum value for the (full) Sd−1

synchronization problem (see (2.4)). We refer the reader to [41] for the proof for

Lemma 2.1.6. The idea here is to look at the vector of the local norms of x: nx ∈ R
n

where nx(i) = �xi�. It is not hard to show that nT
xLGnx

nT
xDGnx

≤ η(x), which means that,

if η(x) is small then nx cannot vary much between two vertices that share an edge.

Since λ2(LG) is large one can show that such a vector needs to be close to constant,

which means that the norms of x across the vertices are similar. If the norms were

all the same then the rounding vi =
xi
�vi�

would not affect the value of η(·), we take

this slightly further by showing that if the norms are similar then we can control how

much the rounding affects the penalty function.

The above performance guarantee for Algorithm 2.1.5 automatically implies an-

other Cheeger-like inequality.
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Theorem 2.1.7. Let G = (V�E) be a graph. Given a function ρ : E → O(d), let

ηG be the S
d−1 frustration constants of G, λ1(L�C)) the smallest eigenvalue of the

normalized graph Connection Laplacian and λ2(LG) the second smallest eigenvalue of

the normalized graph Laplacian. Then,

λ1(L�C)) ≤ ηG ≤ 44
λ1(L�C))

λ2(LG)
.

The O(d) synchronization problem

We present now the main contribution of this section, a spectral algorithm for O(d)

synchronization together with a Cheeger-type inequality that provides a worst-case

performance guarantee for the algorithm.

Before presenting the algorithm let us note the differences between this problem

and the S
d−1 synchronization problem, presented above. For the Sd−1 case, the main

difficulty that we faced in trying to obtain candidate solutions from eigenvectors was

the local unit norm constraint. This is due to the fact that the synchronization

problem requires its solution to be a function from V to S
d−1, corresponding to a

vector in R
dn whose vertex subvectors have unit norm, while the eigenvector, in

general, does not satisfy such a constraint. Nevertheless, the results in the previous

section show that, by simply rounding the eigenvector, one does not lose more than

a linear term, given that the graph Laplacian has a spectral gap bounded away from

zero.

However, the O(d) synchronization setting is more involved. The reason being

that, besides the local normalization constraint, there is also a local orthogonality

constraint (at each vertex, the d vectors have to be orthogonal so that they can be

the columns of an orthogonal matrix). For S
d−1 we locally normalized the vectors,

by choosing for each vertex the unit vector closest to xi. For O(d) synchronization

we will pick, for each vertex, the orthogonal matrix closest (in the Frobenius norm)
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to the matrix
�
x1i · · · x

d
i

�
, where xji corresponds to the d−dimensional vector assigned

to vertex i by the j’th eigenvector. This rounding can be achieved by the Polar

decomposition. Given a d×d matrix X, the matrix P(X), solution of minO∈O�d) �O−

X�F , is one of the components of the Polar decomposition of X (see [128, 147] and

references therein). We note that P(X) can be computed efficiently through the SVD

decomposition of X. In fact, given the SVD of X, X = UΣV T , the closest orthogonal

matrix to X is given by P(X) = UV T (see [128]). This approach is made precise in

the following spectral algorithm for O(d)-synchronization.

Algorithm 2.1.8. Given a weighted graph G = (V�E) and a function ρ : E →

O(d), construct the normalized Connection Laplacian L�C) and the degree matrix D�C).

Compute z1� . . . � zd, the first d eigenvectors corresponding to the d smallest eigenvalues

of L�C). Let x
j = D

− 1
2

�C)z
j, for each j = 1� . . . � d. Output the solution g : V → O(d)

where each gi is defined as

gi = P(Xi)�

where Xi =
�
x1i · · · x

d
i

�
and P(Xi) is the closest orthogonal matrix of Xi, which can be

computed via the SVD of Xi, if Xi = UiΣiV
T
i , then P(Xi) = UiV

T
i . If Xi is singular

2

simply set P(Xi) to be Id.

Similarly to how the performance of the Sd−1 synchronization algorithms was ob-

tained, the following lemma bounds the effect of the rounding step in Algorithm 2.1.8.

Lemma 2.1.9. Given x1� . . . � xd ∈ R
dn such that �xk� xl�D1 = 0 for all k �= l, consider

the potential g : V → O(d) given as gi = P (Xi) where Xi =
�
x1i · · · x

d
i

�
and P(X) is

the closest (in the Frobenius norm) orthogonal matrix of X. If Xi is singular P(Xi)

is simply set to be Id. Then,

ν(g) ≤
�
2d−1 + 210d3

� 1

λ2(L0)

d�

i=1

η
�
xi
�
.

2In this case the uniqueness of P�Xi) is not guaranteed and thus the map is not well-defined.
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Before rounding, the frustration of the solution
�
x1 · · · xd

�
is 1

d

�d
i=1 η (x

i). Lemma

2.1.9 guarantees that the solution g obtained by the rounding in Algorithm 2.1.8

satisfies ν(g) ≤ 1026d3 1
λ2�LG)

�d
i=1 η (x

i). Because of how the vectors x1� . . . � xd were

built,
�d

i=1 η (x
i) =

�d
i=1 λi(L�C)), and this means that the solution g computed by

Algorithm 2.1.8 satisfies

ν(g) ≤ 1026d3
1

λ2(LG)

d�

i=1

λi(L�C)).

This performance guarantee automatically implies our main result, a Cheeger

inequality for the Connection Laplacian.

Theorem 2.1.10. Let λi(L�C)) and λi(LG) denote the i-th smallest eigenvalues of

the normalized Connection Laplacian L�C) and the normalized graph Laplacian LG

respectively. Let νG denote the frustration constant for O(d) Synchronization. Then,

1

d

d�

i=1

λi(L�C)) ≤ νG ≤ 1026d3
1

λ2(LG)

d�

i=1

λi(L�C)).

Note that, once again, the lower bound is trivially obtained by noting that the

eigenvector problem is a relaxation of the original synchronization problem.

Although we refer the reader to [41] for a proof of Lemma 2.1.9, we give a brief

intuitive explanation of how the result is obtained.

As discussed above, the performance guarantee for Algorithm 2.1.5 relies on a

proper understanding of the effect of the rounding step. In particular we showed that

if λ2(LG) is small, then locally normalizing the candidate solution (which corresponds

to the rounding step) has an effect over the penalty function that we can control. The

case of O(d) Synchronization is dealt with similarly. Instead of local normalization,

the rounding step for Algorithm 2.1.8 is based on the polar decomposition. We start

by understanding when the polar decomposition is stable (in the sense of changing

the penalty function on a given edge) and see that this is the case when the candidate
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solution Xi ∈ R
d×d is not close to being singular. The idea then is to show that only

a small portion (which will depend on
�d

i=1 λi(L�C)) and λ2(LG)) of the graph can

have candidate solutions Xi close to singular and use that to show that, overall, we

can bound the harmful contribution potentially caused by the rounding procedure on

the penalty function.

2.1.2 Tightness of results

Let us consider the ring graph on n vertices Gn = (Vn� En) with Vn = [n] and E =

{(i� (i+ 1)mod n)� i ∈ [n]} with the edge weights all equal to 1 and ρ : V → O(d) as

ρ�n�1) = − I and ρ = I for all other edges. Define x ∈ R
dn by xk =

�
2 k
n
− 1� 0� . . . � 0

�T
.

It is easy to check that η(x) = O(n−2) and that, for any u > 0, if xu �≡ 0, there will

have to be at least one edge that is not compatible with xu, implying η(xu) ≥ 1
2n
.

This shows that the 1/2 exponent in Lemma 2.1.3 is needed. In fact, by adding a

few more edges to the graph Gn one can also show the tightness of Theorem 2.1.4:

Consider the “rainbow” graph Hn that is constructed by adding to Gn, for each non-

negative integer k smaller than n/2, an edge between vertex k and vertex n− k with

ρ�k�n−k) = − I. The vector x still satisfies η(x) = O(n−2), however, for any non-zero

vector v : V → S
d−1 ∪{0}, it is not hard to show that η(v) has to be of order at least

n−1, meaning that η∗G is Ω(
�

λ1(L�C))). This also means that, even if considering η∗G,

one could not get a linear bound (as provided by Lemma 2.1.6) without the control

on λ2(LG).

Theorem 2.1.10 provides a non-trivial bound only if λ2(LG) is sufficiently large. It

is clear that if one wants to bound full frustration constants, a dependency on λ2(LG)

is needed. It is, nevertheless, non-obvious that this dependency is still needed if we

consider partial versions of O(d) frustration constants, ϑ∗G or ν∗G. This can, however,

be illustrated by a simple example in O(2); consider a disconnected graph G with

two sufficiently large complete components, G1 = (V 1� E1) and G2 = (V 2� E2). For
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each edge let ρi�j =
�

−1 0

0 1

�
. It is clear that the vectors x1 and x2 defined such that

x1i = [0� 1V 1(i)]T and x2i = [0� 1V 2(i)]T are orthogonal to each other and lie in the

null space of the graph Connection Laplacian of G. This implies that λ2(L�C)) = 0.

On the other hand, it is straightforward to check that ν∗G is not zero because it is

impossible to perfectly synchronize the graph (or any of the components, for that

matter).

2.2 Phase Retrieval as an application

2.2.1 Introduction

In this section we will describe how Algorithm 2.1.5 and Lemma 2.1.6 can be used to

provide, and analyze, an algorithm to solve the phase retrieval problem. This section

is based on the material in [11, 39, 33]. We start by a brief description and history

of the problem.

Given a collection of vectors Φ := {ϕ�}
N
�=1 ⊆ �

M and a signal x ∈ �
M , consider

measurements of the form

z� := |�x� ϕ��|
2 + ν�� (2.10)

where ν� is noise; we call these noisy intensity measurements, the purpose of phase

retrieval is to estimate x from these measurements.

Several areas of imaging science, such as X-ray crystallography [123, 162, 163],

diffraction imaging [63], astronomy [90] and optics [232], use measurements of this

form with the intent of reconstructing the original signal. Note that in the measure-

ment process (2.10), we inherently lose some information about x. Indeed, for every

ω ∈ � with |ω| = 1, we see that x and ωx produce the same intensity measurements.

Thus, the best one can hope to do with the intensity measurements of x ∈ �
M is re-

construct the class [x] ∈ �
M/∼, where ∼ is the equivalence relation of being identical
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up to a global phase factor.

In practice, phase retrieval falls short of determining the original signal up to

global phase. First of all, the intensity measurement process that is used, say � :

�
M/∼ → R

N
≥0 with �(x) = |Φ∗x|2 (entrywise) and viewing Φ = [ϕ1 · · ·ϕN ], often

lacks injectivity, making it impossible to reconstruct uniquely. Moreover, the phase

retrieval algorithms that are used in practice take alternating projections onto the

column space of Φ∗ (to bring phase to the measurements) and onto the nonconvex

set of vectors y whose entry magnitudes match the intensity measurements |Φ∗x|2 (to

maintain fidelity in the magnitudes) [105, 111, 117]. Unfortunately, the convergence

of these algorithms (and various modifications thereof) is particularly sensitive to the

choice of initial phases [157].

These deficiencies have prompted two important lines of research in phase re-

trieval:

(i) For which measurement designs Φ is [x] �→ |Φ∗x|2 injective?

(ii) For which injective designs can [x] be reconstructed stably and efficiently?

A first step toward solving (i) is determining how large N must be in order for

� to be injective. It remains an open problem to find the smallest such N , it was

conjectured in [31] that N ≥ 4M − 4 is necessary. Indeed, embedding results in

differential geometry give that N ≥ (4 + o(1))M is necessary [24, 126]. As for suf-

ficiency, recently Conca et al. [85] show that for almost every choice of Φ, � is

injective whenever N ≥ 4M − 4, improving over a result by Balan, Casazza and

Edidin [28] establishing a similar result for N ≥ 4M − 2. Before then, notable con-

structions with few measurements were given in [50, 165]. Just a few months ago

Vinzant [229] disproved the 4M − 4 conjecture with an injective construction for

M = 4 and N = 11 < 12 = 4× 4− 4. Though the community has investigated vari-

ous conditions for injectivity, very little is known about how to stably and efficiently
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reconstruct in the injective case. In fact, some instances of the phase retrieval prob-

lem are known to be NP-complete [196], and so any general reconstruction process is

necessarily inefficient, assuming P �= NP.

This leads one to attempt provably stable and efficient reconstruction from mea-

surements of the form (2.10) with particular ensembles Φ. Until recently, this was

only known to be possible in cases where N = Ω(M2) [27]. By contrast, the state

of the art comes from Candès, Strohmer and Voroninski [67], who use semidefinite

programming to stably reconstruct from N = O(M logM) Gaussian-random mea-

surements, recently improved to N = O(M) in [64]. There is other work along

this vein [69, 141, 231] which also uses semidefinite programming and provides re-

lated guarantees. The method described in this section will bypass semidefinite

programming by leveraging the spectral approach to angular synchronization (Al-

gorithm 2.1.5).

While (i) and (ii) above describe what has been a more theoretical approach to

phase retrieval, practitioners have meanwhile considered various alternatives to the

intensity measurement process (2.10). A common theme among these alternatives

is the use of interference to extract more information about the desired signal. For

example, holography interferes the signal of interest x ∈ �
M with a known reference

signal y ∈ �
M , taking measurements of the form |F (x + ωy)|2, where ω ∈ � has

unit modulus and F denotes the Fourier transform [98]; three such measurements

(i.e., 3M scalar measurements) suffice for injectivity [234]. Alternatively, spectral

phase interferometry for direct electric-field reconstruction (SPIDER) interferes the

signal of interest x ∈ �
M with time- and frequency-shifted versions of itself Sx ∈

�
M , taking measurements of the form |F (x + Sx)|2 [131]; while popular in practice

for ultrashort pulse measurement, SPIDER fails to accurately resolve the relative

phase of well-separated frequency components [136]. Another interesting approach is

ptychography, in which overlapping spatial components Pix� Pjx ∈ �
M are interfered
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with each other, and measurements have the form |F (Pix + Pjx)|
2 [189]. Recently,

vectorial phase retrieval was proposed, in which two unknown signals x� y ∈ �
M

are interfered with each other, and the measurements are |Fx|2, |Fy|2, |F (x + y)|2

and |F (x + iy)|2 [187]; furthermore, [186] gives that almost every pair of signals is

uniquely determined by these 4M scalar measurements, in which case both signals

can be reconstructed using the polarization identity. While practitioners seem to have

identified interference as an instrumental technique for quality phase retrieval, the

reconstruction algorithms which are typically used, much like the classical algorithms

in [105, 111, 117], are iterative and lack convergence guarantees (e.g., [98, 155], though

[186, 187] are noteworthy exceptions).

Returning to measurements of the form (2.10), this paper combines ideas from

both state-of-the-art theory and state-of-the-art practice by proposing an exchange

of sorts: If you already have O(M logM) Gaussian-random measurements vectors

(as prescribed in [67]), then we offer a faster reconstruction method with a stable

performance guarantee, but at the price of O(M logM) additional (non-adaptive)

measurements. These new measurement vectors are interferometry-inspired combi-

nations of the originals, and the computational speedups gained in reconstruction

come from our use of different spectral methods. While the ideas here can be applied

for phase retrieval of 2-D images, we focus on the 1-D case for simplicity.

We also note that these techniques can be adapted to the setting of masked Fourier

measurements, thereby mimicking the illumination methodology of [69] (for the sake

of brevity we do not describe those adaptation here but refer the reader to [33]). They

have also been adapted to the setting on which the signal to be recovered is known

to be sparse [39]. This strongly suggests that these techniques can be leveraged to

tackle a wide variety of practical instances of the phase retrieval problem.

To help motivate our measurement design and phase retrieval procedure, we start

by considering the simpler, noiseless case. In this case, the success of our method fol-
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lows from a neat trick involving the polarization identity along with some well-known

results in the theory of expander graphs. Afterwards, we will briefly describe how to

modify the method to obtain provable stability in the noisy case; here, Algorithm 2.1.5

and Lemma 2.1.6 play a crucial role.

2.2.2 The noiseless case

In this section, we provide a new measurement design and reconstruction algorithm

for phase retrieval. Here, we specifically address the noiseless case, in which ν� in

(2.10) is zero for every � = 1� . . . � N ; this case will give some intuition for a more

stable version of our techniques, which we discuss later. In the noiseless case, we will

use on the order of the fewest measurements possible, namely N = O(M), where M

is the dimension of the signal.

Before stating our measurement design and phase retrieval procedure, we moti-

vate both with some discussion. Take a finite set V , and suppose we take intensity

measurements of x ∈ �
M with a set ΦV := {ϕi}i∈V that spans �M . Again, we wish

to recover x up to a global phase factor. Having |�x� ϕi�| for every i ∈ V , we claim

it suffices to determine the relative phase between �x� ϕi� and �x� ϕj� for all pairs

i �= j. Indeed, if we had this information, we could arbitrarily assign some nonzero

coefficient ci = |�x� ϕi�| to have positive phase. If �x� ϕj� is also nonzero, then it has

well-defined relative phase

ρij :=
� �x�ϕi�
|�x�ϕi�|

�−1 �x�ϕj�

|�x�ϕj�|
� (2.11)

which determines the coefficient by multiplication: cj = ρij|�x� ϕj�|. Otherwise when

�x� ϕj� = 0, we naturally take cj = 0, and for notational convenience, we arbitrarily

take ρij = 1. From here, the original signal’s equivalence class [x] ∈ �
M/∼ can be

identified by applying the canonical dual frame {ϕ̃j}j∈V , namely the Moore-Penrose
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pseudoinverse, of ΦV :

�

j∈V

cjϕ̃j =
�

j∈V

ρij|�x� ϕj�|ϕ̃j =
� �x�ϕi�
|�x�ϕi�|

�−1�

j∈V

�x� ϕj�ϕ̃j =
� �x�ϕi�
|�x�ϕi�|

�−1
x ∈ [x]. (2.12)

Having established the utility of the relative phase between coefficients, we now

seek some method of extracting this information. To this end, we turn to a special

version of the polarization identity:

Lemma 2.2.1 (Mercedes-Benz Polarization Identity). Take ζ := e2πi/3. Then for

any a� b ∈ �,

āb =
1

3

2�

k=0

ζk|a+ ζ−kb|2. (2.13)

Proof. We start by expanding the right-hand side of (2.13):

RHS :=
1

3

2�

k=0

ζk|a+ ζ−kb|2 =
1

3

2�

k=0

ζk
�
|a|2 + 2�(ζ−kāb) + |b|2

�
=

2

3

2�

k=0

ζk�(ζ−kāb).

Multiplying, we find

�(ζ−kāb) = �(ζ−k)�(āb)−�(ζ−k)�(āb) = �(ζk)�(āb) + �(ζk)�(āb).

We substitute this into our expression for RHS:

�(RHS) =
2

3

�

�(āb)
2�

k=0

�
�(ζk)

�2
+ �(āb)

2�

k=0

�(ζk)�(ζk)

�

�

�(RHS) =
2

3

�

�(āb)
2�

k=0

�(ζk)�(ζk) + �(āb)
2�

k=0

�
�(ζk)

�2
�

.

Finally, we apply the following easy-to-verify identities:

2�

k=0

�
�(ζk)

�2
=

2�

k=0

�
�(ζk)

�2
=

3

2
�

2�

k=0

�(ζk)�(ζk) = 0�
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which yield RHS = āb.

The above polarization identity can also be proved by viewing {ζk}2k=0 as a

Mercedes-Benz frame in R
2 and 2

3

�2
k=0 ζ

k�(ζ−ku) as the corresponding reconstruc-

tion formula for u ∈ � = R
2. We can now use this polarization identity to determine

relative phase (2.11):

�x� ϕi��x� ϕj� =
1

3

2�

k=0

ζk
�
��x� ϕi�+ ζ−k�x� ϕj�

�
�2 =

1

3

2�

k=0

ζk
�
��x� ϕi + ζkϕj�

�
�2. (2.14)

Thus, if in addition to ΦV we measure with {ϕi + ζkϕj}
2
k=0, we can use (2.14) to

determine �x� ϕi��x� ϕj� and then normalize to get the relative phase:

ρij :=
� �x�ϕi�
|�x�ϕi�|

�−1 �x�ϕj�

|�x�ϕj�|
=

�x�ϕi��x�ϕj�

|�x�ϕi��x�ϕj�|
� (2.15)

provided both �x� ϕi� and �x� ϕj� are nonzero. To summarize our discussion of recon-

structing a single signal, if we measure with ΦV and {ϕi + ζkϕj}
2
k=0 for every pair

i� j ∈ V , then we can recover [x]. However, such a method uses |V |+3
�
|V |
2

�
measure-

ments, and since ΦV must span �
M , we necessarily have |V | ≥ M and thus a total

of Ω(M2) measurements. Note that a nearly identical formulation of these Ω(M2)

measurements appears in Theorem 5.2 of [27]. The proof of this result shows how one

can adaptively appeal to only O(M) of the measurements to perform phase retrieval,

suggesting that most of these measurements are actually unnecessary. However, since

the O(M) measurements that end up being used are highly dependent on the signal

being measured, one cannot blindly restrict to a particular subcollection of O(M)

measurement vectors a priori without forfeiting injectivity.

In pursuit of O(M) measurements, take some simple graph G = (V�E), arbitrarily

assign a direction to each edge, and only take measurements with ΦV and ΦE :=
�
�i�j)∈E{ϕi + ζkϕj}

2
k=0. To recover [x], we again arbitrarily assign some nonzero
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vertex measurement to have positive phase, and then we propagate relative phase

information along the edges by multiplication to determine the phase of the other

vertex measurements relative to the original vertex measurement:

ρik = ρijρjk. (2.16)

However, if x is orthogonal to a given vertex vector, then that measurement is zero,

and so relative phase information cannot propagate through the corresponding vertex;

indeed, such orthogonality has the effect of removing the vertex from the graph, and

for some graphs, this will prevent recovery. For example, if G is a star, then x could be

orthogonal to the vector corresponding to the internal vertex, whose removal would

render the remaining graph edgeless. That said, we should select ΦV and G so as to

minimize the impact of orthogonality with vertex vectors.

First, we can take ΦV to be full spark, that is, ΦV has the property that every

subcollection of M vectors spans. Full spark frames appear in a wide variety of

applications. Explicit deterministic constructions of them are given in [12, 184]. For

example, we can select the first M rows of the |V | × |V | discrete Fourier transform

matrix, and take ΦV to be the columns of the resulting M × |V | matrix; in this case,

the fact that ΦV is full spark follows from the Vandermonde determinant formula.

In our application, ΦV being full spark will be useful for two reasons. First, this

implies that x �= 0 is orthogonal to at most M − 1 members of ΦV , thereby limiting

the extent of x’s damage to our graph. Additionally, ΦV being full spark frees us

from requiring the graph to be connected after the removal of vertices; indeed, any

remaining component of size M or more will correspond to a subcollection of ΦV that

spans, meaning it has a dual frame to reconstruct with. It remains to find a graph

of O(M) vertices and edges that maintains a size-M component after the removal of

any M − 1 vertices.
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To this end, we consider a well-studied family of sparse graphs known as expander

graphs. We choose these graphs for their notably strong connectivity properties.

There is a combinatorial definition of expander graphs, but we will focus on the

spectral definition. Given a d-regular graph G of n vertices, consider its adjacency

matrix A, and recall that its normalized Laplacian is given by LG := I − 1
d
A. We are

particularly interested in the eigenvalues of the Laplacian: 0 = λ1 ≤ · · · ≤ λn. The

second eigenvalue λ2 of the Laplacian is called the spectral gap of the graph, and, as

it was clear from Cheeger’s inequality in Section 2.1, this value is particularly useful

in evaluating the graph’s connectivity. We say G has expansion δ if {λ2� . . . � λn} ⊆

[1− δ� 1 + δ]; note that since 1− δ ≤ λ2, small expansion implies large spectral gap.

Furthermore, a family of d-regular graphs {Gi}
∞
i=1 is a spectral expander family if there

exists c < 1 such that every Gi has expansion δ(Gi) ≤ c. Since d is constant over an

expander family, expanders with many vertices have particularly few edges. There

are many results which describe the connectivity of expanders, but the following is

particularly relevant to the application that follows:

Lemma 2.2.2 (Spectral gap grants connectivity [124]). Consider a d-regular graph

G of n vertices with spectral gap λ2. For all ε ≤
λ2

6
, removing any εdn edges from G

results in a connected component of size ≥ (1− 2ε
λ2
)n.

Note that removing εn vertices from a d-regular graph necessarily removes ≤ εdn

edges, and so this lemma directly applies. For our application, we want to guarantee

that the removal of any M − 1 vertices maintains a size-M component. To do this,

we will ensure both (i) M − 1 ≤ εn and (ii) M − 1 < (1− 2ε
λ2
)n, and then invoke the

above lemma. Note that since n ≥M ≥ 2,

ε ≤
λ2
6
≤

Tr[L]

6(n− 1)
=

n

6(n− 1)
≤

1

3
<

2

3
≤ 1−

2ε

λ2
�

where the last inequality is a rearrangement of ε ≤ λ2

6
. Thus εn < (1− 2ε

λ2
)n, meaning
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(i) implies (ii), and so it suffices to have M ≤ εn + 1. Overall, we use the following

criteria to pick our expander graph: Given the signal dimension M , use a d-regular

graph G = (V�E) of n vertices with spectral gap λ2 such that M ≤ (λ2

6
)n+ 1. Then

by the previous discussion, the total number of measurements is N = |V | + 3|E| =

(3
2
d + 1)n. If we think of the degree d as being fixed, then the number of vertices n

in the graph is proportional to the total number of measurements N (this is the key

distinction from the previous complete-graph case).

Recall that we seek N = O(M) measurements. To minimize the redundancy N
M

for a fixed degree d, we would like a maximal spectral gap λ2, and it suffices to seek

minimal spectral expansion δ. Spectral graph families known as Ramanujan graphs

are asymptotically optimal in this sense; taking Gdn to be the set of connected d-regular

graphs with ≥ n vertices, Alon and Boppana (see [15]) showed that for any fixed d,

lim
n→∞

inf
G∈Gd

n

δ(G) ≥
2
√
d− 1

d
�

while Ramanujan graphs are defined to have spectral expansion ≤ 2
√
d−1
d

. To date,

Ramanujan graphs have only been constructed for certain values of d. One important

construction was given by Lubotzky, Phillips, and Sarnak [152], which produces a

Ramanujan family whenever d− 1 ≡ 1 mod 4 is prime. Among these graphs, we get

the smallest redundancy N
M

when M = �(1− 2
√
d−1
d

)n
6
+ 1� and d = 6:

N

M
≤

(3
2
d+ 1)n

(1− 2
√
d−1
d

)n
6

= 45
�
3 +

√
5
�
≈ 235.62.

Thus, in such cases, our techniques allow for phase retrieval with only N ≤ 236M

measurements. However, the number of vertices in each Ramanujan graph from [152]

is of the form q(q2 − 1) or q�q2−1)
2

, where q ≡ 1 mod 4 is prime, and so any bound on

redundancy N
M

using these graphs will only be valid for particular values of M .

In order to get N = O(M) in general, we use the fact that random graphs are
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nearly Ramanujan with high probability. In particular, for every ε > 0 and even d,

a random d-regular graph has spectral expansion δ ≤ 2
√
d−1+ε
d

with high probability

as n → ∞ [107]. Thus, picking ε and d to satisfy 2
√
d−1+ε
d

< 1, we may take M =

�(1− 2
√
d−1+ε
d

)n
6
+ 1� to get

N

M
≤

(3
2
d+ 1)n

(1− 2
√
d−1+ε
d

)n
6

�

and this choice will satisfy M ≤ (λ2

6
)n + 1 with high probability. To see how small

this redundancy is, note that taking ε = 0.1 and d = 8 gives N ≤ 240M . While the

desired expansion properties of a random graph are only present with high probability,

estimating the spectral gap is inexpensive, and so it is computationally feasible to

verify whether a randomly drawn graph is good enough. Moreover, n can be any

sufficiently large integer, and so the above bound is valid for all sufficiently large M ,

i.e., our procedure can perform phase retrieval with N = O(M) measurements in

general.

Combining this with the above discussion, we have the following measurement

design and phase retrieval procedure:

Measurement Design A �noiseless case)

• Fix d > 2 even and ε ∈ (0� d− 2
√
d− 1).

• Given M , pick some d-regular graph G = (V�E) with spectral gap λ2 ≥ λ� :=

1− 2
√
d−1+ε
d

and |V | = � 6
λ� (M − 1)�, and arbitrarily direct the edges.

• Design the measurements Φ := ΦV ∪ ΦE by taking ΦV := {ϕi}i∈V ⊆ �
M to be

full spark and ΦE :=
�
�i�j)∈E{ϕi + ζkϕj}

2
k=0.

Phase Retrieval Procedure A �noiseless case)

• Given {|�x� ϕ�|2}ϕ∈Φ, delete the vertices i ∈ V with |�x� ϕi�|
2 = 0.
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• In the remaining induced subgraph, find a connected component of≥M vertices

V �.

• Pick a vertex in V � to have positive phase and propagate/multiply relative

phases (2.16), which are calculated by normalizing (2.14), see (2.15).

• Having {�x� ϕi�}i∈V � up to a global phase factor, find the least-squares estimate

of [x] by applying the Moore-Penrose pseudoinverse of {ϕi}i∈V � , see (2.12).

Note that this phase retrieval procedure is particularly fast. Indeed, if we use

E ⊆ V 2 to store G, then we can delete vertices i ∈ V with |�x� ϕi�|
2 = 0 by deleting

the edges for which (2.14) is zero, which takes O(|E|) time. Next, if the members

of E are ordered lexicographically, the remaining subgraph can be easily partitioned

into connected components in O(|E|) time by collecting edges with common vertices,

and then propagating relative phase in the largest component is performed in O(|E|)

time using a depth- or breadth-first search. Overall, we only use O(M) time before

the final least-squares step of the phase retrieval procedure, which happens to be the

bottleneck, depending on the subcollection ΦV � . In general, we can find the least-

squares estimate in O(M3) time using Gaussian elimination, but if ΦV � has special

structure (e.g., it is a submatrix of the discrete Fourier transform matrix), then one

might exploit that structure to gain speedups (e.g., use the fast Fourier transform in

conjunction with an iterative method). Regardless, our procedure reduces the nonlin-

ear phase retrieval problem to the much simpler problem of solving an overdetermined

linear system.

While this measurement design and phase retrieval procedure is particularly effi-

cient, it certainly lacks stability. Perhaps most notably, we have not imposed anything

on ΦV that guarantees stability with inverting ΦV � ; indeed, we have merely enforced

linear independence between vectors, while stability will require well-conditioning.

Another noteworthy source of instability is our method of phase propagation (which
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is a form of angular synchronization). The process described above, in the presence

of noise, will naturally accumulates error; we will remediate this issue by making use

of the spectral method described in Section 2.1 (Algorithm 2.1.5). These adaptations

while turning the process stable, will do it at the price of a log factor in the number

of measurements: N = O(M logM).3

2.2.3 The noisy case

We now consider a noise-robust version of the measurement design and phase re-

trieval procedure of the previous section. In the end, the measurement design will be

nearly identical: vertex measurements will be independent complex Gaussian vectors

(thereby being full spark with probability 1), and the edge measurements will be the

same sort of linear combinations of vertex measurements. Our use of randomness in

this version will enable the vertex measurements to simultaneously satisfy two impor-

tant conditions with high probability: projective uniformity with noise and numerical

erasure robustness. Before defining these conditions, we motivate them by considering

a noisy version of our phase retrieval procedure.

Recall that our noiseless procedure starts by removing the vertices i ∈ V for which

|�x� ϕi�|
2 = 0. Indeed, since we plan to propagate relative phase information along

edges, these 0-vertices are of no use, as relative phase with these vertices is not well

defined. Since we calculate relative phase by normalizing (2.14), we see that relative

phase is sensitive to perturbations when (2.14) is small, meaning either �x� ϕi� or

�x� ϕj� is small. As such, while 0-vertices provide no relative phase information in the

noiseless case, small vertices provide unreliable information in the noisy case, and so

we wish to remove them accordingly (alternatively, one might use weights according

to one’s confidence in the information, but we decided to use hard thresholds to

simplify the analysis). However, we also want to ensure that there are only a few

3We do not think this log factor is necessary, but we leave this pursuit for future work.
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small vertices. In the noiseless case, we limit the number of 0-vertices by using a

full spark frame; in the noisy case, we make use of a new concept we call projective

uniformity :

Definition 2.2.3. The α-projective uniformity of Φ = {ϕi}
n
i=1 ⊆ �

M is given by

PU(Φ;α) = min
x∈�M

�x�=1

max
I⊆{1�...�n}
|I|≥αn

min
i∈I

|�x� ϕi�|
2.

In words, projective uniformity gives the following guarantee: For every unit-norm

signal x, there exists a collection of vertices I ⊆ V of size at least α|V | such that

|�x� ϕi�|
2 ≥ PU(ΦV ;α) for every i ∈ I. As such, projective uniformity effectively

limits the total number of small vertices possible, at least before the measurements

are corrupted by noise. However, the phase retrieval algorithm will only have access

to noisy versions of the measurements, and so we must account for this subtlety in

our procedure. In an effort to isolate the reliable pieces of relative phase information,

Algorithm 2.2.4 removes the vertices corresponding to small noisy edge combina-

tions (2.14).

Algorithm 2.2.4. [Pruning for reliability]

Input� Graph G = (V�E), function f : E → R such that f(i� j) = |�x� ϕi��x� ϕj�+

εij|, pruning parameter α

Output� Subgraph H with a larger smallest edge weight

Initialize H ← G

For i = 1 to �(1− α)|V |� do�

Find the minimizer (i� j) ∈ E of f H ← H \ {i� j}

We now explain why only reliable pieces of relative phase information will remain

after running the above algorithm, provided ΦV has sufficient projective uniformity.

The main idea is captured in the following:
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Lemma 2.2.5. Define �θ�T := mink∈Z |θ − 2πk| for all angles θ ∈ R/2πZ. Then for

any z� ε ∈ �,

� arg(z + ε)− arg(z)�T ≤ π
|ε|

|z|
.

For the sake of brevity we refer the reader to [11] for a proof.

By taking z = �x� ϕi��x� ϕj� + εij and ε = −εij, we can use this lemma to bound

the relative phase error we incur when normalizing z. In fact, consider the minimum

of f when Algorithm 2.2.4 is complete. Since the algorithm deletes vertices from

G according to the input signal x, this minimum will vary with x; let PUN denote

the smallest possible minimum value. Then the relative phase error incurred with

(i� j) ∈ E is no more than π|εij|/PUN, regardless of the signal measured. Indeed, our

use of projective uniformity with noise (i.e., PUN) is intended to bound the instability

that comes with normalizing small values of (2.14). PUN can be bounded below by

using the projective uniformity of ΦV , and furthermore, a complex Gaussian ΦV has

projective uniformity with overwhelming probability. We refer the reader to [11] for

proofs of these statements.

After applying Algorithm 2.2.4, our graph will have slightly fewer vertices, but

the remaining edges will correspond to reliable pieces of relative phase information.

Recall that we plan to use this information on the edges to determine phases for

the vertices, and we want to do this in a stable way. As we will do this through

Algorithm 2.1.5 whose guarantees (Lemma 2.1.6) depend on the connectivity of the

graph, we will require a high level of connectivity in the graph.

As such, we seek to remove a small proportion of vertices so that the remaining

graph is very connected, i.e., has large spectral gap. To do this, we will iteratively

remove sets of vertices that are poorly connected to the rest of the graph. These

sets will be identified using spectral clustering, described in Section 2.1, for which

Theorem 2.1.1 gives a performance guarantee.

We note that, when implement spectral clustering, the bottleneck is computing
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an eigenvector. For our application, we will iteratively apply spectral clustering to

identify small collections of vertices which are poorly connected to the rest of the

graph and then remove them to enhance connectivity (Algorithm 2.2.6).

Algorithm 2.2.6. [Pruning for connectivity]

Input: Graph G = (V�E), pruning parameter τ

Output: Subgraph H with spectral gap λ2(H) ≥ τ

Initialize H ← G

While λ2(H) < τ do�

Perform spectral clustering to identify a small set of vertices S

H ← H \ S

We refer the reader to [11] for a guarantee that, for a particular choice of threshold

τ , Algorithm 2.2.6 recovers a level of connectivity that may have been lost when

pruning for reliability in Algorithm 2.2.4, and it does so by removing only a small

proportion of the vertices.

At this point, we have pruned our graph so that the measured relative phases are

reliable and the vertex phases can be stably reconstructed. We are now in a position

to use Algorithm 2.1.5 to reconstruct these vertex phases from the measured relative

phases, as it is an instance of the angular synchronization problem.

Lemma 2.1.6 guarantees that the estimates for the phases of the inner products

{�x� ϕi�}i∈V � , produced by Algorithm 2.1.5 have a small frustration. However, in this

case we need a guarantee, not in terms of frustration, but in terms of how close these

estimates are to the true phases. This will be achieved by the following theorem. We

refer the reader to [11] for a proof.

Theorem 2.2.7. Consider a graph G = (V�E) with spectral gap τ > 0, and define

�θ�T := mink∈Z |θ− 2πk| for all angles θ ∈ R/2πZ. Consider the matrix A�C) defined
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as

A1[i� j] =
�x� ϕi��x� ϕj�+ εij

|�x� ϕi��x� ϕj�+ εij|
� (2.17)

when {i� j} ∈ E, and A�C)[i� j] = 0 otherwise.

Then, Algorithm 2.1.5 outputs u ∈ �
|V | with unit-modulus entries such that, for

some phase θ ∈ R/2πZ,

�

i∈V

�
� arg(ui)− arg(�x� ϕi�)− θ

�
�2
T
≤

C�ε�2

τ 2P 2
�

where P := min{i�j}∈E |�x� ϕi��x� ϕj�+ εij| and C is a universal constant.

To reiterate, Algorithm 2.1.5 will produce estimates for the phases of the inner

products {�x� ϕi�}i∈V � . Also, we can take square roots of the vertex measurements

{|�x� ϕi�|
2+νi}i∈V � to estimate {|�x� ϕi�|}i∈V � . Then we can combine these to estimate

{�x� ϕi�}i∈V � .

However, note that the largest of these inner products will be most susceptible to

noise in the corresponding phase estimate. As such, we remove a small fraction of

these largest vertices so that the final collection of vertices V �� has size κ|V |, where

V was the original vertex set, and κ is sufficiently close to 1.

Now that we have estimated the phases of {�x� ϕi�}i∈V �� , we wish to reconstruct

x by applying the Moore-Penrose pseudoinverse of {ϕi}i∈V �� . However, since V �� is

likely a strict subset of V , it can be difficult in general to predict how stable the

pseudoinverse will be. Fortunately, a recent theory of numerically erasure-robust

frames (NERFs) makes this prediction possible: If the members of ΦV are indepen-

dent Gaussian vectors, then with high probability, every submatrix of columns ΦV ��

with κ = |V ��|/|V | sufficiently large has a stable pseudoinverse [104]. This concludes

the phase retrieval procedure, briefly outlined below together with the measurement

design.
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Measurement Design B �noisy case)

• Fix d > 2 even and ε ∈ (0� d− 2
√
d− 1).

• Given M , pick some d-regular graph G = (V�E) with spectral gap λ2 ≥ λ� :=

1 − 2
√
d−1+ε
d

and |V | = cM logM for c sufficiently large, and arbitrarily direct

the edges.

• Design the measurements Φ := ΦV ∪ ΦE by taking ΦV := {ϕi}i∈V ⊆ �
M to

have independent entries with distribution �N (0� 1
M
) and ΦE :=

�
�i�j)∈E{ϕi +

ζkϕj}
2
k=0.

Phase Retrieval Procedure B �noisy case)

• Given {|�x� ϕ��|
2 + ν�}

N
�=1, prune the graph G, keeping only reliable vertices

(Algorithm 2.2.4).

• Prune the remaining induced subgraph for connectivity, producing the vertex

set V � (Algorithm 2.2.6).

• Estimate the phases of the vertex measurements using angular synchronization.

• Remove the vertices with the largest measurements, keeping only |V ��| = κ|V |.

• Having estimates for {�x� ϕi�}i∈V �� up to a global phase factor, find the least-

squares estimate of [x] by applying the Moore-Penrose pseudoinverse of {ϕi}i∈V �� ,

see (2.12).

Having established our measurement design and phase retrieval procedure for the

noisy case, we now present the following guarantee of stable performance:

Theorem 2.2.8. Pick N ∼ CM logM with C sufficiently large, and take {ϕ�}
N
�=1 =

ΦV ∪ ΦE defined in Measurement Design B. Then there exist constants C �� K > 0
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such that the following guarantee holds for all x ∈ �
M with overwhelming probability:

Consider measurements of the form

z� := |�x� ϕ��|
2 + ν�.

If the noise-to-signal ratio satisfies NSR := �ν�
�x�2

≤ C�
√
M
, then Phase Retrieval Proce-

dure B produces an estimate x̃ from {z�}
N
�=1 with squared relative error

�x̃− eiθx�2

�x�2
≤ K

�
M

logM
NSR

for some phase θ ∈ [0� 2π).

The interested reader is directed to [11] for a proof of this guarantee. Before con-

cluding this section, we evaluate the result. Note that the norms of the ϕ�’s tend to be

O(1), and so the noiseless measurements |�x� ϕ��|
2 tend to be of sizeO(�x�2/M). Also,

in the worst-case scenario, the noise annihilates our measurements ν� = −|�x� ϕ��|
2,

rendering the signal x unrecoverable; in this case, �ν� = O(�x�2
�
(logM)/M) since

N = CM logM . In other words, if we allowed the noise-to-signal ratio to scale

slightly larger than C �/
√
M (i.e., by a log factor), then it would be impossible to

perform phase retrieval in the worst case. As such, the above guarantee is optimal

in some sense. Furthermore, since
�

M/ logM NSR = O(1/
√
logM) by assumption,

the result indicates that our phase retrieval process exhibits more stability asM grows

large.

In comparison to the state of the art, namely, the work of Candès, Strohmer and

Voroninski [67], the most visible difference between our stability results is how we

choose to scale the measurement vectors. Indeed, the measurement vectors of the

present paper tend to have norm O(1), whereas the measurement vectors of Candès

et al. are all scaled to have norm
√
M ; considering the statement of Theorem 2.2.8 is

riddled with square roots of M , either choice of scaling is arguably natural. For the
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sake of a more substantial comparison, their result (Theorem 1.2) gives that if the

ϕ�’s are uniformly sampled from the sphere of radius
√
M , and if �ν� ≤ �, then with

high probability, there exists C0 > 0 such that

�x̃− eiθx�

�x�
≤ C0min

�

1�
�

�x�2

�

for some phase θ ∈ [0� 2π); here, x̃ is the estimate which comes from PhaseLift. (This

result actually suffered from the subtlety that it does not hold for all signals x ∈ �
M

simultaneously, but this was later rectified in a sequel [64].) Note that the 1 in the

minimum takes effect when �x�2 < �, meaning it is possible that ν� = −|�x� ϕ��|
2

(corresponding to our worst-case scenario, above); as such, this part of the guarantee

is not as interesting. The other part of the guarantee is particularly interesting:

Ignoring the
�

M/ logM factor in Theorem 2.2.8 and identifying �/�x�2 with NSR,

we see that the main difference between the two guarantees is that Candès et al.

bound relative error in terms of NSR rather than bounding squared relative error. In

this sense, their result is stronger. On the other hand, they take � as an input to their

reconstruction algorithm (PhaseLift), whereas our method is agnostic to the size of

ν. In particular, our guarantee is continuous in the sense that relative error vanishes

with ν.

2.3 The little Grothendieck problem over the or-

thogonal group

This section (mostly based on [36]) will provide an approximation algorithm for the

Procrustes problem by rewriting it as a little Grothendieck problem over O(d), the

group of orthogonal matrices. For d = 1, the little Grothendieck problem [18] in
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combinatorial optimization is written as

max
xi∈{±1}

n�

i=1

n�

j=1

Cijxixj� (2.18)

where C is a n × n positive semidefinite matrix real matrix. It can be viewed as

an instance of Problem 1.2.1 by taking G = Z2 and fij
�
gig

−1
j

�
= −Cijxix

−1
j . Note

that, if C is a Laplacian matrix of a graph then (2.18) is equivalent to the Max­Cut

problem. The seminal paper of Goemans and Williamson [114] provides a semidefinite

relaxation for (2.18):

max
Xi∈R

n

�Xi�
2=1

n�

i=1

n�

j=1

CijX
T
i Xj. (2.19)

It is readily seen that (2.19) is equivalent to a semidefinite program and can be solved,

to arbitrary precision, in polynomial time [227]. In the same paper [114] it is shown

that a simple rounding technique is guaranteed to produce a solution whose objective

value is, in expectation, at least a multiplicative factor 2
π
min0≤θ≤π

θ
1−cos θ

≈ 0.878 of

the optimum.

A few years later, Nesterov [174] showed an approximation ratio of 2
π
for the

general case of an arbitrary positive semidefinite C � 0 using the same relaxation

as [114]. This implies, in particular, that the value of (2.18) can never be smaller

than 2
π
times the value of (2.19). Interestingly, such an inequality was already known

from the influential work of Alexander Grothendieck on norms of tensor products of

Banach spaces [118] (see [181] for a survey on this).

Several more applications have since been found for the Grothendieck problem

(and variants), and its semidefinite relaxation. Alon and Naor [18] showed applica-

tions to estimating the cut-norm of a matrix; Ben-Tal and Nemirovski [46] showed

applications to control theory; Briet, Buhrman, and Toner [58] explored connections

with quantum non-locality; and many more (see [16]).

In this section, we will focus on a natural generalization of problem (2.18), the
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little Grothendieck problem over the orthogonal group [36], where the variables are

now elements of the orthogonal group O(d), instead of {±1}. More precisely, given

C ∈ R
dn×dn a positive semidefinite matrix, we consider the problem

max
O1�...�On∈O�d)

n�

i=1

n�

j=1

Tr
�
CT
ijOiO

T
j

�
� (2.20)

where Cij denotes the (i� j)-th d × d block of C. Similarly for the d = 1 case, it

can be viewed as an instance of Problem 1.2.1 by taking G = O(d) and fij
�
gig

−1
j

�
=

−Tr
�
CijOiO

−1
j

�
.

As we will see in Section 2.3.1, several problems can be written in the form (2.20),

such as the Procrustes problem [198, 173, 210] described in Section 1.2.6 and Global

Registration [76]. Moreover, the approximation ratio we obtain for (2.20) translates

into the same approximation ratio for these applications, improving over the best

previously known approximation ratio of 1
2
√
2
, given by [171] for these problems.

We also note that (2.20) coincides, up to an additive shift, with Synchroniza-

tion over O(d), unfortunately the nature of approximation ratios render them less

meaningful after an additive shift.

Problem (2.20) belongs to a wider class of problems considered by Nemirovski [173]

called QO-OC (Quadratic Optimization under Orthogonality Constraints), which it-

self is a subclass of QC-QP (Quadratically Constrained Quadratic Programs). Please

refer to Section 2.3.1 for a more detailed comparison with the results of Nemirovski.

More recently, Naor et al. [171] propose an efficient rounding for the non commu-

tative Grothendieck inequality that provides an approximation algorithm for a vast

set of problems involving orthogonality constraints, including problems of the form

of (2.20). However, although our result only holds for a subclass of the problems

considered in [171] it has a better approximation ratio and appears to consist of a

smaller relaxation.
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Similarly to (2.19) we formulate a semidefinite relaxation we name the Orthogonal-

Cut SDP:

max
XiX

T
i =Id�d

Xi∈R
d�dn

n�

i=1

n�

j=1

Tr
�
CT
ijXiX

T
j

�
. (2.21)

Problem (2.21) is equivalent to the semidefinite program

max
G∈Rdn�dn

Gii=Id�d� G�0

Tr(CG)� (2.22)

and so can be solved efficiently [227].

One of the main contributions of this paper is showing that Algorithm 2.3.3 gives

a constant factor approximation to (2.20), with an optimal approximation ratio for

our relaxation. It consists of a simple generalization of the rounding in [114] applied

to (2.21).

Theorem 2.3.1. Let C � 0 and real. Let V1� . . . � Vn ∈ O(d) be the (random) output

of the orthogonal version of Algorithm 2.3.3. Then

E

�
n�

i=1

n�

j=1

Tr
�
CT
ijViV

T
j

�
�

≥ αR(d)
2 max
O1�...�On∈O�d)

n�

i=1

n�

j=1

Tr
�
CT
ijOiO

T
j

�
�

where αR(d) is the constant defined below.

Definition 2.3.2. Let GR ∈ R
d×d be a gaussian random matrix with i.i.d real valued

entries N (0� d−1) We define

αR(d) := E

�
1

d

d�

j=1

σj(GR)

�

�

where σj(G) is the jth singular value of G.

Although we do not have a complete understanding of the behavior of αR(d) as

functions of d, we can, for each d separately, compute a closed form expression. For

60



d = 1 we recover the sharp αR(1)
2 = 2

π
results of Nesterov [174]. One can also show

that limd→∞ αR(d)
2 =

�
8
3π

�2
which is larger than 2

π
. We find the fact that the ap-

proximation ratio seems to get better, as the dimension increases, quite intriguing.

One might naively think that the problem for a specific d can be formulated as a

degenerate problem for a larger d, however this does not seem to be true. Unfortu-

nately, we were unable to provide a proof for the monotonicity of αR(d) and leave it as

an open problem (Conjecture 2.3.5). Nevertheless, lower bounds that have the right

asymptotics can be shown. In particular, we refer the reader to [36] for a proof that

these approximation ratios are uniformly bounded below by the approximation ratio

given in [171]. In fact, the approximation ratios αR(d)
2 are optimal, in the integrality

gap since: we refer the reader to [36] for a constructions of C for which the quotient

of the value of (2.21) over (2.20) confirms the optimality of αR(d)
2. In a nutshell this

is done by adapting the classical construction for the d = 1 case (see, e.g., [18]).4

The (randomized) approximation algorithm we propose to solve (2.20) is as fol-

lows.

Algorithm 2.3.3. Compute X1� . . . � Xn ∈ R
d×nd a solution to (2.21). Let R be a

nd×d gaussian random matrix whose entries are real i.i.d. N (0� 1
d
). The approximate

solution for (2.20) is now computed as

Vi = P(XiR).

Recall that P(X) = argminZ∈O�d) �Z−X�F , which can be easily computed via the

singular value decomposition of X = UΣV T as P(X) = UV T (see [102, 135, 128]).

4As the reader can see in [36], when adapting the construction there is an extra difficult that can
solved by using the Lowner-Heinz Theorem on operator convexity [71]
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2.3.1 Applications

Problem (2.20) can describe several problems of interest. As examples, we describe

below how it encodes a complementary version of the orthogonal Procrustes problem

(see Section 1.2.6) and the problem of Global Registration over Euclidean Transforms.

Orthogonal Procrustes

Recall the setting of Orthogonal Procrustes described in Section 1.2.6. Given n point

clouds in R
d of k points each, the orthogonal Procrustes problem [198] consists of

finding n orthogonal transformations that best simultaneously align the point clouds.

If the points are represented as the columns of matrices A1� . . . � An, where Ai ∈ R
d×k

then the orthogonal Procrustes problem consists of solving

min
O1�...�On∈O�d)

n�

i�j=1

||OT
i Ai −OT

j Aj||
2
F . (2.23)

Since ||OT
i Ai−OT

j Aj||
2
F = �Ai�

2
F +�Aj�

2
F −2Tr

�
(AiA

T
j )

TOiO
T
j

�
, (2.23) has the same

solution as the complementary version of the problem

max
O1�...�On∈O�d)

n�

i�j=1

Tr
�
(AiA

T
j )

TOiO
T
j

�
. (2.24)

Since C ∈ R
dn×dn given by Cij = AiA

T
j is positive semidefinite, problem (2.24) is

encoded by (2.20) and Algorithm 2.3.3 provides a solution with an approximation

ratio guaranteed (Theorem 2.3.1) to be at least αR(d)
2.

The algorithm proposed in Naor et al. [171] gives an approximation ratio of 1
2
√
2
,

smaller than αR(d)
2, for (2.24). Nemirovski [173] proposed a different semidefinite

relaxation (with a matrix variable of size d2n×d2n instead of dn×dn as in (2.21)) for

the orthogonal Procrustes problem. In fact, his algorithm approximates the slightly
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different problem

max
O1�...�On∈O�d)

�

i�=j

Tr
�
(AiA

T
j )

TOiO
T
j

�
� (2.25)

which is an additive constant (independent of O1� . . . � On) smaller than (2.24). The

best known approximation ratio for this semidefinite relaxation, due to So [210], is

O
�

1
log�n+k+d)

�
. Although an approximation to (2.25) would technically be stronger

than an approximation to (2.24), the two quantities are essentially the same provided

that the point clouds are indeed perturbations of orthogonal transformations of the

same original point cloud, as is the case in most applications (see [171] for a more

thorough discussion on the differences between formulations (2.24) and (2.25)).

Global Registration over Euclidean Transforms

The problem of global registration over Euclidean rigid motions is an extension of

orthogonal Procrustes. In global registration, one is required to estimate the positions

x1� . . . � xk of k points in R
d and the unknown rigid transforms of n local coordinate

systems given (perhaps noisy) measurements of the local coordinates of each point

in some (though not necessarily all) of the local coordinate systems. The problem

differs from Procrustes in two aspects: First, for each local coordinate system, we

need to estimate not only an orthogonal transformation but also a translation in R
d.

Second, each point may appear in only a subset of the coordinate systems. Despite

those differences, it is shown in [76] that global registration can also be reduced to

the form (2.20) with a matrix C that is positive semidefinite.

More precisely, denoting by Pi the subset of points that belong to the i-th local

coordinate system (i = 1 . . . n), and given the local coordinates

x
�i)
l = OT

i (xk − ti) + ξil

of point xl ∈ Pi (where Oi denotes the orthogonal transformation, ti a translation
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and ξil a noise term). The idea is then to minimize the function

φ =
n�

i=1

�

l∈Pi

�
�
�xl − (Oix

�i)
l + ti)

�
�
�
2

�

over xl� ti ∈ R
d� Oi ∈ O(d). It is not difficult to see that the optimal x�l and t�i can

be written in terms of O1� . . . � On. Substituting them back into φ, the authors in [76]

reduce the previous optimization to solving

max
Oi∈O�d)

n�

i=1

n�

j=1

Tr
��

BL†BT
�
ij
OiO

T
j

�
� (2.26)

where L is a certain Laplacian matrix and L† is its pseudo inverse (see [76]). This

means that BL†BT � 0, and (2.26) is of the form of (2.20).

2.3.2 Analysis of the approximation algorithm

We now prove Theorem 2.3.1. As (2.21) is a relaxation of problem (2.20) its maximum

is necessarily at least as large as the one of (2.20). This means that Theorem 2.3.1 is

a direct consequence of the following Theorem.

Theorem 2.3.4. Let C � 0 and real. Let X1� . . . � Xn be a feasible solution to (2.21).

Let V1� . . . � Vn ∈ O(d) be the output of the (random) rounding procedure described in

Algorithm 2.3.3. Then

E

�
n�

i=1

n�

j=1

Tr
�
CT
ijViV

T
j

�
�

≥ αR(d)
2

n�

i=1

n�

j=1

Tr
�
CT
ijXiX

T
j

�
�

where αR(d) is the constant in Definition 2.3.2.

Before proving Theorem 2.3.4 we present a sketch of the proof for the case d = 1

(and real). The argument is known as the Rietz method (See [18]):

Let X1� . . . � Xn ∈ R
1×n be a feasible solution to (2.21), meaning that XiX

T
i = 1.
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Let R ∈ R
n×1 be a random matrix with i.i.d. standard gaussian entries. Our objective

is to compare E
��n

i�j Cij sign(XiR) sign(XjR)
�
with

�n
i�j CijXiX

T
j . The main obser-

vation is that although E [sign(XiR) sign(XjR)] is not a linear function of XiX
T
j ,

the expectation E [sign(XiR)XjR] is. In fact E [sign(XiR)XjR] = αR(1)XiX
T
j =

�
2
π
XiX

T
j - which follows readily by thinking of Xi� Xj as their projections on a 2

dimensional plane. We use this fact (together with the positiveness of C) to show our

result. The idea is to build the matrix S � 0,

Sij =

�

XiR−

�
π

2
sign(XiR)

��

XjR−

�
π

2
sign(XjR)

�

.

Since both C and S are PSD, Tr(CS) ≥ 0, which means that

0 ≤ E

�
�

ij

Cij(XiR−

�
π

2
sign(XiR))(XjR−

�
π

2
sign(XjR))

�

.

Combining this with the observation above and the fact that E [XiRXjR] = XiX
T
j ,

we have

E

n�

i�j

Cij sign(XiR) sign(XjR) ≥
2

π

n�

i�j

CijXiX
T
j .

Proof. [of Theorem 2.3.4] Let R ∈ R
nd×d be a gaussian random matrix with i.i.d

entries N
�
0� 1

d

�
. We want to lower bound

E

�
n�

i=1

n�

j=1

Tr
�
CT
ijViV

T
j

�
�

= E

�
n�

i=1

n�

j=1

Tr
�
CT
ijP(UiR)P(UjR)

T
�
�

.

Similarly to the d = 1 case, one of the main ingredients of the proof is the fact that,

for any M�N ∈ R
d×dn such that MMT = NNT = Id×d,

E
�
P(MR)(NR)T

�
= E

�
(MR)P(NR)T

�
= αR(d)MNT .

We refer the reader to [36] for a proof of this fact.
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Just as above, we define the positive semidefinite matrix S ∈ R
dn×dn whose (i� j)-

th block is given by

Sij =
�
UiR− αR(d)

−1P(UiR)
� �

UjR− αR(d)
−1P(UjR)

�T
.

We have

ESij = E
�
UiR(UjR)

T − αR(d)
−1P(UiR)(UjR)

T

−αR(d)
−1UiRP(UjR)

T + αR(d)
−2P(UiR)P(UjR)

T
�

= UiE
�
RRT

�
UT
j − αR(d)

−1
E
�
P(UiR)(UjR)

T
�

−αR(d)
−1
E
�
UiRP(UjR)

T
�
+ αR(d)

−2
E
�
ViV

T
j

�

= UiU
T
j − UiU

T
j − UiU

T
j + αR(d)

−2
E
�
ViV

T
j

�

= αR(d)
−2
E
�
ViV

T
j

�
− UiU

T
j .

By construction S � 0. Since C � 0, Tr(CS) ≥ 0, which means that

0 ≤ E [Tr (CS)] = Tr (CE[S]) =
n�

i=1

n�

j=1

Tr
�
CT
ij

�
αR(d)

−2
E
�
ViV

T
j

�
− UiU

T
j

��
.

Thus,

E

�
n�

i=1

n�

j=1

Tr
�
CT
ijViV

T
j

�
�

≥ αR(d)
2

n�

i=1

n�

j=1

Tr
�
CT
ijUiU

T
j

�
.

2.3.3 The approximation ratio αR(d)
2

The approximation ratio we obtain (Theorem 2.3.1) for Algorithm 2.3.3 is given by

αR(d)
2, which is defined as the average singular value of a d × d Gaussian matrix G

with i.i.d N (0� 1
d
) entries. These singular values correspond to the square root of the

eigenvalues of a Wishart matrix W = GGT , which are well-studied objects (see, e.g.,
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[201] or [87]).

For d = 1, this corresponds to the expected value of the absolute value of standard

gaussian (real or complex) random variable. Hence,

αR(1) =

�
2

π
�

meaning that, for d = 1, we recover the approximation ratio of 2
π
, of Nesterov [174].

For any d ≥ 1, the marginal distribution of an eigenvalue of the Wishart matrix

W = GGT is known [148, 87, 146]. Denoting by pd the marginal distribution, we have

αR(d) =
1

d1/2

� ∞

0

x1/2pd(x)dx. (2.27)

One can easily evaluate limd→∞ αR(d) by noting that the distribution of the eigen-

values of the Wishart matrix we are interested in, as d→∞, converges in probability

to the Marchenko Pastur distribution [201] with density

mp(x) =
1

2πx

�
x(4− x)1[0�4].

This immediately gives,

lim
d→∞

αR(d) =

� 4

0

√
x

1

2πx

�
x(4− x)dx =

8

3π
.

Although one could potentially obtain lower bounds for α2
R
(d) from results on the

rate of convergence to mp(x) [116], the sharpest known lower bounds are obtained by

writing pd(x) in terms of Laguerre polynomials and estimating these [36]. In fact, it

can be shown [36] that

αR(d) ≥
8

3π
−

9.07

d
.

This strongly suggests the following conjecture (supported by numerical compu-
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tations).

Conjecture 2.3.5. Let αR(d) be the average singular value of a d × d matrix with

random i.i.d. N
�
0� 1

d

�
entries (see Definition 2.3.2). Then, for all d ≥ 1,

αR(d+ 1) ≥ αR(d).

Extensions

In some applications, such as the Common Lines problem [204] (related to the problem

described in Section 1.2.2), one is interested in a more general version of (2.20) where

the variables take values in the Stiefel manifold O(d� r), the set of matrices O ∈ R
d×r

such that OOT = Id×d. This motivates considering a generalized version of (2.20)

formulated as, for r ≥ d,

max
O1�...�On∈O�d�r)

n�

i=1

n�

j=1

Tr
�
CT
ijOiO

T
j

�
� (2.28)

for C � 0. The special case d = 1 was formulated and studied in [58, 60, 59] in the

context of quantum non-locality and quantum XOR games. Note that in the special

case r = nd, (2.28) reduces to (2.21) and is equivalent to a semidefinite program.

In [36] a simple adaption of Algorithm 2.3.3, is proposed and shown to have sharp

approximation ratios.

Another important extension is to consider the little Grothendieck problem over

the unitary group U(d), the group of complex valued matrices U ∈ �
d×d such that

UU∗ = I. The results above hold almost verbatim for this setting and are considered

in [36]. Moreover, for the case of U(1) ∼= SO(2), which is related to angular syn-

chronize, the approximation ratio obtained with these techniques matched the sharp

approximation ratio in [209].
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2.4 The Row-by-Row method for the little Grothendieck

SDP

We use this section to briefly discuss methods to solve the SDP (2.19) as it is a part

of many of the algorithms presented in this thesis.

While there are polynomial time methods, based on interior points, to solve (2.19)

up to arbitrary accuracy [227], these methods tend to be slow in practice and not

suitable for large scale instances. Many alternatives exist, for example the Alternating

Direction Method of Multipliers (ADMM) approach [236].

For d = 1, there is a dedicated row-by-row method [235] that optimizes 2.19 each

row at a time. In what follows, we will show an adaptation of this method for any

d ≥ 1.

Recall the formulation of (2.19):

maxTr(CX)

s.t. X � 0 and Xii = Id×d

�

for C ∈ R
nd×nd symmetric.

In a nutshell, the idea of the row-by-row method [235], is to initialize X as any

feasible point and then update X, each row at once, by finding the optimal values for

that row that keep the feasibility of X. In the special case of problem (2.19) one can

initialize with X = Idn×dn. We proceed by describing the row subproblem (without

loss of generality we assume that we are changing the first row). Let X be the current

iterate (which is a feasible for (2.19)) and we write

X0 =






1 yT

y B




 �
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with y ∈ R
nd−1. Furthermore, we write:

B =






I�d−1)×�d−1) bT1

b1 B�




 �

where b1 ∈ R
nd−1×d−1.

max cTy

s.t.






1 yT

y B




 � 0 and y[1 : d− 1] = 0�

(2.29)

where c ∈ R
nd−1 is twice the last nd− 1 terms of the first column of C.

A solution to the similar problem:

max cTy

s.t.






1 yT

y B




 � 0�

(2.30)

can be computed by a simple matrix-vector product (the idea is to use the Schur

complement, see [235]) and is given by:

y =
1

√
cTBc

Bc� (2.31)

if cTBc > 0 and y = 0, otherwise.

The idea for the adaptions is simple: The solution of (2.29) does not depend on

the first d − 1 entries of c so we will design them in such a way that the solution of

(2.30) satisfies y[1 : d−1] = 0 which will ensure that the solution of the two problems

match and so we can solve (2.29) with a matrix-vector product.
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Let us rewrite y = [yT0 y
�T ]T , where y� ∈ R

�n−1)d and (2.31) as:






y0

y�




 =

1
√
cTBc






I�d−1)×�d−1) bT1

b1 B�











c0

c�




 =






c0 + bT1 c
�

b1c0 + B�c




 . (2.32)

This means we should set c0 = −bT1 c
� to get y0 = 0. In this case,

y� =
1

√
cTBc

�
B� − b1b

T
1

�
c�.

We also have

cTBc = [(− bT1 c
�
�
T c�T

�






0
�
B� − b1b

T
1

�
c�




 = c�T

�
B� − b1b

T
1

�
c�.

This shows the following Theorem.

Theorem 2.4.1. The solution to the subproblem (2.29) is given by y = [0Td−1y
�T ]T

where y� can be obtained by a matrix-vector product:

y� =
1

�
c�T (B� − b1bT1 ) c

�

�
B� − b1b

T
1

�
c��

if c�T
�
B� − b1b

T
1

�
c� > 0, and y� = 0 otherwise.
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Chapter 3

Exact recovery for random

instances: Synchronization over Z�

3.1 Semidefinite relaxations for Synchronization-

type problems over Z2

In this chapter we will treat synchronization-type problems (Problem 1.2.1) over

Z2, the group of two elements [1, 2, 3, 29, 88]. In particular we will investigate

the tendency for, in this setting, the semidefinite relaxation (1.9) to achieve exact

recovery, i.e. the solution of the semidefinite programming (1.9) corresponds desired

group potential. Most of this chapter is based on [1, 2, 3, 29]. Let us recall the setting.

Problem 3.1.1. [General Synchronization-type problem in Z2] Given a graph G =

(V�E), and, for each edge (i� j) ∈ E, a function fij : Z2 → R. The goal is to find the

group potential g : V → Z2 that minimizes

min
g:V→Z2

�

�i�j)∈E

fij
�
gig

−1
j

�
. (3.1)

We will identify Z2 with ±1 (the operation being multiplication). Given fij we
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define f
�+)
ij = fij(1) and f

�−)
ij = fij(−1). Let xi ∈ ±1, we note that

fij
�
xix

−1
j

�
= fij (xixj) = f

�+)
ij

1 + xixj
2

+ f
�−)
ij

1− xixj
2

=

�
f
�+)
ij − f

�−)
ij

2

�

xixj +
f
�+)
ij + f

�−)
ij

2
.

This means that, by setting Y ∈ R
n×n to satisfy Yij = −

�
f
�+)
ij −f

�−)
ij

2

�

whenever

(i� j) ∈ E and Yij = 0 otherwise, (3.1) has the same optimizers as

max
�

ij Yijxixj

s. t. xi ∈ {±1}.
(3.2)

We note the similarities between this formulation and (1.5). In this case, the

SDP relaxation in (1.9) can be rewritten (as an optimization problem over matrices

X ∈ R
n×n as:

max Tr(Y X)

s. t. Xii = 1

−1 ≤ Xij ≤ 1

X � 0.

(3.3)

Note however that the constraint −1 ≤ Xij ≤ 1 is redundant, and so (3.3) it is

equivalent to:

max Tr(Y X)

s. t. Xii = 1

X � 0.

(3.4)

This SDP corresponds exactly to (2.19) and the one proposed in [114]. Note

that if the unique optimal solution of (3.4) is a rank 1 matrix X = xxT this means

that x is the optimizer of (3.1) and we can compute it; since we can easily compute

the solution of (3.4), X = xxT and recover x by taking the leading eigenvector of
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X. In what follows we will assume that Y corresponds to measurements with some

distribution and that there is an underlying group potential z ∈ {±1}n that we aim

to recover. We will understand when is it the case that X = zzT is the unique

optimal solution of (3.4). Such understanding will allows to propose information

theoretically optimal algorithms for a recovery in the stochastic block model in two

communities (Section 3.2) and a certain class of inverse problems on Erdős-Rényi

graphs (Section 3.3). Before going into those problems, we start with a simpler

illustrative instance.

3.1.1 A simpler problem: Z2 Synchronization with Gaussian

noise.

Given a noise level σ and a vector z ∈ {±1}n, that we wish to recover, suppose we

given noisy measurements

Yij = zizj + σWij�

for each pair (i� j), where Wij are i.i.d. standard Gaussian random variables (with

Wij = Wji). A version of this problem, over the complex numbers, will be treated

in Section 5.1. Our objective is to devise an algorithm that recovers the correct z

with high probability. By definition, the maximum a posteriori (MAP) estimator

maximizes the probability of recovering the correct variable z. Given that we have no

a priori information on z we assume a uniform prior, in that case the MAP estimator

coincides with the Maximum Likelihood Estimator (MLE) for z. The latter is the

solution of (3.2). We wish to understand when it is that X = zzT is the unique

minimizer of the SDP relaxation (3.4).
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A fruitful way of approaching this relies on duality. The dual of (3.4) is given by:

min Tr(D)

s.t. D is diagonal

D − Y � 0.

(3.5)

Weak duality guarantees that if X and D are feasible solutions of respectively

(3.4) and (3.5) then Tr(Y X) ≤ Tr(D). Indeed, since X and D− Y are both positive

semidefinite, we must have

0 ≤ Tr [(D − Y )X] = Tr(D)− Tr(Y X). (3.6)

This means that if we are able to find a so-called dual certificate, a matrix D feasible

for (3.5) for which Tr(D) = Tr(Y xxT ), then it guarantees that X = xxT is an

optimal solution of (3.4). To guarantee uniqueness it suffices to further ensure that

λ2(D − Y ) > 0. In fact, if there existed another optimal solution X, by (3.6), one

would have Tr [(D − Y )X] = 0 which can be shown to imply, together with the

feasibility of X, that X = xxT (see, for example, [1]). This establishes the following

Lemma.

Lemma 3.1.2. [Dual Certificate] Let Y be a symmetric n×n matrix and x ∈ {±1}n.

If there exists a diagonal matrix D, such that Tr(D) = xTY x, D − Y � 0, and

λ2(D − Y ) > 0 then X = xxT is the unique optimal solution of (3.4).

Taking a candidate dual certificate D whose diagonal elements are given by

Dii =
n�

j=1

Yijxixj.

Note thatD = D[diag�x)Y diag�x)]. It is easy to see that Tr(D) = xTY x and (D−Y )x = 0

which gives the following Lemma.
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Lemma 3.1.3. Let Y be a symmetric n × n matrix and x ∈ {±1}n. Let D be the

diagonal matrix defined as D = D[diag�x)Y diag�x)]. As long as

λ2(D − Y ) > 0�

X = xxT is the unique optimal solution of (3.4).

Note that these guarantees, (Lemmas 3.1.2 and 3.1.3) do not depend on the matrix

Y or the distribution from which it is drawn.

Let us return to the setting on which Y = zzT + σW , where W is a standard

Wigner matrix: a symmetric matrix with i.i.d. standard Gaussian entries. We want

to determine for which values of σ one excepts X = zzT to be, with high probability,

the solution of (3.4), as we are interested not only to compute the MLE but also for it

to coincide with the planted vector z we want to recover. Since diag(z)Wdiag(z) ∼ W

we can, without loss of generality, take z = 1. In that case, we are interested in

understanding when

λ2

�
D[��

T +σW ] −
�
11T +σW

��
> 0. (3.7)

Since

D[��
T +σW ] −

�
11T +σW

�
=
�
nIn×n − 11T

�
− σ (−DW +W ) = L��

T − σL[−W ]�

and 1 is always in the nullspace of any Laplacian matrix, it is not difficult to see that

(3.7) is equivalent to

λmax
�
L[−W ]

�
<

n

σ
. (3.8)

The triangular inequality tells us that λmax
�
L[−W ]

�
≤ λmax (−DW ) + �W�. It is

well known that, for any ε > 0, �W� ≤ (2 + ε)
√
n with high probability (see, for

76



example, Theorem II.11 in [91]). On the other hand,

λmax (−DW ) = max
i∈[n]

[− (DW )ii] �

which is the maximum of n Gaussian random variables each with variance n. A

simple union bound yields that, for any ε > 0, λmax
�
D[−W ]

�
<

�
(2 + ε)n log n

with high probability. This readily implies an exact recovery guarantee for the Z2

Synchronization with Gaussian noise.

Proposition 3.1.4. Let z ∈ {±1}n and Y = zzT + σW where W is a symmet-

ric matrix with i.i.d. standard Gaussian entries. If there exists ε > 0 such that

σ <
�

n
�2+ε) logn

then, with high probability, X = zzT is the unique solution to the

Semidefinite Program (3.4).

Let us investigate the optimality of this upper bound on σ. If the diagonal elements

of D[−W ] were independent
1, their distribution would be known to indeed concentrate

around
√
2 log n, suggesting that

�W� � λmax
�
D[−W ]

�
� (3.9)

which would imply

λmax
�
L[−W ]

�
= [1 + o(1)]λmax

�
D[−W ]

�
. (3.10)

Both of these statements can be rigorously shown to be true. While a simple adapta-

tion of the proof of Theorem 4.2.1 can establish (3.9) and (3.10) we omit their proofs

for the sake of brevity, but emphasize that in this particular setting (where W is a

standard Wigner matrix), one does not need the whole strength of Theorem 4.2.1 as

1The diagonal entries of DW are not independent because each pair of sums shares a term Wij

as a summand.
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simple elementary proofs exist.

This would suggest that, in rough terms, the success of the relaxation (3.4) de-

pends mostly on whether λmax
�
D[−W ]

�
< n

σ
, which is equivalent to

max
i∈[n]

�

−σ
n�

j=1

Wij

�

< n� (3.11)

which can be interpreted as a bound on the amount of noise per row of Y . We argue

next that this type of upper bound is indeed necessary for any method to succeed at

recovering z from Y .

Once again, let us consider z = 1 without loss of generality. Let us consider an

oracle version of problem on which one is given the correct label of every single node

except of node i. It is easy to see that the maximum likelihood estimator for zi on

this oracle problem is given by

sign




�

j∈[n]\i

Yij



 = sign



n− 1 + σ
�

j∈[n]\i

Wij



 �

which would give the correct answer if and only if

−σ
�

j∈[n]\i

Wij < n− 1. (3.12)

This means that if

max
i∈[n]



−σ
�

j∈[n]\i

Wij



 > n− 1� (3.13)

one does not expect the MLE to succeed (with high probability) at recovering z from

Y = zzT + σW . This means that (with a uniform prior on z) no method is able to

recover z with high probability. Note the similarity between (3.11) and (3.13). This

strongly suggest the optimality of the semidefinite programming based approach (3.4).

These optimality arguments can be made rigorous. In fact, in Sections 3.2 and 3.3,
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we will establish precise optimality results of these type, for the applications we

are interested in. The main ingredient (3.9) in the rough argument above was the

realization that the spectral norm of W is, with high probability, asymptotically

smaller than the largest diagonal entry of D[−W ]. This provides strong motivation

for Theorems 4.2.1 and 4.2.2, which establish precisely this fact for a large class of

matrices with independent off-diagonal entries. Empowered with this result, we will

be able to establish optimality for the semidefinite programming approach to solve the

problems of Z2 Synchronization in Erdős-Rényi graphs and recovery in the stochastic

block model, where the underlying random matrices have much less well understood

distributions. Modulo the use of Theorem 4.2.1, the arguments used will be very

reminiscent of the the ones above.

It is pertinent to compare this approach with the one of using noncommutative

Khintchine inequality, or the related matrix concentration inequalities [220, 221], to

estimate the spectral norms in question. Unfortunately, those general purpose meth-

ods are, in our case, not fine enough to give us satisfactory results. One illustration

of their known suboptimality is the fact that the upper bound they give for �W� is

of order
√
n log n, which does not allow to establish (3.9), a crucial step in the argu-

ment. In fact, the looseness of these bounds is reflected in the suboptimal guarantees

obtained in [1, 2, 3]. Theorems 4.2.1 and 4.2.2 are able to establish a phenomenon

of the type of (3.9) by relying on sharp estimates for the spectral norm of matrices

with independent entries described in Chapter 4. Although Theorem 4.2.1 will only

be established in Chapter 4 we include it below as we will use it in this Chapter.

Theorem 4.2.1 — see Chapter 4 for a proof

Let L be an n× n symmetric random Laplacian matrix (i.e. satisfying L1 = 0) with

centered independent off-diagonal entries such that
�

j∈[n]\i EL
2
ij is equal for every i.
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Define σ and σ∞ as

σ2 =
�

j∈[n]\i

EL2ij and σ2∞ = max
i�=j

�Lij�
2
∞ .

If there exists c > 0 such that

σ ≥ c (log n)
1
2 σ∞� (3.14)

then there exists c1, C1, β1, all positive and depending only on c, such that

λmax(L) ≤

�

1 +
C1

(log n)
1
2

�

max
i

Lii

with probability at least 1− c1n
−β1 .

Empowered with Theorem 4.2.1, we will give sharp guarantees for certain algo-

rithms to solve the problems of Z2 Synchronization on an Erdős-Rényi graph and

community detection in the Stochastic Block Model.

3.2 The Stochastic Block Model with two commu-

nities

The problem of community detection, or clustering, in a graph is a central one in

countless applications. Unfortunately, even the simplified version of finding a parti-

tion of the graph into two balanced vertex sets that minimizes the number of edges

across the partition, referred to as minimum bisection, is known to be NP-hard. Nev-

ertheless, certain heuristics are known to work well for typical realizations of random

graph models that exhibit a community structure [161, 51, 103]. A particularly pop-

ular example of such a random graph model is the Stochastic Block Model with two

communities.
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Definition 3.2.1. [Stochastic Block Model with two communities] Given n even, and

0 ≤ p� q ≤ 1, we say that a random graph G is drawn from G(n� p� q), the Stochastic

Block Model with two communities, if G has n nodes, divided in two clusters of n
2

nodes each, and for each pair of vertices i� j, (i� j) is an edge of G with probability p

if i and j are in the same cluster and q otherwise, independently from any other edge.

Figure 3.1: A graph generated form the stochastic block model with 600 nodes and
2 communities, scrambled on the left and clustered on the right. Nodes in this graph
connect with probability p = 6/600 within communities and q = 0.1/600 across
communities [3].

We will focus on the setting p > q. The problem of recovering, from a realization

G ∼ G(n� p� q), the original partition of the underlying vertices gained popularity when

Decelle et al. [92] conjectured, for the constant average degree regime, a fascinating

phase transition. More precisely, if p = a
n
and q = b

n
with a > b constants, it was

conjectured that as long as

(a− b)2 > 2(a+ b)�

it is possible to make an estimate of the original partition that correlates with the

true partition, and that below this threshold it is impossible to do so. This conjecture

was later proven in a remarkable series of works by Mossel et al. [169, 168] and

Massoulie [160]. Instead of settling for an estimate that correlates with the true

partition, we will focus on exactly recovering the partition.

Of course, one can only hope to recover the communities up to a global flip of

the labels, in other words, only the partition can be recovered. Hence we use the
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terminology exact recovery or simply recovery when the partition is recovered correctly

with high probability (w.h.p.). When p = q, it is clearly impossible to recover the

communities, whereas for p > q or p < q, one may hope to succeed in certain regimes.

While this is a toy model, it captures some of the central challenges for community

detection. We will focus on the setting of p > q.

There has been a significant body of literature on the recovery property for the

stochastic block model with two communities G(n� p� q), ranging from computer sci-

ence and statistics literature to machine learning literature. We provide next a partial2

list of works that obtain bounds on the connectivity parameters to ensure recovery

with various algorithms:

[62] Bui et al. ’84 min-cut method p = Ω�1/n)� q = o�n−1−4���p+q)n))

[100] Dyer, Frieze ’89 min-cut via degrees p− q = Ω�1)

[51] Boppana ’87 spectral method �p− q)/
√
p + q = Ω�

�
log�n)/n)

[208] Snijders, Nowicki ’97 EM algorithm p− q = Ω�1)

[132] Jerrum, Sorkin ’98 Metropolis algorithm p− q = Ω�n−1�6+ε)

[86] Condon, Karp ’99 augmentation algorithm p− q = Ω�n−1�2+ε)

[72] Carson, Impagliazzo ’01 hill-climbing algorithm p− q = Ω�n−1�2 log4�n))

[161] Mcsherry ’01 spectral method �p− q)/
√
p ≥ Ω�

�
log�n)/n)

[48] Bickel, Chen ’09 N-G modularity �p− q)/
√
p + q = Ω�log�n)/

√
n)

[5] Rohe, Chatterjee, Yu ’11 spectral method p− q = Ω�1)

While these algorithmic developments are impressive, we next argue how they do

not reveal the sharp behavioral transition that takes place in this model. In particular,

we will obtain an improved bound that is shown to be tight.

3.2.1 Information theoretic lower bound

We start by providing information-theoretic lower bounds (this part is based in ma-

terial in [3] and we note that similar lower bounds were obtained independently by

Mossel et al. [167]). In Section 3.2.2 we will analyze the effectiveness of the semidefi-

2The approach of McSherry was recently simplified and extended in [230].
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nite relaxation, analogous to (3.4).

From a random graph perspective, note that recovery requires the graph to be at

least connected (with high probability), hence we require at least logarithmic average

inner degree (see Theorem 4.2.6), meaning that p ≥ Ω
�
logn
n

�
. This motivates us to

consider the regime:

p =
α log n

n
and q =

β log n

n
.

Our objective is too understand for which values of α and β is it possible to

exactly recover the original partition (up to a global flip). We note that the estimator

that maximizes the probability of reconstructing the communities correctly is the

Maximum A Posteriori (MAP) estimator. Since we have no a priori information on the

community assignment, we consider a uniform prior which renders MAP equivalent

to the MLE (see [3]). Hence if MLE fails in reconstructing the communities with high

probability when n diverges, there is no algorithm (efficient or not) which can succeed

with high probability. However, ML amounts to finding a balanced cut (a bisection)

of the graph which minimizes the number of edges across the cut (in the case a > b),

i.e., the min-bisection problem, which is well-known to be NP-hard. Hence ML can be

used3 to establish the fundamental limit but does not provide an efficient algorithm,

which we consider in a second stage.

Theorem 3.2.2. Let α > β ≥ 0. Let G ∼ G(n� p� q), the Stochastic Block Model with

two communities, with

p =
α log n

n
and q =

β log n

n
�

with α > β. If
√
α−

�
β <

√
2� (3.15)

3ML was also used for the SBM in [80], requiring however poly-logarithmic degrees for the nodes.
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or equivalently

α + β

2
−
�

αβ < 1�

then the MLE fails in recovering the communities with probability bounded away from

zero.

Moreover, there is a node with less connections to each cluster than to the other

cluster.

Before proving Theorem 3.2.2 we note that (3.15) is sharp [3, 167]. In fact, in

Section 3.2.2 we will show, Corollary 3.2.12, that above this treshold not only the

MLE achieves exact recovery but also the SDP relaxation analogue of (3.4).

Note that the best bounds from the table above are obtained from [51] and [161],

which allow for recovery in the regime where p = α log(n)/n and q = β log(n)/n,

obtaining the conditions (α − β)2 > 64(α + β) in [161] and (α − β)2 > 72(α + β)

in [51]. Hence, although these works reach the scaling for n where the threshold takes

place, they do not obtain the right threshold behaviour in terms the parameters α

and β.

Let A and B denote the two communities, each with n
2
nodes. Also, let

γ(n) = log3 n� δ(n) =
log n

log log n
�

and let H be a fixed subset of A of size n
γ�n)

. We define the following events:






F = maximum likelihood fails

FA = ∃i∈A : i is connected to more nodes in B than in A

Δ = no node in H is connected to at least δ(n) other nodes in H

F
�j)
H = node j ∈ H satisfies E(j� A \H) + δ(n) ≤ E(j� B)

FH = ∪j∈HF
�j)
H �

(3.16)
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where E(·� ·) is the number of edges between two sets. Note that we identify nodes

of our graph with integers with a slight abuse of notation when there is no risk of

confusion.

We also define

ρ(n) = P

�
F
�i)
H

�
(3.17)

Lemma 3.2.3. If P (FA) ≥
2
3
then P (F ) ≥ 1

3
.

Proof. By symmetry, the probability of a failure in B is also at least 2
3
so, by union

bound, with probability at least 1
3
both failures will happen simultaneously which

implies that the MLE fails.

Lemma 3.2.4. If P (FH) ≥
9
10
then P (F ) ≥ 1

3
.

Proof. It is easy to see that Δ ∩ FH ⇒ FA. Also, a straighfoward calculation (that

we defer to [3]) gives

P (Δ) ≥
9

10
. (3.18)

Hence,

P (FA) ≥ P (FH) + P (Δ)− 1 ≥
8

10
>

2

3
�

which together with Lemma 3.2.3 concludes the proof.

Lemma 3.2.5. Recall the definitions in (3.16) and (3.17). If

ρ(n) > n−1γ(n) log(10)

then, for sufficiently large n, P (F ) ≥ 1
3
.

Proof. We will use Lemma 3.2.4 and show that if ρ(n) > n−1γ(n) log(10) then

P (FH) ≥
9
10
, for sufficiently large n.
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F
�i)
H are independent and identically distributed random variables so

P (FH) = P

�
∪i∈HF

�i)
H

�
= 1− P

�
∩i∈H

�
F
�i)
H

�c �

= 1−
�
1− P

�
F
�i)
H

��|H|
= 1− (1− ρ(n))

n
γ�n)

This means that P (FH) ≥
9
10

is equivalent to (1− ρ(n))
n

γ�n) ≤ 1
10
. If ρ(n) is not o(1)

than the inequality is obviously true, if ρ(n) = o(1) then,

lim
n→∞

(1− ρ(n))
n

γ�n) = lim
n→∞

(1− ρ(n))
1

ρ�n)
ρ�n) n

γ�n) = lim
n→∞

exp

�

−ρ(n)
n

γ(n)

�

≤
1

10
�

where the last inequality used the hypothesis ρ(n) > n−1γ(n) log(10).

Definition 3.2.6. [Definition 3 in [3]] Let N be a natural number, p� q ∈ [0� 1], and

δ, we define

T (N� p� q� δ) = P

�
N�

i=1

(Zi −Wi) ≥ δ

�

� (3.19)

where W1� . . . �WN are i.i.d. Bernoulli(p) and Z1� . . . � ZN are i.i.d. Bernoulli(q), in-

dependent of W1� . . . �WN .

We borrow, from [3], an estimate for T (N� p� q� δ).

Lemma 3.2.7. Let α > β > 0 constants not depending on n and let T (N� p� q� δ) be

as in Definition 3.2.6. Then

− log T

�
n

2
�
α log(n)

n
�
β log(n)

n
�

log(n)

log log(n)

�

≤

�
α + β

2
−
�

αβ

�

log(n) + o (log(n)) .

(3.20)
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Proof of Theorem 3.2.7. From the definitions in (3.16) and (3.17) we have

ρ(n) = P

�



n
2�

i=1

Zi −

n
2
− n

γ�n)�

i=1

Wi ≥
log(n)

log log(n)



 (3.21)

where W1� . . . �WN are i.i.d. Bernoulli
�
α log�n)

n

�
and Z1� . . . � ZN are i.i.d.

Bernoulli
�
β log�n)

n

�
, all independent. Since

P

�



n
2�

i=1

Zi −

n
2
− n

γ�n)�

i=1

Wi ≥
log(n)

log log(n)



 ≥ P

�



n
2�

i=1

Zi −

n
2�

i=1

Wi ≥
log(n)

log log(n)



 � (3.22)

we get

− log ρ(n) ≤ − log T

�

n/2�
α log(n)

n
�
β log(n)

n
�

log(n)

log log(n)

�

� (3.23)

and Lemma 3.2.7 implies

− log ρ(n) ≤

�
α + β

2
−
�

αβ

�

log(n) + o(log(n)). (3.24)

Hence ρ(n) > n−1γ(n) log(10), and the conclusion follows from Lemma 3.2.5.

3.2.2 Exact recovery for the Stochastic Block Model with

two communities via semidefinite relaxation

We shift our attention to the algorithmic question. Recall Definition 3.2.1, and let

G ∼ G(n� p� q) and g ∈ {±1}n be a vector that is 1 in one of the clusters and −1 in

the other. We are interested in efficient algorithms that succeed at recovering g, with

high probability, all the way up to the information theoretical treshold (3.15).
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The maximum likelihood estimator for g is given by

max xTBx

s.t. x ∈ R
n

x2i = 1�
�n

i=1 xi = 0�

(3.25)

where B is the signed adjacency of G, meaning that Bij = 1 if (i� j) is an edge

of G and Bij = −1 otherwise. Note that B = 2A −
�
11T −I

�
, where A is the

adjacency matrix. We will drop the balanced constraint
�n

i=1 xi = 0, arriving at (3.2)

for Y = B. The intuitive justification is that there are enough −1 entries in B to

discourage unbalanced constraints. We will consider the semidefinite relaxation (3.4).

max Tr
��
2A−

�
11T −I

��
X
�

s.t. Xii = 1

X � 0.

(3.26)

We want to understand when is it that X = ggT is the unique solution of (3.26).

Lemma 3.1.3 shows that ggT is indeed the unique solution of (3.26) as long as the

second smallest eigenvalue of

D[diag�g)�2A−(��
T −I))diag�g)] −

�
2A−

�
11T −I

��
� (3.27)

is strictly positive.

Let us introduce a new matrix.

Definition 3.2.8. [ΓSBM] Given a graph G drawn from the stochastic block model

with two clusters,

ΓSBM = D+ −D− − A�
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where D+ is a diagonal matrix of inner degrees, D− is a diagonal matrix of outer

degrees and A is the adjacency matrix of the graph.

It is easy to see that D[diag�g)Adiag�g)] = D+ −D−. In fact,

D[diag�g)�2A−(��
T −I))diag�g)] −

�
2A−

�
11T −I

��
= 2ΓSBM + 11T �

which means that ggT is the unique solution of (3.26) as long as λ2
�
ΓSBM + 11T

�
> 0.

Note that

E
�
2ΓSBM + 11T

�
= 2

��n

2
p−

n

2
q
�
In×n −

�
p+ q

2
11T +

p− q

2
ggT

��

+ 11T

= n (p− q)

�

In×n −
ggT

n

�

+ n (1− (p+ q))
11T

n
.

If we suppose that p < 1
2
, we have 1−(p+q) > p−q the second smallest eigenvalue

of E
�
2ΓSBM + 11T

�
is n (p− q). This establishes the following Lemma.

Lemma 3.2.9. Let n ≥ 4 be even and let G be drawn from G(n� p� q) with edge

probabilities p < 1
2
and q < p. As long as

λmax (−ΓSBM + E [ΓSBM]) <
n

2
(p− q)�

the Semidefinite program (3.26) for the stochastic block model problem achieves exact

recovery, meaning that ggT is its unique solution.

Estimating this largest eigenvalue using Theorem 4.2.1, we obtain the following

theorem.

Theorem 3.2.10. Let n ≥ 4 be even and let G be drawn from G(n� p� q). As long as

logn
3n

< p < 1
2
and q < p, then there exists Δ > 0 such that, with high probability, the
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following holds: If,

min
i

(degin(i)− degout(i)) ≥
Δ

√
log n

E [degin(i)− degout(i)] (3.28)

then the semidefinite program (3.26) achieves exact recovery.

Proof. The idea is again to apply Theorem 4.2.1. One obstacle is that ΓSBM is not a

Laplacian matrix. Let g denote the vector that is 1 in a cluster and −1 in the other,

and let diag(g) denote a diagonal matrix with the entries of g on the diagonal. We

define

Γ�SBM = diag(g)ΓSBMdiag(g).

Note that Γ�SBM is a Laplacian and both the eigenvalues and diagonal elements of

E [Γ�SBM]− Γ�SBM are the as E [ΓSBM]− ΓSBM.

We apply Theorem 4.2.1 to L = −Γ�SBM+E [Γ�SBM]. Note that L has independent

off-diagonal entries and

�

j∈[n]\i

E
�
L2ij

�
=

�n

2
− 1

� �
p− p2

�
+

n

2

�
q − q2

�
≥

n

8
p ≥

log n

24

≥
log n

24
(1− q) =

log n

24
max
i�=j

�
�L2ij

�
�
∞

.

Hence, there exists a constant Δ� such that, with high probability,

λmax (−Γ
�
SBM + E [Γ�SBM]) ≤

�

1 +
Δ�

√
log n

�

max
i∈[n]

[−(Γ�SBM)ii + E [(Γ�SBM)ii]] �

which is equivalent to

λmax (−ΓSBM + E [ΓSBM]) ≤

�

1 +
Δ�

√
log n

�

max
i∈[n]

[−(ΓSBM)ii + E [(ΓSBM)ii]] . (3.29)
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We just need to show that, there exists Δ > 0 such that, if (3.28) holds, then

�

1 +
Δ�

√
log n

�

max
i∈[n]

[−(ΓSBM)ii + E [(ΓSBM)ii]] <
n

2
(p− q)− p. (3.30)

Note that (ΓSBM)ii = degin(i)− degout(i) and

E [degin(i)− degout(i)] =
n

2
(p− q)− p.

Condition (3.28) can thus be rewriten as

max
i∈[n]

[−(ΓSBM)ii + E [(ΓSBM)ii]] ≤

�

1−
Δ

√
log n

��n

2
(p− q)− p

�
.

The Theorem is then proven by noting that, for any Δ�, there exists Δ such that

�

1−
Δ

√
log n

��n

2
(p− q)− p

�
≤

�

1 +
Δ�

√
log n

�−1 �n

2
(p− q)− p

�
.

As a corollary of this theorem we can establish a sharp threshold for exact recovery

for the stochastic block model of two clusters solving a problem posed in [3]. We note

that this problem was simultaneously solved by the parallel research efforts of Hajek

et al. [121].

We first show a lemma concerning mini (degin(i)− degout(i)), analogous to Lemma

4.2.4.

Lemma 3.2.11. Let G be a random graph with n nodes drawn accordingly to the

stochastic block model on two communities with edge probabilities p and q. Let p =

α logn
n

and q = β logn
n
, where α > β are constants. Then for any constant Δ > 0,

1. If
√
α−

�
β >

√
2� (3.31)
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then, with high probability,

min
i

(degin(i)− degout(i)) ≥
Δ

√
log n

E [degin(i)− degout(i)] .

2. On the other hand, if
√
α−

�
β <

√
2� (3.32)

then, with high probability,

min
i

(degin(i)− degout(i)) < 0�

and exact recovery is impossible.

Part (2) is Theorem 3.2.2, included in order to emphasize the dichotomy. Before

proving this lemma we note how, together with Theorem 3.2.10, this immediately

implies the following Corollary.

Corollary 3.2.12. Let G be a random graph with n nodes drawn accordingly to

the stochastic block model on two communities with edge probabilities p and q. Let

p = α logn
n

and q = β logn
n
, where α > β are constants. Then, as long as

√
α−

�
β >

√
2� (3.33)

the semidefinite program (3.26) coincides with the true partition with high probability.

On the other hand, if
√
α−

�
β <

√
2� (3.34)

then no procedure can suceed with high probability at recovering the true partition.

In order to establish Lemma 3.2.11 we will borrow an estimate from [3].
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Lemma 3.2.13. Recall Definition 3.2.6. Let α, β, and Δ� be constants. Then,

T

�
n

2
�
α log n

n
�
β log n

n
�−Δ�

�
log n

�

≤ exp

�

−

�
α + β

2
−
�

αβ − δ(n)

�

log n

�

�

with lim
n→∞

δ(n) = 0.

Proof. The proof of this Lemma is obtained by straightforward adaptations to the

proof of Lemma 8 in [3].

We are now ready to prove Lemma 3.2.11.

Proof. [of Lemma 3.2.11]

Let α > β be constants satisfying condition (3.32). Given Δ > 0, we want to

show that, with high probability

min
i

(degin(i)− degout(i)) ≥
Δ

√
log n

n

2
(p− q). (3.35)

Let us fix i throughout the rest of the proof. It is clear that we can write

degin(i)− degout(i) =

�



n
2
−1�

i=1

Wi



−

�


n/2�

i=1

Zi



 =

n/2�

i=1

(Wi − Zi) + Zn
2
�

where W1� . . . �Wm are i.i.d. Bernoulli(p) and Z1� . . . � Zm are i.i.d. Bernoulli(q), inde-

pendent of W1� . . . �Wm. Hence, since

Δ
√
log n

�n

2
(p− q)

�
= Δ

�
log n

�
α− β

2

�

�

the probability of degin(i)− degout(i) <
Δ√
logn

�
n
2
(p− q)

�
is equal to

P




n/2�

i=1

(Zi −Wi)− Zn
2
> −Δ

�
log n

�
α− β

2

�



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which is upper bounded by,

P




n/2�

i=1

(Zi −Wi) > −Δ
�
log n

�
α− β

2

�


 .

Take Δ� = Δ
�
α−β
2

�
+ 1 and recall Definition 3.2.6, then

P

�

degin(i)− degout(i) <
Δ

√
log n

n

2
(p− q)

�

≤ T

�
n

2
�
α log n

n
�
β log n

n
�−Δ�

�
log n

�

≤ exp

�

−

�
α + β

2
−
�

αβ − δ(n)

�

log n

�

�

where limn→infty δ(n) = 0, and the last inequality used Lemma 3.2.13.

Via a simple union bound, it is easy to see that,

P

�

min
i

(degin(i)− degout(i)) <
Δ

√
log n

n

2
(p− q)

�

≤ exp

�

−

�
α + β

2
−
�

αβ − 1− δ(n)

�

log n

�

�

which means that, as long as α+β
2
−
√
αβ > 1, (3.35) holds with high probability.

Straightforward algebraic manipulations show that (3.31) implies this condition, con-

cluding the proof of the Corollary.

3.3 Z2 Synchronization with outlier noise

In this section we consider the Z2 Synchronization with outlier noise and with an un-

derlying noncomplete graph G = (V�E) [1, 2] (Recall the problem in Section 3.1.1).

More precisely, given an underlying graph G with n nodes, the task consists in recov-

ering a binary vector z ∈ {±1}n from noisy measurements Yij of zizj, for each edge
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(i� j) ∈ E,

Yij =






zizj with probability 1− ε

−zizj with probability ε�

where ε < 1
2
represents the noise level. We take Yij = 0 for (i� j) /∈ E. We are

interested in understanding the efficacy of the semidefinite program (3.4) at recovering

z. We will focus in the low signal-to-noise ratio (SNR) regime, ε → 1
2
(as n → ∞).

Before analyzing the semidefinite relaxation based algorithm we present information

theoretical lower bounds to serve as a benchmark. We omit the proof4 and refer the

interested reader to [1, 2].

Theorem 3.3.1. [[1, 2]] Let G = (V�E) be the underlying graph and consider ε→ 1
2
.

Let 0 < τ < 2/3 and let d be the average degree of G. If d ≤ nτ then, recovery

with high probability is possible only if

d

log n
≥ 2

1− 3τ/2

(1− 2ε)2
+ o

�
1

(1− 2ε)2

�

. (3.36)

We remark that an information theoretical lower bound was independently ob-

tained by Chen and Goldsmith [78]. However, while considering a more general

problem, the results they obtain are only optimal up to polylog factors.

3.3.1 Underlying Erdős-Rényi graph

We will now focus our attention to the setting on which the underlying graph G is an

Erdős-Rényi graph G ∼ G(n� p). Recall that, for an integer n and an edge probability

parameter 0 ≤ p ≤ 1, the Erdős-Rényi graph model [101] G(n� p) is a random graph

on n nodes where each one of the
�
n
2

�
edges appears independently with probability

p.

We are interested in understanding for which values of p and ε is it possible to

4it shares many ideas with the proof of Theorem 3.2.2.
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exactly recover z using the semidefinite relaxation approach. It is easy to see that,

just like in the example in Section 3.1.1, the maximum likelihood estimator is given

by (3.2). Similarly, we consider its semidefinite relaxation (3.4) and investigate when

X = zzT is the unique solution of (3.4).

It is easy to see that Y is given by

Y = diag(z) (AG − 2AH) diag(z)�

where AG is the adjacency matrix of the underlying graph and AH is the adjacency

of the graph consisting of the corrupted edges. In this case we want conditions on ε

and p under which zzT is the unique solution to:

max Tr [diag(z) (AG − 2AH) diag(z)X]

s.t. Xii = 1

X � 0.

(3.37)

Lemma 3.1.3 states that zzT is indeed the unique solution as long as the second

smallest eigenvalue of

DAG−2AH
− diag(z) (AG − 2AH) diag(z) = DG − 2DH − diag(z) (AG − 2AH) diag(z)

(3.38)

is strictly positive. As diag(z) (DG − 2DH) diag(z) = DG − 2DH and conjugating by

diag(z) does not alter the eigenvalues, the second smallest eigenvalue of (3.38) being

strictly positive is equivalent to

λ2 (DG − AG − 2 (DH − AH)) > 0. (3.39)

Since DG−AG− 2 (DH − AH) = LG− 2LH , where LG and LH are the Laplacians

of, respectively, G and H, we define LSynch and write the condition in terms of LSynch.
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Definition 3.3.2. [LSynch] In the setting described above,

LSynch = LG − 2LH �

where G is the graph of all measurements and H is the graph of wrong measurements.

Then, (3.39) is equivalent to λ2 (LSynch) > 0. The following Lemma readily follows

by noting that E [LSynch] = np(1− 2 ε)In×n − p(1− 2 ε)11T .

Lemma 3.3.3. Consider the Z2 Synchronization problem defined above and LSynch

defined in Definition 3.3.2. As long as

λmax (−LSynch + E [LSynch]) < np(1− 2 ε)�

the Semidefinite program (3.37) achieves exact recovery.

We will estimate this largest eigenvalue using Theorem 4.2.1.

Let us define, for a node i, deg+(i) as the number of non-corrupted edges incident

to i and deg−(i) as the number of corrupted edges incident to i We start by obtaining

the following theorem.

Theorem 3.3.4. As long as n > 2, p > logn
2n

and p(1− 2 ε)2 ≤ 1
2
, there exists Δ > 0

such that, with high probability, the following holds: If

min
i∈[n]

�
deg+(i)− deg−(i)

�
≥

Δ
√
log n

E
�
deg+(i)− deg−(i)

�
� (3.40)

then the semidefinite program (3.37) achieves exact recovery.

Proof. [of Theorem 3.3.4]

The idea is to apply Theorem 4.2.1 to L = −LSynch + E [LSynch]. Note that L has
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independent off-diagonal entries and

�

j∈[n]\i

E
�
L2ij

�
= (n− 1)

�
p− p2(1− 2 ε)2

�
≥

1

4
np ≥

1

8
log n

≥
1 + p(1− 2 ε)

8(1 +
√
2)

log n =
log n

8(1 +
√
2)

max
i�=j

�
�L2ij

�
�
∞

.

Hence, there exists a constant Δ� such that, with high probability,

λmax (−LSynch + E [LSynch]) ≤

�

1 +
Δ�

√
log n

�

max
i∈[n]

[−(LSynch)ii + E [(LSynch)ii]] .

We just need to show that, there exists Δ > 0 such that, if (3.40) holds, then

�

1 +
Δ�

√
log n

�

max
i∈[n]

[−(LSynch)ii + E [(LSynch)ii]] < np(1− 2 ε). (3.41)

Recall that (LSynch)ii = deg+(i)− deg−(i) and E(LSynch)ii = (n− 1)p(1− 2 ε). We

can rewrite (3.41) as

min
i∈[n]

(LSynch)ii > (n− 1)p(1− 2 ε)− np(1− 2 ε)

�

1 +
Δ�

√
log n

�−1
.

Straightforward algebraic manipulations show that there exists a constant Δ such

that

(n− 1)p(1− 2 ε)− np(1− 2 ε)

�

1 +
Δ�

√
log n

�−1
≤

Δ
√
log n

E
�
deg+(i)− deg−(i)

�
�

proving the Theorem.

We note that, if p ≤ logn
2n

, then Theorem 4.2.6 implies that, with high probability,

the underlying graph is disconnected implying impossibility of exact recovery. We
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also note that if we do not have

min
i∈[n]

�
deg+(i)− deg−(i)

�
≥ 0� (3.42)

then the maximum likelihood does not match the ground truth, rendering exact

recovery unrealistic5. The optimality of this analysis hinges upon the fact that the

right-hand side of (3.40) is asymptotically smaller than the expectation of deg+(i)−

deg−(i), suggesting that (3.40) and (3.42) have similar probabilities and the same

phase transition.

The next Theorem establishes the optimality of the semidefinite programming

based approach in a particular regime, solving a problem raised in [1, 2]. While it

is clear that one can use Theorem 3.3.4 to establish similar results for many other

regimes (for some, through estimates similar to the ones in Lemma 3.2.13), the main

purpose of this section is not to perform a detailed analysis of this problem but rather

to illustrate the efficacy of these semidefinite relaxations and of its analysis through

means of Theorem 4.2.1. The independent parallel research efforts of Hajek et al. [122]

address other regimes for this particular problem, we refer the interested reader there.

Corollary 3.3.5. As long as ε < 1
2
and p(1 − 2 ε)2 ≤ 1

2
, there exists a constant K

for which the following holds: If there exists δ > 0 such that

(n− 1)p ≥ (1 + δ)
2

(1− 2 ε)2

�

1 +
K

√
log n

+
5

3
(1− 2 ε)

�

log n� (3.43)

then the Semidefinite program (3.37) achieves exact recovery with high probability.

Before proving this corollary we note that Theorem 3.3.1 ensure that the threshold

in Corollary 3.3.5 is optimal for, at least, an interesting range of values of ε. Empow-

ered with Theorem 3.3.4, the proof of this corollary becomes rather elementary.

5Recall that, if we assume a uniform prior, the MLE is the method that maximizes the probability
of exact recovery
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Proof. [of Corollary 3.3.5]

This corollary will be established with a simple use of Bernstein’s inequality.

Our goal is to show that, given Δ, there exists a K and δ such that, under the

hypothesis of the Corollary,

min
i∈[n]

�
deg+(i)− deg−(i)

�
≥

Δ
√
log n

E
�
deg+(i)− deg−(i)

�
�

holds with high probability. This implies, via Theorem 3.3.4, that the semidefinite

program (3.37) achieves exact recovery with high probability.

We will consider n to be large enough. We start by noting that it suffices to show

that there exists δ > 0 such that, for each i ∈ [n] separately,

P

�

deg+(i)− deg−(i) <
Δ

√
log n

E
�
deg+(i)− deg−(i)

�
�

≤ n−�1+δ). (3.44)

Indeed, (3.44) together with a union bound over the n nodes of the graph would

establish the Corollary.

Throughout the rest of the proof we will fix i ∈ [n] and use deg+ and deg− to

denote, respectively, deg+(i) and deg−(i). It is easy to see that

deg+− deg− = (n− 1)p(1− 2 ε)−
n−1�

j=1

xj�

where xj are i.i.d. centered random variables with distribution

xj =






−1 + p(1− 2 ε) with probability p(1− ε)

1 + p(1− 2 ε) with probability p ε

p(1− 2 ε) with probability 1− p.
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For any t > 0 Bernstein’s inequality gives

P

�
n−1�

j=1

xj > t

�

≤ exp

�

−
t2/2

(n− 1)Ex2j +
t
3
�xj�∞

�

.

Taking t =
�
1− Δ√

logn

�
(n− 1)p(1− 2 ε) gives

P

�

deg+− deg− <
Δ

√
log n

E
�
deg+− deg−

�
�

≤ exp

�


−

��
1− Δ√

logn

�
(n− 1)p(1− 2 ε)

�2
/2

(n− 1)Ex2j +

��
1− Δ√

logn

�
�n−1)p�1−2 ε)

�

3
�xj�∞






= exp

�


−

�
1− Δ√

logn

�2
(n− 1)p(1− 2 ε)2/2

1
p
Ex2j +

��
1− Δ√

logn

�
�1−2 ε)

�

3
�xj�∞






Condition (3.43) (for a K to be determined later) guarantees that

(n− 1)p(1− 2 ε)2/2 ≥ (1 + δ)

�

1 +
K

√
log n

+
5

3
(1− 2 ε)

�

log n�

meaning that we just need to show that there exists K > 0 for which

�
1− Δ√

logn

�2 �
1 + K√

logn
+ 5
3
(1− 2 ε)

�

1
p
Ex2j +

��
1− Δ√

logn

�
�1−2 ε)

�

3
�xj�∞

≥ 1.

Note that 1
p
Ex2j = 1 + p(1 − 2 ε) ≤ 1 + (1 − 2 ε) and �xj�∞ = 1 + p(1 − 2 ε) ≤ 2,

implying that

1

p
Ex2j +

��
1− Δ√

logn

�
(1− 2 ε)

�

3
�xj�∞ ≤ 1 +

5

3
(1− 2 ε).

Also,
�
1− Δ√

logn

�2
≥ 1 − 2Δ√

logn
. The corollary is then proved by noting that there
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exists K > 0 such that

K
√
log n

≥ 2K
Δ

log n
+

2Δ
√
log n

�

1 +
5

3
(1− 2 ε)

�

.

3.3.2 Underlying deterministic graph

We now briefly discuss the case on which the underlying graph G is any deterministic

d-regular graph. It is natural to give recovery guarantees in terms of the Cheeger

constant (2.1): A graph with a small minimum cut consists of two rather disconnected

components so that there is a good chance that most edges in the small cut are

corrupted, which would render recovery unrealistic. In fact, a sufficient condition for

recovery in terms of the Cheeger constant is obtained in [1].

Theorem 3.3.6. [[1]] Cosnder a d-regular underlying graph G = (V�E) with Cheeger

constant hG. If ε→
1
2
, as long as

d

log n
>

2

hG (1− 2ε)2
+ o

�
1

hG (1− 2ε)2

�

. (3.45)

then exact recovery with high probability is possible.

Unfortunately, deriving a necessary condition that bounds the Cheeger constant

away from zero is impossible. Indeed, suppose the base-graph consists of two equally

sized components, which are connected by log n edges. Moreover, assume the two

graphs that are obtained by disconnecting the two components have Cheeger constant

hG and minimum degree c log n, where c is some positive constant for which the

sufficient condition (3.45) of Theorem 3.3.6 holds. Then, Theorem 3.3.6 implies that

each component can be recovered correctly (up to an inevitable offset between the

two graphs). Moreover, with high probability less than half of the log n edges that
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connect the two components are corrupted by noise. Hence, the MLE indeed recovers

the correct vertex-variables up to a global shift. But the Cheeger constant of the

graph satisfies hg ≤ 2/ (cn) and thus converges to zero as n approaches infinity. This

leaves the interesting open question of investigating a characteristic of the graph that

captures how easy it is to solve (on it) the type of inverse problems considered here.

In [1] a condition is also derived for exact recovery through the semidefinite

program (3.37). It uses a a different measure of connectivity for G, in terms of

the eigenvalues of its normalized Laplacian. Recall that, if G is a d-regular graph,

LG = Id×d −
1
d
AG is its normalized Laplacian. The Theorem reads as follows.

Theorem 3.3.7. Let G be a d-regular graph, and LG its normalized Laplacian. Let

ε→ 1
2
. As long as

d

log n
≥ 8

1

λ2 (LG)
2 (1 + δ)

�
1

(1− 2 ε)2
+ o

�
1

(1− 2 ε)2

��

.

the SDP achieves exact recovery with probability at least 1− nδ.

If, furthermore, λ2 (LG) = 1− o(1) and λmax (LG) = 1+ o(1) the condition can be

replaced by:

d

log n
≥ 4(1 + δ)

1

(1− 2 ε)2
+ o

�
1

(1− 2 ε)2

�

. (3.46)

Remark 3.3.8. The case where λ2 (LG) = 1 − o(1) and λmax (LG) = 1 + o(1) is of

particular interest as this is satisfied for random d-regular graphs as, for every δ > 0,

max {1− λ2 (LG) � |1− λmax (LG)|} ≤ 2
√
d−1+δ
d

with high probability [183, 107]. Also,

if G is a d-regular Ramanujan expander, then max {1− λ2 (LG) � |1− λmax (LG)|} ≤

2
√
d−1
d
.

Theorem 3.3.7 and Theorem 3.3.6 can be compared using Cheeger’s inequality

(Theorem 2.1.1). In fact, when ε→ 1
2
, the sufficient condition (3.45) in Theorem 3.3.6
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is implied by

d

log n
>

4

λ2 (LG) (1− 2ε)2
+ o

�
1

λ2 (LG) (1− 2ε)2

�

. (3.47)

We believe the discrepancy in the leading constant between (3.47) and (3.46) is

due to the analysis in [1], in particular the use of Matrix Bernstein’s inequality [220].

We suspect that the gap can be improved by adapting the analysis described above

for the Erdős-Rényi setting (via Theorem 4.2.1) and leave such an improvement for

future work.
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Chapter 4

A detour through random matrix

theory

4.1 Spectral norm of matrices with independent

entries

In this chapter we take a detour through random matrix theory that will culminate

with Theorem 4.2.1 (stated and proved in Section 4.2), which played a crucial role in

the analysis of semidefinite programming–based algorithms carried out in Chapter 3.

We start in this section by investigating the spectral norm of a large class of

matrices. The results of this section, which is based on [42], are of independent

interest. A simple example is when W a standard Wigner matrix, that is, a symmetric

n × n matrix whose entries are i.i.d. standard Gaussians then, as we discussed in

Section 3.1.1, �W�/
√
n → 2. Furthermore, the requirement that the entries need to

be Gaussian random variables can be relaxed to very mild conditions [109, 26, 22,

217] (this is expected from the well-known fact that the empirical spectral density

converges to the Wigner semicircle law supported in [−2� 2]). The corresponding

result for rectangular matrices with i.i.d. entries is even older [110].
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More recently, there has been considerable interest in structured random matrices

where the entries are no longer identically distributed. As the combinatorial methods

that are used for this purpose typically exploit the specific structure of the entries,

precise asymptotic results on the spectral norm of structured matrices must generally

be obtained on a case-by-case basis (see, for example, [212, 213]).

In order to gain a deeper understanding of the spectral norm of structured matri-

ces, it is natural to ask whether one can find a unifying principle that captures at least

the correct scale of the norm in a general setting, that is, in the absence of specific

structural assumptions. This question is most naturally phrased in a nonasymptotic

setting: given a random matrix X can we obtain upper and lower bounds on �X�,

in terms of natural parameters that capture the structure of X, that differ only by

universal constants? Nonasymptotic bounds on the norm of a random matrix have

long been developed in a different area of probability that arises from problems in

geometric functional analysis, and have had a significant impact on various areas of

pure and applied mathematics [91, 193, 228]. Unfortunately, as we will shortly see,

the best known general results along these lines fail to capture the correct scale of

the spectral norm of structured matrices except in extreme cases.

In this section, we investigate the norm of random matrices with independent

entries. Consider for concreteness the case of Gaussian matrices (this section’s main

results will extend to more general distributions of the entries). Let X be the n× n

symmetric random matrix with entries Xij = gijbij, where {gij : i ≥ j} are indepen-

dent standard Gaussian random variables and {bij : i ≥ j} are given scalars.

Perhaps the most useful known nonasymptotic bound on the spectral norm �X�

can be obtained as a consequence of the noncommutative Khintchine inequality of

Lust-Piquard and Pisier [180], or alternatively (in a much more elementary fashion)

from the “matrix concentration” method that has been widely developed in recent
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years [176, 220, 221]. This yields the following inequality in our setting:

E�X� � σ
�
log n with σ := max

i

��

j

b2ij.

Unfortunately, as it was discussed in Section 3.1.1, this inequality already fails to be

sharp in the simplest case of Wigner matrices: here σ =
√
n, so that the resulting

bound E�X� �
√
n log n falls short of the correct scaling1 E�X� ∼

√
n. On the

other hand, the logarithmic factor in this bound is necessary: if X is the diagonal

matrix with independent standard Gaussian entries, then σ = 1 and E�X� ∼
√
log n.

We therefore conclude that while the noncommutative Khintchine bound is sharp

in extreme cases, it fails to capture the structure of the matrix X in a satisfactory

manner.

A different bound on �X� can be obtained by a method due to Gordon (see [91])

that exploits Slepian’s comparison lemma for Gaussian processes, or alternatively

from a simple ε-net argument [228, 217]. This yields the following inequality:

E�X� � σ∗
√
n with σ∗ := max

ij
|bij|.

While the parameter σ∗ that appears in this bound is often much smaller than σ,

the dimensional scaling of this bound is much worse than in the noncommutative

Khintchine bound. In particular, while this bound captures the correct
√
n rate for

Wigner matrices, it is vastly suboptimal in almost every other situation (for example,

in the diagonal matrix example considered above).

Further nonasymptotic bounds on �X� have been obtained in the present setting

by Lata�la [142] and by Riemer and Schütt [188]. In most examples, these bounds

provide even worse rates than the noncommutative Khintchine bound. Seginer [199]

1Section 3.1.1 describes an example where this suboptimality is critical, as the extra logarithmic
term prevents one from establishing the qualitative phenomenon expressed in �3.9).
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obtained a slight improvement on the noncommutative Khintchine bound that is

specific to the special case where the random matrix has uniformly bounded entries

(see Section 4.1.5 below). None of these results provides a sharp understanding of

the scale of the spectral norm for general structured matrices.

In what follows we will develop a new family of nonasymptotic bounds on the

spectral norm of structured random matrices that prove to be optimal in a surprisingly

general setting. Our main bounds are of the form

E�X� � σ + σ∗
�
log n� (4.1)

which provides a sort of interpolation between the two bounds discussed above. For

example, the following is one of the main results of this section.

Theorem 4.1.1. Let X be the n × n symmetric matrix with Xij = gijbij, where

{gij : i ≥ j} are i.i.d. ∼ N(0� 1) and {bij : i ≥ j} are given scalars. Then

E�X� ≤ (1 + ε)

�

2σ +
6

�
log(1 + ε)

σ∗
�
log n

�

for any 0 < ε ≤ 1/2, where σ� σ∗ are as defined above.

Let us emphasize two important features of this result.

• It is almost trivial to obtain a matching lower bound of the form

E�X� � σ + σ∗
�
log n

that holds as long as the coefficients bij are not too inhomogeneous (Sec-

tion 4.1.4). This means that Theorem 4.1.1 captures the optimal scaling of

the expected norm E�X� under surprisingly minimal structural assumptions.
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• In the case of Wigner matrices, Theorem 4.1.1 yields a bound of the form

E�X� ≤ (1 + ε)2
√
n+ o(

√
n)

for arbitrarily small ε > 0. Thus Theorem 4.1.1 not only captures the correct

scaling of the spectral norm, but even recovers the precise asymptotic behavior

�X�/
√
n→ 2 as n→∞.

In view of these observations, it seems that Theorem 4.1.1 is essentially the optimal

result of its kind: there is little hope to accurately capture inhomogeneous models

where Theorem 4.1.1 is not sharp in terms of simple parameters such as σ� σ∗ (see

Remark 4.1.17). On the other hand, we can now understand the previous bounds

as extreme cases of Theorem 4.1.1. The noncommutative Khintchine bound matches

Theorem 4.1.1 when σ/σ∗ � 1: this case is minimal as σ/σ∗ ≥ 1. Gordon’s bound

matches Theorem 4.1.1 when σ/σ∗ �
√
n: this case is maximal as σ/σ∗ ≤

√
n. In

intermediate regimes, Theorem 4.1.1 yields a strictly better scaling.

While we will focus most of the exposition on Theorem 4.1.1 and its proof, our

methods are not restricted to this particular setting. In fact, we will state a number

of extensions of Theorem 4.1.1 while refering the reader to [42] for the proofs of these

resuls.

One of the nice features of Theorem 4.1.1 is that its proof explains very clearly

why the result is true. Once the idea has been understood, the technical details

prove to be of minimal difficulty, which suggests that the “right” approach has been

found. Let us briefly illustrate the idea behind the proof in the special case where the

coefficients bij take only the values {0� 1} (this setting guided our intuition, though

the ultimate proof is no more difficult in the general setting). We can then interpret

the matrix of coefficients (bij) as the adjacency matrix of a graph G on n points, and

we have σ∗ = 1 and σ =
√
k where k is the maximal degree of G.
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Following a classical idea in randommatrix theory, we use the fact that the spectral

norm �X� is comparable to the quantity Tr[Xp]1/p for p ∼ log n. If one writes out the

expression for ETr[Xp] in terms of the coefficients, it is readily seen that controlling

this quantity requires us to count the number of cycles in G for which every edge is

visited an even number of times. One might expect that the graph G of degree k

that possesses the most such cycles is the complete graph on k points. If this were

the case, then one could control ETr[Xp] by ETr[Y p] where Y is a Wigner matrix

of dimension k. This intuition is almost, but not entirely, correct: while a k-clique

typically possesses more distinct topologies of cycles, each cycle of a given topology

can typically be embedded in more ways in a regular graph on n points than in a

k-clique. Careful bookkeeping shows that the latter can be accounted for by choosing

a slightly larger Wigner matrix of dimension k+p. We therefore obtain a comparison

theorem between the spectral norm ofX and the spectral norm of a (k+p)-dimensional

Wigner matrix, which is of the desired order
√
k + p ∼

√
k+
√
log n for p ∼ log n. We

can now conclude by using standard ideas from probability in Banach spaces to obtain

sharp nonasymptotic bounds on the norm of the resulting Wigner matrix, avoiding

entirely any combinatorial complications. (A purely combinatorial approach would

be nontrivial as very high moments of Wigner matrices can appear in this argument.)

We conclude the introduction by noting that both the noncommutative Khintchine

inequality and Gordon’s bound can be formulated in a more general context beyond

the case of independent entries. Whether the conclusion of Theorem 4.1.1 extends to

this situation is a natural question of considerable interest. This fascinating direction

for future research is further discussed in Section 7.2.7.

4.1.1 Proof of Theorem 4.1.1

The main idea behind the proof of Theorem 4.1.1 is the following comparison theorem.

Proposition 4.1.2. Let Yr be the r × r symmetric matrix such that {(Yr)ij : i ≥ j}
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are independent N(0� 1) random variables, and suppose that σ∗ ≤ 1. Then

ETr[X2p] ≤
n

�σ2�+ p
ETr

�
Y 2p�σ2�+p

�
for every p ∈ N.

Let us begin by completing the proof of Theorem 4.1.1 given this result. We need

the following lemma, which is a variation on standard ideas (cf. [91]).

Lemma 4.1.3. Let Yr be the r × r symmetric matrix such that {(Yr)ij : i ≥ j} are

independent N(0� 1) random variables. Then for every p ≥ 2

E[�Yr�
2p]1/2p ≤ 2

√
r + 2

�
2p.

Proof. We begin by noting that

�Yr� = λ+ ∨ λ−� λ+ := sup
v∈Sr−1

�v� Yrv�� λ− = − inf
v∈Sr−1

�v� Yrv��

where S
r−1 is the unit sphere in R

r. We are therefore interested in the supremum of

the Gaussian process {�v� Yrv�}v∈Sr−1 , whose natural distance can be estimated as

E|�v� Yrv� − �w� Yrw�|
2 ≤ 2

�

i�j

{vivj − wiwj}
2 ≤ 4�v − w�2

(using 1 − x2 ≤ 2(1 − x) for x ≤ 1). The right-hand side of this expression is

the natural distance of the Gaussian process {2�v� g�}v∈S, where g is the standard

Gaussian vector in R
r. Therefore, Slepian’s lemma [53, Theorem 13.3] implies

Eλ+ = E sup
v∈Sr−1

�v� Yrv� ≤ 2E sup
v∈Sr−1

�v� g� = 2E�g� ≤ 2
√
r.

Moreover, note that λ+ and λ− have the same distribution (as evidently Yr and −Yr
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have the same distribution). Therefore, using the triangle inequality for � · �2p,

E[�Yr�
2p]1/2p = �λ+ ∨ λ−�2p

≤ Eλ+ + �λ+ ∨ λ− − Eλ+�2p

= Eλ+ + �(λ+ − Eλ+) ∨ (λ− − Eλ−)�2p.

It follows from Gaussian concentration [53, Theorem 5.8 and Theorem 2.1] that

E[(λ+ − Eλ+)
2p ∨ (λ− − Eλ−)

2p] ≤ p�4p+1 ≤ (2
�
2p)2p

for p ≥ 2. Putting together the above estimates completes the proof.

Proof of Theorem 4.1.1. We can clearly assume without loss of generality that the

matrix X is normalized such that σ∗ = 1. For p ≥ 2, we can estimate

E�X� ≤ E[Tr[X2p]]1/2p

≤ n1/2p E[�Y�σ2�+p�
2p]1/2p

≤ n1/2p{2
�
�σ2�+ p+ 2

�
2p}

by Proposition 4.1.2 and Lemma 4.1.3, where we used Tr[Y 2pr ] ≤ r�Yr�
2p. This yields

E�X� ≤ e1/2α{2
�
�σ2�+ �α log n�+ 2

�
2�α log n�}

≤ e1/2α{2σ + 2
�

α log n+ 2 + 2
�
2α log n+ 2}

for the choice p = �α log n�. If n ≥ 2 and α ≥ 1, then 2 ≤ 3 log 2 ≤ 3α log n, so

E�X� ≤ e1/2α{2σ + 6
�
2α log n}.

Defining e1/2α = 1 + ε and noting that ε ≤ 1/2 implies α ≥ 1 yields the result
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provided that n ≥ 2 and p ≥ 2. The remaining cases are easily dealt with separately.

The result holds trivially in the case n = 1. On the other hand, the case p = 1

can only occur when α log n ≤ 1 and thus n ≤ 2. In this case can estimate directly

E�X� ≤
�

n(�σ2�+ p) ≤ σ
√
2 + 2 using Proposition 4.1.2.

Remark 4.1.4. Note that we use the moment method only to prove the compar-

ison theorem of Proposition 4.1.2; as will be seen below, this requires only trivial

combinatorics. All the usual combinatorial difficulties of random matrix theory are

circumvented by Lemma 4.1.3, which exploits the theory of Gaussian processes.

Remark 4.1.5. The constant 6 in the second term in Theorem 4.1.1 arises from

crude rounding in our proof. While this constant can be somewhat improved for large

n, our proof cannot yield a sharp constant here: it can be verified in the example of

the diagonal matrix bij = 1i=j that the constant
√
2 in the precise asymptotic E�X� ∼

√
2 log n cannot be recovered from our general proof. We therefore do not insist on

optimizing this constant, but rather state the convenient bound in Theorem 4.1.1 which

holds for any n. In contrast to the constant in the second term, the constant in the

first term is sharp.

We now turn to the proof of Proposition 4.1.2. Let us begin by recalling some

standard observations. The quantity ETr[X2p] can be expanded as

ETr[X2p] =
�

u1�...�u2p∈[n]

bu1u2bu2u3 · · · bu2pu1 E[gu1u2gu2u3 · · · gu2pu1 ].

Let Gn = ([n]� En) be the complete graph on n points, that is, En = {{u� u�} : u� u� ∈

[n]} (note that we have included self-loops). We will identify any u = (u1� . . . � u2p) ∈

[n]2p with a cycle u1 → u2 → · · · → u2p → u1 in Gn of length 2p. If we denote by

ni(u) the number of distinct edges that are visited precisely i times by the cycle u,
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then we can write (here g ∼ N(0� 1))

ETr[X2p] =
�

u∈[n]2p

bu1u2bu2u3 · · · bu2pu1
�

i≥1

E[gi]ni�u).

A cycle u is called even if it visits each distinct edge an even number of times, that

is, if ni(u) = 0 whenever i is odd. As E[gi] = 0 when i is odd, it follows immediately

that the sum in the above expression can be restricted to even cycles.

The shape s(u) of a cycle u is obtained by relabeling the vertices in order of

appearance. For example, the cycle 7 → 3 → 5 → 4 → 3 → 5 → 4 → 3 → 7 has

shape 1→ 2→ 3→ 4→ 2→ 3→ 4→ 2→ 1. We denote by

S2p := {s(u) : u is an even cycle of length 2p}

the collection of shapes of even cycles, and we define the collection of even cycles with

given shape s starting (and ending) at a given point u as

Γs�u := {u ∈ [n]2p : s(u) = s� u1 = u}

for any u ∈ [n] and s ∈ S2p. Clearly the edge counts ni(u) depend only on the shape

s(u) of u, and we can therefore unambiguously write ni(s) for the number of distinct

edges visited i times by any cycle with shape s. We then obtain

ETr[X2p] =
�

u∈[n]

�

s∈S2p

�

i≥1

E[gi]ni�s)
�

u∈Γ��u

bu1u2bu2u3 · · · bu2pu1 .

Finally, given any shape s = (s1� . . . � s2p), we denote by m(s) = maxi si the number

of distinct vertices visited by any cycle with shape s.

Now that we have set up a convenient bookkeeping device, the proof of Proposi-

tion 4.1.2 is surprisingly straightforward. It relies on two basic observations.
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Lemma 4.1.6. Suppose that σ∗ ≤ 1. Then we have for any u ∈ [n] and s ∈ S2p

�

u∈Γ��u

bu1u2bu2u3 · · · bu2pu1 ≤ σ2�m�s)−1).

In particular, it follows that

ETr[X2p] ≤ n
�

s∈S2p

σ2�m�s)−1)
�

i≥1

E[gi]ni�s).

Proof. Fix an initial point u and shape s = (s1� . . . � s2p). Let

i(k) = inf{j : sj = k}

for 1 ≤ k ≤ m(s). That is, i(k) is the first time in any cycle of shape s at which its

kth distinct vertex is visited (of course, i(1) = 1 by definition).

Now consider any cycle u ∈ Γs�u. As the cycle is even, the edge {ui�k)−1� ui�k)}

must be visited at least twice for every 2 ≤ k ≤ m(s). On the other hand, as the

vertex ui�k) is visited for the first time at time i(k), the edge {ui�k)−1� ui�k)} must be

distinct from the edges {ui��)−1� ui��)} for all � < k. We can therefore estimate

�

u∈Γ��u

bu1u2bu2u3 · · · bu2pu1 ≤
�

u∈Γ��u

b2uui�2)b
2
ui�3)−1ui�3)

· · · b2ui�m��))−1ui�m��))

=
�

v2 �=···�=vm��)

b2uv2b
2
vsi�3)−1

v3
· · · b2vsi�m��))−1

vm��)
�

where we used that maxij |bij| = σ∗ ≤ 1. As si�k)−1 < k by construction, it is readily

seen that the quantity on the right-hand side is bounded by σ2�m�s)−1).

Lemma 4.1.7. Let Yr be defined as in Proposition 4.1.2. Then for any r > p

ETr[Y 2pr ] = r
�

s∈S2p

(r − 1)(r − 2) · · · (r −m(s) + 1)
�

i≥1

E[gi]ni�s).
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Proof. In complete analogy with the identity for ETr[X2p], we can write

ETr[Y 2pr ] =
�

s∈S2p

|{u ∈ [r]2p : s(u) = s}|
�

i≥1

E[gi]ni�s).

Each cycle u ∈ [r]2p with given shape s(u) = s is uniquely defined by specifying its

m(s) distinct vertices. Thus as long as m(s) ≤ r, there are precisely

r(r − 1) · · · (r −m(s) + 1)

such cycles. But note that any even cycle of length 2p can visit at most m(s) ≤ p+1

distinct vertices, so the assumption p < r implies the result.

We can now complete the proof.

Proof of Proposition 4.1.2. Fix p ∈ N and let r = �σ2�+ p. Then

(r − 1)(r − 2) · · · (r −m(s) + 1) ≥ (σ2 + p−m(s) + 1)m�s)−1 ≥ σ2�m�s)−1)

for any s ∈ S2p, where we have used that any even cycle of length 2p can visit at most

m(s) ≤ p+ 1 distinct vertices. It remains to apply Lemmas 4.1.6 and 4.1.7.

4.1.2 Extensions and adaptations

Non-symmetric matrices

Let X be the n ×m random rectangular matrix with Xij = gijbij, where {gij : 1 ≤

i ≤ n� 1 ≤ j ≤ m} are independent N(0� 1) random variables and {bij : 1 ≤ i ≤ n� 1 ≤

j ≤ m} are given scalars. While this matrix is not symmetric, one can immediately

obtain a bound on E�X� from Theorem 4.1.1 by applying the latter to the symmetric
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matrix

X̃ =






0 X

X∗ 0




 .

Indeed, it is readily seen that �X̃� = �X�, so we obtain

E�X� ≤ (1 + ε)

�

2(σ1 ∨ σ2) +
6

�
log(1 + ε)

σ∗
�
log(n+m)

�

for any 0 < ε ≤ 1/2 with

σ1 := max
i

��

j

b2ij� σ2 := max
j

�
�

i

b2ij� σ∗ := max
ij
|bij|.

While this result is largely satisfactory, it does not lead to a sharp constant in the

first term: it is known from asymptotic theory [110] that when bij = 1 for all i� j

we have E�X� ∼
√
n +

√
m as n�m → ∞ with n/m → γ ∈ ]0�∞[, while the above

bound can only give the weaker inequality E�X� ≤ 2(1+o(1))(
√
n∨
√
m). The latter

bound can therefore be off by as much as a factor 2.

We can regain the lost factor and also improve the logarithmic term by exploiting

explicitly the bipartite structure of X̃ in the proof of Theorem 4.1.1. This leads to

the following sharp analogue of Theorem 4.1.1 for rectangular random matrices.

Theorem 4.1.8. Let X be the n×m matrix with Xij = gijbij. Then

E�X� ≤ (1 + ε)

�

σ1 + σ2 +
5

�
log(1 + ε)

σ∗
�
log(n ∧m)

�

.

for any 0 < ε ≤ 1/2.

As the proof of this result closely follows the proof of Theorem 4.1.8, we will omit

it and refer the reader to [42].
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Non–Gaussian entries

We have phrased Theorem 4.1.1 in terms of Gaussian random matrices for concrete-

ness. However, note that the core argument of the proof of Theorem 4.1.1, the com-

parison principle of Proposition 4.1.2, did not depend at all on the Gaussian nature

of the entries: it is only subsequently in Lemma 4.1.3 that we exploited the theory

of Gaussian processes. The same observation applies to the proof of Theorem 4.1.8.

As a consequence, we can develop various extensions of these results to more general

distributions of the entries.

Let us begin by considering the case of subgaussian random variables.

Corollary 4.1.9. Theorems 4.1.1 and 4.1.8 remain valid if the independent Gaussian

random variables gij are replaced by independent symmetric random variables ξij such

that E[ξ2pij ] ≤ E[g2p] for every p ∈ N and i� j (g ∼ N(0� 1)).

Proof. As ξij are assumed to be symmetric, E[ξpij] = 0 when p is odd. It therefore

follows readily by inspection of the proof that Proposition 4.1.2 (and its rectangular

counterpart) remains valid under the present assumptions.

Corollary 4.1.9 implies, for example, that the conclusions of Theorems 4.1.1 and

4.1.8 hold verbatim when gij are replaced by independent Rademacher variables εij,

that is, P[εij = ±1] = 1/2 (see Section 4.1.5 below for more on such matrices). The

moment assumption E[ξ2pij ] ≤ E[g2p] is somewhat unwieldy, however. In fact, we also

establish the following Corollary (which is sharper for when the entries are bounded).

For the sake of brevity, we refer the reader to [42] for a proof.

Corollary 4.1.10. Let X be the n × n symmetric random matrix with Xij = ξijbij,

where {ξij : i ≥ j} are independent symmetric random variables with unit variance

and {bij : i ≥ j} are given scalars. Then we have for any α ≥ 3

E�X� ≤ e2/α
�

2σ + 14αmax
ij
�ξijbij�2�α logn�

�
log n

�

.
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4.1.3 Tail bounds

Given explicit bounds on the expectation E�X�, we can readily obtain nonasymptotic

tail inequalities for �X� by applying standard concentration techniques. We record

some useful results along these lines here.

Corollary 4.1.11. Under the assumptions of Theorem 4.1.1, we have

P

�

�X� ≥ (1 + ε)

�

2σ +
6

�
log(1 + ε)

σ∗
�
log n

�

+ t

�

≤ e−t
2/4σ2

∗

for any 0 < ε ≤ 1/2 and t ≥ 0. In particular, for every 0 < ε ≤ 1/2 there exists a

universal constant cε such that for every t ≥ 0

P[�X� ≥ (1 + ε)2σ + t] ≤ ne−t
2/cεσ2

∗ .

Proof. As �X� = supv |�v�Xv�| (the supremum is over the unit ball) and

E[�v�Xv�2] =
�

i

b2iiv
4
i + 2

�

i�=j

b2ijv
2
i v
2
j ≤ 2σ2∗�

the first inequality follows from Gaussian concentration [53, Theorem 5.8] and The-

orem 4.1.1. For the second inequality, note that we can estimate

P[�X� ≥ (1 + ε)2σ + cεσ∗t] ≤ P[�X� ≥ (1 + ε)2σ + c�εσ∗
�
log n+ σ∗t] ≤ e−t

2/4

for t ≥ 2
√
log n (with cε� c

�
ε chosen in the obvious manner), while

P[�X� ≥ (1 + ε)2σ + cεσ∗t] ≤ 1 ≤ ne−t
2/4

for t ≤ 2
√
log n. Combining these bounds completes the proof.

Tail bounds on �X� have appeared widely in the recent literature under the name
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“matrix concentration inequalities” (see [176, 220]). In the present setting, the cor-

responding result of this kind implies that for all t ≥ 0

P[�X� ≥ t] ≤ ne−t
2/8σ2

.

The second inequality of Corollary 4.1.11 was stated for comparison with with this

matrix concentration bound. Unlike the matrix concentration bound, Corollary 4.1.11

is essentially optimal in that it captures not only the correct mean, but also the correct

tail behavior of �X� [143, Corollary 3.2] (note that due to the factor 1 + ε in the

leading term, we do not expect to see Tracy-Widom fluctuations at this scale).

Remark 4.1.12. Integrating the tail bound obtained by the matrix concentration

method yields the estimate E�X� � σ
√
log n. This method therefore yields an alter-

native proof of the noncommutative Khintchine bound that was discussed in the intro-

duction. Combining this bound with concentration as in the proof of Corollary 4.1.11

already yields a better tail bound than the one obtained directly from the matrix con-

centration method. Nonetheless, it should be emphasized that the suboptimality of the

above bound on the expected norm stems from the suboptimal tail behavior obtained

by the matrix concentration method. Our sharp tail bounds help clarify the source

of this inefficiency: the parameter σ should only control the mean of �X�, while the

fluctuations are controlled entirely by σ∗.

The Gaussian concentration property used above is specific to Gaussian variables.

However, there are many other situations where strong concentration results are avail-

able [53], and where similar results can be obtained. For example, if the Gaussian

variables gij are replaced by symmetric random variables ξij with �ξij�∞ ≤ 1 (this

captures in particular the case of Rademacher variables), Corollary 4.1.11 remains

valid with slightly larger universal constants cε� c
�
ε. This follows from the identical

proof, up to the replacement of Gaussian concentration by a form of Talagrand’s
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concentration inequality [53, Theorem 6.10].

In the case of bounded entries, however, a more interesting question is whether

it is possible to obtain tail bounds that capture the variance of the entries rather

than their uniform norm (which is often much bigger than the variance), akin to the

classical Bernstein inequality for sums of independent random variables. We presently

develop a very useful result along these lines.

Corollary 4.1.13. Let X be an n × n symmetric matrix whose entries Xij are in-

dependent symmetric random variables. Then there exists for any 0 < ε ≤ 1/2 a

universal constant c̃ε such that for every t ≥ 0

P[�X� ≥ (1 + ε)2σ + t] ≤ ne−t
2/c̃εσ2

∞ �

where we have defined

σ := max
i

��

j

E[X2ij]� σ∞ := max
ij
�Xij�∞.

Proof. Let Xij = X̃ijE[X
2
ij]
1/2, so that X̃ij have unit variance. Then

E�X� ≤ (1 + ε)2σ + Cεσ∞
�
log n

for a suitable constant Cε by Corollary 4.1.10. On the other hand, a form of Tala-

grand’s concentration inequality [53, Theorem 6.10] yields

P[�X� ≥ E�X�+ t] ≤ e−t
2/cσ2

∞

for all t ≥ 0, where c is a universal constant. The proof is completed by combining

these bounds as in the proof of Corollary 4.1.11.

Corollary 4.1.13 should be compared with the matrix Bernstein inequality in [220],
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which reads as follows in our setting (we omit the explicit constants):

P[�X� ≥ t] ≤ ne−t
2/c�σ2+σ∞t).

While this result looks quite different at first sight than Corollary 4.1.13, the latter

yields strictly better tail behavior up to universal constants: indeed, note that

e−t
2/c2σ2

∞ ≤ e1−2t/cσ∞ ≤ 3e−2t
2/c�σ2+σ∞t)

using 2x − 1 ≤ x2. The discrepancy between these results is readily explained. In

our sharp bounds, the variance term σ only appears in the mean of �X� and not in

the fluctuations: the latter only depend on the uniform parameter σ∞ and do not

capture the variance.

Corollary 4.1.14. Let X be an n× n symmetric matrix whose entries Xij are inde-

pendent centered random variables. Then there exists for any 0 < ε ≤ 1/2 a universal

constant c̃ε such that for every t ≥ 0

P[�X� ≥ (1 + ε)2
√
2σ + t] ≤ ne−t

2/c̃εσ2
∞ �

where we have defined

σ := max
i

��

j

E[X2ij]� σ∞ := max
ij
�Xij�∞.

Unfortunately, this results in an additional factor
√
2 in the leading term, which

is suboptimal for Wigner matrices. We do not know whether it is possible, in general,

to improve the constant when the entries are not symmetrically distributed.
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4.1.4 Lower bounds

The main results of this section provide upper bounds on E�X�. However, a trivial

lower bound already suffices to establish the sharpness of our upper bounds in many

cases of interest, at least for Gaussian variables.

Lemma 4.1.15. In the setting of Theorem 4.1.1, we have

E�X� � σ + Emax
ij
|bijgij|.

Similarly, in the setting of Theorem 4.1.8

E�X� � σ1 + σ2 + Emax
ij
|bijgij|.

Proof. Let us prove the second inequality; the first inequality follows in a completely

analogous manner. As �X� ≥ maxij |Xij|, it is trivial that

E�X� ≥ Emax
ij
|Xij| = Emax

ij
|bijgij|.

On the other hand, as �X� ≥ maxi �Xei� ({ei} is the canonical basis in R
n),

E�X� ≥ max
i

E�Xei� � max
i

E[�Xei�
2]1/2 = σ2.

Here we used the estimate

E[�Xei�
2] = (E�Xei�)

2 +Var �Xei� � (E�Xei�)
2�

where Var �Xei� ≤ maxj b
2
ji � maxj E[bji|gji|]

2 ≤ (E�Xei�)
2 by the Gaussian Poincaré
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inequality [53, Theorem 3.20]. Analogously, we obtain

E�X� ≥ max
i

E�X∗ei� � σ1.

Averaging these three lower bounds yields the conclusion.

This simple bound shows that this section’s main results are sharp as long there

are enough large coefficients bij. This is the content of the following easy bound.

Corollary 4.1.16. In the setting of Theorem 4.1.1, suppose that

|{ij : |bij| ≥ cσ∗}| ≥ nα

for some constants c� α > 0. Then

E�X� � σ + σ∗
�
log n�

where the universal constant in the lower bound depends on c� α only. The analogous

result holds in the setting of Theorem 4.1.8.

Proof. Denote by I the set of indices in the statement of the corollary. Then

Emax
ij
|bijgij| ≥ Emax

ij∈I
|bijgij| ≥ cσ∗Emax

ij∈I
|gij| � σ∗

�
log |I| � σ∗

�
log n�

where we used a standard lower bound on the maximum of independent N(0� 1)

random variables. The proof is concluded by applying Lemma 4.1.15.

For example, it follows that this Section’s main results are sharp as soon as every

row of the matrix contains at least one large coefficient, that is, with magnitude

of the same order as σ∗. This is the case is many natural examples of interest,

and in these cases our results are optimal (up to the values of universal constants).
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Of course, it quite possible that our bound is sharp even when the assumption of

Corollary 4.1.16 fails: for example, in view of Lemma 4.1.15, our bound is sharp

whenever σ∗
√
log n � σ regardless of any other feature of the problem.

Remark 4.1.17. An intriguing observation that was made in [188] is that the trivial

lower bound E�X� ≥ Emaxi �Xei� appears to be surprisingly sharp: we do not know

of any example where the corresponding upper bound

E�X�
?

� Emax
i
�Xei�

fails. If such an inequality were to hold, the conclusion of Theorem 4.1.1 would

follow easily using Gaussian concentration and a simple union bound. Recently, partial

progress [225] was made towards understanding whether such an upper bound holds.

Remark 4.1.18. The conclusion of Corollary 4.1.16 relies heavily on the Gaussian

nature of the entries. When the distributions of the entries are bounded, for example,

it is possible that our bounds are no longer sharp. This issue will be discussed further

in Section 4.1.5 below in the context of Rademacher matrices.

4.1.5 Examples

Sparse random matrices

In the section, we consider the special case of Theorem 4.1.1 where the coefficients

bij can take the values zero or one only. This is in essence a sparse counterpart of

Wigner matrices in which a subset of the entries has been set to zero. This rather

general model covers many interesting random matrix ensembles, including the case of

random band matrices where bij = 1|i−j|≤k that has been of significant recent interest

[137, 213, 47].
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Let us fix a matrix (bij) of {0� 1}-valued coefficients. We immediately compute

σ2 = k� σ∗ = 1�

where k is the maximal number of nonzero entries in any row of the matrix of co-

efficients (bij). If we interpret (bij) as the adjacency matrix of a graph on n points,

then k is simply the maximal degree of this graph. The following conclusion follows

effortlessly from the results in this Section.

Corollary 4.1.19. Let X be the n × n symmetric random matrix with Xij = gijbij,

where {gij} are independent N(0� 1) variables and bij ∈ {0� 1}. Let k be the maximal

number of nonzero entries in a row of (bij). Then

E�X� �
√
k +

�
log n�

provided that every row of (bij) has at least one nonzero entry.

Rademacher matrices

We have seen that the results presented here provide sharp bounds in many cases on

the norm of matrices with independent Gaussian entries. While our upper bounds

continue to hold for subgaussian variables, this is not the case for the lower bounds

in Section 4.1.4, and in this case we cannot expect our results to be sharp at the

same level of generality. As a simple example, consider the case where X is the

diagonal matrix with i.i.d. entries on the diagonal. If the entries are Gaussian, then

�X� �
√
log n, so that Theorem 4.1.1 is sharp. If the entries are bounded, however,

then �X� � 1. On the other hand, the universality property of Wigner matrices

shows that Theorem 4.1.1 is sharp in this case even when adapted to bounded random

variables.

In view of these observations, it is natural to ask whether it is possible to obtain
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systematic improvement of this Section’s main results that captures the size of the

norm of random matrices with bounded entries. For concreteness, let us consider the

case of Rademacher matrices Xij = εijbij, where {εij} are independent Rademacher

(symmetric Bernoulli) random variables. In this setting, we can immediately obtain

a trivial but useful improvement.

Corollary 4.1.20. Let X be the n × n symmetric random matrix with Xij = εijbij,

where {εij} are independent Rademacher variables. Then

E�X� � (σ + σ∗
�
log n) ∧ �B��

where B := (|bij|) is the matrix of absolute values of the coefficients.

Proof. In view of Corollary 4.1.9, it suffices to show that E�X� ≤ �B�. Note, how-

ever, that this inequality even holds pointwise: indeed,

�X� = sup
v

�

ij

εijbijvivj ≤ sup
v

�

ij

|bijvivj| = �B��

where the supremum is taken over the unit ball in R
n.

Corollary 4.1.20 captures two reasons why a Rademacher matrix can have small

norm: either it behaves like a Gaussian matrix with small norm; or its norm is

uniformly bounded due to the boundedness of the matrix entries. This idea mirrors

the basic ingredients in the general theory of Bernoulli processes [216, Chapter 5].

While simple, Corollary 4.1.20 captures at least the Wigner and diagonal examples

considered above, albeit in a somewhat ad-hoc manner. We will presently show that

a less trivial result can be easily derived from Corollary 4.1.20 as well.

The norm of Rademacher matrices was first investigated in a general setting by

Seginer [199]. Using a delicate combinatorial method, he proves in this case that

E�X� � σ log1/4 n. The assumption of Rademacher entries is essential: that such
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a bound cannot hold in the Gaussian case is immediate from the diagonal matrix

example. Let us show that this result is an easy consequence of Corollary 4.1.20.

Corollary 4.1.21. Let X be the n × n symmetric random matrix with Xij = εijbij,

where {εij} are independent Rademacher variables. Then

E�X� � σ log1/4 n.

Proof. Fix u > 0. Let us split the matrix into two parts X = X+ + X−, where

X+ij = εijbij1|bij |>u and X−
ij = εijbij1|bij |≤u. For X−, we can estimate

E�X−� � σ + u
�
log n.

On the other hand, we estimate for X+ by the Gershgorin circle theorem

E�X+� ≤ �(|bij|1|bij |>u)� ≤ max
i

�

j

|bij|1|bij |>u ≤
σ2

u
.

We therefore obtain for any u > 0

E�X� � σ + u
�
log n+

σ2

u
.

The proof is completed by optimizing over u > 0.

Corollary 4.1.21 not only recovers Seginer’s result with a much simpler proof,

but also effectively explains why the mysterious term log1/4 n arises. More gener-

ally, the method of proof suggests how Corollary 4.1.20 can be used efficiently: we

should attempt to split the matrix X into two parts, such that one part is small by

Theorem 4.1.1 and the other part is small uniformly. This idea also arises in a fun-

damental manner in the general theory of Bernoulli processes [216]. Unfortunately,

it is generally not clear for a given matrix how to choose the best decomposition.
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Remark 4.1.22. In view of Corollary 4.1.19, one might hope that Corollary 4.1.20

(or a suitable adaptation of this bound) could yield sharp results in the general setting

of sparse random matrices. The situation for Rademacher matrices turns out to be

more delicate, however. To see this, let us consider two illuminating examples. In the

following, let k = �
√
log n� and assume for simplicity that n/k is integer.

First, consider the block-diagonal matrix X of the form

X =















X1

X2 0

·

0 ·

Xn/k















�

where each Xi is a k×k symmetric matrix with independent Rademacher entries. Such

matrices were considered by Seginer in [199], who shows by an elementary argument

that E�X� ∼
√
log n. Thus Theorem 4.1.1 already yields a sharp result (and, in

particular, the logarithmic term in Theorem 4.1.1 cannot be eliminated).

On the other hand, it was shown by Sodin [212] that if X is the Rademacher matrix

where the coefficient matrix B is chosen to be a realization of the adjacency matrix

of a random k-regular graph, then E�X� ∼
√
k ≤ log1/4 n with high probability. Thus

in this case E�X� ∼ σ, and it appears that the logarithmic term in Theorem 4.1.1 is

missing (evidently none of our bounds are sharp in this case).

Note, however, that in both these examples the parameters σ� σ∗� �B� are identical:

we have σ =
√
k, σ∗ = 1, and �B� = k (by the Perron-Frobenius theorem). In

particular, there is no hope that the norm of sparse Rademacher matrices can be

controlled using only the degree of the graph: the structure of the graph must come

into play. It is an interesting open problem to understand precisely what aspect of this

structure controls the norm of sparse Rademacher matrices. This question is closely
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connected to the study of random 2-lifts of graphs in combinatorics [49].

4.2 Random Laplacian matrices

The largest eigenvalue of a matrix is always larger or equal than its largest diagonal

entry. In this section (based on [29]), we show Theorem 4.2.1, which stats that for a

large class of random Laplacian matrices, this bound is essentially tight: the largest

eigenvalue is, up to lower order terms, often the size of the largest diagonal entry.

Besides being a simple tool to obtain precise estimates on the largest eigenvalue of a

large class of random Laplacian matrices, Theorem 4.2.1 played a crucial role in the

analysis of semidefinite programming–based algorithms carried out in Chapter 3.

We use the term Laplacian matrix to refer to symmetric matrices whose rows

and columns sum to zero. While oftentimes Laplacians are also thought of as being

positive semidefinite, the matrices we will treat will not, in general, satisfy that

property. Recall that given a symmetric matrix X ∈ R
n×n, we define the Laplacian

LX of X as

LX = DX −X�

where DX is the diagonal matrix whose diagonal entries are given by (DX)ii =
�n

j=1Xij. Note that these are precisely the symmetric matrices L for which L1 =

0. Laplacian matrices are particularly important in spectral graph theory [83] as the

spectrum of the graph Laplacian matrix is known to contain important information

about the graph (recall, for example Theorem 2.1.1), which has motivated its study

for random graphs [95, 82, 61].

This section is concerned with random Laplacian matrices LX where the entries

of the matrix X are independent centered (but not identically distributed) random

variables (so as to be able to use the machienary developped in Section 4.1). This

section’s main result is that, under mild and easily verifiable conditions, the largest
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eigenvalue of LX is, up to lower order terms, given by its largest diagonal entry. Our

results will be of nonasymptotic nature (we refer the interested reader to [228] for

a tutorial on nonasymptotic estimates in random matrix theory). As it was seen in

Chapter 3, the largest diagonal value tends to be a quantity whose interpretation is

intimately tied to the nature of the underlying problem.

We will illustrate the latter point further by turning to graph theory. It is well

known that the spectrum of the Laplacian of a graph dictates whether or not the

graph is connected. On the other hand, its diagonal is simply given by the degrees

of the nodes of the graph. A relation between the spectrum of the Laplacian and

its diagonal could then translate into a relation between degrees of nodes of a graph

and its connectivity. In fact, such a relation is known to exist: The phase transition

for connectivity of Erdős-Rényi graphs 2 coincides with the one for the existence of

isolated nodes. While it is true that any graph with an isolated node (a node with

degree zero) cannot be connected, the converse is far from true in general graphs,

rendering this phenomenon particularly interesting. Indeed, for Section 4.2.2 we will

use our main result to provide a simple and illustrative proof for this phenomenon.

4.2.1 Largest eigenvalue of Laplacian Matrices

We use this section to formulate precise versions of, and briefly discuss, the main

results of this section.

Theorem 4.2.1. [29]

Let L be an n×n symmetric random Laplacian matrix (i.e. satisfying L1 = 0) with

centered independent off-diagonal entries such that
�

j∈[n]\i EL
2
ij is equal for every i.

2The Erdős-Rényi model for random graphs will be discussed in more detail in Section 4.2.2.
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Define σ and σ∞ as

σ2 =
�

j∈[n]\i

EL2ij and σ2∞ = max
i�=j

�Lij�
2
∞ .

If there exists c > 0 such that

σ ≥ c (log n)
1
2 σ∞� (4.2)

then there exists c1, C1, β1, all positive and depending only on c, such that

λmax(L) ≤

�

1 +
C1

(log n)
1
2

�

max
i

Lii

with probability at least 1− c1n
−β1.

Even though we were not able to find a convincing application for which σ
σ∞

was

asymptotically growing but slower than
√
log n, we still include the theorem below

for the sake of completeness.

Theorem 4.2.2. [29]

Let L be an n×n symmetric random Laplacian matrix (i.e. satisfying L1 = 0) with

centered independent off-diagonal entries such that
�

j∈[n]\i EL
2
ij is equal for every i.

Define σ and σ∞ as

σ2 =
�

j∈[n]\i

EL2ij and σ2∞ = max
i�=j

�Lij�
2
∞ .

If there exist c and γ > 0 such that

σ ≥ c (log n)
1
4
+γ σ∞� (4.3)

then there exist C2, c2, � and β2, all positive and depending only on c and γ > 0, such
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that

λmax(L) ≤

�

1 +
C2

(log n)�

�

max
i

Lii�

with probability at least 1− c2 exp
�
− (log n)β2

�
.

Remark 4.2.3. In the theorems above, the condition that
�

j∈[n]\i EL
2
ij is equal for

every i, can be relaxed to the requirement that

c�σ2 ≤
�

j∈[n]\i

EL2ij ≤ σ2�

for all i. This requires only simple adaptations to the proofs of these theorems.

While we defer the proof of these theorems to Section 4.2.3, we briefly describe

its idea. Corollary 4.1.14 estimates that

�X� � σ + σ∞
�
log n�

where −X is the off-diagonal part of L. One the other hand, Lii =
�

j∈[n]\iXij

has variance σ2 and the Central Limit Theorem would suggest that Lii behave like

independent gaussians of variance σ2, which would mean that maxi Lii ∼ σ
√
log n

rendering the contribution of the off-diagonal entries (to the largest eigenvalue) neg-

ligible. However, several difficulties arise: the diagonal entries are not independent

(as each pair shares a summand) and one needs to make sure that the central limit

theorem behavior sets in (this is, in a way, ensured by requirements (4.2) and (4.3)).

The proofs in Section 4.2.3 make many needed adaptations to this argument to make

it rigorous.
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4.2.2 Connectivity of Erdős-Rényi graphs

While the usefullness of these Theorems has already been demonstrated in Chapter 3,

we now show how Theorem 4.2.1 can be used to provide a simple proof of the Erdős-

Rényi connectivity phase transition. Besides illustrating further the utility of this

result, it sheds light on an interesting connection between this phase transition and the

ones established in Chapter 3, suggesting they are manifestations of one underlying

phenomenon.

Recall that, for an integer n and an edge probability parameter 0 ≤ p ≤ 1, the

Erdős-Rényi graph model [101] G(n� p) is a random graph on n nodes where each one

of the
�
n
2

�
edges appears independently with probability p.

We are interested in understanding the probability that G, drawn according to

G(n� p), is a connected graph. We will restrict our attention to the setting p ≤ 1
2
. Let

L be the Laplacian of the random graph, given by D − A where A is its adjacency

matrix and D a diagonal matrix containing the degree of each node. Recall that G

connected is equivalent to λ2(L) > 03.

It is clear that if G has an isolated node then it cannot be connected. It is also

known that for there not to be isolated nodes one needs the average degree of each

node to be at least logarithmic [101]. For this reason we will focus on the regime

p =
ρ log n

n
�

for a constant ρ. It is easy to establish a phase transition on the degrees of the nodes

of graphs drawn from G(n� p).

Lemma 4.2.4. Let n be a positive integer, ρ a constant, and p = ρ logn
n
. Let G be a

random graph drawn from G(n� p), then for any constant Δ > 0:

1. If ρ > 1 then, with high probability, mini∈[n] deg(i) ≥
Δ√
logn

E deg(i).

3In fact, Theorem 2.1.1 is a refinement of this.
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2. If ρ < 1 then, with high probability, mini∈[n] deg(i) = 0. That is, G has at least

one isolated node, thus being disconnected.

Part (2) of the Lemma is a classical result [101], a particularly simple proof of it

proceeds by applying the second moment method to the number of isolated nodes in

G. For the sake of brevity we will skip those details, and focus on part (1). The main

thing to note in part (1) of Lemma 4.2.4 is that the lower bound on minimum degree

is asymptotically smaller than the average degree E deg(i).

Proof. [of part (1) of Lemma 4.2.4]

Let p = ρ logn
n

and i denote a node of the graph, note that E deg(i) = n−1
n

ρ log n.

We use Chernoff bound (see, for example, Lemma 2.3.3 in [99]) to establish, for any

0 < t < 1,

P [deg(i) < tE deg(i)] ≤

�
exp(−(1− t))

tt

�E deg�i)

=

�
exp(−(1− t))

tt

�n−1
n

ρ logn

= exp

�

− [1− t− t log(1/t)]
n− 1

n
ρ log n

�

.

Taking t = Δ√
logn

gives, for n large enough (so that t ≤ 1), that the probability

that deg(i) < Δ√
logn

E deg(i) is at most

exp

�

−

�

1−
Δ

√
log n

−
Δ

√
log n

log

�√
log n

Δ

��
n− 1

n
ρ log n

�

�

which is easily seen to be exp
�
−ρ log n+O(

√
log n log log n)

�
. A simple union bound

over the n vertices of G gives

P

�

min
i∈[n]

deg(i) <
Δ

√
log n

E deg(i)

�

≤ exp
�
−(ρ− 1) log n+O(

�
log n log log n)

�
.
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Using Theorem 4.2.1 we will show that, with high probability, as long as every

node in G is at least Δ√
logn

of the average degree, for a suitable Δ, then G is connected.

This is made precise in the following Lemma.

Lemma 4.2.5. Let n ≥ 2 be an integer and ε > 0. Suppose that ε logn
n
≤ p ≤ 1

2
and G

a random graph drawn from G(n� p). There exists a constant Δ such that, with high

probability, the following holds:

If

min
i∈[n]

deg(i) ≥
Δ

√
log n

E deg(i)�

then G is a connected graph (note that the right hand side does not depend on i).

Before proving this Lemma, we note that Lemmas 4.2.4 and 4.2.5 immediately

imply the well known phase transition phenomenon.

Theorem 4.2.6. Let n be a positive integer and p = ρ logn
n
.

1. If ρ > 1 then, with high probability, a random graph drawn from G(n� p) is

connected.

2. If ρ < 1 then, with high probability, a random graph drawn from G(n� p) has at

least one isolated node, thus being disconnected.

While this phase transition is well understood, we find our proof through Lem-

mas 4.2.4 and 4.2.5 enlightening, as it provides a simple explanation of why the phase

transition for disappearance of isolated nodes coincides with the one for connectivity.

Moreover, it also emphasizes a connection with the optimality of the semidefinite

relaxations in both Z2 Synchronization and the Stochastic Block Model that we es-

tablished in Chatper 3.

Proof. [of Lemma 4.2.5]
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Let L be the graph Laplacian of G. Note that E(L) = npI − p11T , which means

that

L = npI − p11T − [−L+ E(L)]

Since L1 = 0, it is easy to see that G is connected if and only if

λmax [−L+ E(L)] < np

We proceed by using Theorem 4.2.1 for

L = −L+ E(L).

The hypotheses of the Theorem are satisfied as the off-diagonal entries of L are

independent and

�

j∈[n]\i

EL2ij = (n− 1)p(1− p) ≥
np(1− p)

2
≥

ε

2
(1− p)2 log n =

ε

2
log nmax

i�=j
�Lij�

2
∞ .

This guarantees that there exists a constant C1 such that, with high probability,

λmax [−L+ E(L)] ≤

�

1 +
C1√
log n

�

max
i∈[n]

[− deg(i) + (n− 1)p] (4.4)

where deg(i) = Lii is the degree of node i. Equivalently,

λmax [−L+ E(L)] ≤ np+

�

1 +
C1√
log n

��

−min
i∈[n]

deg(i) + (n− 1)p

�

− np

This means that, as long as (4.4) holds, then

�

1 +
C1√
log n

��

−min
i∈[n]

deg(i) + (n− 1)p

�

− np < 0

implies the connectivity of G. Straighforward manipulations show that this conditions
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is equivalent to

min
i

deg(i) > np
C1√

log n+ C1
− p�

which is implied by

min
i

deg(i) ≥ np
C1√
log n

. (4.5)

The lemma follows by taking Δ = 2C1.

4.2.3 Proof of Theorems 4.2.1 and 4.2.2

We prove Theorems 4.2.1 and 4.2.2 through a few Lemmas. Let us define X as the

non-diagonal part of −L and y ∈ R
n as y = diag (DX), meaning that y = diag(L).

Then L = DX −X. We will separately lower bound maxi yi and upper bound �X�.

The upper bound on �X� is obtained directly by Corollary 4.1.14. Before continuing

with the proof let us recall the main idea: Corollary 4.1.14 gives that, with high

probability,

�X� � σ + σ∞
�
log n�

where X is the off-diagonal part of −L. One the other hand, Lii =
�

j∈[n]\iXij has

variance σ2. The Central Limit Theorem would thus suggest that Lii behave like a

Gaussian of variance σ2. Since different sums only share a single summand they are

“almost” independent which by itself would suggest that maxi Lii ∼ σ
√
log n, which

would imply the theorems. The proof that follows makes this argument precise.

We turn our attention to a lower bound on maxi yi. Recall that yi =
�n

j=1Xij.

More specifically, we are looking for an upper bound on

P

�
max
i

yi < t
�
�

138



for a suitable value of t. We note that, if the yi’s were independent then this could

be easily done via lower bounds on the upper tail of each yi. Furthermore, if the

random variable yi were gaussian, obtaining such lower bounds would be trivial.

Unfortunately, the random variables in question are neither independent nor gaussian,

forcing major adaptations to this argument. In fact, we will actually start by lower

bounding

Emax
i∈[n]

yi.

We will obtain such a bound via a comparison (using Jensen’s inequality) with

the maximum among certain independent random variables.

Lemma 4.2.7. Let I and J be disjoint subsets of [n]. For i ∈ I define zi as

zi =
�

j∈J

Xij. (4.6)

Then

Emax
i∈[n]

yi ≥ Emax
i∈I

zi.

Proof.

Emax
i∈[n]

yi = Emax
i∈[n]

n�

j=1

Xij ≥ Emax
i∈I

n�

j=1

Xij.

Since I ∩ J = ∅, {Xij}i∈I�j∈J isindependentfrom{Xij}i∈I�j /∈J , and so Jensen’s

inequality gives

Emax
i∈I

n�

j=1

Xij ≥ Emax
i∈I




�

j∈J

Xij +
�

j /∈J

EXij



 = Emax
i∈I

�

j∈J

Xij = Emax
i∈I

zi.

The following Lemma guarantees the existence of sets I and J with desired prop-

erties.
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Lemma 4.2.8. There exist I and J disjoint subsets of [n] such that

|I| ≥
1

8
n�

and, for every i ∈ I,

Ez2i ≥
1

8
σ2�

where zi is defined, as in (4.6), to be zi =
�

j∈J Xij.

Proof. Given the matrix X, we start by constructing a weighted graph on n nodes

such that wij = EX2ij (note that wii = 0, for al i). Let (S� Sc) be a partition of the

vertices of this graph, with |S| ≥ n
2
, that maximizes the cut

�

i∈S� j∈Sc

wij.

It is easy to see that the maximum cut needs to be at least half of the total edge

weights4. This readily implies

�

i∈S� j∈Sc

wij ≥
1

2

�

i<j

wij =
1

4

�

i∈[n]

�

j∈[n]

wij =
1

4

�

i∈[n]

�

j∈[n]

EX2ij =
1

4
nσ2.

Consider zi, for i ∈ S, defined as

zi =
�

j∈Sc

Xij.

We proceed by claiming that the set I ⊂ S of indices i ∈ S for which

Ez2i ≥
1

8
σ2�

4One can build such a cut by consecutively selecting memberships for each node in a greedy
fashion as to maximize the number of incident edges cut, see [197].
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satisfies |I| ≥ 1
8
n. Thus, taking J = Sc would establish the Lemma.

To justify the claim, note that

�

i∈S

Ez2i =
�

i∈S� j∈Sc

wij ≥
1

4
nσ2�

and

�

i∈S

Ez2i ≤ |I|max
i∈S

Ez2i + (|S| − |I|)
1

8
σ2 ≤

�

|I|+
1

8
|S|

�

σ2 ≤

�

|I|+
1

8
n

�

σ2�

implying that
�
|I|+ 1

8
n
�
σ2 ≥ 1

4
nσ2.

We now proceed by obtaining a lower bound for Emaxi∈I zi, where I and zi

are defined to satisfy the conditions in Lemma 4.2.8. We note that at this point

the random variables zi are independent and each is a sum of independent random

variables. We use Lemma 8.1 of [143] (for a fixed constant γ = 1) to obtain a lower

bound on the upper tail of each zi.

Lemma 4.2.9. [Lemma 8.1 of [143]] In the setting described above, there exist two

universal positive constants K and ε such that for every t satisfying t ≥ K σ
8
and

t ≤ ε σ2
√
8σ∞

, we have (for every i ∈ I separately)

P [zi > t] ≥ exp

�

−8
t2

σ2

�

.

We are now ready to establish a lower bound on Emaxi∈[n] yi.

Lemma 4.2.10. In the setting described above, there exist two universal positive

constants K and ε such that for every t satisfying t ≥ K σ
8
and t ≤ ε σ2

√
8σ∞

, we have

Emax
i∈[n]

yi ≥ t− (t+ nσ∞) exp

�

−
n

exp
�
8t2

σ2

�

�
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Proof. Let K and ε be the universal constants in Lemma 4.2.9 and t such that K σ
8
≤

t ≤ ε σ2
√
8σ∞

. Lemma 4.2.9 guarantees that, for any i ∈ I,

P [zi > t] ≥ exp

�

−8
t2

σ2

�

.

Due to the independence of the random variables zi, we have

P

�

max
i∈I

zi ≤ t

�

=
�

i∈I

P [zi ≤ t] =
�

i∈I

(1− P [zi > t])

≤

�

1−
1

exp
�
8 t2

σ2

�

�|I|

≤

�

1−
1

exp
�
8 t2

σ2

�

�n/8

≤ exp

�

−
n/8

exp
�
8 t2

σ2

�

�

where the second to last inequality follows from the fact that |I| ≥ 1
8
n and the last

from the fact that
�
1− 1

x

�x
≤ exp(−1) for x > 1.

Since �Xij�∞ ≤ σ∞ we have that, almost surely, zi ≥ −(n− 1)σ∞. Thus,

Emax
i∈[n]

yi ≥ Emax
i∈I

zi ≥ t

�

1− exp

�

−
n/8

exp
�
8 t2

σ2

�

��

− (n− 1)σ∞ exp

�

−
n/8

exp
�
8 t2

σ2

�

�

�

which establishes the Lemma.

The last ingredient we need is a concentration result to control the lower tail of

maxi∈[n] yi by controling its fluctuations around Emaxi∈[n] yi. We make use of a result

in [159].

Lemma 4.2.11. In the setting described above, define v as

v = E

�

max
i∈[n]

n�

j=1

�
Xij −X �

ij

�2
�

� (4.7)

where X � is an independent identically distributed copy of X.
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Then, for any x > 0:

P

�

max
i∈[n]

yi ≤ E

�

max
i∈[n]

yi

�

− x

�

≤ exp

�

−
x2

7(v + σ∞x)

�

.

Proof. This Lemma is a direct consequence of Theorem 12 in [159] by taking the

independent random variables to be Y�i�j) such that Y�i�j)�t = Xij if t = i and Y�i�j)�t = 0

otherwise. We note that there is a small typo (in the definition of the quantity v) in

the Theorem as stated in [159].

At this point we need an upper bound on the quantity v defined in (4.7). This is

the purpose of the following Lemma.

Lemma 4.2.12. In the setting above, let X � is an independent identically distributed

copy of X, then

E

�

max
i∈[n]

n�

j=1

�
Xij −X �

ij

�2
�

≤ 9σ2 + 90σ2∞ log n.

Proof. We apply a Rosenthal-type inequality from Theorem 8 of [52], for each i ∈ [n]

separately, and get, for any integer p and 0 < δ < 1,

�
�
�
�
�

n�

j=1

�
Xij −X �

ij

�2
�
�
�
�
�
p

≤ (1 + δ)E

�
n�

j=1

�
Xij −X �

ij

�2
�

+
2p

δ

�
�
�
�max
j∈[n]

�
Xij −X �

ij

�2
�
�
�
�
p

≤ 2(1 + δ)σ2 +
8p

δ
σ2∞. (4.8)

It is easy to see that

E

�

max
i∈[n]

n�

j=1

�
Xij −X �

ij

�2
�

≤ n
1
p

�
�
�
�
�

n�

j=1

�
Xij −X �

ij

�2
�
�
�
�
�
p

.
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Thus, taking p = �α log n� for some α > 0 gives

E

�

max
i∈[n]

n�

j=1

�
Xij −X �

ij

�2
�

≤ n
1

�α logn�2(1 + δ)σ2 + n
1

�α logn�
8�α log n�

δ
σ2∞

≤ e
1
α2(1 + δ)σ2 + e

1
α
8�α log n�

δ
σ2∞.

Taking, for example, δ = 0.5 and α = 1 gives

E

�

max
i∈[n]

n�

j=1

�
Xij −X �

ij

�2
�

≤ 9σ2 + 90σ2∞ log n.

We now collect all our bounds in a master Lemma.

Lemma 4.2.13. In the setting described above, there exist universal constants K > 0

and ε > 0 such that, for any t satisfying K σ
8
≤ t ≤ ε σ2

√
8σ∞

, we have

P

�

max
i∈[n]

yi ≤
t

2
− (t+ nσ∞) exp

�
−n

exp
�
8t2

σ2

�

��

≤ exp

�
−t2/104

σ2 + σ2∞ log n+ σ∞t

�

Proof. Let t > 0 satisfy the hypothesis of the Lemma, and x > 0.

Recall that Lemma 4.2.11 gives

P

�

max
i∈[n]

yi ≤ E

�

max
i∈[n]

yi

�

− x

�

≤ exp

�

−
x2

7(v + σ∞x)

�

.

On the other hand, Lemma 4.2.10 and 4.2.12 control, respectively, E
�
maxi∈[n] yi

�
and

v, giving

E

�

max
i∈[n]

yi

�

≥ t− (t+ nσ∞) exp

�

−
n

exp
�
8t2

σ2

�

�

�

and
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v ≤ 9σ2 + 90σ2∞ log n.

Combining all these bounds,

P

�

max
i∈[n]

yi ≤ t− (t+ nσ∞) exp

�

−
n

exp
�
8t2

σ2

�

�

− x

�

≤ exp

�

−
x2

7(9σ2 + 90σ2∞ log n+ σ∞x)

�

.

Taking x = t/2 establishs the Lemma.

At this point, the proofs of Theorems 4.2.1 and 4.2.2 will consist essentially of

applying Lemma 4.2.13 for appropriate values of t.

Proof. [of Theorem 4.2.1]

Let β > 0 be a constant to be defined later. Taking t = βσ
√
log n in Lemma 4.2.13

gives that, in the setting described above,

P

�

max
i∈[n]

yi ≤
β

2
σ
�
log n−

�
βσ

�
log n+ nσ∞

�
exp

�
−n1−8β

2
��

≤ exp

�
−β2σ2 log n/104

σ2 + σ2∞ log n+ σ∞(βσ
√
log n)

�

= exp

�
−β2 log n/104

1 +
�
σ∞
σ

�2
log n+ σ∞

σ
β
√
log n

�

= n
−

�
β2/104

1+�σ∞σ )
2
logn+σ∞

σ β
√
logn

�

�

provided that K σ
8
≤ βσ

√
log n ≤ ε σ2

√
8σ∞

, where K and ε are the universal constants

in Lemma 4.2.13.

We start by noting that, if 0 < β < 1√
8
independent of n, then, for n large enough
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(not depending on σ or σ∞),

�
βσ

�
log n+ nσ∞

�
exp

�
−n1−8β

2
�
≤

β

6
σ
�
log n.

Thus, provided that K
8
√
logn

≤ β ≤ min
�
ε σ√

8 lognσ∞
� 1
3

�
,

P

�

max
i∈[n]

yi ≤
β

3
σ
�
log n

�

≤ n
−

�
β2/104

1+�σ∞σ )
2
logn+σ∞

σ β
√

logn

�

.

Let c be the constant in the hypothesis of the theorem, then σ > c
√
log nσ∞.

Let β = min
�

ε c√
8
� 1
3

�
. Clearly, for n large enough,

K

8
√
log n

≤ min

�
ε c
√
8
�
1

3

�

≤ min

�

ε
σ

√
8 log nσ∞

�
1

3

�

�

and

P

�

max
i∈[n]

yi ≤ min

�
ε c

6
√
2
�
1

9

�

σ
�
log n

�

≤ n
−

�

 10−4

max{ 8
ε2 c2

�9}+max{ 8
ε2

�9c2}+max

�√
8
ε �3c

�





.

This implies that there exist constants c�1� C
�
1 and β�1 such that

P

�

max
i∈[n]

Lii ≤ C �
1σ
�
log n

�

≤ c�1n
−β�

1 .

Recall that Corollary 4.1.14 ensures that, for a universal constant c�, and for every

u ≥ 0, by taking t = uσ,

P[�X� > (3 + u)σ] ≤ ne−u
2σ2/c�σ2

∞ . (4.9)

It is easy to see that ne−u
2σ2/c�σ2

∞ ≤ ne−u
2�logn)c/c� = n1−u

2c/c� . Taking u =
�
2c�/c
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gives

P
�
�X� >

�
3 +

�
2c�/c

�
σ
�
≤ n−1.

This means that, with probability at least 1− c�1n
−β�

1 − n−1 we have

�X� <
�
3 +

�
2c�/c

�
σ ≤

3 +
�
2c�/c

C �
1

√
log n

max
i∈[n]

Lii�

which, together with the fact that λmax(L) ≤ �X� + maxi∈[n] Lii, establishes the

theorem.

Proof. [of Theorem 4.2.2]

If σ >
√
log nσ∞ then the result follows immediately from Theorem 4.2.1. For

that reason we restrict our attention to the instances with σ ≤
√
log nσ∞. We start

by setting

t = 2σ

�
σ

σ∞

� 1
2

(log n)
1
8 . (4.10)

Recall that there exist c and γ > 0 such that σ ≥ c (log n)
1
4
+γ σ∞� or equivalently

σ

σ∞
≥ c (log n)

1
4
+γ .

This guarantees that, for n large enough (not depending on σ or σ∞), the condi-

tions in Lemma 4.2.13 are satisfied. In fact,

Kσ

8
≤ 2σ

√
c (log n)

1
4
+ γ

2 ≤ 2σ

�
σ

σ∞
(log n)

1
8 ≤

ε σ
√
8

�
σ

σ∞

√
c (log n)

1
8
+ γ

2 ≤
ε σ2
√
8σ∞

.

Hence, Lemma 4.2.13 gives, for t as in (4.10),

P

�

max
i∈[n]

yi ≤
t

2
− (t+ nσ∞) exp

�
−n

exp
�
8t2

σ2

�

��

≤ exp

�
−t2/104

σ2 + σ2∞ log n+ σ∞t

�

.
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We proceed by noting that, for t = 2σ
�

σ
σ∞

� 1
2
(log n)

1
8 and n large enough (not

depending on σ or σ∞),

(t+ nσ∞) exp

�
−n

exp
�
8t2

σ2

�

�

≤
t

6
.

In fact, since σ ≤ σ∞
√
log n,

exp

�









−n

exp

�


8

�

2σ( σ
σ∞

)
1/2
�logn)1/8

�2

σ2















≤ exp

�
−n

exp (32(log n)3/4)

�

�

decreases faster than any polynomial.

Hence, since t ≥ 2σ
√
c (log n)

1
4
+ γ

2 ,

P

�

max
i∈[n]

yi ≤
2

3
σ
√
c (log n)

1
4
+ γ

2

�

≤ exp

�






−

�

2σ
�

σ
σ∞

� 1
2
(log n)

1
8

�2
/104

σ2 + σ2∞ log n+ σ∞2σ
�

σ
σ∞

� 1
2
(log n)

1
8








.

We proceed by noting that

�

2σ
�

σ
σ∞

� 1
2
(log n)

1
8

�2
/104

σ2 + σ2∞ log n+ σ∞2σ
�

σ
σ∞

� 1
2
(log n)

1
8

=
4(log n)

1
4/104

σ∞
σ

+
�
σ∞
σ

�3
log n+ 2

�
σ∞
σ

� 3
2 (log n)

1
8

Since σ∞
σ
≤ 1

c
(log n)−

1
4
−γ , we have that, for n large enough and a constant c��

P

�

max
i∈[n]

yi ≤
2

3
σ
√
c (log n)

1
4
+ γ

2

�

≤ exp (−c��(log n)γ) .

At this point we upper bound �X�, as in the proof of Theorem 4.2.1. Recall, as
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in (4.9), for any u > 0,

P[�X� > (3 + u)σ] ≤ ne
− u2σ2

c�σ2
∞ .

Hence,

P[�X� > (3 + u)σ] ≤ ne−
u2c2

c�
�log�n))

1
2+2γ

.

Taking u = (log n)
1
4 gives

P[�X� >
�
3 + (log n)

1
4

�
σ] ≤ e−

c2

c�
�log�n))2γ .

The rest of the proof follows the final arguments in the proof of Theorem 4.2.1.
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Chapter 5

Beyond exact recovery: Tightness

of relaxations

5.1 Tightness for angular synchronization

In Chapter 3 we established exact recovery guarantees for semidefinite relaxations for

a number of synchronization-type problems over Z2. Several guarantees of this type

exist in different settings, to many a few: compressed sensing [65, 96, 223], matrix

completion [70] and inverse problems [74, 20]. Usually this type of guarantees is

similar in flavor to the ones derived in Chapter 3: there is a planted, or intended,

solution and the random distribution on the input usually corresponds to noisy or

otherwise corrupted measurements of the planted solution. The guarantees are then

obtained by showing that the planted solution is, with high probability, the solution

to a tractable relaxation.

However, unfortunately, there are many problems for which exact recovery is

unrealistic. Either due to the amount of noise in the measurements or due to the

topology of the space of solutions, one cannot expect to recover the original planted

solution, even if armed with unlimited computational resources. For concreteness let
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us restrict the description to synchronization-type problems. Recall (Section 1.3.3)

that the semidefinite programming-based relaxations are tractable relaxations for the

MLE. If the MLE itself turns out not to correspond to the planted solution, than

so cannot the relaxation, rendering the tools used in the examples above (and in

Chapter 3) inadequate.

On the other hand, despite not coinciding with the planted solution, the MLE

still enjoys many desirable statistical properties and our goal is still to compute it (al-

though being, in general, non-tractable). Fortunately, it seems that in many instances

these semidefinite relaxations tend to be tight (i.e. their solution coincides with the

MLE) even in this setting, allowing us to compute the MLE efficiently [37, 30]. As,

in many of these problems, the semidefinite relaxation being tight is equivalent to

its optimal solution having the same rank as the planted solution, we refer to this

remarkable phenomenon as rank recovery ; it is the subject of this Chapter, which is

mostly based on [30].

This behavior has been observed in many instances, including the multireference

alignment problem by [32] (discussed in Section 6.1), the global registration prob-

lem [76], and camera motion estimation by [177, 178], to name a few. Yet, it seems

there to be no theoretical understanding of this rank recovery phenomenon. We note

that there has been work on understanding the rank of solutions of random SDPs

by [19] but the results hold only under specific distributions and do not apply to

these problems. It appears that the difficulty of analyzing rank recovery lies in the

fact that, unlike in exact recovery, we cannot identify the exact form of the MLE,

rendering dual certificate arguments very difficult to carry out.1

In this Section we will restrict our attention to the problem of Angular Syn-

chronization (Section 1.2.1) and investigate the rank recovery phenomenon for this

problems. The main contribution is a proof that, even though the angular synchro-

1In Section 7.2.1 we will discuss future directions of research related to these observations.
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nization problem is NP-hard [240], in the face of Gaussian noise, the semidefinite

relaxation for its MLE is indeed often tight, meaning that the MLE can be computed

(and certified) in polynomial time. This remains true even for entry-wise noise levels

growing to infinity as the size of the problem (the number of phases) grows to infinity.

Computing the MLE for angular synchronization is equivalent to solving a little

Grothendieck problem over the complex numbers, similar to the ones described in

Section 2.3. Our results show the surprising phenomenon that, in a randomized

version of the Grothendieck problem, where there is a planted signal, there is no gap

between the SDP relaxation and the original problem, with high probability.

The proposed result is qualitatively different from most tightness results available

in the literature. Typical results establish either exact recovery of a planted signal [1,

130] (mostly in discrete settings), or exact recovery in the absence of noise, joint

with stable (but not necessarily optimal) recovery when noise is present [67, 141, 66,

233, 93]. In contrast, here, we show optimal recovery even though exact recovery is

not possible. In particular, Demanet and Jugnon showed stable recovery for angular

synchronization via semidefinite programming, in an adversarial noise setting [93]. We

complement that analysis by showing tightness in a non-adversarial setting, meaning

that the actual MLE is computed.

Similarly to the exact recovery results established in Chapter 3, the proof relies

on verifying that a certain candidate dual certificate is valid with high probability.

The main difficulty comes from the fact that the dual certificate depends of the MLE,

which does not coincide with the planted signal, and is a nontrivial function of the

noise. We use necessary optimality conditions of the hard problem to both obtain an

explicit expression for the candidate dual certificate, and to partly characterize the

point whose optimality we aim to establish. This seems to be required since the MLE

is not known in closed form.

In the context of sparse recovery, a result with similar flavor is support recovery
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guarantee [223], where the support of the estimated signal is shown to be contained in

the support of the original signal. Due to the noise, exact recovery is also impossible

in this setting. Other examples are recovery guarantee in the context of latent variable

selection in graphical models [73] and sparse Principal Component Analysis [21].

Besides the relevance of angular synchronization in and of its own, we are confident

this new insight will help uncover similar results in other applications where it has

been observed that semidefinite relaxations can be tight even when the ground truth

cannot be recovered, including severa synchronization-type problems [37].

The crux of our argument is to show that the SDP, with random data following

a given distribution, admits a unique rank-one solution with high probability. We

mention in passing that there are many other, deterministic results in the litera-

ture pertaining to the rank of solutions of SDP’s. For example, Barvinok [45] and

Pataki [179] both show that, in general, an SDP with only equality constraints ad-

mits a solution of rank at most (on the order of) the square root of the number of

constraints. Furthermore, Sagnol [195] shows that under some conditions (that are

not fulfilled in our case), certain SDP’s related to packing problems always admit a

rank-one solution. Sojoudi and Lavaei [214] study a class of SDP’s on graphs which

is related to ours and for which, under certain strong conditions on the topology of

the graphs, the SDP’s admit rank-one solutions—see also applications to power flow

optimization [151].

5.1.1 The Angular Synchronization problem

We focus on the problem of angular synchronization [202, 41] presented in Sec-

tion 1.2.1. Let us recall the setting: one wishes to estimate a collection of n phases

(n ≥ 2) based on measurements of pairwise phase differences. We will restrict our

analysis to the case where a measurement is available for every pair of nodes. More

precisely, we let z ∈ �
n be an unknown, complex vector with unit modulus entries,
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|z1| = · · · = |zn| = 1, and we consider measurements of the form Cij = zizj+εij, where

zj denotes the complex conjugate of zj and εij ∈ � is noise affecting the measurement.

By symmetry, we define Cji = Cij and Cii = 1, so that the matrix C ∈ �
n×n whose

entries are given by the Cij’s is a Hermitian matrix. Further letting the noise εij be

i.i.d. (complex) Gaussian variables for i < j, it follows directly that an MLE for the

vector z is any vector of phases x ∈ �
n minimizing

�
i�j |Cijxj − xi|

2. Equivalently,

an MLE is a solution of the following quadratically constrained quadratic program

(sometimes called the complex constant-modulus QP [153, Table 2] in the optimiza-

tion literature, it also corresponds to a complex valued version of the Grothendieck

problem treated in Section 2.3):

max
x∈�n

x∗Cx� subject to |x1| = · · · = |xn| = 1� (5.1)

where x∗ denotes the conjugate transpose of x. Of course, this problem can only

be solved up to a global phase, since only relative information is available. Indeed,

given any solution x, all vectors of the form xeiθ are equivalent solutions, for arbitrary

phase θ.

Similarly to the real case studied extensively in Section 2.3 and Chapter 3, solv-

ing (5.1) is, in general, an NP-hard problem [240, Prop. 3.5] and so we will consider a

tractable semidefinite programming-based relaxation [240, 209, 153]. For any admis-

sible x, the Hermitian matrix X = xx∗ ∈ �
n×n is Hermitian positive semidefinite, has

unit diagonal entries and is of rank one. Conversely, any such X may be written in

the form X = xx∗ such that x is admissible for (5.1). In this case, the cost function

can be rewritten in linear form: x∗Cx = Tr (x∗Cx) = Tr (CX). Dropping the rank

constraint then yields the relaxation we set out to study:

max
X∈�n�n

Tr (CX) � subject to Xii = 1� ∀i and X � 0� (5.2)
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The techniques described in Section 2.3 can be easily adapted to this setting [209,

36, 115] asserting that the solution of (5.2) can be rounded to an approximate solu-

tion of (5.1), with a guaranteed approximation ratio.. But even better, when (5.2)

admits an optimal solution X of rank one, then no rounding is necessary: the lead-

ing eigenvector x of X = xx∗ is a global optimum of (5.1), meaning we have solved

the original problem exactly. Elucidating when the semidefinite program admits a

solution of rank one, i.e., when the relaxation is tight, is the focus of the sequel.

As was mentioned earlier, in the presence of even the slightest noise, one cannot

reasonably expect the true signal z to be an optimal solution of (5.1) anymore (this

can be formalized using Cramér-Rao bounds [55]). Nevertheless, we set out to show

that (under some assumptions on the noise) solutions of (5.1) are close to z and they

can be computed via (5.2).

The proof follows, in spirit, that of the real case carried out in Section 3.1.1 but

requires more sophisticated arguments because the solution of (5.1) is not known

explicitly anymore. One effect of this is that the candidate dual certificate Q will

itself depend on the unknown solution of (5.1). With that in mind, the proof of the

upcoming main lemma of this section (Lemma 5.1.5) follows this reasoning:

1. For small enough noise levels σ, any optimal solution x of (5.1) is close to the

sought signal z (Lemmas 5.1.7 and 5.1.8).

2. Solutions x are, a fortiori, local optimizers of (5.1), and hence satisfy first-

order necessary optimality conditions. These take up the form Qx = 0, where

Q = �{ddiag(Cxx∗)}−C depends smoothly on x (see (5.9)). Note that Q is a

function of x, the MLE (which is not explicitly known).

3. Remarkably, this Hermitian matrix Q can be used as a dual certificate for

solutions of (5.2). Indeed, X = xx∗ is a solution of (5.2) if and only if Qx = 0

and Q is positive semidefinite—these are the Karush-Kuhn-Tucker conditions
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Figure 5.1: Exact recovery of the phases z ∈ {eiθ : θ ∈ R}n from the pairwise relative
phase measurements zz∗ + σW is hopeless as soon as σ > 0 [55]. Computing a
maximum likelihood estimator (MLE) for z is still interesting. In particular, below
the red (bottom) line, with high probability, the MLE is closer to z than the estimator
with maximum error (Lemma 5.1.7). Computing the MLE is hard in general, but
solving the semidefinite relaxation (5.2) is easy. When (5.2) has a rank-one solution,
that solution coincides with the MLE. This figure shows, empirically, how frequently
the (5.2) admits a unique rank-one solution: for each pair (n� σ), 100 realizations of
the noise are generated independently and thightness is checked. The frequency of
success is coded by intensity (bright for 100% success, dark for 0% success). (5.2) is
solved using a Riemannian optimization toolbox [54]. The (5.2) appears to be tight
for remarkably large levels of noise. Theorem 5.1.2 partly explains this phenomenon,
by showing that σ can indeed grow unbounded while retaining rank recovery, albeit
not at the rate witnessed here. We further note that, above the blue (top) line, no
unbiased estimator for z performs better than a random guess [55].
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(KKT). Furthermore, that solution is unique if rank(Q) = n− 1 (Lemmas 5.1.9

and 5.1.10). Thus, it only remains to study the eigenvalues of Q.

4. In the absence of noise, Q is a Laplacian for a complete graph with unit weights

(up to a unitary transformation), so that its eigenvalues are 0 with multiplicity

1 and n with multiplicity n − 1. Then, X = zz∗ is always the unique solution

of (5.2).

5. Adding small noise, because of the first point, the solution x will move only by

a small amount, and hence so will Q. Thus, the large eigenvalues should be

controllable into remaining positive (Section 5.1.3).

6. The crucial fact follows: because of the way Q is constructed (using first-order

optimality conditions), the zero eigenvalue is “pinned down” (as long as x is a

local optimum of (5.1)). Indeed, both x and Q change as a result of adding

noise, but the property Qx = 0 remains valid. Thus, there is no risk that the

zero eigenvalue from the noiseless scenario would become negative when noise

is added.

Following this road map, most of the work in the proof below consists in bounding

how far away x can be from z (as a function of the noise level and structure) and in

using that to control the large eigenvalues of Q.

Remark 5.1.1 (The role of smoothness). The third point in the road map, namely the

special role of Q, merits further comment. This way of identifying the dual certificate

already appears explicitly in Journée et al. [134], who considered a different family

of real, semidefinite programs which also admit a smooth geometry when the rank is

constrained.

In essence, KKT conditions capture the idea that, at a (local) optimizer, there is

no escape direction that—up to first order—both preserves feasibility and improves

157



the objective function. The KKT conditions for (5.2) take up the classical form “if

X is optimal, then there exists a dual certificate Q which satisfies such and such

conditions.” For the purpose of certifying a solution analytically, this is impractical,

because there is no explicit formula stating which Q to verify. Fortunately, (5.2) is

nondegenerate [14] (meaning, roughly, that its underlying geometry is smooth). This

leads to uniqueness of dual certificates, and hence suggests there may be an analytical

expression for the dual candidate.

The convex problem (5.2) is a relaxation of (5.1) (up to the global phase). Hence,

the KKT conditions for (5.2) at a rank-one solution xx∗ are the KKT conditions

for (5.1) at x plus additional conditions: the latter ensure none of the new di-

rections are improving directions either. Because (5.1) is a smooth problem, the

KKT conditions for (5.1) are explicit: if x is a (local) optimizer of (5.1), then

grad g(x) = −2Q(x)x = 0 (where g(x) = x∗Cx and grad g(x) is its Riemannian

gradient (5.8)).

This gives an explicit expression for a candidate dual Q that satisfies part of the

KKT conditions of (5.2) at xx∗. It then suffices to add the additional conditions

of (5.2) (namely, that Q be positive semidefinite) to obtain an explicit expression for

the unique dual candidate.

Our main theorem follows. In a nutshell, it guarantees that: under (complex)

Wigner noise W , with high probability, solutions of (5.1) are close to z, and, assuming

the noise level σ is smaller than (on the order of) n1/10, (5.2) admits a unique solution,

it is of rank one and identifies the solution of (5.1) (unique, up to a global phase shift).

Theorem 5.1.2. Let z ∈ �
n be a vector with unit modulus entries, W ∈ �

n×n a

Hermitian Gaussian Wigner matrix and let C = zz∗ + σW . Let x ∈ �
n be a global

optimizer of (5.1). With probability at least 1 − 4n−
1
4
logn+2, the following is true:

The (unidentifiable) global phase of x can be chosen such that x is close to z in the
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following two senses:

�x− z�∞ ≤ 2
�
5 + 6

√
2 σ1/2

�
σn−1/4� and

�x− z�22 ≤ 8σn1/2min [1� 23σ] .

Furthermore, there exists a universal constant K > 0 such that, if

σ + σ2/5 ≤ K
n1/10

log(n)2/5
� (5.3)

then the semidefinite program (5.2), given by

max
X∈�n�n

Tr (CX) � subject to diag(X) = 1 and X � 0�

has, as its unique solution, the rank-one matrix X = xx∗.

Notice that the numerical experiments (Figure 5.1) suggest it should be possible

to allow σ to grow at a rate of n1/2

polylog�n)
(as in the real case), but we were not able to

establish that. Nevertheless, we do show that σ can grow unbounded with n. To the

best of our knowledge, this is the first result of this kind. We hope it might inspire

similar results in other problems where the same phenomenon has been observed [37].

Remark 5.1.3 (On the square-root rate). The relaxation (5.2) can be further relaxed

by summarizing the constraints diag(X) = 1 into the single constraint Tr (X) = n.

In so doing, the new relaxation always admits a rank-one solution X = vv∗ [179]

such that v is a dominant eigenvector of C, which corresponds to the spectral method

described in Section 2.1. The data C can be seen as a rank-one perturbation zz∗ of a

random matrix σW [202]. For i.i.d. Gaussian noise, as soon as the operator norm of

the noise matrix is smaller than (twice) the operator norm of the signal (equal to n),

dominant eigenvectors of C are expected to have better-than-random correlation with
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the signal z. Since the operator norm of such W ’s grows as n1/2, this explains why,

even when σ grows as n1/2 itself, some signal is still present in the data.

5.1.2 Main result

In this section we present our main technical result and show how it can be used to

prove Theorem 5.1.2. Let us start by presenting a central definition in this section.

Intuitively, this definition characterizes non-adversarial noise matrices W .

Definition 5.1.4 (z-discordant matrix). Let z ∈ �
n be a vector with unit modulus

entries. A matrix W ∈ �
n×n is called z-discordant if it is Hermitian and satisfies all

of the following:

1. �W�e�∞ ≤ log(n),

2. �W� ≤ 3n1/2,

3. �Wz�∞ ≤ n3/4,

4. |z∗Wz| ≤ n3/2.

Recall that �·�e�∞ is the entry-wise infinity norm. The next lemma is the main

technical contribution of this section. Note that it is a deterministic, non-asymptotic

statement.

Lemma 5.1.5. Let z ∈ �
n be a vector with unit modulus entries, let W ∈ �

n×n be

a Hermitian, z-discordant matrix (see Definition 5.1.4), and let C = zz∗ + σW . Let

x ∈ �
n be a global optimizer of (5.1). The (unidentifiable) global phase of x can be

chosen such that x is close to z in the following two senses:

�x− z�∞ ≤ 2
�
5 + 6

√
2 σ1/2

�
σn−1/4� and

�x− z�22 ≤ 8σn1/2min [1� 23σ] .
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Furthermore, there exists a universal constant K > 0 such that, if

σ + σ2/5 ≤ K
n1/10

log(n)2/5
� (5.4)

then the semidefinite program (5.2), given by

max
X∈�n�n

Tr (CX) � subject to diag(X) = 1 and X � 0�

has, as its unique solution, the rank-one matrix X = xx∗.

We defer the proof of Lemma 5.1.5 to Section 5.1.3. The following proposition,

whose proof we defer to [30] for the sake of brevity, shows how this lemma can be

used to prove Theorem 5.1.2.

Proposition 5.1.6. Let z ∈ �
n be a (deterministic) vector with unit modulus entries.

Let W ∈ �
n×n be a Hermitian standard Wigner matrix with zero diagonal, i.e. a

random matrix with i.i.d. off-diagonal entries following a complex normal distribution

and zeros on the diagonal. Thus, Wii = 0, Wij = Wji, EWij = 0 and E|Wij|
2 = 1

(for i �= j). Then, W is z-discordant with probability at least 1− 4n−
1
4
logn+2.

The latter result is not surprising. Indeed, the definition of z-discordance requires

two elements. Namely, (1) that W be not too large (properties 1 and 2), and (2)

that W be not too aligned with z (properties 3 and 4). For W a Wigner matrix

independent of z, those are indeed expected to hold.

The definition of z-discordance is not tightly adjusted to Wigner noise. As a result,

it is expected that Lemma 5.1.5 will be applicable to show tightness of semidefinite

relaxations for a larger span of noise models.
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5.1.3 The proof

We now prove Lemma 5.1.5. See Section 5.1.1 for an outline of the proof. To ease the

algebra involved in the proofs, and without loss of generality, we consider throughout

that z = 1 (as it was done in Section 3.1.1). This corresponds to the deterministic

change of variables C �→ diag(z)∗Cdiag(z). Certainly, W is z-discordant if and only

if diag(z)∗Wdiag(z) is 1-discordant.

Global optimizers of (5.1) are close to z

Let x be any global optimizer of (5.1). Choosing the global phase of x such that

1∗ x ≥ 0, we decompose x as follows:

x = 1+Δ� (5.5)

where Δ ∈ �
n should be thought of as an error term, as it represents how far a global

optimizer of (5.1) is from the planted signal 1. This subsection focuses on bounding

Δ. We bound both its �2 and �∞ norms.

The following easy �2 bound is readily available:

�Δ�22 = �x− 1 �22 = x∗x+ 1∗ 1−2�{1∗ x} = 2(n− 1∗ x) ≤ 2n. (5.6)

The next lemma provides an improved bound when σ ≤ 1
4
n1/2.

Lemma 5.1.7. If W is 1-discordant, then

�Δ�22 ≤ 8σn1/2.

Proof. If σ ≥ 1
4
n1/2, the bound is trivial since �Δ�22 ≤ 2n ≤ 8σn1/2. We now prove

the bound under the complementary assumption that σ ≤ 1
4
n1/2.

Since x is a global maximizer of (5.1) it must, in particular, satisfy x∗Cx ≥ 1∗C 1.
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Hence,

x∗(11∗+σW )x ≥ 1∗(11∗+σW )1�

or equivalently, σ (x∗Wx− 1∗W 1) ≥ 1∗ 11∗ 1−x∗ 11∗ x. This readily implies that

σ
�
�x�22 �W�+ |1

∗W 1 |
�
≥ n2 − |1∗ x|2.

Hence, using �x�22 = n and 1-discordance of W (more specifically, �W� ≤ 3n1/2 and

|1∗W 1 | ≤ n3/2) we have

|1∗ x|2 ≥ n2 − 3σn3/2 − σn3/2 = n2 − 4σn3/2.

Since 1∗ x ≥ 0, under the assumption that σ ≤ 1
4
n1/2, we actually have:

1∗ x ≥
�

n2 − 4σn3/2.

Combine the latter with the fact that �Δ�22 = �x− 1 �22 = 2(n− 1∗ x) to obtain

�Δ�22 ≤ 2
�
n−

�
n2 − 4σn3/2

�
≤ 8σn1/2.

The last inequality follows from a −
√
b =

�
a−

√
b
�

a+
√
b

a+
√
b
= a2−b

a+
√
b
≤ a − b/a for all

a > 0 and b ≥ 0 such that a2 ≥ b.

The next lemma establishes a bound on the largest individual error, �Δ�∞. This is

informative for values of n and σ such that the bound is smaller than 2. Interestingly,

for a fixed value of σ, the bound shows that increasing n drives Δ to 0, uniformly.

Lemma 5.1.8. If W is 1-discordant, then

�Δ�∞ ≤ 2
�
5 + 6

√
2 σ1/2

�
σn−1/4.

163



Proof. We wish to upper bound, for all i ∈ {1� 2� . . . � n}, the value of |Δi|. Let ei ∈ R
n

denote the ith vector of the canonical basis (its ith entry is 1 whereas all other entries

are zero). Consider x̂ = x + (1 − xi)ei, a feasible point of (5.1) obtained from the

optimal x by changing one of its entries to 1. Since x is optimal, it performs at least

as well as x̂ according to the cost function of (5.1):

x∗Cx ≥ x̂∗Cx̂ = x∗Cx+ |1− xi|
2Cii + 2�{(1− xi)e

∗
iCx}.

Further develop the last term by isolating the diagonal term Cii:

2�{(1− xi)e
∗
iCx} = 2Cii�{xi − 1}+ 2�

�
(1− xi)

�

j �=i

Cijxj

�
.

Since |1 − xi|
2Cii = −2Cii�{xi − 1}, combining the two equations above yields the

following inequality:

�
�
(xi − 1)

�

j �=i

(1 + σWij)xj

�
≥ 0.

Injecting x = 1+Δ we get:

�
�
Δi

�

j �=i

(1 + σWij)(1 + Δj)
�
≥ 0.

Expand the product, remembering that Wii = 0 by definition, to obtain:

(n− 1)�{Δi} ≥ −�
�
Δi

�

j �=i

(σWij +Δj + σWijΔj)
�

= |Δi|
2 −�

�
Δi

�

j

(σWij +Δj + σWijΔj)
�
.
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At this point, recall we want to bound |Δi|. Since

|Δi|
2 = |xi − 1|2 = 2(1−�{xi}) = −2�{Δi} = −2�{Δi}�

the above inequality is equivalent to:

|Δi|
2 ≤

2

n+ 1
�
�
Δi

�

j

(σWij +Δj + σWijΔj)
�

≤
2

n+ 1
|Δi|

�
�
�
�
�

�

j

(σWij +Δj + σWijΔj)

�
�
�
�
�

≤
2

n+ 1
|Δi|

�

σ |e∗iW 1|+ |1∗Δ|+ σ|e∗iWΔ|

�

≤
2

n+ 1
|Δi|

�

σ�W 1 �∞ +
1

2
�Δ�22 + σ �W� �Δ�2

�

�

where we used the triangular inequality multiple times and the simple identity 1∗Δ =

−�Δ�22/2. The above inequality holds for all 1 ≤ i ≤ n. We now leverage the 1-

discordance of W (more precisely, �W 1 �∞ ≤ n3/4 and �W� ≤ 3n1/2) together with

Lemma 5.1.7 to finally obtain:

�Δ�∞ ≤
2

n+ 1

�

σn3/4 + 4σn1/2 + 6
√
2 σ3/2n3/4

�

≤ 2
�
1 + 4n−1/4 + 6

√
2 σ1/2

�
σn−1/4

≤ 2
�
5 + 6

√
2 σ1/2

�
σn−1/4.

This concludes the proof.

As a side note, notice that, using the bound on �Δ�∞, one obtains another bound

on �Δ�22 as follows:

�Δ�22 ≤ n�Δ�2∞ ≤ 8σn1/2

�
(5 + 6

√
2σ1/2)2

2
σ

�

. (5.7)
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The factor in brackets is an increasing function of σ that hits 1 for σ ≈ 0.0436. Below

that value, the above bound improves on Lemma 5.1.7 and the factor in brackets is

bounded by 23σ, thus yielding the bound as stated in Lemma 5.1.5. Nevertheless, in

the remainder of the section, we use only Lemma 5.1.7 to bound �Δ�22. This is because

we aim to allow σ to grow with n, and Lemma 5.1.7 is sharper in that regime. The

interest of the above bound is to show that, for small noise, the root mean squared

error �Δ�2/
√
n is at most on the order of σ/n1/4.

Optimality conditions for (5.2)

In Section 3.1.1 we described necessary conditions for a solution of the SDP to be

an optimizer, via weak duality. Strong duality essentially states that, in many in-

stances, these conditions (also called Karush-Kuhn-Tucker (KKT) conditions) are

also sufficient. In fact, the global optimizers of the semidefinite program (5.2) can be

characterized completely via the KKT conditions:

Lemma 5.1.9. A Hermitian matrix X ∈ �
n×n is a global optimizer of (5.2) if and

only if there exists a Hermitian matrix Q̂ ∈ �
n×n such that all of the following hold:

1. diag(X) = 1;

2. X � 0;

3. Q̂X = 0;

4. Q̂+ C is (real) diagonal; and

5. Q̂ � 0.

If, furthermore, rank(Q̂) = n − 1, then X has rank one and is the unique global

optimizer of (5.2).

Proof. These are the KKT conditions of (5.2) [194, Example 3.36]. Conditions 1

and 2 are primal feasibility, condition 3 is complementary slackness and conditions
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4 and 5 encode dual feasibility. Since the identity matrix In satisfies all equality

constraints and is (strictly) positive definite, the so-called Slater condition is fulfilled.

This ensures that the KKT conditions stated above are necessary and sufficient for

global optimality [194, Theorem 3.34]. Slater’s condition also holds for the dual.

Indeed, let Q̃ = αI − C, where α ∈ R is such that Q̃ � 0 (such an α always exists);

then Q̃ + C is indeed diagonal and Q̃ is strictly admissible for the dual. This allows

to use results from [14]. Specifically, assuming rank(Q̂) = n − 1, Theorem 9 in that

reference implies that Q̂ is dual nondegenerate. Then, since Q̂ is also optimal for the

dual (by complementary slackness), Theorem 10 in that reference guarantees that

the primal solution X is unique. Since X is nonzero and Q̂X = 0, it must be that

rank(X) = 1.

Certainly, if (5.2) admits a rank-one solution, it has to be of the form X = xx∗,

with x an optimal solution of the original problem (5.1). Based on this consideration,

our proof of Lemma 5.1.5 goes as follows. We let x denote a global optimizer of (5.1)

and we consider X = xx∗ as a candidate solution for (5.2). Using the optimality

of x and assumptions on the noise, we then construct and verify a dual certificate

matrix Q as required per Lemma 5.1.9. In such proofs, one of the nontrivial parts is

to guess an analytical form for Q given a candidate solution X. We achieve this by

inspecting the first-order optimality conditions of (5.1) (which x necessarily satisfies).

The main difficulty is then to show the suitability of the candidate Q, as it depends

nonlinearly on the global optimum x, which itself is a complicated function of the

noise W . Nevertheless, we show feasibility of Q via a program of inequalities, relying

heavily on the 1-discordance of the noise W (see Definition 5.1.4).

Construction of the dual certificate Q

Every global optimizer of the combinatorial problem (5.1) must, a fortiori, satisfy

first-order necessary optimality conditions. We derive those now.
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We endow the complex plane � with the Euclidean metric

�y1� y2� = �{y
∗
1y2}.

This is equivalent to viewing � as R2 with the canonical inner product, using the real

and imaginary parts of a complex number as its first and second coordinates. Denote

the complex circle by

S = {y ∈ � : y∗y = 1}.

The circle can be seen as a submanifold of �, with tangent space at each y given by

(simply differentiating the constraint):

TyS = {ẏ ∈ � : ẏ∗y + y∗ẏ = 0} = {ẏ ∈ � : �y� ẏ� = 0}.

Restricting the Euclidean inner product to each tangent space equips S with a Rie-

mannian submanifold geometry. The search space of (5.1) is exactly Sn, itself a

Riemannian submanifold of �n with the product geometry. Thus, problem (5.1) con-

sists in maximizing a smooth function g(x) = x∗Cx over the smooth Riemannian

manifold Sn. Therefore, the first-order necessary optimality conditions for (5.1) (i.e.,

the KKT conditions) can be stated simply as grad g(x) = 0, where grad g(x) is the

Riemannian gradient of g at x ∈ Sn [6]. This gradient is given by the orthogonal

projection of the Euclidean (the classical) gradient of g onto the tangent space of Sn

at x [6, eq. (3.37)]. The projector and the Euclidean gradient are given respectively

by:

Projx : �
n → TxS

n : ẋ �→ Projx ẋ = ẋ−�{ddiag(ẋx∗)}x�

∇g(x) = 2Cx�

where ddiag : �n×n → �
n×n sets all off-diagonal entries of a matrix to zero. For x a
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global optimizer of (5.1), it holds that

0 = grad g(x) = Projx∇g(x) = 2(C −�{ddiag(Cxx∗)})x. (5.8)

This suggests the following definitions:

X = xx∗� Q = �{ddiag(Cxx∗)} − C. (5.9)

Note thatQ is Hermitian andQx = 0. Referring to the KKT conditions in Lemma 5.1.9,

it follows immediately that X is feasible for (5.2) (conditions 1 and 2); that QX =

(Qx)x∗ = 0 (condition 3); and that Q + C is a diagonal matrix (condition 4). It

thus only remains to show that Q is also positive semidefinite and has rank n− 1. If

such is the case, then X is the unique global optimizer of (5.2), meaning that solving

the latter solves (5.1). Note the special role of the first-order necessary optimality

conditions: they guarantee complementary slackness, without requiring further work.

The following lemma further shows that Q is the “right” candidate dual certificate.

More precisely, for x a critical point of (5.1), it is necessary and sufficient for Q to be

positive semidefinite in order for X = xx∗ to be optimal for (5.2).

Lemma 5.1.10. X (of any rank) is optimal for (5.2) if and only if it is feasible

for (5.2) and Q = �{ddiag(CX)} − C (5.9) is positive semidefinite and QX = 0.

There exists no other dual certificate for X.

Proof. The if part follows from Lemma 5.1.9. We show the only if part. Assume

X is optimal. Then, by Lemma 5.1.9, there exists Q̂ � 0 which satisfies Q̂X =

0 and Q̂ + C = D̂, where D̂ is diagonal. Thus, CX = (D̂ − Q̂)X = D̂X and

�{ddiag(CX)} = D̂. Consequently, Q = D̂ − C = Q̂.
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A sufficient condition for Q to be positive semidefinite with rank n− 1

First, observe that the diagonal matrix diag(x) is a unitary matrix. Thus,

M = diag(x)∗Qdiag(x) = �{ddiag(Cxx∗)} − diag(x)∗Cdiag(x) (5.10)

is a Hermitian matrix whose spectrum is the same as that of Q. In particular, Q and

M share the same rank and they are simultaneously positive semidefinite, so that we

now investigate M.

Since Qx = 0, it follows that M1 = 0 and M is positive semidefinite with rank

n − 1 if and only if u∗Mu > 0 for all u ∈ �
n such that u �= 0 and 1∗ u = 0. We set

out to find sufficient conditions for the latter.

To this end, separate u in its real and imaginary parts as u = α + iβ, with

α� β ∈ R
n satisfying 1� α = 1� β = 0. The quadratic form expands as:

u∗Mu = (α� − iβ�)M(α + iβ)

= α�Mα + β�Mβ + i(α�Mβ − β�Mα)

= α��{M}α + β��{M}β − 2α��{M}β. (5.11)

Let us inspect the last term more closely:

�{M} = −�{diag(x)∗Cdiag(x)}

= −�{diag(x)∗ 11∗ diag(x) + σdiag(x)∗Wdiag(x)}

= �{xx∗} − σ�{diag(x)∗Wdiag(x)}.

At this step, we leverage the fact that, as per lemmas 5.1.7 and 5.1.8, if the noise

level σ is small enough, then x is close to z = 1. We continue with the global phase

convention 1∗ x ≥ 0 and the notation x = 1+Δ (5.5). Owing to α and β having zero
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mean components, it follows that

α��{xx∗}β = α��{11∗+1Δ∗ +Δ1∗+ΔΔ∗}β

= α��{ΔΔ∗}β. (5.12)

Keeping in mind the intuition that Δ is an error term, we expect (5.12) to be small.

We will make this precise later, and now turn our attention to the real part of M,

which turns out to be a Laplacian matrix. Indeed, this structure becomes appar-

ent when the individual entries of the matrix are written out explicitly, starting

from (5.10):

�{M}ij =






�{(Cxx∗)ii − Cii} =
�

��=i�{x̄ix�Ci�} if i = j�

−�{x̄ixjCij} if i �= j.

(5.13)

Recall that

L : �n×n → �
n×n : A �→ LA = DA − A (5.14)

where DA = diag(A1). Then,

�{M} = L�{C�xx∗}� (5.15)

where � denotes the entry-wise (or Hadamard) product of matrices. Certainly, the

symmetric matrix �{M} admits a zero eigenvalue associated to the all-ones vector,

since for any A, LA 1 = 0. We define the spectral gap of the Laplacian �{M} as its

smallest eigenvalue associated to an eigenvector orthogonal to the all-ones vector:

λ (�{M}) = min
v∈Rn�v �=0��� v=0

v��{M}v

v�v
. (5.16)
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Although this value could, in principle, be negative due to potential negative weights,

the hope is that it will be positive and rather large (again, to be made precise later).

Note that, if positive, λ(L) = λ2(L).

We now return to (5.11) and bound the expression:

u∗Mu = α��{M}α + β��{M}β

− 2α�
�
�{ΔΔ∗} − σ�{diag(x)∗Wdiag(x)}

�
β

≥
�
�α�22 + �β�

2
2

�
λ (�{M})

− 2�α�2�β�2 (��{ΔΔ∗}�+ σ ��{diag(x)∗Wdiag(x)}�) .

For this inequality to lead to a guarantee of positivity of u∗Mu, it is certainly neces-

sary to require λ (�{M}) > 0. Using this and the fact2 that ��{A}� ≤ �A�, that the

operator norm is invariant under unitary transformations and the simple inequality

0 ≤ (�α�2 − �β�2)
2 = �α�22 + �β�

2
2 − 2�α�2�β�2�

it follows that

u∗Mu ≥ 2�α�2�β�2
�
λ (�{M})− �Δ�22 − σ �W�

�
.

Hence, a sufficient condition for Q to be positive semidefinite with rank n− 1 is:

λ (�{M}) > �Δ�22 + σ �W� . (5.17)

Let us now pause to reflect on condition (5.17) and to describe why it should hold.

A bound on the operator norm of W is readily available from 1-discordance of W ,

and �Δ�22 is bounded by Lemma 5.1.7. Perhaps less obvious is why one would expect

2�A�
2

= max
x��

�

�x�=1

�Ax�2 ≥ max
x�R

�

�x�=1

�Ax�2 = max
x�R

�

�x�=1

���A)x�2 + ���A)x�2 ≥ ���A)�
2
.
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λ (�{M}) to be large. The intuition is that, for small enough noise, xix̄j ≈ ziz̄j ≈ Cij,

so that �{M} is the Laplacian of a complete graph with large weights �xix̄j� Cij�. If

this is the case, then it is known from graph theory that λ (�{M}) is large, because

the underlying graph is well connected. The bound derived below on the spectral gap

will, together with (5.17), reveal how large we may allow the noise level σ to be.

Bounding the spectral gap of �{M}

This section is dedicated to lower bounding the spectral gap term (5.16). The right-

hand side of (5.17) is on the order of σn1/2, so that showing that the spectral gap is

at least on the order of n−O(σn1/2) would yield an acceptable noise level of O(n1/2)

for σ, as the numerical experiment suggests (Figure 5.1). Unfortunately, the bound

we establish here is not as good, and thus constitutes the bottleneck in our analysis.3

Lemma 5.1.11. If W is 1-discordant, then

λ (�{M}) ≥ n−

�

8
�
5 + 6

√
2 σ1/2

�2
σn−1/4 +

�
6 + 40σ + 68σ3/2

�
log(n)

�

σn3/4.

Proof. Working from equation (5.15), we find that

�{M} = L�{C�xx∗}

= L�{xx∗} + σL�{W����
∗+xx∗−��

∗)}

= L�{xx∗} + σL�{W} + σL�{W��xx∗−��
∗)}.

3Even assuming �incorrectly) that Δ = 0, so that x = z = �, we would only get a spectral gap of
n −O�σn3�4) �because of the bound on �W � �∞), yielding a final acceptable rate of σ = O�n1�4),
which still falls short of the target rate O�n1�2) �all up to log factors).
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Factor in the fact that for any n× n matrix A,

�LA� = �diag(A1)− A� ≤ �A1 �∞ + �A� � and

�A� ≤ �A�F ≤ n �A�e�∞

to further obtain:

λ (�{M}) ≥ λ
�
L�{xx∗}

�
− σ

��
�L�{W}

�
�+

�
�
�L�{W��xx∗−��

∗)}

�
�
�
�

≥ λ
�
L�{xx∗}

�
− σ (�W 1 �∞ + �W�)

− σ
��
�
�
W � (xx∗ − 11∗)

�
1
�
�
∞
+ n

�
�W � (xx∗ − 11∗)

�
�
e�∞

�

≥ λ
�
L�{xx∗}

�
− σ

�
�W 1 �∞ + �W�+ 2n �W�e�∞ �xx

∗ − 11∗�e�∞

�
.

We now rely on Lemma 5.1.8 to bound �xx∗ − 11∗�e�∞. For all 1 ≤ i� j ≤ n,

|xixj − 1| = |xi − xj| = |(xi − 1)− (xj − 1)| ≤ |Δi|+ |Δj| ≤ 2�Δ�∞.

Thus,

�xx∗ − 11∗�e�∞ ≤ 2�Δ�∞ ≤ 4
�
5 + 6

√
2 σ1/2

�
σn−1/4. (5.18)

Combining the last equations with 1-discordance of W and the fact that for n ≥ 2

we have 4 ≤ 6 log(n), gives:

λ (�{M}) ≥ λ
�
L�{xx∗}

�
− σ

�
n3/4 + 3n1/2 + 8

�
5 + 6

√
2 σ1/2

�
σn3/4 log(n)

�

≥ λ
�
L�{xx∗}

�
−
�
4 + 8

�
5 + 6

√
2 σ1/2

�
σ log(n)

�
σn3/4

≥ λ
�
L�{xx∗}

�
−
�
6 + 8

�
5 + 6

√
2 σ1/2

�
σ
�
σn3/4 log(n)

≥ λ
�
L�{xx∗}

�
−
�
6 + 40σ + 68σ3/2

�
σn3/4 log(n). (5.19)
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It remains to bound the dominating part of the spectral gap. To this effect, we

use the fact that �{xixj} is nonnegative when the noise level is low enough, so that

(restricting ourselves to that regime) λ
�
L�{xx∗}

�
is the spectral gap of a complete

graph with all weights strictly positive. That spectral gap must be at least as large

as the smallest weight multiplied by the spectral gap of the complete graph with unit

weights, namely, λ (L
��

�) = n. Formally, for all v ∈ R
n such that �v�2 = 1 and

1� v = 0, by properties of Laplacian matrices it holds that

v�L�{xx∗}v =
�

i<j

�{xixj}(vi − vj)
2

≥ min
i�j
�{xixj}

�

i<j

(vi − vj)
2

= min
i�j
�{xixj} v�L

��
�v

= nmin
i�j
�{xixj}.

Let us investigate the smallest weight. Recall that |xi − xj| ≤ 2�Δ�∞, �{xixj} =

1− 1
2
|xi − xj|

2, and that �Δ�∞ ≤ 2
�
5 + 6

√
2 σ1/2

�
σn−1/4 to get

�{xixj} ≥ 1− 2�Δ�2∞ ≥ 1− 8
�
5 + 6

√
2 σ1/2

�2
σ2n−1/2.

Hence,

λ
�
L�{xx∗}

�
≥ n− 8

�
5 + 6

√
2 σ1/2

�2
σ2n1/2. (5.20)

Merging the bounds (5.19) and (5.20) gives:

λ (�{M}) ≥ n− 8
�
5 + 6

√
2 σ1/2

�2
σ2n1/2 −

�
6 + 40σ + 68σ3/2

�
σn3/4 log(n)

≥ n−

�

8
�
5 + 6

√
2 σ1/2

�2
σn−1/4 +

�
6 + 40σ + 68σ3/2

�
log(n)

�

σn3/4.
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This establishes the lemma.

Concluding the proof

Recall that (5.2) is tight, in particular, if (5.17) holds:

λ (�{M}) > �Δ�22 + σ �W� . (5.21)

Still assuming 1-discordance of W (as it gives �W� ≤ 3n1/2) and collecting results

from lemmas 5.1.7 and 5.1.11, we find that this condition is fulfilled in particular if

n−

�

8
�
5 + 6

√
2 σ1/2

�2
σn−1/4 +

�
6 + 40σ + 68σ3/2

�
log(n)

�

σn3/4 > 11σn1/2.

Reorder terms and divide through by n3/4 to get the equivalent condition:

n1/4 >

��

8
�
5 + 6

√
2 σ1/2

�2
σ + 11

�

n−1/4 +
�
6 + 40σ + 68σ3/2

�
log(n)

�

σ.

This can be written in the form (with some constant c1 > 0):

n1/4 > f1(σ)n
−1/4 + f2(σ) log(n) + c1σ

3n−1/4�

where f1 and f2 are polynomials with nonnegative coefficients, lowest power σ and

highest power σ5/2. Thus, their sum is upper-bounded by c2(σ + σ5/2), for some

constant c2 > 0. Hence, there exists a constant c3 > 0 such that, if

c1σ
3n−1/4 < 0.99n1/4� (5.22)

then

n1/4 > c3(σ + σ5/2) log(n)
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is a sufficient condition. It is then easy to see that there exists a universal constant

K > 0 such that

σ + σ2/5 ≤ K
n1/10

log(n)2/5

is a sufficient condition for tightness of (5.2). This concludes the proof of Lemma 5.1.5.
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Chapter 6

Multireference alignment and

Cryo-Electron Microscopy

6.1 Alignment of signals

In this chapter we consider other instances of synchronization-type problems. This

section, mostly based on [32], starts with an important and illustrative problem in

signal processing, the multireference alignment problem (see Section 1.2.7): it consists

of estimating an unknown signal u from multiple noisy cyclically-shifted copies. More

precisely, we are interested in the problem of estimating an unknown template vector

u ∈ R
L from n measurements y1� . . . � yn of the form:

yi = Rliu+ ξi ∈ R
L� (6.1)

where ξi ∼ N (0� σ2IL) is gaussian white noise with variance σ2, and Rl denotes the

index cyclic shift operator (u1� . . . � uL) �→ (u1−l� . . . � uL−l), represented as an L × L

circulant permutation matrix.

The difficulty of this problem resides in the fact that both the template u and the

shifts l1� . . . � ln ∈ ZL are unknown (moreover, no model is presumed a-priori for their
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distribution). If the shifts were known, one could easily estimate u by unshifting the

observations and averaging them. Motivated by this fact we will focus on the problem

of estimating the shifts l1� . . . � ln (up to an undecidable global shift).

This problem has a vast list of applications. Alignment is directly used in struc-

tural biology [94, 218]; radar [241, 182]; crystalline simulations [215]; and image

registration in a number of important contexts, such as in geology, medicine, and

paleontology [97, 106].

Perhaps the most näıve approach to estimate the shifts in (6.1) would be to fix

one of the observations, say yi, as a reference template and align every other yj with

it by the shift ρij minimizing their distance

ρij = argminl∈ZL
�Rlyj − yi�2. (6.2)

While this solution works well at a high signal-to-noise ratio (SNR), it performs poorly

at low SNR. Indeed, following the discussion in Section 1.3.1, we expect the recovered

signal to be representative of yi than of u (see Figure 1.3.1).

A more democratic approach would be to calculate pairwise relative shift esti-

mates ρij for each pair and then attempt to recover the shifts {li} by angular syn-

chronization (recall Section 1.2.1), i.e., by attempting to minimize

min
l1�...�ln∈ZL

n�

i�j=1

�
�
�e
�
li−lj
L

�
− e

�ρij
L

���
�
2

� (6.3)

where e(x) = e2πıx denotes the classical Fourier basis function. Note how this formu-

lation is of the form of (1.1) for G ∼= ZL and

fij (li − lj) =
�
�
�e
�
li−lj
L

�
− e

�ρij
L

���
�
2

. (6.4)
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Moreover, note that (6.3) has the same optimizers as

max
l1�...�ln∈ZL

n�

i�j=1

e
�
li−lj
L

�
e
�
−

ρij
L

�
� (6.5)

which is linear in terms of the unidimensional representation of the cyclic group in �.

This suggests the use of the semidefinite program (1.9). Indeed, that approach coin-

cides with the SDP-based relaxation for angular synchronization (see Section 1.2.1)

described in Section 5.1. An alternative would be the spectral method described in

Section 2.1.

The main shortcoming of this type of approach is that the only information it

uses from the observations {yi} is the best relative shifts ρij. This means that the

performance of a given choice of {li} can only be evaluated by comparing li − lj

with ρij (in shift space) across pairs (i� j). This does not take into account the cost

associated with other possible relative shifts of yi and yj. On the other hand, for a

candidate solution {li}, relating R−liyi and R−liyj (in signal space) would take into

account information about all possible shifts instead of just the best one (6.2). The

quasi maximum likelihood estimator (Section 6.1.1) attempts to do exactly that by

solving the minimization problem:

min
l1�...�ln∈ZL

n�

i�j=1

�
�R−liyi −R−ljyj

�
�2 . (6.6)

While this objective function can still be rewritten to be of the form of (1.1), by

taking

fij (li − lj) =
�
�yi −Rli−ljyj

�
�2 � (6.7)

it is no longer necessarily linear in terms of a unidimensional representation. Fortu-

nately, as we will describe below, it is linear with respect to a L-dimensional repre-

sentation, suggesting the use of a semidefinite program of the form of (1.9) with a
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matrix variable of size nL× nL rather than n× n.

Remark 6.1.1. This illustrates a crucial point regarding the semidefinite programming-

based approach described in Section 1.3.3. While smaller dimension representations

render smaller (and thus potentially more efficient) semidefinite programs, represen-

tations of larger dimension have the potential of allowing the use of more descriptive

objective functions (for example, (6.7) vs (6.4)).

6.1.1 Quasi Maximum Likelihood Estimator

The log likelihood function for model (6.1) is given by

L(u� l1� . . . � ln | y1� . . . � yn) =
n

2
log(2π)−

1

2σ

�

i∈[n]

�R−liyi − u�2. (6.8)

Maximizing L is equivalent to minimizing the sum of squared residuals
�n

i=1 �R−liyi−

u�2. Fixing the li’s, the minimal value of L occurs at the average u = 1
n

�n
i=1R−liyi.

Making the tame assumption that �u�2 is estimable (indeed the norm is shift-invariant)

and thus fixed in (6.8), maximizing (6.8) is equivalent to maximizing the sum of the

inner products
�
R−liyi� R−ljyj

�
across all pairs (i� j). Thus we consider the estimator

argmaxl1�...�ln∈ZL

�

i�j∈[n]

�R−liyi� R−ljyj�� (6.9)

which coincides with the optimizers of (6.6). We refer to this estimator as the quasi-

MLE.

It is not surprising that solving (6.9) is NP-hard in general (the search space for

this optimization problem has exponential size and is nonconvex). However, one could

hope to approximate (6.9) up to some constant (in the spirit of the results established

in Section 2.3). Unfortunately, the existence of an algorithm with such guarantees

seems unlikely, as suggested by the theorem below.
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Theorem 6.1.2. Assuming no model on the observations {yi}, it is NP-hard (under

randomized reductions) to find a set of shifts approximating (6.9) within 16/17+ ε of

its optimum value. Furthermore, if the Unique-Games conjecture (Conjecture 1.2.2)

is true, it is NP-hard to approximate (6.9) within any constant factor.

We refer the reader to [32] for a proof of this theorem.

6.1.2 The semidefinite relaxation

Let us identify Rl with the L × L permutation matrix that cyclicly permutes the

entries fo a vector by li coordinates:

Rl









u1
...

uL








=









u1−l
...

uL−l








.

This corresponds to an L-dimensional representation of the cyclic group. Then, (6.9)

can be rewritten:

�

i�j∈[n]

�R−liyi� R−ljyj� =
�

i�j∈[n]

(R−liyi)
T R−ljyj

=
�

i�j∈[n]

Tr
�
(R−liyi)

T R−ljyj

�

=
�

i�j∈[n]

Tr
�
yTi R

T
−li

R−ljyj
�

=
�

i�j∈[n]

Tr
��

yiy
T
j

�T
RliR

T
lj

�
�
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confirming that (6.9) is indeed linear in this representation. Following the roadmap

described in Section 1.3.3 we take

X =












Rl1

Rl2

...

Rln












�

RT
l1

RT
l2
· · · RT

ln

�

∈ R
nL×nL. (6.10)

We can then rewrite (6.9) as

max Tr(CX)

s. t. Xii = IL×L

Xij is a circulant permutation matrix

X � 0

rank(X) ≤ L�

(6.11)

where C is the rank 1 matrix given by

C =












y1

y2
...

yn












�

yT1 yT2 · · · yTn

�

∈ R
nL×nL� (6.12)

with blocks Cij = yiy
T
j .

The constraints Xii = IL×L and rank(X) ≤ L imply that rank(X) = L and

Xij ∈ O(L). Since the only doubly stochastic matrices in O(L) are permutations,
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(6.11) can be rewritten as

max Tr(CX)

s. t. Xii = IL×L

Xij 1 = 1

Xij is circulant

X ≥ 0

X � 0

rank(X) ≤ L.

(6.13)

Removing the nonconvex rank constraint yields a semidefinite program, corresponding

to (1.9),

max Tr(CX)

s. t. Xii = IL×L

Xij 1 = 1

Xij is circulant

X ≥ 0

X � 0.

(6.14)

Another perspective

The discrete optimization problem (6.9) may also be formulated using indicator vari-

ables as an integer programming problem

argmax{zik}

n�

i�j=1

�

k�l∈ZL

zikzjl�R−kyi� R−lyj�� (6.15)

where zik ∈ {0� 1} and, for each i, zik = 1 for exactly one index k, corresponding to

indicator variables zik = 1{li≡k}. These requirements can be described with quadratic
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constraints (up to global sign, which cannot be fixed by quadratic constraints)

�

k�l∈ZL

zikzjl = 1� i� j ∈ [n]

zikzil = 0� i ∈ [n]� k �= l ∈ ZL (6.16)

zikzjl ≥ 0� i� j ∈ [n]� k� l ∈ ZL.

Since both the objective function (6.15) and the constraints (6.16) depend only on

products of the form zikzjl, the problem can be written linearly in terms of the

Gram matrix Z ∈ R
nL×nL with entries Zik;jl = zikzjl, and can (after removing a

rank constraint) be written in terms of a semidefinite program. In fact, this was

the approach taken originally in [32], motivated by the semidefinite programming

relaxation for the Unique-Games problem in [75]. After averaging the L different

solutions that this SDP has (corresponding to the global shift ambiguity), the two

approaches are effectively equivalent. We refer the reader to [32] for a description of

the problem using the alternative view.

6.1.3 Analysis of the SDP

If the SNR is high enough so that, between every pair of shifted measurements, the

cross-correlation is maximal at the true offset, then it is not hard to show [32] that

the relaxation (6.14) is exact. Unfortunately, this idealized scenario is unrealistic

in practice. In fact, for realistic noise levels one does not expect even the MLE to

coincide with the original shifts (if σ > 0, given enough signals, with high probability,

there will be a noisy copy of u that correlates less with the original vector u than with

a shift of it). Fortunately, similarly to the SDP relaxation investigated in Section 5.1,

this SDP appears to be tight remarkably often (see Figure 7.1). However, an analysis

of the type that was described in Section 5.1 appears to be more difficult in this

setting and the understanding of this behavior remains an open problem — we will
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discuss this problem further in Section 7.2.1.

While no satisfactory tightness guarantee exists, we are able to give some stability

guarantees to this relaxation. For simplicity, we will assume, without loss of generality,

that all the ground truth shifts correspond to the zero shift. Hence yi = u + ξi,

where ξi ∼ N (0� σ2IL) i.i.d.. The ground truth solution for the SDP will then be a

X� ∈ R
nL×nL with blocksX�

ij = IL×L. We are interested in understanding whether the

optimal solution to (6.14) resembles X�. We will describe a guarantees characterized

in terms of the gap between the correct offset and incorrect ones

Δ = �u�2 −max
l �=0
�u�Rlu�� (6.17)

and the noise level.

For any X ∈ R
nL×nL lying in the SDP feasibility region, we can characterize the

distance of X from the desired solution X� by the differences

Dij =
1

L

�

k �=l∈[L]

(Xi�j)kl = 1−
1

L

�

k∈[L]

(Xi�j)kk ∈ [0� 1].

Dij is a measure of how much the solution of the SDP weighs shift preferences other

than the ground truth. Note that Dij is always non-negative and, moreover, Dij = 0,

for all i� j, corresponds to X = X�.

Theorem 6.1.3. With probability 1−e−n+o�n), the solution to the SDP (6.14) satisfies

�

i�j

Dij ≤ σ
(�u�+ σ

√
L) · 12 log eL

Δ
· n2.

Theorem 6.1.3 indicates that at a sufficiently high SNR, (6.14) will produce a ma-

trix X, of which each L×L block has most weight concentrated on its main diagonal.

We refer the reader to [32] for a proof of Theorem 6.1.3. One of the main difficulties in

the analysis of this problem is that noise model is on the vertices, which translates into
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dependent noise on the edges, rendering it qualitatively different from previous work

analyzing similar SDPs in the context of the Unique-Games problem [23, 140, 139].

If the relaxation is not tight, a rounding step is needed: a procedure to produce

a solution of the original problem (6.9) given a solution of (6.14). While it is not

the main purpose of this section to discuss rounding procedures, we note that, if the

optimal solution X indeed places more weight on the correct shift (as predicted by

Theorem 6.1.3), then even a näıve rounding scheme would likely interpret it as the

correct shift being the optimal one. In fact, the numerical simulations in Figure 6.1.4

seem to suggest that this is case.

6.1.4 Numerical Results

Figure 6.1: Averages of errors of several alignment methods across 500 draws of signal
and noise. The parameters are σ = 1 and L = 5.

We implemented several baseline methods for multireference alignment, and plot-

ted their average error performance across 500 draws of signal and noise in Figure

6.1.4. For each iteration, we chose a signal u randomly from the distribution N (0� IL),
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as well as n i.i.d. noise vectors ξi ∼ N (0� σ2IL), and compared the performance of the

SDP (6.14), together with a simple rounding procedure, with several other methods.

Cross-correlation refers to the method of picking one of the observations as a reference

to align the others, and Phase correlation to a normalized version of it [129]. The

spectral method refers to a relaxation of the MLE to an eigenvector problem, and the

bispectrum method is an invariant based method, we refer to [32] for a detailed de-

scription of these methods. These simulations suggest that the SDP (6.14) performs

better than other benchmark techniques.

6.1.5 Computational complexity of the Semidefinite Program

Semidefinite programs can be solved, up to arbitrary accuracy in polynomial time [227].

However, their computational complexity still depend heavily on the number of vari-

ables and constraints. The SDP (6.14) has a matrix variable of size nL × nL and

order of n2L2 constraints (the positivity constraints), which could render a näıve

implementation of (6.14) impractical for large problem instances.

Fortunately, the SDP (6.14) has structure that can be exploited. Each L×L block

Xij ofX is a circulant matrix. This means that they are simultaneously diagonalizable

by the L×L discrete Fourier transform (DFT) matrix. This observation allows us us

to find a unitary matrix U (of size nL×nL) so that UXUT is block-diagonal (with L

non-zero n× n diagonal blocks). After this transformation, the positive semidefinite

constraint greatly simplifies, as it becomes decoupled on each block. We refer the

reader to [32] for a more detailed discussion on this point.

Remark 6.1.4. We note the general applicability of the idea briefly described above: If

the group G is commutative, than we expect a representation of it to be simultaneously

diagonalizable, meaning that the above speedup can be applied (replacing the DFT

by another matrix) to the SDP (1.9) arising from synchronization on any compact

abelian group. Also, if the compact G is not abelian, we still expect to be able to block
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diagonalize its representation, where the sizes of the blocks correspond to dimensions of

the irreducible representations of G. In fact, we believe this fact will play a crucial role

in applying this approach to the problem of orientation estimation in Cryo-Electron

Microscopy — which is a form of Synchronization over SO(3) — and is discussed

briefly in Section 6.3 but mostly deferred to a future publication.

As another attempt to simplify the SDP, one might consider removing positivity

constraints (since there are essentially n2L2 of them). Interestingly, this weaker SDP

can be solved explicitly and is equivalent to the pairwise alignment method called

phase correlation [129]. This method does not take into account information between

all pairs of measurements, it essentially proceeds by selecting one of the measurements

as a reference and align everything to it, not based on Cross-correlation but on a

normalized version of it. This suggests that the full complexity of the SDP (6.14) is

needed to obtain a good approximation to (6.6).

6.2 Clustering and graph multisection

In this section we briefly investigate an interesting connection between the signal

alignment problem treated in Section 6.1 and the problem of clustering a graph or a

point cloud in multiple (L) clusters. Countless versions of this problem exist. A par-

ticularly popular version of clustering a point cloud is k-means clustering [154, 149].

On the graph side, there are extensions of the Cheeger’s inequality (Theorem 2.1.1)

to provide guarantees of spectral clustering in this setting [144, 112]. There are also

adaptations of some of the ideas presented in Section 3.2 to understand recovery in

the Stochastic Block Model with multiple clusters [8, 4, 122].

For illustrative purposes we will consider the the min-sum k-clustering prob-

lem [239]. It will be clear that the ideas that follow can be adapted to other settings.

Given n points, p1� . . . � pn, with pairwise distances dij the min-sum k-clustering prob-
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lem [239] consists in partioning the n points in L clusters C1� . . . � CL as to minimize

L�

k=1

�

i�j∈�k

dij. (6.18)

Note that if the points are in an euclidean space, k-means clustering can be de-

scribed as minimizing a similar objective:

L�

k=1

1

|Ck|

�

i�j∈�k

dij�

where dij is the squared of the �2 distance between points i and j. This objective is

different due to the normalization factor depending on the cluster size.

6.2.1 The multireference alignment SDP for clustering

The idea to formulate (6.18) through the approach described in Section 6.1 (for the

signal processing problem) is very simple: one can think of each point pi as a signal yi

in R
L and think of a shift label as a cluster membership, the cost associated to the pair

i� j should then be dij if the two signals are given the same shift and zero otherwise.

This can be achieved by taking C ∈ R
nL×nL to have L× L blocks Cij = −

1
L
dijIL×L.

In fact, by setting the cluster membership of i to be li, it is easy to see that

L�

k=1

�

i�j∈�k

dij = −
�

i�j∈[n]

Tr
�
CT
ijRliR

T
lj

�
.

This means that minimizing (6.18) is equivalent to (6.13) for this particular choice

of C.

It is clear that this SDP has many optimal solutions. Given an optimal selection of

cluster labelings, any permutation of these labels will yield a solution with the same

objective. For that reason we can adapt the SDP to consider the average of such
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solutions. This is achieved by restricting each block Xij to be a linear combination

of IL×L and 11T (meaning that it is constant both on the diagonal and on the off-

diagonal). Adding that constraint yields the following SDP.

max Tr(CX)

s. t. Xii = IL×L

Xij 1 = 1

Xij is circulant

(Xij)kk = (Xij)11

(Xij)kl = (Xij)12 � ∀k �=l

X ≥ 0

X � 0�

(6.19)

Since the constraints in (6.19) imply

(Xij)11 + (L− 1) (Xij)12 = 1�

(6.19) can be described completely in terms of the variables (Xij)11. For that rea-

son we consider the matrix Y ∈ R
n×n with entries Yij = (Xij)11. We can then

rewrite (6.19) as

max Tr
�
C̃Y

�

s. t. Yii = 1

Y ≥ 0

Y �L) � 0�

(6.20)

where C̃ij = −dij and Y �L) is the nL × nL matrix whose n × n diagonal blocks are
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equal to Y and whose n× n non-diagonal blocks are equal to 11
T−Y
L−1

. For example,

Y �2) =






Y 11T − Y

11T − Y Y




 and Y �3) =









Y 11T−X
2

11T−Y
2

11T−Y
2

Y 11T−Y
2

11T−Y
2

11T−Y
2

Y








.

The following lemma gives a simpler characterization of the intriguing Y �L) � 0

constraint.

Lemma 6.2.1. Let Y be a symmetric matrix and L ≥ 2 an integer. Y �L) � 0 if and

only if Y � 1
L
11T .

Before proving Lemma 6.2.1, note that it implies we can succintly rewrite (6.20)

as

max Tr
�
C̃Y

�

s. t. Yii = 1

Y ≥ 0

Y � 1
L
11T .

(6.21)

A simple change of variables Z = L
L−1

Y − 1
L−1

11T , allows one to rewrite (6.21) as

max Tr (C �Z)− c�

s. t. Zii = 1

Zij ≥ −
1

L−1

Z � 0.

(6.22)

for appropriate matrix C � and constant c�. Remarkably, (6.22) coincides with the

classical semidefinite relaxation for the Max­k­Cut problem [108].

Proof. [of Lemma 6.2.1]

Since, in this proof, we will be using 1 to refer to the all-ones vector in two different

dimensions we will include a subscript denoting the dimension of the all-ones vector.
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The matrix Y �L) is block circulant and so it can be block-diagonalizable by a block

DFT matrix, FL×L ⊗ In×n, where FL×L is the L × L (normalized) DFT matrix and

⊗ is the Kronecker product. In other words,

(FL×L ⊗ In×n)Y
�L) (FL×L ⊗ In×n)

T

is block diagonal. Furthermore, note that

Y �L) =

�

1L 1TL ⊗
1n 1Tn −Y

L− 1

�

−

�

IL×L ⊗

�

Y −
1n 1Tn −Y

L− 1

��

.

Also, It is easy to check that

(FL×L ⊗ In×n)

�

IL×L ⊗

�

Y −
1n 1Tn −Y

L− 1

��

(FL×L ⊗ In×n)
T = IL×L⊗

�

Y −
1n 1Tn −Y

L− 1

�

�

and

(FL×L ⊗ In×n)

�

1L 1TL ⊗
1n 1Tn −Y

L− 1

�

(FL×L ⊗ In×n)
T = L

�

e1e
T
1 ⊗

1n 1Tn −Y

L− 1

�

�

This means that (FL×L ⊗ In×n)Y
�L) (FL×L ⊗ In×n)

T is a block diagonal matrix

with the first block equal to � and all other diagonal blocks equal to B where � and

B are given by

� = Y −
1n 1Tn −Y

L− 1
+ L

1n 1Tn −Y

L− 1
= 1n 1Tn and B = Y −

1n 1Tn −Y

L− 1
.

Thus, the condition Y �L) � 0 is equivalent to Y − �n �
T
n −Y

L−1
� 0 which can be rewritten

as,

Y −
1

L
1n 1Tn � 0.
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We remark that exact recovery guarantees can be shown for similar SDPs for both

k-means clustering [25] and recovery in the Stochastic Block Model with multiple

clusters [8]. While we are not going to discuss these results here, we comment that

such guarantees are obtained with arguments similar to those described in Chapter 3.

6.3 The viewing direction problem in Cryo-EM

We finish this chapter with a particularly challenging synchronization-type prob-

lem, the viewing direction estimation problem in Cryo-Electron Microscopy (Cryo-

EM) [204], mentioned in Section 1.2.2. This section is meant as a brief preview for

an upcoming publication of the author, Yutong Chen, and Amit Singer.

Cryo-EM is a technique used to determine the three-dimensional structured of

biological macromolecules. The molecules are rapidly frozen in a thin layer of ice

and imaged with an electron microscope, which gives two-dimensional projections

(see Figure 6.2). One of the main difficulties with this imaging process is that these

molecules are imaged at different unknown orientations in the sheet of ice and each

molecule can only be imaged once (due to the destructive nature of the imaging

process). More precisely, each measurement consists of a tomographic projection of a

rotated (by an unknown rotation Ri) copy the molecule (as illustrated in Figure 6.2).

The task is then to reconstruct the molecule density from many such measurement

(see Figure 6.3) for a idealized density and measurement dataset). The problem

of recovering the molecule density knowing the rotations fits in the framework of

classical tomography for which effective methods exist, for this reason we will, once

again, focus on determining the unknown rotations.

An added difficulty is the fact that the image process is extremely noisy. In fact,

it is already non-trivial to distinguish whether a molecule was actually imaged or if

the image consists only of noise (see Figure 6.4 for a real example of a measurement
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Figure 6.2: Illustration of the Cryo-EM imaging process: A molecule is imaged af-
ter being frozen at a random (unknown) rotation and a tomographic 2-dimensional
projection is captured. Image courtesy of Amit Singer and Yoel Shkolnisky [204].

in this process). On the other hand, these datasets consist of many pictures which

renders reconstruction possible.

The most direct way of describing this problem in the general framework is by

considering the space of (say, bandlimited) molecule densities φ in R
3 and G ∼= SO(3)

acting by rotating the molecule (φ(·) → φ(g·)). In this case, this problem would be

similar to multireference alignment in signal processing (Section 6.1) with the added

difficulty that we do not measure a noisy copy of the molecule, but a noisy tomography

projection.

Fortunately, the Fourier slice theorem, a central mathematical tool in the area of

tomography, provides a way of comparing tomographic projections taken from dif-

ferent viewing directions. It states that the two-dimensional Fourier transform of

a tomographic projection of a molecule density φ coincides with the restriction to

a plane normal to the projection direction, a slice, of the three-dimensional Fourier

transform of the density φ. This means that we can formulate the problem as estimat-

ing the three-dimensional Fourier transforms of molecule density φ in R
3, where the

observation model now becomes: SO(3) acts by rotating the molecule (φ(·)→ φ(g·))

and the measurement consists of a restriction to the equator slice.
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Figure 6.3: A illustration of a Cryo-EM dataset. Given tomographic projections of a
molecule density taken at unknown rotations, we are interested in determining such
rotations with the objective of reconstructing the molecule density. Image courtesy
of Amit Singer and Yoel Shkolnisky [204].

 

 

Figure 6.4: Sample images from the E. coli 50S ribosomal subunit, generously pro-
vided by Fred Sigworth at the Yale Medical School.

Any two two-dimensional slices have to intersect in a line (see Figure 6.5), mean-

ing that, in the noiseless case, each pair of two-dimensional restriction must have a

common line. Identifying these common lines and then, from them, estimating the

rotations has been a strategy behind many successful recovery algorithms [226, 204,

207, 203].

Although having many extra difficulties, one can draw a parallel between this

problem and the multireference alignment problem in signal processing (Section 6.1).

A natural approach is to, for each pair of two-dimensional slices, estimate the com-

mon lines as the pair of lines that are the most similar. One can then attempt to find

the rotations for each slice that are the most compatible with these pairs of common

lines. In 2011, Singer and Shkolnisky [204] propose both a spectral method and a
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Figure 6.5: An illustration of the use of the Fourier slice theorem and the common
lines approach on the viewing direction problem in Cryo-EM. Image courtesy of Amit
Singer and Yoel Shkolnisky [204].

semidefinite programming–based method to find the rotations. The spectral method

essentially corresponds to an instance of the general semidefinite program (1.9), con-

sidering the most popular representation of SO(3), as 3× 3 orthogonal matrices with

positive determinant,

Figure 6.6: An illustration of the approximate representation of SO(3) described by
permutation on a discretization ω1� . . . � ωL of the sphere. For each element g ∈ SO(3)
we associate the permutation π that g approximately induces on the points of the
discretization.

Similarly to the signal processing problem, this method has the shortcoming that

it loses information, it only keeps the best pairwise common lines, ignoring how

compatible different pairs of common lines would be. One can again formalize a quasi-

MLE objective function that takes into account the likelihood of all pairs of common
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lines, not just the best ones. This objective function turns out to be approximated

by a linear function if one takes a larger dimensional (approximate) representation

of SO(3). Given a discretization of the sphere, one can approximately represent an

element of g ∈ SO(3) by the permutation π it (approximately) induces on the points

(see Figure 6.6).

The idea is then to develop a semidefinite programming-based approach, inspired

in (1.9). As suggested by Remark 6.1.4, representation theoretical properties of SO(3)

play a role at devising computationally efficient methods to solve the corresponding

SDP. A detailed description (and analysis) of this approach will be subject of a future

publication.
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Chapter 7

Conclusions and Open Problems

7.1 Conclusions

Synchronization–type problems form a rich class of problems of great interest from

both theoretical and practical viewpoints. In this thesis we only scratched the surface,

as far as having a good understanding of these problems, their average hardness, and

the effectiveness of different algorithmic approaches. We sincerely hope that this

motivates further research towards a general understanding of this class of problems.

In that note, we finish this thesis with a list of open problems, not necessarily related

to the subject of this thesis, that are dear to the author.

7.2 Open Problems

7.2.1 Rank recovery for the multireference alignment SDP

Numerical simulations (see Figure 7.1 and [32, 37]) suggest that, below a certain

noise level, the semidefinite program (6.14) is tight with high probability. However,

an explanation of this phenomenon remains an open problem [37].

199



0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

σ
p

Figure 7.1: Fraction of trials �among 100) on which r�nk recovery was observed, for various values
of noise σ. The plot corresponds to the multireference alignment problem treated in Section 6.1. It
suggests that r�nk recovery happens with high probability, below certain noise levels [32, 37].

7.2.2 Sample complexity for multireference alignment

Another important question related to the signal processing problem described in

Section 6.1 is to understand its sample complexity. Since the objective is to recover

the underlying signal u, a larger number of observations n should yield a better

recovery (considering the model in (6.1)). The question can be formalized as: for a

given value of L and σ, how large does n need to be in order to allow for a reasonably

accurate recovery?

7.2.3 Deterministic RIP matrices

Let K < M < N be positive integers and let δ > 0. An M × N matrix Φ satisfies

the (K� δ)-restricted isometry property (RIP) if

(1− δ)�x�2 ≤ �Φx�2 ≤ (1 + δ)�x�2

whenever x ∈ R
N has at most K nonzero entries (i.e. x is a K-sparse vector). RIP

matrices are important in signal processing, making possible the measurement and

recovery of a sparse signal using significantly less measurements than the dimension
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of the signal [65, 96]. Random matrices are known to satisfy the RIP with high

probability for several distributions for K = Oδ(M/ polylogN). However, matri-

ces constructed randomly have a nonzero (albeit small) probability of failing to be

RIP, and checking whether a given matrix satisfies this property is an NP-hard prob-

lem [43]. This has raised the interest in constructing explicit (deterministic) RIP

matrices. Most deterministic constructions only achieve K = Oδ(
√
M). The only

construction so far to break this square root bottleneck is due to Bourgain, Dilworth,

Ford, Konyagin and Kutzarova [57]; they construct a matrix satisfying RIP with

K = Oδ(M
1/2+�) for some � > 0 (see also [164]). Some effort has also been made in

derandomizing the construction of RIP matrices [34] i.e. finding random construc-

tions of RIP matrices using as few random bits as possible. In [35] it was conjectured

that a certain submatrix of the DFT satisfies the (K� δ)-RIP for some δ <
√
2−1 and

K = O(M/ polylogN), this conjecture was later shown to be related to a conjecture

in Number Theory [40].

7.2.4 Partial Fourier matrices satisfying the Restricted Isom-

etry Property

Consider the randomM×N matrix obtained by drawing rows uniformly with replace-

ment from the N × N discrete Fourier transform matrix. If M = Ωδ(K polylogN),

then the resulting partial Fourier operator is known to satisfy the restricted isom-

etry property with high probability, and this fact has been dubbed the uniform

uncertainty principle [68]. A fundamental problem in compressed sensing is de-

termining the smallest number M of random rows necessary. To summarize the

progress to date, Candès and Tao [68] first found that M = Ωδ(K log6N) rows suf-

fice, then Rudelson and Vershynin [192] proved M = Ωδ(K log4N), and recently,

Bourgain [56] achieved M = Ωδ(K log3N); Nelson, Price and Wootters [172] also

achieved M = Ωδ(K log3N), but using a slightly different measurement matrix. As
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far as lower bounds, in [38] it was shown that M = Ωδ(K logN) is necessary. This

draws a constrast with random Gaussian matrices, where M = Ωδ(K log(N/K)) is

known to suffice.

7.2.5 Monotonicity of average singular value

Recall Definition 2.3.2: For d ≥ 1 and GR ∈ R
d×d a gaussian random matrix (not

necessarily symmetric) with i.i.d real valued entries N (0� d−1), αR(d) was defined as

αR(d) := E

�
1

d

d�

j=1

σj(GR)

�

�

where σj(G) is the jth singular value of G.

Numerical simulations suggest that αR(d) is monotonically increasing with d [36].

Perhaps more intriguing is the fact that the analogous quantity α�(d) over the com-

plex numbers (where G� ∈ �
d×d has complex values Gaussian entries — see [36])

appears to be monotonically decreasing. Establishing the monotonicity of either of

these quantities remains an open problem [36] (see Conjecture 2.3.5).

7.2.6 Positive Principal Component Analysis

This problem is posed, by Andrea Montanari, in [166]. We briefly describe it here:

Given a symmetric matrix W ∈ R
n×n the positive principal component analysis

problem can be written as

max xTWx

s. t. �x� = 1

x ≥ 0

x ∈ R
n.

(7.1)

In the flavor of the semidefinite relaxations considered in this thesis, (7.1) can be

202



rewritten (for X ∈ R
n×n) as

max Tr(WX)

s. t. Tr(X) = 1

X ≥ 0

X � 0

rank(X) = 1�

and further relaxed to the semidefinite program

max Tr(WX)

s. t. Tr(X) = 1

X ≥ 0

X � 0.

(7.2)

Similarly to the phenomenon investigated in Chapter 5, this relaxation appears

to have a remarkable tendency to be tight. In fact, numerical simulations suggest

that if W is taken to be a Wigner matrix (symmetric with i.i.d. standard Gaussian

entries), then the solution to (7.2) is rank 1 with high probability, but there is no

explanation of this phenomenon. Note that this is qualitatively different from the

examples studied in this thesis, as there isn’t necessarily a planted solution in W .

7.2.7 Spectral norm of random matrices

Given M symmetric matrices A1� . . . � AM ∈ R
n×n, consider the random matrix

X =
M�

k=1

gkAk� (7.3)

where gk are i.i.d. standard Gaussian random variables. Both the noncommutative

Khintchine inequality and the matrix concentration method (see [220, 221]) provide
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the following estimate for the spectral norm of X:

E�X� � σ
�
log n with σ2 :=

�
�
�
�
�

M�

k=1

A2k

�
�
�
�
�
. (7.4)

While (7.4) has proven to be of great use in many applications, the dimension factor

is known not to always be tight. In fact, in Section 4.1 we described an improved

bound (4.1) on the particular case where the entries of X are independent.

It is an important problem to understand when the dimension dependence of the

bound (7.4) can be improved. We refer the reader to [222] and references within for

some progress in this direction.
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