401-4944-20L Mathematics of Data Science: Extra Problem Set 1 (Spring 2020)

Afonso S. Bandeira bandeira@math.ethz.ch https://people.math.ethz.ch/~abandeira/

July 20, 2020

This problem set is optional and it won't be graded. If you want to discuss a solution (to make sure it is correct) or want to ask questions about a problem stop by office hours or write on Piazza or a TA or myself an email and we can schedule a time to talk. Date is of last update (e.g. correction of typos)

If you need hints, feel free to write on Piazza or email or the TAs.

Problem 101.1 Let G be a simple graph (no self-loops of multi-edges) that is connected and d-regular (all nodes have degree exactly d). Let A denote the adjacency matrix of G. Suppose -d is an eigenvalue of A:

- Prove that for every eigenvalue λ of A, $-\lambda$ is also an eigenvalue of A.
- A vertex coloring of G with k colors is a choice of one of k colors for each vertex of G such that no two neighboring vertices share an edge. $\chi(G)$ is the minimum number of colors with which it is possible to color all vertices of G this way. What can you say about $\chi(G)$?

Connectivity of the Erdős-Rényi random graph

The Erdős-Rényi random graph G(n, p) is a graph with n nodes, where each edge (i, j) appears (independently) with probability p. In this problem set, you will show a remarkable phase transition: if $\lambda < 1$, then $G(n, \frac{\lambda \ln n}{n})$ has, with high probability, isolated nodes while, if $\lambda > 1$, the graph is connected (with high probability).

Problem 101.2 Let I_i be a random variable indicating whether node *i* is isolated: $I_i = 1$ if node *i* is isolated, and $I_i = 0$ otherwise. Let $X = \sum_{i=1}^{n} I_i$ be the number of isolated nodes.

The goal is to show that $Pr\{X = 0\}$ is small when $\lambda < 1$ (meaning that there are isolated notes, with high probability). In the proof you can use the approximation

$$(1 - \lambda/n)^n \approx e^{-\lambda}$$
 (for large n)

- 1. Show that $\mathbb{E}[X] \approx n^{-\lambda+1}$. Note: The fact that $\mathbb{E}[X] \to \infty$ is not sufficient to show $\Pr\{X=0\} \to 0$ (why? Can you give a counter-example?). We need to ensure that X concentrates around its mean.
- 2. Use (a simple) concentration inequality derived in class to finish the proof. (The techinque you have just derived is known as the second moment method)

Problem 101.3 Prove that, if $\lambda \geq 1$, $G(n, \frac{\lambda \ln n}{n})$ is connected with high probability:

- 1. Derive the probability for a set of k nodes $(k \le n/2)$ being disconnected from the rest of the graph.
- 2. Prove the probability of graph G having a disconnected component goes to zero as n grows (hint: use union bound).

Problem 101.4 (Problem 5.1. of "A Mathematical Introduction to Compressive Sensing") The mutual coherence between two orthonormal bases $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ of \mathbb{C}^n is defined as

$$\mu(U,V) := \max_{i,j} |\langle u_i, v_j \rangle|.$$

Prove the following inequalities, and show they are sharp

$$\frac{1}{\sqrt{n}} \le \mu(U, V) \le 1.$$

Problem 101.5 (*) The mutual coherence between two orthonormal bases $U = (u_1, \ldots, u_n)$ and $V = (v_1, \ldots, v_n)$ of \mathbb{C}^n is defined as

$$\mu(U,V) := \max_{i,j} |\langle u_i, v_j \rangle|.$$

A set of orthonormal bases U_1, \ldots, U_k of \mathbb{C}^n are called mutually unbiased if for all $a, b \in [k]$

$$\frac{1}{\sqrt{n}} = \mu(U_a, U_b)$$

• Let M_n be the maximum number of mutually unbiased bases in \mathbb{C}^n . Give a lower and upper bound on M_n . (The exact number M_n is currently unknown)