
MATH-GA 2830.002: Homework Problem Set 1

Mathematics of Data Science (Fall 2016)

Afonso S. Bandeira
bandeira@cims.nyu.edu

http://www.cims.nyu.edu/~bandeira/

September 21, 2016

This homework is optional and it won’t be graded. If you want to
discuss a solution (to make sure it is correct) or want to ask questions
about a problem stop by office hourse or write me an email and we can
schedule a time to talk.

Try not to look up the answers, you’ll learn much more if you try to
think about the problems without looking up the solutions. If you need
hints, feel free to email me.

1.1 Linear Algebra

Problem 1.1 Show the resut we used in class: If M ∈ Rn×n is a symmetric
matrix and d ≤ n then

max
U∈Rn×d

UTU=Id×d

Tr
(
UTMU

)
=

d∑
k=1

λ
(+)
k (M),

where λ
(+)
k is the largest k-th eigenvalue of M .

1.2 Estimators

Problem 1.2 Given x1, · · · , xn i.i.d. samples from a distribution X with
mean µ and covariance Σ, show that

µn =
1

n

n∑
k=1

xk, and Σn =
1

n− 1

n∑
k=1

(xk − µn) (xk − µn)T ,

are unbiased estimators for µ and Σ, i.e., show that E [µn] = µ and E [Σn] =
Σ.
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1.3 Random Matrices

Recall the definition of a standard gaussian Wigner Matrix W : a symmetric
random matrix W ∈ Rn×n whose diagonal and upper-diagonal entries are
independent Wii ∼ N (0, 2) and, for i < j, Wij ∼ N (0, 1). This random ma-
trix emsemble is invariant under orthogonal conjugation: UTWU ∼ W for
any U ∈ O(n). Also, the distribution of the eigenvalues of 1√

n
W converges

to the so-called semicircular law with support [−2, 2]

dSC(x) =
√

4− x21[−2,2](x).

(try it in Matlab, draw an histogram of the distribution of the eigenvalues
of 1√

n
W for, say n = 500.)

In the next problem, you will show that the largest eigenvalue of 1√
n
W

has expected value at most 2.1 For that, we will make use of Slepian’s
Comparison Lemma.

Slepian’s Comparison Lemma is a crucial tool to compare Gaussian Pro-
cesses. A Gaussian process is a family of gaussian random variables indexed
by some set T , more precisely is a family of gaussian random variables
{Xt}t∈T (if T is finite this is simply a gaussian vector). Given a gaussian pro-
cess Xt, a particular quantity of interest is E [maxt∈T Xt]. Intuitively, if we
have two Gaussian processes Xt and Yt with mean zero E [Xt] = E [Yt] = 0,
for all t ∈ T and same variances E

[
X2

t

]
= E

[
Y 2
t

]
then the process that has

the “least correlations” should have a larger maximum (think the maximum
entry of vector with i.i.d. gaussian entries versus one always with the same
gaussian entry). A simple version of Slepian’s Lemma makes this intuition
precise:2

In the conditions above, if for all t1, t2 ∈ T

E [Xt1Xt2 ] ≤ E [Yt1Yt2 ] ,

then

E
[
max
t∈T

Xt

]
≥ E

[
max
t∈T

Yt

]
.

A slightly more general version of it asks that the two Gaussian pro-
cesses Xt and Yt have mean zero E [Xt] = E [Yt] = 0, for all t ∈ T but not

1Note that, a priori, there could be a very large eigenvalue and it would still not
contradict the semicircular law, since it does not predict what happens to a vanishing
fraction of the eigenvalues.

2Although intuitive in some sense, this is a delicate statement about Gaussian random
variables, it turns out not to hold for other distributions.
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necessarily the same variances. In that case it says that: If or all t1, t2 ∈ T

E [Xt1 −Xt2 ]2 ≥ E [Yt1 − Yt2 ]2 , (1)

then

E
[
max
t∈T

Xt

]
≥ E

[
max
t∈T

Yt

]
.

Problem 1.3 We will use Slepian’s Comparison Lemma to show that

Eλmax(W ) ≤ 2
√
n.

1. Note that
λmax(W ) = max

v: ‖v‖2=1
vTWv,

which means that, if we take for unit-norm v, Yv := vTWv we have
that

λmax(W ) = E
[

max
v∈Sn−1

Yv

]
,

2. Use Slepian to compare Yv with 2Xv defined as

Xv = vT g,

where g ∼ N (0, In×n)

3. Use Jensen’s inequality to upperbound E [maxv∈Sn−1 Xv].

Problem 1.4 In this problem you’ll derive the limit of the largest eigenvalue
of a rank 1 perturbation of a Wigner matrix.

For this problem, you don’t have to justify all of the steps rig-
orously. You can use the same level of rigor that was used in
class to derive the analogue result for sample covariance matri-
ces. Deriving this phenomena rigorously would take considerably
more work and is outside of the scope of this homework.

Consider the matrix M = 1√
n
W + βvvT for ‖v‖2 = 1 and W a stan-

dard Gaussian Wigner matrix. The purpose of this homework problem is to
understand the behavior of λmax(M). Because W is invariant to orthogonal
conjugation we can focus on understanding

λmax

(
1√
n
W + βe1e

T
1

)
.
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Use the same techniques as used in class to derive the behavior of this
quantity.

(Hint: at some point, you’ll probably have to integrate
∫ 2
−2

√
4−x2

y−x dx. You

can use the fact that, for y > 2,
∫ 2
−2

√
4−x2

y−x dx = π
(
y −

√
y2 − 4

)
(you can

also use an integrator software, such as Mathematica, for this).

1.4 Diffusion Maps and other embeddings

Problem 1.5 The ring graph on n nodes is a graph where node 1 < k <
n is connected to node k − 1 and k + 1 and node 1 is connected to node
n. Derive the two-dimensional diffusion map embedding for the ring graph
(if the eigenvectors are complex valued, try creating real valued ones using
multiplicity of the eigenvalues). Is it a reasonable embedding of this graph
in two dimensions?

Problem 1.6 (Multidimensional Scaling) Suppose you want to repre-
sent n data points in Rd and all you are given is estimates for their Euclidean
distances δij ≈ ‖xi−xj‖22. Multiimensional scaling attempts to find an d di-
mensions that agrees, as much as possible, with these estimates. Organizing
X = [x1, . . . , xn] and consider the matrix ∆ whose entries are δij.

1. Show that, if δij = ‖xi − xj‖22 then there is a choice of xi (note that
the solution is not unique, as a translation of the points will preserve
the pairwise distances, e.g.) for which

XTX = −1

2
H∆H,

where H = I − 1
n11T .

2. If the goal is to find points in Rd, how would you do it (keep part 1 of
the question in mind)?

(The procedure you have just derived is known as Multidimensional Scal-
ing)

This motivates a way to embed a graph in d dimensions. Given two nodes
we take δij to be the square of some natural distance on a graph such as, for
example, the geodesic distance (the distance of the shortest path between the
nodes) and then use the ideas above to find an embedding in Rd for which
Euclidean distances most resemble geodesic distances on the graph. This is
the motivation behind a dimension reduction technique called ISOMAP (J.
B. Tenenbaum, V. de Silva, and J. C. Langford, Science 2000).

4


