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0

Notes on this Draft and Current Status

This is a draft of a book in preparation by the authors.

While the contents are already fairly self-contained there are

still chapters we plan to add. In particular, chapters on Low Rank

Modelling, Randomized Linear Algebra, Statistics, Optimization, and

Deep Learning are in the works.

The Introduction (Chapter 1) is also not complete at this point.

While Chapters 2 through 10 are not at their final state, we anticipate

their focus and content not to change drastically and they can already

by used for a graduate course in Mathematics of Data Science; they

have been used as such by the authors at their home institutions.

We welcome suggestions and comments, and would like to learn about

any possible errors and typos. Please contact the authors at bandeira@

math.ethz.ch, strohmer@math.ucdavis.edu, or amits@math.princeton.

edu.

Thank you,

Afonso, Thomas, and Amit.
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Curses, Blessings, and Surprises in High
Dimensions

This chapter discusses the curse of dimensionality, as well as many of its
blessings. The first is caused by the exponential increase in volume associated
with adding extra dimensions to Euclidean space. The latter is a manifesta-
tion of an intriguing phenomenon called the concentration of measure. This
concentration phenomenon will give rise to many surprising facts about high
dimensional geometry that we will discuss. Since several of the results dis-
cussed in this chapter require basic tools from probability, we will also review
some fundamental probabilistic concepts.

2.1 The Curse of Dimensionality

The curse of dimensionality refers to the fact that many algorithmic ap-
proaches to problems in Rd become exponentially more difficult as the di-
mension d grows. The expression “curse of dimensionality” was coined by
Richard Bellman to describe the problem caused by the exponential increase
in volume associated with adding extra dimensions to Euclidean space [27].

For instance, if we want to sample the unit interval such that the distance
between adjacent points is at most 0.01, 100 evenly-spaced sample points
suffice; an equivalent sampling of a five-dimensional unit hypercube with a
grid with a spacing of 0.01 between adjacent points would require 1010 sample
points. Thus, a modest increase in dimensions results in a dramatic increase
in required data points to cover the space at the same density.

Intimately connected to the curse of dimensionality is the problem of over-
fitting and underfitting. Here, overfitting refers to the issue that an algorithm
may show good performance on the training data, but poor generliazation
to other data. Underfitting in turn, corresponds to poor performance on the
training data (and poor generalization to other data). This problem manifests
itself in many machine learning algorithms.

We will discuss a toy example from image classification in more detail to
illustrate the underlying issues. Assume we want to classify images into two
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groups, cars and bicycles, say. From the vast number of images depicting cars
or bicycles, we are only able to obtain a small number of training images, say
five images of cars and five images of bicycles. We want to train a simple linear
classifier based on these ten labeled training images to correctly classify the
remaining unlabeled car/bicycle images. We start with a simple feature, e.g.
the amount or red pixels’ in each image. However, this is unlikely to give a lin-
ear separation of the training data. We add more features and eventually the
training images become linearly separable. This might suggest that increas-
ing the number of features until perfect classification of the training data is
achieved, is a sound strategy. However, as we linearly increase the dimension
of the feature space, the density of our training data decreases exponentially
with the feature dimension.

In other words, to maintain a comparable density of our training data,
we would need to increase the size of the datset exponentially – the curse of
dimensionality. Thus, we risk producing a model that could be very good at
predicting the target class on the training set, but it may fail miserably when
faced with new data. This means that our model does not generalize from the
training data to the test data.

2.2 Surprises in High Dimensions

When we peel an orange, then after having removed the rind we are still left
with the majority of the orange. Suppose now we peel a d-dimensional or-
ange for large d, then after removing the orange peel we would be left with
essentially nothing. The reason for this – from a healthy nutrition viewpoint
discouraging – fact is that for a d-dimensional unit ball almost all of its volume
is concentrated near the boundary sphere. This is just one of many surprising
phenomena in high dimensions. Many of these surprises are actually a man-
ifestation of some form of concentration of measure that we will analyze in
more detail in the next section (and then these surprises are not so surprising
anymore ...).

When introducing data analysis concepts, we typically use few dimensions
in order to facilitate visualization. However, our intuition about space, which
is naturally based on two and three dimensions, can often be misleading in
high dimensions. Many properties of even very basic objects become coun-
terintuitive in higher dimensions. Understanding these paradoxical properties
is essential in data analysis as it allows us to avoid pitfalls in the design of
algorithms and statistical methods for high-dimensional data. It is therefore
instructive to analyze the shape and properties of some basic geometric forms
that we understand very well in dimensions two and three, in high dimensions.

To that end, we will look at some of the properties of the sphere and the
cube as the dimension increases. The d-dimensional hyperball of radius R is
defined by

Bd(R) = {x ∈ Rd : x21 + · · ·+ x2d ≤ R2},
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the d-dimensional hypersphere (or d-sphere) of radius R is given by

Sd−1(R) = {x ∈ Rd : x21 + · · ·+ x2d = R2},

and the d-dimensional hypercube with side length 2R is the subset of Rd
defined as the d-fold product of intervals [−R,R]:

Cd(R) = [−R,R]× · · · × [−R,R]︸ ︷︷ ︸
d times

.

If there is no danger of confusion, we may write Bd for Bd(1), Sd−1 for
Sd−1(1), and Cd for Cd( 1

2 ).

2.2.1 Geometry of spheres and balls in high dimension

Volume of the hyperball

Theorem 2.1. The volume of Bd(R) is given by

Vol(Bd(R)) =
π
d
2Rd

d
2 Γ (d2 )

. (2.1)

Proof. The volume of Bd(R) is given by

Vol(Bd(R)) =

∫ R

0

sdr
d−1dr =

sdR
d

d
, (2.2)

where sd denotes the (hyper-)surface area of a unit d-sphere. A unit d-sphere
must satisfy

sd

∫ ∞
0

e−r
2

rd−1dr =

∫ ∞
−∞
· · ·
∫ ∞
−∞︸ ︷︷ ︸

d times

e−(x
2
1+···+x

2
d)dx1 . . . dxd =

(∫ ∞
−∞

e−x
2

dx
)d
.

Recall that the Gamma function is given by

Γ (n) =

∫ ∞
0

rn−1e−rdr = 2

∫ ∞
0

e−r
2

r2n−1dr,

hence
1

2
sdΓ (

d

2
) =

[
Γ (

1

2
)
]d

=
(
π

1
2

)d
,

and thus

sd =
2π

d
2

Γ (d2 )
.

Plugging this expression into (2.2) gives

Vol(Bd(R)) =
π
d
2Rd

d
2 Γ (d2 )

. (2.3)

ut
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For positive integers n there holds Γ (n) = (n − 1)!. Using Stirling’s For-
mula,

Γ (n) ∼
√

2π

n

(n
e

)n
we obtain as approximation for the volume of the unit d-ball for large d

Vol(Bd) ≈ 1√
dπ

(2πe

d

) d
2

. (2.4)

Since the denominator in the parenthesis of equation (2.4) goes to infinity
much faster than the numerator, the volume of the unit d-sphere goes rapidly
to 0 as the dimension d increases to infinity, see also Figure 2.1.

Thus, unit spheres in high dimensions have almost no volume—compare
this to the unit cube, which has volume 1 in any dimension. For Bd(R) to
have volume equal to 1, its radius R must be approximately (asymptotically)

equal to
√

d
2πe .

Fig. 2.1: The volume of the unit d-ball using the exact formula in equa-
tion (2.3). The volume reaches its maximum for d = 5 and decreases rapidly
to zero with increasing dimension d.

Concentration of the volume of a ball near its equator

If we take an orange and cut it into slices, then the slices near the center
are larger since the sphere is wider there. This effect increases dramatically
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(exponentially with the dimension) with increasing dimension. Assume we
want to cut off a slab around the “equator1” of the d-unit ball such that 99%
of its volume is contained inside the slab. In two dimensions the width of the
slab has to be almost 2, so that 99% of the volume are captured by the slab.
But as the dimension increases the width of the slab gets rapidly smaller.
Indeed, in high dimensions only a very thin slab is required, since nearly all
the volume of the unit ball lies a very small distance away from the equator.
The following theorem makes the considerations above precise.

Theorem 2.2. Almost all the volume of Bd(R) lies near its equator.

Proof. It suffices to prove the result for the unit d-ball. Without loss of gen-
erality we pick as “north” the direction x1. The intersection of the sphere
with the plane x1 = 0 forms our equator, which is formally given by the
d − 1-dimensional region {x : ‖x‖ ≤ 1, x1 = 0}. This intersection is a sphere
of dimension d − 1 with volume Vol(Bd−1) given by the (d − 1)-analog of
formula (2.3) with R = 1.

We now compute the volume of Bd that lies between x1 = 0 and x1 = p0.
Let P0 = {x : ‖x‖ ≤ 1, x1 ≥ p0} be the “polar cap”, i.e., part of the sphere
above the slab of width 2p0 around the equator. To compute the volume of
the cap P we will integrate over all slices of the cap from 0 to p0. Each such
slice will be a sphere of dimension d−1 and radius

√
1− p2, hence its volume

is (1− p2)
d−1
2 Vol(Bd−1). Therefore

Vol(P ) =

∫ 1

p0

(1− p2)
d−1
2 Vol(Bd−1) dp = Vol(Bd−1)

∫ 1

p0

(1− p2)
d−1
2 dp.

Using ex ≥ 1 + x for all x we can upper bound this integral by

Vol(P ) ≤ Vol(Bd−1)

∫ ∞
p0

e−
d−1
2 p2 dp ≤ Vol(Bd−1)

d− 1
e−

(d−1)p20
2 ,

where we have bounded the integral via the complementary error function
erfc(x) and used the fact that erfc(x) ≤ e−x2

.

Recall, from (2.3) that Vol(Bd) = π
d
2

d
2 Γ ( d2 )

, so, for d large enough (since

Γ ( d2 )

Γ ( d−1
2 )
≈
√

d
2 ),

Vol(Bd−1) =
π−1/2

d−1
d

Γ (d2 )

Γ (d−12 )
Vol(Bd) ≤ d− 1

2
Vol(Bd).

Finally, a simple calculation shows that the ratio between the volume of the
polar caps and the entire hypersphere is bounded by

1To define the “equator” of a the d-dimensional ball, we need to pick a “north
pole” as reference. Without loss of generality we could pick the unit vector in the
x1-direction as defining “north”.
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2 Vol(P )

Vol(Bd)
≤ 2 Vol(P )

Vol(Bd−1)
≤ e−

d−1
2 p20 .

The expression above shows that this ratio decreases exponentially as both d
and p increase, proving our claim that the volume of the sphere concentrates
strongly around its equator. ut

Concentration of the volume of a ball on shells

We consider two concentric balls Bd(1) and Bd(1− ε). Using equation (2.3),
the ratio of their volumes is

Vol(Bd(1− ε))
Vol(Bd(1))

= (1− ε)d.

Clearly, for every ε this ratio tends to zero as d → ∞. This implies that the
spherical shell given by the region between Bd(1) and Bd(1− ε) will contain
most of the volume of Bd(1) for large enough d even if ε is very small. How
quickly does the volume concentrate at the surface of Bd(1)? We choose ε as
a function of d, e.g. ε = t

d , then

Vol(Bd(1− ε))
Vol(Bd(1))

= (1− t

d
)d → e−t.

Thus, almost all the volume of Bd(R) is contained in an annulus of width
R/d.

Therefore, if we peel a d-dimensional orange and even if we peel it very
carefully so that we remove only a very thin layer of its peel, we will have
removed most of the orange and are left with almost nothing.

2.2.2 Geometry of the Hypercube

We have seen that most of the volume of the hypersphere is concentrated near
its surface. A similar result also holds for the hypercube, and in general for
high-dimensional geometric objects. Yet, the hypercube exhibits an even more
interesting volume concentration behavior, which we will establish below.

We start with a basic observation.

Proposition 2.3. The hypercube Cd has volume 1 and diameter
√
d.

The above proposition, although mathematically trivial, hints already at a
somewhat counterintuitive behavior of the cube in high dimensions. Its cor-
ners seem to get “stretched out” more and more, while the rest of the cube
must “shrink” to keep the volume constant. This property becomes even more
striking when we compare the cube with the sphere as the dimension increases.

In two dimensions (Figure 2.2), the unit square is completely contained in
the unit sphere. The distance from the center to a vertex (radius of the circum-

scribed sphere) is
√
2
2 and the apothem (radius of the inscribed sphere) is 1

2 . In
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0.5
√
2

2
1

Fig. 2.2: 2-dimensional unit sphere and unit cube, centered at the origin.

four dimensions (Figure 2.3), the distance from the center to a vertex is 1, so
the vertices of the cube touch the surface of the sphere. However, the apothem
is still 1

2 . The result, when projected in two dimensions no longer appears
convex, however all hypercubes are convex. This is part of the strangeness of
higher dimensions - hypercubes are both convex and “pointy.” In dimensions

greater than 4 the distance from the center to a vertex is
√
d
2 > 1, and thus

the vertices of the hypercube extend far outside the sphere, cf. Figure 2.4.

0.5 1

Fig. 2.3: Projections of the 4-dimensional unit sphere and unit cube, centered
at the origin (4 of the 16 vertices of the hypercube are shown).

The considerations above suggest the following observation:

“Most of the volume of the high-dimensional cube is located in its corners.”

We will prove this observation in Section 2.4.2 using probabilistic tech-
niques which we will introduce in the next sections.
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0.5

1

√
d/2

Fig. 2.4: Projections of the d-dimensional unit sphere and unit cube, centered
at the origin (4 of the 2d vertices of the hypercube are shown).

2.3 Basic Concepts from Probability

We briefly review some fundamental concepts from probability theory, which
are helpful or necessary to understand the blessings of dimensionality and
some of the surprises encountered in high dimensions. More advanced proba-
bilistic concepts will be presented in Chapter 6. We assume that the reader is
familiar with elementary probability as is covered in introductory probability
courses (see, for example [54, 113]).

The two most basic concepts in probability associated with a random
variable X are expectation (or mean) and variance, denoted by

E[X] and Var(X) := E[X − E[X]]2,

respectively. An important tool to describe probability distributions is the
moment generating function of X, defined by

MX(t) = E[etX ], t ∈ R,

the choice of nomenclature can be easily justified by expanding MX(t) in a
series. The p-th moment of X is defined by E[Xp] for p > 0 and the p-th
absolute moment is E[|X|p].

We can introduce Lp-norms of random variables by taking the p-th root
of moments, i.e.,

‖X‖Lp :=
(
E[|X|p]

) 1
p , p ∈ [0,∞],

with the usual extension to p =∞ by setting

‖X‖∞ := ess sup |X|.
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Let (Ω,Σ,P) be a probability space, where Σ denotes a σ-algebra on the
sample space Ω and P is a probability measure on (Ω,Σ). For fixed p the
vector space Lp(Ω,Σ,P) consists of all random variables X on Ω with finite
Lp-norm, i.e.,

Lp(Ω,Σ,P) = {X : ‖X‖Lp <∞}.

We will usually not mention the underlying probability space. For example,
we will often simply write Lp for Lp(Ω,Σ,P).

The case p = 2 deserves special attention since L2 is a Hilbert space with
inner product and norm

〈X,Y 〉L2 = E[XY ], ‖X‖L2 =
(
E[X2]

) 1
2 ,

respectively. Note that the standard deviation σ(X) :=
√

Var(X) of X can be
written as

σ(X) = ‖X − E[X]‖L2 .

The covariance of the random variables X and Y is

cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = 〈X − E[X], Y − E[Y ]〉L2 . (2.5)

We recall a few classical inequalities for random variables. Hölder’s in-
equality states that for random variables X and Y on a common probability
space and p, q ≥ 1 with 1/p+ 1/q = 1, there holds

|E[XY ]| ≤ ‖X‖Lp‖Y ‖Lq . (2.6)

The special case p = q = 2 is the Cauchy-Schwarz inequality

|E[XY ]| ≤
√
E[|X|2]E[|Y |2]. (2.7)

Jenssen’s inequality states that for any random variable X and a convex
function ϕ : R→ R, we have

ϕ(E[X]) ≤ E[ϕ(X)]. (2.8)

Since ϕ(x) = xq/p is a convex function for q ≥ p ≥ 0, it follows immediately
from Jenssen’s inequality that

‖X‖Lp ≤ ‖X‖Lq for 0 ≤ p ≤ q <∞.

Minkovskii’s inequality states that for any p ∈ [0,∞] and any random
variables X,Y , we have

‖X + Y ‖Lp ≤ ‖X‖Lp + ‖Y ‖Lp , (2.9)

which can be viewed as the triangle inequality.

The cumulative distribution function of X is defined by
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FX(t) = P(X ≤ t), t ∈ R.

We have P{X > t} = 1− FX(t), where the function t 7→ P{|X| ≥ t} is called
the tail of X. The following lemma establishes a close connection between
expectation and tails.

Proposition 2.4 (Integral identity). Let X be a non-negative random vari-
able. Then

E[X] =

∫ ∞
0

P{X > t} dt.

The two sides of this identity are either finite or infinite simultaneously.

Given an event E with non-zero probability,P(·|E) denotes conditional
probability, furthermore for a random variable X we use E[X|E] to denote
the conditional expectation.

Markov’s inequality is a fundamental tool to bound the tail of a random
variable in terms of its expectation.

Proposition 2.5. For any non-negative random variable X : S → R we have

P{X ≥ t} ≤ E[X]

t
for all t > 0. (2.10)

We provide two versions of the same proof, one using the language of
conditional expectations.

Proof. Let I denote the event {X ≥ t}. Then

E[X] =
∑
s∈S

p(s)X(s) =
∑
s∈I

p(s)X(s) +
∑
s∈Ic

p(s)X(s),

where p(s) denotes the probability of s; in case of continuous variables this
should be replaced with the density function and

∑
with an integral.

Since X is non-negative, it holds
∑
s∈Ic p(s)X(s) ≥ 0 and

E[X] ≥
∑
s∈I

p(s)X(s) ≥ t
∑
s∈I

p(s) = tP{I}.

Proof (Using the language of conditional expectation).

E[X] = P(X < t)E[X|X < t] + P(X > t)E[X|X ≥ t],

where we take the product to be zero if the probability is zero.
Since X is non-negative, it holds P(X < t)E[X|X < t] ≥ 0. Also, E[X|X ≥

t] > t. Hence,

E[X] ≥ P(X > t)E[X|X > t] ≥ tP(X ≥ t).

An important consequence of Markov’s inequality is Chebyshev’s inequal-
ity.
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Corollary 2.6. Let X be a random variable with mean µ and variance σ2.
Then, for any t > 0

P{|X − µ| ≥ t} ≤ σ2

t2
. (2.11)

Chebyshev’s inequality, which follows by applying Markov’s inequality to
the non-negative random variable Y = (X−E[X])2, is a form of concentration
inequality, as it guarantees that X must be close to its mean µ whenever the
variance of X is small. Both, Markov’s and Chebyshev’s inequality are sharp,
i.e., in general they cannot be improved.

Markov’s inequality only requires the existence of the first moment. We can
say a bit more if in addition the random variable X has a moment generating
function in a neighborhood around zero, that is, there is a constant b >
0 such that E[eλ(X−µ)] exists for all λ ∈ [0, b]. In this case we can apply
Markov’s inequality to the random variable Y = eλ(X−µ) and obtain the
generic Chernoff bound

P{X − µ ≥ t} = P{eλ(X−µ) ≥ eλt} ≤ E[eλ(X−µ)]

eλt
. (2.12)

In particular, optimizing over λ in order to obtain the tightest bound in (2.12)
gives

logP{X − µ ≥ t} ≤ − sup
λ∈[0,b]

{λt− logE[eλ(X−µ)]}.

Gaussian random variables are among the most important random vari-
ables. A Gaussian random variable X with mean µ and standard deviation σ
has a probability density function given by

ψ(t) =
1√

2πσ2
exp

(
− (t− µ)2

2σ2

)
. (2.13)

We write X ∼ N (µ, σ2). We call a Gaussian random variable X with E[X] = 0
and E[X2] = 1 a standard Gaussian or standard normal (random variable).
In this case we have the following tail bound.

Proposition 2.7 (Gaussian tail bounds). Let X ∼ N (µ, σ2). Then for all
t > 0

P(X ≥ µ+ t) ≤ e−t
2/2σ2

. (2.14)

Proof. We use the moment-generating function λ 7→ E[eλX ]. A simple calcu-
lation gives

E[eλX ] =
1√
2π

∫ ∞
−∞

eλx−x
2/2 dx =

1√
2π
eλ

2/2

∫ ∞
−∞

e−(x−λ)
2/2 dx = eλ

2/2,

where we have used the fact that
∫∞
−∞ e−(x−λ)

2/2 dx is just the entire Gaus-

sian integral shifted and therefore its value is
√

2π. We now apply Chernoff’s
bound (2.12) and obtain P(X > t) ≤ E[eλX ]e−λt. Minimizing this expression

over λ gives λ = t and thus P(X > t) ≤ e−t2/2.
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Definition 2.8. A random variable X with mean µ = E[X] is called sub-
Gaussian if there is a positive number σ such that

E[eλ(X−µ)] ≤ eσ
2λ2/2, for all λ ∈ R.

If X satisfies the above definition, we also say that X is sub-Gaussian with
parameter σ, or X is (µ, σ) sub-Gaussian in case we want to emphasize µ as
well. Clearly, owing to the symmetry in the definition, −X is sub-Gaussian if
and only if X is sub-Gaussian. Obviously, any Gaussian random variable with
variance σ2 is sub-Gaussian with parameter σ. We refer to [138] for other,
equivalent, definitions of sub-Gaussian random variables.

Combining the moment condition in Definition 2.8 with calculations simi-
lar to those that lead us to the Gaussian tail bounds in 2.7, yields the following
concentration inequality for sub-Gaussian random variables.

Proposition 2.9 (Sub-Gaussian tail bounds). Assume X is sub-Gaussian
with parameter σ. Then for all t > 0

P(|X − µ| ≥ t) ≤ e−t
2/2σ2

for all t ∈ R. (2.15)

An important example of non-Gaussian, but sub-Gaussian random vari-
ables are Rademacher random variables. A Rademacher random variable ε
takes on the values ±1 with equal probability and is sub-Gaussian with pa-
rameter σ. Indeed, any bounded random variable is sub-Gaussian.

While many important random variables have a sub-Gaussian distribu-
tion, this class does not include several frequently occurring distributions with
heavier tails. A classical example is the chi-squared distribution, which we will
discuss at the end of this section.

Relaxing slightly the condition on the moment-generating function in Def-
inition 2.8 leads to the class of sub-exponential random variables.

Definition 2.10. A random variable X with mean µ = E[X] is called sub-
exponential if there are parameters ν, b such that

E[eλ(X−µ)] ≤ eν
2λ2/2, for all λ ≤ 1

b
.

Clearly, a sub-Gaussian random variable is sub-exponential (set ν = σ and
b = 0, where 1/b is interpreted as +∞). However, the converse is not true.
Take for example X ∼ N (0, 1) and consider the random variable Z = X2. For
λ < 1

2 it holds that

E[eλ(Z−1)] =
1√
2π

∫ ∞
−∞

eλ(x
2−1)e−x

2/2dx =
e−λ√
1− 2λ

. (2.16)

However, for λ ≥ 1
2 the moment-generating function does not exist, which

implies that X2 is not sub-Gaussian. But X2 is sub-exponential. Indeed, a
brief computation shows that
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e−λ√
1− 2λ

≤ e2λ
2

= e4λ
2/2, for all |λ| ≤ 1/4,

which in turn implies that X2 is sub-exponential with parameters (ν, b) =
(2, 4).

Following a similar procedure that yielded sub-Gaussian tail bounds pro-
duces concentration inequalities for sub-exponential random variables. How-
ever, in this case we see two different types of concentration emerging, de-
pending on the value of t.

Proposition 2.11 (Sub-exponential tail bounds). Assume X is sub-
exponential with parameters (ν, b). Then

P(X ≥ µ+ t) ≤

{
e−t

2/2ν2

if 0 ≤ t ≤ ν2

b ,

e−t/2b if t > ν2

b .
(2.17)

Both the sub-Gaussian property and the sub-exponential property is pre-
served under summation for independent random variables, and the associated
parameters transform in a simple manner.

A collection X1, . . . , Xn of mutually independent random variables that
all have the same distribution is called independent identically distributed
(i.i.d.). A random variable X ′ is called an independent copy of X if X and
X ′ are independent and have the same distribution.

Since we are not able to improve Markov’s inequality and Chebyshev’s
inequality in general, the question arises whether we can give a stronger state-
ment for a more restricted class of random variables. Of central importance
in this context is the case of a random variable that is the sum of a number
of independent random variables. This leads to the rich topic of concentra-
tion inequalities which is discussed in the next sections in this chapter and in
Chapter 6.

Before we dive right into a range of concentration inequalities in the next
section, we want to investigate one particular example. If X1, . . . , Xn are in-
dependent, standard normal random variables, then the sum of their squares,
Z =

∑n
k=1X

2
k is distributed according to the chi-squared distribution with

n degrees of freedom. We denote this by Z ∼ χ2(n). Its probability density
function is

ϕ(t) =

 t
n
2
−1e−

n
2

2
n
2 Γ (n2 )

, t > 0.

0, else.

Since the X2
k , k = 1, . . . , n are subexponential with parameters (2, 4) and in-

dependent, Z =
∑n
k=1X

2
k is subexponential with parameters (2

√
n, 4). There-

fore, using (2.17), we obtain the χ2 tail bound

P

(
1

n

∣∣∣∣∣
n∑
k=1

X2
k − 1

∣∣∣∣∣ ≥ t
)
≤

{
2e−nt

2/8 for t ∈ (0, 1).

2e−nt/8 if t ≥ 1.
(2.18)

A variation of this bound is stated in Theorem 6.23.
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2.4 Blessings of Dimensionality

Suppose we wish to predict the outcome of an event of interest. One natural
approach would be to compute the expected value of the object. However, how
can we tell how good the expected value is to the actual outcome of the event?
Without further information of how well the actual outcome concentrates
around its expectation, the expected value is of little use. We would like to
have an estimate for the probability that the actual outcome deviates from its
expectation by a certain amount. This is exactly the role that concentration
inequalities play in probability and statistics.

The concentration of measure phenomenon was put forward by Vitali Mil-
man in the asymptotic geometry of Banach spaces regarding probabilities on
product spaces in high dimensions [93, 83].

The celebrated law of large numbers of classical probability theory is the
most well known form of concentration of measure; it states that sums of in-
dependent random variables are, under very mild conditions, close to their
expectation with a large probability. We will see various quantitative ver-
sions of such concentration inequalities throughout this course. Some deal
with sums of scalar random variables, others with sums of random vectors
or sums of random matrices. Such concentration inequalities are instances of
what is sometimes called Blessings of dimensionality (cf. [50]). This expression
refers to the fact that certain random fluctuations can be well controlled in
high dimensions, while it would be very complicated to make such predictive
statements in moderate dimensions.

2.4.1 Large Deviation Inequalities

Concentration and large deviations inequalities are among the most useful
tools when understanding the performance of some algorithms. We start with
two of the most fundamental results in probability. We refer to Sections 1.7
and 2.4 in [54] for the proofs and variations.

Theorem 2.12 (Strong law of large numbers). Let X1, X2, . . . be a se-
quence of i.i.d. random variables with mean µ. Denote

Sn := X1 + · · ·+Xn.

Then, as n→∞
Sn
n
→ µ almost surely. (2.19)

The celebrated central limit theorem tells us that the limiting distribution
of a sum of i.i.d. random variables is always Gaussian. The best known version
is probably due to Lindeberg-Lévy.
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Theorem 2.13 (Lindeberg-Lévy Central limit theorem). Let X1, X2, . . .
be a sequence of i.i.d. random variables with mean µ and variance σ2. Denote

Sn := X1 + · · ·+Xn,

and consider the normalized random variable Zn with mean zero and variance
one, given by

Zn :=
Sn − E[Sn]√

VarSn
=

1

σ
√
n

n∑
i=1

(Xi − µ).

Then, as n→∞
Zn → N (0, 1) in distribution. (2.20)

The strong law of large numbers and the central limit theorem give us
qualitative statements about the behavior of a sum of i.i.d. random variables.
In many applications it is desirable to be able to quantify how such a sum
deviates around its mean. This is where concentration inequalities come into
play.

The intuitive idea is that if we have a sum of independent random variables

X = X1 + · · ·+Xn,

where Xi are i.i.d. centered random variables, then while the value of X can
be of order O(n) it will very likely be of order O(

√
n) (note that this is

the order of its standard deviation). The inequalities that follow are ways of
very precisely controlling the probability of X being larger (or smaller) than
O(
√
n). While we could use, for example, Chebyshev’s inequality for this, in

the inequalities that follow the probabilities will be exponentially small, rather
than just quadratically small, which will be crucial in many applications to
come. Moreover, unlike the classical central limit theorem, the concentration
inequalities below are non-asymptotic in the sense that they hold for all fixed
n and not just for n→∞ (but the larger the n, the stronger the inequalities
become).

Theorem 2.14 (Hoeffding’s Inequality). Let X1, X2, . . . , Xn be indepen-
dent bounded random variables, i.e., |Xi| ≤ ai and E[Xi] = 0. Then,

P

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2
∑n
i=1 a

2
i

)
.

The inequality implies that fluctuations larger than O (
√
n) have small

probability. For example, if ai = a for all i, setting t = a
√

2n log n yields that
the probability is at most 2

n .
Proof. We prove the result for the case |Xi| ≤ a, the extension to the case
|Xi| ≤ ai is straightforward. We first get a probability bound for the event∑n
i=1Xi > t. The proof, again, will follow from Markov. Since we want an
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exponentially small probability, we use a classical trick that involves exponen-
tiating with any λ > 0 and then choosing the optimal λ.

P

{
n∑
i=1

Xi > t

}
= P

{
n∑
i=1

Xi > t

}
(2.21)

= P
{
eλ
∑n
i=1Xi > eλt

}
≤ E[eλ

∑n
i=1Xi ]

etλ

= e−tλ
n∏
i=1

E[eλXi ], (2.22)

where the penultimate step follows from Markov’s inequality and the last
equality follows from independence of the Xi’s.

We now use the fact that |Xi| ≤ a to bound E[eλXi ]. Because the function
f(x) = eλx is convex,

eλx ≤ a+ x

2a
eλa +

a− x
2a

e−λa,

for all x ∈ [−a, a].
Since, for all i, E[Xi] = 0 we get

E[eλXi ] ≤ E
[
a+Xi

2a
eλa +

a−Xi

2a
e−λa

]
≤ 1

2

(
eλa + e−λa

)
= cosh(λa)

Note that2

cosh(x) ≤ ex
2/2, for all x ∈ R

Hence,

E[eλXi ] ≤ e(λa)
2/2.

Together with (2.21), this gives

P

{
n∑
i=1

Xi > t

}
≤ e−tλ

n∏
i=1

e(λa)
2/2

= e−tλen(λa)
2/2

This inequality holds for any choice of λ ≥ 0, so we choose the value of λ
that minimizes

min
λ

{
n

(λa)2

2
− tλ

}
2This follows immediately from the Taylor expansions: cosh(x) =

∑∞
n=0

x2n

(2n)!
,

ex
2/2 =

∑∞
n=0

x2n

2nn!
, and (2n)! ≥ 2nn!.
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Differentiating readily shows that the minimizer is given by

λ =
t

na2
,

which satisfies λ > 0. For this choice of λ,

n(λa)2/2− tλ =
1

n

(
t2

2a2
− t2

a2

)
= − t2

2na2

Thus,

P

{
n∑
i=1

Xi > t

}
≤ e−

t2

2na2

By using the same argument on
∑n
i=1 (−Xi), and union bounding over

the two events we get,

P

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2e−

t2

2na2

�

Remark 2.15. Hoeffding’s inequality is suboptimal in a sense we now describe.
Let’s say that we have random variables r1, . . . , rn i.i.d. distributed as

ri =

−1 with probability p/2
0 with probability 1− p
1 with probability p/2.

Then, E(ri) = 0 and |ri| ≤ 1 so Hoeffding’s inequality gives:

P

{∣∣∣∣∣
n∑
i=1

ri

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t

2

2n

)
.

Intuitively, the smaller p is, the more concentrated |
∑n
i=1 ri| should be,

however Hoeffding’s inequality does not capture this behaviour.

A natural way to attempt to capture this behaviour is by noting that the
variance of

∑n
i=1 ri depends on p as Var(ri) = p. The inequality that follows,

Bernstein’s inequality, uses the variance of the summands to improve over
Hoeffding’s inequality.

The way this is going to be achieved is by strengthening the proof above,
more specifically in step (2.22) we will use the bound on the variance to get
a better estimate on E[eλXi ] essentially by realizing that if Xi is centered,
EX2

i = σ2, and |Xi| ≤ a then, for k ≥ 2, EXk
i ≤ E|Xi|k ≤ σ2E|Xi|k−2 ≤

σ2ak−2 =
(
σ2

a2

)
ak.
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Theorem 2.16 (Bernstein’s Inequality).
Let X1, X2, . . . , Xn be independent centered bounded random variables sat-

isfying |Xi| ≤ a and E[X2
i ] = σ2. Then,

P

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)
.

Remark 2.17. Before proving Bernstein’s inequality, note that on the example
of Remark 2.15 we get

P

{∣∣∣∣∣
n∑
i=1

ri

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2np+ 2
3 t

)
,

which exhibits a dependence on p and, for small values of p is considerably
smaller than what Hoeffding’s inequality gives.

Proof.
As before, we will prove

P

{
n∑
i=1

Xi > t

}
≤ exp

(
− t2

2nσ2 + 2
3at

)
,

and then union bound with the same result for −
∑n
i=1Xi, to prove the The-

orem.
For any λ > 0 we have

P

{
n∑
i=1

Xi > t

}
= P{eλ

∑
Xi > eλt}

≤ E[eλ
∑
Xi ]

eλt

= e−λt
n∏
i=1

E[eλXi ]

The following calculations reveal the source of the improvement over Ho-
effding’s inequality.

E[eλXi ] = E

[
1 + λXi +

∞∑
m=2

λmXm
i

m!

]

≤ 1 +

∞∑
m=2

λmam−2σ2

m!

= 1 +
σ2

a2

∞∑
m=2

(λa)m

m!

= 1 +
σ2

a2
(
eλa − 1− λa

)
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Therefore,

P

{
n∑
i=1

Xi > t

}
≤ e−λt

[
1 +

σ2

a2
(
eλa − 1− λa

)]n
We will use a few simple inequalities (that can be easily proved with cal-

culus) such as3 1 + x ≤ ex, for all x ∈ R.
This means that,

1 +
σ2

a2
(
eλa − 1− λa

)
≤ e

σ2

a2
(eλa−1−λa),

which readily implies

P

{
n∑
i=1

Xi > t

}
≤ e−λte

nσ2

a2
(eλa−1−λa).

As before, we try to find the value of λ > 0 that minimizes

min
λ

{
−λt+

nσ2

a2
(eλa − 1− λa)

}
Differentiation gives

−t+
nσ2

a2
(aeλa − a) = 0

which implies that the optimal choice of λ is given by

λ∗ =
1

a
log

(
1 +

at

nσ2

)
If we set

u =
at

nσ2
, (2.23)

then λ∗ = 1
a log(1 + u).

Now, the value of the minimum is given by

−λ∗t+
nσ2

a2
(eλ
∗a − 1− λ∗a) = −nσ

2

a2
[(1 + u) log(1 + u)− u] .

This means that

P

{
n∑
i=1

Xi > t

}
≤ exp

(
−nσ

2

a2
{(1 + u) log(1 + u)− u}

)
The rest of the proof follows by noting that, for every u > 0,

3In fact y = 1 + x is a tangent line to the graph of f(x) = ex.
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(1 + u) log(1 + u)− u ≥ u
2
u + 2

3

, (2.24)

which implies:

P

{
n∑
i=1

Xi > t

}
≤ exp

(
−nσ

2

a2
u

2
u + 2

3

)
= exp

(
− t2

2nσ2 + 2
3at

)
.

�

We refer to [138] for several useful variations of Bernstein’s inequality.

2.4.2 The Geometry of the Hypercube Revisited

Equipped with the probabilistic tools from the previous sections, we are ready
to prove the somewhat counterintuitive properties of hypercubes in high di-
mensions we discussed in Section 2.2.2.

Theorem 2.18. Almost all the volume of the high-dimensional cube is located
in its corners.

The proof of this statement will be based on a probabilistic argument,
thereby illustrating (again) the nice and fruitful connection between geometry
and probability in high dimension. Pick a point at random in the box [−1, 1]d.
We want to calculate the probability that the point is also in the sphere.

Let x = (x1, . . . , xd) ∈ Rd and each xi ∈ [−1, 1] is chosen uniformly at
random. The event that x also lies in the sphere means

‖x‖2 =

√√√√ d∑
i=1

x2i ≤ 1.

Let zi = x2i and note that

E[zi] =
1

2

∫ 1

−1
t2 dt =

1

3
=⇒ E[‖x‖22] =

d

3

and

Var(zi) =
1

2

∫ 1

−1
t4 dt− (

1

3
)2 =

1

5
− 1

9
=

4

45
≤ 1

10

Using Hoeffding’s inequality,
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P(‖x‖22 ≤ 1) = P(

d∑
i=1

x2i ≤ 1)

= P(

d∑
i=1

(zi − E[zi]) ≤ 1− d

3
)

≤ exp[−
(d3 − 1)2

2d
(
2
3

)2 ]

≤ exp[−d
9

],

for sufficiently large d. Since this value converges to 0 as the dimension d goes
to infinity, this shows random points in high cubes are most likely outside the
sphere. In other words, almost all the volume of a hypercube concentrates in
its corners.

Since we now have gained a better understanding of the properties of the
cube in high dimensions, we can use this knowledge to our advantage. For
instance, this “pointiness” of the hypercube (in form of the `1-ball) turns out
to very useful in the areas of compressive sensing and sparse recovery, see
Chapter 10.

2.4.3 How to Generate Random Points on a Sphere

How can we sample a point uniformly at random from Sd−1? The first ap-
proach that may come to mind is the following method to generate random
points on a unit circle. Independently generate each coordinate uniformly at
random from the interval [−1, 1]. This yields points that are distributed uni-
formly at random in a square that contains the unit circle. We could now
project all points onto the unit circle. However, the resulting distribution will
not be uniform since more points fall on a line from the origin to a vertex of
the square, than fall on a line from the origin to the midpoint of an edge due
to the difference in length of the diagonal of the square to its side length.

To remedy this problem, we could discard all points outside the unit circle
and project the remaining points onto the circle. However, if we generalize
this technique to higher dimensions, the analysis in the previous section has
shown that the ratio of the volume of Sd−1(1) to the volume of Cd(1) decreases
rapidly. This makes this process not practical, since almost all the generated
points will be discarded in this process and we end up with essentially no
points inside (and thus, after projection, on) the sphere.

Instead we can proceed as follows. Recall that the multivariate Gaussian
distribution is symmetric about the origin. This rotation invariance is exactly
what we need. We simply construct a vector in Rd whose entries are indepen-
dently drawn from a univariate Gaussian distribution. We then normalize the
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resulting vector to lie on the sphere. This gives a distribution of points that
is uniform over the sphere.

Picking a point x uniformly at random on the sphere Sd−1 is not too differ-
ent from picking a vector at random with entries of the form (± 1√

d
, . . . ,± 1√

d
),

since every point on the sphere has to fullfill x21 + · · ·+x2d = 1, hence the “av-
erage magnitude” of xi will be 1√

d
.

Having a method of generating points uniformly at random on Sd−1 at our
disposal, we can now give a probabilistic proof that points on Sd−1 concentrate
near its equator. Without loss of generality we pick an arbitrary unit vector
x1 which represents the “north pole”, and the intersection of the sphere with
the plane x1 = 0 forms our equator. We extend x1 to an orthonormal basis
x1, . . . , xd. We create a random vector by sampling (Z1, . . . , Zd) ∼ N (0, Id)
and normalize the vector to get X = (X1, . . . , Xd) = 1∑d

k=1 Z
2
k

(Z1, . . . , Zd).

Because X is on the sphere, it holds that
∑d
k=1〈X,xk〉2 = 1. Note that we

also have E[
∑d
k=1〈X,xk〉2] = E[1] = 1. Thus, by symmetry, E[〈X,x1〉2] = 1

d .
Applying Markov’s inequality (2.10) gives

P(|〈X,x1〉| > ε) = P(〈X,x1〉2 > ε2) ≤ E(〈X,x1〉2)

ε2
=

1

dε2
.

For fixed ε we can make this probability arbitrarily small by increasing the
dimension d. This proves our claim that points on the high-dimensional sphere
concentrate near its equator.

2.4.4 Random Vectors in High Dimensions

Two basic geometric questions from a probabilistic point of view are: (i) What
length do we expect a random vector x ∈ Rn to have? (ii) What angle do we
expect two random vectors x, y ∈ Rn to have?

Suppose that the coordinates x1, . . . , xn of x are independent random vari-
ables with zero mean and unit variances (and similarly for y). It holds that

E‖x‖22 = E

[
n∑
k=1

|xk|2
]

=

n∑
k=1

E[|xk|2] = n.

Hence, we expect the typical length ‖x‖2 of x to be approximately
√
n. But

how well does the length of a random vector concentrate around its “typical
length”?

Assume for instance that the entries xk ∼ N (0, 1). In this case we can use
the χ2-concentration bound (2.18), which gives

P
(∣∣∣ 1
n
‖x‖22 − 1

∣∣∣ ≥ t) ≤ 2 exp
(
−n

8
min(t, t2)

)
. (2.25)
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This represents a concentration inequality for ‖x‖22, but we aim for a con-
centration inequality for the length ‖x‖. To do this we follow a simple but
effective trick used in the proof of Theorem 3.1.1 in [138]. We use the follow-
ing elementary observation that holds for all z ≥ 0:

|z − 1| ≥ δ implies |z2 − 1| ≥ max(δ, δ2).

Using this observation we obtain for any δ > 0 that

P
(∣∣∣ 1√

n
‖x‖2 − 1

∣∣∣ ≥ δ) ≤ P
(∣∣∣ 1
n
‖x‖22 − 1

∣∣∣ ≥ max(δ, δ2)

)
≤ 2e−nt

2/8, (2.26)

where we have used t = max(δ, δ2) in (2.25).
With some minor modifications of these steps (and a slightly different

constant) one can extend this result to random vectors with sub-Gaussian
coordinates, see e.g. Theorem 3.1.1 in [138].

We now turn our attention to the expected angle between two random
vectors. We will show that two randomly drawn vectors in high dimensions are
almost perpendicular. The following theorem quantifies this statements. We
denote the angle θd between two vectors x, y by θx,y and recall that cos θx,y =
〈x,y〉
‖x‖2‖y‖2 .

Theorem 2.19. Let x, y ∈ Rd be two random vectors with i.i.d. Rademacher
variables, i.e. the entries xi, yi take values ±1 with equal probability. Then

P

(
| cos θx,y| ≥

√
2 log d

d

)
≤ 2

d
. (2.27)

Proof. Note that 〈x, y〉 =
∑
i xiyi is the sum of i.i.d. Rademacher variables.

Hence, E[〈x, y〉] =
∑
i E[xiyi] = 0. Therefore, we can apply Hoeffding’s in-

equality. For any given t > 0

P(|〈x, y〉| ≥ t) = P
(
|〈x, y〉|
‖x‖2‖y‖2

≥ t

d

)
≤ 2 exp

(
−t2

2d

)
.

To establish the bound (2.27), we set t =
√

2d log d and obtain

P

(
| cos θx,y| >

√
2 log d

d

)
= P

(
|〈x, y〉|
d

≥
√

2 log d

d

)
≤ 2 exp(− log d) =

2

d
.

It is not surprising that a similar result holds for Gaussian random vectors
in Rd or random vectors chosen from the sphere Sd−1. Indeed, even more is
true. While we can have only d vectors that are exactly orthogonal in Rd, for
large d we can have exponentially many vectors that are almost orthogonal
in Rd. To see this we return to the setting of Theorem 2.19, choosing m
random vectors x1, . . . , xm with i.i.d. Rademacher variables as their entries.
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We proceed as in the proof of Theorem 2.19 but let t =
√

2d log c where c > 0
is a constant. This yields

P

(
| cos θxi,xj | ≥

√
2 log c

d

)
≤ 2

c
.

Note that we need to consider θxi,xj for (m2 −m)/2 such pairs (xi, xj). To
make things concrete, we can set for instance m =

√
c/4. Using the union

bound we obtain that with probability at least 7
8 it holds that

max
i,j,i 6=j

| cos θxi,xj | ≤
√

2 log c

d
.

We can now choose e.g. c = e
d

200 and obtain that we have exponentially many
(with respect to d) vectors in Rd that are almost orthogonal in the sense that
the cosine of their pairwise angle is at most 1

100 .
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Singular Value Decomposition and Principal
Component Analysis

Data is most often represented as a matrix, even network data and graphs are
often naturally represented by they adjacency matrix. For this reason Linear
Algebra is one of the key tools in data analysis. Perhaps more surprising is
the fact that spectral properties of matrices representing data play a crucial
role in data analysis. After a brief review of Linear Algebra we will illustrate
this importance with a discussion of Principal Component Analysis and tools
from random matrix theory to better understand its performance in the high
dimensional regime.

3.1 Brief review of linear algebra tools

We recommend the reader [68] and [61] as base references in the linear algebra.

Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most useful tools for ana-
lyzing data. Given a matrix M ∈ Rm×n, the SVD of M is given by

M = UΣV T , (3.1)

where U ∈ O(m), V ∈ O(n) are orthogonal matrices (meaning that UTU =
UUT = Im×m and V TV = V V T = In×n) and Σ ∈ Rm×n is a matrix with
non-negative entries on its diagonal and otherwise zero entries.

The columns of U and V are referred to, respectively, as left and right
singular vectors of M and the diagonal elements of Σ as singular values of M .
Through the SVD, any matrix can be written as a sum of rank-1 matrices

M =

r∑
k=1

σkukv
T
k , (3.2)
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where σ1 ≥ σ2 ≥ σr > 0 are the non-zero singular values of M , and uk
and vk are the corresponding left and right singular vectors. In particular,
rank(M) = r, that is, the number of non-zero singular values r is the rank of
M .

Remark 3.1. Say m ≤ n, it is easy to see that we can also think of the SVD
as having U ∈ Rm×n where UUT = I, Σ ∈ Rn×n a diagonal matrix with
non-negative entries and V ∈ O(n).

Matrix norms and low rank matrix approximation

A very powerful modelling tool in data science is low rank matrices. In fact,
we will devote whole of Chapter ?? to this topic. As already suggested in the
expansion (3.2) the SVD will play an important role in this, being used to
provide low rank approximation of data matrices.

In order to be able to talk about low rank approximations of matrices, we
need a notion of distance between matrices. Just like with vectors, the distance
between matrices can be measured using a suitable norm of the difference. One
popular norm is the Frobenius norm, or the Hilbert-Schmidt norm, defined as

‖M‖F =

√∑
i,j

M2
ij , (3.3)

which is simply the Euclidean norm of a vector of length mn of the matrix
elements. The Frobenius norm can also be expressed in terms of the singular
values. To see this, first express the Frobenius norm in terms of the trace of
MTM as

‖M‖2F =
∑
i,j

M2
ij = Tr(MTM), (3.4)

where we recall that the trace of a square matrix A is defined as

Tr(A) =
∑
i

Aii. (3.5)

A particularly important property of the trace is that for any A of size m×n
and B of size n×m

Tr(AB) = Tr(BA). (3.6)

Note that this implies that, e.g., Tr(ABC) = Tr(CAB), but it does not imply
that, e.g., Tr(ABC) = Tr(ACB) which is not true in general. Now, plugging
the SVD (3.1) into (3.4) gives

‖M‖2F = Tr(MTM) = Tr(V ΣTUTUΣV T ) = Tr(ΣTΣ) =

r∑
k=1

σ2
k, (3.7)
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where we used the orthogonality of U and V and the trace property (3.6). We
conclude that the Frobenius norm equals the Euclidean norm of the vector of
singular values.

A different way to define the size of a matrix is by viewing it as an operator
and measuring by how much it can dilate vectors. For example, the operator
2-norm is defined as

‖M‖2 = sup
‖x‖=1

‖Mx‖. (3.8)

Again, this operator norm can be succinctly expressed in terms of the singular
values. Indeed, for any x ∈ Rn

Mx =

r∑
k=1

σkuk(vTk x). (3.9)

Using the orthogonality of the left singular vectors uk we get

‖Mx‖2 =

r∑
k=1

σ2
k〈vk, x〉2 ≤ σ2

1

r∑
k=1

〈vk, x〉2 ≤ σ2
1

n∑
k=1

〈vk, x〉2 = σ2
1‖x‖2, (3.10)

where the last equality is due to the orthogonality of the right singular vectors
vk. Moreover, we get equality by choosing x = v1. We conclude that the 2-
norm is simply the largest singular value

‖M‖2 = σ1. (3.11)

A very important property of the SVD is that it provides the best low
rank approximation of a matrix, when the approximation error is measured
in terms of the Frobenius norm. Specifically, for any 0 ≤ s ≤ r consider the
rank-s matrix Ms =

∑s
k=1 σkukv

T
k . Then, among all matrices of rank s, Ms

best approximates M in terms of the Frobenius norm error. Moreover, the
approximation error is given in terms of the remaining r− s smallest singular
values as

‖M −Ms‖F = inf
B∈Rm×n,rank(B)≤s

‖M −B‖F =

√√√√ r∑
k=s+1

σ2
k (3.12)

A similar result holds for the best low rank approximation in the 2-norm

‖M −Ms‖2 = inf
B∈Rm×n,rank(B)≤s

‖M −B‖2 = σs+1 (3.13)

In fact, Ms is the best low rank approximation for any univariate matrix norm
satisfying ‖UMV ‖ = ‖M‖ for any U ∈ O(m), V ∈ O(n), that is, norms that
are invariant to multiplication by orthogonal matrices.

The low rank approximation property has a wide ranging implication on
data compression. The storage size of an m × n data matrix is mn. If that
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matrix is of rank r, then storage size reduces from mn to (n + m + 1)r (for
storing r left and right singular vectors and values). For r � min{n,m}
this reduction can be quite dramatic. For example, if r = 10 and n = m =
106, then storage reduces from 1012 entries to just 2 · 107. But even if the
matrix is not precisely of rank r, but only approximately, in the sense that
σr+1 � σ1, then we are guaranteed by the above approximation results to
incur only a small approximation due to compression using the top r singular
vectors and values. In many cases, the singular values of large data matrices
decrease very quickly, motivating this type of low rank approximation which
oftentimes is the only way to handle massive data sets that otherwise cannot
be stored and/or manipulated efficiently. Remarkably, even treating an image
as a matrix os pixel intensity values and compressing it this way yields good
image compression and de-noising algorithms (as it keeps mitigates the noise
corresponding to singular values that are truncated).

Remark 3.2. The computational complexity of computing the SVD of a matrix
of size m× n with m ≥ n is O(mn2). This cubic scaling could be prohibitive
for massive data matrices, and in Chapter ?? we discuss numerical algorithms
that use randomization for efficient computation the low rank approximation
of such large matrices.

Spectral Decomposition

If M ∈ Rn×n is symmetric then it admits a spectral decomposition

M = V ΛV T ,

where V ∈ O(n) is a matrix whose columns vk are the eigenvectors of M and
Λ is a diagonal matrix whose diagonal elements λk are the eigenvalues of M .
Similarly, we can write

M =

n∑
k=1

λkvkv
T
k .

When all of the eigenvalues ofM are non-negative we say thatM is positive
semidefinite and write M � 0. In that case we can write

M =
(
V Λ1/2

)(
V Λ1/2

)T
.

A decomposition of M of the form M = UUT (such as the one above) is called
a Cholesky decomposition.

For symmetric matrices, the operator 2-norm is also known as the spectral
norm, given by

‖M‖ = max
k
|λk(M)| .
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Quadratic Forms

In both this and following chapters, we will be interested in solving problems
of the type

max
V ∈Rn×d
V TV=Id×d

Tr
(
V TMV

)
,

where M is a symmetric n× n matrix.
Note that this is equivalent to

max
v1,...,vd∈Rn
vTi vj=δij

d∑
k=1

vTkMvk, (3.14)

where δ is the Kronecker delta (δij = 1 for i = j and δij = 0 otherwise).
When d = 1 this reduces to the more familiar

max
v∈Rn
‖v‖2=1

vTMv. (3.15)

It is easy to see (for example, using the spectral decomposition of M)
that (3.15) is maximized by the leading eigenvector of M and

max
v∈Rn
‖v‖2=1

vTMv = λmax(M).

Furthermore (3.14) is maximized by taking v1, . . . , vd to be the k leading
eigenvectors of M and its value is simply the sum of the k largest eigenvalues
of M . This follows, for example, from a Theorem of Fan (see page 3 of [96]). A
fortunate consequence is that the solution to (3.14) can be computed sequen-
tially: we can first solve for d = 1, computing v1, then update the solution for
d = 2 by simply computing v2.

Remark 3.3. All of the tools and results above have natural analogues when
the matrices have complex entries (and are Hermitian instead of symmetric).

3.2 Principal Component Analysis and Dimension
Reduction

When faced with a high dimensional dataset, a natural approach is to attempt
to reduce its dimension, either by projecting it to a lower dimensional space
or by finding a better representation for the data using a small number of
meaningful features. Beyond data compression and visualization, dimension
reduction facilitates downstream analysis such as clustering and regression
that perform significantly better in lower dimensions. We will explore a few
different ways of reducing the dimension, both linearly and non-linearly.
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We will start with the classical Principal Component Analysis (PCA).
PCA continues to be one of the most effective and simplest tools for ex-
ploratory data analysis. Remarkably, it dates back to a 1901 paper by Karl
Pearson [105].

Suppose we have n data points x1, . . . , xn in Rp, for some p, and we are
interested in (linearly) projecting the data to d < p dimensions. This is partic-
ularly useful if, say, one wants to visualize the data in two or three dimensions
(d = 2, 3). There are a couple of seemingly different criteria we can use to
choose this projection:

1. Finding the d-dimensional affine subspace for which the projections of
x1, . . . , xn on it best approximate the original points x1, . . . , xn.

2. Finding the d-dimensional projection of x1, . . . , xn that preserves as much
variance of the data as possible.

As we will see below, these two approaches are equivalent and they corre-
spond to Principal Component Analysis.

Before proceeding, we recall a couple of simple statistical quantities asso-
ciated with x1, . . . , xn, that will reappear below.

Given x1, . . . , xn we define its sample mean as

µn =
1

n

n∑
k=1

xk, (3.16)

and its sample covariance as

Σn =
1

n− 1

n∑
k=1

(xk − µn) (xk − µn)
T
. (3.17)

Remark 3.4. If x1, . . . , xn are independently sampled from a distribution, µn
and Σn are unbiased estimators for, respectively, the mean and covariance of
the distribution.

PCA as the best d-dimensional affine fit

We start with the first interpretation of PCA and then show that it is equiv-
alent to the second. We are trying to approximate each xk by

xk ≈ µ+

d∑
i=1

(βk)i vi, (3.18)

where v1, . . . , vd is an orthonormal basis for the d-dimensional subspace, µ ∈
Rp represents the translation, and βk ∈ Rd corresponds to the coefficients of
xk. Without loss of generality we take

n∑
k=1

βk = 0, (3.19)
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as any joint translation of βk can be absorbed into µ.
If we represent the subspace by V = [v1 · · · vd] ∈ Rp×d then we can

rewrite (3.20) as
xk ≈ µ+ V βk, (3.20)

where V TV = Id×d, because the vectors vi are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to

solve

min
µ, V, βk
V TV=I

n∑
k=1

‖xk − (µ+ V βk)‖22 (3.21)

We start by optimizing for µ. It is easy to see that the first order condition
for µ corresponds to

∇µ
n∑
k=1

‖xk − (µ+ V βk)‖22 = 0⇔
n∑
k=1

(xk − (µ+ V βk)) = 0.

Thus, the optimal value µ∗ of µ satisfies(
n∑
k=1

xk

)
− nµ∗ − V

(
n∑
k=1

βk

)
= 0.

Since we assumed in (3.19) that
∑n
k=1 βk = 0, we have that the optimal µ is

given by

µ∗ =
1

n

n∑
k=1

xk = µn,

the sample mean.
We can then proceed to finding the solution for (3.21) by solving

min
V, βk
V TV=I

n∑
k=1

‖xk − µn − V βk‖22 . (3.22)

Let us proceed by optimizing for βk. The problem almost fully decouples
in each k, the only constraint coupling them being (3.19). We will ignore this
constraint, solve the decoupled problems, and verify that it is automatically
satisfied. Hence we focus on, for each k,

min
βk
‖xk − µn − V βk‖22 = min

βk

∥∥∥∥∥xk − µn −
d∑
i=1

(βk)i vi

∥∥∥∥∥
2

2

. (3.23)

Since v1, . . . , vd are orthonormal, it is easy to see that the solution is given by
(β∗k)i = vTi (xk − µn) which can be succinctly written as βk = V T (xk − µn),
which satisfied (3.19). Thus, (3.22) is equivalent to
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min
V TV=I

n∑
k=1

∥∥(xk − µn)− V V T (xk − µn)
∥∥2
2
. (3.24)

Note that∥∥(xk − µn)− V V T (xk − µn)
∥∥2
2

= (xk − µn)
T

(xk − µn)

−2 (xk − µn)
T
V V T (xk − µn)

+ (xk − µn)
T
V
(
V TV

)
V T (xk − µn)

= (xk − µn)
T

(xk − µn)

− (xk − µn)
T
V V T (xk − µn) .

Since (xk − µn)
T

(xk − µn) does not depend on V , minimizing (3.24) is
equivalent to

max
V TV=I

n∑
k=1

(xk − µn)
T
V V T (xk − µn) . (3.25)

A few algebraic manipulations using properties of the trace yields:

n∑
k=1

(xk − µn)
T
V V T (xk − µn) =

n∑
k=1

Tr
[
(xk − µn)

T
V V T (xk − µn)

]
=

n∑
k=1

Tr
[
V T (xk − µn) (xk − µn)

T
V
]

= Tr

[
V T

n∑
k=1

(xk − µn) (xk − µn)
T
V

]
= (n− 1) Tr

[
V TΣnV

]
.

This means that the solution to (3.25) is given by

max
V TV=I

Tr
[
V TΣnV

]
. (3.26)

As we saw above (recall (3.14)) the solution is given by V = [v1, · · · , vd]
where v1, . . . , vd correspond to the d leading eigenvectors of Σn.

PCA as the d-dimensional projection that preserves the most
variance

We now show that the alternative interpretation of PCA, of finding the d-
dimensional projection of x1, . . . , xn that preserves the most variance, also
arrives to the optimization problem (3.26). We aim to find an orthonormal
basis v1, . . . , vd (organized as V = [v1, . . . , vd] with V TV = Id×d) of a d-
dimensional space such that the projection of x1, . . . , xn onto this subspace
has the most variance. Equivalently we can ask for the points
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 v

T
1 xk
...

vTd xk



n

k=1

,

to have as much variance as possible. Hence, we are interested in solving

max
V TV=I

n∑
k=1

∥∥∥∥∥V Txk − 1

n

n∑
r=1

V Txr

∥∥∥∥∥
2

. (3.27)

Note that

n∑
k=1

∥∥∥∥∥V Txk − 1

n

n∑
r=1

V Txr

∥∥∥∥∥
2

=

n∑
k=1

∥∥V T (xk − µn)
∥∥2 = (n− 1) Tr

(
V TΣnV

)
,

showing that (3.27) is equivalent to (3.26) and that the two interpretations of
PCA are indeed equivalent.

Finding the Principal Components

When given a dataset x1, . . . , xn ∈ Rp, in order to compute the Principal
Components one needs to compute the leading eigenvectors of

Σn =
1

n− 1

n∑
k=1

(xk − µn) (xk − µn)
T
.

A naive way of doing this is to construct Σn (which takes O(np2) work) and
then finding its spectral decomposition (which takes O(p3) work). This means
that the computational complexity of this procedure is O

(
max

{
np2, p3

})
(see [68] or [61]).

An alternative is to use the Singular Value Decomposition (3.1). Let X =
[x1 · · ·xn] recall that,

Σn =
1

n− 1

(
X − µn1T

) (
X − µn1T

)T
.

Let us take the SVD of X−µn1T = ULDU
T
R with UL ∈ O(p), D diagonal,

and UTRUR = I. Then,

Σn =
1

n− 1

(
X − µn1T

) (
X − µn1T

)T
= ULDU

T
RURDU

T
L = ULD

2UTL ,

meaning that UL correspond to the eigenvectors of Σn. Computing the
SVD of X − µn1T takes O(min{n2p, p2n}) work but if one is interested in
simply computing the top d eigenvectors then this computational costs re-
duces to O(dnp). This can be further improved with randomized algorithms.
There are randomized algorithms that compute an approximate solution in
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O
(
pn log d+ (p+ n)d2

)
time (This will be discussed in Chapter ??. See also,

for example, [65, 112, 99]).
Numerical stability is another important reason why computing the prin-

cipal components using the SVD is preferable. Since the eigenvalues of Σn
are proportional to the squares of the singular values of X − µn1T , prob-
lems arise when the ratio of singular values exceeds 108, causing the ratio
of the corresponding eigenvalues of Σn to be larger than 1016. In this case,
the smaller eigenvalue would be rounded to zero (due to machine precision),
which is certainly not desirable.

Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3
might make the most sense. However, PCA is useful for many other purposes,
for example:

1. Denoising: often times the data belongs to a lower dimensional space but
is corrupted by high dimensional noise. When using PCA it is oftentimes
possible to reduce the noise while keeping the signal.

2. Downstream analysis: One may be interested in running an algorithm
(clustering, regression, etc.) that would be too computationally expen-
sive or too statistically insignificant to run in high dimensions. Dimension
reduction using PCA may help there.

In these applications (and many others) it is not clear how to pick d. A fairly
popular heuristic is to try to choose the cut-off at a component that has
significantly more variance than the one immediately after. Since the total
variance is Tr(Σn) =

∑p
k=1 λk, the proportion of variance in the i’th compo-

nent is nothing but λi
Tr(Σn)

. A plot of the values of the ordered eigenvalues,

also known as a scree plot, helps identify a reasonable choice of d. Here is an
example:
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It is common to then try to identify an “elbow” on the scree plot to choose
the cut-off. In the next Section we will look into Random Matrix Theory to
better understand the behavior of the eigenvalues of Σn and gain insight into
choosing cut-off values.

3.3 PCA in high dimensions and Marčenko-Pastur law

Let us assume that the data points x1, . . . , xn ∈ Rp are independent draws
of a zero mean Gaussian random variable g ∼ N (0, Σ) with some covariance
matrix Σ ∈ Rp×p. In this case, when we use PCA we are hoping to find
a low dimensional structure in the distribution, which should correspond to
the large eigenvalues of Σ (and their corresponding eigenvectors). For that
reason, and since PCA depends on the spectral properties of Σn, we would
like to understand whether the spectral properties of the sample covariance
matrix Σn (eigenvalues and eigenvectors) are close to the ones of Σ, also
known as the population covariance.

Since EΣn = Σ, if p is fixed and n → ∞ the law of large numbers guar-
antees that indeed Σn → Σ. However, in many modern applications it is not
uncommon to have p in the order of n (or, sometimes, even larger). For exam-
ple, if our dataset is composed by images then n is the number of images and
p the number of pixels per image; it is conceivable that the number of pixels
be on the order of the number of images in a set. Unfortunately, in that case,
it is no longer clear that Σn → Σ. Dealing with this type of difficulties is the
goal of high dimensional statistics.

For simplicity we will try to understand the spectral properties of

Sn =
1

n
XXT ,

where x1, . . . , xn are the columns of X. Since x ∼ N (0, Σ) we know that
µn → 0 (and, clearly, n

n−1 → 1), hence the spectral properties of Sn will be

essentially the same as Σn.1

Let us start by looking into a simple example, Σ = I. In that case, the
distribution has no low dimensional structure, as the distribution is rotation
invariant. The following is a histogram (left) and a scree plot of the eigenvalues
of a sample of Sn (when Σ = I) for p = 500 and n = 1000. The red line is the
eigenvalue distribution predicted by the Marčenko-Pastur distribution (3.28),
that we will discuss below.

1In this case, Sn is actually the maximum likelihood estimator for Σ; we will
discuss maximum likelihood estimation later in Chapter ??.
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As one can see in the image, there are many eigenvalues considerably larger
than 1, as well as many eigenvalues significantly smaller than 1. Notice that,
if given this profile of eigenvalues of Σn one could potentially be led to believe
that the data has low dimensional structure, when in truth the distribution
it was drawn from is isotropic.

Understanding the distribution of eigenvalues of random matrices is in
the core of Random Matrix Theory (there are many good books on Random
Matrix Theory, e.g. [123] and [11]). This particular limiting distribution was
first established in 1967 by Marčenko and Pastur [90] and is now referred to
as the Marčenko-Pastur distribution. They showed that, if p and n are both
going to ∞ with their ratio fixed p/n = γ ≤ 1, the sample distribution of the
eigenvalues of Sn (like the histogram above), in the limit, will be

dFγ(λ) =
1

2π

√
(γ+ − λ) (λ− γ−)

γλ
1[γ−,γ+](λ)dλ, (3.28)

with support [γ−, γ+], where γ− = (1−γ)2, γ+ = (1 +γ)2, and γ = p/n. This
is plotted as the red line in the figure above.

Remark 3.5. We will not provide the proof of the Marčenko-Pastur law here
(you can see, for example, [14] for several different proofs of it), but an ap-
proach to a proof is using the so-called moment method. The central idea is
to note that one can compute moments of the eigenvalue distribution in two
ways and note that (in the limit) for any k,

1

p
ETr

[(
1

n
XXT

)k]
=

1

p
ETr

(
Skn
)

= E
1

p

p∑
i=1

λki (Sn) =

∫ γ+

γ−

λkdFγ(λ),

and that the quantities 1
pETr

[(
1
nXX

T
)k]

can be estimated (these estimates

rely essentially in combinatorics). The distribution dFγ(λ) can then be com-
puted from its moments.



3.3 PCA in high dimensions and Marčenko-Pastur law 39

3.3.1 Spike Models and BBP phase transition

What if there actually is some (linear) low dimensional structure in the data?
When can we expect to capture it with PCA? A particularly simple, yet
relevant, example to analyze is when the covariance matrix Σ is an identity
with a rank 1 perturbation, which we refer to as a spike model Σ = I+βuuT ,
for u a unit norm vector and β > 0.

One way to think about this instance is as each data point x consisting of
a signal part

√
βg0u where g0 is a one-dimensional standard Gaussian N (0, 1)

(i.e. a normally distributed multiple of a fixed vector
√
βu) and a noise part

g ∼ N (0, I) (independent of g0). Then x = g +
√
βg0u is a Gaussian random

variable
x ∼ N (0, I + βuuT ).

Whereas the signal part
√
βg0u resides on a central line in the direction of u,

the noise part is high dimensional and isotropic. We therefore refer to β as
the signal-to-noise ratio (SNR). Indeed, β is the ratio of the signal variance
(in the u-direction) to the noise variance (in each direction).

A natural question is whether this rank-1 perturbation can be seen in Sn.
Or equivalently, can one detect the direction of the line u from corrupted
measurements in high dimension? Let us build some intuition with an exam-
ple. The following is the histogram of the eigenvalues of a sample of Sn for
p = 500, n = 1000, u is the first element of the canonical basis u = e1, and
β = 1.5:

The histogram suggests that there is an eigenvalue of Sn that “pops out”
of the support of the Marčenko-Pastur distribution (below we will estimate
the location of this eigenvalue, and that estimate corresponds to the red “x”).
It is worth noting that the largest eigenvalues of Σ is simply 1+β = 2.5 while
the largest eigenvalue of Sn appears considerably larger than that. Let us try
now the same experiment for β = 0.5:
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It appears that, for β = 0.5, the histogram of the eigenvalues is indistinguish-
able from when Σ = I. In particular, no eigenvalue is separated from the
Marčenko-Pastur distribution.

This motivates the following question:

Question 3.6. For which values of γ and β do we expect to see an eigenvalue
of Sn popping out of the support of the Marčenko-Pastur distribution, and
what is the limit value that we expect it to take?

As we will see below, there is a critical value of β, denoted βc, below which
we do not expect to see a change in the distribution of eigenvalues and above
which we expect one of the eigenvalues to pop outside of the support. This
phenomenon is known as the BBP phase transition (after Baik, Ben Arous,
and Péché [15]). There are many very nice papers about this and similar
phenomena, including [103, 72, 15, 104, 16, 73, 28, 29]. 2

In what follows we will find the critical value βc and estimate the location
of the largest eigenvalue of Sn for any β. While the argument we will use
can be made precise (and is borrowed from [103]) we will be ignoring a few
details for the sake of exposition. In other words, the argument below can be
transformed into a rigorous proof, but it is not one at the present form.

We want to understand the behavior of the leading eigenvalue of the sample
covariance matrix

Sn =
1

n

n∑
i=1

xix
T
i .

Since x ∼ N (0, I+βuuT ) we can write x = (I+βuuT )1/2z where z ∼ N (0, I)
is an isotropic Gaussian. Then,

Sn =
1

n

n∑
i=1

(I+βuuT )1/2ziz
T
i (I+βuuT )1/2 = (I+βuuT )1/2Zn(I+βuuT )1/2,

2Notice that the Marčenko-Pastur theorem does not imply that all eigenvalues
are actually in the support of the Marčenko-Pastur distribution, it just rules out
that a non-vanishing proportion are. However, it is possible to show that indeed, in
the limit, all eigenvalues will be in the support (see, for example, [103]).
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where Zn = 1
n

∑n
i=1 ziz

T
i is the sample covariance matrix of independent

isotropic Gaussians. The matrices Sn = (I + βuuT )1/2Zn(I + βuuT )1/2 and
Zn(I + βuuT ) are related by a similarity transformation, and therefore have
exactly the same eigenvalues. Hence, it suffices to find the leading eigenvalue
of the matrix Zn(I + βuuT ), which is a rank-1 perturbation of Zn (indeed,
Zn(I + βuuT ) = Zn + βZnuu

T ). We already know that the eigenvalues of
Zn follow the Marčenko-Pastur distribution, so we are left to understand the
effect of a rank-1 perturbation on its eigenvalues.

To find the leading eigenvalue λ of Zn(I+βuuT ), let v be the corresponding
eigenvector, that is,

Zn(I + βuuT )v = λv.

Subtract Znv from both sides to get

βZnuu
T v = (λI − Zn)v.

Assuming λ is not an eigenvalue of Zn, we can multiply by (λI − Zn)−1 to
get3

β(λI − Zn)−1Znuu
T v = v.

Our assumption also implies that uT v 6= 0, for otherwise v = 0. Multiplying
by uT gives

βuT (λI − Zn)−1Znu(uT v) = uT v.

Dividing by βuT v (which is not 0 as explained above) yields

uT (λI − Zn)−1Znu =
1

β
. (3.29)

Suppose w1, . . . , wp are orthonormal eigenvectors of Zn (with corresponding
eigenvalues λ1, . . . , λp), and expand u in that basis:

u =

p∑
i=1

αiwi.

Plugging this expansion in (3.29) gives

p∑
i=1

λi
λ− λi

α2
i =

1

β
(3.30)

For large p, each α2
i concentrates around its mean value E[α2

i ] = 1
p (again,

this statement can be made rigorous), and (3.30) becomes

lim
p→∞

1

p

p∑
i=1

λi
λ− λi

=
1

β
(3.31)

3Intuitively, λ is larger than all the eigenvalues of Zn, because it corresponds to
a perturbation of Zn by a positive definite matrix βuuT ; yet, a formal justification
is beyond the present discussion.
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Since the eigenvalues λ1, λp follow the Marčenko-Pastur distribution, the limit
on the left hand side can be replaced by the integral∫ γ+

γ−

t

λ− t
dFγ(t) =

1

β
(3.32)

Using an integral table (or an integral software), we find that

1

β
=

∫ γ+

γ−

t

λ− t
dFγ(t) =

1

4γ

[
2λ− (γ− + γ+)− 2

√
(λ− γ−)(λ− γ+)

]
.

(3.33)
For λ = γ+, that is, when the top eigenvalue touches the right edge of

the Marčenko-Pastur distribution, (3.33) becomes 1
4γ (γ+ − γ−). This is the

critical point that one gets the pop out of the top eigenvalue from the bulk of
the Marčenko-Pastur distribution. To calculate the critical value βc, we recall
that γ− = (1−√γ)2 and γ+ = (1 +

√
γ)2, hence

1

βc
=

1

4γ

(
(1 +

√
γ)2 − (1−√γ)2

)
. (3.34)

Therefore, the critical SNR is

βc =
√
γ =

√
p

n
. (3.35)

When β >
√

p
n one can observe the pop out of the top eigenvalue from the

bulk.
Eq. (3.35) illustrates the interplay of the SNR β, the number of samples

n, and the dimension p. Low SNR, small sample size, and high dimensionality
are all obstacles for detecting linear structure in noisy high dimensional data.

More generally, inverting the relationship between β and λ given by (3.33)
(which simply amounts to solving a quadratic), we find that the largest eigen-
value λ of the sample covariance matrix Sn has the limiting value

λ→


(β + 1)

(
1 + γ

β

)
for β ≥ √γ,

(1 +
√
γ)2 for β <

√
γ.

(3.36)

In the finite sample case λ will be fluctuating around that value.
Notice that the critical SNR value, βc =

√
γ is buried deep inside the

support of the Marčenko-Pastur distribution, because
√
γ < γ+ = (1 +

√
γ)2.

In other words, the SNR does not have to be greater than the operator norm
of the noise matrix in order for it to pop out. We see that the noise effectively
pushes the eigenvalue to the right (indeed, λ > β).

The asymptotic squared correlation |〈u, v〉|2 between the top eigenvector
v of the sample covariance matrix and true signal vector u can be calculated
in a similar fashion. The limiting correlation value turns out to be
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|〈v, u〉|2 →


1− γ

β2

1+ γ

β2
for β ≥ √γ

0 for β <
√
γ

(3.37)

Notice that the correlation value tends to 1 as β → ∞, but is strictly less
than 1 for any finite SNR.

Wigner matrices

Another very important random matrix model is the Wigner matrix (and it
will make appearances in Chapters 6 and 8). Given an integer n, a standard
Gaussian Wigner matrix W ∈ Rn×n is a symmetric matrix with independent
N (0, 1) off-diagonal entries (except for the fact that Wij = Wji) and jointly
independent N (0, 2) diagonal entries. In the limit, the eigenvalues of 1√

n
W

are distributed according to the so-called semi-circular law

dSC(x) =
1

2π

√
4− x21[−2,2](x)dx,

and there is also a BBP like transition for this matrix ensemble [56]. More
precisely, if v is a unit-norm vector in Rn and ξ ≥ 0 then the largest eigenvalue
of 1√

n
W + ξvvT satisfies

• If ξ ≤ 1 then

λmax

(
1√
n
W + ξvvT

)
→ 2,

• and if ξ > 1 then

λmax

(
1√
n
W + ξvvT

)
→ ξ +

1

ξ
. (3.38)

The typical correlation, with v, of the leading eigenvector vmax of 1√
n
W +

ξvvT is also known:

• If ξ ≤ 1 then
|〈vmax, v〉|2 → 0,

• and if ξ > 1 then

|〈vmax, v〉|2 → 1− 1

ξ2
.

Form a statistical viewpoint, a central question is to understand for dif-
ference distributions of matrices, when is it that it is possible to detect and
estimate a spike in a random matrix [106]. When the underlying random ma-
trix corresponds to a random graph and the spike to a bias on distribution of
the graph, corresponding to structural properties of the graph the estimates
above are able to predict important phase transitions in community detection
in networks, as we will see in Chapter 8.
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3.3.2 Rank and covariance estimation

The spike model and random matrix theory thus offers a principled way for
determining the number of principal components, or equivalently of the rank
of the hidden linear structure: simply count the number of eigenvalues to the
right of the Marčenko-Pastur distribution. In practice, this approach for rank
estimation is often too simplistic for several reasons. First, for actual datasets,
n and p are finite, and one needs to take into account non-asymptotic correc-
tions and finite sample fluctuations [77, 78]. Second, the noise may be het-
eroskedastic (that is, noise variance is different in different directions). More-
over, the noise statistics could also be unknown and it can be non-Gaussian
[87]. In some situations it might be possible to estimate the noise statistics
directly from the data and to homogenize the noise (a procedure sometimes
known as “whitening”) [86]. These situations call for careful analysis, and
many open problems remain in the field.

Another popular method for rank estimation is using permutation meth-
ods. In permutation methods, each column of the data matrix is randomly
permutated, so that the low-rank linear structure in the data is destroyed
through scrambling, while only the noise is preserved. The process can be
repeated multiple times, and the statistics of the singular values of the scram-
bled data matrices are then used to determine the rank. In particular, only
singular values of the original (unscrambled) data matrix that are larger than
the largest singular value of the scrambled matrices (taking fluctuations into
account of course) are considered as corresponding to signal and are counted
towards the rank. The mathematical analysis of permutation methods is an-
other active field of research [47, 48].

In some applications, the objective is to estimate the low rank covariance
matrix of the clean signal Σ from the noisy measurements. We saw that in
the spike model, the eigenvalues of the sample covariance matrix are inflated
due to noise. It is therefore required to shrink the computed eigenvalues of Sn
in order to obtain a better estimate of the eigenvalues of Σ. That is, if

Sn =

p∑
i=1

λiviv
T
i

is the spectral decomposition of Sn, then we seek an estimator of Σ, denoted
Σ̂ of the form

Σ̂ =

p∑
i=1

η(λi)viv
T
i .

The scalar nonlinearity η : R+ → R+ is known as the shrinkage function.
An obvious shrinkage procedure is to estimate β = η(λ) from the computed
λ by inverting (3.36) (and setting β = 0 for λ < γ+). It turns out that this
particular shrinker is optimal in terms of the operator norm loss. However,
for other loss functions (such as the Frobenius norm loss), the optimal shrink-
age function takes a different form [51]. The reason why the shrinker depends
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on the loss function is that the eigenvectors of Sn are not perfectly corre-
lated with those of Σ but rather make some non-trivial angle, as in (3.37). In
other words, the eigenvectors are noisy, and it may require more aggressive
shrinkage to account for that error in the eigenvector. It can be shown that
the eigenvector v of the sample covariance is uniformly distributed in a cone
around u whose opening angle is given by (3.37). While we can improve the
estimation of the eigenvalue via shrinkage, it is however unclear how to im-
prove the estimation of the eigenvector (without any a priori knowledge about
it). Finally, we remark that eigenvalue shrinkage also plays an important role
in denoising, as will be discussed in Chapter ??.



.



4

Graphs, Networks, and Clustering

A crucial part of data science consists of the studying of networks. Network
science, or graph theory, unifies the study of diverse types of networks, such
as social networks, protein-protein interaction networks, gene-regulation net-
works, and the internet. In this chapter we introduce graph theory and treat
the problem of clustering, to identify similar data points, or vertices, in (net-
work) data.

4.1 PageRank

Before we introduce the formalism of graph theory, we describe the celebrated
PageRank algorithm. This algorithm is a principal component1 behind the
web search algorithms, in particular in Google. The goal of PageRank is to
quantitatively rate the importance of each page on the web, allowing the
search algorithm to rank the pages and thereby present to the user the more
important pages first. Search engines such as Google have to carry out three
basic steps:2

• Crawl the web and locate all, or as many as possible, accessible webpages.
• Index the data of the webpages from step 1, so that they can be searched

efficiently for relevant key words or phrases.
• Rate the importance of each page in the database, so that when a user

does a search and the subset of pages in the database with the desired
information has been found, the more important pages can be presented
first.

Here, we will focus on the third step. We follow mainly the derivation in [?].
We aim to develop a score of importance for each webpage. A score will be a

1It is difficult to resist using this pun.
2Another important component of modern search engines is personalization,

which we do not discuss here.
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non-negative number. A key idea in assigning a score to any given webpage is
that the page’s score is derived from the links made to that page from other
webpages — “A person is important not if it knows a lot of people, but if a
lot of people know that person”.

Suppose the web of interest contains n pages, each page indexed by an
integer k, 1 ≤ k ≤ n. A typical example is illustrated in Figure 4.1, in which
an arrow from page k to page j indicates a link from page k to page j. Such
a web is an example of a directed graph. The links to a given page are called
the backlinks for that page. We will use xk to denote the importance score
of page k in the web. xk is nonnegative and xj > xk indicates that page j is
more important than page k.

Fig. 4.1: A toy example of the Internet

A very simple approach is to take xk as the number of backlinks for page
k. In the example in Figure 4.1, we have x1 = 2, x2 = 1, x3 = 3, and x4 = 2, so
that page 3 is the most important, pages 1 and 4 tie for second, and page 2 is
least important. A link to page k becomes a vote for page k’s importance. This
approach ignores an important feature one would expect a ranking algorithm
to have, namely, that a link to page k from an important page should boost
page k’s importance score more than a link from an unimportant page. In the
web of Figure 4.1, pages 1 and 4 both have two backlinks: each links to the
other, but the second backlink from page 1 is from the seemingly important
page 3, while the second backlink for page 4 is from the relatively unimportant
page 2. As such, perhaps the algorithm should rate the importance of page 1
higher than that of page 4.

As a first attempt at incorporating this idea, let us compute the score of
page j as the sum of the scores of all pages linking to page j. For example,
consider the web in our toy example. The score of page 1 would be determined
by the relation x1 = x3 + x4. However, since x3 and x4 will depend on x1,
this seems like a circular definition, since it is self-referential (it is exactly
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this self-referential property that will establish a connection to eigenvector
problems!).

We also seek a scheme in which a webpage does not gain extra influence
simply by linking to lots of other pages. We can do this by reducing the impact
of each link, as more and more outgoing links are added to a webpage. If page
j contains nj links, one of which links to page k, then we will boost page
k’s score by xj/nj , rather than by xj . In this scheme, each webpage gets a
total of one vote, weighted by that web page’s score, that is evenly divided
up among all of its outgoing links. To quantify this for a web of n pages, let
Lk ⊂ {1, 2, . . . , n} denote the set of pages with a link to page k, that is, Lk is
the set of page k’s backlinks. For each k we require

xk =
∑
j∈Lk

xj
nj
,

where nj is the number of outgoing links from page j.
If we apply these scheme to the toy example in Figure 4.1, then for page

1 we have x1 = x3/1 + x4/2, since pages 3 and 4 are backlinks for page 1 and
page 3 contains only one link, while page 4 contains two links (splitting its vote
in half). Similarly, x2 = x1/3, x3 = x1/3+x2/2+x4/2, and x4 = x1/3+x2/2.
These conditions can be expressed as linear system of equations Ax = x,
where x = [x1, x2, x3, x4]T and

A =


0 0 1 1

2
1
3 0 0 0
1
3

1
2 0 1

2
1
3

1
2 0 0


Thus, we end up with an eigenvalue/eigenvector problem: Find the eigenvector
x of the matrix A, associated with the eigenvalue 1. We note that A is a
column-stochastic matrix, since it is a square matrix for which all of its entries
are nonnegative and the entries in each column sum to 1. Stochastic matrices
arise in the study of Markov chains and in a variety of modelling problems in
economics and operations research. See e.g. [69] for more details on stochastic
matrices. The fact that 1 is an eigenvalue of A is not just coincidence in this
example, but holds true in general for stochastic matrices.

Theorem 4.1. A column-stochastic matrix A has an eigenvalue equal to 1
and 1 is also its largest eigenvalue.

Proof. Let A be an n × n column-stochastic matrix. We first note that A
and AT have the same eigenvalues (their eigenvector will usually be different
though). Let 1 = [1, 1, . . . , 1]T be the vector of length n which has all ones as
entries. Since A is column-stochastic, we have AT1 = 1 (since all columns of A
sum up to 1). Hence 1 is an eigenvector of AT (but not of A) with eigenvalue
1. Thus 1 is also an eigenvalue of A.
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To show that 1 is the largest eigenvalue of A we apply the Gershgorin
Circle Theorem [69] to AT . Consider row k of AT . Let us call the diagonal
element ak,k and the radius will be

∑
i 6=k |ak,i| =

∑
i 6=k ak,i since ak,i ≥ 0. This

is a circle with its center at ak,k ∈ [0, 1] and with radius
∑
i 6=k ak,i = 1− ak,k.

Hence, this circle has 1 on its perimeter. This holds for all Gershgorin circles
for this matrix. Thus, since all eigenvalues lie in the union of the Gershgorin
circles, all eigenvalues λi satsify |λi| ≤ 1.

In our example, we obtain as eigenvector x of A associated with eigenvalue
1 the vector x = [x1, x2, x3, x4]T with entries x1 = 12

31 , x2 = 4
31 , x3 = 9

31 , and
x4 = 6

31 . Hence, perhaps somewhat surprisingly, page 3 is no longer the most
important one, but page 1. This can be explained by the fact, that the in
principle quite important page 3 (which has three webpages linking to it) has
only one outgoing link, which gets all its “voting power”, and that link points
to page 1.

In reality, A can easily be of size a billion times a billion. Fortunately, we
do not need compute all eigenvectors of A, only the eigenvector associated
with the eigenvalue 1, which, as we know, is also the largest eigenvalue of A.
This in turn means we can resort to standard power iteration to compute x
fairly efficiently (and we can also make use of the fact that A will be a sparse
matrix, i.e., many of its entries will be zero). The actual PageRank algorithms
adds some minor modifications, but the essential idea is as described above.

4.2 Graph Theory

We now introduce the formalism for undirected3 graphs, one of the main
objects of study in what follows. A graph G = (V,E) contains a set of nodes
V = {v1, . . . , vn} and edges E ⊆

(
V
2

)
. An edge (i, j) ∈ E if vi and vj are

connected. Here is one of the graph theorists favorite examples, the Petersen
graph4:

Let us recall some concepts about graphs that we will need.

• A graph is connected if, for all pairs of vertices, there is a path between
these vertices on the graph. The number of connected components is sim-
ply the size of the smallest partition of the nodes into connected subgraphs.
The Petersen graph is connected (and thus it has only 1 connected com-
ponent).

• A clique of a graph G is a subset S of its nodes such that the subgraph
corresponding to it is complete. In other words S is a clique if all pairs of
vertices in S share an edge. The clique number c(G) of G is the size of the
largest clique of G. The Petersen graph has a clique number of 2.

3The previous Section featured directed graphs, in which edges (links) have a
meaningful direction. In what follows we will focus in undirected graphs in which
an edge represents a connection, without meaningful direction.

4The Peterson graph is often used as a counter-example in graph theory.
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Fig. 4.2: The Petersen graph

• An independence set of a graph G is a subset S of its nodes such that no
two nodes in S share an edge. Equivalently it is a clique of the complement
graph Gc := (V,Ec). The independence number of G is simply the clique
number of Sc. The Petersen graph has an independence number of 4.

A particularly useful way to represent a graph is through its adjacency ma-
trix. Given a graph G = (V,E) on n nodes (|V | = n), we define its adjacency
matrix A ∈ Rn×n as the symmetric matrix with entries

Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

Sometime, we will consider weighted graphs G = (V,E,W ), where edges
may have weights wij , we think of the weights as non-negative wij ≥ 0 and
symmetric wij = wji.

Much of the sequel will deal with graphs. Chapter ?? will treat (network)
data visualization, dimension reduction, and embeddings of graphs on Eu-
clidean space. Chapter 8 will introduce and study important random graph
models. The rest of this Chapter will be devoted to clustering.

4.3 Clustering

Clustering is one of the central tasks in machine learning. Given a set of
data points, or nodes of a graph, the purpose of clustering is to partition
the data into a set of clusters where data points assigned to the same cluster
correspond to similar data points (depending on the context, it could be for
example having small distance to each other if the points are in Euclidean
space, or being connected if on a graph). We will start with an example of
clustering points in Euclidean space, and later move back to graphs.
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Fig. 4.3: Examples of points separated in clusters.

4.3.1 k-means Clustering

One the most popular methods used for clustering is k-means clustering. Given
x1, . . . , xn ∈ Rp the k-means clustering partitions the data points in clusters
S1 ∪ · · · ∪ Sk with centers µ1, . . . , µk ∈ Rp as the solution to:

min
partition S1,...,Sk

µ1,...,µk

k∑
l=1

∑
i∈Si

‖xi − µl‖2 . (4.1)

Note that, given the partition, the optimal centers are given by

µl =
1

|Sl|
∑
i∈Sl

xi.

Lloyd’s algorithm [88] (also sometimes known as the k-means algorithm),
is an iterative algorithm that alternates between

• Given centers µ1, . . . , µk, assign each point xi to the cluster

l = argminl=1,...,k ‖xi − µl‖ .

• Update the centers µl = 1
|Sl|
∑
i∈Sl xi.

Unfortunately, Lloyd’s algorithm is not guaranteed to converge to the so-
lution of (4.1). Indeed, Lloyd’s algorithm oftentimes gets stuck in local optima
of (4.1). In the sequel we will discuss convex relaxations for clustering, which
can be used as an alternative algorithmic approach to Lloyd’s algorithm, but
since optimizing (4.1) is NP -hard there is no polynomial time algorithm that
works in the worst-case (assuming the widely believed conjecture P 6= NP ,
see also Chapter 7)

While popular, k-means clustering has some potential issues:
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• One needs to set the number of clusters a priori (a typical way to overcome
this issue is by trying the algorithm for different number of clusters).

• The way (4.1) is defined it needs the points to be defined in an Euclidean
space, oftentimes we are interested in clustering data for which we only
have some measure of affinity between different data points, but not nec-
essarily an embedding in Rp (this issue can be overcome by reformulat-
ing (4.1) in terms of distances only).

• The formulation is computationally hard, so algorithms may produce sub-
optimal instances.

• The solutions of k-means are always convex clusters. This means that k-
means may have difficulty in finding cluster such as in Figure 4.4.

Fig. 4.4: Because the solutions of k-means are always convex clusters, it is not
able to handle some cluster structures.

4.3.2 Spectral Clustering

A natural way to try to overcome the issues of k-means depicted in Figure 4.4
is by using transforming the data into a graph and cluster the graph: Given
the data points we can construct a weighted graph G = (V,E,W ) using a
similarity kernel Kε, such as Kε(u) = exp

(
1
2εu

2
)
, by associating each point

to a vertex and, for which pair of nodes, set the edge weight as

wij = Kε (‖xi − xj‖) .

Other popular procedures to transform data into a graph is by constructing
the graph where data points are connected if they correspond to the nearest
neighbours. We note that this procedures only needs a measure of distance,
or similarity, of data points and not necessarily that they lie in Euclidean
Space. Given this motivation, and the prevalence of network data, we will
now address the problem of clustering the nodes of a graph.
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Normalized Cut

Given a graph G = (V,E,W ), the goal is to partition the graph in clusters in
a way that keeps as many of the edges, or connections, within the clusters and
has as few edges as possible across clusters. We will focus on the case of two
clusters, and briefly address extensions in the end of this chapter. A natural
way to measure a vertex partition (S, Sc) is

cut(S) =
∑
i∈S

∑
j∈Sc

wij .

If we represent the partition by a vector y ∈ {±1}n where yi = 1 is
i ∈ S, and yi = −1 otherwise, then the cut is a quadratic form on the Graph
Laplacian.

Definition 4.2 (Graph Laplacian and Degree Matrix). Let G = (V,E,W )
be a graph and W the matrix of weights (or adjacency matrix if the graph is
unweighted). The degree matrix D is a diagonal matrix with diagonal entries

Dii = deg(i).

The graph Laplacian of G is given by

LG = D −W.

Equivalently

LG :=
∑
i<j

wij (ei − ej) (ei − ej)T .

Note that the entries of LG are given by

(LG)ij =

{
−wij if i 6= j
deg(i) if i = j.

If S ⊂ V and y ∈ {±1}n such that yi = 1 is i ∈ S, and yi = −1 otherwise,
then it is easy to see that

cut(S) =
1

4

∑
i<j

wij(yi − yj)2.

The following proposition establishes

cut(S) =
1

4
yTLGy, (4.2)

for y ∈ {±1}n such that yi = 1 if and only if i ∈ S.

Proposition 4.3. Let G = (V,E,W ) be a graph and LG its graph Laplacian,
let x ∈ Rn

xTLGx =
∑
i<j

wij(xi − xj)2
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Proof. ∑
i<j

wij (xi − xj)2 =
∑
i<j

wij [(ei − ej)x] [(ei − ej)x]
T

=
∑
i<j

wij

[
(ei − ej)T x

]T [
(ei − ej)T x

]
=
∑
i<j

wijx
T (ei − ej) (ei − ej)T x

= xT

∑
i<j

wij (ei − ej) (ei − ej)T
x

�

While cut(S) is a good way of measuring the fit of a partition, it suffers
from an issue: the minimum cut is achieved for S = ∅ (since cut(∅) = 0)
which is a rather meaningless choice of partition. Simply constraining the
partition to be non-trivial would still have soft versions of this issue, it would
favour very unbalanced partitions. Below we discuss how to promote (almost)
balanced partitions.

Remark 4.4. One simple way to address this is to simply ask for an exactly
balanced partition, |S| = |Sc| (let us assume the number of vertices n = |V | is
even). We can then identify a partition with a label vector y ∈ {±1}n where
yi = 1 is i ∈ S, and yi = −1 otherwise. Also, the balanced condition can be
written as

∑n
i=1 yi = 0. This means that we can write the minimum balanced

cut as

min
S⊂V
|S|=|Sc|

cut(S) =
1

4
min

y∈{−1,1}n

1T y=0

yTLGy,

which is suggestive of the connection between clustering and spectral proper-
ties of LG. This connection will be made precise below.

Asking for the partition to be exactly balanced is too restrictive in many
cases. There are several ways to evaluate a partition that are variations of
cut(S) that take into account the intuition that one wants both S and Sc to
not be too small (although not necessarily equal to |V |/2). A prime example
is Cheeger’s cut.

Definition 4.5 (Cheeger’s cut). Given a graph and a vertex partition
(S, Sc), the cheeger cut (also known as conductance, or expansion) of S is
given by

h(S) =
cut(S)

min{vol(S), vol(Sc)}
,

where vol(S) =
∑
i∈S deg(i).
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Also, the Cheeger’s constant of G is given by

hG = min
S⊂V

h(S).

A similar object is the Normalized Cut, Ncut, which is given by

Ncut(S) =
cut(S)

vol(S)
+

cut(Sc)

vol(Sc)
.

Note that Ncut(S) and h(S) are tightly related, in fact it is easy to see
that:

h(S) ≤ Ncut(S) ≤ 2h(S).

Normalized Cut as a spectral relaxation

Below we will show that Ncut can be written in terms of a minimization of a
quadratic form involving the graph Laplacian LG, analogously to the balanced
partition as described on Remark 4.4.

Recall that balanced partition can be written as

1

4
min

y∈{−1,1}n

1T y=0

yTLGy.

An intuitive way to relax the balanced condition is to allow the labels y to
take values in two different real values a and b (e.g. yi = a if i ∈ S and yj = b
if i /∈ S) but not necessarily ±1. We can then use the notion of volume of a
set to ensure a less restrictive notion of balanced by asking that

a vol (S) + b vol (Sc) = 0, (4.3)

where
vol(S) =

∑
i∈S

deg(i). (4.4)

Thus (4.3) corresponds to 1TDy = 0.
We also need to fix a scale for a and b:

a2 vol (S) + b2 vol (Sc) = 1,

which corresponds to yTDy = 1.
This suggests considering

min
y∈{a,b}n

1TDy=0, yTDy=1

yTLGy.

As we will see below, this corresponds precisely to Ncut.
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Proposition 4.6. For a and b to satisfy a vol (S) + b vol (Sc) = 0 and
a2 vol (S) + b2 vol (Sc) = 1 it must be that

a =

(
vol(Sc)

vol(S) vol(G)

) 1
2

and b = −
(

vol(S)

vol(Sc) vol(G)

) 1
2

,

corresponding to

yi =


(

vol(Sc)
vol(S) vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.

Note that vol is defined as (4.4).

Proof. The proof involves only doing simple algebraic manipulations together
with noticing that vol(S) + vol(Sc) = vol(G). �

Proposition 4.7.
Ncut(S) = yTLGy,

where y is given by

yi =


(

vol(Sc)
vol(S) vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.

Proof.

yTLGy =
1

2

∑
i,j

wij(yi − yj)2

=
∑
i∈S

∑
j∈Sc

wij(yi − yj)2

=
∑
i∈S

∑
j∈Sc

wij

[(
vol(Sc)

vol(S) vol(G)

) 1
2

+

(
vol(S)

vol(Sc) vol(G)

) 1
2

]2

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+ 2

]

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+

vol(S)

vol(S)
+

vol(Sc)

vol(Sc)

]

=
∑
i∈S

∑
j∈Sc

wij

[
1

vol(S)
+

1

vol(Sc)

]

= cut(S)

[
1

vol(S)
+

1

vol(Sc)

]
= Ncut(S).
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�

This means that finding the minimum Ncut corresponds to solving

min yTLGy
s. t. y ∈ {a, b}n for some a and b

yTDy = 1
yTD1 = 0.

(4.5)

Since solving (4.5) is, in general, NP-hard, we consider a similar problem
where the constraint that y can only take two values is removed:

min yTLGy
s. t. y ∈ Rn

yTDy = 1
yTD1 = 0.

(4.6)

Given a solution of (4.6) we can round it to a partition by setting a thresh-
old τ and taking S = {i ∈ V : yi ≤ τ}. We will see below that (4.6) is an
eigenvector problem (for this reason we call (4.6) a spectral relaxation).

In order to better see that (4.6) is an eigenvector problem (and thus com-

putationally tractable), set z = D
1
2 y and

LG = D−
1
2LGD

− 1
2 , (4.7)

then (4.6) is equivalent

min zTLGz
s. t. z ∈ Rn
‖z‖2 = 1(
D

1
2 1
)T

z = 0.

(4.8)

Note that LG = I − D− 1
2WD−

1
2 . We order its eigenvalues in increasing

order 0 = λ1 (LG) ≤ λ2 (LG) ≤ · · · ≤ λn (LG). The eigenvector associated to

the smallest eigenvector is given by D
1
2 1 this means that (by the variational

interpretation of the eigenvalues) that the minimum of (4.8) is λ2 (LG) and the

minimizer is given by the second smallest eigenvector of LG = I−D− 1
2WD−

1
2 ,

which we call v2. Note that this corresponds also to the second largest eigen-
vector of D−

1
2WD−

1
2 . This means that the optimal y in (4.6) is given by

ϕ2 = D−
1
2 v2. This motivates Algorithm 4.1, which is often referred to as

Spectral Clustering:
Because the relaxation (4.6) is obtained from (4.5) by removing a con-

straint we immediately have that

λ2 (LG) ≤ min
S⊂V

Ncut(S).

This means that
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Algorithm 4.1 Spectral Clustering

Given a graph G = (V,E,W ), let v2 be the eigenvector corresponding to the second
smallest eigenvalue of the normalized Laplacian LG, as defined in (4.7). Let ϕ2 =

D−
1
2 v2. Given a threshold τ (one can try all different possibilities, or run k-means

for k = 2), set
S = {i ∈ V : ϕ2(i) ≤ τ}.

1

2
λ2 (LG) ≤ hG.

In what follows we will show a guarantee for Algorithm 4.1.

Lemma 4.8. There is a threshold τ producing a partition S such that

h(S) ≤
√

2λ2 (LG).

This implies in particular that

h(S) ≤
√

4hG,

meaning that Algorithm 4.1 is suboptimal at most by a square-root factor.
Note that this also directly implies the famous Cheeger’s Inequality

Theorem 4.9 (Cheeger’s Inequality). Recall the definitions above. The
following holds:

1

2
λ2 (LG) ≤ hG ≤

√
2λ2 (LG).

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in
1970 [41], the graph version is due to Noga Alon and Vitaly Milman [7, 9] in
the mid 80s.

The upper bound in Cheeger’s inequality (corresponding to Lemma 4.8)
is more interesting but more difficult to prove, it is often referred to as the
“the difficult part” of Cheeger’s inequality. We will prove this Lemma in what
follows. There are several proofs of this inequality (see [42] for four different
proofs!). The proof that follows is an adaptation of the proof in this blog
post [127] for the case of weighted graphs.
Proof. [of Lemma 4.8]

We will show that given y ∈ Rn satisfying

R(y) :=
yTLGy

yTDy
≤ δ,

and yTD1 = 0. there is a “rounding of it”, meaning a threshold τ and a
corresponding choice of partition

S = {i ∈ V : yi ≤ τ}
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such that
h(S) ≤

√
2δ,

since y = ϕ2 satisfies the conditions and gives δ = λ2 (LG) this proves the
Lemma.

We will pick this threshold at random and use the probabilistic method to
show that at least one of the thresholds works.

First we can, without loss of generality, assume that y1 ≤ · ≤ yn (we can
simply relabel the vertices). Also, note that scaling of y does not change the
value of R(y). Also, if yTD1 = 0 adding a multiple of 1 to y can only decrease
the value of R(y): the numerator does not change and the denominator (y +
c1)TD(y + c1) = yTDy + c21TD1 ≥ yTDy.

This means that we can construct (from y by adding a multiple of 1 and
scaling) a vector x such that

x1 ≤ ... ≤ xn, xm = 0, and x21 + x2n = 1,

and
xTLGx

xTDx
≤ δ,

where m be the index for which vol({1, . . . ,m − 1}) ≤ vol({m, . . . , n}) but
vol({1, . . . ,m}) > vol({m, . . . , n}).

We consider a random construction of S with the following distribution.
S = {i ∈ V : xi ≤ τ} where τ ∈ [x1, xn] is drawn at random with the
distribution

P {τ ∈ [a, b]} =

∫ b

a

2|τ |dτ,

where x1 ≤ a ≤ b ≤ xn.
It is not difficult to check that

P {τ ∈ [a, b]} =

{∣∣b2 − a2∣∣ if a and b have the same sign
a2 + b2 if a and b have different signs

Let us start by estimating E cut(S).

E cut(S) = E
1

2

∑
i∈V

∑
j∈V

wij1(S,Sc) cuts the edge (i,j)

=
1

2

∑
i∈V

∑
j∈V

wijP{(S, Sc) cuts the edge (i, j)}

Note that P{(S, Sc) cuts the edge (i, j)} is
∣∣x2i − x2j ∣∣ is xi and xj have

the same sign and x2i + x2j otherwise. Both cases can be conveniently upper
bounded by |xi − xj | (|xi|+ |xj |). This means that
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E cut(S) ≤ 1

2

∑
i,j

wij |xi − xj | (|xi|+ |xj |)

≤ 1

2

√∑
ij

wij(xi − xj)2
√∑

ij

wij(|xi|+ |xj |)2,

where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x we know that∑

ij

wij(xi − xj)2 = 2xTLGx ≤ 2δxTDx.

Also,

∑
ij

wij(|xi|+|xj |)2 ≤
∑
ij

wij2x
2
i+2x2j . = 2

(∑
i

deg(i)x2i

)
+2

∑
j

deg(j)x2j

 = 4xTDx.

This means that

E cut(S) ≤ 1

2

√
2δxTDx

√
4xTDx =

√
2δ xTDx.

On the other hand,

Emin{volS, volSc} =

n∑
i=1

deg(i)P{xi is in the smallest set (in terms of volume)},

to break ties, if vol(S) = vol(Sc) we take the “smallest” set to be the one with
the first indices.

Note that m is always in the largest set. Any vertex j < m is in the
smallest set if xj ≤ τ ≤ xm = 0 and any j > m is in the smallest set if
0 = xm ≤ τ ≤ xj . This means that,

P{xi is in the smallest set (in terms of volume) = x2j .

Which means that

Emin{volS, volSc} =

n∑
i=1

deg(i)x2i = xTDx.

Hence,
E cut(S)

Emin{volS, volSc}
≤
√

2δ.

Note however that because E cut(S)
Emin{volS,volSc} is not necessarily the same as

E cut(S)
min{volS,volSc} and so, we do not necessarily have
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E
cut(S)

min{volS, volSc}
≤
√

2δ.

However, since both random variables are positive,

E cut(S) ≤ Emin{volS, volSc}
√

2δ,

or equivalently

E
[
cut(S)−min{volS, volSc}

√
2δ
]
≤ 0,

which guarantees, by the probabilistic method, the existence of S such that

cut(S) ≤ min{volS, volSc}
√

2δ,

which is equivalent to

h(S) =
cut(S)

min{volS, volSc}
≤
√

2δ,

which concludes the proof of the Lemma. �

Multiple Clusters

Much of the above can be easily adapted to multiple clusters. Algorithm 4.2
is a natural extension of spectral clustering to multiple clusters.5

Algorithm 4.2 Spectral Clustering

Given a graph G = (V,E,W ), let v2, . . . , vk be the eigenvectors corresponding to
the second through (k−1)th eigenvalues of the normalized Laplacian LG, as defined

in (4.7). Let ϕm = D−
1
2 vm. Consider the map ϕ : V → Rk−1 defined as

ϕ(vi) =

ϕ2(i)
...

ϕk(i)

 .
Cluster the n points in k − 1 dimensions into k clusters using k-means.

There is also an analogue of Cheeger’s inequality. A natural way of evalu-
ating k-way clustering is via the k-way expansion constant (see [85]):

ρG(k) = min
S1,...,Sk

max
l=1,...,k

{
cut(S)

vol(S)

}
,

5We will see in Chapter 5 that the map ϕ : V → Rk−1 defined in Algorithm 4.2
can also be used for data visualization, not just clustering.
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where the maximum is over all choice of k disjoin subsets of V (but not
necessarily forming a partition).

Another natural definition is

ϕG(k) = min
S:volS≤ 1

k vol(G)

cut(S)

vol(S)
.

It is easy to see that
ϕG(k) ≤ ρG(k).

The following are analogues of Cheeger’s inequality for multiple clusters.

Theorem 4.10 ([85]). Let G = (V,E,W ) be a graph and k a positive integer

ρG(k) ≤ O
(
k2
)√

λk. (4.9)

Also,

ρG(k) ≤ O
(√

λ2k log k
)
.



.
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Nonlinear Dimension Reduction and Diffusion
Maps

In Chapter 3 we discussed dimension reduction via Principal Component
Analysis. Many datasets however have low dimensional structure that is not
linear. In this chapter we will discuss nonlinear dimension reduction tech-
niques. Just as with Spectral Clustering in Chapter 4 we will focus on graph
data while noting that most types of data can be transform in a weighted
graph by means of a similarity kernel (Section 5.1.1). The goal of this chapter
is to embed the nodes of a graph in Euclidean space in a way that best pre-
serves the intrinsic geometry of the graph (or the data that gave rise to the
graph).

5.1 Diffusion Maps

Diffusion Maps will allows us to represent (weighted) graphs G = (V,E,W ) in
Rd, i.e. associating, to each node, a point in Rd. Before presenting Diffusion
Maps, we’ll introduce a few important notions. The reader may notice the
similarities with the objects described in the context of PageRank in Chap-
ter 4, the main difference is that here the connections between graphs have
no direction, meaning that the weight matrix W is symmetric; this will be
crucial in the derivations below.

Given G = (V,E,W ) we consider a random walk (with independent steps)
on the vertices of V with transition probabilities:

P {X(t+ 1) = j|X(t) = i} =
wij

deg(i)
,

where deg(i) =
∑
j wij . Let M be the matrix of these probabilities,

Mij =
wij

deg(i)
. (5.1)

It is easy to see that Mij ≥ 0 and M1 = 1 (indeed, M is a transition proba-
bility matrix). Recalling that D is the diagonal matrix with diagonal entries
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Dii = deg(i) we have
M = D−1W.

If we start a random walker at node i (X(0) = 1) then the probability
that, at step t, is at node j is given by

P {X(t) = j|X(0) = i} =
(
M t
)
ij
.

In other words, the probability cloud of the random walker at point t, given
that it started at node i is given by the row vector

P {X(t)|X(0) = i} = eTi M
t = M t[i, :].

Remark 5.1. A natural representation of the graph would be to associate each
vertex to the probability cloud above, meaning

i→M t[i, :].

This would place nodes i1 and i2 for which the random walkers starting at i1
and i2 have, after t steps, very similar distribution of locations. However, this
would require d = n. In what follows we will construct a similar mapping but
for considerably smaller d.

M is not symmetric, but a matrix similar to M, S = D
1
2MD−

1
2 is, indeed

S = D−
1
2WD−

1
2 . We consider the spectral decomposition of S

S = V ΛV T , (5.2)

where V = [v1, . . . , vn] satisfies V TV = In×n and Λ is diagonal with diagonal
elements Λkk = λk (and we organize them as λ1 ≥ λ2 ≥ · · · ≥ λn). Note that
Svk = λkvk. Also,

M = D−
1
2SD

1
2 = D−

1
2V ΛV TD

1
2 =

(
D−

1
2V
)
Λ
(
D

1
2V
)T

.

We define Φ = D−
1
2V with columns Φ = [ϕ1, . . . , ϕn] and Ψ = D

1
2V with

columns Ψ = [ψ1, . . . , ψn]. Then

M = ΦΛΨT ,

and Φ, Ψ form a biorthogonal system in the sense that ΦTΨ = In×n or,
equivalently, ϕTj ψk = δjk. Note that ϕk and ψk are, respectively right and
left eigenvectors of M , indeed, for all 1 ≤ k ≤ n:

Mϕk = λkϕk and ψTkM = λkψ
T
k .

Also, we can rewrite this decomposition as

M =

n∑
k=1

λkϕkψ
T
k .
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and it is easy to see that

M t =

n∑
k=1

λtkϕkψ
T
k . (5.3)

Let’s revisit the embedding suggested on Remark 5.1. It would correspond
to

vi →M t[i, :] =

n∑
k=1

λtkϕk(i)ψTk ,

it is written in terms of the basis ψk. The Diffusion Map will essentially consist
of the representing a node i by the coefficients of the above map

vi →M t[i, :] =


λt1ϕ1(i)
λt2ϕ2(i)

...
λtnϕn(i)

 , (5.4)

Note that M1 = 1, meaning that one of the right eigenvectors ϕk is simply a
multiple of 1 and so it does not distinguish the different nodes of the graph.
We will show that this indeed corresponds to the the first eigenvalue.

Proposition 5.2. All eigenvalues λk of M satisfy |λk| ≤ 1.

Proof.
Let ϕk be a right eigenvector associated with λk whose largest entry in

magnitude is positive ϕk (imax). Then,

λkϕk (imax) = Mϕk (imax) =

n∑
j=1

Mimax,jϕk (j) .

This means, by triangular inequality that, that

|λk| =
n∑
j=1

|Mimax,j |
|ϕk (j)|
|ϕk (imax)|

≤
n∑
j=1

|Mimax,j | = 1.

�

Remark 5.3. It is possible that there are other eigenvalues with magnitude 1
but only if G is disconnected or if G is bipartite. Provided that G is discon-
nected, a natural way to remove potential periodicity issues (like the graph
being bipartite) is to make the walk lazy, i.e. to add a certain probability of
the walker to stay in the current node. This can be conveniently achieved by
taking, e.g.,

M ′ =
1

2
M +

1

2
I.
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By the proposition above we can take ϕ1 = 1, meaning that the first coor-
dinate of (5.4) does not help differentiate points on the graph. This suggests
removing that coordinate:

Definition 5.4 (Diffusion Map). Given a graph G = (V,E,W ) construct
M and its decomposition M = ΦΛΨT as described above. The Diffusion Map
is a map ϕt : V → Rn−1 given by

ϕt (vi) =


λt2ϕ2(i)
λt3ϕ3(i)

...
λtnϕn(i)

 .
This map is still a map to n − 1 dimensions. But note now that each

coordinate has a factor of λtk which, if λk is small will be rather small for
moderate values of t. This motivates truncating the Diffusion Map by taking
only the first d coefficients.

Definition 5.5 (Truncated Diffusion Map). Given a graph G = (V,E,W )
and dimension d, construct M and its decomposition M = ΦΛΨT as described
above. The Diffusion Map truncated to d dimensions is a map ϕt : V → Rd
given by

ϕ
(d)
t (vi) =


λt2ϕ2(i)
λt3ϕ3(i)

...
λtd+1ϕd+1(i)

 .
In the following theorem we show that the euclidean distance in the dif-

fusion map coordinates (called diffusion distance) meaningfully measures dis-
tance between the probability clouds after t iterations.

Theorem 5.6. For any pair of nodes vi1 , vi2 we have

‖ϕt (vi1)− ϕt (vi2)‖2 =

n∑
j=1

1

deg(j)
[P {X(t) = j|X(0) = i1} − P {X(t) = j|X(0) = i2}]2 .

Proof.
Note that

∑n
j=1

1
deg(j) [P {X(t) = j|X(0) = i1} − P {X(t) = j|X(0) = i2}]2

can be rewritten as

n∑
j=1

1

deg(j)

[
n∑
k=1

λtkϕk(i1)ψk(j)−
n∑
k=1

λtkϕk(i2)ψk(j)

]2
=

n∑
j=1

1

deg(j)

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))ψk(j)

]2

and



5.1 Diffusion Maps 69

n∑
j=1

1

deg(j)

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))ψk(j)

]2
=

n∑
j=1

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))
ψk(j)√
deg(j)

]2

=

∥∥∥∥∥
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))D−
1
2ψk

∥∥∥∥∥
2

.

Note that D−
1
2ψk = vk which forms an orthonormal basis, meaning that∥∥∥∥∥

n∑
k=1

λtk (ϕk(i1)− ϕk(i2))D−
1
2ψk

∥∥∥∥∥
2

=

n∑
k=1

(
λtk (ϕk(i1)− ϕk(i2))

)2
=

n∑
k=2

(
λtkϕk(i1)− λtkϕk(i2)

)2
,

where the last inequality follows from the fact that ϕ1 = 1 and concludes
the proof of the theorem.

�

Fig. 5.1: The Diffusion Map of the ring graph gives a very natural way of
displaying (indeed, if one is asked to draw the ring graph, this is probably the
drawing that most people would do). It is actually not difficult to analytically
compute the Diffusion Map of this graph and confirm that it displays the
points in a circle.

5.1.1 Diffusion Maps of point clouds

Very often we are interested in embedding in Rd a point cloud of points
x1, . . . , xn ∈ Rp and not necessarily a graph. One optionis to use Principal
Component Analysis (PCA), but PCA is only designed to find linear structure
of the data and the low dimensionality of the dataset may be non-linear. For
example, let us say that our dataset is images of the face of someone taken
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from different angles and lighting conditions, for example, the dimensionality
of this dataset is limited by the amount of muscles in the head and neck and
by the degrees of freedom of the lighting conditions (see Figure ??) but it is
not clear that this low dimensional structure is linearly apparent on the pixel
values of the images.

Let us consider a point cloud that is sampled from a two dimensional swiss
roll embedded in three dimension (see Figure 5.2). In order to learn the two
dimensional structure of this object we need to differentiate points that are
near each other because they are close by in the manifold and not simply
because the manifold is curved and the points appear nearby even when they
really are distant in the manifold (see Figure 5.2 for an example). We will
achieve this by creating a graph from the data points.

Fig. 5.2: A swiss roll point cloud (see, for example, [124]). The points are
sampled from a two dimensional manifold curved in R3 and then a graph is
constructed where nodes correspond to points.

Our goal is for the graph to capture the structure of the manifold. To
each data point we will associate a node. For this we should only connect
points that are close in the manifold and not points that maybe appear close
in Euclidean space simply because of the curvature of the manifold. This is
achieved by picking a small scale and linking nodes if they correspond to points
whose distance is smaller than that scale. This is usually done smoothly via
a kernel Kε, and to each edge (i, j) associating a weight

wij = Kε (‖xi − xj‖2) ,

a common example of a Kernel is Kε(u) = exp
(
− 1

2εu
2
)
, that gives essentially

zero weight to edges corresponding to pairs of nodes for which ‖xi − xj‖2 �√
ε. We can then take the the Diffusion Maps of the resulting graph.
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5.1.2 An illustrative simple example

A simple and illustrative example is to take images of a blob on a background
in different positions (image a white square on a black background and each
data point corresponds to the same white square in different positions). This
dataset is clearly intrinsically two dimensional, as each image can be described
by the (two-dimensional) position of the square. However, we don’t expect this
two-dimensional structure to be directly apparent from the vectors of pixel
values of each image; in particular we don’t expect these vectors to lie in a
two dimensional affine subspace!

Fig. 5.3: The two-dimensional diffusion map of the dataset of the datase where
each data point is an image with the same vertical strip in different positions
in the x-axis, the circular structure is apparent.

Let’s start by experimenting with the above example for one dimension.
In that case the blob is a vertical stripe and simply moves left and right. We
think of our space as the in many arcade games, if the square or stripe moves
to the right all the way to the end of the screen, it shows up on the left side
(and same for up-down in the two-dimensional case). Not only this point cloud
should have a one dimensional structure but it should also exhibit a circular
structure. Remarkably, this structure is completely apparent when taking the
two-dimensional Diffusion Map of this dataset, see Figure 5.3.

For the two dimensional example, we expect the structure of the underlying
manifold to be a two-dimensional torus. Indeed, Figure 5.4 shows that the
three-dimensional diffusion map captures the toroidal structure of the data.

5.1.3 Similar non-linear dimensional reduction techniques

There are several other similar non-linear dimensional reduction methods. A
particularly popular one is ISOMAP [124]. The idea is to find an embedding
in Rd for which euclidean distances in the embedding correspond as much as
possible to geodesic distances in the graph. This can be achieved by, between
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Fig. 5.4: On the left the data set considered and on the right its three di-
mensional diffusion map, the fact that the manifold is a torus is remarkably
captured by the embedding.

pairs of nodes vi, vj finding their geodesic distance and then using, for ex-
ample, Multidimensional Scaling to find points yi ∈ Rd that minimize (for
example)

min
y1,...,yn∈Rd

∑
i,j

(
‖yi − yj‖2 − δ2ij

)2
,

which can be done with spectral methods (it is a good exercise to compute
the optimal solution to the above optimization problem).

Fig. 5.5: The two dimensional represention of a data set of images of faces
as obtained in [124] using ISOMAP. Remarkably, the two dimensionals are
interpretable
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Fig. 5.6: The two dimensional represention of a data set of images of human
hand as obtained in [124] using ISOMAP. Remarkably, the two dimensionals
are interpretable

Fig. 5.7: The two dimensional represention of a data set of handwritten digits
as obtained in [124] using ISOMAP. Remarkably, the two dimensionals are
interpretable

5.2 Connections between Diffusion Maps and Spectral
Clustering

Diffusion maps are tightly connected to Spectral Clustering (described in
Chapter 4). In fact, Spectral Clustering can be understood as simply per-
forming k-means on the embedding given by Diffusion Maps truncated to
k − 1 dimensions.
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A natural way to try to overcome the issues of k-means depicted in Fig-
ure 4.4 is by using Diffusion Maps: Given the data points we construct a
weighted graph G = (V,E,W ) using a kernel Kε, such as Kε(u) = exp

(
1
2εu

2
)
,

by associating each point to a vertex and, for which pair of nodes, set the edge
weight as

wij = Kε (‖xi − xj‖) .

Recall the construction of a matrix M = D−1W as the transition matrix
of a random walk

P {X(t+ 1) = j|X(t) = i} =
wij

deg(i)
= Mij ,

where D is the diagonal with Dii = deg(i). The d-dimensional Diffusion Maps
is given by

ϕ
(d)
t (i) =

 λt2ϕ2(i)
...

λtd+1ϕd+1(i)

 ,
where M = ΦΛΨT where Λ is the diagonal matrix with the eigenvalues of M
and Φ and Ψ are, respectively, the right and left eigenvectors of M (note that
they form a bi-orthogonal system, ΦTΨ = I).

If we want to cluster the vertices of the graph in k clusters, then it is
natural to truncate the Diffusion Map to have k−1 dimensions (since in k−1
dimensions we can have k linearly separable sets). If indeed the clusters were
linearly separable after embedding then one could attempt to use k-means on
the embedding to find the clusters, this is precisely the motivation for Spectral
Clustering.

Algorithm 5.1 Spectral Clustering described using Diffusion Maps.

Spectral Clustering: Given a graph G = (V,E,W ) and a number of clusters k (and
t), Spectral Clustering consists in taking a (k − 1) dimensional Diffusion Map

ϕ
(k−1)
t (i) =

 λ
t
2ϕ2(i)

...
λt
kϕk(i)


and clustering the points ϕ

(k−1)
t (1), ϕ

(k−1)
t (2), . . . , ϕ

(k−1)
t (n) ∈ Rk−1 using, for ex-

ample, k-means clustering. Usually, the scaling of λt
m is ignored (corresponding to

t = 0).

In order to show that this indeed coincides with Algorithm 4.2, it is enough
to show that ϕm = D−

1
2vm where vm is the eigenvector associated with the m-

th smallest eigenvalue of LG. This follows from the fact that S = D−
1
2WD−

1
2

as defined in (5.2) is related to LG by
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LG = I − S,

and Φ = D−1/2V .

Fig. 5.8: For two clusters, spectral clustering consists in assigning to each
vertex i a real number ϕ2(i), then setting a threshold τ and taking S =
{i ∈ V : ϕ2(i) ≤ τ}. This real number can both be interpreted through the
spectrum of LG as in Algorithm 4.1 or as the Diffusion Maps embedding as
in Algorithm 5.1.

Proposition 5.7 below establishes a connection between Ncut (as described
in Chapter 4) and the random walks introduced above. Let M as defined
in (5.1) denote the matrix of transition probabilities. Recall that M1 = 1,
corresponding to Mϕ1 = ϕ1, which means that ψT1 M = ψT1 , where

ψ1 = D
1
2 v1 = Dϕ1 = [deg(i)]1≤i≤n .

This means that
[
deg(i)
vol(G)

]
1≤i≤n

is the stationary distribution of this random

walk. Indeed it is easy to check that, if X(t) has a certain distribution pt then
X(t+ 1) has a distribution pt+1 given by pTt+1 = pTt M

Proposition 5.7. Given a graph G = (V,E,W ) and a partition (S, Sc) of V ,
Ncut(S) corresponds to the probability, in the random walk associated with G,
that a random walker in the stationary distribution goes to Sc conditioned on
being in S plus the probability of going to S condition on being in Sc, more
explicitly:

Ncut(S) = P {X(t+ 1) ∈ Sc|X(t) ∈ S}+ P {X(t+ 1) ∈ S|X(t) ∈ Sc} ,

where P{X(t) = i} = deg(i)
vol(G) .

Proof. Without loss of generality we can take t = 0. Also, the second term
in the sum corresponds to the first with S replaced by Sc and vice-versa, so
we’ll focus on the first one. We have:
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P {X(1) ∈ Sc|X(0) ∈ S} =
P {X(1) ∈ Sc ∩X(0) ∈ S}

P {X(0) ∈ S}

=

∑
i∈S
∑
j∈Sc P {X(1) ∈ j ∩X(0) ∈ i}∑

i∈S P {X(0) = i}

=

∑
i∈S
∑
j∈Sc

deg(i)
vol(G)

wij
deg(i)∑

i∈S
deg(i)
vol(G)

=

∑
i∈S
∑
j∈Sc wij∑

i∈S deg(i)

=
cut(S)

vol(S)
.

Analogously,

P {X(t+ 1) ∈ S|X(t) ∈ Sc} =
cut(S)

vol(Sc)
,

which concludes the proof. �

5.3 Semi-supervised learning

Classification is a central task in machine learning. In a supervised learning
setting we are given many labelled examples and want to use them to infer
the label of a new, unlabeled example. For simplicity, let us focus on the case
of two labels, {−1,+1}.

Fig. 5.9: Given a few labeled points, the task is to label an unlabeled point.

Let us consider the task of labelling the point “?” in Figure 5.9 given the
labeled points. The natural label to give to the unlabeled point would be 1.

However, if we are given not just one unlabeled point, but many, as in
Figure 5.10; then it starts being apparent that −1 is a more reasonable guess.

Intuitively, the unlabeled data points allowed us to better learn the intrin-
sic geometry of the dataset. That is the idea behind Semi-Supervised Learning
(SSL), to make use of the fact that often one has access to many unlabeled
data points in order to improve classification.
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Fig. 5.10: In this example we are given many unlabeled points, the unlabeled
points help us learn the geometry of the data.

Just as above, we will use the data points to construct (via a kernel Kε) a
graph G = (V,E,W ) where nodes correspond to points. More precisely, let l
denote the number of labeled points with labels f1, . . . , fl, and u the number
of unlabeled points (with n = l + u), the first l nodes v1, . . . , vl correspond
to labeled points and the rest vl+1, . . . , vn are unlabaled. We want to find
a function f : V → {−1, 1} that agrees on labeled points: f(i) = fi for
i = 1, . . . , l and that is “as smooth as possible” the graph. A way to pose this
is the following

min
f :V→{−1,1}: f(i)=fi i=1,...,l

∑
i<j

wij (f(i)− f(j))
2
.

Instead of restricting ourselves to giving {−1, 1} we allow ourselves to give real
valued labels, with the intuition that we can “round” later by, e.g., assigning
the sign of f(i) to node i.

We thus are interested in solving

min
f :V→R: f(i)=fi i=1,...,l

∑
i<j

wij (f(i)− f(j))
2
.

If we denote by f the vector (in Rn with the function values) then, recalling
Proposition 4.3, we are can rewrite the problem as∑

i<j

wij (f(i)− f(j))
2

= fTLGf.

Remark 5.8. Consider an analogous example on the real line, where one would
want to minimize ∫

f ′(x)2dx.

Integrating by parts∫
f ′(x)2dx = Boundary Terms−

∫
f(x)f ′′(x)dx.

Analogously, in Rd:∫
‖∇f(x)‖2 dx =

∫ d∑
k=1

(
∂f

∂xk
(x)

)2

dx = B. T.−
∫
f(x)

d∑
k=1

∂2f

∂x2k
(x)dx = B. T.−

∫
f(x)∆f(x)dx,

which helps motivate the use of the term graph Laplacian for LG.
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Let us consider our problem

min
f :V→R: f(i)=fi i=1,...,l

fTLGf.

We can write

D =

[
Dl 0
0 Du

]
, W =

[
Wll Wlu

Wul Wuu

]
, LG =

[
Dl −Wll −Wlu

−Wul Du −Wuu

]
, and f =

[
fl
fu

]
.

Then we want to find (recall that Wul = WT
lu)

min
fu∈Ru

fTl [Dl −Wll] fl − 2fTuWulfl + fTu [Du −Wuu] fu.

by first-order optimality conditions, it is easy to see that the optimal satisfies

(Du −Wuu) fu = Wulfl.

If Du −Wuu is invertible1 then

f∗u = (Du −Wuu)
−1
Wulfl.

Remark 5.9. The function f function constructed is called a harmonic exten-
sion. Indeed, it shares properties with harmonic functions in euclidean space
such as the mean value property and maximum principles; if vi is an unlabeled
point then

f(i) =
[
D−1u (Wulfl +Wuufu)

]
i

=
1

deg(i)

n∑
j=1

wijf(j),

which immediately implies that the maximum and minimum value of f needs
to be attained at a labeled point.

An interesting experience and the Sobolev Embedding Theorem

Let us try a simple experiment. Let’s say we have a grid on [−1, 1]d dimensions
(with say md points for some large m) and we label the center as +1 and
every node that is at distance larger or equal to 1 to the center, as −1. We are
interested in understanding how the above algorithm will label the remaining
points, hoping that it will assign small numbers to points far away from the
center (and close to the boundary of the labeled points) and large numbers
to points close to the center.

See the results for d = 1 in Figure 5.11, d = 2 in Figure 5.12, and d = 3 in
Figure 5.13. While for d ≤ 2 it appears to be smoothly interpolating between

1It is not difficult to see that unless the problem is in some form degenerate,
such as the unlabeled part of the graph being disconnected from the labeled one,
then this matrix will indeed be invertible.
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Fig. 5.11: The d = 1 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d = 1 it
appears to smoothly interpolate between the labeled points.

Fig. 5.12: The d = 2 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d = 2 it
appears to smoothly interpolate between the labeled points.

the labels, for d = 3 it seems that the method simply learns essentially −1 on
all points, thus not being very meaningful. Let us turn to Rd for intuition:

Let’s say that we want to find a function in Rd that takes the value 1
at zero and −1 at the unit sphere, that minimizes

∫
B0(1)

‖∇f(x)‖2dx. Let

us consider the following function on B0(1) (the ball centered at 0 with unit
radius)

fε(x) =

{
1− 2 |x|ε if|x| ≤ ε
−1 otherwise.

A quick calculation suggest that∫
B0(1)

‖∇fε(x)‖2dx =

∫
B0(ε)

1

ε2
dx = vol(B0(ε))

1

ε2
dx ≈ εd−2,

meaning that, if d > 2, the performance of this function is improving as ε→ 0,
explaining the results in Figure 5.13.
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Fig. 5.13: The d = 3 example of the use of this method to the example
described above, the value of the nodes is given by color coding. For d = 3
the solution appears to only learn the label −1.

Fig. 5.14: The d = 3 example of the use of this method with the extra reg-
ularization fTL2f to the example described above, the value of the nodes
is given by color coding. The extra regularization seems to fix the issue of
discontinuities.

One way of thinking about what is going on is through the Sobolev Em-
bedding Theorem. Hm

(
Rd
)

is the space of function whose derivatives up to
order m are square-integrable in Rd, Sobolev Embedding Theorem says that
if m > d

2 then, if f ∈ Hm
(
Rd
)

then f must be continuous, which would rule
out the behavior observed in Figure 5.13. It also suggests that if we are able
to control also second derivates of f then this phenomenon should disappear
(since 2 > 3

2 ). While we will not describe it here in detail, there is, in fact,
a way of doing this by minimizing not fTLf but fTL2f instead, Figure 5.14
shows the outcome of the same experiment with the fTLf replaced by fTL2f
and confirms our intuition that the discontinuity issue should disappear (see,
e.g., [100] for more on this phenomenon).
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6

Concentration of Measure and Matrix
Inequalities

In this chapter we significantly expand on the concepts presented in Chapter 2,
showcasing several other instances of the Concentration of Measure phenom-
ena and focus on matrix versions of these inequalities that will be crucial in
the forthcoming chapters.

6.1 Matrix Bernstein Inequality

In many of the chapters that follow we will need to control the largest eigen-
value or spectral norm of random matrices. Depending on the context, these
matrices may represent the noise whose effect in a spectral algorithm is con-
trolled by its spectral norm, or the size of a dual variable that needs to be
controlled to show the exactness of a convex relaxation. While some of the
tools we developed in Chapter 2 could be used to control the size of the en-
tries of random matrices, which could translate to spectral bounds, this would
likely introduce many suboptimal dimensional factors. We will start by pre-
senting a general use concentration inequality for sums of independent random
matrices, while noting that, as with scalars, many random variables can be
written as sums of independent random variables even when it’s not trivially
apparent.

Let us recall Bernsteins inequality (Theorem 2.16) copied here with slightly
different notation, and with only one of the tails: If X1, X2, . . . , Xn are inde-
pendent centered random variables satisfying |Xi| ≤ r and E[X2

i ] = 1
nν

2.
Then,

P

{
n∑
i=1

Xi > t

}
≤ exp

(
− t2

2ν2 + 2
3rt

)
. (6.1)

A very useful generalization of this inequality exists for bounding the
largest eigenvalue of the sum of independent random matrices

Theorem 6.1 (Theorem 1.4 in [130]). Let {Xk}nk=1 be a sequence of in-
dependent random symmetric d× d matrices. Assume that each Xk satisfies:
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EXk = 0 and λmax (Xk) ≤ R almost surely.

Then, for all t ≥ 0,

P

{
λmax

(
n∑
k=1

Xk

)
≥ t

}
≤ d · exp

(
−t2

2σ2 + 2
3Rt

)
where σ2 =

∥∥∥∥∥
n∑
k=1

E
(
X2
k

)∥∥∥∥∥ .
Note that ‖A‖ denotes the spectral norm of A. Comparing with (6.1) the
attentive reader will notice an extra dimensional factor of d; a simple change
of variables shows that this corresponds to a poly-logarithmic factor on the
random variable, a factor that will be discussed later in this Chapter.

In what follows we will state and prove various matrix concentration re-
sults, somewhat similar to Theorem 6.1. We will focus on understanding, and
bounding, the typical value of the spectral norm of random matrices by upper
bounding E‖X‖, as these tend to be high dimensional objects themselves they
often have enough concentration that tail bounds are then easy to obtain. In
fact, in the next Section we will illustration exactly this by deriving a tail
bound for the spectral norm of a Wigner matrix using Gaussian Concentra-
tion. For an approach to matrix concentration that includes a direct proof of
Theorem 6.1 we recommend Tropp’s excellent monograph [132].

6.2 Gaussian Concentration and the Spectral norm of
Wigner Matrices

One of the most important results in concentration of measure is Gaussian
concentration. Although being a concentration result specific for normally
distributed random variables, it will be very useful throughout this book.
Intuitively it says that if F : Rn → R is a function that is stable in terms of its
input then F (g) is very well concentrated around its mean, where g ∈ N (0, I).
More precisely:

Theorem 6.2 (Gaussian Concentration). Let X = [X1, . . . , Xn]T be a
vector with i.i.d. standard Gaussian entries and F : Rn → R a σ-Lipschitz
function (i.e.: |F (x) − F (y)| ≤ σ‖x − y‖, for all x, y ∈ Rn). Then, for every
t ≥ 0

P {|F (X)− EF (X)| ≥ t} ≤ 2 exp

(
− t2

2σ2

)
.

For the sake of simplicity we will show the proof for a slightly weaker

bound: P {|F (X)− EF (X)| ≥ t} ≤ 2 exp
(
− 2
π2

t2

σ2

)
. This exposition follows

closely the proof of Theorem 2.1.12 in [123] and the original argument is due
to Maurey and Pisier. For a proof with the optimal constants see, for example,
Theorem 3.25 in [134]. We will also assume that the function F is smooth —
this is actually not a restriction, as a limiting argument can generalize the
result from smooth functions to general Lipschitz functions.
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Proof.
If F is smooth, then it is easy to see that the Lipschitz property implies

that, for every x ∈ Rn, ‖∇F (x)‖2 ≤ σ. By subtracting a constant from F , we
can assume that EF (X) = 0. Also, it is enough to show a one-sided bound

P {F (X)− EF (X) ≥ t} ≤ exp

(
− 2

π2

t2

σ2

)
,

since obtaining the same bound for −F (X) and taking a union bound would
gives the result.

We start by using the same idea as in the proof of the large deviation
inequalities above. For any λ > 0, Markov’s inequality implies that

P {F (X) ≥ t} = P {exp (λF (X)) ≥ exp (λt)}

≤ E [exp (λF (X))]

exp (λt)

This means we need to upper bound E [exp (λF (X))] using a bound on
‖∇F‖. The idea is to introduce a random independent copy Y of X. Since
exp (λ·) is convex, Jensen’s inequality implies that

E [exp (−λF (Y ))] ≥ exp (−EλF (Y )) = exp(0) = 1.

Hence, since X and Y are independent,

E [exp (λ [F (X)− F (Y )])] = E [exp (λF (X))]E [exp (−λF (Y ))] ≥ E [exp (λF (X))]

Now we use the Fundamental Theorem of Calculus in a circular arc from X
to Y :

F (X)− F (Y ) =

∫ π
2

0

∂

∂θ
F (Y cos θ +X sin θ) dθ.

The advantage of using the circular arc is that, for any θ, Xθ := Y cos θ +
X sin θ is another random variable with the same distribution. And this prop-
erty holds for its derivative with respect to θ, X ′θ = −Y sin θ+X cos θ as well.
Moreover, Xθ and X ′θ are independent. In fact, note that

E
[
XθX

′
θ
T
]

= E [Y cos θ +X sin θ] [−Y sin θ +X cos θ]
T

= 0.

We use Jensen’s inequality again (with respect to the integral now) to get:

exp (λ [F (X)− F (Y )]) = exp

(
λ
π

2

1

π/2

∫ π/2

0

∂

∂θ
F (Xθ) dθ

)

≤ 1

π/2

∫ π/2

0

exp

(
λ
π

2

∂

∂θ
F (Xθ)

)
dθ
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Using the chain rule,

exp (λ [F (X)− F (Y )]) ≤ 2

π

∫ π/2

0

exp
(
λ
π

2
∇F (Xθ) ·X ′θ

)
dθ,

and taking expectations

E exp (λ [F (X)− F (Y )]) ≤ 2

π

∫ π/2

0

E exp
(
λ
π

2
∇F (Xθ) ·X ′θ

)
dθ,

If we condition on Xθ, since
∥∥λπ2∇F (Xθ)

∥∥ ≤ λπ2σ, λπ2∇F (Xθ) · X ′θ is a

gaussian random variable with variance at most
(
λπ2σ

)2
. This directly implies

that, for every value of Xθ

EX′θ exp
(
λ
π

2
∇F (Xθ) ·X ′θ

)
≤ exp

[
1

2

(
λ
π

2
σ
)2]

Taking expectation now over Xθ, and putting everything together, gives

E [exp (λF (X))] ≤ exp

[
1

2

(
λ
π

2
σ
)2]

,

which means that

P {F (X) ≥ t} ≤ exp

[
1

2

(
λ
π

2
σ
)2
− λt

]
,

Optimizing for λ gives λ∗ =
(
2
π

)2 t
σ2 , which in turn gives

P {F (X) ≥ t} ≤ exp

[
− 2

π2

t2

σ2

]
.

�

6.2.1 Spectral norm of a Wigner Matrix

We give an illustrative example of the utility of Gaussian concentration. Let
W ∈ Rn×n be a standard Gaussian Wigner matrix, a symmetric matrix with
(otherwise) independent Gaussian entries, the off-diagonal entries have unit

variance and the diagonal entries have variance 2. ‖W‖ depends on n(n+1)
2

independent (standard) Gaussian random variables and it is easy to see that
it is a

√
2-Lipschitz function of these variables, since∣∣∣‖W (1)‖ − ‖W (2)‖

∣∣∣ ≤ ∥∥∥W (1) −W (2)
∥∥∥ ≤ ∥∥∥W (1) −W (2)

∥∥∥
F
.

The symmetry of the matrix and the variance 2 of the diagonal entries are
responsible for an extra factor of

√
2.



6.3 Non-Commutative Khintchine inequality 87

Using Gaussian Concentration (Theorem 6.2) we immediately get

P {‖W‖ ≥ E‖W‖+ t} ≤ 2 exp

(
− t

2

4

)
.

Since1 E‖W‖ ≤ 2
√
n we get

Proposition 6.3. Let W ∈ Rn×n be a standard Gaussian Wigner matrix,
a symmetric matrix with (otherwise) independent Gaussian entries, the off-
diagonal entries have unit variance and the diagonal entries have variance 2.
Then,

P
{
‖W‖ ≥ 2

√
n+ t

}
≤ 2 exp

(
− t

2

4

)
.

Note that this gives an extremely precise control of the fluctuations of
‖W‖. In fact, for t = 2

√
log n this gives

P
{
‖W‖ ≥ 2

√
n+ 2

√
log n

}
≤ 2 exp

(
−4 log n

4

)
=

2

n
.

6.2.2 Talagrand’s concentration inequality

A remarkable result by Talagrand [121], Talangrad’s concentration inequality,
provides an analogue of Gaussian concentration for bounded random variables.

Theorem 6.4 (Talangrand concentration inequality, Theorem 2.1.13 [123]).
Let K > 0, and let X1, . . . , Xn be independent bounded random variables with
|Xi| ≤ K for all 1 ≤ i ≤ n. Let F : Rn → R be a σ-Lipschitz and convex
function. Then, for any t ≥ 0,

P {|F (X)− E [F (X)]| ≥ tK} ≤ c1 exp

(
−c2

t2

σ2

)
,

for positive constants c1, and c2.

Other useful similar inequalities (with explicit constants) are available
in [91].

6.3 Non-Commutative Khintchine inequality

We start with a particularly important inequality involving the expected value
of a random matrix. It is intimately related to the non-commutative Khint-
chine inequality [107], and for that reason we will often refer to it as Non-
commutative Khintchine (see, for example, (4.9) in [130]).

1It is an excellent exercise to prove E‖W‖ ≤ 2
√
n using Slepian’s inequality.
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Theorem 6.5 (Non-commutative Khintchine (NCK)). Let A1, . . . , An ∈
Rd×d be symmetric matrices and g1, . . . , gn ∼ N (0, 1) i.i.d., then:

E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ ≤ (2 + 2 log(2d)
) 1

2

σ,

where

σ2 =

∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥ . (6.2)

Note that, akin to Proposition 6.3, we can also use Gaussian Concentration
to get a tail bound on ‖

∑n
k=1 gkAk‖. We consider the function

F : Rn →

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ .
We now estimate its Lipschitz constant; let g, h ∈ Rn then∣∣∣∣∣

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥−
∥∥∥∥∥
n∑
k=1

hkAk

∥∥∥∥∥
∣∣∣∣∣ ≤

∥∥∥∥∥
(

n∑
k=1

gkAk

)
−

(
n∑
k=1

hkAk

)∥∥∥∥∥
=

∥∥∥∥∥
n∑
k=1

(gk − hk)Ak

∥∥∥∥∥
= max

v: ‖v‖=1
vT

(
n∑
k=1

(gk − hk)Ak

)
v

= max
v: ‖v‖=1

n∑
k=1

(gk − hk)
(
vTAkv

)
≤ max

v: ‖v‖=1

√√√√ n∑
k=1

(gk − hk)2

√√√√ n∑
k=1

(vTAkv)
2

=

√√√√ max
v: ‖v‖=1

n∑
k=1

(vTAkv)
2‖g − h‖2,

where in the first inequality we made use of the triangular inequality and in
the last one of the Cauchy-Schwarz inequality.

This motivates us to define a new parameter, the weak variance σ∗.

Definition 6.6 (Weak Variance (see, for example, [132])). Given A1, . . . , An ∈
Rd×d symmetric matrices. We define the weak variance parameter as

σ2
∗ = max

v: ‖v‖=1

n∑
k=1

(
vTAkv

)2
.
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This means that, using Gaussian concentration (and setting t = uσ∗), we
have

P

{∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ ≥ (2 + 2 log(2d)
) 1

2

σ + uσ∗

}
≤ exp

(
−1

2
u2
)
. (6.3)

Thus, although the expected value of ‖
∑n
k=1 gkAk‖ is controlled by the

parameter σ, its fluctuations seem to be controlled by σ∗. We compare the
two quantities in the following proposition.

Proposition 6.7. Given A1, . . . , An ∈ Rd×d symmetric matrices, recall that

σ =

√√√√∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
2

and σ∗ =

√√√√ max
v: ‖v‖=1

n∑
k=1

(vTAkv)
2
.

We have
σ∗ ≤ σ.

Proof. Using the Cauchy-Schwarz inequality,

σ2
∗ = max

v: ‖v‖=1

n∑
k=1

(
vTAkv

)2
= max

v: ‖v‖=1

n∑
k=1

(
vT [Akv]

)2
≤ max

v: ‖v‖=1

n∑
k=1

(‖v‖‖Akv‖)2

= max
v: ‖v‖=1

n∑
k=1

‖Akv‖2

= max
v: ‖v‖=1

n∑
k=1

vTA2
kv

=

∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
= σ2.

�

6.3.1 Optimality of matrix concentration result for Gaussian series

The following simple calculation is suggestive that the parameter σ in Theo-
rem 6.5 is indeed the correct parameter to understand E ‖

∑n
k=1 gkAk‖.
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E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
(

n∑
k=1

gkAk

)2
∥∥∥∥∥∥ = E max

v: ‖v‖=1
vT

(
n∑
k=1

gkAk

)2

v

≥ max
v: ‖v‖=1

EvT
(

n∑
k=1

gkAk

)2

v = max
v: ‖v‖=1

vT

(
n∑
k=1

A2
k

)
v = σ2.

But a natural question is whether the logarithmic term is needed. Moti-
vated by this question we will explore a couple of examples.

Example 6.8. We can write a d× d Wigner matrix W as a gaussian series, by
taking Aij for i ≤ j defined as

Aij = eie
T
j + eje

T
i ,

if i 6= j, and
Aii =

√
2eie

T
i .

It is not difficult to see that, in this case,
∑
i≤j A

2
ij = (d + 1)Id×d, meaning

that σ =
√
d+ 1. This implies that Theorem 6.5 gives us

E‖W‖ .
√
d log d,

however, we know that E‖W‖ �
√
d, meaning that the bound given by NCK

(Theorem 6.5) is, in this case, suboptimal by a logarithmic factor.2

The next example will show that the logarithmic factor is in fact needed
in some examples

Example 6.9. Consider Ak = eke
T
k ∈ Rd×d for k = 1, . . . , d. The matrix∑n

k=1 gkAk corresponds to a diagonal matrix with independent standard gaus-
sian random variables as diagonal entries, and so its spectral norm is given
by maxk |gk|. It is known that max1≤k≤d |gk| �

√
log d. On the other hand, a

direct calculation shows that σ = 1. This shows that the logarithmic factor
cannot, in general, be removed.

This motivates the question of trying to understand when is it that the
extra dimensional factor is needed. For both these examples, the resulting
matrix X =

∑n
k=1 gkAk has independent entries (except for the fact that

it is symmetric). The case of independent entries [111, 116, 81, 24] is now
somewhat understood:

Theorem 6.10 ([24]). If X is a d×d random symmetric matrix with gaussian
independent entries (except for the symmetry constraint) whose entry i, j has
variance b2ij then

E‖X‖ .

√√√√max
1≤i≤d

d∑
j=1

b2ij + max
ij
|bij |

√
log d.

2By a � b we mean a . b and a & b.
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Remark 6.11. X in the theorem above can be written in terms of a Gaussian
series by taking

Aij = bij
(
eie

T
j + eje

T
i

)
,

for i < j and Aii = biieie
T
i . One can then compute σ and σ∗:

σ2 = max
1≤i≤d

d∑
j=1

b2ij and σ2
∗ � b2ij .

This means that, when the random matrix in NCK (Theorem 6.5) has inde-
pendent entries (modulo symmetry) then

E‖X‖ . σ +
√

log dσ∗. (6.4)

Theorem 6.10 together with a recent improvement of Theorem 6.5 by
Tropp [133]3 motivate the bold possibility of (6.4) holding in more generality.

Conjecture 6.12. LetA1, . . . , An ∈ Rd×d be symmetric matrices and g1, . . . , gn ∼
N (0, 1) i.i.d., then:

E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ . σ + (log d)
1
2 σ∗,

While it may very will be that Conjecture 6.12 is false, no counter example
is known, up to date.

6.4 Matrix concentration inequalities

In what follows, we closely follow [131] and present an elementary proof of a
few useful matrix concentration inequalities. We start with a Master Theorem
of sorts for Rademacher series (the Rademacher analogue of Theorem 6.5)

Theorem 6.13. Let H1, . . . ,Hn ∈ Rd×d be symmetric matrices and ε1, . . . , εn
i.i.d. Rademacher random variables (meaning = +1 with probability 1/2 and
= −1 with probability 1/2), then:

E

∥∥∥∥∥
n∑
k=1

εkHk

∥∥∥∥∥ ≤ (1 + 2dlog(d)e
) 1

2

σ,

where

σ2 =

∥∥∥∥∥
n∑
k=1

H2
k

∥∥∥∥∥
2

. (6.5)

3We briefly discuss this improvement in Remark 6.20
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Using Theorem 6.13, we will prove the following theorem.

Theorem 6.14. Let T1, . . . , Tn ∈ Rd×d be random independent symmetric
positive semidefinite matrices, then

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥
1
2

+
√
C(d)

(
Emax

i
‖Ti‖

) 1
2

2

,

where
C(d) := 4 + 8dlog de. (6.6)

A key step in the proof of Theorem 6.14 is an idea that is extremely useful
in Probability, the trick of symmetrization. For this reason we isolate it in a
lemma.

Lemma 6.15 (Symmetrization). Let T1, . . . , Tn be independent random
matrices (note that they do not necessarily need to be positive semidefinite,
for the sake of this lemma) and ε1, . . . , εn random i.i.d. Rademacher random
variables (independent also from the matrices). Then

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

ETi

∥∥∥∥∥+ 2E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
Proof. The triangular inequality gives

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

ETi

∥∥∥∥∥+ E

∥∥∥∥∥
n∑
i=1

(Ti − ETi)

∥∥∥∥∥ .
Let us now introduce, for each i, a random matrix T ′i identically distributed
to Ti and independent (all 2n matrices are independent). Then

E

∥∥∥∥∥
n∑
i=1

(Ti − ETi)

∥∥∥∥∥ = ET

∥∥∥∥∥
n∑
i=1

(
Ti − ETi − ET ′i

[
T ′i − ET ′iT

′
i

])∥∥∥∥∥
= ET

∥∥∥∥∥ET ′
n∑
i=1

(Ti − T ′i )

∥∥∥∥∥ ≤ E

∥∥∥∥∥
n∑
i=1

(Ti − T ′i )

∥∥∥∥∥ ,
where we use the notation Ea to mean that the expectation is taken with
respect to the variable a and the last step follows from Jensen’s inequality
with respect to ET ′ .

Since Ti−T ′i is a symmetric random variable,4 it is identically distributed
to εi (Ti − T ′i ), which gives

4Note we use the notation “symmetric random variable to mean X ∼ −X and
symmetric matrix to mean XT = X
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E

∥∥∥∥∥
n∑
i=1

(Ti − T ′i )

∥∥∥∥∥ = E

∥∥∥∥∥
n∑
i=1

εi (Ti − T ′i )

∥∥∥∥∥ ≤ E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥+E

∥∥∥∥∥
n∑
i=1

εiT
′
i

∥∥∥∥∥ = 2E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥ ,
concluding the proof. �

Proof. [of Theorem 6.14]
Using Lemma 6.15 and Theorem 6.13 we get

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)E

∥∥∥∥∥
n∑
i=1

T 2
i

∥∥∥∥∥
1
2

The trick now is to make a term like the one in the LHS appear in the RHS.
For that we start by noting (you can see Fact 2.3 in [131] for an elementary
proof) that, since Ti � 0,∥∥∥∥∥

n∑
i=1

T 2
i

∥∥∥∥∥ ≤ max
i
‖Ti‖

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ .
This means that

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)E

(max
i
‖Ti‖

) 1
2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1
2

 .
Furthermore, applying the Cauchy-Schwarz inequality for E gives,

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥
n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)

(
Emax

i
‖Ti‖

) 1
2

(
E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
) 1

2

,

Now that the term E ‖
∑n
i=1 Ti‖ appears in the RHS, the proof can be finished

with a simple application of the quadratic formula (see Section 6.1. in [131]
for details).

�

We now show an inequality for general symmetric matrices

Theorem 6.16. Let Y1, . . . , Yn ∈ Rd×d be random independent symmetric
matrices satisfying EYi = 0, then

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≤√C(d)σ + C(d)L,

where,

σ2 =

∥∥∥∥∥
n∑
i=1

EY 2
i

∥∥∥∥∥ and L2 = Emax
i
‖Yi‖2 (6.7)

and, as in (6.6),
C(d) := 4 + 8dlog de.
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Proof.
Using Symmetrization (Lemma 6.15) and Theorem 6.13, we get

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≤ 2EY

[
Eε

∥∥∥∥∥
n∑
i=1

εiYi

∥∥∥∥∥
]
≤
√
C(d)E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
1
2

.

Jensen’s inequality gives

E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
1
2

≤

(
E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
) 1

2

,

and the proof can be concluded by noting that Y 2
i � 0 and using Theo-

rem 6.14. �

Remark 6.17 (The rectangular case). One can extend Theorem 6.16 to general
rectangular matrices S1, . . . , Sn ∈ Rd1×d2 by setting

Yi =

[
0 Si
STi 0

]
,

and noting that

∥∥Y 2
i

∥∥ =

∥∥∥∥∥
[

0 Si
STi 0

]2∥∥∥∥∥ =

∥∥∥∥[SiSTi 0
0 STi Si

]∥∥∥∥ = max
{∥∥STi Si∥∥ ,∥∥SiSTi ∥∥} .

For details we refer to [131].

In order to prove Theorem 6.13, we will use an arithmetic mean-geometric
mean (AM-GM) like inequality for matrices.

Lemma 6.18. Given symmetric matrices H,W, Y ∈ Rd×d and non-negative
integers r, q satisfying q ≤ 2r,

Tr
[
HW qHY 2r−q]+ Tr

[
HW 2r−qHY q

]
≤ Tr

[
H2
(
W 2r + Y 2r

)]
,

and summing over q gives

2r∑
q=0

Tr
[
HW qHY 2r−q] ≤ (2r + 1

2

)
Tr
[
H2
(
W 2r + Y 2r

)]
.

We refer to Fact 2.4 in [131] for an elementary proof but note that it is a
matrix analogue to the inequality,

µθλ1−θ + µ1−θλθ ≤ λ+ µ
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for µ, λ ≥ 0 and 0 ≤ θ ≤ 1, which can be easily shown by adding two AM-GM
inequalities

µθλ1−θ ≤ θµ+ (1− θ)λ and µ1−θλθ ≤ (1− θ)µ+ θλ.

Proof. [of Theorem 6.13]
Let X =

∑n
k=1 εkHk, then for any positive integer p,

E‖X‖ ≤
(
E‖X‖2p

) 1
2p =

(
E‖X2p‖

) 1
2p ≤

(
ETrX2p

) 1
2p ,

where the first inequality follows from Jensen’s inequality and the last from
X2p � 0 and the observation that the trace of a positive semidefinite matrix
is at least its spectral norm. In the sequel, we upper bound ETrX2p. We
introduce X+i and X−i as X conditioned on εi being, respectively +1 or −1.
More precisely

X+i = Hi +
∑
j 6=i

εjHj and X−i = −Hi +
∑
j 6=i

εjHj .

Then, we have

ETrX2p = ETr
[
XX2p−1] = E

n∑
i=1

Tr εiHiX
2p−1.

Note that Eεi Tr
[
εiHiX

2p−1] = 1
2 Tr

[
Hi

(
X2p−1

+i −X2p−1
−i

)]
, this means that

ETrX2p =

n∑
i=1

E
1

2
Tr
[
Hi

(
X2p−1

+i −X2p−1
−i

)]
,

where the expectation can be taken over εj for j 6= i.

Now we rewrite X2p−1
+i −X2p−1

−i as a telescopic sum:

X2p−1
+i −X2p−1

−i =

2p−2∑
q=0

Xq
+i (X+i −X−i)X2p−2−q

−i ,

which gives

ETrX2p =

n∑
i=1

2p−2∑
q=0

E
1

2
Tr
[
HiX

q
+i (X+i −X−i)X2p−2−q

−i

]
.

Since X+i −X−i = 2Hi we get

ETrX2p =

n∑
i=1

2p−2∑
q=0

ETr
[
HiX

q
+iHiX

2p−2−q
−i

]
. (6.8)
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We now make use of Lemma 6.18 to get5 to get

ETrX2p ≤
n∑
i=1

2p− 1

2
ETr

[
H2
i

(
X2p−2

+i +X2p−2
−i

)]
. (6.9)

Hence,

n∑
i=1

2p− 1

2
ETr

[
H2
i

(
X2p−2

+i +X2p−2
−i

)]
= (2p− 1)

n∑
i=1

ETr

H2
i

(
X2p−2

+i +X2p−2
−i

)
2


= (2p− 1)

n∑
i=1

ETr
[
H2
i Eεi

[
X2p−2]]

= (2p− 1)

n∑
i=1

ETr
[
H2
iX

2p−2]
= (2p− 1)ETr

[(
n∑
i=1

H2
i

)
X2p−2

]

Since X2p−2 � 0 we have

Tr

[(
n∑
i=1

H2
i

)
X2p−2

]
≤

∥∥∥∥∥
n∑
i=1

H2
i

∥∥∥∥∥TrX2p−2 = σ2 TrX2p−2, (6.10)

which gives
ETrX2p ≤ σ2(2p− 1)ETrX2p−2. (6.11)

Applying this inequality, recursively, we get

ETrX2p ≤ [(2p− 1)(2p− 3) · · · (3)(1)]σ2pETrX0 = (2p− 1)!!σ2pd

Hence,

E‖X‖ ≤
(
ETrX2p

) 1
2p ≤ [(2p− 1)!!]

1
2p σd

1
2p .

Taking p = dlog de and using the fact that (2p− 1)!! ≤
(
2p+1
e

)p
(see [131] for

an elementary proof consisting essentially of taking logarithms and comparing
the sum with an integral) we get

E‖X‖ ≤
(

2dlog de+ 1

e

) 1
2

σd
1

2dlog de ≤ (2dlog de+ 1)
1
2 σ.

.
�

5See Remark 6.20 regarding the suboptimality of this step.
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Remark 6.19. A similar argument can be used to prove Theorem 6.5 (the
Gaussian series case) based on Gaussian integration by parts, see Section 7.2.
in [133].

Remark 6.20. Note that, up until the step from (6.8) to (6.9) all steps are
equalities suggesting that this step may be the lossy step responsible by the
suboptimal dimensional factor in several cases (although (6.10) can also po-
tentially be lossy, it is not uncommon that

∑
H2
i is a multiple of the identity

matrix, which would render this step also an equality).
In fact, Joel Tropp [133] recently proved an improvement over the NCK

inequality that, essentially, consists in replacing inequality (6.9) with a tighter
argument. In a nutshell, the idea is that, if the Hi’s are non-commutative,
most summands in (6.8) are actually expected to be smaller than the ones
corresponding to q = 0 and q = 2p − 2, which are the ones that appear
in (6.9).

6.5 Other useful large deviation inequalities

This section contains several other useful scalar large deviation inequalities.
We defer the proofs to references.

6.5.1 Additive Chernoff Bound

The additive Chernoff bound, also known as Chernoff-Hoeffding theorem con-
cerns Bernoulli random variables.

Theorem 6.21. Given 0 < p < 1 and X1, . . . , Xn i.i.d. random variables dis-
tributed as Bernoulli(p) random variable (meaning that it is 1 with probability
p and 0 with probability 1− p), then, for any ε > 0:

• P

{
1

n

n∑
i=1

Xi ≥ p+ ε

}
≤

[(
p

p+ ε

)p+ε(
1− p

1− p− ε

)1−p−ε
]n

• P

{
1

n

n∑
i=1

Xi ≤ p− ε

}
≤

[(
p

p− ε

)p−ε(
1− p

1− p+ ε

)1−p+ε
]n

6.5.2 Multiplicative Chernoff Bound

There is also a multiplicative version (see, for example Lemma 2.3.3. in [53]),
which is particularly useful.

Theorem 6.22. Let X1, . . . , Xn be independent random variables taking val-
ues is {0, 1} (meaning they are Bernoulli distributed but not necessarily iden-
tically distributed). Let µ = E

∑n
i=1Xi, then, for any δ > 0:
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• P {X > (1 + δ)µ} <
[

eδ

(1 + δ)(1+δ)

]µ
• P {X < (1− δ)µ} <

[
e−δ

(1− δ)(1−δ)

]µ

6.5.3 Deviation bounds for χ2 variables

Another particularly useful deviation inequality is Lemma 1 in Laurent and
Massart [82]:

Theorem 6.23 (Lemma 1 in Laurent and Massart [82]). Let X1, . . . , Xn

be i.i.d. standard Gaussian random variables (N (0, 1)), and a1, . . . , an non-
negative numbers. Let

Z =

n∑
k=1

ak
(
X2
k − 1

)
.

The following inequalities hold for any t > 0:

• P {Z ≥ 2‖a‖2
√
x+ 2‖a‖∞x} ≤ exp(−x),

• P {Z ≤ −2‖a‖2
√
x} ≤ exp(−x),

where ‖a‖22 =
∑n
k=1 a

2
k and ‖a‖∞ = max1≤k≤n |ak|.

Note that if ak = 1, for all k, then Z is a χ2 random variable with n
degrees of freedom, so this theorem immediately gives a deviation inequality
for χ2 random variables, see also the tail bound (2.18).
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Max Cut, Lifting, and Approximation
Algorithms

Many data analysis tasks include in them a step consisting of solving a com-
putational problem, oftentimes in the form of finding a hidden parameter that
best explains the data, or model specifications that provide best-fits. Many
such problems, including examples in previous chapters, are computationally
intractable. In complexity theory this is often captured by NP -hardness. Un-
less the widely believed P 6= NP conjecture is false, there is no polynomial
algorithm that can solve all instances of an NP-hard problem. Thus, when
faced with an NP-hard problem (such as the Max-Cut problem discussed be-
low) one has three natural options: to use an exponential type algorithm that
solves exactly the problem in all instances, to design polynomial time algo-
rithms that only work for some of the instances (hopefully relevant ones), or
to design polynomial algorithms that, in all instances, produce guaranteed ap-
proximate solutions. This section is about the third option, another example
of this approach is the earlier discussion on Spectral Clustering and Cheeger’s
inequality. The second option, of designing algorithms that work in many,
rather than all, instances is discussed in later chapters, notably these goals
are often achieved by the same algorithms.

The Max-Cut problem is defined as follows: Given a graph G = (V,E)
with non-negative weights wij on the edges, find a set S ⊂ V for which cut(S)
is maximal. Goemans and Williamson [60] introduced an approximation algo-
rithm that runs in polynomial time, has a randomized component in it, and
is able to obtain a cut whose expected value is guaranteed to be no smaller
than a particular constant αGW times the optimum cut. The constant αGW
is referred to as the approximation ratio.

Let V = {1, . . . , n}. One can restate Max-Cut as

max 1
2

∑
i<j wij(1− yiyj)

s.t. |yi| = 1
(7.1)

The yi’s are binary variables that indicate set membership, i.e., yi = 1 if i ∈ S
and yi = −1 otherwise.
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Consider the following relaxation of this problem:

max 1
2

∑
i<j wij(1− uTi uj)

s.t. ui ∈ Rn, ‖ui‖ = 1.
(7.2)

This is a relaxation because if we restrict ui to be a multiple of e1, the first
element of the canonical basis, then (7.2) is equivalent to (7.1). For this to be
a useful approach, the following two properties should hold:

(a) Problem (7.2) is easy to solve.
(b) The solution of (7.2) is, in some way, related to the solution of (7.1).

Definition 7.1. Given a graph G, we define MaxCut(G) as the optimal value
of (7.1) and RMaxCut(G) as the optimal value of (7.2).

We start with property (a). Set X to be the Gram matrix of u1, . . . , un,
that is, X = UTU where the i’th column of U is ui. We can rewrite the
objective function of the relaxed problem as

1

2

∑
i<j

wij(1−Xij)

One can exploit the fact that X having a decomposition of the form X = Y TY
is equivalent to being positive semidefinite, denoted X � 0. The set of PSD
matrices is a convex set. Also, the constraint ‖ui‖ = 1 can be expressed as
Xii = 1. This means that the relaxed problem is equivalent to the following
semidefinite program (SDP):

max 1
2

∑
i<j wij(1−Xij)

s.t. X � 0 and Xii = 1, i = 1, . . . , n.
(7.3)

This SDP can be solved (up to ε accuracy) in time polynomial on the input
size and log(ε−1)[135].

There is an alternative way of viewing (7.3) as a relaxation of (7.1). By
taking X = yyT one can formulate a problem equivalent to (7.1)

max 1
2

∑
i<j wij(1−Xij)

s.t. X � 0 , Xii = 1, i = 1, . . . , n, and rank(X) = 1.
(7.4)

The SDP (7.3) can be regarded as a relaxation of (7.4) obtained by removing
the non-convex rank constraint. In fact, this is how we will later formulate a
similar relaxation for the minimum bisection problem, in Chapter 8.

We now turn to property (b), and consider the problem of forming a so-
lution to (7.1) from a solution to (7.3). From the solution {ui}i=1,...,n of the
relaxed problem (7.3), we produce a cut subset S′ by randomly picking a
vector r ∈ Rn from the uniform distribution on the unit sphere and setting

S′ = {i|rTui ≥ 0}
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Fig. 7.1: Illustration of the relationship between the angle between vectors
and their inner product, θ = arccos(uTi uj)

In other words, we separate the vectors u1, . . . , un by a random hyperplane
(perpendicular to r). We will show that the cut given by the set S′ is compa-
rable to the optimal one.

Let W be the value of the cut produced by the procedure described above.
Note that W is a random variable, whose expectation is easily seen (see Fig-
ure 7.1) to be given by

E[W ] =
∑
i<j

wij Pr
{

sign(rTui) 6= sign(rTuj)
}

=
∑
i<j

wij
1

π
arccos(uTi uj).

If we define αGW as

αGW = min
−1≤x≤1

1
π arccos(x)
1
2 (1− x)

,

it can be shown that αGW > 0.87 (see, for example [60]).
By linearity of expectation

E[W ] =
∑
i<j

wij
1

π
arccos(uTi uj) ≥ αGW

1

2

∑
i<j

wij(1− uTi uj). (7.5)

Let MaxCut(G) be the maximum cut of G, meaning the maximum of the
original problem (7.1). Naturally, the optimal value of (7.2) is larger or equal
than MaxCut(G). Hence, an algorithm that solves (7.2) and uses the random
rounding procedure described above produces a cut W satisfying

MaxCut(G) ≥ E[W ] ≥ αGW
1

2

∑
i<j

wij(1− uTi uj) ≥ αGWMaxCut(G), (7.6)
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thus having an approximation ratio (in expectation) of αGW . Note that one
can run the randomized rounding procedure several times and select the best
cut.1 We thus have

MaxCut(G) ≥ E[W ] ≥ αGWRMaxCut(G) ≥ αGWMaxCut(G)

Can αGW be improved?

A natural question is to ask whether there exists a polynomial time algorithm
that has an approximation ratio better than αGW .

Fig. 7.2: The Unique Games Problem

The unique games problem (as depicted in Figure 7.2) is the following:
Given a graph and a set of k colors, and, for each edge, a matching between
the colors, the goal in the unique games problem is to color the vertices as
to agree with as high of a fraction of the edge matchings as possible. For
example, in Figure 7.2 the coloring agrees with 3

4 of the edge constraints, and
it is easy to see that one cannot do better.

The Unique Games Conjecture of Khot [74], has played a major role in
hardness of approximation results.

Conjecture 7.2. For any ε > 0, the problem of distinguishing whether an in-
stance of the Unique Games Problem is such that it is possible to agree with
a ≥ 1− ε fraction of the constraints or it is not possible to even agree with a
ε fraction of them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such
instances of the unique games problem [13], however no polynomial time algo-
rithm has been found so far. At the moment one of the strongest candidates
to break the Unique Games Conjecture is a relaxation based on the Sum-of-
squares hierarchy that we will discuss below.

Remarkably, approximating Max-Cut with an approximation ratio better
than αGW is as hard as refuting the Unique Games Conjecture (UG-hard) [75].

1It is worth noting that one is only guaranteed to solve 7.2 up to an approxi-
mation of ε from its optimum value. However, since this ε can be made arbitrarily
small, one can get the approximation ratio arbitrarily close to αGW .
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More generality, if the Unique Games Conjecture is true, the semidefinite pro-
gramming approach described above produces optimal approximation ratios
for a large class of problems [108].

Not depending on the Unique Games Conjecture, there is a NP-hardness
of approximation of 16

17 for Max-Cut [66].

Remark 7.3. Note that a simple greedy method that assigns membership to
each vertex as to maximize the number of edges cut involving vertices already
assigned achieves an approximation ratio of 1

2 (even of 1
2 of the total number

of edges, not just of the optimal cut).

7.1 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained
above. Let us first slightly reformulate the problem (recall that wii = 0).

Recall from Proposition 4.3 that a cut can be rewritten as a quadratic
form involving the graph Laplcian. We can rewrite (7.1) as

max 1
4y
TLGy

yi = ±1, i = 1, . . . , n.
(7.7)

Similarly, (7.3) can be written (by taking X = yyT ) as

max 1
4 Tr (LGX)

s.t. X � 0
Xii = 1, i = 1, . . . , n.

(7.8)

In Chapter 8 we will derive the the dual program to (7.8) in the context
of recovery in the Stochastic Block Model. Here we will simply state it, and
show weak duality as it will be important for the argument that follows.

min Tr (D)
s.t. D is a diagonal matrix

D − 1
4LG � 0.

(7.9)

Indeed, if X is a feasible solution to (7.8) and D a feasible solution to (7.9)
then, sinceX andD− 1

4LG are both positive semidefinite Tr
[
X
(
D − 1

4LG
)]
≥

0 which gives

0 ≤ Tr

[
X

(
D − 1

4
LG

)]
= Tr(XD)− 1

4
Tr (LGX) = Tr(D)− 1

4
Tr (LGX) ,

since D is diagonal and Xii = 1. This shows weak duality, the fact that the
value of (7.9) is larger than the one of (7.8).

If certain conditions, the so called Slater conditions [136, 135], are satisfied
then the optimal values of both programs are known to coincide, this is known
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as strong duality. In this case, the Slater conditions ask whether there is a
matrix strictly positive definite that is feasible for (7.8), and the identity is
such a matrix. This means that there exists D\ feasible for (7.9) such that

Tr(D\) = RMaxCut.

Hence, for any y ∈ Rn we have

1

4
yTLGy = RMaxCut− yT

(
D\ − 1

4
LG

)T
y +

n∑
i=1

D\
ii

(
y2i − 1

)
. (7.10)

Note that (7.10) certifies that no cut of G is larger thanRMaxCut. Indeed,
if y ∈ {±1}2 then y2i = 1 and so

RMaxCut− 1

4
yTLGy = yT

(
D\ − 1

4
LG

)T
y.

Since D\ − 1
4LG � 0, there exists V such that D\ − 1

4LG = V V T with

the columns of V denoted by v1, . . . , vn, meaning that yT
(
D\ − 1

4LG
)T
y =∥∥V T y∥∥2 =

∑n
k=1(vTk y)2. Hence, for any y ∈ {±1}2,

RMaxCut− 1

4
yTLGy =

n∑
k=1

(vTk y)2.

In other words, RMaxCut− 1
4y
TLGy is, for y in the hypercube (y ∈ {±1}2), a

sum-of-squares of degree 2. This is known as a sum-of-squares certificate [26,
25, 102, 80, 117, 101]; indeed, if a real-valued polynomial is a sum-of-squares
naturally it is non-negative.

Note that, by definition, MaxCut− 1
4y
TLGy is always non-negative on the

hypercube. This does not mean, however, that it needs to be a sum-of-squares2

of degree 2.
The remarkable fact is that sum-of-squares certificates of at most a spec-

ified degree can be found using Semidefinite programming [102, 80]. In fact,
SDPs (7.8) and (7.9) are finding the smallest real number Λ such that
Λ − 1

4y
TLGy is a sum-of-squares of degree 2 over the hypercube. The dual

SDP is finding a certificate as in (7.10) while the primal is in some sense
constraining the degree 2 moments of y Xij = yiyj (we recommend [25] for
nice lecture notes on sum-of-squares; see also Remark 7.4). Many natural
questions remain open towards a precise understanding of the power of SDPs
corresponding to higher degree sum-of-squares certificates.

Remark 7.4 (triangular inequalities and Sum of squares level 4). A natural
follow-up question is whether the relaxation of degree 4 is actually strictly

2This is related with Hilbert’s 17th problem [114] and Stengle’s Positivstellen-
satz [118]
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tighter than the one of degree 2 for Max-Cut (in the sense of forcing extra
constraints). What follows is an interesting set of inequalities that degree 4
enforces and that degree 2 doesn’t, known as triangular inequalities. This
example helps illustrate the differences between Sum-of-Squares certificates
of different degree.

Since yi ∈ {±1} we naturally have that, for all i, j, k

yiyj + yjyk + ykyi ≥ −1,

this would mean that, for Xij = yiyj we would have,

Xij +Xjk +Xik ≥ −1,

however it is not difficult to see that the SDP (7.8) of degree 2 is only able to
constraint

Xij +Xjk +Xik ≥ −
3

2
,

which is considerably weaker. There are a few different ways of thinking about
this, one is that the three vector ui, uj , uk in the relaxation may be at an angle
of 120 degrees with each other. Another way of thinking about this is that the
inequality yiyj + yjyk + ykyi ≥ − 3

2 can be proven using sum-of-squares proof
with degree 2:

(yi + yj + yk)2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −
3

2

However, the stronger constraint cannot.
On the other hand, if degree 4 monomials are involved, (let’s say XS =∏

s∈S ys, note that X∅ = 1 and XijXik = Xjk) then the constraint
X∅
Xij

Xjk

Xki



X∅
Xij

Xjk

Xki


T

=


1 Xij Xjk Xki

Xij 1 Xik Xjk

Xjk Xik 1 Xij

Xki Xjk Xij 1

 � 0

implies Xij +Xjk +Xik ≥ −1 just by taking

1T


1 Xij Xjk Xki

Xij 1 Xik Xjk

Xjk Xik 1 Xij

Xki Xjk Xij 1

1 ≥ 0.

Also, note that the inequality yiyj + yjyk + ykyi ≥ −1 can indeed be proven
using sum-of-squares proof with degree 4 (recall that y2i = 1):

(1 + yiyj + yjyk + ykyi)
2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −1.

Interestingly, it is known [76] that these extra inequalities alone will not in-
crease the approximation power (in the worst case) of (7.3).
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Community Detection and the Power of
Convex Relaxations

The problem of detecting communities in network data is a central problem
in data science, examples of interest include social networks, the internet,
or biological and ecological networks. In Chapter 4 we discussed clustering
in the context of graphs, and described performance guarantees for spectral
clustering (based on Cheeger’s Inequality) that made no assumptions on the
underlying graph. While these guarantees are remarkable, they are worst-case
and hence pessimistic in nature. In an effort to understand the performance of
some of these approaches on more realistic models of data, we will now analyze
a generative model for graphs with community structure, the stochastic block
model. On the methodology side, we will focus on convex relaxations, based on
semidefinite programming (as in Chapter 7), and will show that this approach
achieves exact recovery of the communities on graphs drawn from this model.
The techniques developed to prove these guarantees mirror the ones used
to prove analogous guarantees for a variety of other problems where convex
relaxations yield exact recovery.

8.1 The Stochastic Block Model

The Stochastic Block Model is a random graph model that produces graphs
with a community structure. While, as with any model, we do not expect it to
capture all properties of a real world network (examples include network hubs,
power-law degree distributions, and other structures) the goal is to study a
simple graph model that produces community structure, as a test bed for
understanding fundamental limits of community detection and analyzing the
performance of recovery algorithms.

Definition 8.1 (Stochastic Block Model). Let n and k be positive integers
representing respectively the number of nodes and communities, c ∈ [k]n be the
vector of community memberships for the different nodes, and P ∈ [0, 1]k×k a
symmetric matrix of connectivity probabilities. A graph G is said to be drawn
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from the Stochastic Block Model on n nodes, when for each pair of nodes (i, j)
the probability that (i, j) ∈ E is independent from all other edges and given by
Pci,cj .

We will focus on the special case of the two communities (k = 2) balanced
symmetric block model where n is even, both communities are of the same
size, and

P =

[
p q
q p

]
,

where p, q ∈ [0, 1] are constants, cf. Figure 8.1. Furthermore, we will focus on
the associative case (p > q), while noting that all that follows can be easily
adapted to the disassociate case (q > p). . We note also that when p = q
this model reduces to the classical Erdős-Renýı model described in Chapter 4.
Since there are only two communities we will identify their membership labels
with +1 and −1.

(a) (b)

Fig. 8.1: A graph generated form the stochastic block model with 600 nodes
and 2 communities, scrambled in Fig. 8.1(a), clustered and color-coded in
Fig. 8.1(b). Nodes in this graph connect with probability p = 6/600 within
communities and q = 0.1/600 across communities. (Image courtesy of Em-
manuel Abbe.)

Many fascinating questions can be asked in the context of this model. Nat-
ural questions include to characterize statistics of the model, such as number
of triangles or larger cliques. In this chapter, motivated by the problem of
community detection, we are interested in understanding when is it possible
to reconstruct, or estimate, the community memberships from an observation
of the graph, and what efficient algorithms succeed at this inference task.

Before proceeding we note that the difficulty of this problem should cer-
tainly depend on the value of p and q. As illustrative examples, this problem is
trivial when p = 1 and q = 0 and hopeless when p = q (notice that even in the
easy case the actual membership can only be determined up to a re-labeling of
the communities). As p > q, we will attempt to recover the original partition
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by trying to compute the minimum bisection of the graph; while related to
the Max-Cut problem described in Chapter 7, notice how the objective here
is to produce the minimum balanced cut.

8.2 Spike Model Prediction

A natural approach is to draw motivation from Chapter 4 and to use a form
of spectral clustering to attempt to partition the graph.

Let A be the adjacency matrix of G,

Aij =

{
1 if (i, j) ∈ E(G)
0 otherwise.

(8.1)

Note that in our model, A is a random matrix. We would like to solve

max
∑
i,j

Aijxixj

s.t. xi = ±1,∀i (8.2)∑
j

xj = 0,

The optimal solution x of (8.2) takes the value +1 on one side of a partition
and −1 on the other side, where the partition is balanced and achieves the
minimum cut between the resulting clusters.

Relaxing the condition xi = ±1, ∀i to ‖x‖22 = n would yield a spectral
method

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (8.3)

1Tx = 0

The solution of (8.3) corresponds to the leading eigenvector of the matrix
obtained by projecting A on the orthogonal complement of the all-ones vector
1.

The matrix A is a random matrix whose expectation is given1 by

E[A] =

{
p if i and j are in the same community
q otherwise.

1For simplicity we assume that self-loops also have probability p. This does not
affect any of the conclusions, as it does not give information about the community
memberships.
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Let g denote the vector corresponding to the true community memberships,
with entries +1 and −1; note that this is the vector we want to recover.2 We
can write

E[A] =
p+ q

2
11T +

p− q
2

ggT ,

and

A =
(
A− E[A]

)
+
p+ q

2
11T +

p− q
2

ggT .

In order to remove the term p+q
2 11T we consider the random matrix

A = A− p+ q

2
11T .

It is easy to see that

A =
(
A− E[A]

)
+
p− q

2
ggT .

This means that A is the sum of a random matrix whose expected value is
zero and a rank-1 matrix, i.e.

A = W + λvvT

where W =
(
A − E[A]

)
and λvvT = p−q

2 n
(

g√
n

)(
g√
n

)T
. In Chapter 3 we

saw that for a large enough rank-1 additive perturbation to a Wigner matrix,
there is an eigenvalue associated with the perturbation that pops outside of
the distribution of eigenvalues of a Wigner Gaussian matrix W . Moreover,
whenever this happens, we saw that the leading eigenvector has a non-trivial
correlation with g.

Since A is simply A minus a multiple of 11T , problem (8.3) is equivalent
to

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (8.4)

1Tx = 0

Since we have subtracted a multiple of 11T , we will drop the constraint
1Tx = 0. Notice how a deviation from 1Tx = 0 would be penalized in the
new objective, the fact that the multiple we subtracted is sufficient for us to
drop the constraint will be confirmed by the success of the new optimization
problem, now given by

2We want to recover either g or −g, as they correspond to different labelings of
the same community structure.
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max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n, (8.5)

whose solution corresponds to the leading eigenvector of A.
Recall that if A−E[A] is a Wigner matrix with i.i.d. entries with zero mean

and variance σ2 then its empirical spectral density follows the semicircle law
and it is essentially supported in [−2σ

√
n, 2σ

√
n]. We would then expect the

top eigenvector of A to correlate with g as long as

p− q
2

n >
2σ
√
n

2
. (8.6)

Unfortunately A − E[A] is not a Wigner matrix in general. In fact, half
of its entries have variance p(1 − p) while the variance of the other half is
q(1− q).

Putting rigor aside for a second, if we were to take σ2 = p(1−p)+q(1−q)
2

then (8.6) would suggest that the leading eigenvector of A correlates with the
true partition vector g as long as

p− q
2

>
1√
n

√
p(1− p) + q(1− q)

2
, (8.7)

This argument is of course not valid, because the matrix in question is not
a Wigner matrix. The special case q = 1 − p can be easily salvaged, since
all entries of A − E[A] have the same variance and they can be made to be
identically distributed by conjugating with ggT . This is still an impressive
result, it says that if p = 1− q then p− q needs only to be around 1√

n
to be

able to make an estimate that correlates with the original partitioning!
An interesting regime (motivated, for example, by friendship networks in

social sciences) is when the average degree of each node is constant. This can
be achieved by taking p = a

n and q = b
n for constants a and b. While the

argument presented to justify condition (8.7) is not valid in this setting, it
nevertheless suggests that the condition on a and b needed to be able to make
an estimate that correlates with the original partition, often referred to as
partial recovery, is

(a− b)2 > 2(a+ b). (8.8)

Remarkably this was posed as a conjecture by Decelle et al. [45] and proved
in a series of works by Mossel et al. [98, 97] and Massoulie [92]. While describ-
ing the proof of this conjecture is outside the scope of this book, we note that
the conjectures were obtained by studying fixed points of a certain lineariza-
tion of belief propagation using techniques from statistical physics. The lower
bound can be proven by showing contiguity between the two models below the
phase transition, and the upper bound is obtained by analyzing an algorithm
that is an adaptation of belief propagation and studying the so-called non-
backtracking operator. We refer the reader to the excellent survey of Abbe [4]
and references therein for further reading.
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Remark 8.2 (More than three communities). The balanced symmetric stochas-
tic block model with k > 3 communities is conjectured to have a fascinat-
ing statistical-to-computational gap. In the sparse regime of inner probability
p = a

n and outer probability q = b
n it is believed that, for k > 3 there is a

regime of the parameters a and b such that the problem of partially recovering
the community memberships is statistically, or information-theoretically, pos-
sible but that there does not exist a polynomial-time algorithm to perform
this task. These conjectures are based on insight obtained with tools from
statistical physics. We refer the reader to [45, 140, 59, 3] for further reading.

8.3 Exact recovery

We now turn our attention to the problem of recovering the cluster mem-
bership of every single node correctly, not simply having an estimate that
correlates with the true labels. We will keep our focus on the balanced, sym-
metric, two communities setting and briefly describe extensions later. If the
inner-probability is p = a

n then it is not hard to show that each cluster will
have isolated nodes, making it impossible to recover the membership of every

possible node correctly. In fact this is the case whenever p ≤ (2−ε) logn
n , for

some ε > 0. For that reason we focus on the regime

p =
α log(n)

n
and q =

β log(n)

n
, (8.9)

for some constants α > β.
A natural algorithm would be to compute the minimum bisection (8.2)

which corresponds to the Maximum Likelihood Estimator, and also the Max-
imum a Posteriori Estimator when the community memberships are drawn
uniformly at random. In fact, it is known (see [1] for a proof) that if

√
α−

√
β >
√

2, (8.10)

then, with high probability, (8.2) recovers the true partition. Moreover, if

√
α−

√
β <
√

2,

no algorithm can, with high probability, recover the true partition.
In this section we will analyze a semidefinite programming relaxation,

analogous to the ones described in Chapter 7 for Max-Cut. By making use of
convex duality, we will derive conditions for exact recovery with this particular
algorithm, reducing the problem to a problem in random matrix theory. We
will present a solution to the resulting random matrix question, using the
matrix concentration tools developed in Chapter 6. While not providing a the
strongest known guarantee, this approach is extremely adaptable and can be
used to solve a large number of similar questions.
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8.4 A semidefinite relaxation

Let x ∈ Rn with xi = ±1 represent a partition of the nodes (recall that there
is an ambiguity in the sense that x and −x represent the same partition).
Note that if we remove the constraint

∑
j xj = 0 in (8.2) then the optimal

solution becomes x = 1. Let us define B = 2A− (11T − I), meaning that

Bij =

 0 if i = j
1 if (i, j) ∈ E(G)
−1 otherwise

(8.11)

It is clear that the problem

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i (8.12)∑
j

xj = 0

has the same solution as (8.2). However, when the constraint is dropped,

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i, (8.13)

x = 1 is no longer an optimal solution. As with (8.5) above, the penalization
created by subtracting a large multiple of 11T will be enough to discourage
unbalanced partitions (the reader may notice the connection with Lagrangian
duality). In fact, (8.13) is the problem we will set ourselves to solve.

Unfortunately (8.13) is in general NP-hard (one can encode, for example,
Max-Cut by picking an appropriate B). We will relax it to an easier problem
by the same technique used to approximate the Max-Cut problem in the
previous section (this technique is often known as matrix lifting). If we write
X = xxT then we can formulate the objective of (8.13) as∑

i,j

Bijxixj = xTBx = Tr(xTBx) = Tr(BxxT ) = Tr(BX)

Also, the condition xi = ±1 implies Xii = x2i = 1. This means that (8.13) is
equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (8.14)

X = xxT for some x ∈ Rn.
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The fact that X = xxT for some x ∈ Rn is equivalent to rank(X) = 1 and
X � 0. This means that (8.13) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (8.15)

X � 0

rank(X) = 1.

We now relax the problem by removing the non-convex rank constraint

max Tr(BX)

s.t. Xii = 1,∀i (8.16)

X � 0.

This is an SDP that can be solved (up to arbitrary precision) in polynomial
time [135].

Since we removed the rank constraint, the solution to (8.16) is no longer
guaranteed to be rank-1. We will take a different approach from the one we
used in Chapter 7 to obtain an approximation ratio for Max-Cut, which was a
worst-case approximation ratio guarantee. What we will show is that, for some
values of α and β, with high probability, the solution to (8.16) not only satisfies
the rank constraint but it coincides with X = ggT where g corresponds to the
true partition. From X one can compute g by simply calculating its leading
eigenvector.

8.5 Convex Duality

A standard technique to show that a candidate solution is the optimal one for
a convex problem is to use convex duality.

We will describe duality with a game theoretical intuition in mind. The
idea will be to rewrite (8.16) without imposing constraints on X but rather
have the constraints be implicitly enforced. Consider the following optimiza-
tion problem.

max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) . (8.17)

Let us provide a game theoretical interpretation for (8.17). Suppose that
there is a primal player (picking X) whose objective is to maximize the ob-
jective and a dual player (picking Z and Q after seeing X) trying to make the
objective as small as possible. If the primal player does not pick X satisfying
the constraints of (8.16) then we claim that the dual player is capable of driv-
ing the objective to −∞. Indeed, if there is an i for which Xii 6= 1 then the



8.5 Convex Duality 115

dual player can simply pick Zii = −c 1
1−Xii and make the objective as small as

desired by taking a large enough c. Similarly, if X is not positive semidefinite,
then the dual player can take Q = cvvT where v is such that vTXv < 0. If,
on the other hand, X satisfies the constraints of (8.16) then

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) .

Since equality can be achieved if for example the dual player picks Q = 0n×n,
then it is evident that the values of (8.16) and (8.17) are the same:

max
X,

Xii ∀i
X�0

Tr(BX) = max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X))

With this game theoretical intuition in mind, it is clear that if we change the
“rules of the game” and have the dual player decide their variables before the
primal player (meaning that the primal player can pick X knowing the values
of Z and Q) then it is clear that the objective can only increase, which means
that:

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

max
X

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) .

Note that we can rewrite

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) = Tr ((B +Q− Z)X) + Tr(Z).

When playing:

min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z),

if the dual player does not set B +Q− Z = 0n×n then the primal player can
drive the objective value to +∞, this means that the dual player is forced to
chose Q = Z −B and so we can write

min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z) = min
Z,

Z is diagonal
Z−B�0

max
X

Tr(Z),

which clearly does not depend on the choices of the primal player. This means
that

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z,

Z is diagonal
Z−B�0

Tr(Z).
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This is known as weak duality (strong duality says that, under some conditions
the two optimal values actually match, see for example [135], recall that we
used strong duality when giving a sum-of-squares interpretation to the Max-
Cut approximation ratio, a similar interpretation can be given in this problem,
see [18]).

Also, the problem

min Tr(Z)

s.t. Z is diagonal (8.18)

Z −B � 0

is called the dual problem of (8.16).
The derivation above explains why the objective value of the dual problem

is always greater or equal to the primal problem. Nevertheless, there is a much
simpler proof (although not as enlightening): let X,Z be a feasible point of
(8.16) and (8.18), respectively. Since Z is diagonal and Xii = 1, it follows that
Tr(ZX) = Tr(Z). Also, Z − B � 0 and X � 0, therefore Tr[(Z − B)X] ≥ 0.
Altogether,

Tr(Z)− Tr(BX) = Tr[(Z −B)X] ≥ 0,

as stated.
Recall that we want to show that ggT is the optimal solution of (8.16).

Then, if we find Z diagonal, such that Z −B � 0 and

Tr[(Z −B)ggT ] = 0, (this condition is known as complementary slackness)

then X = ggT must be an optimal solution of (8.16). To ensure that ggT

is the unique solution we just have to ensure that the nullspace of Z − B
only has dimension 1 (which corresponds to multiples of g). Essentially, if
this is the case, then for any other possible solution X one could not satisfy
complementary slackness.

This means that if we can find Z with the following properties:

(1) Z is diagonal
(2) Tr[(Z −B)ggT ] = 0
(3) Z −B � 0
(4) λ2(Z −B) > 0,

then ggT is the unique optimum of (8.16) and so recovery of the true partition
is possible (with an efficient algorithm). Z is known as the dual certificate, or
dual witness.

8.6 Building the dual certificate

The idea to build Z is to construct it to satisfy properties (1) and (2) and try
to show that it satisfies (3) and (4) using concentration. In fact, since Z is
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diagonal this design problem has n free variables. If Z−B � 0 then condition
(2) is equivalent to (Z−B)g = 0 which provides n equations, as the resulting
linear system is non-singular, the candidate arising from using conditions (1)
and (2) will be unique.

A couple of preliminary definitions will be useful before writing out the
candidate Z. Recall that the degree matrix D of a graph G is a diagonal matrix
where each diagonal coefficient Dii corresponds to the number of neighbors
of vertex i and that λ2(M) is the second smallest eigenvalue of a symmetric
matrix M .

Definition 8.3. Let G+ (resp. G−) be the subgraph of G that includes the edges
that link two nodes in the same community (resp. in different communities)
and A the adjacency matrix of G. We denote by D+

G (resp. D−G ) the degree
matrix of G+ (resp. G−) and define the Stochastic Block Model Laplacian to
be

LSBM = D+
G −D

−
G −A.

Note that the inclusion of self loops does not change LSBM . Also, we point
out that LSBM is not in general positive-semidefinite.

Now we are ready to construct the candidate Z. Condition (2) implies that
we need Zii = 1

gi
B[i, :]g. Since B = 2A− (11T − I) we have

Zii =
1

gi
(2A− (11T − I))[i, :]g = 2

1

gi
(Ag)i + 1,

meaning that
Z = 2(D+

G −D
−
G ) + I.

This is our candidate dual witness. As a result

Z −B = 2(D+
G −D

−
G )− I −

[
2A− (11T − I)

]
= 2LSBM + 11T .

It trivially follows (by construction) that

(Z −B)g = 0.

This immediately gives the following lemma.

Lemma 8.4. Let LSBM denote the Stochastic Block Model Laplacian as de-
fined in Definition 8.3. If

λ2(2LSBM + 11T ) > 0, (8.19)

then the relaxation (8.14) recovers the true partition.

Note that 2LSBM+11T is a random matrix and so this reduces to “an exercise”
in random matrix theory.



118 8 Community Detection and the Power of Convex Relaxations

8.7 Matrix Concentration

In this section we show how the resulting question amounts to controlling the
largest eigenvalue of a random matrix, which can be done with the matrix
concentration tools described in Chapter 6.

Let us start by noting that

E
[
2LSBM + 11T

]
= 2ELSBM + 11T = 2ED+

G − 2ED−G − 2EA+ 11T ,

and ED+
G = n

2
α log(n)

n I, ED−G = n
2
β log(n)

n I. Moreover, EA is a matrix with

four n
2 ×

n
2 blocks where the diagonal blocks have entries α log(n)

n and the

off-diagonal blocks have entries β log(n)
n .3 In other words

EA =
1

2

(
α log(n)

n
+
β log(n)

n

)
11T +

1

2

(
α log(n)

n
− β log(n)

n

)
ggT .

This means that

E
[
2LSBM + 11T

]
= ((α− β) log n) I+

(
1− (α+ β)

log n

n

)
11T−(α−β)

log n

n
ggT .

Since 2LSBMg = 0 we can safely ignore what happens in the span of g,
and it is not hard to see that

λ2
(
E
[
2LSBM + 11T

])
= (α− β) log n.

Thus, it is enough to show that

‖LSBM − E [LSBM]‖ < α− β
2

log n, (8.20)

which is a large deviation inequality; recall that ‖ · ‖ denotes operator norm.
The idea is to write LSBM − E [LSBM] as a sum of independent random

matrices and use the Matrix Bernstein Inequality (Theorem 6.1). This gives
an illustrative example of the applicability of matrix concentration tools, as
many random matrices of interest can be rewritten as sums of independent
matrices.

Let us start by defining, for i and j in the same community (i.e. gi = gj),

γ+ij =

{
1 if (i, j) ∈ E
0 otherwise,

and

3For simplicity we assume the possibility of self-loops; notice however that the
matrix in question does not depend on this, only its decomposition in the degree
matrices and A.
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∆+
ij = (ei − ej)(ei − ej)T ,

where ei (resp. ej) is the vector of all zeros except the ith (resp. jth) coefficient
which is 1.

For i and j in different communities (i.e. gi 6= gj), define

γ−ij =

{
1 if (i, j) ∈ E
0 otherwise,

and

∆−ij = −(ei + ej)(ei + ej)
T .

We have
LSBM =

∑
i<j:gi=gj

γ+ij∆
+
ij +

∑
i<j:gi 6=gj

γ−ij∆
−
ij .

We note how (γ+ij)i,j and (γ−ij )i,j are jointly independent random variables

with expectations E(γ+ij) = α logn
n and E(γ−ij ) = β logn

n . ∆+
ij and ∆−ij are de-

terministic matrices. This means that

LSBM − ELSBM =
∑
i<j:
gi=gj

(
γ+ij −

α log n

n

)
∆+
ij +

∑
i<j: gi 6=gj

(
γ−ij −

β log n

n

)
∆−ij .

We can then use Theorem 6.1 by setting

σ2 =

∥∥∥∥∥∥Var
[
γ+
] ∑
i<j: gi=gj

(
∆+
ij

)2
+ Var

[
γ−
] ∑
i<j: gi 6=gj

(
∆−ij
)2∥∥∥∥∥∥ , (8.21)

and R = 2, since
∥∥∆+

ij

∥∥ =
∥∥∆−ij∥∥ = 2 and both (γ+ij)i,j and (γ−ij )i,j take values

in [−1, 1]. Note how this bound is for the spectral norm of the summands, not
just the largest eigenvalue, as our goal is to bound the spectral norm of the
random matrix. In order to compute σ2, we write∑

i<j: gi=gj

(
∆+
ij

)2
= nI −

(
11T + ggT

)
,

and ∑
i<j: gi 6=gj

(
∆−ij
)2

= nI +
(
11T − ggT

)
.

Since Var [γ+] ≤ α logn
n , Var [γ−] ≤ β logn

n , and all the summands are
positive semidefinite we have

σ2 ≤
∥∥∥∥ (α+ β) log n

n

(
nI − ggT

)
− (α− β) log n

n
11T

∥∥∥∥ = (α+ β) log n.
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Using Theorem 6.1 for t = α−β
2 log n on both the largest and smallest

eigenvalue gives

P
{
‖LSBM − E [LSBM]‖ < α− β

2
log n

}
≤

≤ 2n · exp

 −
(
α−β
2 log n

)2
2 (α+ β) log n+ 4

3

(
α−β
2 log n

)


= 2 · exp

(
− (α− β)2 log n

8 (α+ β) + 8
3 (α− β)

+ log n

)

= 2n
−
(

(α−β)2

8(α+β)+ 8
3
(α−β)

−1
)
.

Together with Lemma 8.4, this implies that as long as

(α− β)2 > 8 (α+ β) +
8

3
(α− β) , (8.22)

the semidefinite programming relaxation (8.14) recovers the true partition,
with probability tending to 1 as n increases.

While it is possible to obtain a stronger guarantee for this relaxation, the
derivation above illustrates the matrix concentration technique in a simple,
yet powerful, instance. In fact, the analysis in [1] uses the same technique.
In order to obtain a sharp guarantee (Theorem 8.5 below) one needs more
specialized tools. We refer the interested reader to [17] or [64] for a discussion
and proof of Theorem 8.5; the main idea is to separate the diagonal from the
non-diagonal part of LSBM − E [LSBM], treating the former with scalar con-
centration inequalities, and the latter with specialized matrix concentration
inequalities such as the ones in [24].

Theorem 8.5. Let G be a random graph with n nodes drawn according to the
stochastic block model on two communities with edge probabilities p and q. Let
p = α logn

n and q = β logn
n , where α > β are constants. Then, as long as

√
α−

√
β >
√

2, (8.23)

the semidefinite program considered above coincides with the true partition
with high probability.

Note that, if √
α−

√
β <
√

2, (8.24)

then exact recovery of the communities is impossible, meaning that the SDP
algorithm is optimal. Furthermore, in this regime (8.24), one can show that
there will be a node on each community that is more connected to the other
community than to its own, meaning that a partition that swaps them would
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have more likelihood. The fact that the SDP will start working essentially
when this starts happening appears naturally in the analysis in [17]. More
recently it has been proven that the spectral method (8.3), followed by a sim-
ple thresholding step, also gives exact recovery of the communities [2]. An
analogous analysis has recently been obtained for the (normalized or unnor-
malized) graph Laplacian in place of the adjacency matrix, see [46]. However,
the proof techniques for the graph Laplacian are different and a bit more
involved, since—unlike the adjacency matrix—the graph Laplacian does not
exhibit row/column-wise independence.

Remark 8.6. An important advantage of semidefinite relaxations is that they
are often able to produce certificates of optimality. Indeed, if the solution of the
relaxation (8.14) is rank 1 then the user is sure that it must be the solution
of (8.13). These advantages, and ways of producing such certificates while
bypassing the need to solve the semidefinite program are discussed in [18].



.



9

Linear Dimension Reduction via Random
Projections

In Chapters 3 and 5 we saw both linear and non-linear methods for dimension
reduction. In this chapter we will see one of the most fascinating consequences
of the phenomenon of concentration of measure in high dimensions, one of the
blessings of high dimensions described in Chapter 2. When given a data set in
high dimensions, we will see that it is sometimes the case that a projection to a
lower dimensional space, taken at random, preserves certain geometric features
of the data set. The remarkable aspect here is that this “lower” dimension can
be strikingly lower. This allows for significant computational savings in many
data processing tasks by including a random projection as a pre-processing
step. There is however another less obvious implication of this phenomenon
with important practical implications: since the projection is agnostic of the
data, it can be leveraged even when the data set is not explicit, such as the
set of all natural images or the set of all “possible” brain scans; this is at the
heart of Compressed Sensing.

9.1 The Johnson-Lindenstrauss Lemma

Suppose one has n points, X = {x1, . . . , xn}, in Rp (with p large). If d > n, the
points actually lie in a subspace of dimension n, so the projection f : Rp → Rn
of the points to that subspace acts without distorting the geometry of X. In
particular, for every xi and xj , ‖f(xi)− f(xj)‖2 = ‖xi − xj‖2, meaning that
f is an isometry in X. Suppose instead we allow a bit of distortion, and look
for a map f : Rp → Rd that is an ε−isometry, meaning that

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2. (9.1)

Can we do better than d = n?
In 1984, Johnson and Lindenstrauss [71] showed a remarkable lemma that

answers this question affirmatively.
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Theorem 9.1 (Johnson-Lindenstrauss Lemma [71]). For any 0 < ε < 1
and for any integer n, let d be such that

d ≥ 4
1

ε2/2− ε3/3
log n. (9.2)

Then, for any set X of n points in Rd, there is a linear map f : Rp → Rd that
is an ε−isometry for X (see (9.1)). This map can be found in randomized
polynomial time.

We follow [44] for an elementary proof for the Theorem. We need a few
concentration of measure bounds, we will omit the proof of those but they are
available in [44] and are essentially the same ideas as those used to show the
concentration inequalities in Chapter 2.

Lemma 9.2 (see [44]). Let y1, . . . , yp be i.i.d standard Gaussian random
variables and Y = (y1, . . . , yd). Let g : Rp → Rd be the projection into the

first d coordinates and Z = g
(

Y
‖Y ‖

)
= 1
‖Y ‖ (y1, . . . , yd) and L = ‖Z‖2. It is

clear that EL = d
p . In fact, L is very concentrated around its mean

• If β < 1,

Pr

[
L ≤ β d

p

]
≤ exp

(
d

2
(1− β + log β)

)
.

• If β > 1,

Pr

[
L ≥ β d

p

]
≤ exp

(
d

2
(1− β + log β)

)
.

Proof. [ of Johnson-Lindenstrauss Lemma]
We will start by showing that, given a pair xi, xj a projection onto a ran-

dom subspace of dimension k will satisfy (after appropriate scaling) property
(9.1) with high probability. Without loss of generality we can assume that
u = xi−xj has unit norm. Understanding what is the norm of the projection
of u on a random subspace of dimension d is the same as understanding the
norm of the projection of a (uniformly) random point on Sp−1 the unit sphere
in Rp on a specific d-dimensional subspace—let us say the one generated by
the first d canonical basis vectors.

This means that we are interested in the distribution of the norm of the
first k entries of a random vector drawn from the uniform distribution over
Sp−1 – this distribution is the same as taking a standard Gaussian vector in
Rp and normalizing it to the unit sphere.

Let g : Rd → Rk be the projection on a random k−dimensional subspace

and let f : Rd → Rk defined as f =
√

d
kg. Then (by the above discussion),

given a pair of distinct xi and xj ,
‖f(xi)−f(xj)‖2
‖xi−xj‖2 has the same distribution as

d
kL, as defined in Lemma 9.2. Using Lemma 9.2, we have, given a pair xi, xj ,
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Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
d

2
(1− (1− ε) + log(1− ε))

)
,

since for ε ≥ 0, log(1− ε) ≤ −ε− ε2/2 we have

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
−kε

2

4

)
≤ exp (−2 log n) =

1

n2
.

On the other hand,

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≥ (1 + ε)

]
≤ exp

(
k

2
(1− (1 + ε) + log(1 + ε))

)
.

since for ε ≥ 0, log(1 + ε) ≤ ε− ε2/2 + ε3/3 we have

P
[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≥ (1 + ε)

]
≤ exp

(
−
k
(
ε2 − 2ε3/3

)
4

)

≤ exp (−2 log n) =
1

n2
.

By the union bound it follows that

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2
.

Since there exist
(
n
2

)
such pairs, again, a simple union bound gives

Pr

[
∃i,j :

‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2
n(n− 1)

2
= 1− 1

n
.

Therefore, choosing f as a properly scaled projection onto a random k-
dimensional subspace gives an ε-isometry on X (see (9.1)) with probability
at least 1

n . We can achieve any desirable constant probability of success by
trying O(n) such random projections, meaning we can find an ε−isometry in
randomized polynomial time.

�

Note that by considering k slightly larger one can get a good projection on
the first random attempt with high confidence. In fact, it is trivial to adapt
the proof above to obtain the following lemma:

Lemma 9.3. For any 0 < ε < 1, τ > 0, and for any integer n, let k be such
that

d ≥ 2(2 + τ)

ε2/2− ε3/3
log n.

Then, for any set X of n points in Rp, take f : Rp → Rd to be a suitably scaled
projection on a random subspace of dimension d, then f is an ε−isometry for
X (see (9.1)) with probability at least 1− 1

nτ .
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Lemma 9.3 is quite remarkable. Consider the situation where we are given
a high-dimensional data set in a streaming fashion – meaning that we get each
data point at a time, consecutively. To run a dimension-reduction technique
like PCA or Diffusion maps we would need to wait until we received the last
data point and then compute the dimension reduction map (both PCA and
Diffusion Maps are, in some sense, data adaptive). Using Lemma 9.3 one can
just choose a projection at random in the beginning of the process (all one
needs to know is an estimate of the logarithm of the size of the data set) and
just map each point using this projection matrix which can be done online –
we do not need to see the next point to compute the projection of the current
data point. Lemma 9.3 ensures that this (seemingly näıve) procedure will,
with high probably, not distort the data by more than ε.

One might wonder if such low-dimensional embeddings as provided by
the Johson-Lindenstrauss Lemma also extend to other norms besides the Eu-
clidean norm. For the `1-norm there exist lower bounds which prevent such a
dramatic dimension reduction (see [84]), and for the `∞-norm one can easily
construct examples that demonstrate the impossibility of dimension reduc-
tion. Hence, the Johnson-Lindenstrauss Lemma seems to be a subtle result
about the Euclidean norm.

9.1.1 The Fast Johnson-Lindenstrauss transform and optimality

Let us continue thinking about our example of high-dimensional streaming
data. After we draw the random projection matrix1, say M , for each data
point x, we still have to compute Mx which has a computational cost of
O(ε−2 log(n)p) since M has O(ε−2 log(n)p) entries (since M is a random ma-
trix, generically it will be a dense matrix). In some applications this might
be too expensive, raising the natural question of whether one can do better.
Moreover, storing a large-scale dense matrix M is not very desirable either.
There is no hope of significantly reducing the number of rows in general, as it
is known that the Johnson-Lindenstrauss Lemma is orderwise optimal [8, 79].

We might hope to replace the dense random matrix M by a sparse matrix
S to speed up the matrix-vector multiplication and to reduce the storage
requirements. This method was proposed and analyzed in [6]. Here we discuss
a slightly simplified version, see also [43].

We let S be a very sparse k × d matrix, where each row of S has just one
single non-zero entry of value

√
d/p at a location drawn uniformly at random.

Then, for any vector x ∈ Rp

E
i
[(Sx)2i ] =

d∑
j=1

P(i = j) · d
k
· x2j =

1

k
‖x‖22,

1An orthogonal projection P must satisfy P = P ∗ and P 2 = P . Here, it is not M
that represents a projection, but M∗M , yet for our purposes of approximate norm-
preserving dimension reduction it suffices to apply M instead of M∗M . However,
with a slight abuse of terminology, we still refer to M as projection.
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hence E[‖Sx‖22] = E[
k∑
i=1

(Sxi)
2] = ‖x‖22. This result is satisfactory with respect

to expectation (even for k = 1), but not with respect to the variance of ‖Sx‖22.
For instance, if x has only one non-zero entry we need k ∼ O(p) to ensure that
‖Sx‖22 6= 0. More generally, if one coordinate of x is much larger (in absolute
value) than all its other coordinates, then we will need a rather large value
for d to guarantee that ‖Sx‖2 ≈ ‖x‖2.

A natural way to quantify the “peakiness” of a vector x is via the peak-
to-average ratio2 measured by the quantity ‖x‖∞/‖x‖2. It is easy to see that
we have (assuming x is not the zero-vector)

1
√
p
≤ ‖x‖∞
‖x‖2

≤ 1.

The upper bounds is achieved by vectors with only one non-zero entry, while
the lower bound is met by constant-modulus vectors. Thus, if

‖x‖∞
‖x‖2

≈ 1
√
p
, (9.3)

we can hope that sparse subsampling of x will still preserve its Euclidean
norm.

Thus, this suggests to include a preprocessing step by applying a rotation
so that sparse vectors become non-sparse in the new basis, thereby reducing
their∞-norm (while their 2-norm remains invariant under rotation). Two nat-
ural choices for such a rotation are the Discrete Fourier transform (which maps
unit-vectors into constant modulus vectors) and its Z2-cousin, the Walsh-
Hadamard matrix3. But since the Fast Johnson-Lindenstrauss Transform
(FJLT) has to work for all vectors, we need to avoid that this rotation maps
dense vectors into sparse vectors. We can address this issue by “randomiz-
ing” the rotation, thereby ensuring with overwhelming probability that dense
vectors are not mapped into sparse vectors. This can be accomplished in a
numerically efficient manner (thus maintaining our overall goal of numerical
efficiency) by first randomizing the signs of x before applying the rotation.
Putting these steps together we arrive at the following map.

Definition 9.4. The Fast Johnson-Lindenstrauss Transform is the map Ψ :
Rp → Rd, defined by Ψ := SFD, where S and D are random matrices and F
is a deterministic matrix. In particular,

2This quantity also plays an important role in wireless communications. There,
one tries to avoid transmitting signals with a large peak-to-average ratio, since such
signals would suffer from nonlinear distortions when they are passing through those
cheap power amplifiers that are usually installed in cell phones. The potentially large
peak-to-average ratio of OFDM signals is one of the alleged reasons why CDMA was
dominant over OFDM for such a long time.

3Hadamard matrices do not exist for all dimension d. But we can always pad x
with zeroes to achieve the desired length.
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• S is a d×p matrix, where each row of S has just one single non-zero entry
of value

√
d/p at a location drawn uniformly at random.

• F is either the p × p DFT matrix or the p × p Hadamard matrix (if it
exists), in each case normalized by 1/

√
p to obtain a unitary matrix.

• D is a p× p diagonal matrix whose entries are drawn independently from
{−1,+1} with probability 1/2.

We can carry out the matrix-vector multiplication by the DFT matrix via
the Fast Fourier Transform (FFT) in O(p log p) operations; a similar algo-
rithm exists for the Walsh-Hadamard matrix. The FJLT allows for a dimen-
sion reduction that is competitive with the Johnson-Lindenstrauss Lemma as
manifested by the following theorem.

Theorem 9.5 (Fast Johnson-Lindenstrauss Transform). There is a
random matrix Ψ of size d × p with d = O

(
log(d/δ) log(1/δ)/ε2

)
such that,

for each x ∈ Rp,
‖Ψx‖2 ∈ [1− ε, 1 + ε] · ‖x‖2

holds with probability at least 1− δ. Matrix-vector multiplication with Ψ takes
O(p log p+ d) operations.

The proof of this theorem follows from the two lemmas below. We first
show that with high probability the random rotation FD produces vectors
with a sufficiently low peak-to-average ratio.

Lemma 9.6. Let y = FDx, where F and D are as in Definition 9.4. Then

P
D

(
‖y‖∞
‖y‖2

≥ 2 log(4p/δ)

p

)
≤ δ

2
. (9.4)

Proof. Since FD is unitary, the quantity ‖FDx‖∞/‖FDx‖2 is invariant under
rescaling of x and therefore we can assume ‖x‖2 = 1.

Let ξi = ±1 be the i-th diagonal entry of D. We have yi =
∑d
j=1 εjFijxj

and note that the terms of this sum are i.i.d. bounded random variables. We
thus can apply Hoeffding’s inequality. In the notation of Theorem 2.14, let
Xj = εjFijxj . We note that Xj = ±Fijxj , hence E[Xj ] = 0 and |Xj | ≤ aj ,
where aj = Fijxj . It holds that

d∑
j=1

a2j =

d∑
j=1

F 2
ijx

2
j =

d∑
j=1

1

d
x2j =

‖x‖22
d

=
1

d
.

We can now use Theorem 2.14 with t =
√

2 log(4p/δ)/p and obtain

P

(
|yi| >

√
2 log(4p/δ)

p

)
≤ 2 exp

(
−2 log(4p/δ)/p

2/p

)
=

δ

2d
.

Applying the union bound finishes the proof. ut
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Lemma 9.7. Conditioned on the event that ‖y‖∞ & 2 log(4p/δ)
p , it holds that

P
(
‖Sy‖22 − 1| ≤ ε

)
≤ 1− δ

2
.

Proof. We use the following Chernoff bound: Given independent random vari-
ables X1, . . . , Xn, X =

∑
iXi, µ = EX,σ2 = E[(X − EX)2], and |Xi| ≤ K

with probability 1,

P(|X − µ| > t) . max{e−ct
2/σ2

, e−ct/K}.

We denote Sji =
√
d/kδji, where δji ∈ {0, 1} is our random sample of the

columns for row j. Hence for all j,
∑p
i=1 δj,i = 1. We write z := Sy and

compute

qj = z2j

=
d

k

(
d∑
i=1

δjiyi

)2

=
d

k

∑
i

δjiy
2
i +

∑
i 6=`

δjiδj`yiy`


=
d

k

∑
i

δji.

We care about z2 =
∑
j qj . Since the qj ’s are independent, we can apply the

aforementioned Chernoff bound, provided we bound σ2 and K, which we will
do now.

K ≤ p

d
‖y‖2∞ .

log(p/δ)

d
.

σ2 ≤ kE[q21 ] = kE

[
d2

k2

∑
i

δijy
4
i

]
=
p

d

∑
i

y4i

= ‖y‖2∞
p

d

∑
i

y2i

=
p

d
‖y‖∞

.
log(p/δ)

d
.

Plugging these terms into the Chernoff bound yields
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P
(
|‖Sy‖2 − 1| > ε

)
= P

∣∣∑
j

qj − 1
∣∣ > ε

 . max
{
e−

cε2d
log(p/δ) , e−

cεd
log(p/δ)

}
.

Since the first term in the right hand side above dominates, we can choose
k ∼ 1/ε2 log(p/δ) log(1/δ) to get the desired δ/2-bound. ut

Combining Lemma 9.6 and Lemma 9.7 establishes Theorem 9.5.
Besides the potential speedup, another advantage of the FJLT is that it

requires significantly less memory compared to storing an unstructured ran-
dom projection matrix as is the case for the standard Johnson-Lindenstrauss
approach.

9.2 Gordon’s Theorem

In the last section we showed that in order to approximately preserve the
distances (up to 1± ε) between n points, it suffices to randomly project them
to Θ

(
ε−2 log n

)
dimensions. The key argument was that a random projection

approximately preserves the norm of every point in a set S, in this case the set
of differences between pairs of n points. What we showed is that in order to
approximately preserve the norm of every point in S, it is enough to project
to Θ

(
ε−2 log |S|

)
dimensions. The question this section is meant to answer is:

can this be improved if S has a special structure? Given a set S, what is the
measure of complexity of S that explains how many dimensions one needs to
project on to still approximately preserve the norms of points in S. We shall
see below that this will be captured—via Gordon’s Theorem—by the so called
Gaussian width of S.

Definition 9.8 (Gaussian width). Given a closed set S ⊂ Rp, its Gaussian
width ω(S) is define as:

ω(S) = Emax
x∈S

[
gTp x

]
,

where gp ∼ N (0, Ip×p).

Similarly to the proof of Theorem 9.1 we will restrict our attention to sets
S of unit norm vectors, meaning that S ⊂ Sp−1.

Also, we will focus our attention not in random projections but in the
similar model of random linear maps G : Rp → Rd that are given by matrices
with i.i.d. Gaussian entries. For this reason the following proposition will be
useful:

Proposition 9.9. Let gd ∼ N (0, Id×d), and define

ad := E‖gd‖.

Then
√

d
d+1

√
d ≤ ad ≤

√
d.
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We are now ready to present Gordon’s Theorem.

Theorem 9.10 (Gordon’s Theorem [63]). Let G ∈ Rd×p a random matrix
with independent N (0, 1) entries and S ⊂ Sp−1 be a closed subset of the unit
sphere in p dimensions. Let x ∈ Rp. Then

Emax
x∈S

∥∥∥∥ 1

ad
Gx

∥∥∥∥ ≤ 1 +
ω(S)

ad
,

and

Emin
x∈S

∥∥∥∥ 1

ad
Gx

∥∥∥∥ ≥ 1− ω(S)

ad
,

where ad = E‖gd‖ and ω(S) is the Gaussian width of S. Recall that
√

d
d+1

√
d ≤

ad ≤
√
d.

Before proving Gordon’s Theorem we will note some of its direct implica-
tions. The theorem suggests that 1

ad
G preserves the norm of the points in S

up to 1± ω(S)
ad

, indeed we can make this precise with Gaussian concentration

(Theorem 6.2).
Note that the function F (G) = maxx∈S ‖Gx‖ is 1-Lipschitz. Indeed∣∣∣∣max

x1∈S
‖G1x1‖ −max

x2∈S
‖G2x2‖

∣∣∣∣ ≤ max
x∈S
|‖G1x‖ − ‖G2x‖| ≤ max

x∈S
‖(G1 −G2)x‖

= ‖G1 −G2‖ ≤ ‖G1 −G2‖F .

Similarly, one can show that F (G) = minx∈S ‖Gx‖ is 1-Lipschitz. Thus,
one can use Gaussian concentration to get

P
{

max
x∈S
‖Gx‖ ≥ ad + ω(S) + t

}
≤ exp

(
− t

2

2

)
, (9.5)

and

P
{

min
x∈S
‖Gx‖ ≤ ad − ω(S)− t

}
≤ exp

(
− t

2

2

)
. (9.6)

This gives us the following theorem.

Theorem 9.11. Let G ∈ Rd×p a random matrix with independent N (0, 1)
entries and S ⊂ Sp−1 be a closed subset of the unit sphere in p dimensions.

Then, for ε >
√

ω(S)2

a2d
, with probability ≥ 1− 2 exp

[
−a

2
d

2

(
ε− ω(S)

ad

)2]
:

(1− ε)‖x‖ ≤
∥∥∥∥ 1

ad
Gx

∥∥∥∥ ≤ (1 + ε)‖x‖,

for all x ∈ S.
Recall that d d

d+1 ≤ a
2
d ≤ k.
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Proof. This is readily obtained by taking ε = ω(S)+t
ad

, using (9.5) and (9.6). �

Remark 9.12. Note that a simple use of a union bound4 shows that ω(S) .√
2 log |S|, which means that taking d to be of the order of log |S| suffices to

ensure that 1
ad
G to have the Johnson Lindenstrauss property. This observation

shows that Theorem 9.11 essentially directly implies Theorem 9.1 (although
not exactly, since 1

ad
G is not a projection).

9.2.1 Gordon’s Escape Through a Mesh Theorem

Theorem 9.11 suggests that, if ω(S) ≤ ad, a uniformly chosen random sub-
space of Rn of dimension (n − d) (which can be seen as the nullspace of G)
avoids a set S with high probability. This is indeed the case and is known
as Gordon’s Escape Through a Mesh Theorem (Corollary 3.4. in Gordon’s
original paper [63]). See also [95] for a description of the proof. We include
the Theorem below for the sake of completeness.

Theorem 9.13 (Corollary 3.4. in [63]). Let S ⊂ Sp−1 be a closed subset of
the unit sphere in p dimensions. If ω(S) < ad, then for a (p− d)-dimensional
subspace Λ drawn uniformly from the Grassmanian manifold we have

P {Λ ∩ S 6= ∅} ≤ 7

2
exp

(
− 1

18
(ad − ω(S))

2

)
,

where ω(S) is the Gaussian width of S and ad = E‖gd‖ where gk ∼ N (0, Id×d).

9.2.2 Proof of Gordon’s Theorem

In order to prove this Theorem we will use extensions of the Slepian’s Com-
parison Lemma. This, and the closely related Sudakov-Fernique inequality, are
crucial tools to compare Gaussian processes. A Gaussian process is a family
of Gaussian random variables indexed by some set T , {Xt}t∈T (if T is finite
this is simply a Gaussian vector). Given a Gaussian process Xt, a particular
quantity of interest is E [maxt∈T Xt]. Intuitively, if we have two Gaussian pro-
cesses Xt and Yt with mean zero E [Xt] = E [Yt] = 0, for all t ∈ T , and the
same variance, then the process that has the “least correlations” should have
a larger maximum (think the maximum entry of vector with i.i.d. Gaussian
entries versus one always with the same Gaussian entry). The following in-
equality makes this intuition precise and extends it to processes with different
variances.5

4This follows from the fact that the maximum of n standard Gaussian random
variables is .

√
2 logn.

5Although intuitive in some sense, this turns out to be a delicate statement about
Gaussian random variables, as it does not hold in general for other distributions.
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Theorem 9.14 (Slepian/Sudakov-Fernique inequality).
Let {Xu}u∈U and {Yu}u∈U be two (almost surely bounded) centered Gaus-

sian processes indexed by the same (compact) set U . If, for every u1, u2 ∈ U :

E [Xu1
−Xu2

]
2 ≤ E [Yu1

− Yu2
]
2
, (9.7)

then

E
[
max
u∈U

Xu

]
≤ E

[
max
u∈U

Yu

]
.

The following extension is due to Gordon [62, 63].

Theorem 9.15. [Theorem A in [63]] Let {Xt,u}(t,u)∈T×U and {Yt,u}(t,u)∈T×U
be two (almost surely bounded) centered Gaussian processes indexed by the
same (compact) sets T and U . If, for every t1, t2 ∈ T and u1, u2 ∈ U :

E [Xt1,u1
−Xt1,u2

]
2 ≤ E [Yt1,u1

− Yt1,u2
]
2
, (9.8)

and, for t1 6= t2,

E [Xt1,u1
−Xt2,u2

]
2 ≥ E [Yt1,u1

− Yt2,u2
]
2
, (9.9)

then

E
[
min
t∈T

max
u∈U

Xt,u

]
≤ E

[
min
t∈T

max
u∈U

Yt,u

]
.

Note that Theorem 9.14 easily follows by setting |T | = 1.
We are now ready to prove Gordon’s Theorem.

Proof. [of Theorem 9.10]
Let G ∈ Rd×p with i.i.d.N (0, 1) entries. We define two Gaussian processes:

For v ∈ S ⊂ Sp−1 and u ∈ Sd−1 let g ∼ N (0, Id×d) and h ∼ N (0, Ip×p) and
define the following processes:

Au,v = gTu+ hT v,

and
Bu,v = uTGv.

For all v, v′ ∈ S ⊂ Sp−1 and u, u′ ∈ Sd−1,

E |Av,u −Av′,u′ |2 − E |Bv,u −Bv′,u′ |2 = 4− 2
(
uTu′ + vT v′

)
−
∑
ij

(
viuj − v′iu′j

)2
= 4− 2

(
uTu′ + vT v′

)
−
[
2− 2

(
vT v′

) (
uTu′

)]
= 2− 2

(
uTu′ + vT v′ − uTu′vT v′

)
= 2

(
1− uTu′

) (
1− vT v′

)
.

This means that E |Av,u −Av′,u′ |2−E |Bv,u −Bv′,u′ |2 ≥ 0 and E |Av,u −Av′,u′ |2−
E |Bv,u −Bv′,u′ |2 = 0 if v = v′. This implies that we can use Theorem 9.15
with X = A and Y = B, to get
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Emin
v∈S

max
u∈Skd1

Av,u ≤ Emin
v∈S

max
u∈Sd−1

Bv,u.

Noting that

Emin
v∈S

max
u∈Sk−1

Bv,u = Emin
v∈S

max
u∈Sk−1

uTGv = Emin
v∈S
‖Gv‖ ,

and

E
[
min
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gTu+ Emin

v∈S
hT v

= E max
u∈Sk−1

gTu− Emax
v∈S

(−hT v) = ak − ω(S),

gives the second part of the theorem.
On the other hand, since E |Av,u −Av′,u′ |2 − E |Bv,u −Bv′,u′ |2 ≥ 0 then

we can similarly use Theorem 9.14 with X = B and Y = A, to get

Emax
v∈S

max
u∈Sd−1

Av,u ≥ Emax
v∈S

max
u∈Sd−1

Bv,u.

Noting that

Emax
v∈S

max
u∈Sd−1

Bv,u = Emax
v∈S

max
u∈Sd−1

uTGv = Emax
v∈S
‖Gv‖ ,

and

E
[
max
v∈S

max
u∈Sd−1

Av,u

]
= E max

u∈Sd−1
gTu+ Emax

v∈S
hT v = ad + ω(S),

concludes the proof of the theorem.
�

9.3 Random projections and Compressed Sensing:
Sparse vectors and Low-rank matrices

A remarkable application of Gordon’s Theorem is that one can use it for ab-
stract sets S such as the set of all natural images or the set of all plausible
user-product ranking matrices. In these cases Gordon’s Theorem suggests that
a measurements corresponding just to a random projection may be enough
to keep geometric properties of the data set in question, in particular, it may
allow for reconstruction of the data point from just the projection. These
phenomenon and the sensing savings that arrises from it is at the heart of
Compressed Sensing and several recommendation system algorithms, among
many other data processing techniques. Motivated by these two applications
we will focus in this section on understanding which projections are expected
to preserve the norm of sparse vectors and low-rank matrices. Both Com-
pressed Sensing and Low-rank Matrix Modelling will be discussed in length
in, respectively, Chapters 10 and ??.
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9.3.1 Gaussian width of s-sparse vectors

Let x ∈ Rp represent a signal (or image) that we wish to acquire via linear
measurements yi = aTi x, for ai ∈ Rp. In general, one would need p linear one-
dimensional measurements to find x, one for each coordinate. The idea behind
Compressed Sensing [31, 49] is that one may be able to significantly decrease
the number of measurements needed if we know more about the structure of
x, a prime example is when x is known to be sparse, i.e. to have few non-zero
entries. Sparse signals arise in countless applications: for example, natural
images tend to be sparse in the wavelet basis6, while audio signals tend to be
sparse in local Fourier-type expansions7.

We will revisit sparse recovery and Compressed Sensing on Chapter 10.
For now, we will see how Gordon’s Theorem can suggest how many linear
measurements are needed in order to reconstruct a sparse vector. An efficient
way of representing the measurements is to use a matrix

A =


— aT1 —
— aT2 —

...
— aTm —

 ,
and represent the linear measurements as

y = Ax.

In order to be able to reconstruct x from y we need at the very least that
A is injective on sparse vectors. Let us assume that x is s-sparse, meaning
that x has at most s non-zero entries (often written as ‖x‖0 ≤ s, where ‖ · ‖0
is called the 0-norm and counts the number of non-zero entries in a vector8).
Furthermore, in order for reconstruction to be stable, one should ask not only
A is injective in s-sparse vectors but actually that it is almost an isometry,
meaning that the `2 distance between Ax1 and Ax2 should be comparable
to the distances between x1 and x2, if they are s-sparse. Since the difference
between two s-sparse vectors is a 2s-sparse vector, we can alternatively ask
for A to approximately keep the norm of 2s sparse vectors. Gordon’s Theorem
above suggests that we can take A ∈ Rm×p to have i.i.d. Gaussian entries and
to take m ≈ ω2 (S2s), where S2s =

{
x : x ∈ Sp−1, ‖x‖0 ≤ 2s

}
is the set of 2s

sparse vectors, and ω (S2s) the Gaussian width of S2s.

Proposition 9.16. If s ≤ p, the Gaussian width ω (Ss) of Ss, the set of unit-
norm vectors that are at most s sparse, satisfies

6The approximate sparsity of natural images in the wavelet bases is leveraged in
the JPEG2000 compression method.

7This approximate sparsity is utilized in MP3 audio compression.
8It is important to note that ‖·‖0 is not actually a norm, as it does not necessarily

rescale linearly with a rescaling of x.
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ω (Ss)2 . s log
(p
s

)
.

Proof.
ω (Ss) = E max

v∈Sp−1, ‖v‖0≤s
gT v,

where g ∼ N (0, Ip×p). We have

ω (Ss) = E max
Γ⊂[p], |Γ |=s

‖gΓ ‖,

where gΓ is the restriction of g to the set of indices Γ .
Given a set Γ , Theorem 6.23 yields

P
{
‖gΓ ‖2 ≥ s+ 2

√
s
√
t+ 2t

}
≤ exp(−t).

Union bounding over all Γ ⊂ [p], |Γ | = s gives

P
{

max
Γ⊂[p], |Γ |=s

‖gΓ ‖2 ≥ s+ 2
√
s
√
t+ 2t

}
≤
(
p

s

)
exp(−t)

Taking u such that t = su, gives

P
{

max
Γ⊂[p], |Γ |=s

‖gΓ ‖2 ≥ s
(
1 + 2

√
u+ 2u

)}
≤ exp

[
−su+ s log

(
e
p

s

)]
.

(9.10)
Taking u > log

(
eps
)

it can be readily seen that the typical size of

maxΓ⊂[p], |Γ |=s ‖gΓ ‖2 is . s log
(
p
s

)
. The proof can be finished by integrat-

ing (9.10) in order to get a bound of the expectation of
√

maxΓ⊂[p], |Γ |=s ‖gΓ ‖2.
�

This suggests that ≈ 2s log
(
p
2s

)
measurements suffice to stably identify

a 2s-sparse vector. As we will see in Chapter 10, dedicated to Compressed
Sensing, this number of measurement is also sufficient to guarantee that the
signal in question can be recover with efficient algorithms.

9.3.2 Gaussian width of rank-r matrices

Another structured set of interest is the set of low rank matrices. Low-rank
matrices appear in countless applications, a prime example being recommen-
dation systems such as in the celebrated Netflix Prize. In this case the ma-
trix in question is a matrix indexed by users of a service and items, such
as movies. Given a user and an item, the corresponding entry of the matrix
should correspond to the score that user would attribute to that item. This
matrix is believed to be low-rank. The goal is then to estimate the score for
user and item pairs that have not been rated yet from the ones that have, by
exploiting the low-rank matrix structure. This is known as low-rank matrix
completion [35, 37, 110].
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In this short section, we will not address the problem of matrix completion
but rather make a comment about the problem of low-rank matrix sensing,
where instead of observing some of the entries of the matrix X ∈ Rn1×n2

one has access to linear measurements of it, of the form yi = Tr(ATi X), the
problem of Matrix Completion will be addressed in Chapter ??.

In order to understand the number of measurements needed for the mea-
surement procedure to be a nearly isometry for rank r matrices, we can es-
timate the Gaussian width of the set of matrices X ∈ Rn1×n2 whose rank is
smaller or equal to 2r, and use Gordon’s Theorem.

Proposition 9.17.

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r, ‖X‖F = 1

})
.
√
r(n1 + n2).

Proof.

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r, ‖X‖F = 1

})
= E max

‖X‖F=1
rank(X)≤r

Tr(GX).

Let X = UΣV T be the SVD decomposition of X, then

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r, ‖X‖F = 1

})
= E max

UTU=V TV=Ir×r
Σ∈Rr×r‖Σ‖F=1
Σ is diagonal

Tr(Σ
(
V TGU

)
).

This implies that

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r, ‖X‖F = 1

})
≤ (TrΣ) (E‖G‖) .

√
r (
√
n1 +

√
n1) ,

where the last inequality follows from bounds on the largest eigenvalue of a
Wishart matrix. �

This suggests that the number of measurements needed to identify an
n1 × n2 rank r matrix is on the order of r (n1 + n2), rather than the n1n2
measurements that would be needed without a low-rank assumption. As we
will see in Chapter ??, these savings play an important role in Matrix Sensing,
Matrix Completion, and many recommendation system algorithms.





10

Compressive Sensing and Sparsity

Most of us have noticed how saving an image in JPEG dramatically reduces
the space it occupies in our hard drives (as opposed to file types that save
the value of each pixel in the image). The idea behind these compression
methods is to exploit known structure in the images; although our cameras
will record the value (even three values in RGB) for each pixel, it is clear that
most collections of pixel values will not correspond to pictures that we would
expect to see. Natural images do not correspond to arbitrary arrays of pixel
values, but have some specific structure to them. It is this special structure
one aims to exploit by choosing a proper representation of the image. Indeed,
natural images are known to be approximately sparse in certain bases (such as
the wavelet bases) and this is the core idea behind JPEG (actually, JPEG2000;
JPEG uses a different basis).

Let us think of x ∈ Cp as the signal corresponding to the image already
represented in the basis in which it is sparse. The modeling assumption is that
x is s-sparse, or ‖x‖0 ≤ s, meaning that x has at most s non-zero components
and, usually, s� p. The `0-norm1 ‖x‖0 of a vector x is the number of non-zero
entries of x. This means that when we take a picture, our camera makes p
measurements (each corresponding to a pixel) but then, after an appropriate
change of basis, it keeps only s� p non-zero coefficients and drops the others.
This seems a rather wasteful procedure and thus motivates the question: “If
only a few degrees of freedom are kept after compression, why not in the
first place measure in a more efficient way and take considerably less than p
measurements?”.

The question whether we can carry out data acquisition and compression
simultaneously is at the heart of Compressive Sensing [31, 32, 33, 34, 49, 57].
It is particularly important in MRI imaging [89, 55], as fewer measurements
potentially means shorter data acquisition time. Indeed, current MRI technol-
ogy based on concepts from compressive sensing can reduce the time needed
to collect the data by a factor of six or more [89], which has significant benefits

1We recall that the `0 norm is not actually a norm.
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especially in pediatric MR imaging [137]. We recommend the book [57] as a
great in-depth reference about compressive sensing.

In mathematical terms, the acquired measurements y ∈ Cm are connected
to the signal of interest x ∈ Cp, with m� p, via

 y
 =

 A



x


. (10.1)

The matrix A ∈ Cm×p models the linear measurement (information) process.
Classical linear algebra tells us that if m < p, then the linear system (10.1)
is underdetermined and that there are infinitely many solutions (assuming
that there exists at least one solution). In other words, without additional
information, it is impossible to recover x from y in the case m < p.

In this chapter we assume that x is s-sparse with s < m � p. The goal
is to recover x from this underdetermined system. We emphasize that we do
not know the location of the non-zero coefficients of x a priori2, otherwise the
task would be trivial.

In the previous chapter we used Gordon’s Theorem (Theorem 9.10) to show
that when using random Gaussian measurements, on the order of s log

(
p
s

)
measurements suffice to have all considerably different s-sparse signals cor-
respond to considerably different sets of measurements. This suggests that
m ≈ s log

(
p
s

)
may be enough to recover x. While Gordon’s Theorem guar-

antees that this number of measurements will suffice for sparse vectors to be
uniquely determined by these random measurements, it does not offer any
insight into whether it is possible to recover the signal of interest in a nu-
merically efficient manner. Remarkably, as we will see below, this is indeed
possible.

Since the system is underdetermined and we know that x is sparse, the
natural approach to try to recover x is to solve

min ‖z‖0
s.t. Az = y,

(10.2)

and hope that the optimal solution z corresponds to the signal in question x.
However the optimization problem (10.2) is NP-hard in general [57]. Instead,
the approach usually taken in sparse recovery is to consider a convex surrogate
of the `0 norm, namely the `1 norm: ‖z‖1 =

∑p
i=1 |zi|. Figure 10.1 depicts the

`p balls and illustrates how the `1 norm can be seen as a convex surrogate of

2And therein lies the challenge, since s-sparse signals do not form a linear sub-
space of Rp (the sum of two s-sparse signals is in general no longer s-sparse but
2s-sparse).
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the `0 norm due to the pointiness of the `1 ball in the direction of the basis
vectors, i.e. in “sparse” directions.

(a) p = 0 (b) p = 1
2

(c) p = 1 (d) p = 2 (e) p =∞

Fig. 10.1: `p norm unit balls with different values for p

The process of `p minimization can be understood as inflating the `p ball
until one hits the affine subspace of interest. Figure 10.2 illustrates how `1
norm minimization promotes sparsity, while `2 norm minimization does not
favor sparse solutions. We have seen in Chapter 2.2.2 that the `1 ball be-
comes “increasingly pointy” with increasing dimension. This behavior works
in our favor in compressive sensing—another manifestation of the blessings of
dimensionality.

(a) p = 1 (b) p = 2

Fig. 10.2: A two-dimensional depiction of `1 and `2 minimization. In `p min-
imization, one inflates the `p ball until it hits the affine subspace of interest.
This image conveys how the `1 norm (left) promotes sparsity due to the “poin-
tiness” of the `1 ball. In contract, `2 norm minimization (right) does not favor
sparse solutions.

This motivates one to consider the following optimization problem (surro-
gate to (10.2)):

min ‖z‖1
s.t. Az = y,

(10.3)
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In order for (10.3) to be a good procedure for sparse recovery we need two
things: for the solution of it to be meaningful (hopefully to coincide with x)
and for (10.3) to be efficiently solved.

We will consider for the moment the real-valued case x ∈ Rp, A ∈ Rm×p
and formulate (10.3) as a linear program3 (and thus show that it is efficiently
solvable). Let us think of ω+ as the positive part of z and ω− as the symmetric
of the negative part of it, meaning that z = ω+ − ω− and, for each i, either
ω−i or ω+

i is zero. Note that, in that case,

‖z‖1 =

p∑
i=1

ω+
i + ω−i = 1T

(
ω+ + ω−

)
.

Motivated by this, we consider:

min 1T (ω+ + ω−)
s.t. A (ω+ − ω−) = y

ω+ ≥ 0
ω− ≥ 0,

(10.4)

which is a linear program. It is not difficult to see that the optimal solution
of (10.4) will indeed satisfy that, for each i, either ω−i or ω+

i is zero and it is
indeed equivalent to (10.3); if both ω−i and ω+

i are non-zero, one can lower
the objective while keep satisfying the constraints by reducing both variables.
Since linear programs are efficiently solvable [136], this implies that the `1-
optimization problem (10.3) is efficiently solvable.

In what follows we will discuss under which circumstances one can guar-
antee that the solution of (10.3) coincides with the sparse signal of interest.
We will discuss a couple of different strategies to show this, as different strate-
gies generalize better to other problems of interest. Later in this chapter we
discuss strategies for constructing sensing matrices.

10.1 Null Space Property and Exact Recovery

Given a s-sparse vector x, our goal is to show that under certain conditions
x is the unique optimal solution to

min ‖z‖1
s.t. Az = y,

(10.5)

Let S = supp(x), with |S| = s.4 If x is not the unique optimal solution
of the `1 minimization problem, there exists z 6= x as optimal solution. Let
v = z − x, it satisfies

3In the complex case, we are dealing with a quadratic program.
4If x has support size strictly smaller than s, for what follows, we can simply

take a superset of it with size s
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‖v + x‖1 ≤ ‖x‖1 and A(v + x) = Ax,

this means that Av = 0. Also,

‖x‖S = ‖x‖1 ≥ ‖v + x‖1 = ‖ (v + x)S ‖1 + ‖vSc‖1 ≥ ‖x‖S − ‖vS‖1 + ‖v‖Sc ,

where the last inequality follows by the triangle inequality. This means that
‖vS‖1 ≥ ‖vSc‖1, but since |S| � N it is unlikely for A to have vectors in
its nullspace that are so concentrated on such few entries. This motivates the
following definition.

Definition 10.1 (Null Space Property). A is said to satisfy the s-Null
Space Property (A ∈ s-NSP) if, for all v in ker(A) (the nullspace of A) and
all |S| = s, we have

‖vS‖1 < ‖vSc‖1.

From the argument above, it is clear that if A satisfies the Null Space
Property for s, then x will indeed be the unique optimal solution to (10.3).
In fact, as the property is described in terms of any set S of size s, it implies
recovery for any s-sparse vector.

Theorem 10.2. Let x be an s-sparse vector. If A ∈ s-NSP then x is the
unique solution to the `1 optimization problem (10.3) with y = Ax.

The Null Space Property is a statement about certain vectors not belong-
ing to the null space of A, thus we can again resort to Gordon’s Theorem
(Theorem 9.10) to establish recovery guarantees for Gaussian sensing matri-
ces. Let us define the intersection with the unit-sphere of the cone of such
vectors

Cs :=
{
v ∈ Sp−1 : ∃S⊂[p], |S|=s ‖vS‖1 ≥ ‖vSc‖1

}
. (10.6)

Since for a matrix A, A ∈ s-NSP is equivalent to ker(A)∩Cs = ∅, Gordon’s
Theorem, or more specifically Gordon’s Escape Through a Mesh Theorem
(Theorem 9.13), implies that there exists a universal C > 0 such that if A is
drawn with iid Gaussian entries, it will satisfy the s-NSP with high probability
provided that M ≥ Cω2 (Cs), where ω (Cs) is the Gaussian width of Cs.

Proposition 10.3. Let s ≤ p and Cs ⊂ Sp−1 defined in (10.6), there exists a
universal constant C such that

ω (Cs) ≤ C
√
s log

(p
s

)
,

where ω (Cs) is the Gaussian width of Cs.

Proof. The goal is to bound upper bound

ω (Cs) = E max
v∈Cs

vT g,
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for g ∼ N (0, I). Note that Cs is invariant under permutations of the indices.
Thus, the maximizer v ∈ Cs will have its largest entries (in absolute value) in
the coordinates g has it largest entries (in absolute value). Let S be the set
of the s coordinates with largest absolute value of g. We have

E max
v∈Cs

vT g = E max
v:‖vS‖1≥‖vSc‖1, ‖v‖2=1

vTS gS + vTScgSc .

The key idea is to notice that the condition ‖vS‖1 ≥ ‖vSc‖1 imposes a strong
bound on the `1 norm of vSc via ‖vSc‖1 ≤ ‖vS‖1 ≤

√
s ‖vS‖2 ≤

√
s. This can

be leveraged by noticing that

vTS gS + vTScgSc ≤ ‖vS‖2 ‖gS‖2 + ‖vSc‖1 ‖gSc‖∞ .

This gives
ω (Cs) ≤ E ‖gS‖2 +

√
s ‖gSc‖∞ ,

where S corresponds to the set of the s coordinates with largest absolute value
of g.

We saw in the proof of Proposition 9.16, in the context of computing the

Gaussian width of the set of sparse vectors, that E ‖gS‖2 .
√
s log

(
p
s

)
. Since

all entries of gSc are smaller, in absolute value, that any entry in gS we have

that ‖gSc‖2∞ ≤
1
s ‖gS‖

2
2. This implies that E ‖gSc‖∞ .

√
log
(
p
s

)
, concluding

the proof. �

Together with Theorem 10.2 this implies the following recovery guarantee,
matching the order of number of measurements suggested by the Gaussian
width of sparse vectors.

Theorem 10.4. There exists a universal constant C ≥ 0 such that if A is a
m×p matrix with iid Gaussian entries the following holds with high probability:
For any x an s-sparse vector, x is the unique solution to the `1-optimization
problem (10.3) with y = Ax.

Remark 10.5. If one is interested in understanding the probability of exact
recovery of a specific sparse vector, and not a uniform guarantee on all sparse
vectors simultaneously, then it is possible to do a more refined version of the
arguments above that are able to predict the exact asymptotics of the number
of measurements required; see [40] for an approach based on Gaussian widths
and [10] for an approach based on Integral Geometry [10].

10.1.1 The Restricted Isometry Property

A classical approach to establishing exact recovery via `1-minimization is
through the Restricted Isometry Property (RIP), which corresponds precisely
with the property of approximately preserving the length of sparse vectors.
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Definition 10.6 (Restricted Isometry Property (RIP)). An m× p ma-
trix A (with either real or complex valued entries) is said to satisfy the (s, δ)-
Restricted Isometry Property (RIP),

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2,

for all s-sparse x.

If A satisfies the RIP for sparsity 2s, it means that it approximately pre-
serves distances between s-sparse vectors (hence the name RIP). This can be
leveraged to show that A satisfies the NSP.

Theorem 10.7 ([38]). Let y = Ax where x is an s-sparse vector. Assume
that A satisfies the RIP property with δ2s <

1
3 , then the solution x∗ to the

`1-minimization problem

min
z
‖z‖1, subject to Az = y = Ax

becomes x exactly, i.e., x∗ = x

To prove this theorem we need the following lemma.

Lemma 10.8 ([38]). We have

|〈Ax,Ax′〉| ≤ δs+s′‖x‖2‖x′‖2

for all x, x′ supported on disjoint subsets S, S′ ⊆ [1, · · · , p], x, x′ ∈ Rp, and
|S| ≤ s, |S′| ≤ s′

Proof. Without loss of generality, we can assume ‖x‖2 = ‖x′‖2 = 1, so that
the right hand size of the inequality becomes just δs+s′ . Since A satisfies the
RIP property, we have

(1− δs+s′)‖x± x′‖22 ≤ ‖A(x± x′)‖22 ≤ (1 + δs+s′)‖x± x′‖22.

Since x and x′ have disjoint support, ‖x ± x′‖22 = ‖x‖22 + ‖x‖22 = 2; the RIP
property then becomes

2(1− δs+s′) ≤ ‖Ax±Ax′‖22. ≤ 2(1 + δs+s′)

The polarization identity implies:

|〈Ax,Ax′〉| = 1

4

∣∣∣‖Ax+Ax′‖22 − ‖Ax−Ax′‖22
∣∣∣

≤ 1

4

∣∣∣2(1 + δs+s′)− 2(1− δs+s′)
∣∣∣

= δs+s′ .

To prove Theorem 10.7, we simply need to show that the Null Space Prop-
erty holds for the given conditions.
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Proof (of Theorem 10.7). Take h ∈ (A) \ 0. Let index set S0 be the set of
indices of s largest entries (by modulus) of h. Let index sets S1, S2, · · · be
index sets corresponding to the next s to 2s, 2s to 3s, · · · largest entries of h.

Since A satisfies the RIP, we have

‖hS0‖22 ≤
1

1− δs
‖AhS0‖2 (10.7)

=
1

1− δs

∑
j≥1

〈AhS0
, A(−hSj )〉 (because hS0

=
∑
j≥1

(−hSj )) (10.8)

≤ 1

1− δs

∑
j≥1

δ2s‖hS0‖2‖hSj‖2 (by Lemma 10.8) (10.9)

≤ δ2s
1− δs

‖hS0‖2
∑
j≥1

‖hSj‖2 (10.10)

‖hS0‖2 ≤
δ2s

1− δs

∑
j≥1

‖hSj‖2. (10.11)

Note that
‖hSj‖2 ≤ s

1
2 ‖hSj‖∞ ≤ s−

1
2 ‖hSj−1‖1.

We can rewrite (10.11) as

‖hS0‖2 ≤
δ2s

1− δs
s−

1
2

∑
j≥1

‖hSj−1‖1 (10.12)

=
δ2s

1− δs
s−

1
2 ‖h‖1. (10.13)

Also, by the Cauchy-Schwarz inequality,

‖hS0
‖1 =

∑
i∈S0

1× |hi| ≤
√∑
i∈S0

12
√∑
i∈S0

h2i =
√
s‖hS0‖2. (10.14)

We have δ2s <
1
3 as a condition, so

δ2s
1− δs

<
δ2s

1− δ2s
<

1

2
for δ2s <

1

3
. (10.15)

Combining (10.13), (10.14), and (10.15), we get

‖hS0
‖1 <

1

2
‖h‖1. (10.16)

Now we show that (10.16) is equivalent to ‖hS‖1 < ‖hSC‖1:

‖hS‖1 < ‖hSC‖1
⇔ 2‖hS‖1 < ‖hSC‖1 + ‖hS‖1
⇔ 2‖hS‖1 < ‖h‖1

⇔ ‖hS‖1 <
1

2
‖h‖1.
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Thus, we have shown that ‖hS0
‖1 < ‖hSC‖1, which is the Null Space

Property and by virtue of Theorem 10.2 our proof is complete. ut

Many results in compressive sensing (such as Theorem 10.7) can be ex-
tended will little extra effort to the case where x is not exactly s-sparse,
but only approximately s-sparse, a property that is sometimes referred to as
compressible. See [36, 57] for a detailed discussion.

Which matrices do satisfy the RIP under favorable conditions? Clearly, we
want the number of measurements necessary to recover a sparse vector with
`1-minimization to be as small as possible.

In Chapter 9 we computed the number of rows needed for a Gaussian
matrix to approximately preserve the norm of sparse vectors, via estimates of
the Gaussian width of the set of sparse vectors. In fact, using Proposition 9.16
and Theorem 9.11, one can readily show5 that matrices with Gaussian entries
satisfy the RIP with m ≈ s log

(
p
s

)
.

Theorem 10.9. Let A be an m× p matrix with i.i.d. standard Gaussian en-
tries, there exists a constant C such that, if

m ≥ Cs log
(p
s

)
,

then 1√
m
A satisfies the

(
s, 13
)
-RIP with high probability.

We point out an important aspect in this context. Theorem 10.9 combined
with Theorem 10.7 yields a uniform recovery guarantee for sparse vectors with
Gaussian sensing matrices. Once a Gaussian matrix satisfies the RIP (which
it will for certain parameters with high probability), then exact recovery via
`1-minimization holds uniformly for all sufficiently sparse vectors.

While there are obvious similarities between Johnson-Lindenstrauss pro-
jections and sensing matrices that satisfy the RIP, there are also important
differences. We note that for JL dimension reduction to be applicable (an
upper estimate of ) the number of vectors must be known a priori (and this
number if finite). JL projection preserves (up to ε) pairwise distances between
these vectors, but the vectors do not have to be sparse. As a consequence, JL
projections P are a one-way street, as in general one cannot recover x from
y = Px. In contrast, a matrix that satisfies the RIP works for infinitely many
vectors, however with the caveat that these vectors must be sparse. Moreover,
one can recover such sparse vectors x from y = Ax (and can do so numerically
efficiently).

As a consequence of these considerations, a matrix that satisfies the RIP
does not necessarily have to satisfy the Johnson-Lindenstrauss Lemma. While
a Gaussian random matrix does indeed satisfy both, RIP and the Johnson-
Lindenstrauss Lemma, other matrices do not satisfy both simultaneously. For

5Note that the 1±δ term in the RIP property corresponds to (1±ε)2 in Gordon’s
Theorem. Since the RIP is a stronger property when δ is smaller, one can simply
use ε = 1

3
δ.
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example, take a randomly subsampled Fourier matrix A of dimensions m× p.
In the notation of the definition of the Fast Johnson-Lindenstrauss transform,
this matrix A would correspond to A = SF , but without the diagonal matrix
D that randomizes phases (or signs) of x. This matrix A will not meet the
Johnson-Lindenstrauss properties of Theorem 9.1. But the absence of the
phase randomization matrix D is not a hurdle for A = SF to satisfy the RIP.

It is known [34] that if m = Ωδ(spolylog p), then the partial Fourier matrix
satisfies the RIP with high probability. The exact number of logarithmic fac-
tors needed is the object of much research with the best known upper bound
due to Haviv and Regev [67], giving an upper bound of m = Ωδ(s log2 s log p).
On the side of lower bounds it is know that the asymptotics established for
Gaussian matrices of m = Θδ(s log(p/s)) are not achievable in general [22].

Checking whether a matrix satisfies the RIP or not is in general NP-
hard [19, 126]. While Theorem 10.9 suggests that RIP matrices are abundant
for s ≈ m

log(p) , it appears to be very difficult to deterministically construct

matrices that satisfy RIP for s�
√
m, known as the square bottleneck [122,

21, 20, 23, 30, 94]. The only known unconditional construction that is able to
break this bottleneck is due to Bourgain et al. [30]; their construction achieves

s ≈ m 1
2+ε for a small, but positive, ε. There is also a conditional construction,

based on the Paley Equiangular Tight Frame [21, 23].
In Section 10.3 we will consider more practical conditions for designing

sensing matrices. These conditions, which are better suited for applications,
are based on the concept of the coherence of a matrix. Interestingly, the
phase randomization of x that is notably absent in the partial Fourier matrix
mentioned above, will reappear in this context in connection with nonuniform
recovery guarantees.

10.2 Duality and exact recovery

In this section we describe yet another approach to show exact recovery of
sparse vectors via (10.3). In this section we take an approach based on du-
ality, the same strategy we took on Chapter 8 to show exact recovery in the
Stochastic Block Model. The approach presented here is essentially the same
as the one followed in [58] for the real case, and in [128] for the complex case.

Let us start by presenting duality in Linear Programming with a game
theoretic view point, similarly to how we did for Semidefinite Programming
in Chapter 8. The idea is again to to reformulate (10.4) without constraints,
by adding a dual player that wants to maximize the objective and would
exploit a deviation from the original constraints (by, for example, giving the
dual player a variable u and adding to to the objective uT (y −A (ω+ − ω−))).
More precisely consider the following
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min
ω+

ω−

max
u

v+≥0
v−≥0

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
.

(10.17)
Indeed, if the primal player (picking ω+ and ω− and attempting to mini-

mize the objective) picks variables that do not satisfy the original constraints,
then the dual player (picking u, v+, and v− and trying to maximize the ob-
jective) will be able to make the objective value as large as possible. It is then
clear that (10.4) = (10.17).

If the order with which the players choose variable values, this can only
benefit the primal player, that now gets to see the value of the dual vari-
ables before picking the primal variables, meaning that (10.17) ≥ (10.18),
where (10.18) is given by:

max
u

v+≥0
v−≥0

min
ω+

ω−

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
.

(10.18)
Rewriting

max
u

v+≥0
v−≥0

min
ω+

ω−

(
1− v+ −ATu

)T
ω+ +

(
1− v− +ATu

)T
ω− + uT y (10.19)

With this formulation, it becomes clear that the dual players needs to set
1− v+ −ATu = 0, 1− v− +ATu = 0 and thus (10.19) is equivalent to

max
u

v+≥0
v−≥0

1−v+−ATu=0
1−v−+ATu=0

uT y

or equivalently,

maxu u
T y

s.t. −1 ≤ ATu ≤ 1.
(10.20)

The linear program (10.20) is known as the dual program to (10.4). The
discussion above shows that (10.20) ≤ (10.4) which is known as weak duality.
More remarkably, strong duality guarantees that the optimal values of the two
programs match.

There is a considerably easier way to show weak duality (although not as
enlightening as the one above). If ω− and ω+ are primal feasible and u is dual
feasible, then

0 ≤
(
1T − uTA

)
ω+ +

(
1T + uTA

)
ω− (10.21)

= 1T
(
ω+ + ω−

)
− uT

[
A
(
ω+ − ω−

)]
= 1T

(
ω+ + ω−

)
− uT y,

showing that (10.20) ≤ (10.4).
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10.2.1 Finding a dual certificate

In order to show that ω+ − ω− = x is an optimal solution6 to (10.4), we will
find a dual feasible point u for which the dual matches the value of ω+−ω− = x
in the primal, u is known as a dual certificate or dual witness.

From (10.21) it is clear that u must satisfy
(
1T − uTA

)
ω+ = 0 and(

1T + uTA
)
ω− = 0, this is known as complementary slackness. This means

that we must take the entries of ATu be +1 or −1 when x is non-zero (and
be +1 when it is positive and −1 when it is negative), in other words(

ATu
)
S

= sign (xS) ,

where S = supp(x), and
∥∥ATu∥∥∞ ≤ 1 (in order to be dual feasible).

Remark 10.10. It is not difficult to see that if we further ask that
∥∥(ATu)

Sc

∥∥
∞ <

1 any optimal primal solution would have to have its support contained in the
support of x. This observation gives us the following Lemma.

Lemma 10.11. Consider the problem of sparse recovery discussed above. Let
S = supp(x), if AS is injective and there exists u ∈ RM such that(

ATu
)
S

= sign (xS) ,

and ∥∥(ATu)
Sc

∥∥
∞ < 1,

then x is the unique optimal solution to the `1-minimization problem (10.3).

Since we know that
(
ATu

)
S

= sign (xS) (and that AS is injective), we try

to construct7 u by least squares and hope that it satisfies
∥∥(ATu)

Sc

∥∥
∞ < 1.

More precisely, we take

u =
(
ATS
)†

sign (xS) ,

where
(
ATS
)†

= AS
(
ATSAS

)−1
is the Moore Penrose pseudo-inverse of ATS .

This gives the following Corollary.

Corollary 10.12. Consider the problem of sparse recovery discussed this lec-
ture. Let S = supp(x), if AS is injective and∥∥∥(ATScAS (ATSAS)−1 sign (xS)

)
Sc

∥∥∥
∞
< 1,

then x is the unique optimal solution to the `1-minimization problem (10.3).

6For now we will focus on showing that it is an optimal solution, see Remark 10.10
for a brief discussion of how to strengthen the argument to show uniqueness.

7Note how this differs from the situation in Chapter 8 where the linear inequal-
ities were enough to determine a unique candidate for a dual certificate.



10.3 Sensing matrices and incoherence 151

Theorem 10.9 establishes that if m � s log
(
p
s

)
and A ∈ Rm×p is drawn

with i.i.d. Gaussian entries N
(
0, 1

m

)
then8 it will, with high probability, sat-

isfy the (s, 1/3)-RIP. Note that, if A satisfies the (s, 1/3)-RIP then, for any

|S| ≤ s one has ‖AS‖ ≤
√

1 + 1
3 and l

(
ATSAS

)−1 ‖ ≤ (1− 1
3

)−1
= 3

2 , where

‖ · ‖ denotes the operator norm ‖B‖ = max‖x‖=1 ‖Bx‖.
This means that if we take A random with i.i.d. N

(
0, 1

m

)
entries then, for

any |S| ≤ s we have that

‖AS
(
ATSAS

)−1
sign (xS) ‖ ≤

√
1 +

1

3

3

2

√
s =
√

3
√
s,

and because of the independency among the entries of A, ASc is independent
of this vector and so for each j ∈ Sc we have

P
(∣∣∣ATj AS (ATSAS)−1 sign (xS)

∣∣∣ ≥ 1√
M

√
3
√
st

)
≤ 2 exp

(
− t

2

2

)
,

where Aj is the j-th column of A.
An application of the union bound gives

P
(∥∥∥ATScAS (ATSAS)−1 sign (xS)

∥∥∥
∞
≥ 1√

M

√
3
√
st

)
≤ 2N exp

(
− t

2

2

)
,

which implies

P
(∥∥∥ATScAS (ATSAS)−1 sign (xS)

∥∥∥
∞
≥ 1
)
≤ 2p exp

−
(√

m√
3s

)2
2


= exp

(
−1

2

[m
3s
− 2 log(2p)

])
,

which means that we expect to exactly recover x via `1 minimization when
m � s log(p). While this can be asymptotically worse then the bound of
m & s log

(
p
s

)
, and this guarantee is not uniformly obtained for all sparse vec-

tors, the technique in this section is generalizable to many circumstances and
illustrates the flexibility of approaches based in construction of dual witnesses.

10.3 Sensing matrices and incoherence

In applications, we usually cannot completely freely choose the sensing matrix
to our liking. This means that Gaussian random matrices play an important
role as benchmark, but from a practical viewpoint they play a marginal role.

8Note that the normalization here is taken slightly differently: entries are nor-
malized by 1√

m
, rather than 1

am
, but the difference is negligible for our purposes.
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Clearly, randomness in the sensing matrix seems to be very beneficial for com-
pressive sensing. However, in practice, there are many design constraints on
the sensing matrix A, as in many applications one only has access to struc-
tured measurement systems. For example, we may still have the freedom to
choose, say the positions of the antennas in radar systems that employ multi-
ple antennas or the position of sensors in MRI. By choosing these randomly,
we can still introduce randomness in our system. Or, we can transmit ran-
dom waveforms in sonar and radar systems. Yet, in all these cases the overall
structure of A is still dictated by the physics of wave propagation. In other
applications, it will be other physical constraints or design limitations that
will limit how much randomness we can introduce into sensing matrix.

While establishing the RIP for Gaussian or Bernoulli random matrices
is not too difficult, it is already significantly harder to do so for the partial
Fourier matrix [34, ?, 67], and time-frequency matrices [52], and even harder
for more specific sensing matrices.

A useful concept to overcome the practical limitations of the RIP is via
the concept of the (in)coherence of a matrix. This concept has proven to be
widely applicable in practice. While we want to avoid the constraints of the
RIP, we nevertheless take it as our point of departure. Recall that the RIP
(Definition 10.6) asks that any S ⊂ [p], |S| ≤ s satisfies:

(1− δ)‖x‖2 ≤ ‖ASx‖2 ≤ (1 + δ)‖x‖2,

for all x ∈ R|S|. This is equivalent to

max
x

xT
(
ATSAS − I

)
x

xTx
≤ δ,

or equivalently ∥∥ATSAS − I∥∥ ≤ δ.
If the columns of A are unit-norm vectors (in Rm), then the diagonal

of ATSAS is all-ones, this means that ATSAS − I consists only of the non-
diagonal elements of ATSAS . If, moreover, for any two columns ai, aj , of A
we have

∣∣aTi aj∣∣ ≤ µ for some µ then, Gershgorin’s circle theorem tells us that∥∥ATSAS − I∥∥ ≤ µ(s− 1).
More precisely, given a symmetric matrix B, the Gershgorin’s Circle

Theorem [68] states that all of the eigenvalues of B are contained in the
so called Gershgorin discs (for each i, the Gershgorin disc corresponds to{
λ : |λ−Bii| ≤

∑
j 6=i |Bij |

}
. If B has zero diagonal, then this reads: ‖B‖ ≤∑

j 6=i |Bij |.
Given a set of p unit-norm vectors a1, . . . , ap ∈ Rm we define its worst-case

coherence µ as
µ = max

i 6=j

∣∣aTi aj∣∣ . (10.22)
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Given a set of unit-norm vectors a1, . . . , ap ∈ Rm with worst-case coher-
ence µ, if we form a matrix with these vectors as columns, then it will be
(s, µ(s− 1))-RIP, meaning that it will be

(
s, 13
)
- RIP for s ≤ 1

3
1
µ .

This motivates the problem of designing sets of vectors a1, . . . , ap ∈ Rm
with smallest possible worst-case coherence. This is a central problem in Frame
Theory [120, 39]. The smallest coherence of a set of p unit-norm vectors in m
dimensions is bounded below by the Welch bound (see for example, [120, 21]
for a discussion) which reads:

µ ≥
√

p−m
m(p− 1)

.

Due to this limitation, deterministic constructions based on coherence cannot
yield matrices that satisfy the RIP for s �

√
m, known as the square-root

bottleneck [21, 122].
There are constructions that achieve the Welch bound, known as Equian-

gular Tight Frames (ETFs), these are sets of vectors (frames) for which all

inner products between pairs of vectors have the same modulus µ =
√

p−m
m(p−1) ,

meaning that they are “equiangular”, see [120]. It is known that for an ETF
to exist an ETF in Cm one needs p ≤ m2. For which dimensions m this bound
is actually saturated is an important question in Quantum Mechanics and
intimately connected to the famous Zauner’s Conjecture [139, 115, 12].

To overcome this square root bottleneck something has to give. One fruitful
direction is to sacrifice the uniform recovery granted by the RIP. Namely,
once a matrix satisfies the RIP, the `0-`1 equivalence is guaranteed to hold
for all s-sparse vectors. In contrast we can consider scenarios in which we are
guaranteed the `0-`1 equivalence “only” for most s-sparse vectors. This leads
to nonuniform recovery results, which we will pursue below. The benefits are
worth the sacrifice, since we end up with theoretical guarantees that are much
more practical.

Recall that we consider a general linear system of equations Ax = y, where
A ∈ Cm×p, x ∈ Cp and m ≤ p. We introduce the following generic s-sparse
model:

(i) The support I ⊂ {1, . . . ,m} of the s nonzero coefficients of x is selected
uniformly at random.

(ii) The non-zero entries of sign(x) form a Steinhaus sequence, i.e., sign(xk) :=
xk/|xk|, k ∈ Is, is a complex random variable that is uniformly distributed
on the unit circle.

To make our result even more practical, we will consider noisy measure-
ments. A standard approach to find a sparse (and under appropriate condi-
tions the sparsest) solution to a noisy system y = Ax+ w is via

min
x

1

2
‖Ax− y‖22 + λ‖x‖1, (10.23)
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which is also known as lasso [125]. Here λ > 0 is a regularization parameter.
We will consider the following two-step version of lasso as it often gives

improved performance. In the first step we compute an estimate Ĩ for the
support of x by solving (10.23). In the second step we estimate the amplitudes
of x by solving the reduced-size least squares problem min ‖AĨxĨ−y‖2, where
AĨ is the submatrix of A consisting of the columns corresponding to the index

set Ĩ, and similarly for xĨ . This is a standard way to “debias” the solution,
and we thus will call this approach debiased lasso.

As an example for a theoretical performance guarantee of this debiased
lasso we state (without proof) the following theorem, which is a slightly ex-
tended version of Theorem 1.3 in [36].

Theorem 10.13. Given y = Ax + w, where A ∈ Cm×p has all unit-
`2-norm columns, x ∈ Cp is drawn from the generic s-sparse model and
wi ∼ CN (0, σ2). Assume that

µ(A) ≤ C0

log p
, (10.24)

where C0 > 0 is a constant independent of m, p. Furthermore, suppose

s ≤ c0p

‖A‖2op log p
(10.25)

for some constant c0 > 0 and that

min
k∈Is
|xk| > 8σ

√
2 log p. (10.26)

Then the solution x̂ to the debiased lasso computed with λ = 2σ
√

2 log p obeys

supp(x̂) = supp(x), (10.27)

and
‖x̂− x‖2
‖x‖2

≤ σ
√

3n

‖y‖2
(10.28)

with probability at least

1− 2p−1(2π log p+ sp−1)−O(p−2 log 2). (10.29)

Various other versions of nonuniform recovery results can be found e.g.,
in [129, 36, 57]. See [119, 70] for some theoretical results geared towards ap-
plications.

How does Theorem 10.13 compare to RIP based conditions in terms of
required number of measurements? Assume that the columns of A form a
unit-norm tight frame. In this case it is easy to see that ‖A‖2op = p

m and con-
dition (10.25) becomes m & s log p. We emphasize that the condition on the
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coherence (10.24) is rather mild. For example an m×p Gaussian random ma-
trix would satisfy it as long as the number of its columns is not exponentially
larger than the number of its rows. But the point of the coherence condition
is of course not to apply to Gaussian random matrices, but to structured
random sensing matrices, see also [109].

There are various other efficient and rigorous methods to recover sparse
vectors from underdetermined systems besides `1-minimization. For example,
homotopy methods, greedy algorithms or methods based on approximate mes-
sage passing. We refer to [57] for a comprehensive discussion of these tech-
niques. Moreover, practice has shown that some adaptation of the random
sampling pattern is highly desirable to improve performance, see e.g. [89, 5].
Furthermore, we refer to [5] for a thorough discussion of some subtle potential
numerical stability issues one should be aware of.
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