401-4944-20L Mathematics of Data Science: Extra Problem Set 1

(Spring 2020)

Afonso S. Bandeira
bandeira@math.ethz.ch
https://people.math.ethz.ch/~abandeira/

July 20, 2020

This problem set is optional and it won't be graded. If you want to discuss a solution (to make sure it is correct) or want to ask questions about a problem stop by office hours or write on Piazza or a TA or myself an email and we can schedule a time to talk. Date is of last update (e.g. correction of typos)

If you need hints, feel free to write on Piazza or email or the TAs.
Problem 101.1 Let G be a simple graph (no self-loops of multi-edges) that is connected and d-regular (all nodes have degree exactly d). Let A denote the adjacency matrix of G.

Suppose $-d$ is an eigenvalue of A :

- Prove that for every eigenvalue λ of $A,-\lambda$ is also an eigenvalue of A.
- A vertex coloring of G with k colors is a choice of one of k colors for each vertex of G such that no two neighboring vertices share an edge. $\chi(G)$ is the minimim number of colors with which it is possible to color all vertices of G this way. What can you say about $\chi(G)$?

Connectivity of the Erdős-Rényi random graph

The Erdős-Rényi random graph $G(n, p)$ is a graph with n nodes, where each edge (i, j) appears (independently) with probability p. In this problem set, you will show a remarkable phase transition: if $\lambda<1$, then $G\left(n, \frac{\lambda \ln n}{n}\right)$ has, with high probability, isolated nodes while, if $\lambda>1$, the graph is connected (with high probability).

Problem 101.2 Let I_{i} be a random variable indicating whether node i is isolated: $I_{i}=1$ if node i is isolated, and $I_{i}=0$ otherwise. Let $X=\sum_{i=1}^{n} I_{i}$ be the number of isolated nodes.

The goal is to show that $\operatorname{Pr}\{X=0\}$ is small when $\lambda<1$ (meaning that there are isolated notes, with high probability). In the proof you can use the approximation

$$
(1-\lambda / n)^{n} \approx e^{-\lambda} \quad(\text { for large } n)
$$

1. Show that $\mathbb{E}[X] \approx n^{-\lambda+1}$. Note: The fact that $\mathbb{E}[X] \rightarrow \infty$ is not sufficient to show $\operatorname{Pr}\{X=0\} \rightarrow 0$ (why? Can you give a counter-example?). We need to ensure that X concentrates around its mean.
2. Use (a simple) concentration inequality derived in class to finish the proof. (The techinque you have just derived is known as the second moment method)

Problem 101.3 Prove that, if $\lambda \geq 1, G\left(n, \frac{\lambda \ln n}{n}\right)$ is connected with high probability:

1. Derive the probability for a set of k nodes $(k \leq n / 2)$ being disconnected from the rest of the graph.
2. Prove the probability of graph G having a disconnected component goes to zero as n grows (hint: use union bound).

Problem 101.4 (Problem 5.1. of "A Mathematical Introduction to Compressive Sensing") The mutual coherence between two orthonormal bases $U=\left(u_{1}, \ldots, u_{n}\right)$ and $V=\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{C}^{n} is defined as

$$
\mu(U, V):=\max _{i, j}\left|\left\langle u_{i}, v_{j}\right\rangle\right| .
$$

Prove the following inequalities, and show they are sharp

$$
\frac{1}{\sqrt{n}} \leq \mu(U, V) \leq 1
$$

Problem 101.5 (*) The mutual coherence between two orthonormal bases $U=\left(u_{1}, \ldots, u_{n}\right)$ and $V=$ $\left(v_{1}, \ldots, v_{n}\right)$ of \mathbb{C}^{n} is defined as

$$
\mu(U, V):=\max _{i, j}\left|\left\langle u_{i}, v_{j}\right\rangle\right| .
$$

A set of orthonormal bases U_{1}, \ldots, U_{k} of \mathbb{C}^{n} are called mutually unbiased if for all $a, b \in[k]$

$$
\frac{1}{\sqrt{n}}=\mu\left(U_{a}, U_{b}\right) .
$$

- Let M_{n} be the maximum number of mutually unbiased bases in \mathbb{C}^{n}. Give a lower and upper bound on M_{n}. (The exact number M_{n} is currently unknown)

