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Preface

These are notes from a course I am giving at NYU this Fall (2016), and one I gave at MIT on the
Fall of 2015. These notes are not in final form and will be continuously edited and/or
corrected (as I am sure they contain many typos). Please use at your own risk and do let me
know if you find any typo/mistake.

Part of the content of this course is greatly inspired by a course I took from Amit Singer while a
graduate student at Princeton. Amit’s course was inspiring and influential on my research interests.
I can only hope that these notes may one day inspire someone’s research in the same way that Amit’s
course inspired mine.

These notes also include a total of forty-two open problems
This list of problems does not necessarily contain the most important problems in the field (al-

though some will be rather important). I have tried to select a mix of important, perhaps approachable,
and fun problems. Hopefully you will enjoy thinking about these problems as much as I do!

I would like to thank all the students who took my course at MIT and the ones who are taking it at
NYU, they form a great interactive audience! I would like to thank Nicolas Boumal, Dustin G. Mixon,
Bernat Guillen Pegueroles, Philippe Rigollet, and Francisco Unda for suggesting open problems.
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• 8.2.A: Sum of Squares approximation ratio for Max-Cut

• 8.3.A: The Grothendieck Constant

• 8.4.A: The Paley Clique Problem

5



• 8.5.A: Maximum and minimum bisections on random regular graphs

• 9.1.A: Detection Threshold for SBM for three of more communities

• 9.2.A: Recovery Threshold for SBM for logarithmic many communities

• 9.3.A: Tightness of k-median LP

• 9.4.A: Stability conditions for tightness of k-median LP and k-means SDP

• 9.5.A: Positive PCA tightness
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0.2 A couple of Open Problems

We start with a couple of open problems:

0.2.1 Komlós Conjecture

We start with a fascinating problem in Discrepancy Theory.

Open Problem 0.1 (Komlós Conjecture) Given n, let K(n) denote the infimum over all real
numbers such that: for all set of n vectors u1, . . . , un ∈ Rn satisfying ‖ui‖2 ≤ 1, there exist signs
εi = ±1 such that

‖ε1u1 + ε2u2 + · · ·+ εnun‖∞ ≤ K(n).

There exists a universal constant K such that K(n) ≤ K for all n.

An early reference for this conjecture is a book by Joel Spencer [Spe94]. This conjecture is tightly
connected to Spencer’s famous Six Standard Deviations Suffice Theorem [Spe85]. Later in the course
we will study semidefinite programming relaxations, recently it was shown that a certain semidefinite
relaxation of this conjecture holds [Nik13], the same paper also has a good accounting of partial
progress on the conjecture.

• It is not so difficult to show that K(n) ≤
√
n, try it!
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0.2.2 Matrix AM-GM inequality

We move now to an interesting generalization of arithmetic-geometric means inequality, which has
applications on understanding the difference in performance of with- versus without-replacement sam-
pling in certain randomized algorithms (see [RR12]).

Open Problem 0.2 For any collection of d × d positive semidefinite matrices A1, · · · , An, the fol-
lowing is true:

(a) ∥∥∥∥∥∥ 1

n!

∑
σ∈Sym(n)

n∏
j=1

Aσ(j)

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥ 1

nn

n∑
k1,...,kn=1

n∏
j=1

Akj

∥∥∥∥∥∥ ,
and
(b)

1

n!

∑
σ∈Sym(n)

∥∥∥∥∥∥
n∏
j=1

Aσ(j)

∥∥∥∥∥∥ ≤ 1

nn

n∑
k1,...,kn=1

∥∥∥∥∥∥
n∏
j=1

Akj

∥∥∥∥∥∥ ,
where Sym(n) denotes the group of permutations of n elements, and ‖ · ‖ the spectral norm.

Morally, these conjectures state that products of matrices with repetitions are larger than with-
out. For more details on the motivations of these conjecture (and their formulations) see [RR12] for
conjecture (a) and [Duc12] for conjecture (b).

Recently these conjectures have been solved for the particular case of n = 3, in [Zha14] for (a)
and in [IKW14] for (b).

0.3 Brief Review of some linear algebra tools

In this Section we’ll briefly review a few linear algebra tools that will be important during the course.
If you need a refresh on any of these concepts, I recommend taking a look at [HJ85] and/or [Gol96].

0.3.1 Singular Value Decomposition

The Singular Value Decomposition (SVD) is one of the most useful tools for this course! Given a
matrix M ∈ Rm×n, the SVD of M is given by

M = UΣV T , (1)

where U ∈ O(m), V ∈ O(n) are orthogonal matrices (meaning that UTU = UUT = I and V TV =
V V T = I) and Σ ∈ Rm×n is a matrix with non-negative entries in its diagonal and otherwise zero
entries.

The columns of U and V are referred to, respectively, as left and right singular vectors of M and
the diagonal elements of Σ as singular values of M .

Remark 0.1 Say m ≤ n, it is easy to see that we can also think of the SVD as having U ∈ Rm×n
where UUT = I, Σ ∈ Rn×n a diagonal matrix with non-negative entries and V ∈ O(n).
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0.3.2 Spectral Decomposition

If M ∈ Rn×n is symmetric then it admits a spectral decomposition

M = V ΛV T ,

where V ∈ O(n) is a matrix whose columns vk are the eigenvectors of M and Λ is a diagonal matrix
whose diagonal elements λk are the eigenvalues of M . Similarly, we can write

M =
n∑
k=1

λkvkv
T
k .

When all of the eigenvalues of M are non-negative we say that M is positive semidefinite and write
M � 0. In that case we can write

M =
(
V Λ1/2

)(
V Λ1/2

)T
.

A decomposition of M of the form M = UUT (such as the one above) is called a Cholesky decompo-
sition.

The spectral norm of M is defined as

‖M‖ = max
k
|λk(M)| .

0.3.3 Trace and norm

Given a matrix M ∈ Rn×n, its trace is given by

Tr(M) =

n∑
k=1

Mkk =

n∑
k=1

λk (M) .

Its Frobeniues norm is given by

‖M‖F =

√∑
ij

M2
ij = Tr(MTM)

A particularly important property of the trace is that:

Tr(AB) =

n∑
i,j=1

AijBji = Tr(BA).

Note that this implies that, e.g., Tr(ABC) = Tr(CAB), it does not imply that, e.g., Tr(ABC) =
Tr(ACB) which is not true in general!
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0.4 Quadratic Forms

During the course we will be interested in solving problems of the type

max
V ∈Rn×d
V TV=Id×d

Tr
(
V TMV

)
,

where M is a symmetric n× n matrix.
Note that this is equivalent to

max
v1,...,vd∈Rn
vTi vj=δij

d∑
k=1

vTkMvk, (2)

where δij is the Kronecker delta (is 1 is i = j and 0 otherwise).
When d = 1 this reduces to the more familiar

max
v∈Rn
‖v‖2=1

vTMv. (3)

It is easy to see (for example, using the spectral decomposition of M) that (3) is maximized by
the leading eigenvector of M and

max
v∈Rn
‖v‖2=1

vTMv = λmax(M).

It is also not very difficult to see (it follows for example from a Theorem of Fan (see, for example,
page 3 of [Mos11]) that (2) is maximized by taking v1, . . . , vd to be the k leading eigenvectors of M
and that its value is simply the sum of the k largest eigenvalues of M . The nice consequence of this
is that the solution to (2) can be computed sequentially: we can first solve for d = 1, computing v1,
then v2, and so on.

Remark 0.2 All of the tools and results above have natural analogues when the matrices have complex
entries (and are Hermitian instead of symmetric).
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1 Principal Component Analysis in High Dimensions and the Spike
Model

1.1 Dimension Reduction and PCA

When faced with a high dimensional dataset, a natural approach is to try to reduce its dimension,
either by projecting it to a lower dimension space or by finding a better representation for the data.
During this course we will see a few different ways of doing dimension reduction.

We will start with Principal Component Analysis (PCA). In fact, PCA continues to be one of the
best (and simplest) tools for exploratory data analysis. Remarkably, it dates back to a 1901 paper by
Karl Pearson [Pea01]!

Let’s say we have n data points x1, . . . , xn in Rp, for some p, and we are interested in (linearly)
projecting the data to d < p dimensions. This is particularly useful if, say, one wants to visualize
the data in two or three dimensions. There are a couple of different ways we can try to choose this
projection:

1. Finding the d-dimensional affine subspace for which the projections of x1, . . . , xn on it best
approximate the original points x1, . . . , xn.

2. Finding the d dimensional projection of x1, . . . , xn that preserved as much variance of the data
as possible.

As we will see below, these two approaches are equivalent and they correspond to Principal Com-
ponent Analysis.

Before proceeding, we recall a couple of simple statistical quantities associated with x1, . . . , xn,
that will reappear below.

Given x1, . . . , xn we define its sample mean as

µn =
1

n

n∑
k=1

xk, (4)

and its sample covariance as

Σn =
1

n− 1

n∑
k=1

(xk − µn) (xk − µn)T . (5)

Remark 1.1 If x1, . . . , xn are independently sampled from a distribution, µn and Σn are unbiased
estimators for, respectively, the mean and covariance of the distribution.

We will start with the first interpretation of PCA and then show that it is equivalent to the second.

1.1.1 PCA as best d-dimensional affine fit

We are trying to approximate each xk by

xk ≈ µ+
d∑
i=1

(βk)i vi, (6)
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where v1, . . . , vd is an orthonormal basis for the d-dimensional subspace, µ ∈ Rp represents the transla-
tion, and βk corresponds to the coefficients of xk. If we represent the subspace by V = [v1 · · · vd] ∈ Rp×d
then we can rewrite (7) as

xk ≈ µ+ V βk, (7)

where V TV = Id×d as the vectors vi are orthonormal.
We will measure goodness of fit in terms of least squares and attempt to solve

min
µ, V, βk
V TV=I

n∑
k=1

‖xk − (µ+ V βk)‖22 (8)

We start by optimizing for µ. It is easy to see that the first order conditions for µ correspond to

∇µ
n∑
k=1

‖xk − (µ+ V βk)‖22 = 0⇔
n∑
k=1

(xk − (µ+ V βk)) = 0.

Thus, the optimal value µ∗ of µ satisfies(
n∑
k=1

xk

)
− nµ∗ − V

(
n∑
k=1

βk

)
= 0.

Because we can assume, without loss of generality, that
∑n

k=1 βk = 0, we have that the optimal µ is
given by

µ∗ =
1

n

n∑
k=1

xk = µn,

the sample mean.
We can then proceed on finding the solution for (9) by solving

min
V, βk
V TV=I

n∑
k=1

‖xk − µn − V βk‖22 . (9)

Let us proceed by optimizing for βk. Since the problem decouples for each k, we can focus on, for
each k,

min
βk
‖xk − µn − V βk‖22 = min

βk

∥∥∥∥∥xk − µn −
d∑
i=1

(βk)i vi

∥∥∥∥∥
2

2

. (10)

Since v1, . . . , vd are orthonormal, it is easy to see that the solution is given by (β∗k)i = vTi (xk − µn)
which can be succinctly written as βk = V T (xk − µn). Thus, (9) is equivalent to

min
V TV=I

n∑
k=1

∥∥(xk − µn)− V V T (xk − µn)
∥∥2

2
. (11)

11



Note that ∥∥(xk − µn)− V V T (xk − µn)
∥∥2

2
= (xk − µn)T (xk − µn)

−2 (xk − µn)T V V T (xk − µn)

+ (xk − µn)T V
(
V TV

)
V T (xk − µn)

= (xk − µn)T (xk − µn)

− (xk − µn)T V V T (xk − µn) .

Since (xk − µn)T (xk − µn) does not depend on V , minimizing (9) is equivalent to

max
V TV=I

n∑
k=1

(xk − µn)T V V T (xk − µn) . (12)

A few more simple algebraic manipulations using properties of the trace:

n∑
k=1

(xk − µn)T V V T (xk − µn) =

n∑
k=1

Tr
[
(xk − µn)T V V T (xk − µn)

]
=

n∑
k=1

Tr
[
V T (xk − µn) (xk − µn)T V

]
= Tr

[
V T

n∑
k=1

(xk − µn) (xk − µn)T V

]
= (n− 1) Tr

[
V TΣnV

]
.

This means that the solution to (13) is given by

max
V TV=I

Tr
[
V TΣnV

]
. (13)

As we saw above (recall (2)) the solution is given by V = [v1, · · · , vd] where v1, . . . , vd correspond
to the d leading eigenvectors of Σn.

Let us first show that interpretation (2) of finding the d-dimensional projection of x1, . . . , xn that
preserves the most variance also arrives to the optimization problem (13).

1.1.2 PCA as d-dimensional projection that preserves the most variance

We aim to find an orthonormal basis v1, . . . , vd (organized as V = [v1, . . . , vd] with V TV = Id×d) of
a d-dimensional space such that the projection of x1, . . . , xn projected on this subspace has the most
variance. Equivalently we can ask for the points

 vT1 xk
...

vTd xk



n

k=1

,

12



to have as much variance as possible. Hence, we are interested in solving

max
V TV=I

n∑
k=1

∥∥∥∥∥V Txk −
1

n

n∑
r=1

V Txr

∥∥∥∥∥
2

. (14)

Note that
n∑
k=1

∥∥∥∥∥V Txk −
1

n

n∑
r=1

V Txr

∥∥∥∥∥
2

=
n∑
k=1

∥∥V T (xk − µn)
∥∥2

= Tr
(
V TΣnV

)
,

showing that (14) is equivalent to (13) and that the two interpretations of PCA are indeed equivalent.

1.1.3 Finding the Principal Components

When given a dataset x1, . . . , xn ∈ Rp, in order to compute the Principal Components one needs to
find the leading eigenvectors of

Σn =
1

n− 1

n∑
k=1

(xk − µn) (xk − µn)T .

A naive way of doing this would be to construct Σn (which takes O(np2) work) and then finding its
spectral decomposition (which takes O(p3) work). This means that the computational complexity of
this procedure is O

(
max

{
np2, p3

})
(see [HJ85] and/or [Gol96]).

An alternative is to use the Singular Value Decomposition (1). Let X = [x1 · · ·xn] recall that,

Σn =
1

n

(
X − µn1T

) (
X − µn1T

)T
.

Let us take the SVD of X − µn1T = ULDU
T
R with UL ∈ O(p), D diagonal, and UTRUR = I. Then,

Σn =
1

n

(
X − µn1T

) (
X − µn1T

)T
= ULDU

T
RURDU

T
L = ULD

2UTL ,

meaning that UL correspond to the eigenvectors of Σn. Computing the SVD of X − µn1
T takes

O(minn2p, p2n) but if one is interested in simply computing the top d eigenvectors then this compu-
tational costs reduces to O(dnp). This can be further improved with randomized algorithms. There
are randomized algorithms that compute an approximate solution in O

(
pn log d+ (p+ n)d2

)
time

(see for example [HMT09, RST09, MM15]).1

1.1.4 Which d should we pick?

Given a dataset, if the objective is to visualize it then picking d = 2 or d = 3 might make the
most sense. However, PCA is useful for many other purposes, for example: (1) often times the data
belongs to a lower dimensional space but is corrupted by high dimensional noise. When using PCA
it is oftentimess possible to reduce the noise while keeping the signal. (2) One may be interested
in running an algorithm that would be too computationally expensive to run in high dimensions,

1If there is time, we might discuss some of these methods later in the course.
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dimension reduction may help there, etc. In these applications (and many others) it is not clear how
to pick d.

If we denote the k-th largest eigenvalue of Σn as λ
(+)
k (Σn), then the k-th principal component has

a
λ

(+)
k (Σn)

Tr(Σn) proportion of the variance. 2

A fairly popular heuristic is to try to choose the cut-off at a component that has significantly more
variance than the one immediately after. This is usually visualized by a scree plot: a plot of the values
of the ordered eigenvalues. Here is an example:

It is common to then try to identify an “elbow” on the scree plot to choose the cut-off. In the
next Section we will look into random matrix theory to try to understand better the behavior of the
eigenvalues of Σn and it will help us understand when to cut-off.

1.1.5 A related open problem

We now show an interesting open problem posed by Mallat and Zeitouni at [MZ11]

Open Problem 1.1 (A. Mallat and Zeitouni [MZ11]) Let g ∼ N (0,Σ) be a gaussian random
vector in Rp with a known covariance matrix Σ and d < p. Now, for any orthonormal basis V =
[v1, . . . , vp] of Rp, consider the following random variable ΓV : Given a draw of the random vector g,
ΓV is the squared `2 norm of the largest projection of g on a subspace generated by d elements of the
basis V . The question is:

What is the basis V for which E [ΓV ] is maximized?

2Note that Tr (Σn) =
∑p
k=1 λk (Σn).
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The conjecture in [MZ11] is that the optimal basis is the eigendecomposition of Σ. It is known
that this is the case for d = 1 (see [MZ11]) but the question remains open for d > 1. It is not very
difficult to see that one can assume, without loss of generality, that Σ is diagonal.

A particularly intuitive way of stating the problem is:

1. Given Σ ∈ Rp×p and d

2. Pick an orthonormal basis v1, . . . , vp

3. Given g ∼ N (0,Σ)

4. Pick d elements ṽ1, . . . , ṽd of the basis

5. Score:
∑d

i=1

(
ṽTi g

)2
The objective is to pick the basis in order to maximize the expected value of the Score.
Notice that if the steps of the procedure were taken in a slightly different order on which step

4 would take place before having access to the draw of g (step 3) then the best basis is indeed
the eigenbasis of Σ and the best subset of the basis is simply the leading eigenvectors (notice the
resemblance with PCA, as described above).

More formally, we can write the problem as finding

argmax
V ∈Rp×p
V TV=I

E

max
S⊂[p]
|S|=d

∑
i∈S

(
vTi g

)2
 , (15)

where g ∼ N (0,Σ). The observation regarding the different ordering of the steps amounts to saying
that the eigenbasis of Σ is the optimal solution for

argmax
V ∈Rp×p
V TV=I

max
S⊂[p]
|S|=d

E

[∑
i∈S

(
vTi g

)2] . (16)

Recently, it was shown that the conjecture is true up to a multiplicative constant [LT16]. In other
words, it was shown that (15) and (16) differ by at most a multiplicative universal constant[LT16].

1.2 PCA in high dimensions and Marcenko-Pastur

Let us assume that the data points x1, . . . , xn ∈ Rp are independent draws of a gaussian random
variable g ∼ N (0,Σ) for some covariance Σ ∈ Rp×p. In this case when we use PCA we are hoping
to find low dimensional structure in the distribution, which should correspond to large eigenvalues of
Σ (and their corresponding eigenvectors). For this reason (and since PCA depends on the spectral
properties of Σn) we would like to understand whether the spectral properties of Σn (eigenvalues and
eigenvectors) are close to the ones of Σ.

Since EΣn = Σ, if p is fixed and n→∞ the law of large numbers guarantees that indeed Σn → Σ.
However, in many modern applications it is not uncommon to have p in the order of n (or, sometimes,
even larger!). For example, if our dataset is composed by images then n is the number of images and
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p the number of pixels per image; it is conceivable that the number of pixels be on the order of the
number of images in a set. Unfortunately, in that case, it is no longer clear that Σn → Σ. Dealing
with this type of difficulties is the realm of high dimensional statistics.

For simplicity we will instead try to understand the spectral properties of

Sn =
1

n
XXT ,

where x1, . . . , xn are the columns of X. Since x ∼ N (0,Σ) we know that µn → 0 (and, clearly,
n
n−1 → 1) the spectral properties of Sn will be essentially the same as Σn.3

Let us start by looking into a simple example, Σ = I. In that case, the distribution has no low
dimensional structure, as the distribution is rotation invariant. The following is a histogram (left) and
a scree plot of the eigenvalues of a sample of Sn (when Σ = I) for p = 500 and n = 1000. The red
line is the eigenvalue distribution predicted by the Marchenko-Pastur distribution (17), that we will
discuss below.

As one can see in the image, there are many eigenvalues considerably larger than 1 (and some
considerably larger than others). Notice that , if given this profile of eigenvalues of Σn one could
potentially be led to believe that the data has low dimensional structure, when in truth the distribution
it was drawn from is isotropic.

Understanding the distribution of eigenvalues of random matrices is in the core of Random Matrix
Theory (there are many good books on Random Matrix Theory, e.g. [Tao12] and [AGZ10]). This
particular limiting distribution was first established in 1967 by Marchenko and Pastur [MP67] and is
now referred to as the Marchenko-Pastur distribution. They showed that, if p and n are both going
to ∞ with their ratio fixed p/n = γ ≤ 1, the sample distribution of the eigenvalues of Sn (like the
histogram above), in the limit, will be

3In this case, Sn is actually the Maximum likelihood estimator for Σ, we’ll talk about Maximum likelihood estimation
later in the course.
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dFγ(λ) =
1

2π

√
(γ+ − λ) (λ− γ−)

γλ
1[γ−,γ+](λ)dλ, (17)

with support [γ−, γ+], where γ− = (1 − γ)2 and γ+ = (1 + γ)2 This is plotted as the red line in the
figure above.

Remark 1.2 We will not show the proof of the Marchenko-Pastur Theorem here (you can see, for
example, [Bai99] for several different proofs of it), but an approach to a proof is using the so-called
moment method. The core of the idea is to note that one can compute moments of the eigenvalue
distribution in two ways and note that (in the limit) for any k,

1

p
ETr

[(
1

n
XXT

)k]
=

1

p
ETr

(
Skn

)
= E

1

p

p∑
i=1

λki (Sn) =

∫ γ+

γ−

λkdFγ(λ),

and that the quantities 1
pETr

[(
1
nXX

T
)k]

can be estimated (these estimates rely essentially in combi-

natorics). The distribution dFγ(λ) can then be computed from its moments.

1.2.1 A related open problem

Open Problem 1.2 (Monotonicity of singular values [BKS13a]) Consider the setting above but
with p = n, then X ∈ Rn×n is a matrix with iid N (0, 1) entries. Let

σi

(
1√
n
X

)
,

denote the i-th singular value4 of 1√
n
X, and define

αR(n) := E

[
1

n

n∑
i=1

σi

(
1√
n
X

)]
,

as the expected value of the average singular value of 1√
n
X.

The conjecture is that, for every n ≥ 1,

αR(n+ 1) ≥ αR(n).

Moreover, for the analogous quantity αC(n) defined over the complex numbers, meaning simply
that each entry of X is an iid complex valued standard gaussian CN (0, 1) the reverse inequality is
conjectured for all n ≥ 1:

αC(n+ 1) ≤ αC(n).

4The i-th diagonal element of Σ in the SVD 1√
n
X = UΣV .
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Notice that the singular values of 1√
n
X are simply the square roots of the eigenvalues of Sn,

σi

(
1√
n
X

)
=
√
λi (Sn).

This means that we can compute αR in the limit (since we know the limiting distribution of λi (Sn))
and get (since p = n we have γ = 1, γ− = 0, and γ+ = 2)

lim
n→∞

αR(n) =

∫ 2

0
λ

1
2dF1(λ) =

1

2π

∫ 2

0
λ

1
2

√
(2− λ)λ

λ
=

8

3π
≈ 0.8488.

Also, αR(1) simply corresponds to the expected value of the absolute value of a standard gaussian
g

αR(1) = E|g| =
√

2

π
≈ 0.7990,

which is compatible with the conjecture.
On the complex valued side, the Marchenko-Pastur distribution also holds for the complex valued

case and so limn→∞ αC(n) = limn→∞ αR(n) and αC(1) can also be easily calculated and seen to be
larger than the limit.

L. D. Abreu recently resolved the complex version of Open Problem 1.2, the solution is available
here [Abr16]. The real part of the Conjecture remains, to be best of our knowledge, open.

1.3 Spike Models and BBP transition

What if there actually is some (linear) low dimensional structure on the data? When can we expect to
capture it with PCA? A particularly simple, yet relevant, example to analyse is when the covariance
matrix Σ is an identity with a rank 1 perturbation, which we refer to as a spike model Σ = I + βvvT ,
for v a unit norm vector and β ≥ 0.

One way to think about this instance is as each data point x consisting of a signal part
√
βg0v

where g0 is a one-dimensional standard gaussian (a gaussian multiple of a fixed vector
√
βv and a

noise part g ∼ N (0, I) (independent of g0. Then x = g +
√
βg0v is a gaussian random variable

x ∼ N (0, I + βvvT ).

A natural question is whether this rank 1 perturbation can be seen in Sn. Let us build some
intuition with an example, the following is the histogram of the eigenvalues of a sample of Sn for
p = 500, n = 1000, v is the first element of the canonical basis v = e1, and β = 1.5:
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The images suggests that there is an eigenvalue of Sn that “pops out” of the support of the
Marchenko-Pastur distribution (below we will estimate the location of this eigenvalue, and that es-
timate corresponds to the red “x”). It is worth noticing that the largest eigenvalues of Σ is simply
1 + β = 2.5 while the largest eigenvalue of Sn appears considerably larger than that. Let us try now
the same experiment for β = 0.5:

and it appears that, for β = 0.5, the distribution of the eigenvalues appears to be undistinguishable
from when Σ = I.

This motivates the following question:

Question 1.3 For which values of γ and β do we expect to see an eigenvalue of Sn popping out of the
support of the Marchenko-Pastur distribution, and what is the limit value that we expect it to take?
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As we will see below, there is a critical value of β below which we don’t expect to see a change
in the distribution of eigenvalues and above which we expect one of the eigenvalues to pop out of the
support, this is known as BBP transition (after Baik, Ben Arous, and Péché [BBAP05]). There are
many very nice papers about this and similar phenomena, including [Pau, Joh01, BBAP05, Pau07,
BS05, Kar05, BGN11, BGN12].5

In what follows we will find the critical value of β and estimate the location of the largest eigenvalue
of Sn. While the argument we will use can be made precise (and is borrowed from [Pau]) we will
be ignoring a few details for the sake of exposition. In short, the argument below can be
transformed into a rigorous proof, but it is not one at the present form!

First of all, it is not difficult to see that we can assume that v = e1 (since everything else is rotation
invariant). We want to understand the behavior of the leading eigenvalue of

Sn =
1

n

n∑
i=1

xix
T
i =

1

n
XXT ,

where
X = [x1, . . . , xn] ∈ Rp×n.

We can write X as

X =

[ √
1 + βZT1
ZT2

]
,

where Z1 ∈ Rn×1 and Z2 ∈ Rn×(p−1), both populated with i.i.d. standard gaussian entries (N (0, 1)).
Then,

Sn =
1

n
XXT =

1

n

[
(1 + β)ZT1 Z1

√
1 + βZT1 Z2√

1 + βZT2 Z1 ZT2 Z2

]
.

Now, let λ̂ and v =

[
v1

v2

]
where v2 ∈ Rp−1 and v1 ∈ R, denote, respectively, an eigenvalue and

associated eigenvector for Sn. By the definition of eigenvalue and eigenvector we have

1

n

[
(1 + β)ZT1 Z1

√
1 + βZT1 Z2√

1 + βZT2 Z1 ZT2 Z2

] [
v1

v2

]
= λ̂

[
v1

v2

]
,

which can be rewritten as

1

n
(1 + β)ZT1 Z1v1 +

1

n

√
1 + βZT1 Z2v2 = λ̂v1 (18)

1

n

√
1 + βZT2 Z1v1 +

1

n
ZT2 Z2v2 = λ̂v2. (19)

(19) is equivalent to
1

n

√
1 + βZT2 Z1v1 =

(
λ̂ I− 1

n
ZT2 Z2

)
v2.

5Notice that the Marchenko-Pastur theorem does not imply that all eigenvalues are actually in the support of the
Marchenk-Pastur distribution, it just rules out that a non-vanishing proportion are. However, it is possible to show that
indeed, in the limit, all eigenvalues will be in the support (see, for example, [Pau]).
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If λ̂ I− 1
nZ

T
2 Z2 is invertible (this won’t be justified here, but it is in [Pau]) then we can rewrite it as

v2 =

(
λ̂ I− 1

n
ZT2 Z2

)−1 1

n

√
1 + βZT2 Z1v1,

which we can then plug in (18) to get

1

n
(1 + β)ZT1 Z1v1 +

1

n

√
1 + βZT1 Z2

(
λ̂ I− 1

n
ZT2 Z2

)−1 1

n

√
1 + βZT2 Z1v1 = λ̂v1

If v1 6= 0 (again, not properly justified here, see [Pau]) then this means that

λ̂ =
1

n
(1 + β)ZT1 Z1 +

1

n

√
1 + βZT1 Z2

(
λ̂ I− 1

n
ZT2 Z2

)−1 1

n

√
1 + βZT2 Z1 (20)

First observation is that because Z1 ∈ Rn has standard gaussian entries then 1
nZ

T
1 Z1 → 1, meaning

that

λ̂ = (1 + β)

[
1 +

1

n
ZT1 Z2

(
λ̂ I− 1

n
ZT2 Z2

)−1 1

n
ZT2 Z1

]
. (21)

Consider the SVD of Z2 = UΣV T where U ∈ Rn×p and V ∈ Rp×p have orthonormal columns
(meaning that UTU = Ip×p and V TV = Ip×p), and Σ is a diagonal matrix. Take D = 1

nΣ2 then

1

n
ZT2 Z2 =

1

n
V Σ2V T = V DV T ,

meaning that the diagonal entries of D correspond to the eigenvalues of 1
nZ

T
2 Z2 which we expect to

be distributed (in the limit) according to the Marchenko-Pastur distribution for p−1
n ≈ γ. Replacing

back in (21)

λ̂ = (1 + β)

[
1 +

1

n
ZT1

(√
nUD1/2V T

)(
λ̂ I−V DV T

)−1 1

n

(√
nUD1/2V T

)T
Z1

]
= (1 + β)

[
1 +

1

n

(
UTZ1

)T
D1/2V T

(
λ̂ I−V DV T

)−1
V D1/2

(
UTZ1

)]
= (1 + β)

[
1 +

1

n

(
UTZ1

)T
D1/2V T

(
V
[
λ̂ I−D

]
V T
)−1

V D1/2
(
UTZ1

)]
= (1 + β)

[
1 +

1

n

(
UTZ1

)T
D1/2

([
λ̂ I−D

])−1
D1/2

(
UTZ1

)]
.

Since the columns of U are orthonormal, g := UTZ1 ∈ Rp−1 is an isotropic gaussian (g ∼ N (0, 1)), in
fact,

EggT = EUTZ1

(
UTZ1

)T
= EUTZ1Z

T
1 U = UTE

[
Z1Z

T
1

]
U = UTU = I(p−1)×(p−1) .

We proceed

λ̂ = (1 + β)

[
1 +

1

n
gTD1/2

([
λ̂ I−D

])−1
D1/2g

]

= (1 + β)

1 +
1

n

p−1∑
j=1

g2
j

Djj

λ̂−Djj


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Because we expect the diagonal entries of D to be distributed according to the Marchenko-Pastur
distribution and g to be independent to it we expect that (again, not properly justified here, see [Pau])

1

p− 1

p−1∑
j=1

g2
j

Djj

λ̂−Djj

→
∫ γ+

γ−

x

λ̂− x
dFγ(x).

We thus get an equation for λ̂:

λ̂ = (1 + β)

[
1 + γ

∫ γ+

γ−

x

λ̂− x
dFγ(x)

]
,

which can be easily solved with the help of a program that computes integrals symbolically (such as
Mathematica) to give (you can also see [Pau] for a derivation):

λ̂ = (1 + β)

(
1 +

γ

β

)
, (22)

which is particularly elegant (specially considering the size of some the equations used in the deriva-
tion).

An important thing to notice is that for β =
√
γ we have

λ̂ = (1 +
√
γ)

(
1 +

γ
√
γ

)
= (1 +

√
γ)2 = γ+,

suggesting that β =
√
γ is the critical point.

Indeed this is the case and it is possible to make the above argument rigorous6 and show that in
the model described above,

• If β ≤ √γ then
λmax (Sn)→ γ+,

• and if β >
√
γ then

λmax (Sn)→ (1 + β)

(
1 +

γ

β

)
> γ+.

Another important question is wether the leading eigenvector actually correlates with the planted
perturbation (in this case e1). Turns out that very similar techniques can answer this question as
well [Pau] and show that the leading eigenvector vmax of Sn will be non-trivially correlated with e1 if
and only if β >

√
γ, more precisely:

• If β ≤ √γ then

|〈vmax, e1〉|2 → 0,

• and if β >
√
γ then

|〈vmax, e1〉|2 →
1− γ

β2

1− γ
β

.

6Note that in the argument above it wasn’t even completely clear where it was used that the eigenvalue was actually
the leading one. In the actual proof one first needs to make sure that there is an eigenvalue outside of the support and
the proof only holds for that one, you can see [Pau]
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1.3.1 A brief mention of Wigner matrices

Another very important random matrix model is the Wigner matrix (and it will show up later in this
course). Given an integer n, a standard gaussian Wigner matrix W ∈ Rn×n is a symmetric matrix
with independent N (0, 1) entries (except for the fact that Wij = Wji). In the limit, the eigenvalues
of 1√

n
W are distributed according to the so-called semi-circular law

dSC(x) =
1

2π

√
4− x21[−2,2](x)dx,

and there is also a BBP like transition for this matrix ensemble [FP06]. More precisely, if v is a
unit-norm vector in Rn and ξ ≥ 0 then the largest eigenvalue of 1√

n
W + ξvvT satisfies

• If ξ ≤ 1 then

λmax

(
1√
n
W + ξvvT

)
→ 2,

• and if ξ > 1 then

λmax

(
1√
n
W + ξvvT

)
→ ξ +

1

ξ
. (23)

The typical correlation, with x, of the leading eigenvector vmax of 1√
n
W + ξvvT is also known:

• If ξ ≤ 1 then
|〈vmax, x〉|2 → 0,

• and if x > 1 then

|〈vmax, x〉|2 → 1− 1

λ2
.

Recent work addresses the problem of when is it that it is possible to statistically detect a spike
in a random matrix, for different distributions on the spike and the underlying matrix [PWBM16]

1.3.2 An open problem about spike models

Open Problem 1.3 (Spike Model for rank constrainted SDP) Let W denote a symmetric Wigner
matrix with i.i.d. entries Wij ∼ N (0, 1). Also, given B ∈ Rn×n symmetric, define:

Qr(B) = max {Tr(BX) : X � 0, Xii = 1, rank(X) ≤ r} .

Define qr(ξ) as

qr(ξ) = lim
n→∞

1

n
EQ

(
ξ

n
11T +

1√
n
W

)
.

What is the value of ξ∗r , defined as

ξ∗r = inf{ξ ≥ 0 : qr(ξ) > 2}.

Remark 1.4 Optimization problems of the type of max {Tr(BX) : X � 0, Xii = 1} are semidefinite
programs, they will be a major player later in the course!
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The case r = n (which was Open Problem (1.3).A. was recently solved in [MS15], showing that
ξ∗n = 2. This implies that a certain semidefinite programming based algorithm for clustering under
the Stochastic Block Model on 2 clusters (we will discuss these things later in the course) is optimal
for detection (see [MS15]).7

Since 1
nETr

[
11T

(
ξ
n11T + 1√

n
W
)]
≈ ξ, by taking X = 11T we expect that qr(ξ) ≥ ξ for all r.

For r = 1 the value of q1(0) relates to the celebrated Sherrington-Kirkpatrick Model [Pan13], and it
is known that q0(0) = 2P∗, where P∗ is the so called Parisi constant [Pan13].

The value of ξ∗1 is conjectured to be 2 in [JMRT15] (inspired in replica calculations) but a proof
of this fact remains an interesting open problem.

7Later in the course we will discuss clustering under the Stochastic Block Model quite thoroughly, and will see how
this same SDP is known to be optimal for exact recovery [ABH14, HWX14, Ban15b].
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2 Graphs, Diffusion Maps, and Semi-supervised Learning

2.1 Graphs

Graphs will be one of the main objects of study through these lectures, it is time to introduce them.
A graph G = (V,E) contains a set of nodes V = {v1, . . . , vn} and edges E ⊆

(
V
2

)
. An edge (i, j) ∈ E

if vi and vj are connected. Here is one of the graph theorists favorite examples, the Petersen graph8:

Figure 1: The Petersen graph

Graphs are crucial tools in many fields, the intuitive reason being that many phenomena, while
complex, can often be thought about through pairwise interactions between objects (or data points),
which can be nicely modeled with the help of a graph.

Let us recall some concepts about graphs that we will need.

• A graph is connected if, for all pairs of vertices, there is a path between these vertices on the
graph. The number of connected components is simply the size of the smallest partition of
the nodes into connected subgraphs. The Petersen graph is connected (and thus it has only 1
connected component).

• A clique of a graph G is a subset S of its nodes such that the subgraph corresponding to it is
complete. In other words S is a clique if all pairs of vertices in S share an edge. The clique
number c(G) of G is the size of the largest clique of G. The Petersen graph has a clique number
of 2.

• An independence set of a graph G is a subset S of its nodes such that no two nodes in S share
an edge. Equivalently it is a clique of the complement graph Gc := (V,Ec). The independence
number of G is simply the clique number of Sc. The Petersen graph has an independence number
of 4.

8The Peterson graph is often used as a counter-example in graph theory.
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A particularly useful way to represent a graph is through its adjacency matrix. Given a graph
G = (V,E) on n nodes (|V | = n), we define its adjacency matrix A ∈ Rn×n as the symmetric matrix
with entries

Aij =

{
1 if (i, j) ∈ E,
0 otherwise.

Sometime, we will consider weighted graphs G = (V,E,W ), where edges may have weights wij ,
we think of the weights as non-negative wij ≥ 0 and symmetric wij = wji.

2.1.1 Cliques and Ramsey numbers

Cliques are important structures in graphs and may have important application-specific applications.
For example, in a social network graph (e.g., where people correspond to vertices and two vertices are
connected if the respective people are friends) cliques have a clear interpretation.

A natural question is whether it is possible to have arbitrarily large graphs without cliques (and
without its complement having cliques), Ramsey answer this question in the negative in 1928 [Ram28].
Let us start with some definitions: given a graph G we define r(G) as the size of the largest clique of
independence set, i.e.

r(G) := max {c(G), c (Gc)} .

Given r, let R(r) denote the smallest integer n such that every graph G on n nodes must have r(G) ≥ r.
Ramsey [Ram28] showed that R(r) is finite, for every r.

Remark 2.1 It is easy to show that R(3) = 6, try it!

We will need a simple estimate for what follows (it is a very useful consequence of Stirling’s
approximation, e.g.).

Proposition 2.2 For every k ≤ n positive integers,(n
k

)k
≤
(
n

k

)
≤
(ne
k

)k
.

We will show a simple lower bound on R(r). But first we introduce a random graph construction,
an Erdős-Renýı graph.

Definition 2.3 Given n and p, the random Erdős-Renýı graph G(n, p) is a random graph on n vertices
where each possible edge appears, independently, with probability p.

The proof of the lower bound on R(r) is based on the probabilistic method, a beautiful non-
constructive method pioneered by Paul Erdős to establish the existence of certain objects. The core
idea is the simple observation that if a random variable has a certain expectation then there must exist
a draw of it whose value is at least that of the expectation. It is best understood with an example.

Theorem 2.4 For every r ≥ 2,

R(r) ≥ 2
r−1

2 .
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Proof. Let G be drawn from the G
(
n, 1

2

)
distribution, G ∼ G

(
n, 1

2

)
. For every set S of r nodes, let

X(S) denote the random variable

X(S) =

{
1 if S is a clique or independent set,
0 otherwise.

Also, let X denote the random variable

X =
∑
S∈(Vr )

X(S).

We will proceed by estimating E [X]. Note that, by linearity of expectation,

E [X] =
∑
S∈(Vr )

E [X(S)] ,

and E [X(S)] = Prob {S is a clique or independent set} = 2

2(
|S|
2 )

. This means that

E [X] =
∑
S∈(Vr )

2

2(|S|2 )
=

(
n

r

)
2

2(r2)
=

(
n

r

)
2

2
r(r−1)

2

.

By Proposition 2.2 we have,

E [X] ≤
(ne
r

)r 2

2
r(r−1)

2

= 2

(
n

2
r−1

2

e

r

)r
.

That means that if n ≤ 2
r−1

2 and r ≥ 3 then E [X] < 1. This means that Prob{X < 1} > 0 and since
X is a non-negative integer we must have Prob{X = 0} = Prob{X < 1} > 0 (another way of saying
that is that if E [X] < 1 then there must be an instance for which X < 1 and since X is a non-negative

integer, we must have X = 0). This means that there exists a graph with 2
r−1

2 nodes that does not
have cliques or independent sets of size r which implies the theorem. 2

Remarkably, this lower bound is not very different from the best known. In fact, the best known
lower and upper bounds known [Spe75, Con09] for R(r) are

(1 + o(1))

√
2r

e

(√
2
)r
≤ R(r) ≤ r−

c log r
log log r 4r. (24)

Open Problem 2.1 Recall the definition of R(r) above, the following questions are open:

• What is the value of R(5)?

• What are the asymptotics of R(s)? In particular, improve on the base of the exponent on either
the lower bound (

√
2) or the upper bound (4).
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• Construct a family of graphs G = (V,E) with increasing number of vertices for which there exists
ε > 0 such that9

|V | . (1 + ε)r.

It is known that 43 ≤ R(5) ≤ 49. There is a famous quote in Joel Spencer’s book [Spe94] that
conveys the difficulty of computing Ramsey numbers:

“Erdős asks us to imagine an alien force, vastly more powerful than us, landing on Earth and
demanding the value of R(5) or they will destroy our planet. In that case, he claims, we should
marshal all our computers and all our mathematicians and attempt to find the value. But suppose,
instead, that they ask for R(6). In that case, he believes, we should attempt to destroy the aliens.”

There is an alternative useful way to think about (24), by taking log2 of each bound and rearrang-
ing, we get that (

1

2
+ o(1)

)
log2 n ≤ min

G=(V,E), |V |=n
r(G) ≤ (2 + o(1)) log2 n

The current “world record” (see [CZ15, Coh15]) for deterministic construction of families of graphs with
small r(G) achieves r(G) . 2(log log |V |)c , for some constant c > 0. Note that this is still considerably
larger than polylog|V |. In contrast, it is very easy for randomized constructions to satisfy r(G) ≤
2 log2 n, as made precise by the folloing theorem.

Theorem 2.5 Let G ∼ G
(
n, 1

2

)
be and Erdős-Renýı graph with edge probability 1

2 . Then, with high
probability,10

R(G) ≤ 2 log2(n).

Proof. Given n, we are interested in upper bounding Prob {R(G) ≥ d2 log2 ne}. and we proceed by
union bounding (and making use of Proposition 2.2):

Prob {R(G) ≥ d2 log2 ne} = Prob
{
∃S⊂V, |S|=d2 log2 ne S is a clique or independent set

}
= Prob


⋃

S∈( V
d2 log2 ne

)

{S is a clique or independent set}


≤

∑
S∈( V

d2 log2 ne
)

Prob {S is a clique or independent set}

=

(
n

d2 log2 ne

)
2

2(d2 log2 ne
2 )

≤ 2

(
n

2
d2 log2 ne−1

2

e

d2 log2 ne

)d2 log2 ne

≤ 2

(
e
√

2

2 log2 n

)d2 log2 ne

. n−Ω(1).

9By ak . bk we mean that there exists a constant c such that ak ≤ c bk.
10We say an event happens with high probability if its probability is ≥ 1− n−Ω(1).
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2

The following is one of the most fascinating conjectures in Graph Theory

Open Problem 2.2 (Erdős-Hajnal Conjecture [EH89]) Prove or disprove the following:
For any finite graph H, there exists a constant δH > 0 such that any graph on n nodes that does

not contain H as a subgraph (is a H-free graph) must have

r(G) & nδH .

It is known that r(G) & exp
(
cH
√

log n
)
, for some constant cH > 0 (see [Chu13] for a survey

on this conjecture). Note that this lower bound already shows that H-free graphs need to have
considerably larger r(G). This is an amazing local to global effect, where imposing a constraint on
small groups of vertices are connected (being H-free is a local property) creates extremely large cliques
or independence sets (much larger than polylog(n) as in random Erdős-Renýı graphs).

Since we do not know how to deterministically construct graphs with r(G) ≤ polylogn, one ap-
proach could be to take G ∼ G

(
n, 1

2

)
and check that indeed it has small clique and independence

number. However, finding the largest clique on a graph is known to be NP-hard (meaning that there
is no polynomial time algorithm to solve it, provided that the widely believed conjecture NP 6= P
holds). That is a worst-case statement and thus it doesn’t necessarily mean that it is difficult to find
the clique number of random graphs. That being said, the next open problem suggests that this is
indeed still difficult.

First let us describe a useful construct. Given n and ω, let us consider a random graph G that
consists of taking a graph drawn from G

(
n, 1

2

)
, picking ω of its nodes (say at random) and adding an

edge between every pair of those ω nodes, thus “planting” a clique of size ω. This will create a clique
of size ω in G. If ω > 2 log2 n this clique is larger than any other clique that was in the graph before
planting. This means that, if ω > 2 log2 n, there is enough information in the graph to find the planted
clique. In fact, one can simply look at all subsets of size 2 log2 n+ 1 and check wether it is clique: if
it is a clique then it very likely these vertices belong to the planted clique. However, checking all such
subgraphs takes super-polynomial time ∼ nO(logn). This motivates the natural question of whether
this can be done in polynomial time.

Since the degrees of the nodes of a G
(
n, 1

2

)
have expected value n−1

2 and standard deviation ∼
√
n,

if ω > c
√
n (for sufficiently large constant c) then the degrees of the nodes involved in the planted

clique will have larger degrees and it is easy to detect (and find) the planted clique. Remarkably,
there is no known method to work for ω significant smaller than this. There is a quasi-linear time
algorithm [DM13] that finds the largest clique, with high probability, as long as ω ≥

√
n
e + o(

√
n).11

Open Problem 2.3 (The planted clique problem) Let G be a random graph constructed by tak-
ing a G

(
n, 1

2

)
and planting a clique of size ω.

1. Is there a polynomial time algorithm that is able to find the largest clique of G (with high prob-

ability) for ω �
√
n. For example, for ω ≈

√
n

logn .

11There is an amplification technique that allows one to find the largest clique for ω ≈ c
√
n for arbitrarily small c in

polynomial time, where the exponent in the runtime depends on c. The rough idea is to consider all subsets of a certain
finite size and checking whether the planted clique contains them.
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2. Is there a polynomial time algorithm that is able to distinguish, with high probability, G from a

draw of G
(
n, 1

2

)
for ω �

√
n. For example, for ω ≈

√
n

logn .

3. Is there a quasi-linear time algorithm able to find the largest clique of G (with high probability)

for ω ≤
(

1√
e
− ε
)√

n, for some ε > 0.

This open problem is particularly important. In fact, the hypothesis that finding planted cliques
for small values of ω is behind several cryptographic protocols, and hardness results in average case
complexity (hardness for Sparse PCA being a great example [BR13]).

2.2 Diffusion Maps

Diffusion Maps will allows us to represent (weighted) graphs G = (V,E,W ) in Rd, i.e. associating,
to each node, a point in Rd. As we will see below, oftentimes when we have a set of data points
x1, . . . , xn ∈ Rp it will be beneficial to first associate to each a graph and then use Diffusion Maps to
represent the points in d-dimensions, rather than using something like Principal Component Analysis.

Before presenting Diffusion Maps, we’ll introduce a few important notions. Given G = (V,E,W )
we consider a random walk (with independent steps) on the vertices of V with transition probabilities:

Prob {X(t+ 1) = j|X(t) = i} =
wij

deg(i)
,

where deg(i) =
∑

j wij . Let M be the matrix of these probabilities,

Mij =
wij

deg(i)
.

It is easy to see that Mij ≥ 0 and M1 = 1 (indeed, M is a transition probability matrix). Defining D
as the diagonal matrix with diagonal entries Dii = deg(i) we have

M = D−1W.

If we start a random walker at node i (X(0) = 1) then the probability that, at step t, is at node j
is given by

Prob {X(t) = j|X(0) = i} =
(
M t
)
ij
.

In other words, the probability cloud of the random walker at point t, given that it started at node i
is given by the row vector

Prob {X(t)|X(0) = i} = eTi M
t = M t[i, :].

Remark 2.6 A natural representation of the graph would be to associate each vertex to the probability
cloud above, meaning

i→M t[i, :].

This would place nodes i1 and i2 for which the random walkers starting at i1 and i2 have, after t steps,
very similar distribution of locations. However, this would require d = n. In what follows we will
construct a similar mapping but for considerably smaller d.
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M is not symmetric, but a matrix similar to M, S = D
1
2MD−

1
2 is, indeed S = D−

1
2WD−

1
2 . We

consider the spectral decomposition of S

S = V ΛV T ,

where V = [v1, . . . , vn] satisfies V TV = In×n and Λ is diagonal with diagonal elements Λkk = λk (and
we organize them as λ1 ≥ λ2 ≥ · · · ≥ λn). Note that Svk = λkvk. Also,

M = D−
1
2SD

1
2 = D−

1
2V ΛV TD

1
2 =

(
D−

1
2V
)

Λ
(
D

1
2V
)T

.

We define Φ = D−
1
2V with columns Φ = [ϕ1, . . . , ϕn] and Ψ = D

1
2V with columns Ψ = [ψ1, . . . , ψn].

Then
M = ΦΛΨT ,

and Φ, Ψ form a biorthogonal system in the sense that ΦTΨ = In×n or, equivalently, ϕTj ψk = δjk.
Note that ϕk and ψk are, respectively right and left eigenvectors of M , indeed, for all 1 ≤ k ≤ n:

Mϕk = λkϕk and ψTkM = λkψ
T
k .

Also, we can rewrite this decomposition as

M =

n∑
k=1

λkϕkψ
T
k .

and it is easy to see that

M t =
n∑
k=1

λtkϕkψ
T
k . (25)

Let’s revisit the embedding suggested on Remark 2.6. It would correspond to

vi →M t[i, :] =
n∑
k=1

λtkϕk(i)ψ
T
k ,

it is written in terms of the basis ψk. The Diffusion Map will essentially consist of the representing a
node i by the coefficients of the above map

vi →M t[i, :] =


λt1ϕ1(i)
λt2ϕ2(i)

...
λtnϕn(i)

 , (26)

Note that M1 = 1, meaning that one of the right eigenvectors ϕk is simply a multiple of 1 and so it
does not distinguish the different nodes of the graph. We will show that this indeed corresponds to
the the first eigenvalue.

Proposition 2.7 All eigenvalues λk of M satisfy |λk| ≤ 1.
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Proof.
Let ϕk be a right eigenvector associated with λk whose largest entry in magnitude is positive

ϕk (imax). Then,

λkϕk (imax) = Mϕk (imax) =

n∑
j=1

Mimax,jϕk (j) .

This means, by triangular inequality that, that

|λk| =
n∑
j=1

|Mimax,j |
|ϕk (j)|
|ϕk (imax)|

≤
n∑
j=1

|Mimax,j | = 1.

2

Remark 2.8 It is possible that there are other eigenvalues with magnitude 1 but only if G is dis-
connected or if G is bipartite. Provided that G is disconnected, a natural way to remove potential
periodicity issues (like the graph being bipartite) is to make the walk lazy, i.e. to add a certain proba-
bility of the walker to stay in the current node. This can be conveniently achieved by taking, e.g.,

M ′ =
1

2
M +

1

2
I.

By the proposition above we can take ϕ1 = 1, meaning that the first coordinate of (26) does not
help differentiate points on the graph. This suggests removing that coordinate:

Definition 2.9 (Diffusion Map) Given a graph G = (V,E,W ) construct M and its decomposition
M = ΦΛΨT as described above. The Diffusion Map is a map φt : V → Rn−1 given by

φt (vi) =


λt2ϕ2(i)
λt3ϕ3(i)

...
λtnϕn(i)

 .
This map is still a map to n − 1 dimensions. But note now that each coordinate has a factor of

λtk which, if λk is small will be rather small for moderate values of t. This motivates truncating the
Diffusion Map by taking only the first d coefficients.

Definition 2.10 (Truncated Diffusion Map) Given a graph G = (V,E,W ) and dimension d, con-
struct M and its decomposition M = ΦΛΨT as described above. The Diffusion Map truncated to d
dimensions is a map φt : V → Rd given by

φ
(d)
t (vi) =


λt2ϕ2(i)
λt3ϕ3(i)

...
λtd+1ϕd+1(i)

 .
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In the following theorem we show that the euclidean distance in the diffusion map coordinates
(called diffusion distance) meaningfully measures distance between the probability clouds after t iter-
ations.

Theorem 2.11 For any pair of nodes vi1, vi2 we have

‖φt (vi1)− φt (vi2)‖2 =
n∑
j=1

1

deg(j)
[Prob {X(t) = j|X(0) = i1} − Prob {X(t) = j|X(0) = i2}]2 .

Proof.
Note that

∑n
j=1

1
deg(j) [Prob {X(t) = j|X(0) = i1} − Prob {X(t) = j|X(0) = i2}]2 can be rewritten

as

n∑
j=1

1

deg(j)

[
n∑
k=1

λtkϕk(i1)ψk(j)−
n∑
k=1

λtkϕk(i2)ψk(j)

]2

=
n∑
j=1

1

deg(j)

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))ψk(j)

]2

and

n∑
j=1

1

deg(j)

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))ψk(j)

]2

=

n∑
j=1

[
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))
ψk(j)√
deg(j)

]2

=

∥∥∥∥∥
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))D−
1
2ψk

∥∥∥∥∥
2

.

Note that D−
1
2ψk = vk which forms an orthonormal basis, meaning that∥∥∥∥∥
n∑
k=1

λtk (ϕk(i1)− ϕk(i2))D−
1
2ψk

∥∥∥∥∥
2

=

n∑
k=1

(
λtk (ϕk(i1)− ϕk(i2))

)2
=

n∑
k=2

(
λtkϕk(i1)− λtkϕk(i2)

)2
,

where the last inequality follows from the fact that ϕ1 = 1 and concludes the proof of the theorem.
2

2.2.1 A couple of examples

The ring graph is a graph on n nodes {1, . . . , n} such that node k is connected to k− 1 and k+ 1 and
1 is connected to n. Figure 2 has the Diffusion Map of it truncated to two dimensions

Another simple graph is Kn, the complete graph on n nodes (where every pair of nodes share an
edge), see Figure 3.
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Figure 2: The Diffusion Map of the ring graph gives a very natural way of displaying (indeed, if one is
asked to draw the ring graph, this is probably the drawing that most people would do). It is actually
not difficult to analytically compute the Diffusion Map of this graph and confirm that it displays the
points in a circle.

2.2.2 Diffusion Maps of point clouds

Very often we are interested in embedding in Rd a point cloud of points x1, . . . , xn ∈ Rp and necessarily
a graph. One option (as discussed before in the course) is to use Principal Component Analysis (PCA),
but PCA is only designed to find linear structure of the data and the low dimensionality of the dataset
may be non-linear. For example, let’s say our dataset is images of the face of someone taken from
different angles and lighting conditions, for example, the dimensionality of this dataset is limited by
the amount of muscles in the head and neck and by the degrees of freedom of the lighting conditions
(see Figure ??) but it is not clear that this low dimensional structure is linearly apparent on the pixel
values of the images.

Let’s say that we are given a point cloud that is sampled from a two dimensional swiss roll embedded
in three dimension (see Figure 4). In order to learn the two dimensional structure of this object we
need to differentiate points that are near eachother because they are close by in the manifold and not
simply because the manifold is curved and the points appear nearby even when they really are distant
in the manifold (see Figure 4 for an example). We will achieve this by creating a graph from the data
points.

Our goal is for the graph to capture the structure of the manifold. To each data point we will
associate a node. For this we should only connect points that are close in the manifold and not points
that maybe appear close in Euclidean space simply because of the curvature of the manifold. This
is achieved by picking a small scale and linking nodes if they correspond to points whose distance
is smaller than that scale. This is usually done smoothly via a kernel Kε, and to each edge (i, j)
associating a weight

wij = Kε (‖xi − xj‖2) ,

a common example of a Kernel is Kε(u) = exp
(
− 1

2εu
2
)
, that gives essentially zero weight to edges

corresponding to pairs of nodes for which ‖xi− xj‖2 �
√
ε. We can then take the the Diffusion Maps

of the resulting graph.
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Figure 3: The Diffusion Map of the complete graph on 4 nodes in 3 dimensions appears to be a regular
tetrahedron suggesting that there is no low dimensional structure in this graph. This is not surprising,
since every pair of nodes is connected we don’t expect this graph to have a natural representation in
low dimensions.

2.2.3 A simple example

A simple and illustrative example is to take images of a blob on a background in different positions
(image a white square on a black background and each data point corresponds to the same white
square in different positions). This dataset is clearly intrinsically two dimensional, as each image
can be described by the (two-dimensional) position of the square. However, we don’t expect this
two-dimensional structure to be directly apparent from the vectors of pixel values of each image; in
particular we don’t expect these vectors to lie in a two dimensional affine subspace!

Let’s start by experimenting with the above example for one dimension. In that case the blob is
a vertical stripe and simply moves left and right. We think of our space as the in the arcade game
Asteroids, if the square or stripe moves to the right all the way to the end of the screen, it shows
up on the left side (and same for up-down in the two-dimensional case). Not only this point cloud
should have a one dimensional structure but it should also exhibit a circular structure. Remarkably,
this structure is completely apparent when taking the two-dimensional Diffusion Map of this dataset,
see Figure 5.

For the two dimensional example, we expect the structure of the underlying manifold to be a
two-dimensional torus. Indeed, Figure 6 shows that the three-dimensional diffusion map captures the
toroidal structure of the data.

2.2.4 Similar non-linear dimensional reduction techniques

There are several other similar non-linear dimensional reduction methods. A particularly popular one
is ISOMAP [?]. The idea is to find an embedding in Rd for which euclidean distances in the embedding
correspond as much as possible to geodesic distances in the graph. This can be achieved by, between
pairs of nodes vi, vj finding their geodesic distance and then using, for example, Multidimensional
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Figure 4: A swiss roll point cloud (see, for example, [TdSL00]). The points are sampled from a two
dimensional manifold curved in R3 and then a graph is constructed where nodes correspond to points.

Scaling to find points yi ∈ Rd that minimize (say)

min
y1,...,yn∈Rd

∑
i,j

(
‖yi − yj‖2 − δ2

ij

)2
,

which can be done with spectral methods (it is a good exercise to compute the optimal solution to
the above optimization problem).

2.3 Semi-supervised learning

Classification is a central task in machine learning. In a supervised learning setting we are given many
labelled examples and want to use them to infer the label of a new, unlabeled example. For simplicity,
let’s say that there are two labels, {−1,+1}.

Let’s say we are given the task of labeling point “?” in Figure 10 given the labeled points. The
natural label to give to the unlabeled point would be 1.

However, let’s say that we are given not just one unlabeled point, but many, as in Figure 11; then
it starts being apparent that −1 is a more reasonable guess.

Intuitively, the unlabeled data points allowed us to better learn the geometry of the dataset. That’s
the idea behind Semi-supervised learning, to make use of the fact that often one has access to many
unlabeled data points in order to improve classification.

The approach we’ll take is to use the data points to construct (via a kernel Kε) a graph G =
(V,E,W ) where nodes correspond to points. More precisely, let l denote the number of labeled points
with labels f1, . . . , fl, and u the number of unlabeled points (with n = l + u), the first l nodes
v1, . . . , vl correspond to labeled points and the rest vl+1, . . . , vn are unlabaled. We want to find a
function f : V → {−1, 1} that agrees on labeled points: f(i) = fi for i = 1, . . . , l and that is “as
smooth as possible” the graph. A way to pose this is the following

min
f :V→{−1,1}: f(i)=fi i=1,...,l

∑
i<j

wij (f(i)− f(j))2 .

36



Figure 5: The two-dimensional diffusion map of the dataset of the datase where each data point is
an image with the same vertical strip in different positions in the x-axis, the circular structure is
apparent.

Instead of restricting ourselves to giving {−1, 1} we allow ourselves to give real valued labels, with the
intuition that we can “round” later by, e.g., assigning the sign of f(i) to node i.

We thus are interested in solving

min
f :V→R: f(i)=fi i=1,...,l

∑
i<j

wij (f(i)− f(j))2 .

If we denote by f the vector (in Rn with the function values) then we are can rewrite the problem
as ∑

i<j

wij (f(i)− f(j))2 =
∑
i<j

wij [(ei − ej) f ] [(ei − ej) f ]T

=
∑
i<j

wij

[
(ei − ej)T f

]T [
(ei − ej)T f

]
=

∑
i<j

wijf
T (ei − ej) (ei − ej)T f

= fT

∑
i<j

wij (ei − ej) (ei − ej)T
 f

The matrix
∑

i<j wij (ei − ej) (ei − ej)T will play a central role throughout this course, it is called
the graph Laplacian [Chu97].

LG :=
∑
i<j

wij (ei − ej) (ei − ej)T .

Note that the entries of LG are given by

(LG)ij =

{
−wij if i 6= j
deg(i) if i = j,
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Figure 6: On the left the data set considered and on the right its three dimensional diffusion map, the
fact that the manifold is a torus is remarkably captured by the embedding.

meaning that
LG = D −W,

where D is the diagonal matrix with entries Dii = deg(i).

Remark 2.12 Consider an analogous example on the real line, where one would want to minimize∫
f ′(x)2dx.

Integrating by parts ∫
f ′(x)2dx = Boundary Terms−

∫
f(x)f ′′(x)dx.

Analogously, in Rd:∫
‖∇f(x)‖2 dx =

∫ d∑
k=1

(
∂f

∂xk
(x)

)2

dx = B. T.−
∫
f(x)

d∑
k=1

∂2f

∂x2
k

(x)dx = B. T.−
∫
f(x)∆f(x)dx,

which helps motivate the use of the term graph Laplacian.

Let us consider our problem
min

f :V→R: f(i)=fi i=1,...,l
fTLGf.

We can write

D =

[
Dl 0
0 Du

]
, W =

[
Wll Wlu

Wul Wuu

]
, LG =

[
Dl −Wll −Wlu

−Wul Du −Wuu

]
, and f =

[
fl
fu

]
.

Then we want to find (recall that Wul = W T
lu)

min
fu∈Ru

fTl [Dl −Wll] fl − 2fTuWulfl + fTu [Du −Wuu] fu.
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Figure 7: The two dimensional represention of a data set of images of faces as obtained in [TdSL00]
using ISOMAP. Remarkably, the two dimensionals are interpretable

by first-order optimality conditions, it is easy to see that the optimal satisfies

(Du −Wuu) fu = Wulfl.

If Du −Wuu is invertible12 then
f∗u = (Du −Wuu)−1Wulfl.

Remark 2.13 The function f function constructed is called a harmonic extension. Indeed, it shares
properties with harmonic functions in euclidean space such as the mean value property and maximum
principles; if vi is an unlabeled point then

f(i) =
[
D−1
u (Wulfl +Wuufu)

]
i

=
1

deg(i)

n∑
j=1

wijf(j),

which immediately implies that the maximum and minimum value of f needs to be attained at a labeled
point.

2.3.1 An interesting experience and the Sobolev Embedding Theorem

Let us try a simple experiment. Let’s say we have a grid on [−1, 1]d dimensions (with say md points
for some large m) and we label the center as +1 and every node that is at distance larger or equal

12It is not difficult to see that unless the problem is in some form degenerate, such as the unlabeled part of the graph
being disconnected from the labeled one, then this matrix will indeed be invertible.
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Figure 8: The two dimensional represention of a data set of images of human hand as obtained
in [TdSL00] using ISOMAP. Remarkably, the two dimensionals are interpretable

to 1 to the center, as −1. We are interested in understanding how the above algorithm will label the
remaining points, hoping that it will assign small numbers to points far away from the center (and
close to the boundary of the labeled points) and large numbers to points close to the center.

See the results for d = 1 in Figure 12, d = 2 in Figure 13, and d = 3 in Figure 14. While for d ≤ 2
it appears to be smoothly interpolating between the labels, for d = 3 it seems that the method simply
learns essentially −1 on all points, thus not being very meaningful. Let us turn to Rd for intuition:

Let’s say that we want to find a function in Rd that takes the value 1 at zero and −1 at the unit
sphere, that minimizes

∫
B0(1) ‖∇f(x)‖2dx. Let us consider the following function on B0(1) (the ball

centered at 0 with unit radius)

fε(x) =

{
1− 2 |x|ε if|x| ≤ ε
−1 otherwise.

A quick calculation suggest that∫
B0(1)

‖∇fε(x)‖2dx =

∫
B0(ε)

1

ε2
dx = vol(B0(ε))

1

ε2
dx ≈ εd−2,

meaning that, if d > 2, the performance of this function is improving as ε→ 0, explaining the results
in Figure 14.

One way of thinking about what is going on is through the Sobolev Embedding Theorem. Hm
(
Rd
)

is the space of function whose derivatives up to order m are square-integrable in Rd, Sobolev Embed-
ding Theorem says that if m > d

2 then, if f ∈ Hm
(
Rd
)

then f must be continuous, which would rule
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Figure 9: The two dimensional represention of a data set of handwritten digits as obtained in [TdSL00]
using ISOMAP. Remarkably, the two dimensionals are interpretable

Figure 10: Given a few labeled points, the task is to label an unlabeled point.

out the behavior observed in Figure 14. It also suggests that if we are able to control also second
derivates of f then this phenomenon should disappear (since 2 > 3

2). While we will not describe
it here in detail, there is, in fact, a way of doing this by minimizing not fTLf but fTL2f instead,
Figure 15 shows the outcome of the same experiment with the fTLf replaced by fTL2f and con-
firms our intuition that the discontinuity issue should disappear (see, e.g., [NSZ09] for more on this
phenomenon).

41



Figure 11: In this example we are given many unlabeled points, the unlabeled points help us learn
the geometry of the data.

Figure 12: The d = 1 example of the use of this method to the example described above, the value of
the nodes is given by color coding. For d = 1 it appears to smoothly interpolate between the labeled
points.

3 Spectral Clustering and Cheeger’s Inequality

3.1 Clustering

Clustering is one of the central tasks in machine learning. Given a set of data points, the purpose of
clustering is to partition the data into a set of clusters where data points assigned to the same cluster
correspond to similar data points (depending on the context, it could be for example having small
distance to each other if the points are in Euclidean space).

3.1.1 k-means Clustering

One the most popular methods used for clustering is k-means clustering. Given x1, . . . , xn ∈ Rp the
k-means clustering partitions the data points in clusters S1 ∪ · · · ∪ Sk with centers µ1, . . . , µk ∈ Rp as
the solution to:

min
partition S1,...,Sk

µ1,...,µk

k∑
l=1

∑
i∈Si

‖xi − µl‖2 . (27)
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Figure 13: The d = 2 example of the use of this method to the example described above, the value of
the nodes is given by color coding. For d = 2 it appears to smoothly interpolate between the labeled
points.

Note that, given the partition, the optimal centers are given by

µl =
1

|Sl|
∑
i∈Sl

xi.

Lloyd’s algorithm [Llo82] (also known as the k-means algorithm), is an iterative algorithm that
alternates between

• Given centers µ1, . . . , µk, assign each point xi to the cluster

l = argminl=1,...,k ‖xi − µl‖ .

• Update the centers µl = 1
|Sl|
∑

i∈Sl xi.

Unfortunately, Lloyd’s algorithm is not guaranteed to converge to the solution of (27). Indeed,
Lloyd’s algorithm oftentimes gets stuck in local optima of (27). A few lectures from now we’ll discuss
convex relaxations for clustering, which can be used as an alternative algorithmic approach to Lloyd’s
algorithm, but since optimizing (27) is NP -hard there is not polynomial time algorithm that works
in the worst-case (assuming the widely believed conjecture P 6= NP )

While popular, k-means clustering has some potential issues:

• One needs to set the number of clusters a priori (a typical way to overcome this issue is by trying
the algorithm for different number of clusters).

• The way (27) is defined it needs the points to be defined in an Euclidean space, oftentimes
we are interested in clustering data for which we only have some measure of affinity between
different data points, but not necessarily an embedding in Rp (this issue can be overcome by
reformulating (27) in terms of distances only).
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Figure 14: The d = 3 example of the use of this method to the example described above, the value of
the nodes is given by color coding. For d = 3 the solution appears to only learn the label −1.

Figure 15: The d = 3 example of the use of this method with the extra regularization fTL2f to the
example described above, the value of the nodes is given by color coding. The extra regularization
seems to fix the issue of discontinuities.

• The formulation is computationally hard, so algorithms may produce suboptimal instances.

• The solutions of k-means are always convex clusters. This means that k-means may have diffi-
culty in finding cluster such as in Figure 17.

3.2 Spectral Clustering

A natural way to try to overcome the issues of k-means depicted in Figure 17 is by using Diffusion
Maps: Given the data points we construct a weighted graph G = (V,E,W ) using a kernel Kε, such as
Kε(u) = exp

(
1
2εu

2
)
, by associating each point to a vertex and, for which pair of nodes, set the edge

weight as
wij = Kε (‖xi − xj‖) .
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Figure 16: Examples of points separated in clusters.

Recall the construction of a matrix M = D−1W as the transition matrix of a random walk

Prob {X(t+ 1) = j|X(t) = i} =
wij

deg(i)
= Mij ,

where D is the diagonal with Dii = deg(i). The d-dimensional Diffusion Maps is given by

φ
(d)
t (i) =

 λt2ϕ2(i)
...

λtd+1ϕd+1(i)

 ,
where M = ΦΛΨT where Λ is the diagonal matrix with the eigenvalues of M and Φ and Ψ are,
respectively, the right and left eigenvectors of M (note that they form a bi-orthogonal system, ΦTΨ =
I).

If we want to cluster the vertices of the graph in k clusters, then it is natural to truncate the
Diffusion Map to have k − 1 dimensions (since in k − 1 dimensions we can have k linearly separable
sets). If indeed the clusters were linearly separable after embedding then one could attempt to use
k-means on the embedding to find the clusters, this is precisely the motivation for Spectral Clustering.

Algorithm 3.1 (Spectral Clustering) Given a graph G = (V,E,W ) and a number of clusters k
(and t), Spectral Clustering consists in taking a (k − 1) dimensional Diffusion Map

φ
(k−1)
t (i) =

 λt2ϕ2(i)
...

λtkϕk(i)


and clustering the points φ

(k−1)
t (1), φ

(k−1)
t (2), . . . , φ

(k−1)
t (n) ∈ Rk−1 using, for example, k-means clus-

tering.
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Figure 17: Because the solutions of k-means are always convex clusters, it is not able to handle some
cluster structures.

3.3 Two clusters

We will mostly focus in the case of two cluster (k = 2). For k = 2, Algorithm 3.1 consists in assigning
to each vertex i a real number ϕ2(i) and then clustering the points in the real line. Note in R, clustering
reduces to setting a threshold τ and taking S = {i ∈ V : ϕ2(i) ≤ τ}. Also, it is computationally
tractable to try all possible thresholds (there are ≤ n different possibilities).

Figure 18: For two clusters, spectral clustering consists in assigning to each vertex i a real number
ϕ2(i), then setting a threshold τ and taking S = {i ∈ V : ϕ2(i) ≤ τ}.

Algorithm 3.2 (Spectral Clustering for two clusters) Given a graph G = (V,E,W ), consider
the two-dimensional Diffusion Map

i→ ϕ2(i).

set a threshold τ (one can try all different possibilities) and set

S = {i ∈ V : ϕ2(i) ≤ τ}.
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In what follows we’ll give a different motivation for Algorithm 3.2.

3.3.1 Normalized Cut

Given a graph G = (V,E,W ), a natural measure to measure a vertex partition (S, Sc) is

cut(S) =
∑
i∈S

∑
j∈Sc

wij .

Note however that the minimum cut is achieved for S = ∅ (since cut(∅) = 0) which is a rather
meaningless choice of partition.

Remark 3.3 One way to circumvent this issue is to ask that |S| = |Sc| (let’s say that the number of
vertices n = |V | is even), corresponding to a balanced partition. We can then identify a partition with
a label vector y ∈ {±1}n where yi = 1 is i ∈ S, and yi = −1 otherwise. Also, the balanced condition
can be written as

∑n
i=1 yi = 0. This means that we can write the minimum balanced cut as

min
S⊂V
|S|=|Sc|

cut(S) = min
y∈{−1,1}n
1T y=0

1

4

∑
i≤j

wij (yi − yj)2 =
1

4
min

y∈{−1,1}n
1T y=0

yTLGy,

where LG = D −W is the graph Laplacian.13.

Since asking for the partition to be balanced is too restrictive in many cases, there are several
ways to evaluate a partition that are variations of cut(S) that take into account the intuition that one
wants both S and Sc to not be too small (although not necessarily equal to |V |/2). A prime example
is Cheeger’s cut.

Definition 3.4 (Cheeger’s cut) Given a graph and a vertex partition (S, Sc), the cheeger cut (also
known as conductance, and sometimes expansion) of S is given by

h(S) =
cut(S)

min{vol(S), vol(Sc)}
,

where vol(S) =
∑

i∈S deg(i).
Also, the Cheeger’s constant of G is given by

hG = min
S⊂V

h(S).

A similar object is the Normalized Cut, Ncut, which is given by

Ncut(S) =
cut(S)

vol(S)
+

cut(Sc)

vol(Sc)
.

Note that Ncut(S) and h(S) are tightly related, in fact it is easy to see that:

h(S) ≤ Ncut(S) ≤ 2h(S).

13W is the matrix of weights and D the degree matrix, a diagonal matrix with diagonal entries Dii = deg(i).
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Both h(S) and Ncut(S) favor nearly balanced partitions, Proposition 3.5 below will give an inter-
pretation of Ncut via random walks.

Let us recall the construction form previous lectures of a random walk on G = (V,E,W ):

Prob {X(t+ 1) = j|X(t) = i} =
wij

deg(i)
= Mij ,

where M = D−1W . Recall that M = ΦΛΨT where Λ is the diagonal matrix with the eigenvalues λk
of M and Φ and Ψ form a biorthogonal system ΦTΨ = I and correspond to, respectively, the right
and left eigenvectors of M . Moreover they are given by Φ = D−

1
2V and Ψ = D

1
2V where V TV = I

and D−
1
2WD−

1
2 = V ΛV T is the spectral decomposition of D−

1
2WD−

1
2 .

Recall also that M1 = 1, corresponding to Mϕ1 = ϕ1, which means that ψT1 M = ψT1 , where

ψ1 = D
1
2 v1 = Dϕ1 = [deg(i)]1≤i≤n .

This means that
[

deg(i)
vol(G)

]
1≤i≤n

is the stationary distribution of this random walk. Indeed it is easy

to check that, if X(t) has a certain distribution pt then X(t + 1) has a distribution pt+1 given by
pTt+1 = pTt M

Proposition 3.5 Given a graph G = (V,E,W ) and a partition (S, Sc) of V , Ncut(S) corresponds
to the probability, in the random walk associated with G, that a random walker in the stationary
distribution goes to Sc conditioned on being in S plus the probability of going to S condition on being
in Sc, more explicitly:

Ncut(S) = Prob {X(t+ 1) ∈ Sc|X(t) ∈ S}+ Prob {X(t+ 1) ∈ S|X(t) ∈ Sc} ,

where Prob{X(t) = i} = deg(i)
vol(G) .

Proof. Without loss of generality we can take t = 0. Also, the second term in the sum corresponds
to the first with S replaced by Sc and vice-versa, so we’ll focus on the first one. We have:

Prob {X(1) ∈ Sc|X(0) ∈ S} =
Prob {X(1) ∈ Sc ∩X(0) ∈ S}

Prob {X(0) ∈ S}

=

∑
i∈S
∑

j∈Sc Prob {X(1) ∈ j ∩X(0) ∈ i}∑
i∈S Prob {X(0) = i}

=

∑
i∈S
∑

j∈Sc
deg(i)
vol(G)

wij
deg(i)∑

i∈S
deg(i)
vol(G)

=

∑
i∈S
∑

j∈Sc wij∑
i∈S deg(i)

=
cut(S)

vol(S)
.

Analogously,

Prob {X(t+ 1) ∈ S|X(t) ∈ Sc} =
cut(S)

vol(Sc)
,

which concludes the proof. 2
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3.3.2 Normalized Cut as a spectral relaxation

Below we will show that Ncut can be written in terms of a minimization of a quadratic form involving
the graph Laplacian LG, analogously to the balanced partition.

Recall that balanced partition can be written as

1

4
min

y∈{−1,1}n
1T y=0

yTLGy.

An intuitive way to relax the balanced condition is to allow the labels y to take values in two
different real values a and b (say yi = a if i ∈ S and yj = b if i /∈ S) but not necessarily ±1. We can
then use the notion of volume of a set to ensure a less restrictive notion of balanced by asking that

a vol (S) + b vol (Sc) = 0,

which corresponds to 1TDy = 0.
We also need to fix a scale/normalization for a and b:

a2 vol (S) + b2 vol (Sc) = 1,

which corresponds to yTDy = 1.
This suggests considering

min
y∈{a,b}n

1TDy=0, yTDy=1

yTLGy.

As we will see below, this corresponds precisely to Ncut.

Proposition 3.6 For a and b to satisfy a vol (S) + b vol (Sc) = 0 and a2 vol (S) + b2 vol (Sc) = 1 it
must be that

a =

(
vol(Sc)

vol(S) vol(G)

) 1
2

and b = −
(

vol(S)

vol(Sc) vol(G)

) 1
2

,

corresponding to

yi =


(

vol(Sc)
vol(S) vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.

Proof. The proof involves only doing simple algebraic manipulations together with noticing that
vol(S) + vol(Sc) = vol(G). 2

Proposition 3.7
Ncut(S) = yTLGy,

where y is given by

yi =


(

vol(Sc)
vol(S) vol(G)

) 1
2

if i ∈ S

−
(

vol(S)
vol(Sc) vol(G)

) 1
2

if i ∈ Sc.
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Proof.

yTLGy =
1

2

∑
i,j

wij(yi − yj)2

=
∑
i∈S

∑
j∈Sc

wij(yi − yj)2

=
∑
i∈S

∑
j∈Sc

wij

[(
vol(Sc)

vol(S) vol(G)

) 1
2

+

(
vol(S)

vol(Sc) vol(G)

) 1
2

]2

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+ 2

]

=
∑
i∈S

∑
j∈Sc

wij
1

vol(G)

[
vol(Sc)

vol(S)
+

vol(S)

vol(Sc)
+

vol(S)

vol(S)
+

vol(Sc)

vol(Sc)

]

=
∑
i∈S

∑
j∈Sc

wij

[
1

vol(S)
+

1

vol(Sc)

]

= cut(S)

[
1

vol(S)
+

1

vol(Sc)

]
= Ncut(S).

2

This means that finding the minimum Ncut corresponds to solving

min yTLGy
s. t. y ∈ {a, b}n for some a and b

yTDy = 1
yTD1 = 0.

(28)

Since solving (28) is, in general, NP-hard, we consider a similar problem where the constraint that
y can only take two values is removed:

min yTLGy
s. t. y ∈ Rn

yTDy = 1
yTD1 = 0.

(29)

Given a solution of (29) we can round it to a partition by setting a threshold τ and taking
S = {i ∈ V : yi ≤ τ}. We will see below that (29) is an eigenvector problem (for this reason we
call (29) a spectral relaxation) and, moreover, that the solution corresponds to y a multiple of ϕ2

meaning that this approach corresponds exactly to Algorithm 3.2.
In order to better see that (29) is an eigenvector problem (and thus computationally tractable),

set z = D
1
2 y and LG = D−

1
2LGD

− 1
2 , then (29) is equivalent
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min zTLGz
s. t. z ∈ Rn

‖z‖2 = 1(
D

1
2 1
)T

z = 0.

(30)

Note that LG = I − D−
1
2WD−

1
2 . We order its eigenvalues in increasing order 0 = λ1 (LG) ≤

λ2 (LG) ≤ · · · ≤ λn (LG). The eigenvector associated to the smallest eigenvector is given by D
1
2 1 this

means that (by the variational interpretation of the eigenvalues) that the minimum of (30) is λ2 (LG)

and the minimizer is given by the second smallest eigenvector of LG = I −D−
1
2WD−

1
2 , which is the

second largest eigenvector of D−
1
2WD−

1
2 which we know is v2. This means that the optimal y in (29)

is given by ϕ2 = D−
1
2 v2. This confirms that this approach is equivalent to Algorithm 3.2.

Because the relaxation (29) is obtained from (28) by removing a constraint we immediately have
that

λ2 (LG) ≤ min
S⊂V

Ncut(S).

This means that
1

2
λ2 (LG) ≤ hG.

In what follows we will show a guarantee for Algorithm 3.2.

Lemma 3.8 There is a threshold τ producing a partition S such that

h(S) ≤
√

2λ2 (LG).

This implies in particular that
h(S) ≤

√
4hG,

meaning that Algorithm 3.2 is suboptimal at most by a square root factor.
Note that this also directly implies the famous Cheeger’s Inequality

Theorem 3.9 (Cheeger’s Inequality) Recall the definitions above. The following holds:

1

2
λ2 (LG) ≤ hG ≤

√
2λ2 (LG).

Cheeger’s inequality was first established for manifolds by Jeff Cheeger in 1970 [Che70], the graph
version is due to Noga Alon and Vitaly Milman [Alo86, AM85] in the mid 80s.

The upper bound in Cheeger’s inequality (corresponding to Lemma 3.8) is more interesting but
more difficult to prove, it is often referred to as the “the difficult part” of Cheeger’s inequality. We
will prove this Lemma in what follows. There are several proofs of this inequality (see [Chu10] for
four different proofs!). The proof that follows is an adaptation of the proof in this blog post [Tre11]
for the case of weighted graphs.
Proof. [of Lemma 3.8]

We will show that given y ∈ Rn satisfying

R(y) :=
yTLGy

yTDy
≤ δ,
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and yTD1 = 0. there is a “rounding of it”, meaning a threshold τ and a corresponding choice of
partition

S = {i ∈ V : yi ≤ τ}
such that

h(S) ≤
√

2δ,

since y = ϕ2 satisfies the conditions and gives δ = λ2 (LG) this proves the Lemma.
We will pick this threshold at random and use the probabilistic method to show that at least one

of the thresholds works.
First we can, without loss of generality, assume that y1 ≤ · ≤ yn (we can simply relabel the

vertices). Also, note that scaling of y does not change the value of R(y). Also, if yD1 = 0 adding
a multiple of 1 to y can only decrease the value of R(y): the numerator does not change and the
denominator (y + c1)TD(y + c1) = yTDy + c21TD1 ≥ yTDy.

This means that we can construct (from y by adding a multiple of 1 and scaling) a vector x such
that

x1 ≤ ... ≤ xn, xm = 0, and x2
1 + x2

n = 1,

and
xTLGx

xTDx
≤ δ,

wherem be the index for which vol({1, . . . ,m−1}) ≤ vol({m, . . . , n}) but vol({1, . . . ,m}) > vol({m, . . . , n}).
We consider a random construction of S with the following distribution. S = {i ∈ V : xi ≤ τ}

where τ ∈ [x1, xn] is drawn at random with the distribution

Prob {τ ∈ [a, b]} =

∫ b

a
2|τ |dτ,

where x1 ≤ a ≤ b ≤ xn.
It is not difficult to check that

Prob {τ ∈ [a, b]} =

{ ∣∣b2 − a2
∣∣ if a and b have the same sign

a2 + b2 if a and b have different signs

Let us start by estimating E cut(S).

E cut(S) = E
1

2

∑
i∈V

∑
j∈V

wij1(S,Sc) cuts the edge (i,j)

=
1

2

∑
i∈V

∑
j∈V

wij Prob{(S, Sc) cuts the edge (i, j)}

Note that Prob{(S, Sc) cuts the edge (i, j)} is
∣∣∣x2
i − x2

j

∣∣∣ is xi and xj have the same sign and x2
i +x2

j

otherwise. Both cases can be conveniently upper bounded by |xi − xj | (|xi|+ |xj |). This means that

E cut(S) ≤ 1

2

∑
i,j

wij |xi − xj | (|xi|+ |xj |)

≤ 1

2

√∑
ij

wij(xi − xj)2

√∑
ij

wij(|xi|+ |xj |)2,
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where the second inequality follows from the Cauchy-Schwarz inequality.
From the construction of x we know that∑

ij

wij(xi − xj)2 = 2xTLGx ≤ 2δxTDx.

Also,∑
ij

wij(|xi|+ |xj |)2 ≤
∑
ij

wij2x
2
i + 2x2

j . = 2

(∑
i

deg(i)x2
i

)
+ 2

∑
j

deg(j)x2
j

 = 4xTDx.

This means that

E cut(S) ≤ 1

2

√
2δxTDx

√
4xTDx =

√
2δ xTDx.

On the other hand,

Emin{volS, volSc} =

n∑
i=1

deg(i) Prob{xi is in the smallest set (in terms of volume)},

to break ties, if vol(S) = vol(Sc) we take the “smallest” set to be the one with the first indices.
Note that m is always in the largest set. Any vertex j < m is in the smallest set if xj ≤ τ ≤ xm = 0

and any j > m is in the smallest set if 0 = xm ≤ τ ≤ xj . This means that,

Prob{xi is in the smallest set (in terms of volume) = x2
j .

Which means that

Emin{volS, volSc} =

n∑
i=1

deg(i)x2
i = xTDx.

Hence,
E cut(S)

Emin{volS, volSc}
≤
√

2δ.

Note however that because E cut(S)
Emin{volS,volSc} is not necessarily the same as E cut(S)

min{volS,volSc} and so,
we do not necessarily have

E
cut(S)

min{volS, volSc}
≤
√

2δ.

However, since both random variables are positive,

E cut(S) ≤ Emin{volS, volSc}
√

2δ,

or equivalently

E
[
cut(S)−min{volS, volSc}

√
2δ
]
≤ 0,

which guarantees, by the probabilistic method, the existence of S such that

cut(S) ≤ min{volS, volSc}
√

2δ,

which is equivalent to

h(S) =
cut(S)

min{volS, volSc}
≤
√

2δ,

which concludes the proof of the Lemma. 2
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3.4 Small Clusters and the Small Set Expansion Hypothesis

We now restrict to unweighted regular graphs G = (V,E).
Cheeger’s inequality allows to efficiently approximate its Cheeger number up to a square root

factor. It means in particular that, given G = (V,E) and φ we can efficiently between the cases where:
hG ≤ φ or hG ≥ 2

√
φ. Can this be improved?

Open Problem 3.1 Does there exists a constant c > 0 such that it is NP -hard to, given φ, and G
distinguis between the cases

1. hG ≤ φ, and

2. hG ≥ c
√
φ?

It turns out that this is a consequence [RST12] of an important conjecture in Theoretical Computer
Science (see [BS14] for a nice description of it). This conjecture is known [RS10] to imply the Unique-
Games Conjecture [Kho10], that we will discuss in future lectures.

Conjecture 3.10 (Small-Set Expansion Hypothesis [RS10]) For every ε > 0 there exists δ > 0
such that it is NP -hard to distinguish between the cases

1. There exists a subset S ⊂ V with vol(S) = δ vol(V ) such that cut(S)
vol(S) ≤ ε,

2. cut(S)
vol(S) ≥ 1− ε, for every S ⊂ V satisfying vol(S) ≤ δ vol(V ).

3.5 Computing Eigenvectors

Spectral clustering requires us to compute the second smallest eigenvalue of LG. One of the most
efficient ways of computing eigenvectors is through the power method. For simplicity we’ll consider
the case on which we are computing the leading eigenvector of a matrix A ∈ Rn×n with m non-
zero entries, for which |λmax(A)| ≥ |λmin(A)| (the idea is easily adaptable). The power method

proceeds by starting with a guess y0 and taking iterates yt+1 = Ayt

‖Ayt‖ . One can show [KW92] that the

variantes of the power method can find a vector x in randomized time O
(
δ−1(m+ n) log n

)
satisfying

xTAx ≥ λmax(A)(1 − δ)xTx. Meaning that an approximate solution can be found in quasi-linear
time.14

One drawback of the power method is that when using it, one cannot be sure, a posteriori, that
there is no eigenvalue of A much larger than what we have found, since it could happen that all our
guesses were orthogonal to the corresponding eigenvector. It simply guarantees us that if such an
eigenvalue existed, it would have been extremely likely that the power method would have found it.
This issue is addressed in the open problem below.

Open Problem 3.2 Given a symmetric matrix M with small condition number, is there a quasi-
linear time (on n and the number of non-zero entries of M) procedure that certifies that M � 0. More
specifically, the procedure can be randomized in the sense that it may, with some probably not certify
that M � 0 even if that is the case, what is important is that it never produces erroneous certificates
(and that it has a bounded-away-from-zero probably of succeeding, provided that M � 0).

14Note that, in spectral clustering, an error on the calculation of ϕ2 propagates gracefully to the guarantee given by
Cheeger’s inequality.
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The Cholesky decomposition produces such certificates, but we do not know how to compute it in
quasi-linear time. Note also that the power method can be used in αI−M to produce certificates that
have arbitrarily small probability of being false certificates. Later in these lecture we will discuss the
practical relevance of such a method as a tool to quickly certify solution produced by heuristics [Ban16].

3.6 Multiple Clusters

Given a graph G = (V,E,W ), a natural way of evaluating k-way clusterign is via the k-way expansion
constant (see [LGT12]):

ρG(k) = min
S1,...,Sk

max
l=1,...,k

{
cut(S)

vol(S)

}
,

where the maximum is over all choice of k disjoin subsets of V (but not necessarily forming a partition).
Another natural definition is

ϕG(k) = min
S:volS≤ 1

k
vol(G)

cut(S)

vol(S)
.

It is easy to see that
ϕG(k) ≤ ρG(k).

The following is known.

Theorem 3.11 ([LGT12]) Let G = (V,E,W ) be a graph and k a positive integer

ρG(k) ≤ O
(
k2
)√

λk, (31)

Also,

ρG(k) ≤ O
(√

λ2k log k
)
.

Open Problem 3.3 Let G = (V,E,W ) be a graph and k a positive integer, is the following true?

ρG(k) ≤ polylog(k)
√
λk. (32)

We note that (32) is known not to hold if we ask that the subsets form a partition (meaning that
every vertex belongs to at least one of the sets) [LRTV12]. Note also that no dependency on k would
contradict the Small-Set Expansion Hypothesis above.
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4 Concentration Inequalities, Scalar and Matrix Versions

4.1 Large Deviation Inequalities

Concentration and large deviations inequalities are among the most useful tools when understanding
the performance of some algorithms. In a nutshell they control the probability of a random variable
being very far from its expectation.

The simplest such inequality is Markov’s inequality:

Theorem 4.1 (Markov’s Inequality) Let X ≥ 0 be a non-negative random variable with E[X] <
∞. Then,

Prob{X > t} ≤ E[X]

t
. (33)

Proof. Let t > 0. Define a random variable Yt as

Yt =

{
0 if X ≤ t
t if X > t

Clearly, Yt ≤ X, hence E[Yt] ≤ E[X], and

tProb{X > t} = E[Yt] ≤ E[X],

concluding the proof. 2

Markov’s inequality can be used to obtain many more concentration inequalities. Chebyshev’s
inequality is a simple inequality that control fluctuations from the mean.

Theorem 4.2 (Chebyshev’s inequality) Let X be a random variable with E[X2] <∞. Then,

Prob{|X − EX| > t} ≤ Var(X)

t2
.

Proof. Apply Markov’s inequality to the random variable (X − E[X])2 to get:

Prob{|X − EX| > t} = Prob{(X − EX)2 > t2} ≤
E
[
(X − EX)2

]
t2

=
Var(X)

t2
.

2

4.1.1 Sums of independent random variables

In what follows we’ll show two useful inequalities involving sums of independent random variables.
The intuitive idea is that if we have a sum of independent random variables

X = X1 + · · ·+Xn,

where Xi are iid centered random variables, then while the value of X can be of order O(n) it will very
likely be of order O(

√
n) (note that this is the order of its standard deviation). The inequalities that

follow are ways of very precisely controlling the probability of X being larger than O(
√
n). While we

could use, for example, Chebyshev’s inequality for this, in the inequalities that follow the probabilities
will be exponentially small, rather than quadratic, which will be crucial in many applications to come.
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Theorem 4.3 (Hoeffding’s Inequality) Let X1, X2, . . . , Xn be independent bounded random vari-
ables, i.e., |Xi| ≤ a and E[Xi] = 0. Then,

Prob

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2na2

)
.

The inequality implies that fluctuations larger than O (
√
n) have small probability. For example,

for t = a
√

2n log n we get that the probability is at most 2
n .

Proof. We first get a probability bound for the event
∑n

i=1Xi > t. The proof, again, will follow
from Markov. Since we want an exponentially small probability, we use a classical trick that involves
exponentiating with any λ > 0 and then choosing the optimal λ.

Prob

{
n∑
i=1

Xi > t

}
= Prob

{
n∑
i=1

Xi > t

}
(34)

= Prob
{
eλ

∑n
i=1Xi > eλt

}
≤ E[eλ

∑n
i=1 Xi ]

etλ

= e−tλ
n∏
i=1

E[eλXi ], (35)

where the penultimate step follows from Markov’s inequality and the last equality follows from inde-
pendence of the Xi’s.

We now use the fact that |Xi| ≤ a to bound E[eλXi ]. Because the function f(x) = eλx is convex,

eλx ≤ a+ x

2a
eλa +

a− x
2a

e−λa,

for all x ∈ [−a, a].
Since, for all i, E[Xi] = 0 we get

E[eλXi ] ≤ E
[
a+Xi

2a
eλa +

a−Xi

2a
e−λa

]
≤ 1

2

(
eλa + e−λa

)
= cosh(λa)

Note that15

cosh(x) ≤ ex2/2, for all x ∈ R

Hence,
E[eλXi ] ≤ E[e(λXi)

2/2] ≤ e(λa)2/2.

Together with (34), this gives

Prob

{
n∑
i=1

Xi > t

}
≤ e−tλ

n∏
i=1

e(λa)2/2

= e−tλen(λa)2/2

15This follows immediately from the Taylor expansions: cosh(x) =
∑∞
n=0

x2n

(2n)!
, ex

2/2 =
∑∞
n=0

x2n

2nn!
, and (2n)! ≥ 2nn!.
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This inequality holds for any choice of λ ≥ 0, so we choose the value of λ that minimizes

min
λ

{
n

(λa)2

2
− tλ

}
Differentiating readily shows that the minimizer is given by

λ =
t

na2
,

which satisfies λ > 0. For this choice of λ,

n(λa)2/2− tλ =
1

n

(
t2

2a2
− t2

a2

)
= − t2

2na2

Thus,

Prob

{
n∑
i=1

Xi > t

}
≤ e−

t2

2na2

By using the same argument on
∑n

i=1 (−Xi), and union bounding over the two events we get,

Prob

{∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > t

}
≤ 2e−

t2

2na2

2

Remark 4.4 Let’s say that we have random variables r1, . . . , rn i.i.d. distributed as

ri =


−1 with probability p/2

0 with probability 1− p
1 with probability p/2.

Then, E(ri) = 0 and |ri| ≤ 1 so Hoeffding’s inequality gives:

Prob

{∣∣∣∣∣
n∑
i=1

ri

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t

2

2n

)
.

Intuitively, the smallest p is the more concentrated |
∑n

i=1 ri| should be, however Hoeffding’s in-
equality does not capture this behavior.

A natural way to quantify this intuition is by noting that the variance of
∑n

i=1 ri depends on p as
Var(ri) = p. The inequality that follows, Bernstein’s inequality, uses the variance of the summands to
improve over Hoeffding’s inequality.

The way this is going to be achieved is by strengthening the proof above, more specifically in
step (35) we will use the bound on the variance to get a better estimate on E[eλXi ] essentially by

realizing that if Xi is centered, EX2
i = σ2, and |Xi| ≤ a then, for k ≥ 2, EXk

i ≤ σ2ak−2 =
(
σ2

a2

)
ak.
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Theorem 4.5 (Bernstein’s Inequality) Let X1, X2, . . . , Xn be independent centered bounded ran-
dom variables, i.e., |Xi| ≤ a and E[Xi] = 0, with variance E[X2

i ] = σ2. Then,

Prob

{∣∣∣∣∣
n∑
i=1

Xi > t

∣∣∣∣∣
}
≤ 2 exp

(
− t2

2nσ2 + 2
3at

)
.

Remark 4.6 Before proving Bernstein’s Inequality, note that on the example of Remark 4.4 we get

Prob

{∣∣∣∣∣
n∑
i=1

ri

∣∣∣∣∣ > t

}
≤ 2 exp

(
− t2

2np+ 2
3 t

)
,

which exhibits a dependence on p and, for small values of p is considerably smaller than what Hoeffd-
ing’s inequality gives.

Proof.
As before, we will prove

Prob

{
n∑
i=1

Xi > t

}
≤ exp

(
− t2

2nσ2 + 2
3at

)
,

and then union bound with the same result for −
∑n

i=1Xi, to prove the Theorem.
For any λ > 0 we have

Prob

{
n∑
i=1

Xi > t

}
= Prob{eλ

∑
Xi > eλt}

≤ E[eλ
∑
Xi ]

eλt

= e−λt
n∏
i=1

E[eλXi ]

Now comes the source of the improvement over Hoeffding’s,

E[eλXi ] = E

[
1 + λXi +

∞∑
m=2

λmXm
i

m!

]

≤ 1 +
∞∑
m=2

λmam−2σ2

m!

= 1 +
σ2

a2

∞∑
m=2

(λa)m

m!

= 1 +
σ2

a2

(
eλa − 1− λa

)
Therefore,

Prob

{
n∑
i=1

Xi > t

}
≤ e−λt

[
1 +

σ2

a2

(
eλa − 1− λa

)]n
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We will use a few simple inequalities (that can be easily proved with calculus) such as16 1 + x ≤
ex, for all x ∈ R.

This means that,

1 +
σ2

a2

(
eλa − 1− λa

)
≤ e

σ2

a2 (eλa−1−λa),

which readily implies

Prob

{
n∑
i=1

Xi > t

}
≤ e−λte

nσ2

a2 (eλa−1−λa).

As before, we try to find the value of λ > 0 that minimizes

min
λ

{
−λt+

nσ2

a2
(eλa − 1− λa)

}
Differentiation gives

−t+
nσ2

a2
(aeλa − a) = 0

which implies that the optimal choice of λ is given by

λ∗ =
1

a
log

(
1 +

at

nσ2

)
If we set

u =
at

nσ2
, (36)

then λ∗ = 1
a log(1 + u).

Now, the value of the minimum is given by

−λ∗t+
nσ2

a2
(eλ
∗a − 1− λ∗a) = −nσ

2

a2
[(1 + u) log(1 + u)− u] .

Which means that,

Prob

{
n∑
i=1

Xi > t

}
≤ exp

(
−nσ

2

a2
{(1 + u) log(1 + u)− u}

)
The rest of the proof follows by noting that, for every u > 0,

(1 + u) log(1 + u)− u ≥ u
2
u + 2

3

, (37)

which implies:

Prob

{
n∑
i=1

Xi > t

}
≤ exp

(
−nσ

2

a2

u
2
u + 2

3

)

= exp

(
− t2

2nσ2 + 2
3at

)
.

2

16In fact y = 1 + x is a tangent line to the graph of f(x) = ex.
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4.2 Gaussian Concentration

One of the most important results in concentration of measure is Gaussian concentration, although
being a concentration result specific for normally distributed random variables, it will be very useful
throughout these lectures. Intuitively it says that if F : Rn → R is a function that is stable in terms
of its input then F (g) is very well concentrated around its mean, where g ∈ N (0, I). More precisely:

Theorem 4.7 (Gaussian Concentration) Let X = [X1, . . . , Xn]T be a vector with i.i.d. standard
Gaussian entries and F : Rn → R a σ-Lipschitz function (i.e.: |F (x) − F (y)| ≤ σ‖x − y‖, for all
x, y ∈ Rn). Then, for every t ≥ 0

Prob {|F (X)− EF (X)| ≥ t} ≤ 2 exp

(
− t2

2σ2

)
.

For the sake of simplicity we will show the proof for a slightly weaker bound (in terms of the constant

inside the exponent): Prob {|F (X)− EF (X)| ≥ t} ≤ 2 exp
(
− 2
π2

t2

σ2

)
. This exposition follows closely

the proof of Theorem 2.1.12 in [Tao12] and the original argument is due to Maurey and Pisier. For
a proof with the optimal constants see, for example, Theorem 3.25 in these notes [vH14]. We will
also assume the function F is smooth — this is actually not a restriction, as a limiting argument can
generalize the result from smooth functions to general Lipschitz functions.
Proof.

If F is smooth, then it is easy to see that the Lipschitz property implies that, for every x ∈ Rn,
‖∇F (x)‖2 ≤ σ. By subtracting a constant to F , we can assume that EF (X) = 0. Also, it is enough
to show a one-sided bound

Prob {F (X)− EF (X) ≥ t} ≤ exp

(
− 2

π2

t2

σ2

)
,

since obtaining the same bound for −F (X) and taking a union bound would gives the result.
We start by using the same idea as in the proof of the large deviation inequalities above; for any

λ > 0, Markov’s inequality implies that

Prob {F (X) ≥ t} = Prob {exp (λF (X)) ≥ exp (λt)}

≤ E [exp (λF (X))]

exp (λt)

This means we need to upper bound E [exp (λF (X))] using a bound on ‖∇F‖. The idea is to
introduce a random independent copy Y of X. Since exp (λ·) is convex, Jensen’s inequality implies
that

E [exp (−λF (Y ))] ≥ exp (−EλF (Y )) = exp(0) = 1.

Hence, since X and Y are independent,

E [exp (λ [F (X)− F (Y )])] = E [exp (λF (X))]E [exp (−λF (Y ))] ≥ E [exp (λF (X))]

Now we use the Fundamental Theorem of Calculus in a circular arc from X to Y :

F (X)− F (Y ) =

∫ π
2

0

∂

∂θ
F (Y cos θ +X sin θ) dθ.
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The advantage of using the circular arc is that, for any θ, Xθ := Y cos θ +X sin θ is another random
variable with the same distribution. Also, its derivative with respect to θ, X ′θ = −Y sin θ + X cos θ
also is. Moreover, Xθ and X ′θ are independent. In fact, note that

E
[
XθX

′
θ
T
]

= E [Y cos θ +X sin θ] [−Y sin θ +X cos θ]T = 0.

We use Jensen’s again (with respect to the integral now) to get:

exp (λ [F (X)− F (Y )]) = exp

(
λ
π

2

1

π/2

∫ π/2

0

∂

∂θ
F (Xθ) dθ

)

≤ 1

π/2

∫ π/2

0
exp

(
λ
π

2

∂

∂θ
F (Xθ)

)
dθ

Using the chain rule,

exp (λ [F (X)− F (Y )]) ≤ 2

π

∫ π/2

0
exp

(
λ
π

2
∇F (Xθ) ·X ′θ

)
dθ,

and taking expectations

E exp (λ [F (X)− F (Y )]) ≤ 2

π

∫ π/2

0
E exp

(
λ
π

2
∇F (Xθ) ·X ′θ

)
dθ,

If we condition on Xθ, since
∥∥λπ2∇F (Xθ)

∥∥ ≤ λπ2σ, λπ2∇F (Xθ) · X ′θ is a gaussian random variable

with variance at most
(
λπ2σ

)2
. This directly implies that, for every value of Xθ

EX′θ exp
(
λ
π

2
∇F (Xθ) ·X ′θ

)
≤ exp

[
1

2

(
λ
π

2
σ
)2
]

Taking expectation now in Xθ, and putting everything together, gives

E [exp (λF (X))] ≤ exp

[
1

2

(
λ
π

2
σ
)2
]
,

which means that

Prob {F (X) ≥ t} ≤ exp

[
1

2

(
λ
π

2
σ
)2
− λt

]
,

Optimizing for λ gives λ∗ =
(

2
π

)2 t
σ2 , which gives

Prob {F (X) ≥ t} ≤ exp

[
− 2

π2

t2

σ2

]
.

2
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4.2.1 Spectral norm of a Wigner Matrix

We give an illustrative example of the utility of Gaussian concentration. Let W ∈ Rn×n be a standard
Gaussian Wigner matrix, a symmetric matrix with (otherwise) independent gaussian entries, the off-

diagonal entries have unit variance and the diagonal entries have variance 2. ‖W‖ depends on n(n+1)
2

independent (standard) gaussian random variables and it is easy to see that it is a
√

2-Lipschitz
function of these variables, since∣∣∣‖W (1)‖ − ‖W (2)‖

∣∣∣ ≤ ∥∥∥W (1) −W (2)
∥∥∥ ≤ ∥∥∥W (1) −W (2)

∥∥∥
F
.

The symmetry of the matrix and the variance 2 of the diagonal entries are responsible for an extra
factor of

√
2.

Using Gaussian Concentration (Theorem 4.7) we immediately get

Prob {‖W‖ ≥ E‖W‖+ t} ≤ exp

(
− t

2

4

)
.

Since17 E‖W‖ ≤ 2
√
n we get

Proposition 4.8 Let W ∈ Rn×n be a standard Gaussian Wigner matrix, a symmetric matrix with
(otherwise) independent gaussian entries, the off-diagonal entries have unit variance and the diagonal
entries have variance 2. Then,

Prob
{
‖W‖ ≥ 2

√
n+ t

}
≤ exp

(
− t

2

4

)
.

Note that this gives an extremely precise control of the fluctuations of ‖W‖. In fact, for t = 2
√

log n
this gives

Prob
{
‖W‖ ≥ 2

√
n+ 2

√
log n

}
≤ exp

(
−4 log n

4

)
=

1

n
.

4.2.2 Talagrand’s concentration inequality

A remarkable result by Talagrand [Tal95], Talangrad’s concentration inequality, provides an analogue
of Gaussian concentration to bounded random variables.

Theorem 4.9 (Talangrand concentration inequality, Theorem 2.1.13 [Tao12]) Let K > 0,
and let X1, . . . , Xn be independent bounded random variables, |Xi| ≤ K for all 1 ≤ i ≤ n. Let
F : Rn → R be a σ-Lipschitz and convex function. Then, for any t ≥ 0,

Prob {|F (X)− E [F (X)]| ≥ tK} ≤ c1 exp

(
−c2

t2

σ2

)
,

for positive constants c1, and c2.

Other useful similar inequalities (with explicit constants) are available in [Mas00].

17It is an excellent exercise to prove E‖W‖ ≤ 2
√
n using Slepian’s inequality.
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4.3 Other useful large deviation inequalities

This Section contains, without proof, some scalar large deviation inequalities that I have found useful.

4.3.1 Additive Chernoff Bound

The additive Chernoff bound, also known as Chernoff-Hoeffding theorem concerns Bernoulli random
variables.

Theorem 4.10 Given 0 < p < 1 and X1, . . . , Xn i.i.d. random variables distributed as Bernoulli(p)
random variable (meaning that it is 1 with probability p and 0 with probability 1 − p), then, for any
ε > 0:

• Prob

{
1

n

n∑
i=1

Xi ≥ p+ ε

}
≤

[(
p

p+ ε

)p+ε( 1− p
1− p− ε

)1−p−ε
]n

• Prob

{
1

n

n∑
i=1

Xi ≤ p− ε

}
≤

[(
p

p− ε

)p−ε( 1− p
1− p+ ε

)1−p+ε
]n

4.3.2 Multiplicative Chernoff Bound

There is also a multiplicative version (see, for example Lemma 2.3.3. in [Dur06]), which is particularly
useful.

Theorem 4.11 Let X1, . . . , Xn be independent random variables taking values is {0, 1} (meaning they
are Bernoulli distributed but not necessarily identically distributed). Let µ = E

∑n
i=1Xi, then, for any

δ > 0:

• Prob {X > (1 + δ)µ} <
[

eδ

(1 + δ)(1+δ)

]µ

• Prob {X < (1− δ)µ} <
[

e−δ

(1− δ)(1−δ)

]µ
4.3.3 Deviation bounds on χ2 variables

A particularly useful deviation inequality is Lemma 1 in Laurent and Massart [LM00]:

Theorem 4.12 (Lemma 1 in Laurent and Massart [LM00]) Let X1, . . . , Xn be i.i.d. standard
gaussian random variables (N (0, 1)), and a1, . . . , an non-negative numbers. Let

Z =

n∑
k=1

ak
(
X2
k − 1

)
.

The following inequalities hold for any t > 0:

• Prob {Z ≥ 2‖a‖2
√
x+ 2‖a‖∞x} ≤ exp(−x),
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• Prob {Z ≤ −2‖a‖2
√
x} ≤ exp(−x),

where ‖a‖22 =
∑n

k=1 a
2
k and ‖a‖∞ = max1≤k≤n |ak|.

Note that if ak = 1, for all k, then Z is a χ2 with n degrees of freedom, so this theorem immediately
gives a deviation inequality for χ2 random variables.

4.4 Matrix Concentration

In many important applications, some of which we will see in the proceeding lectures, one needs to
use a matrix version of the inequalities above.

Given {Xk}nk=1 independent random symmetric d × d matrices one is interested in deviation in-
equalities for

λmax

(
n∑
k=1

Xk

)
.

For example, a very useful adaptation of Bernstein’s inequality exists for this setting.

Theorem 4.13 (Theorem 1.4 in [Tro12]) Let {Xk}nk=1 be a sequence of independent random sym-
metric d× d matrices. Assume that each Xk satisfies:

EXk = 0 and λmax (Xk) ≤ R almost surely.

Then, for all t ≥ 0,

Prob

{
λmax

(
n∑
k=1

Xk

)
≥ t

}
≤ d · exp

(
−t2

2σ2 + 2
3Rt

)
where σ2 =

∥∥∥∥∥
n∑
k=1

E
(
X2
k

)∥∥∥∥∥ .
Note that ‖A‖ denotes the spectral norm of A.

In what follows we will state and prove various matrix concentration results, somewhat similar to
Theorem 4.13. Motivated by the derivation of Proposition 4.8, that allowed us to easily transform
bounds on the expected spectral norm of a random matrix into tail bounds, we will mostly focus on
bounding the expected spectral norm. Tropp’s monograph [Tro15b] is a nice introduction to matrix
concentration and includes a proof of Theorem 4.13 as well as many other useful inequalities.

A particularly important inequality of this type is for gaussian series, it is intimately related to
the non-commutative Khintchine inequality [Pis03], and for that reason we will often refer to it as
Non-commutative Khintchine (see, for example, (4.9) in [Tro12]).

Theorem 4.14 (Non-commutative Khintchine (NCK)) Let A1, . . . , An ∈ Rd×d be symmetric
matrices and g1, . . . , gn ∼ N (0, 1) i.i.d., then:

E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ ≤ (2 + 2 log(2d)
) 1

2
σ,

where

σ2 =

∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
2

. (38)
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Note that, akin to Proposition 4.8, we can also use Gaussian Concentration to get a tail bound on
‖
∑n

k=1 gkAk‖. We consider the function

F : Rn →

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ .
We now estimate its Lipschitz constant; let g, h ∈ Rn then∣∣∣∣∣

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥−
∥∥∥∥∥

n∑
k=1

hkAk

∥∥∥∥∥
∣∣∣∣∣ ≤

∥∥∥∥∥
(

n∑
k=1

gkAk

)
−

(
n∑
k=1

hkAk

)∥∥∥∥∥
=

∥∥∥∥∥
n∑
k=1

(gk − hk)Ak

∥∥∥∥∥
= max

v: ‖v‖=1
vT

(
n∑
k=1

(gk − hk)Ak

)
v

= max
v: ‖v‖=1

n∑
k=1

(gk − hk)
(
vTAkv

)
≤ max

v: ‖v‖=1

√√√√ n∑
k=1

(gk − hk)2

√√√√ n∑
k=1

(vTAkv)2

=

√√√√ max
v: ‖v‖=1

n∑
k=1

(vTAkv)2‖g − h‖2,

where the first inequality made use of the triangular inequality and the last one of the Cauchy-Schwarz
inequality.

This motivates us to define a new parameter, the weak variance σ∗.

Definition 4.15 (Weak Variance (see, for example, [Tro15b])) Given A1, . . . , An ∈ Rd×d sym-
metric matrices. We define the weak variance parameter as

σ2
∗ = max

v: ‖v‖=1

n∑
k=1

(
vTAkv

)2
.

This means that, using Gaussian concentration (and setting t = uσ∗), we have

Prob

{∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ ≥ (2 + 2 log(2d)
) 1

2
σ + uσ∗

}
≤ exp

(
−1

2
u2

)
. (39)

This means that although the expected value of ‖
∑n

k=1 gkAk‖ is controlled by the parameter σ, its
fluctuations seem to be controlled by σ∗. We compare the two quantities in the following Proposition.
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Proposition 4.16 Given A1, . . . , An ∈ Rd×d symmetric matrices, recall that

σ =

√√√√∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
2

and σ∗ =

√√√√ max
v: ‖v‖=1

n∑
k=1

(vTAkv)2.

We have
σ∗ ≤ σ.

Proof. Using the Cauchy-Schwarz inequality,

σ2
∗ = max

v: ‖v‖=1

n∑
k=1

(
vTAkv

)2
= max

v: ‖v‖=1

n∑
k=1

(
vT [Akv]

)2
≤ max

v: ‖v‖=1

n∑
k=1

(‖v‖‖Akv‖)2

= max
v: ‖v‖=1

n∑
k=1

‖Akv‖2

= max
v: ‖v‖=1

n∑
k=1

vTA2
kv

=

∥∥∥∥∥
n∑
k=1

A2
k

∥∥∥∥∥
= σ2.

2

4.5 Optimality of matrix concentration result for gaussian series

The following simple calculation is suggestive that the parameter σ in Theorem 4.14 is indeed the
correct parameter to understand E ‖

∑n
k=1 gkAk‖.

E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥
2

= E

∥∥∥∥∥∥
(

n∑
k=1

gkAk

)2
∥∥∥∥∥∥ = E max

v: ‖v‖=1
vT

(
n∑
k=1

gkAk

)2

v

≥ max
v: ‖v‖=1

EvT
(

n∑
k=1

gkAk

)2

v = max
v: ‖v‖=1

vT

(
n∑
k=1

A2
k

)
v = σ2 (40)

But a natural question is whether the logarithmic term is needed. Motivated by this question we’ll
explore a couple of examples.
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Example 4.17 We can write a d× d Wigner matrix W as a gaussian series, by taking Aij for i ≤ j
defined as

Aij = eie
T
j + eje

T
i ,

if i 6= j, and
Aii =

√
2eie

T
i .

It is not difficult to see that, in this case,
∑

i≤j A
2
ij = (d + 1)Id×d, meaning that σ =

√
d+ 1. This

means that Theorem 4.14 gives us
E‖W‖ .

√
d log d,

however, we know that E‖W‖ �
√
d, meaning that the bound given by NCK (Theorem 4.14) is, in this

case, suboptimal by a logarithmic factor.18

The next example will show that the logarithmic factor is in fact needed in some examples

Example 4.18 Consider Ak = eke
T
k ∈ Rd×d for k = 1, . . . , d. The matrix

∑n
k=1 gkAk corresponds to

a diagonal matrix with independent standard gaussian random variables as diagonal entries, and so
it’s spectral norm is given by maxk |gk|. It is known that max1≤k≤d |gk| �

√
log d. On the other hand,

a direct calculation shows that σ = 1. This shows that the logarithmic factor cannot, in general, be
removed.

This motivates the question of trying to understand when is it that the extra dimensional factor
is needed. For both these examples, the resulting matrix X =

∑n
k=1 gkAk has independent entries

(except for the fact that it is symmetric). The case of independent entries [RS13, Seg00, Lat05, BvH15]
is now somewhat understood:

Theorem 4.19 ([BvH15]) If X is a d × d random symmetric matrix with gaussian independent
entries (except for the symmetry constraint) whose entry i, j has variance b2ij then

E‖X‖ .

√√√√max
1≤i≤d

d∑
j=1

b2ij + max
ij
|bij |

√
log d.

Remark 4.20 X in the theorem above can be written in terms of a Gaussian series by taking

Aij = bij
(
eie

T
j + eje

T
i

)
,

for i < j and Aii = biieie
T
i . One can then compute σ and σ∗:

σ2 = max
1≤i≤d

d∑
j=1

b2ij and σ2
∗ � b2ij .

This means that, when the random matrix in NCK (Theorem 4.14) has negative entries (modulo
symmetry) then

E‖X‖ . σ +
√

log dσ∗. (41)

18By a � b we mean a . b and a & b.
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Theorem 4.19 together with a recent improvement of Theorem 4.14 by Tropp [Tro15c]19 motivate
the bold possibility of (41) holding in more generality.

Conjecture 4.21 Let A1, . . . , An ∈ Rd×d be symmetric matrices and g1, . . . , gn ∼ N (0, 1) i.i.d., then:

E

∥∥∥∥∥
n∑
k=1

gkAk

∥∥∥∥∥ . σ + (log d)
1
2 σ∗,

While it may very will be that this Conjecture 4.21 is false, no counter example is known, up to
date.

Open Problem 4.1 (Improvement on Non-Commutative Khintchine Inequality) Prove or
disprove Conjecture 4.21.

I would also be pretty excited to see interesting examples that satisfy the bound in Conjecture 4.21
while such a bound would not trivially follow from Theorems 4.14 or 4.19.

4.5.1 An interesting observation regarding random matrices with independent matrices

For the independent entries setting, Theorem 4.19 is tight (up to constants) for a wide range of variance

profiles
{
b2ij

}
i≤j

– the details are available as Corollary 3.15 in [BvH15]; the basic idea is that if the

largest variance is comparable to the variance of a sufficient number of entries, then the bound in
Theorem 4.19 is tight up to constants.

However, the situation is not as well understood when the variance profiles
{
b2ij

}
i≤j

are arbitrary.

Since the spectral norm of a matrix is always at least the `2 norm of a row, the following lower bound
holds (for X a symmetric random matrix with independent gaussian entries):

E‖X‖ ≥ Emax
k
‖Xek‖2.

Observations in papers of Lata la [Lat05] and Riemer and Schutt [RS13], together with the results
in [BvH15], motivate the conjecture that this lower bound is always tight (up to constants).

Open Problem 4.2 (Lata la-Riemer-Schutt) Given X a symmetric random matrix with indepen-
dent gaussian entries, is the following true?

E‖X‖ . Emax
k
‖Xek‖2.

The results in [BvH15] answer this in the positive for a large range of variance profiles, but not in
full generality. Recently, van Handel [vH15] proved this conjecture in the positive with an extra factor
of
√

log log d. More precisely, that

E‖X‖ .
√

log log dEmax
k
‖Xek‖2,

where d is the number of rows (and columns) of X.

19We briefly discuss this improvement in Remark 4.32
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4.6 A matrix concentration inequality for Rademacher Series

In what follows, we closely follow [Tro15a] and present an elementary proof of a few useful matrix
concentration inequalities. We start with a Master Theorem of sorts for Rademacher series (the
Rademacher analogue of Theorem 4.14)

Theorem 4.22 Let H1, . . . ,Hn ∈ Rd×d be symmetric matrices and ε1, . . . , εn i.i.d. Rademacher
random variables (meaning = +1 with probability 1/2 and = −1 with probability 1/2), then:

E

∥∥∥∥∥
n∑
k=1

εkHk

∥∥∥∥∥ ≤ (1 + 2dlog(d)e
) 1

2
σ,

where

σ2 =

∥∥∥∥∥
n∑
k=1

H2
k

∥∥∥∥∥
2

. (42)

Before proving this theorem, we take first a small detour in discrepancy theory followed by deriva-
tions, using this theorem, of a couple of useful matrix concentration inequalities.

4.6.1 A small detour on discrepancy theory

The following conjecture appears in a nice blog post of Raghu Meka [Mek14].

Conjecture 4.23 [Matrix Six-Deviations Suffice] There exists a universal constant C such that, for
any choice of n symmetric matrices H1, . . . ,Hn ∈ Rn×n satisfying ‖Hk‖ ≤ 1 (for all k = 1, . . . , n),
there exists ε1, . . . , εn ∈ {±1} such that ∥∥∥∥∥

n∑
k=1

εkHk

∥∥∥∥∥ ≤ C√n.
Open Problem 4.3 Prove or disprove Conjecture 4.23.

Note that, when the matrices Hk are diagonal, this problem corresponds to Spencer’s Six Standard
Deviations Suffice Theorem [Spe85].

Remark 4.24 Also, using Theorem 4.22, it is easy to show that if one picks εi as i.i.d. Rademacher
random variables, then with positive probability (via the probabilistic method) the inequality will be
satisfied with an extra

√
log n term. In fact one has

E

∥∥∥∥∥
n∑
k=1

εkHk

∥∥∥∥∥ .
√

log n

√√√√∥∥∥∥∥
n∑
k=1

H2
k

∥∥∥∥∥ ≤√log n

√√√√ n∑
k=1

‖Hk‖2 ≤
√

log n
√
n.

Remark 4.25 Remark 4.24 motivates asking whether Conjecture 4.23 can be strengthened to ask for
ε1, . . . , εn such that ∥∥∥∥∥

n∑
k=1

εkHk

∥∥∥∥∥ .

∥∥∥∥∥
n∑
k=1

H2
k

∥∥∥∥∥
1
2

. (43)
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4.6.2 Back to matrix concentration

Using Theorem 4.22, we’ll prove the following Theorem.

Theorem 4.26 Let T1, . . . , Tn ∈ Rd×d be random independent positive semidefinite matrices, then

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥
1
2

+
√
C(d)

(
Emax

i
‖Ti‖

) 1
2

2

,

where
C(d) := 4 + 8dlog de. (44)

A key step in the proof of Theorem 4.26 is an idea that is extremely useful in Probability, the trick
of symmetrization. For this reason we isolate it in a lemma.

Lemma 4.27 (Symmetrization) Let T1, . . . , Tn be independent random matrices (note that they
don’t necessarily need to be positive semidefinite, for the sake of this lemma) and ε1, . . . , εn random
i.i.d. Rademacher random variables (independent also from the matrices). Then

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥+ 2E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥
Proof. Triangular inequality gives

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥+ E

∥∥∥∥∥
n∑
i=1

(Ti − ETi)

∥∥∥∥∥ .
Let us now introduce, for each i, a random matrix T ′i identically distributed to Ti and independent
(all 2n matrices are independent). Then

E

∥∥∥∥∥
n∑
i=1

(Ti − ETi)

∥∥∥∥∥ = ET

∥∥∥∥∥
n∑
i=1

(
Ti − ETi − ET ′i

[
T ′i − ET ′iT

′
i

])∥∥∥∥∥
= ET

∥∥∥∥∥ET ′
n∑
i=1

(
Ti − T ′i

)∥∥∥∥∥ ≤ E

∥∥∥∥∥
n∑
i=1

(
Ti − T ′i

)∥∥∥∥∥ ,
where we use the notation Ea to mean that the expectation is taken with respect to the variable a
and the last step follows from Jensen’s inequality with respect to ET ′ .

Since Ti − T ′i is a symmetric random variable, it is identically distributed to εi (Ti − T ′i ) which
gives

E

∥∥∥∥∥
n∑
i=1

(
Ti − T ′i

)∥∥∥∥∥ = E

∥∥∥∥∥
n∑
i=1

εi
(
Ti − T ′i

)∥∥∥∥∥ ≤ E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥+ E

∥∥∥∥∥
n∑
i=1

εiT
′
i

∥∥∥∥∥ = 2E

∥∥∥∥∥
n∑
i=1

εiTi

∥∥∥∥∥ ,
concluding the proof. 2
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Proof. [of Theorem 4.26]
Using Lemma 4.27 and Theorem 4.22 we get

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)E

∥∥∥∥∥
n∑
i=1

T 2
i

∥∥∥∥∥
1
2

The trick now is to make a term like the one in the LHS appear in the RHS. For that we start by
noting (you can see Fact 2.3 in [Tro15a] for an elementary proof) that, since Ti � 0,∥∥∥∥∥

n∑
i=1

T 2
i

∥∥∥∥∥ ≤ max
i
‖Ti‖

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ .
This means that

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)E

(max
i
‖Ti‖

) 1
2

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
1
2

 .
Further applying the Cauchy-Schwarz inequality for E gives,

E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥ ≤
∥∥∥∥∥

n∑
i=1

ETi

∥∥∥∥∥+
√
C(d)

(
Emax

i
‖Ti‖

) 1
2

(
E

∥∥∥∥∥
n∑
i=1

Ti

∥∥∥∥∥
) 1

2

,

Now that the term E ‖
∑n

i=1 Ti‖ appears in the RHS, the proof can be finished with a simple application
of the quadratic formula (see Section 6.1. in [Tro15a] for details).

2

We now show an inequality for general symmetric matrices

Theorem 4.28 Let Y1, . . . , Yn ∈ Rd×d be random independent positive semidefinite matrices, then

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≤√C(d)σ + C(d)L,

where,

σ2 =

∥∥∥∥∥
n∑
i=1

EY 2
i

∥∥∥∥∥ and L2 = Emax
i
‖Yi‖2 (45)

and, as in (44),
C(d) := 4 + 8dlog de.

Proof.
Using Symmetrization (Lemma 4.27) and Theorem 4.22, we get

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≤ 2EY

[
Eε

∥∥∥∥∥
n∑
i=1

εiYi

∥∥∥∥∥
]
≤
√
C(d)E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
1
2

.
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Jensen’s inequality gives

E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
1
2

≤

(
E

∥∥∥∥∥
n∑
i=1

Y 2
i

∥∥∥∥∥
) 1

2

,

and the proof can be concluded by noting that Y 2
i � 0 and using Theorem 4.26. 2

Remark 4.29 (The rectangular case) One can extend Theorem 4.28 to general rectangular ma-
trices S1, . . . , Sn ∈ Rd1×d2 by setting

Yi =

[
0 Si
STi 0

]
,

and noting that

∥∥Y 2
i

∥∥ =

∥∥∥∥∥
[

0 Si
STi 0

]2
∥∥∥∥∥ =

∥∥∥∥[ SiSTi 0
0 STi Si

]∥∥∥∥ = max
{∥∥STi Si∥∥ ,∥∥SiSTi ∥∥} .

We defer the details to [Tro15a]

In order to prove Theorem 4.22, we will use an AM-GM like inequality for matrices for which,
unlike the one on Open Problem 0.2. in [Ban15c], an elementary proof is known.

Lemma 4.30 Given symmetric matrices H,W, Y ∈ Rd×d and non-negative integers r, q satisfying
q ≤ 2r,

Tr
[
HW qHY 2r−q]+ Tr

[
HW 2r−qHY q

]
≤ Tr

[
H2
(
W 2r + Y 2r

)]
,

and summing over q gives

2r∑
q=0

Tr
[
HW qHY 2r−q] ≤ (2r + 1

2

)
Tr
[
H2
(
W 2r + Y 2r

)]
We refer to Fact 2.4 in [Tro15a] for an elementary proof but note that it is a matrix analogue to

the inequality,
µθλ1−θ + µ1−θλθ ≤ λ+ θ

for µ, λ ≥ 0 and 0 ≤ θ ≤ 1, which can be easily shown by adding two AM-GM inequalities

µθλ1−θ ≤ θµ+ (1− θ)λ and µ1−θλθ ≤ (1− θ)µ+ θλ.

Proof. [of Theorem 4.22]
Let X =

∑n
k=1 εkHk, then for any positive integer p,

E‖X‖ ≤
(
E‖X‖2p

) 1
2p =

(
E‖X2p‖

) 1
2p ≤

(
ETrX2p

) 1
2p ,

where the first inequality follows from Jensen’s inequality and the last from X2p � 0 and the obser-
vation that the trace of a positive semidefinite matrix is at least its spectral norm. In the sequel, we
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upper bound ETrX2p. We introduce X+i and X−i as X conditioned on εi being, respectively +1 or
−1. More precisely

X+i = Hi +
∑
j 6=i

εjHj and X−i = −Hi +
∑
j 6=i

εjHj .

Then, we have

ETrX2p = ETr
[
XX2p−1

]
= E

n∑
i=1

Tr εiHiX
2p−1.

Note that Eεi Tr
[
εiHiX

2p−1
]

= 1
2 Tr

[
Hi

(
X2p−1

+i −X2p−1
−i

)]
, this means that

ETrX2p =
n∑
i=1

E
1

2
Tr
[
Hi

(
X2p−1

+i −X2p−1
−i

)]
,

where the expectation can be taken over εj for j 6= i.

Now we rewrite X2p−1
+i −X2p−1

−i as a telescopic sum:

X2p−1
+i −X2p−1

−i =

2p−2∑
q=0

Xq
+i (X+i −X−i)X2p−2−q

−i .

Which gives

ETrX2p =
n∑
i=1

2p−2∑
q=0

E
1

2
Tr
[
HiX

q
+i (X+i −X−i)X2p−2−q

−i

]
.

Since X+i −X−i = 2Hi we get

ETrX2p =
n∑
i=1

2p−2∑
q=0

ETr
[
HiX

q
+iHiX

2p−2−q
−i

]
. (46)

We now make use of Lemma 4.30 to get20 to get

ETrX2p ≤
n∑
i=1

2p− 1

2
ETr

[
H2
i

(
X2p−2

+i +X2p−2
−i

)]
. (47)

20See Remark 4.32 regarding the suboptimality of this step.
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Hence,

n∑
i=1

2p− 1

2
ETr

[
H2
i

(
X2p−2

+i +X2p−2
−i

)]
= (2p− 1)

n∑
i=1

ETr

H2
i

(
X2p−2

+i +X2p−2
−i

)
2


= (2p− 1)

n∑
i=1

ETr
[
H2
i Eεi

[
X2p−2

]]
= (2p− 1)

n∑
i=1

ETr
[
H2
i X

2p−2
]

= (2p− 1)ETr

[(
n∑
i=1

H2
i

)
X2p−2

]

Since X2p−2 � 0 we have

Tr

[(
n∑
i=1

H2
i

)
X2p−2

]
≤

∥∥∥∥∥
n∑
i=1

H2
i

∥∥∥∥∥TrX2p−2 = σ2 TrX2p−2, (48)

which gives
ETrX2p ≤ σ2(2p− 1)ETrX2p−2. (49)

Applying this inequality, recursively, we get

ETrX2p ≤ [(2p− 1)(2p− 3) · · · (3)(1)]σ2pETrX0 = (2p− 1)!!σ2pd

Hence,

E‖X‖ ≤
(
ETrX2p

) 1
2p ≤ [(2p− 1)!!]

1
2p σd

1
2p .

Taking p = dlog de and using the fact that (2p− 1)!! ≤
(

2p+1
e

)p
(see [Tro15a] for an elementary proof

consisting essentially of taking logarithms and comparing the sum with an integral) we get

E‖X‖ ≤
(

2dlog de+ 1

e

) 1
2

σd
1

2dlog de ≤ (2dlog de+ 1)
1
2 σ.

2

Remark 4.31 A similar argument can be used to prove Theorem 4.14 (the gaussian series case) based
on gaussian integration by parts, see Section 7.2. in [Tro15c].

Remark 4.32 Note that, up until the step from (46) to (47) all steps are equalities suggesting that
this step may be the lossy step responsible by the suboptimal dimensional factor in several cases (al-
though (48) can also potentially be lossy, it is not uncommon that

∑
H2
i is a multiple of the identity

matrix, which would render this step also an equality).
In fact, Joel Tropp [Tro15c] recently proved an improvement over the NCK inequality that, essen-

tially, consists in replacing inequality (47) with a tighter argument. In a nutshell, the idea is that, if
the Hi’s are non-commutative, most summands in (46) are actually expected to be smaller than the
ones corresponding to q = 0 and q = 2p− 2, which are the ones that appear in (47).
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4.7 Other Open Problems

4.7.1 Oblivious Sparse Norm-Approximating Projections

There is an interesting random matrix problem related to Oblivious Sparse Norm-Approximating
Projections [NN], a form of dimension reduction useful for fast linear algebra. In a nutshell, The
idea is to try to find random matrices Π that achieve dimension reduction, meaning Π ∈ Rm×n with
m � n, and that preserve the norm of every point in a certain subspace [NN], moreover, for the
sake of computational efficiency, these matrices should be sparse (to allow for faster matrix-vector
multiplication). In some sense, this is a generalization of the ideas of the Johnson-Lindenstrauss
Lemma and Gordon’s Escape through the Mesh Theorem that we will discuss next Section.

Open Problem 4.4 (OSNAP [NN]) Let s ≤ d ≤ m ≤ n.

1. Let Π ∈ Rm×n be a random matrix with i.i.d. entries

Πri =
δriσri√

s
,

where σri is a Rademacher random variable and

δri =

{
1√
s

with probability s
m

0 with probability 1− s
m

Prove or disprove: there exist positive universal constants c1 and c2 such that

For any U ∈ Rn×d for which UTU = Id×d

Prob
{∥∥(ΠU)T (ΠU)− I

∥∥ ≥ ε} < δ,

for m ≥ c1
d+log( 1

δ )
ε2

and s ≥ c2
log( dδ )
ε2

.

2. Same setting as in (1) but conditioning on

m∑
r=1

δri = s, for all i,

meaning that each column of Π has exactly s non-zero elements, rather than on average. The
conjecture is then slightly different:

Prove or disprove: there exist positive universal constants c1 and c2 such that

For any U ∈ Rn×d for which UTU = Id×d

Prob
{∥∥(ΠU)T (ΠU)− I

∥∥ ≥ ε} < δ,

for m ≥ c1
d+log( 1

δ )
ε2

and s ≥ c2
log( dδ )
ε .
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3. The conjecture in (1) but for the specific choice of U :

U =

[
Id×d

0(n−d)×d

]
.

In this case, the object in question is a sum of rank 1 independent matrices. More precisely,
z1, . . . , zm ∈ Rd (corresponding to the first d coordinates of each of the m rows of Π) are i.i.d.
random vectors with i.i.d. entries

(zk)j =


− 1√

s
with probability s

2m

0 with probability 1− s
m

1√
s

with probability s
2m

Note that EzkzTk = 1
mId×d. The conjecture is then that, there exists c1 and c2 positive universal

constants such that

Prob

{∥∥∥∥∥
m∑
k=1

[
zkz

T
k − EzkzTk

]∥∥∥∥∥ ≥ ε
}
< δ,

for m ≥ c1
d+log( 1

δ )
ε2

and s ≥ c2
log( dδ )
ε2

.

I think this would is an interesting question even for fixed δ, for say δ = 0.1, or even simply
understand the value of

E

∥∥∥∥∥
m∑
k=1

[
zkz

T
k − EzkzTk

]∥∥∥∥∥ .
4.7.2 k-lifts of graphs

Given a graph G, on n nodes and with max-degree ∆, and an integer k ≥ 2 a random k lift G⊗k of G
is a graph on kn nodes obtained by replacing each edge of G by a random k × k bipartite matching.
More precisely, the adjacency matrix A⊗k of G⊗k is a nk × nk matrix with k × k blocks given by

A⊗kij = AijΠij ,

where Πij is uniformly randomly drawn from the set of permutations on k elements, and all the edges
are independent, except for the fact that Πij = Πji. In other words,

A⊗k =
∑
i<j

Aij
(
eie

T
j ⊗Πij + eje

T
i ⊗ΠT

ij

)
,

where ⊗ corresponds to the Kronecker product. Note that

EA⊗k = A⊗
(

1

k
J

)
,

where J = 11T is the all-ones matrix.
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Open Problem 4.5 (Random k-lifts of graphs) Give a tight upperbound to

E
∥∥∥A⊗k − EA⊗k

∥∥∥ .
Oliveira [Oli10] gives a bound that is essentially of the form

√
∆ log(nk), while the results in [ABG12]

suggest that one may expect more concentration for large k. It is worth noting that the case of k = 2
can essentially be reduced to a problem where the entries of the random matrix are independent and
the results in [BvH15] can be applied to, in some case, remove the logarithmic factor.

4.8 Another open problem

Feige [Fei05] posed the following remarkable conjecture (see also [Sam66, Sam69, Sam68])

Conjecture 4.33 Given n independent random variables X1, . . . , Xn s.t., for all i, Xi ≥ 0 and EXi =
1 we have

Prob

(
n∑
i=1

Xi ≥ n+ 1

)
≤ 1− e−1

Note that, if Xi are i.i.d. and Xi = n + 1 with probability 1/(n + 1) and Xi = 0 otherwise, then

Prob (
∑n

i=1Xi ≥ n+ 1) = 1−
(

n
n+1

)n
≈ 1− e−1.

Open Problem 4.6 Prove or disprove Conjecture 4.33.21

21We thank Francisco Unda and Philippe Rigollet for suggesting this problem.
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5 Johnson-Lindenstrauss Lemma and Gordons Theorem

5.1 The Johnson-Lindenstrauss Lemma

Suppose one has n points, X = {x1, . . . , xn}, in Rd (with d large). If d > n, since the points have
to lie in a subspace of dimension n it is clear that one can consider the projection f : Rd → Rn of
the points to that subspace without distorting the geometry of X. In particular, for every xi and xj ,
‖f(xi)− f(xj)‖2 = ‖xi − xj‖2, meaning that f is an isometry in X.

Suppose now we allow a bit of distortion, and look for f : Rd → Rk that is an ε−isometry, meaning
that

(1− ε)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ε)‖xi − xj‖2. (50)

Can we do better than k = n?
In 1984, Johnson and Lindenstrauss [JL84] showed a remarkable Lemma (below) that answers this

question positively.

Theorem 5.1 (Johnson-Lindenstrauss Lemma [JL84]) For any 0 < ε < 1 and for any integer
n, let k be such that

k ≥ 4
1

ε2/2− ε3/3
log n.

Then, for any set X of n points in Rd, there is a linear map f : Rd → Rk that is an ε−isometry for
X (see (50)). This map can be found in randomized polynomial time.

We borrow, from [DG02], an elementary proof for the Theorem. We need a few concentration of
measure bounds, we will omit the proof of those but they are available in [DG02] and are essentially
the same ideas as those used to show Hoeffding’s inequality.

Lemma 5.2 (see [DG02]) Let y1, . . . , yd be i.i.d standard Gaussian random variables and Y =

(y1, . . . , yd). Let g : Rd → Rk be the projection into the first k coordinates and Z = g
(

Y
‖Y ‖

)
=

1
‖Y ‖(y1, . . . , yk) and L = ‖Z‖2. It is clear that EL = k

d . In fact, L is very concentrated around its
mean

• If β < 1,

Pr

[
L ≤ βk

d

]
≤ exp

(
k

2
(1− β + log β)

)
.

• If β > 1,

Pr

[
L ≥ βk

d

]
≤ exp

(
k

2
(1− β + log β)

)
.

Proof. [ of Johnson-Lindenstrauss Lemma ]
We will start by showing that, given a pair xi, xj a projection onto a random subspace of dimension

k will satisfy (after appropriate scaling) property (50) with high probability. WLOG, we can assume
that u = xi − xj has unit norm. Understanding what is the norm of the projection of u on a random
subspace of dimension k is the same as understanding the norm of the projection of a (uniformly)
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random point on Sd−1 the unit sphere in Rd on a specific k−dimensional subspace, let’s say the one
generated by the first k canonical basis vectors.

This means that we are interested in the distribution of the norm of the first k entries of a random
vector drawn from the uniform distribution over Sd−1 – this distribution is the same as taking a
standard Gaussian vector in Rd and normalizing it to the unit sphere.

Let g : Rd → Rk be the projection on a random k−dimensional subspace and let f : Rd → Rk

defined as f =
√

d
kg. Then (by the above discussion), given a pair of distinct xi and xj ,

‖f(xi)−f(xj)‖2
‖xi−xj‖2

has the same distribution as d
kL, as defined in Lemma 5.2. Using Lemma 5.2, we have, given a pair

xi, xj ,

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
k

2
(1− (1− ε) + log(1− ε))

)
,

since, for ε ≥ 0, log(1− ε) ≤ −ε− ε2/2 we have

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
−kε

2

4

)
≤ exp (−2 log n) =

1

n2
.

On the other hand,

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≥ (1 + ε)

]
≤ exp

(
k

2
(1− (1 + ε) + log(1 + ε))

)
.

since, for ε ≥ 0, log(1 + ε) ≤ ε− ε2/2 + ε3/3 we have

Prob

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
≤ (1− ε)

]
≤ exp

(
−
k
(
ε2 − 2ε3/3

)
4

)
≤ exp (−2 log n) =

1

n2
.

By union bound it follows that

Pr

[
‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2
.

Since there exist
(
n
2

)
such pairs, again, a simple union bound gives

Pr

[
∃i,j :

‖f(xi)− f(xj)‖2

‖xi − xj‖2
/∈ [1− ε, 1 + ε]

]
≤ 2

n2

n(n− 1)

2
= 1− 1

n
.

Therefore, choosing f as a properly scaled projection onto a random k−dimensional subspace is an
ε− isometry on X (see (50)) with probability at least 1

n . We can achieve any desirable constant
probability of success by trying O(n) such random projections, meaning we can find an ε−isometry
in randomized polynomial time.
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2

Note that by considering k slightly larger one can get a good projection on the first random attempt
with very good confidence. In fact, it’s trivial to adapt the proof above to obtain the following Lemma:

Lemma 5.3 For any 0 < ε < 1, τ > 0, and for any integer n, let k be such that

k ≥ (2 + τ)
2

ε2/2− ε3/3
log n.

Then, for any set X of n points in Rd, take f : Rd → Rk to be a suitably scaled projection on a random
subspace of dimension k, then f is an ε−isometry for X (see (50)) with probability at least 1− 1

nτ .

Lemma 5.3 is quite remarkable. Think about the situation where we are given a high-dimensional
data set in a streaming fashion – meaning that we get each data point at a time, consecutively. To run
a dimension-reduction technique like PCA or Diffusion maps we would need to wait until we received
the last data point and then compute the dimension reduction map (both PCA and Diffusion Maps
are, in some sense, data adaptive). Using Lemma 5.3 you can just choose a projection at random in
the beginning of the process (all ones needs to know is an estimate of the log of the size of the data
set) and just map each point using this projection matrix which can be done online – we don’t need
to see the next point to compute the projection of the current data point. Lemma 5.3 ensures that
this (seemingly näıve) procedure will, with high probably, not distort the data by more than ε.

5.1.1 Optimality of the Johnson-Lindenstrauss Lemma

It is natural to ask whether the dependency on ε and n in Lemma 5.3 can be improved. Noga
Alon [Alo03] showed that there are n points for which the smallest dimension k on which they can

be embedded with a distortion as in Lemma 5.3, satisfies k = Ω
(

1
log(1/ε)ε

−2 log n
)

, this was recently

improved by Larsen and Nelson [?], for linear maps, to Ω
(
ε−2 log n

)
, closing the gap.22

5.1.2 Fast Johnson-Lindenstrauss

(Disclaimer: the purpose of this section is just to provide a bit of intuition, there is a lot of hand-
waving!!)

Let’s continue thinking about the high-dimensional streaming data. After we draw the random
projection matrix, say M , for each data point x, we still have to compute Mx which, since M has
O(ε−2 log(n)d) entries, has a computational cost of O(ε−2 log(n)d). In some applications this might
be too expensive, can one do better? There is no hope of (significantly) reducing the number of rows
(Recall Open Problem ?? and the lower bound by Alon [Alo03]). The only hope is to speed up the
matrix-vector multiplication. If we were able to construct a sparse matrix M then we would definitely
speed up the computation of Mx but sparse matrices tend to distort sparse vectors, and the data
set may contain. Another option would be to exploit the Fast Fourier Transform and compute the
Fourier Transform of x (which takes O(d log d) time) and then multiply the Fourier Transform of x by
a sparse matrix. However, this again may not work because x might have a sparse Fourier Transform.

22An earlier version of these notes marked closing the gap as an open problem, this has been corrected.
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The solution comes from leveraging an uncertainty principle — it is impossible for both x and the FT
of x to be sparse simultaneously. The idea is that if, before one takes the Fourier Transform of x, one
flips (randomly) the signs of x, then the probably of obtaining a sparse vector is very small so a sparse
matrix can be used for projection. In a nutshell the algorithm has M be a matrix of the form PHD,
where D is a diagonal matrix that flips the signs of the vector randomly, H is a Fourier Transform
(or Hadamard transform) and P a sparse matrix. This method was proposed and analysed in [AC09]
and, roughly speaking, achieves a complexity of O(d log d), instead of the classical O(ε−2 log(n)d).

There is a very interesting line of work proposing fast Johnson Lindenstrauss projections based on
sparse matrices. In fact, this is, in some sense, the motivation for Open Problem 4.4. in [Ban15c]. We
recommend these notes Jelani Nelson’s notes for more on the topic [Nel].

5.2 Gordon’s Theorem

In the last section we showed that, in order to approximately preserve the distances (up to 1 ± ε)
between n points it suffices to randomly project them to Θ

(
ε−2 log n

)
dimensions. The key argument

was that a random projection approximately preserves the norm of every point in a set S, in this case
the set of differences between pairs of n points. What we showed is that, in order to approximately
preserve the norm of every point in S it is enough to project to Θ

(
ε−2 log |S|

)
dimensions. The

question this section is meant to answer is: can this improved if S has a special structure? Given a
set S, what is the measure of complexity of S that explains how many dimensions one needs to take
on the projection to still approximately preserve the norms of points in S. Was we will see below, this
will be captured, via Gordon’s Theorem, by the so called Gaussian Width of S.

Definition 5.4 (Gaussian Width) Given a closed set S ⊂ Rd, its gaussian width ω(S) is define
as:

ω(S) = Emax
x∈S

[
gTd x

]
,

where gd ∼ N (0, Id×d).

Similarly to what we did in the proof of Theorem 5.1 we will restrict our attention to sets S of
unit norm vectors, meaning that S ⊂ Sd−1.

Also, we will focus our attention not in random projections but in the similar model of random
linear maps G : Rd → Rk that are given by matrices with i.i.d. gaussian entries. For this reason the
following Proposition will be useful:

Proposition 5.5 Let gk ∼ N (0, Ik×k), and define

ak := E‖gk‖.

Then
√

k
k+1

√
k ≤ ak ≤

√
k.

We are now ready to present Gordon’s Theorem.
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Theorem 5.6 (Gordon’s Theorem [Gor88]) Let G ∈ Rk×d a random matrix with independent
N (0, 1) entries and S ⊂ Sd−1 be a closed subset of the unit sphere in d dimensions. Then

Emax
x∈S

∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≤ 1 +
ω(S)

ak
,

and

Emin
x∈S

∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≥ 1− ω(S)

ak
,

where ak = E‖gk‖ and ω(S) is the gaussian width of S. Recall that
√

k
k+1

√
k ≤ ak ≤

√
k.

Before proving Gordon’s Theorem we’ll note some of it’s direct implications. It suggest that 1
ak
G

preserves the norm of the points in S up to 1± ω(S)
ak

, indeed we can make this precise with Gaussian
Concentration.

Note that the function F (G) = maxx∈S

∥∥∥ 1
ak
Gx
∥∥∥ is 1-Lipschitz. Indeed∣∣∣∣max

x1∈S
‖G1x1‖ −max

x2∈S
‖G2x2‖

∣∣∣∣ ≤ max
x∈S
|‖G1x‖ − ‖G2x‖| ≤ max

x∈S
‖(G1 −G2)x‖

= ‖G1 −G2‖ ≤ ‖G1 −G2‖F .

Similarly, one can show that F (G) = minx∈S

∥∥∥ 1
ak
Gx
∥∥∥ is 1-Lipschitz. Thus, one can use Gaussian

Concentration to get:

Prob

{
max
x∈S
‖Gx‖ ≥ ak + ω(S) + t

}
≤ exp

(
− t

2

2

)
, (51)

and

Prob

{
min
x∈S
‖Gx‖ ≤ ak − ω(S)− t

}
≤ exp

(
− t

2

2

)
. (52)

This gives us the following Theorem.

Theorem 5.7 Let G ∈ Rk×d a random matrix with independent N (0, 1) entries and S ⊂ Sd−1 be

a closed subset of the unit sphere in d dimensions. Then, for ε >

√
ω(S)2

a2
k

, with probability ≥ 1 −

2 exp

[
−k
(
ε− ω(S)

ak

)2
]

:

(1− ε)‖x‖ ≤
∥∥∥∥ 1

ak
Gx

∥∥∥∥ ≤ (1 + ε)‖x‖,

for all x ∈ S.
Recall that k − k

k+1 ≤ a
2
k ≤ k.

Proof. This is readily obtained by taking ε = ω(S)+t
ak

, using (51), (52), and recalling that a2
k ≤ k. 2
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Remark 5.8 Note that a simple use of a union bound23 shows that ω(S) .
√

2 log |S|, which means
that taking k to be of the order of log |S| suffices to ensure that 1

ak
G to have the Johnson Lindenstrauss

property. This observation shows that Theorem 5.7 essentially directly implies Theorem 5.1 (although
not exacly, since 1

ak
G is not a projection).

5.2.1 Gordon’s Escape Through a Mesh Theorem

Theorem 5.7 suggests that, if ω(S) ≤ ak, a uniformly chosen random subspace of Rn of dimension
(n− k) (which can be seen as the nullspace of G) avoids a set S with high probability. This is indeed
the case and is known as Gordon’s Escape Through a Mesh Theorem, it’s Corollary 3.4. in Gordon’s
original paper [Gor88]. See also [Mix14b] for a description of the proof. We include the Theorem
below for the sake of completeness.

Theorem 5.9 (Corollary 3.4. in [Gor88]) Let S ⊂ Sd−1 be a closed subset of the unit sphere in
d dimensions. If ω(S) < ak, then for a (n − k)-dimensional subspace Λ drawn uniformly from the
Grassmanian manifold we have

Prob {Λ ∩ S 6= ∅} ≤ 7

2
exp

(
− 1

18
(ak − ω(S))2

)
,

where ω(S) is the gaussian width of S and ak = E‖gk‖ where gk ∼ N (0, Ik×k).

5.2.2 Proof of Gordon’s Theorem

In order to prove this Theorem we will use extensions of the Slepian’s Comparison Lemma.
Slepian’s Comparison Lemma, and the closely related Sudakov-Fernique inequality, are crucial

tools to compare Gaussian Processes. A Gaussian process is a family of gaussian random variables
indexed by some set T , {Xt}t∈T (if T is finite this is simply a gaussian vector). Given a gaussian
process Xt, a particular quantity of interest is E [maxt∈T Xt]. Intuitively, if we have two Gaussian
processes Xt and Yt with mean zero E [Xt] = E [Yt] = 0, for all t ∈ T , and the same variance, then the
process that has the “least correlations” should have a larger maximum (think the maximum entry
of vector with i.i.d. gaussian entries versus one always with the same gaussian entry). The following
inequality makes this intuition precise and extends it to processes with different variances. 24

Theorem 5.10 (Slepian/Sudakov-Fernique inequality) Let {Xu}u∈U and {Yu}u∈U be two (al-
most surely bounded) centered Gaussian processes indexed by the same (compact) set U . If, for every
u1, u2 ∈ U :

E [Xu1 −Xu2 ]2 ≤ E [Yu1 − Yu2 ]2 , (53)

then

E
[
max
u∈U

Xu

]
≤ E

[
max
u∈U

Yu

]
.

The following extension is due to Gordon [Gor85, Gor88].

23This follows from the fact that the maximum of n standard gaussian random variables is .
√

2 log |S|.
24Although intuitive in some sense, this turns out to be a delicate statement about Gaussian random variables, as it

does not hold in general for other distributions.
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Theorem 5.11 [Theorem A in [Gor88]] Let {Xt,u}(t,u)∈T×U and {Yt,u}(t,u)∈T×U be two (almost surely

bounded) centered Gaussian processes indexed by the same (compact) sets T and U . If, for every
t1, t2 ∈ T and u1, u2 ∈ U :

E [Xt1,u1 −Xt1,u2 ]2 ≤ E [Yt1,u1 − Yt1,u2 ]2 , (54)

and, for t1 6= t2,
E [Xt1,u1 −Xt2,u2 ]2 ≥ E [Yt1,u1 − Yt2,u2 ]2 , (55)

then

E
[
min
t∈T

max
u∈U

Xt,u

]
≤ E

[
min
t∈T

max
u∈U

Yt,u

]
.

Note that Theorem 5.10 easily follows by setting |T | = 1.
We are now ready to prove Gordon’s theorem.

Proof. [of Theorem 5.6]
Let G ∈ Rk×d with i.i.d. N (0, 1) entries. We define two gaussian processes: For v ∈ S ⊂ Sd−1 and

u ∈ Sk−1 let g ∼ N (0, Ik×k) and h ∼ N (0, Id×d) and define the following processes:

Au,v = gTu+ hT v,

and
Bu,v = uTGv.

For all v, v′ ∈ S ⊂ Sd−1 and u, u′ ∈ Sk−1,

E
∣∣Av,u −Av′,u′∣∣2 − E

∣∣Bv,u −Bv′,u′∣∣2 = 4− 2
(
uTu′ + vT v′

)
−
∑
ij

(
viuj − v′iu′j

)2
= 4− 2

(
uTu′ + vT v′

)
−
[
2− 2

(
vT v′

) (
uTu′

)]
= 2− 2

(
uTu′ + vT v′ − uTu′vT v′

)
= 2

(
1− uTu′

) (
1− vT v′

)
.

This means that E
∣∣Av,u −Av′,u′∣∣2−E ∣∣Bv,u −Bv′,u′∣∣2 ≥ 0 and E

∣∣Av,u −Av′,u′∣∣2−E ∣∣Bv,u −Bv′,u′∣∣2 =
0 if v = v′.

This means that we can use Theorem 5.11 with X = A and Y = B, to get

Emin
v∈S

max
u∈Sk−1

Av,u ≤ Emin
v∈S

max
u∈Sk−1

Bv,u.

Noting that
Emin
v∈S

max
u∈Sk−1

Bv,u = Emin
v∈S

max
u∈Sk−1

uTGv = Emin
v∈S
‖Gv‖ ,

and

E
[
min
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gTu+ Emin

v∈S
hT v = E max

u∈Sk−1
gTu− Emax

v∈S
(−hT v) = ak − ω(S),

gives the second part of the Theorem.
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On the other hand, since E
∣∣Av,u −Av′,u′∣∣2 − E

∣∣Bv,u −Bv′,u′∣∣2 ≥ 0 then we can similarly use
Theorem 5.10 with X = B and Y = A, to get

Emax
v∈S

max
u∈Sk−1

Av,u ≥ Emax
v∈S

max
u∈Sk−1

Bv,u.

Noting that
Emax

v∈S
max
u∈Sk−1

Bv,u = Emax
v∈S

max
u∈Sk−1

uTGv = Emax
v∈S
‖Gv‖ ,

and

E
[
max
v∈S

max
u∈Sk−1

Av,u

]
= E max

u∈Sk−1
gTu+ Emax

v∈S
hT v = ak + ω(S),

concludes the proof of the Theorem.
2

5.3 Sparse vectors and Low-rank matrices

In this Section we illustrate the utility of Gordon’s theorem by undertanding which projections are
expected to keep the norm of sparse vectors and low-rank matrices.

5.3.1 Gaussian width of k-sparse vectors

Say we have a signal (or image) x ∈ RN that we are interested in measuring with linear measurements
yi = aTi x, for ai ∈ RN . In general, it is clear that we would need N measurements to find x. The
idea behind Compressed Sensing [CRT06a, Don06] is that one may be able to significantly decrease
the number of measurements needed if we know more about the structure of x, a prime example is
when x is known to have few non-zero entries (being sparse). Sparse signals do arise in countless
applications (for example, images are known to be sparse in the Wavelet basis; in fact this is the basis
of the JPEG2000 compression method).

We’ll revisit sparse recovery and Compressed Sensing next lecture but for now we’ll see how
Gordon’s Theorem can suggest us how many linear measurements are needed in order to reconstruct
a sparse vector. An efficient way of representing the measurements is to use a matrix

A =


— aT1 —
— aT2 —

...
— aTM —

 ,
and represent the linear measurements as

y = Ax.

In order to hope to be able to reconstruct x from y we need that A is injective on sparse vectors.
Let us assume that x is s-sparse, meaning that x has at most s non-zero entries (often written as
‖x‖0 ≤ s, where ‖ · ‖0 is called the 0-norm and counts the number of non-zero entries in a vector25).

25It is important to note that ‖ · ‖0 is not actually a norm
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It is also intuitive that, in order for reconstruction to be stable, one would like that not only A is
injective in s-sparse vectors but actually almost an isometry, meaning that the `2 distance between
Ax1 and Ax2 should be comparable to the distances between x1 and x2 if they are s-sparse. Since the
difference between two s-sparse vectors is a 2s-sparse vector, we can alternatively ask for A to keep
the norm of 2s sparse vectors. Gordon’s Theorem above suggests that we can take A ∈ RM×N to have
i.i.d. gaussian entries and to take M ≈ ω (S2s), where Sk =

{
x : x ∈ SN−1, ‖x‖0 ≤ k

}
is the set of 2s

sparse vectors, and ω (S2s) the gaussian width of S2s.

Proposition 5.12 If s ≤ N , the Gaussian Width ω (Ss) of Ss, the set of unit-norm vectors that are
at most s sparse, satisfies

ω (Ss)2 . s log

(
N

s

)
.

Proof.

ω (Ss) = max
v∈SSN−1, ‖v‖0≤s

gT v, log

(
N

s

)
,

where g ∼ N (0, IN×N ). We have
ω (Ss) = max

Γ⊂[N ], |Γ|=s
‖gΓ‖,

where gΓ is the restriction of g to the set of indices Γ.
Given a set Γ, Theorem 4.12 gives

Prob
{
‖gΓ‖2 ≥ s+ 2

√
s
√
t+ t

}
≤ exp(−t).

Union bounding over all Γ ⊂ [N ], |Γ| = s gives

Prob

{
max

Γ⊂[N ], |Γ|=s
‖gΓ‖2 ≥ s+ 2

√
s
√
t+ t

}
≤
(
N

s

)
exp(−t)

Taking u such that t = su, gives

Prob

{
max

Γ⊂[N ], |Γ|=s
‖gΓ‖2 ≥ s

(
1 + 2

√
u+ u

)}
≤ exp

[
−su+ s log

(
N

s

)]
. (56)

Taking u > log
(
N
s

)
it can be readily seen that the typical size of maxΓ⊂[N ], |Γ|=s ‖gΓ‖2 is .

s log
(
N
s

)
. The proof can be finished by integrating (56) in order to get a bound of the expectation of√

maxΓ⊂[N ], |Γ|=s ‖gΓ‖2.
2

This suggests that ≈ 2s log
(
N
2s

)
measurements suffice to identify a 2s-sparse vector. As we’ll see,

not only such a number of measurements suffices to identify a sparse vector but also for certain efficient
algorithms to do so.
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5.3.2 The Restricted Isometry Property and a couple of open problems

Matrices perserving the norm of sparse vectors do play a central role in sparse recovery, they are said
to satisfy the Restricted Isometry Property. More precisely:

Definition 5.13 (The Restricted Isometry Property) An M ×N matrix A (with either real or
complex valued entries) is said to satisfy the (s, δ)-Restricted Isometry Property (RIP),

(1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2,

for all s-sparse x.

Using Proposition 5.12 and Theorem 5.7 one can readily show that matrices with Gaussian entries
satisfy the restricted isometry property with M ≈ s log

(
N
s

)
.

Theorem 5.14 Let A be an M × N matrix with i.i.d. standard gaussian entries, there exists a
constant C such that, if

M ≥ Cs log

(
N

s

)
,

then 1
aM
A satisfies the

(
s, 1

3

)
-RIP, with high probability.

Theorem 5.14 suggests that RIP matrices are abundant for s ≈ M
log(N) , however it appears to be

very difficult to deterministically construct matrices that are RIP for s�
√
M , known as the square

bottleneck [Tao07, BFMW13, BFMM14, BMM14, B+11, Mix14a]. The only known unconditional
construction that is able to break this bottleneck is due to Bourgain et al. [B+11] that achieves

s ≈ M
1
2

+ε for a small, but positive, ε. There is a conditional construction, based on the Paley
Equiangular Tight Frame, that will be briefly described in the next Lecture [BFMW13, BMM14].

Open Problem 5.1 Construct deterministic matrices A ∈ CM×N (or A ∈ CM×N ) satisfying (s, 1
3)-

RIP for s & M0.6

polylog(N .

Open Problem 5.2 Theorem 5.14 guarantees that if we take A to have i.i.d. Gaussian entries then
it should be RIP for s ≈ M

log(N) . If we were able to, given A, certify that it indeed is RIP for some s

then one could have a randomized algorithm to build RIP matrices (but that is guaranteed to eventually
find one). This motives the following question

1. Let N = 2M , for which s is there a polynomial time algorithm that is guaranteed to, with high
probability, certify that a gaussian matrix A is

(
s, 1

3

)
-RIP?

2. In particular, a
(
s, 1

3

)
-RIP matrix has to not have s sparse vectors in its nullspace. This mo-

tivates a second question: Let N = 2M , for which s is there a polynomial time algorithm that
is guaranteed to, with high probability, certify that a gaussian matrix A does not have s-sparse
vectors in its nullspace?

The second question is tightly connected to the question of sparsest vector on a subspace (for
which s ≈

√
M is the best known answer), we refer the reader to [SWW12, QSW14, BKS13b] for

more on this problem and recent advances. Note that checking whether a matrix has RIP or not is,
in general, NP-hard [BDMS13, TP13].
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5.3.3 Gaussian width of rank-r matrices

Another structured set of interest is the set of low rank matrices. Low-rank matrices appear in
countless applications, a prime example being the Netflix Prize. In that particular example the matrix
in question is a matrix indexed by users of the Netflix service and movies. Given a user and a movie,
the corresponding entry of the matrix should correspond to the score that user would attribute to that
movie. This matrix is believed to be low-rank. The goal is then to estimate the score for user and
movie pairs that have not been rated yet from the ones that have, by exploiting the low-rank matrix
structure. This is known as low-rank matrix completion [CT10, CR09, Rec11].

In this short section, we will not address the problem of matrix completion but rather make a
comment about the problem of low-rank matrix sensing, where instead of observing some of the entries
of the matrix X ∈ Rn1×n2 one has access to linear measuremetns of it, of the form yi = Tr(ATi X).

In order to understand the number of measurements needed for the measurement procedure to
be a nearly isometry for rank r matrices, we can estimate the Gaussian Width of the set of matrices
X ∈∈ Rn1×n2 whose rank is smaller or equal to 2r (and use Gordon’s Theorem).

Proposition 5.15

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r

})
.
√
r(d1 + d2).

Proof.
ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r

})
= E max

‖X‖F=1
rank(X)≤r

Tr(GX).

Let X = UΣV T be the SVD decomposition of X, then

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r

})
= E max

UTU=V TV=Ir×r
Σ∈Rr×r diagonal ‖Σ‖F=1

Tr(Σ
(
V TGU

)
).

This implies that

ω
({
X : X ∈ Rn1×n2 , rank(X) ≤ r

})
≤ (Tr Σ) (E‖G‖) .

√
r (
√
n1 +

√
n1) ,

where the last inequality follows from bounds on the largest eigenvalue of a Wishart matrix, such as
the ones used on Lecture 1. 2
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6 Compressed Sensing and Sparse Recovery

Most of us have noticed how saving an image in JPEG dramatically reduces the space it occupies in
our hard drives (as oppose to file types that save the pixel value of each pixel in the image). The idea
behind these compression methods is to exploit known structure in the images; although our cameras
will record the pixel value (even three values in RGB) for each pixel, it is clear that most collections of
pixel values will not correspond to pictures that we would expect to see. This special structure tends
to exploited via sparsity. Indeed, natural images are known to be sparse in certain bases (such as the
wavelet bases) and this is the core idea behind JPEG (actually, JPEG2000; JPEG uses a different
basis).

Let us think of x ∈ RN as the signal corresponding to the image already in the basis for which it is
sparse. Let’s say that x is s-sparse, or ‖x‖0 ≤ s, meaning that x has, at most, s non-zero components
and, usually, s � N . The `0 norm26 ‖x‖0 of a vector x is the number of non-zero entries of x. This
means that, when we take a picture, our camera makesN measurements (each corresponding to a pixel)
but then, after an appropriate change of basis, it keeps only s � N non-zero coefficients and drops
the others. This motivates the question: “If only a few degrees of freedom are kept after compression,
why not measure in a more efficient way and take considerably less than N measurements?”. This
question is in the heart of Compressed Sensing [CRT06a, CRT06b, CT05, CT06, Don06, FR13]. It is
particularly important in MRI imaging [?] as less measurements potentially means less measurement
time. The following book is a great reference on Compressed Sensing [FR13].

More precisely, given a s-sparse vector x, we take s < M � N linear measurements yi = aTi x and
the goal is to recover x from the underdetermined system:

 y

 =

 A



x


.

Last lecture we used Gordon’s theorem to show that, if we took random measurements, on the
order of s log

(
N
s

)
measurements suffice to have all considerably different s-sparse signals correspond

to considerably different sets of measurements. This suggests that ≈ s log
(
N
s

)
may be enough to

recover x, we’ll see (later) in this lecture that this intuition is indeed correct.
Since the system is underdetermined and we know x is sparse, the natural thing to try, in order

to recover x, is to solve
min ‖z‖0
s.t. Az = y,

(57)

and hope that the optimal solution z corresponds to the signal in question x. Unfortunately, (57) is
known to be a computationally hard problem in general. Instead, the approach usually taken in sparse
recovery is to consider a convex relaxation of the `0 norm, the `1 norm: ‖z‖1 =

∑N
i=1 |zi|. Figure 19

26The `0 norm is not actually a norm though.
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depicts how the `1 norm can be seen as a convex relaxation of the `0 norm and how it promotes
sparsity.

Figure 19: A two-dimensional depiction of `0 and `1 minimization. In `1 minimization (the picture
of the right), one inflates the `1 ball (the diamond) until it hits the affine subspace of interest, this
image conveys how this norm promotes sparsity, due to the pointy corners on sparse vectors.

This motivates one to consider the following optimization problem (surrogate to (57)):

min ‖z‖1
s.t. Az = y,

(58)

In order for (58) we need two things, for the solution of it to be meaningful (hopefully to coincide
with x) and for (58) to be efficiently solved.

We will formulate (58) as a Linear Program (and thus show that it is efficiently solvable). Let us
think of ω+ as the positive part of x and ω− as the symmetric of the negative part of it, meaning that
x = ω+ − ω− and, for each i, either ω−i or ω+

i is zero. Note that, in that case,

‖x‖1 =

N∑
i=1

ω+
i + ω−i = 1T

(
ω+ + ω−

)
.

Motivated by this we consider:

min 1T (ω+ + ω−)
s.t. A (ω+ − ω−) = y

ω+ ≥ 0
ω− ≥ 0,

(59)

which is a linear program. It is not difficult to see that the optimal solution of (59) will indeed satisfy
that, for each i, either ω−i or ω+

i is zero and it is indeed equivalent to (58). Since linear programs are
efficiently solvable [VB04], this means that (58) efficiently.
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6.1 Duality and exact recovery

The goal now is to show that, under certain conditions, the solution of (58) indeed coincides with x.
We will do this via duality (this approach is essentially the same as the one followed in [Fuc04] for the
real case, and in [Tro05] for the complex case.)

Let us start by presenting duality in Linear Programming with a game theoretic view point. The
idea will be to reformulate (59) without constraints, by adding a dual player that wants to maximize
the objective and would exploit a deviation from the original constraints (by, for example, giving the
dual player a variable u and adding to to the objective uT (y −A (ω+ − ω−))). More precisely consider
the following

min
ω+

ω−

max
u

v+≥0
v−≥0

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
. (60)

Indeed, if the primal player (picking ω+ and ω− and attempting to minimize the objective) picks
variables that do not satisfy the original constraints, then the dual player (picking u, v+, and v− and
trying to maximize the objective) will be able to make the objective value as large as possible. It is
then clear that (59) = (60).

Now image that we switch the order at which the players choose variable values, this can only
benefit the primal player, that now gets to see the value of the dual variables before picking the primal
variables, meaning that (60) ≥ (61), where (61) is given by:

max
u

v+≥0
v−≥0

min
ω+

ω−

1T
(
ω+ + ω−

)
−
(
v+
)T
ω+ −

(
v−
)T
ω− + uT

(
y −A

(
ω+ − ω−

))
. (61)

Rewriting

max
u

v+≥0
v−≥0

min
ω+

ω−

(
1− v+ −ATu

)T
ω+ +

(
1− v− +ATu

)T
ω− + uT y (62)

With this formulation, it becomes clear that the dual players needs to set 1 − v+ − ATu = 0,
1− v− +ATu = 0 and thus (62) is equivalent to

max
u

v+≥0
v−≥0

1−v+−ATu=0
1−v−+ATu=0

uT y

or equivalently,

maxu uT y
s.t. −1 ≤ ATu ≤ 1.

(63)

The linear program (63) is known as the dual program to (59). The discussion above shows that
(63) ≤ (59) which is known as weak duality. More remarkably, strong duality guarantees that the
optimal values of the two programs match.
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There is a considerably easier way to show weak duality (although not as enlightening as the one
above). If ω− and ω+ are primal feasible and u is dual feasible, then

0 ≤
(
1T − uTA

)
ω+ +

(
1T + uTA

)
ω− = 1T

(
ω+ + ω−

)
− uT

[
A
(
ω+ − ω−

)]
= 1T

(
ω+ + ω−

)
− uT y,

(64)
showing that (63) ≤ (59).

6.2 Finding a dual certificate

In order to show that ω+ − ω− = x is an optimal solution27 to (59), we will find a dual feasible point
u for which the dual matches the value of ω+ − ω− = x in the primal, u is known as a dual certificate
or dual witness.

From (64) it is clear that u must satisfy
(
1T − uTA

)
ω+ = 0 and

(
1T + uTA

)
ω− = 0, this is known

as complementary slackness. This means that we must have the entries of ATu be +1 or −1 when x
is non-zero (and be +1 when it is positive and −1 when it is negative), in other words(

ATu
)
S

= sign (xS) ,

where S = supp(x), and
∥∥ATu∥∥∞ ≤ 1 (in order to be dual feasible).

Remark 6.1 It is not difficult to see that if we further ask that
∥∥(ATu)

Sc

∥∥
∞ < 1 any optimal primal

solution would have to have its support contained in the support of x. This observation gives us the
following Lemma.

Lemma 6.2 Consider the problem of sparse recovery discussed this lecture. Let S = supp(x), if AS
is injective and there exists u ∈ RM such that(

ATu
)
S

= sign (xS) ,

and ∥∥(ATu)
Sc

∥∥
∞ < 1,

then x is the unique optimal solution to the `1 minimization program 58.

Since we know that
(
ATu

)
S

= sign (xS) (and that AS is injective), we’ll try to construct u by least

squares and hope that it satisfies
∥∥(ATu)

Sc

∥∥
∞ < 1. More precisely, we take

u =
(
ATS
)†

sign (xS) ,

where
(
ATS
)†

= AS
(
ATSAS

)−1
is the Moore Penrose pseudo-inverse of ATS . This gives the following

Corollary.

Corollary 6.3 Consider the problem of sparse recovery discussed this lecture. Let S = supp(x), if
AS is injective and ∥∥∥(ATScAS (ATSAS)−1

sign (xS)
)
Sc

∥∥∥
∞
< 1,

then x is the unique optimal solution to the `1 minimization program 58.

27For now we will focus on showing that it is an optimal solution, see Remark 6.1 for a brief discussion of how to
strengthen the argument to show uniqueness
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Recall the definition of A ∈ RM×N satisfying the restricted isometry property from last Lecture.

Definition 6.4 (Restricted Isometry Property) A matrix A ∈ RM×N is said to satisfy the (s, δ)
restricted isometry property if

(1− δ) ‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ) ‖x‖2 ,

for all two s-sparse vectors x.

Last lecture (Lecture 5) we showed that if M � s log
(
N
s

)
and A ∈ RM×N is drawn with i.i.d.

gaussian entries N
(
0, 1

M

)
then it will, with high probability, satisfy the (s, 1/3)-RIP. Note that, if A

satisfies the (s, δ)-RIP then, for any |S| ≤ s one has ‖AS‖ ≤
√

1 + 1
3 and l

(
ATSAS

)−1 ‖ ≤
(
1− 1

3

)−1
=

3
2 , where ‖ · ‖ denotes the operator norm ‖B‖ = max‖x‖=1 ‖Bx‖.

This means that, if we take A random with i.i.d. N
(
0, 1

M

)
entries then, for any |S ≤ s| we have

that

‖AS
(
ATSAS

)−1
sign (xS) ‖ ≤

√
1 +

1

3

3

2
=
√

3
√
s,

and because of the independency among the entries of A, ASc is independent of this vector and so for
each j ∈ Sc we have

Prob

(∣∣∣ATj AS (ATSAS)−1
sign (xS)

∣∣∣ ≥ 1√
M

√
3
√
st

)
≤ 2 exp

(
− t

2

2

)
,

where Aj is the j-th column of A.
Union bound gives

Prob

(∥∥∥ATSAS (ATSAS)−1
sign (xS)

∥∥∥
∞
≥ 1√

M

√
3
√
st

)
≤ 2N exp

(
− t

2

2

)
,

which implies

Prob
(∥∥∥ATSAS (ATSAS)−1

sign (xS)
∥∥∥
∞
≥ 1
)
≤ 2N exp

−
(√

M√
3s

)2

2

 = exp

(
−1

2

[
M

3s
− 2 log(2N)

])
,

which means that we expect to exactly recover x via `1 minimization when M � s log(N), similarly
to what was predicted by Gordon’s Theorem last Lecture.

6.3 A different approach

Given x a sparse vector, we want to show that x is the unique optimal solution to

min ‖z‖1
s.t. Az = y,

(65)

Let S = supp(x) and suppose that z 6= x is an optimal solution of the `1 minimization problem.
Let v = z − x, it satisfies

‖v + x‖1 ≤ ‖x‖1 and A(v + x) = Ax,
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this means that Av = 0. Also, ‖x‖S = ‖x‖1 ≥ ‖v+x‖1 = ‖ (v + x)S ‖1+‖vSc‖1 ≥ ‖x‖S−‖vS‖1+‖v‖Sc ,
where the last inequality follows by triangular inequality. This means that ‖vS‖1 ≥ ‖vSc‖1, but since
|S| � N it is unlikely for A to have vectors in its nullspace that are this concentrated on such few
entries. This motivates the following definition.

Definition 6.5 (Null Space Property) A is said to satisfy the s-Null Space Property if, for all v
in ker(A) (the nullspace of A) and all |S| = s we have

‖vS‖1 < ‖vSc‖1.

From the argument above, it is clear that if A satisfies the Null Space Property for s, then x will
indeed be the unique optimal solution to (58). Also, now that recovery is formulated in terms of certain
vectors not belonging to the nullspace of A, one could again resort to Gordon’s theorem. And indeed,
Gordon’s Theorem can be used to understand the number of necessary measurements to do sparse
recovery28 [CRPW12]. There is also an interesting approach based on Integral Geometry [ALMT14].

As it turns out one can show that the
(
2s, 1

3

)
-RIP implies s-NSP [FR13]. We omit that proof as

it does not appear to be as enlightening (or adaptable) as the approach that was shown here.

6.4 Partial Fourier matrices satisfying the Restricted Isometry Property

While the results above are encouraging, rarely one has the capability of designing random gaussian
measurements. A more realistic measurement design is to use rows of the Discrete Fourier Transform:
Consider the random M ×N matrix obtained by drawing rows uniformly with replacement from the
N ×N discrete Fourier transform matrix. It is known [CT06] that if M = Ωδ(K polylogN), then the
resulting partial Fourier matrix satisfies the restricted isometry property with high probability.

A fundamental problem in compressed sensing is determining the order of the smallest number M
of random rows necessary. To summarize the progress to date, Candès and Tao [CT06] first found that
M = Ωδ(K log6N) rows suffice, then Rudelson and Vershynin [RV08] proved M = Ωδ(K log4N), and
more recently, Bourgain [Bou14] achieved M = Ωδ(K log3N); Nelson, Price and Wootters [NPW14]
also achieved M = Ωδ(K log3N), but using a slightly different measurement matrix. The latest result
is due to Haviv and Regev [HR] giving an upper bound of M = Ωδ(K log2 k logN). As far as lower
bounds, in [BLM15] it was shown that M = Ωδ(K logN) is necessary. This draws a contrast with
random Gaussian matrices, where M = Ωδ(K log(N/K)) is known to suffice.

Open Problem 6.1 Consider the random M × N matrix obtained by drawing rows uniformly with
replacement from the N ×N discrete Fourier transform matrix. How large does M need to be so that,
with high probability, the result matrix satisfies the Restricted Isometry Property (for constant δ)?

6.5 Coherence and Gershgorin Circle Theorem

Last lectures we discussed the problem of building deterministic RIP matrices (building deterministic
RIP matrices is particularly important because checking whether a matrix is RIP is computationally

28In these references the sets considered are slightly different than the one described here, as the goal is to ensure
recovery of just one sparse vector, and not all of them simultaneously.
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hard [BDMS13, TP13]). Despite suboptimal, coherence based methods are still among the most
popular ways of building RIP matrices, we’ll briefly describe some of the ideas involved here.

Recall the definition of the Restricted Isometry Property (Definition 6.4). Essentially, it asks that
any S ⊂ [N ], |S| ≤ s satisfies:

(1− δ)‖x‖2 ≤ ‖ASx‖2 ≤ (1 + δ)‖x‖2,

for all x ∈ R|S|. This is equivalent to

max
x

xT
(
ATSAS − I

)
x

xTx
≤ δ,

or equivalently ∥∥ATSAS − I∥∥ ≤ δ.
If the columns of A are unit-norm vectors (in RM ), then the diagonal of ATSAS is all-ones, this

means that ATSAS − I consists only of the non-diagonal elements of ATSAS . If, moreover, for any two
columns ai, aj , of A we have

∣∣aTi aj∣∣ ≤ µ for some µ then, Gershgorin’s circle theorem tells us that∥∥ATSAS − I∥∥ ≤ δ(s− 1).
More precisely, given a symmetric matrix B, the Gershgorin’s circle theorem [HJ85] tells that all

of the eigenvalues of B are contained in the so called Gershgorin discs (for each i, the Gershgorin disc

corresponds to
{
λ : |λ−Bii| ≤

∑
j 6=i |Bij |

}
. If B has zero diagonal, then this reads: ‖B‖ ≤ maxi |Bij |.

Given a set of N vectors a1, . . . , aN ∈ RM we define its worst-case coherence µ as

µ = max
i 6=j

∣∣aTi aj∣∣
Given a set of unit-norm vectors a1, . . . , aNRM with worst-case coherence µ, if we form a matrix

with these vectors as columns, then it will be (s, µ(s− 1)µ)-RIP, meaning that it will be
(
s, 1

3

)
- RIP

for s ≤ 1
3

1
µ .

6.5.1 Mutually Unbiased Bases

We note that now we will consider our vectors to be complex valued, rather than real valued, but all
of the results above hold for either case.

Consider the following 2d vectors: the d vectors from the identity basis and the d orthonormal
vectors corresponding to columns of the Discrete Fourier Transform F . Since these basis are both
orthonormal the vectors in question are unit-norm and within the basis are orthogonal, it is also easy
to see that the inner product between any two vectors, one from each basis, has absolute value 1√

d
,

meaning that the worst case coherence of this set of vectors is µ = 1√
d

this corresponding matrix [I F ]

is RIP for s ≈
√
d.

It is easy to see that 1√
d

coherence is the minimum possible between two orthonormal bases in Cd,
such bases are called unbiased (and are important in Quantum Mechanics, see for example [BBRV01])
This motivates the question of how many orthonormal basis can be made simultaneously (or mutually)
unbiased in Cd, such sets of bases are called mutually unbiased bases. LetM(d) denote the maximum
number of such bases. It is known that M(d) ≤ d+ 1 and that this upper bound is achievable when
d is a prime power, however even determining the value of M(6) is open [BBRV01].
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Open Problem 6.2 How many mutually unbiased bases are there in 6 dimensions? Is it true that
M(6) < 7?29

6.5.2 Equiangular Tight Frames

Another natural question is whether one can get better coherence (or more vectors) by relaxing the
condition that the set of vectors have to be formed by taking orthonormal basis. A tight frame (see,
for example, [CK12] for more on Frame Theory) is a set of N vectors in CM (with N ≥M) that spans
CM “equally”. More precisely:

Definition 6.6 (Tight Frame) v1, . . . , vN ∈ CM is a tight frame if there exists a constant α such
that

N∑
k=1

|〈vk, x〉|2 = α‖x‖2, ∀x∈CM ,

or equivalently
N∑
k=1

vkv
T
k = αI.

The smallest coherence of a set of N unit-norm vectors in M dimensions is bounded below by the
Welch bound (see, for example, [BFMW13]) which reads:

µ ≥

√
N −M
M(N − 1)

.

One can check that, due to this limitation, deterministic constructions based on coherence cannot
yield matrices that are RIP for s�

√
M , known as the square-root bottleneck [BFMW13, Tao07].

There are constructions that achieve the Welch bound, known as Equiangular Tight Frames
(ETFs), these are tight frames for which all inner products between pairs of vectors have the same

modulus µ =
√

N−M
M(N−1) , meaning that they are “equiangular”. It is known that for there to exist an

ETF in CM one needs N ≤M2 and ETF’s for which N = M2 are important in Quantum Mechanics,
and known as SIC-POVM’s. However, they are not known to exist in every dimension (see here for
some recent computer experiments [SG10]). This is known as Zauner’s conjecture.

Open Problem 6.3 Prove or disprove the SIC-POVM / Zauner’s conjecture: For any d, there exists
an Equiangular tight frame with d2 vectors in Cd dimensions. (or, there exist d2 equiangular lines in
Cd).

We note that this conjecture was recently shown [Chi15] for d = 17 and refer the reader to
this interesting remark [Mix14c] on the description length of the constructions known for different
dimensions.

29The author thanks Bernat Guillen Pegueroles for suggesting this problem.
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6.5.3 The Paley ETF

There is a simple construction of an ETF made of 2M vectors in M dimensions (corresponding to
a M × 2M matrix) known as the Paley ETF that is essentially a partial Discrete Fourier Transform
matrix. While we refer the reader to [BFMW13] for the details the construction consists of picking
rows of the p× p Discrete Fourier Transform (with p ∼= 1 mod 4 a prime) with indices corresponding
to quadratic residues modulo p. Just by coherence considerations this construction is known to be
RIP for s ≈ √p but conjectured [BFMW13] to be RIP for s ≈ p

polylogp , which would be predicted if

the choice os rows was random (as discussed above)30. Although partial conditional (conditioned on
a number theory conjecture) progress on this conjecture has been made [BMM14] no unconditional
result is known for s� √p. This motivates the following Open Problem.

Open Problem 6.4 Does the Paley Equiangular tight frame satisfy the Restricted Isometry Property
pass the square root bottleneck? (even by logarithmic factors?).

We note that [BMM14] shows that improving polynomially on this conjecture implies an improve-
ment over the Paley clique number conjecture (Open Problem 8.4.)

6.6 The Kadison-Singer problem

The Kadison-Singer problem (or the related Weaver’s conjecture) was one of the main questions in
frame theory, it was solved (with a non-constructive proof) in the recent breakthrough of Marcus,
Spielman, and Srivastava [MSS15b], using similar techniques to their earlier work [MSS15a]. Their
theorem guarantees the existence of universal constants η ≥ 2 and θ > 0 s.t. for any tight frame
ω1, . . . , ωN ∈ CM satisfying ‖ωk‖ ≤ 1 and

N∑
k=1

ωkω
T
k = ηI,

there exists a partition of this tight frame S1, S2 ⊂ [N ] such that each is “almost a tight frame” in the
sense that, ∑

k∈Sj

ωkω
T
k � (η − θ) I.

However, a constructive prove is still not known and there is no known (polynomial time) method
that is known to construct such partitions.

Open Problem 6.5 Give a (polynomial time) construction of the tight frame partition satisfying the
properties required in the Kadison-Singer problem (or the related Weaver’s conjecture).

30We note that the quadratic residues are known to have pseudorandom properties, and indeed have been leveraged
to reduce the randomness needed in certain RIP constructions [BFMM14]
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7 Group Testing and Error-Correcting Codes

7.1 Group Testing

During the Second World War the United States was interested in weeding out all syphilitic soldiers
called up for the army. However, syphilis testing back then was expensive and testing every soldier
individually would have been very costly and inefficient. A basic breakdown of a test is: 1) Draw
sample from a given individual, 2) Perform required tests, and 3) Determine presence or absence of
syphilis.

If there are n soldiers, this method of testing leads to n tests. If a significant portion of the
soldiers were infected then the method of individual testing would be reasonable. The goal however,
is to achieve effective testing in the more likely scenario where it does not make sense to test n (say
n = 100, 000) people to get k (say k = 10) positives.

Let’s say that it was believed that there is only one soldier infected, then one could mix the samples
of half of the soldiers and with a single test determined in which half the infected soldier is, proceeding
with a binary search we could pinpoint the infected individual in log n tests. If instead of one, one
believes that there are at most k infected people, then one could simply run k consecutive binary
searches and detect all of the infected individuals in k log n tests. Which would still be potentially
much less than n.

For this method to work one would need to observe the outcome of the previous tests before
designing the next test, meaning that the samples have to be prepared adaptively. This is often not
practical, if each test takes time to run, then it is much more efficient to run them in parallel (at
the same time). This means that one has to non-adaptively design T tests (meaning subsets of the n
individuals) from which it is possible to detect the infected individuals, provided there are at most k
of them. Constructing these sets is the main problem in (Combinatorial) Group testing, introduced
by Robert Dorfman [Dor43] with essentially the motivation described above.31

Let Ai be a subset of [T ] = {1, . . . , T} that indicates the tests for which soldier i participates.
Consider A the family of n such sets A = {A1, . . . , An}. We say that A satisfies the k-disjunct
property if no set in A is contained in the union of k other sets in A. A test set designed in such a
way will succeed at identifying the (at most k) infected individuals – the set of infected tests is also a
subset of [T ] and it will be the union of the Ai’s that correspond to the infected soldiers. If the set
of infected tests contains a certain Ai then this can only be explained by the soldier i being infected
(provided that there are at most k infected people).

Theorem 7.1 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

T = O
(
k2 log n

)
.

Proof. We will use the probabilistic method. We will show that, for T = Ck2 log n (where C is
a universal constant), by drawing the family A from a (well-chosen) distribution gives a k−disjunct
family with positive probability, meaning that such a family must exist (otherwise the probability
would be zero).

31in fact, our description for the motivation of Group Testing very much follows the description in [Dor43].
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Let 0 ≤ p ≤ 1 and let A be a collection of n random (independently drawn) subsets of [T ].
The distribution for a random set A is such that each t ∈ [T ] belongs to A with probability p (and
independently of the other elements).

Consider k+ 1 independent draws of this random variable, A0, . . . , Ak. The probability that A0 is
contained in the union of A1 through Ak is given by

Pr [A0 ⊆ (A1 ∪ · · · ∪Ak)] =
(

1− p(1− p)k
)T

.

This is minimized for p = 1
k+1 . For this choice of p, we have

1− p(1− p)k = 1− 1

k + 1

(
1− 1

k + 1

)k
Given that there are n such sets, there are (k + 1)

(
n
k+1

)
different ways of picking a set and k

others to test whether the first is contained in the union of the other k. Hence, using a union bound
argument, the probability that A is k-disjunct can be bounded as

Pr[k − disjunct] ≥ 1− (k + 1)

(
n

k + 1

)(
1− 1

k + 1

(
1− 1

k + 1

)k)T
.

In order to show that one of the elements in A is k-disjunct we show that this probability is strictly
positive. That is equivalent to(

1− 1

k + 1

(
1− 1

k + 1

)k)T
≤ 1

(k + 1)
(
n
k+1

) .
Note that

(
1− 1

k+1

)k
→ e−1 1

1− 1
k+1

= e−1 k+1
k , as k →∞. Thus, we only need

T ≥
log
(

(k + 1)
(
n
k+1

))
− log

(
1− 1

k+1e
−1 k+1

k

) =
log
(
k
(
n
k+1

))
− log (1− (ek)−1)

= O(k2 log(n/k)),

where the last inequality uses the fact that log
((

n
k+1

))
= O

(
k log

(
n
k

))
due to Stirling’s formula and

the Taylor expansion − log(1− x−1)−1 = O(x) 2

This argument simply shows the existence of a family satisfying the k-disjunt property. However,
it is easy to see that by having T slightly larger one can ensure that the probability that the random
family satisfies the desired property can be made very close to 1.

Remarkably, the existence proof presented here is actually very close to the best known lower
bound.

Theorem 7.2 Given n and k, if there exists a family A of subsets of [T ] satisfying the k-disjunct
property, then

T = Ω

(
k2 log n

log k

)
.
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Proof.

Fix a u such that 0 < u < T
2 ; later it will be fixed to u :=

⌈
(T − k)/

(
k−1

2

)⌉
. We start by

constructing a few auxiliary family of sets. Let

A0 = {A ∈ A : |A| < u},

and let A1 ⊆ A denote the family of sets in A that contain their own unique u-subset,

A1 :=
{
A ∈ A : ∃F ⊆ A : |F | = u and, for all other A′ ∈ A, F 6⊆ A′

}
.

We will procede by giving an upper bound to A0 ∪A1. For that, we will need a couple of auxiliary
family of sets. Let F denote the family of sets F in the definition of A1. More precisely,

F := {F ∈ [T ] : |F | = u and ∃!A ∈ A : F ⊆ A} .

By construction |A1| ≤ |F|
Also, let B be the family of subsets of [T ] of size u that contain an element of A0,

B = {B ⊆ [T ] : |B| = u and ∃A ∈ A0 such that A ⊆ B} .

We now prove that |A0| ≤ |B|. Let B′ denote the family of subsets of [T ] of size u that are not in
B,

B′ =
{
B′ ⊆ [T ] : |B′| = u and B′ /∈ B

}
.

By construction of A0 and B, no set in B′ contains a set in A0 nor does a set in A0 contain a set
in B′. Also, both A0 and B′ are antichains (or Sperner family), meaning that no pair of sets in each
family contains each other. This implies that A0 ∪ B′ is an antichain containing only sets with u or
less elements. The Lubell-Yamamoto-Meshalkin inequality [Yam54] directly implies that (as long as
u < T

2 ) the largest antichain whose sets contain at most u elements is the family of subsets of [T ] of
size u. This means that

|A0|+
∣∣B′∣∣ =

∣∣A0 ∪ B′
∣∣ ≤ (T

u

)
=
∣∣B ∪ B′

∣∣ = |B|+
∣∣B′∣∣ .

This implies that |A0| ≤ |B|.
Because A satisfies the k-disjunct property, no two sets in A can contain eachother. This implies

that the families B and F of sets of size u are disjoint which implies that

|A0 ∪ A1| = |A0|+ |A1| ≤ |B|+ |F| ≤
(
T

u

)
.

Let A2 := A \ (A0 ∪ A1). We want to show that if A ∈ A2 and A1, . . . , Aj ∈ A we have∣∣∣∣∣A \
j⋃
i=1

Ai

∣∣∣∣∣ > u(k − j). (66)

This is readily shown by noting that if (66) did not hold then one could find Bj+1, . . . , Bk subsets of

A of size t such that A \
⋃j
i=1Ai ⊆

⋃k
i=j+1Bi. Since A as no unique subsets of size t there must exist
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Aj+1, . . . , Ak ∈ A such that Bi ⊆ Ai for i = j + 1, . . . , k. This would imply that A ⊆
⋃k
i=1Ai which

would contradict the k-disjunct property.
If |A2| > k then we can take A0, A1, . . . , Ak distinct elements of A2. For this choice and any

j = 0, . . . , k ∣∣∣∣∣∣Aj \
⋃

0≤i<j
Ai

∣∣∣∣∣∣ ≥ 1 + u(k − j).

This means that∣∣∣∣∣∣
k⋃
j=0

Aj

∣∣∣∣∣∣ =
∑

j=0,...,k

∣∣∣∣∣∣Aj \
⋃

0≤i<j
Ai

∣∣∣∣∣∣ ≥
∑

j=0,...,k

[1 + u(k − j)] = 1 + k + u

(
k + 1

2

)
.

Since all sets in A are subsets of [T ] we must have 1 + k + u
(
k+1

2

)
≤
∣∣∣⋃k

j=0Aj

∣∣∣ ≤ T . On the other

hand, taking

u :=

⌈
(T − k)/

(
k + 1

2

)⌉
gives a contradition (note that this choice of u is smaller than T

2 as long as k > 2). This implies that
|A2| ≤ k which means that

n = |A| = |A0|+ |A1|+ |A2| ≤ k +

(
T

u

)
= k +

(
T⌈

(T − k)/
(
k+1

2

)⌉).
This means that

log n ≤ log

(
k +

(
T⌈

(T − k)/
(
k+1

2

)⌉)) = O

(
T

k2
log k

)
,

which concludes the proof of the theorem.
2

We essentially borrowed the proof of Theorem 7.2 from [Fur96]. We warn the reader however that
the notation in [Fur96] is drasticly different than ours, T corresponds to the number of people and n
to the number of tests.

There is another upper bound, incomparable to the one in Theorem 7.1 that is known.

Theorem 7.3 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

T = O

(
k2

(
log n

log k

)2
)
.

The proof of this Theorem uses ideas of Coding Theory (in particular Reed-Solomon codes) so we
will defer it for next section, after a crash course on coding theory.

The following Corollary follows immediately.
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Corollary 7.4 Given n and k, there exists a family A satisfying the k-disjunct property for a number
of tests

T = O
(
k2 log n

log k
min

{
log k,

log n

log k

})
.

While the upper bound in Corollary 7.4 and the lower bound in Theorem 7.2 are quite close, there
is still a gap. This gap was recently closed and Theorem 7.2 was shown to be optimal [DVPS14]
(original I was not aware of this reference and closing this gap was posed as an open problem).

Remark 7.5 We note that the lower bounds established in Theorem 7.2 are not an artifact of the
requirement of the sets being k-disjunct. For the measurements taken in Group Testing to uniquely
determine a group of k infected individuals it must be that the there are no two subfamilies of at most
k sets in A that have the same union. If A is not k− 1-disjunct then there exists a subfamily of k− 1
sets that contains another set A, which implies that the union of that subfamily is the same as the
union of the same subfamily together with A. This means that a measurement system that is able to
uniquely determine a group of k infected individuals must be k − 1-disjunct.

7.2 Some Coding Theory and the proof of Theorem 7.3

In this section we (very) briefly introduce error-correcting codes and use Reed-Solomon codes to prove
Theorem 7.3. We direct the reader to [GRS15] for more on the subject.

Lets say Alice wants to send a message to Bob but they can only communicate through a channel
that erases or replaces some of the letters in Alice’s message. If Alice and Bob are communicating with
an alphabet Σ and can send messages with lenght N they can pre-decide a set of allowed messages
(or codewords) such that even if a certain number of elements of the codeword gets erased or replaced
there is no risk for the codeword sent to be confused with another codeword. The set C of codewords
(which is a subset of ΣN ) is called the codebook and N is the blocklenght.

If every two codewords in the codebook differs in at least d coordinates, then there is no risk of
confusion with either up to d − 1 erasures or up to bd−1

2 c replacements. We will be interested in
codebooks that are a subset of a finite field, meanign that we will take Σ to be Fq for q a prime power
and C to be a linear subspace of Fq.

The dimension of the code is given by

m = logq |C|,

and the rate of the code by

R =
m

N
.

Given two code words c1, c2 the Hamming distance ∆(c1, c2) is the number of entries where they
differ. The distance of a code is defined as

d = min
c1 6=c2∈C

∆(c1, c2).

For linear codes, it is the same as the minimum weight

ω(C) = min
c∈C\{0}

∆(c).
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We say that a linear code C is a [N,m, d]q code (where N is the blocklenght, m the dimension, d
the distance, and Fq the alphabet.

One of the main goals of the theory of error-correcting codes is to understand the possible values
of rates, distance, and q for which codes exist. We simply briefly mention a few of the bounds and
refer the reader to [GRS15]. An important parameter is given by the entropy function:

Hq(x) = x
log(q − 1)

log q
− x log x

log q
− (1− x)

log(1− x)

log q
.

• Hamming bound follows essentially by noting that if a code has distance d then balls of radius
bd−1

2 c centered at codewords cannot intersect. It says that

R ≤ 1−Hq

(
1

2

d

N

)
+ o(1)

• Another particularly simple bound is Singleton bound (it can be easily proven by noting that
the first n+ d+ 2 of two codewords need to differ in at least 2 coordinates)

R ≤ 1− d

N
+ o(1).

There are probabilistic constructions of codes that, for any ε > 0, satisfy

R ≥ 1−Hq

(
d

N

)
− ε.

This means that R∗ the best rate achievable satisties

R∗ ≥ 1−Hq

(
d

N

)
, (67)

known as the GilbertVarshamov (GV) bound [Gil52, Var57]. Even for q = 2 (corresponding to binary
codes) it is not known whether this bound is tight or not, nor are there deterministic constructions
achieving this Rate. This motivates the following problem.

Open Problem 7.1 1. Construct an explicit (deterministic) binary code (q = 2) satisfying the
GV bound (67).

2. Is the GV bound tight for binary codes (q = 2)?

7.2.1 Boolean Classification

A related problem is that of Boolean Classification [AABS15]. Let us restrict our attention to In
error-correcting codes one wants to build a linear codebook that does not contain a codeword with
weight ≤ d − 1. In other words, one wants a linear codebook C that does intersect B(d − 1) = {x ∈
{0, 1}n : 0 < ∆(x) ≤ d− 1} the pinched Hamming ball of radius d (recall that ∆(d) is the Hamming
weight of x, meaning the number of non-zero entries). In the Boolean Classification problem one is
willing to confuse two codewords as long as they are sufficiently close (as this is likely to mean they are
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in the same group, and so they are the same from the point of view of classification). The objective
then becomes understanding what is the largest possible rate of a codebook that avoids an Annulus
A(a, b) = {x ∈ {0, 1}n : a ≤ ∆(x) ≤ b}. We refer the reader to [AABS15] for more details. Let us call
that rate

R∗A(a, b, n).

Note that R∗A(1, d−1, n) corresponds to the optimal rate for a binary error-correcting code, conjectured
to be 1−Hq

(
d
N

)
(The GV bound).

Open Problem 7.2 It is conjectured in [AABS15] (Conjecture 3 in [AABS15]) that the optimal rate
in this case is given by

R∗A(αn, βn, n) = α+ (1− α)R∗A (1, βn, (1− α)) + o(1),

where o(1) goes to zero as n goes to infinity.
This is established in [AABS15] for β ≥ 2α but open in general.

7.2.2 The proof of Theorem 7.3

Reed-Solomon codes[RS60] are [n,m, n − m + 1]q codes, for m ≤ n ≤ q. They meet the Singleton
bound, the drawback is that they have very large q (q > n). We’ll use their existence to prove
Theorem 7.3
Proof. [of Theorem 7.3]

We will construct a family A of sets achieving the upper bound in Theorem 7.3. We will do this
by using a Reed-Solomon code [q,m, q−m+1]q. This code has qm codewords. To each codework c we
will correspond a binary vector a of length q2 where the i-th q-block of a is the indicator of the value
of c(i). This means that a is a vector with exactly q ones (and a total of q2 entries)32. We construct
the family A for T = q2 and n = qm (meaning qm subsets of

[
q2
]
) by constructing, for each codeword

c, the set of non-zero entries of the corresponding binary vector a.
These sets have the following properties,

min
j∈[n]
|Aj | = q,

and
max

j1 6=j2∈[n]
|Aj1 ∩Aj2 | = q − min

c1 6=c2∈C
∆(c1, c2) ≤ q − (q −m+ 1) = m− 1.

This readily implies that A is k-disjunct for

k =

⌊
q − 1

m− 1

⌋
,

because the union of
⌊
q−1
m−1

⌋
sets can only contain (m− 1)

⌊
q−1
m−1

⌋
< q elements of another set.

Now we pick q ≈ 2k logn
log k (q has to be a prime but there is always a prime between this number and

its double by Bertrand’s postulate (see [?] for a particularly nice proof)). Then m = logn
log q (it can be

taken to be the ceiling of this quantity and then n gets updated accordingly by adding dummy sets).

32This is precisely the idea of code concatenation [GRS15]
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This would give us a family (for large enough parameters) that is k-disjunct for⌊
q − 1

m− 1

⌋
≥

⌊
2k logn

log k − 1

logn
log q + 1− 1

⌋

=

⌊
2k

log q

log k
− log q

log n

⌋
≥ k.

Noting that

T ≈
(

2k
log n

log k

)2

.

concludes the proof. 2

7.3 In terms of ����linear Bernoulli algebra

We can describe the process above in terms of something similar to a sparse linear system. let 1Ai be
the t − dimensional indicator vector of Ai, 1i:n be the (unknown) n−dimensional vector of infected
soldiers and 1t:T the T−dimensional vector of infected (positive) tests. Then

 | |
1A1 · · · 1An
| |

⊗

|
|

1i:n
|
|

 =

 |
1t:T
|

 ,
where ⊗ is matrix-vector multiplication in the Bernoulli algebra, basically the only thing that is
different from the standard matrix-vector multiplications is that the addition operation is replaced by
binary “or”, meaning 1⊕ 1 = 1.

This means that we are essentially solving a linear system (with this non-standard multiplication).
Since the number of rows is T = O(k2 log(n/k)) and the number or columns n � T the system is
underdetermined. Note that the unknown vector, 1i:n has only k non-zero components, meaning it
is k−sparse. Interestingly, despite the similarities with the setting of sparse recovery discussed in a
previous lecture, in this case, Õ(k2) measurements are needed, instead of Õ(k) as in the setting of
Compressed Sensing.

7.3.1 Shannon Capacity

The goal Shannon Capacity is to measure the amount of information that can be sent through a noisy
channel where some pairs of messages may be confused with eachother. Given a graph G (called
the confusion graph) whose vertices correspond to messages and edges correspond to messages that
may be confused with each other. A good example is the following: say one has a alphabet of five
symbols 1, 2, 3, 4, 5 and that each digit can be confused with the immediately before and after (and
1 and 5 can be confused with eachother). The confusion graph in this case is C5, the cyclic graph
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on 5 nodes. It is easy to see that one can at most send two messages of one digit each without
confusion, this corresponds to the independence number of C5, α(C5) = 2. The interesting question
arises when asking how many different words of two digits can be sent, it is clear that one can send at
least α(C5)2 = 4 but the remarkable fact is that one can send 5 (for example: “11”,“23”,“35”,“54”,
or “42”). The confusion graph for the set of two digit words C⊕2

5 can be described by a product of
the original graph C5 where for a graph G on n nodes G⊕2 is a graph on n nodes where the vertices
are indexed by pairs ij of vertices of G and

(ij, kl) ∈ E
(
G⊕2

)
if both a) i = k or i, k ∈ E and b) j = l or j, l ∈ E hold.

The above observation can then be written as α
(
C⊕2

5

)
= 5. This motivates the definition of

Shannon Capacity [Sha56]

θS (G) sup
k

(
G⊕k

) 1
k
.

Lovasz, in a remarkable paper [Lov79], showed that θS (C5) =
√

5, but determining this quantity is
an open problem for many graphs of interested [AL06], including C7.

Open Problem 7.3 What is the Shannon Capacity of the 7 cycle?

7.3.2 The deletion channel

In many applications the erasures or errors suffered by the messages when sent through a channel are
random, and not adversarial. There is a beautiful theory understanding the amount of information
that can be sent by different types of noisy channels, we refer the reader to [CT] and references therein
for more information.

A particularly challenging channel to understand is the deletion channel. The following open
problem will envolve a particular version of it. Say we have to send a binary string “10010” through
a deletion channel and the first and second bits get deleted, then the message receive would be “010”
and the receiver would not know which bits were deleted. This is in contrast with the erasure channel
where bits are erased but the receiver knows which bits are missing (in the case above the message
received would be “??010”). We refer the reader to this survey on many of the interesting questions
(and results) regarding the Deletion channel [Mit09].

A particularly interesting instance of the problem is the Trace Reconstruction problem, where the
same message is sent multiple times and the goal of the receiver is to find exactly the original message
sent from the many observed corrupted version of it. We will be interested in the following quantity:
Draw a random binary string with n bits, suppose the channel has a deletion probability of 1

2 for each
bit (independently), define D

(
n; 1

2

)
has the number of times the receiver needs to receive the message

(with independent corruptions) so that she can decode the message exactly, with high probability.
It is easy to see that D

(
n; 1

2

)
≤ 2n, since roughly once in every 2n times the whole message will go

through the channel unharmed. It is possible to show (see [HMPW]) that D
(
n; 1

2

)
≤ 2

√
n but it is not

known whether this bound is tight.

Open Problem 7.4 1. What are the asymptotics of D
(
n; 1

2

)
?
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2. An interesting aspect of the Deletion Channel is that different messages may have different
difficulties of decoding. This motivates the following question: What are the two (distinct)
binary sequences x(2) and x(2) that are more difficult to distinguish (let’s say that the receiver
knows that either x(1) or x(2) was sent but not which)?
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8 Approximation Algorithms and Max-Cut

8.1 The Max-Cut problem

Unless the widely believed P 6= NP conjecture is false, there is no polynomial algorithm that can
solve all instances of an NP-hard problem. Thus, when faced with an NP-hard problem (such as the
Max-Cut problem discussed below) one has three options: to use an exponential type algorithm that
solves exactly the problem in all instances, to design polynomial time algorithms that only work for
some of the instances (hopefully the typical ones!), or to design polynomial algorithms that, in any
instance, produce guaranteed approximate solutions. This section is about the third option. The
second is discussed in later in the course, in the context of community detection.

The Max-Cut problem is the following: Given a graph G = (V,E) with non-negative weights wij on
the edges, find a set S ⊂ V for which cut(S) is maximal. Goemans and Williamson [GW95] introduced
an approximation algorithm that runs in polynomial time and has a randomized component to it, and
is able to obtain a cut whose expected value is guaranteed to be no smaller than a particular constant
αGW times the optimum cut. The constant αGW is referred to as the approximation ratio.

Let V = {1, . . . , n}. One can restate Max-Cut as

max 1
2

∑
i<j wij(1− yiyj)

s.t. |yi| = 1
(68)

The yi’s are binary variables that indicate set membership, i.e., yi = 1 if i ∈ S and yi = −1 otherwise.
Consider the following relaxation of this problem:

max 1
2

∑
i<j wij(1− uTi uj)

s.t. ui ∈ Rn, ‖ui‖ = 1.
(69)

This is in fact a relaxation because if we restrict ui to be a multiple of e1, the first element of the
canonical basis, then (79) is equivalent to (68). For this to be a useful approach, the following two
properties should hold:

(a) Problem (79) needs to be easy to solve.

(b) The solution of (79) needs to be, in some way, related to the solution of (68).

Definition 8.1 Given a graph G, we define MaxCut(G) as the optimal value of (68) and RMaxCut(G)
as the optimal value of (79).

We start with property (a). Set X to be the Gram matrix of u1, . . . , un, that is, X = UTU where
the i’th column of U is ui. We can rewrite the objective function of the relaxed problem as

1

2

∑
i<j

wij(1−Xij)

One can exploit the fact that X having a decomposition of the form X = Y TY is equivalent to being
positive semidefinite, denoted X � 0. The set of PSD matrices is a convex set. Also, the constraint
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‖ui‖ = 1 can be expressed as Xii = 1. This means that the relaxed problem is equivalent to the
following semidefinite program (SDP):

max 1
2

∑
i<j wij(1−Xij)

s.t. X � 0 and Xii = 1, i = 1, . . . , n.
(70)

This SDP can be solved (up to ε accuracy) in time polynomial on the input size and log(ε−1)[VB96].
There is an alternative way of viewing (70) as a relaxation of (68). By taking X = yyT one can

formulate a problem equivalent to (68)

max 1
2

∑
i<j wij(1−Xij)

s.t. X � 0 , Xii = 1, i = 1, . . . , n, and rank(X) = 1.
(71)

The SDP (70) can be regarded as a relaxation of (71) obtained by removing the non-convex rank
constraint. In fact, this is how we will later formulate a similar relaxation for the minimum bisection
problem.

We now turn to property (b), and consider the problem of forming a solution to (68) from a
solution to (70). From the solution {ui}i=1,...,n of the relaxed problem (70), we produce a cut subset
S′ by randomly picking a vector r ∈ Rn from the uniform distribution on the unit sphere and setting

S′ = {i|rTui ≥ 0}

In other words, we separate the vectors u1, . . . , un by a random hyperplane (perpendicular to r). We
will show that the cut given by the set S′ is comparable to the optimal one.

Figure 20: θ = arccos(uTi uj)

Let W be the value of the cut produced by the procedure described above. Note that W is a
random variable, whose expectation is easily seen (see Figure 20) to be given by

E[W ] =
∑
i<j

wij Pr
{

sign(rTui) 6= sign(rTuj)
}

=
∑
i<j

wij
1

π
arccos(uTi uj).
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If we define αGW as

αGW = min
−1≤x≤1

1
π arccos(x)

1
2(1− x)

,

it can be shown that αGW > 0.87.
It is then clear that

E[W ] =
∑
i<j

wij
1

π
arccos(uTi uj) ≥ αGW

1

2

∑
i<j

wij(1− uTi uj). (72)

Let MaxCut(G) be the maximum cut of G, meaning the maximum of the original problem (68).
Naturally, the optimal value of (79) is larger or equal than MaxCut(G). Hence, an algorithm that
solves (79) and uses the random rounding procedure described above produces a cut W satisfying

MaxCut(G) ≥ E[W ] ≥ αGW
1

2

∑
i<j

wij(1− uTi uj) ≥ αGWMaxCut(G), (73)

thus having an approximation ratio (in expectation) of αGW . Note that one can run the randomized
rounding procedure several times and select the best cut.

Note that the above gives

MaxCut(G) ≥ E[W ] ≥ αGWRMaxCut(G) ≥ αGWMaxCut(G)

8.2 Can αGW be improved?

A natural question is to ask whether there exists a polynomial time algorithm that has an approxi-
mation ratio better than αGW .

Figure 21: The Unique Games Problem

The unique games problem (as depicted in Figure 21) is the following: Given a graph and a set
of k colors, and, for each edge, a matching between the colors, the goal in the unique games problem
is to color the vertices as to agree with as high of a fraction of the edge matchings as possible. For
example, in Figure 21 the coloring agrees with 3

4 of the edge constraints, and it is easy to see that one
cannot do better.

The Unique Games Conjecture of Khot [Kho02], has played a major role in hardness of approxi-
mation results.
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Conjecture 8.2 For any ε > 0, the problem of distinguishing whether an instance of the Unique
Games Problem is such that it is possible to agree with a ≥ 1 − ε fraction of the constraints or it is
not possible to even agree with a ε fraction of them, is NP-hard.

There is a sub-exponential time algorithm capable of distinguishing such instances of the unique
games problem [ABS10], however no polynomial time algorithm has been found so far. At the moment
one of the strongest candidates to break the Unique Games Conjecture is a relaxation based on the
Sum-of-squares hierarchy that we will discuss below.

Open Problem 8.1 Is the Unique Games conjecture true? In particular, can it be refuted by a
constant degree Sum-of-squares relaxation?

Remarkably, approximating Max-Cut with an approximation ratio better than αGW is has hard
as refuting the Unique Games Conjecture (UG-hard) [KKMO05]. More generality, if the Unique
Games Conjecture is true, the semidefinite programming approach described above produces optimal
approximation ratios for a large class of problems [Rag08].

Not depending on the Unique Games Conjecture, there is a NP-hardness of approximation of 16
17

for Max-Cut [Has02].

Remark 8.3 Note that a simple greedy method that assigns membership to each vertex as to maximize
the number of edges cut involving vertices already assigned achieves an approximation ratio of 1

2 (even
of 1

2 of the total number of edges, not just of the optimal cut).

8.3 A Sums-of-Squares interpretation

We now give a different interpretation to the approximation ratio obtained above. Let us first slightly
reformulate the problem (recall that wii = 0).

max
yi=±1

1

2

∑
i<j

wij(1− yiyj) = max
yi=±1

1

4

∑
i,j

wij(1− yiyj)

= max
yi=±1

1

4

∑
i,j

wij

(
y2
i + y2

j

2
− yiyj

)

= max
yi=±1

1

4

−∑
i,j

wijyiyj +
1

2

∑
i

∑
j

wij

 y2
i +

1

2

∑
j

[∑
i

wij

]
y2
j


= max

yi=±1

1

4

−∑
i,j

wijyiyj +
1

2

∑
i

deg(i)y2
i +

1

2

∑
j

deg(j)y2
j


= max

yi=±1

1

4

−∑
i,j

wijyiyj +
∑
i

deg(i)y2
i


= max

yi=±1

1

4
yTLGy,
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where LG = DG−W is the Laplacian matrix, DG is a diagonal matrix with (DG)ii = deg(i) =
∑

j wij
and Wij = wij .

This means that we rewrite (68) as

max 1
4y

TLGy
yi = ±1, i = 1, . . . , n.

(74)

Similarly, (70) can be written (by taking X = yyT ) as

max 1
4 Tr (LGX)

s.t. X � 0
Xii = 1, i = 1, . . . , n.

(75)

Indeed, given
Next lecture we derive the formulation of the dual program to (75) in the context of recovery in

the Stochastic Block Model. Here we will simply show weak duality. The dual is given by

min Tr (D)
s.t. D is a diagonal matrix

D − 1
4LG � 0.

(76)

Indeed, if X is a feasible solution to (75) and D a feasible solution to (76) then, since X and
D − 1

4LG are both positive semidefinite Tr
[
X
(
D − 1

4LG
)]
≥ 0 which gives

0 ≤ Tr

[
X

(
D − 1

4
LG

)]
= Tr(XD)− 1

4
Tr (LGX) = Tr(D)− 1

4
Tr (LGX) ,

since D is diagonal and Xii = 1. This shows weak duality, the fact that the value of (76) is larger
than the one of (75).

If certain conditions, the so called Slater conditions [VB04, VB96], are satisfied then the optimal
values of both programs are known to coincide, this is known as strong duality. In this case, the
Slater conditions ask whether there is a matrix strictly positive definite that is feasible for (75) and
the identity is such a matrix. This means that there exists D\ feasible for (76) such that

Tr(D\) = RMaxCut.

Hence, for any y ∈ Rn we have

1

4
yTLGy = RMaxCut− yT

(
D\ − 1

4
LG

)T
+

n∑
i=1

Dii

(
y2
i − 1

)
. (77)

Note that (77) certifies that no cut of G is larger than RMaxCut. Indeed, if y ∈ {±1}2 then y2
i = 1

and so

RMaxCut− 1

4
yTLGy = yT

(
D\ − 1

4
LG

)T
.
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Since D\ − 1
4LG � 0, there exists V such that D\ − 1

4LG = V V T with the columns of V denoted by

v1, . . . , vn. This means that meaning that yT
(
D\ − 1

4LG
)T

=
∥∥V T y

∥∥2
=
∑n

k=1(vTk y)2. This means
that, for y ∈ {±1}2,

RMaxCut− 1

4
yTLGy =

n∑
k=1

(vTk y)2.

In other words, RMaxCut − 1
4y

TLGy is, in the hypercube (y ∈ {±1}2) a sum-of-squares of degree 2.
This is known as a sum-of-squares certificate [BS14, Bar14, Par00, Las01, Sho87, Nes00]; indeed, if a
polynomial is a sum-of-squares naturally it is non-negative.

Note that, by definition, MaxCut− 1
4y

TLGy is always non-negative on the hypercube. This does
not mean, however, that it needs to be a sum-of-squares33 of degree 2.

(A Disclaimer: the next couple of paragraphs are a bit hand-wavy, they contain some of intuition
for the Sum-of-squares hierarchy but for details and actual formulations, please see the references.)

The remarkable fact is that, if one bounds the degree of the sum-of-squares certificate, it can be
found using Semidefinite programming [Par00, Las01]. In fact, SDPs (76) and (76) are finding the
smallest real number Λ such that Λ − 1

4y
TLGy is a sum-of-squares of degree 2 over the hypercube,

the dual SDP is finding a certificate as in (77) and the primal is constraining the moments of degree
2 of y of the form Xij = yiyj (see [Bar14] for some nice lecture notes on Sum-of-Squares, see also
Remark 8.4). This raises a natural question of whether, by allowing a sum-of-squares certificate of
degree 4 (which corresponds to another, larger, SDP that involves all monomials of degree ≤ 4 [Bar14])
one can improve the approximation of αGW to Max-Cut. Remarkably this is open.

Open Problem 8.2 1. What is the approximation ratio achieved by (or the integrality gap of) the
Sum-of-squares degree 4 relaxation of the Max-Cut problem?

2. The relaxation described above (of degree 2) (76) is also known to produce a cut of 1 − O (
√
ε)

when a cut of 1− ε exists. Can the degree 4 relaxation improve over this?

3. What about other (constant) degree relaxations?

Remark 8.4 (triangular inequalities and Sum of squares level 4) A (simpler) natural ques-
tion is wether the relaxation of degree 4 is actually strictly tighter than the one of degree 2 for Max-Cut
(in the sense of forcing extra constraints). What follows is an interesting set of inequalities that degree
4 enforces and that degree 2 doesn’t, known as triangular inequalities.

Since yi ∈ {±1} we naturally have that, for all i, j, k

yiyj + yjyk + ykyi ≥ −1,

this would mean that, for Xij = yiyj we would have,

Xij +Xjk +Xik ≥ −1,

however it is not difficult to see that the SDP (75) of degree 2 is only able to constraint

Xij +Xjk +Xik ≥ −
3

2
,

33This is related with Hilbert’s 17th problem [Sch12] and Stengle’s Positivstellensatz [Ste74]
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which is considerably weaker. There are a few different ways of thinking about this, one is that the
three vector ui, uj , uk in the relaxation may be at an angle of 120 degrees with each other. Another way
of thinking about this is that the inequality yiyj +yjyk+ykyi ≥ −3

2 can be proven using sum-of-squares
proof with degree 2:

(yi + yj + yk)
2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −

3

2

However, the stronger constraint cannot.
On the other hand, if degree 4 monomials are involved, (let’s say XS =

∏
s∈S ys, note that X∅ = 1

and XijXik = Xjk) then the constraint
X∅
Xij

Xjk

Xki




X∅
Xij

Xjk

Xki


T

=


1 Xij Xjk Xki

Xij 1 Xik Xjk

Xjk Xik 1 Xij

Xki Xjk Xij 1

 � 0

implies Xij +Xjk +Xik ≥ −1 just by taking

1T


1 Xij Xjk Xki

Xij 1 Xik Xjk

Xjk Xik 1 Xij

Xki Xjk Xij 1

1 ≥ 0.

Also, note that the inequality yiyj + yjyk + ykyi ≥ −1 can indeed be proven using sum-of-squares proof
with degree 4 (recall that y2

i = 1):

(1 + yiyj + yjyk + ykyi)
2 ≥ 0 ⇒ yiyj + yjyk + ykyi ≥ −1.

Interestingly, it is known [KV13] that these extra inequalities alone will not increase the approximation
power (in the worst case) of (70).

8.4 The Grothendieck Constant

There is a somewhat similar remarkable problem, known as the Grothendieck problem [AN04, AMMN05].
Given a matrix A ∈ Rn×m the goal is to maximize

max xTAy
s.t. xi = ±, ∀i
s.t. yj = ±, ∀j

(78)

Note that this is similar to problem (68). In fact, if A � 0 it is not difficult to see that the optimal
solution of (78) satisfies y = x and so if A = LG, since LG � 0, (78) reduces to (68). In fact, when
A � 0 this problem is known as the little Grothendieck problem [AN04, CW04, BKS13a].

Even when A is not positive semidefinite, one can take zT = [xT yT ] and the objective can be
written as

zT
[

0 A
AT 0

]
z.
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Similarly to the approximation ratio in Max-Cut, the Grothendieck constant [Pis11] KG is the
maximum ratio (over all matrices A) between the SDP relaxation

max
∑

ij Aiju
T
i vj

s.t. ui ∈ Rn+m, ‖ui‖ = 1,
vj ∈ Rn+m, ‖vj‖ = 1

(79)

and 78, and its exact value is still unknown, the best known bounds are available here [] and are 1.676 <
KG <

π
2 log(1+

√
2)

. See also page 21 here [F+14]. There is also a complex valued analogue [Haa87].

Open Problem 8.3 What is the real Grothendieck constant KG?

8.5 The Paley Graph

Let p be a prime such that p ∼= 1 mod 4. The Paley graph of order p is a graph on p nodes (each
node associated with an element of Zp) where (i, j) is an edge if i − j is a quadratic residue modulo
p. In other words, (i, j) is an edge is there exists a such that a2 ∼= i− j mod p. Let ω(p) denote the
clique number of the Paley graph of order p, meaning the size of its largest clique. It is conjectured
that ω(p) . pollywog(n) but the best known bound is ω(p) ≤ √p (which can be easily obtained). The
only improvement to date is that, infinitely often, ω(p) ≤ √p− 1, see [BRM13].

The theta function of a graph is a Semidefinite programming based relaxation of the independence
number [Lov79] (which is the clique number of the complement graph). As such, it provides an upper
bound on the clique number. In fact, this upper bound for Paley graph matches ω(p) ≤ √p.

Similarly to the situation above, one can define a degree 4 sum-of-squares analogue to θ(G) that, in
principle, has the potential to giving better upper bounds. Indeed, numerical experiments in [GLV07]
seem to suggest that this approach has the potential to improve on the upper bound ω(p) ≤ √p

Open Problem 8.4 What are the asymptotics of the Paley Graph clique number ω(p) ? Can the the
SOS degree 4 analogue of the theta number help upper bound it? 34

Interestingly, a polynomial improvement on Open Problem 6.4. is known to imply an improvement
on this problem [BMM14].

8.6 An interesting conjecture regarding cuts and bisections

Given d and n let Greg(n, d) be a random d-regular graph on n nodes, drawn from the uniform
distribution on all such graphs. An interesting question is to understand the typical value of the
Max-Cut such a graph. The next open problem is going to involve a similar quantity, the Maximum
Bisection. Let n be even, the Maximum Bisection of a graph G on n nodes is

MaxBis(G) = max
S: |S|=n

2

cut(S),

and the related Minimum Bisection (which will play an important role in next lectures), is given by

MinBis(G) = min
S: |S|=n

2

cut(S),

34The author thanks Dustin G. Mixon for suggesting this problem.
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A typical bisection will cut half the edges, meaning d
4n. It is not surprising that, for large n,

MaxBis(G) and MinBis(G) will both fluctuate around this value, the amazing conjecture [ZB09] is
that their fluctuations are the same.

Conjecture 8.5 ([ZB09]) Let G ∼ Greg(n, d), then for all d, as n grows

1

n
(MaxBis(G) + MinBis(G)) =

d

2
+ o(1),

where o(1) is a term that goes to zero with n.

Open Problem 8.5 Prove or disprove Conjecture 8.5.

Recently, it was shown that the conjecture holds up to o(
√
d) terms [DMS15]. We also point the

reader to this paper [Lyo14], that contains bounds that are meaningful already for d = 3.
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9 Community detection and the Stochastic Block Model

9.1 Community Detection

Community detection in a network is a central problem in data science. A few lectures ago we discussed
clustering and gave a performance guarantee for spectral clustering (based on Cheeger’s Inequality)
that was guaranteed to hold for any graph. While these guarantees are remarkable, they are worst-case
guarantees and hence pessimistic in nature. In what follows we analyze the performance of a convex
relaxation based algorithm on typical instances of the community detection problem (where typical is
defined through some natural distribution of the input).

We focus on the problem of minimum graph bisection. The objective is to partition a graph in
two equal-sized disjoint sets (S, Sc) while minimizing cut(S) (note that in the previous lecture, for the
Max-Cut problem, we were maximizing it instead!).

9.2 Stochastic Block Model

We consider a random graph model that produces graphs that have a clustering structure. Let n be
an even positive integer. Given two sets of m = n

2 nodes consider the following random graph G: For
each pair (i, j) of nodes, (i, j) is an edge of G with probability p if i and j are in the same set, and
with probability q if they are in different sets. Each edge is drawn independently and p > q. This is
known as the Stochastic Block Model on two communities.

(Think of nodes as habitants of two different towns and edges representing friendships, in this
model, people leaving in the same town are more likely to be friends)

The goal will be to recover the original partition. This problem is clearly easy if p = 1 and q = 0
and hopeless if p = q. The question we will try to answer is for which values of p and q is it possible
to recover the partition (perhaps with high probability). As p > q, we will try to recover the original
partition by attempting to find the minimum bisection of the graph.

9.3 What does the spike model suggest?

Motivated by what we saw in previous lectures, one approach could be to use a form of spectral
clustering to attempt to partition the graph.

Let A be the adjacency matrix of G, meaning that

Aij =

{
1 if (i, j) ∈ E(G)
0 otherwise.

(80)

Note that in our model, A is a random matrix. We would like to solve

max
∑
i,j

Aijxixj

s.t. xi = ±1,∀i (81)∑
j

xj = 0,

The intended solution x takes the value +1 in one cluster and −1 in the other.
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Relaxing the condition xi = ±1, ∀i to ‖x‖22 = n would yield a spectral method

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (82)

1Tx = 0

The solution consists of taking the top eigenvector of the projection of A on the orthogonal of the
all-ones vector 1.

The matrix A is a random matrix whose expectation is given by

E[A] =

{
p if (i, j) ∈ E(G)
q otherwise.

Let g denote a vector that is +1 in one of the clusters and −1 in the other (note that this is the vector
we are trying to find!). Then we can write

E[A] =
p+ q

2
11T +

p− q
2

ggT ,

and

A =
(
A− E[A]

)
+
p+ q

2
11T +

p− q
2

ggT .

In order to remove the term p+q
2 11T we consider the random matrix

A = A− p+ q

2
11T .

It is easy to see that

A =
(
A− E[A]

)
+
p− q

2
ggT .

This means that A is a superposition of a random matrix whose expected value is zero and a rank-1
matrix, i.e.

A = W + λvvT

where W =
(
A − E[A]

)
and λvvT = p−q

2 n
(

g√
n

)(
g√
n

)T
. In previous lectures we saw that for large

enough λ, the eigenvalue associated with λ pops outside the distribution of eigenvalues of W and
whenever this happens, the leading eigenvector has a non-trivial correlation with g (the eigenvector
associated with λ).

Note that since to obtain A we simply subtracted a multiple of 11T from A, problem (82) is
equivalent to

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n (83)

1Tx = 0
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Now that we removed a suitable multiple of 11T we will even drop the constraint 1Tx = 0, yielding

max
∑
i,j

Aijxixj

s.t. ‖x‖2 =
√
n, (84)

whose solution is the top eigenvector of A.
Recall that if A − E[A] was a Wigner matrix with i.i.d entries with zero mean and variance σ2

then its empirical spectral density would follow the semicircle law and it will essentially be supported
in [−2σ

√
n, 2σ

√
n]. We would then expect the top eigenvector of A to correlate with g as long as

p− q
2

n >
2σ
√
n

2
. (85)

Unfortunately A−E[A] is not a Wigner matrix in general. In fact, half of its entries have variance
p(1− p) while the variance of the other half is q(1− q).

If we were to take σ2 = p(1−p)+q(1−q)
2 and use (85) it would suggest that the leading eigenvector of

A correlates with the true partition vector g as long as

p− q
2

>
1√
n

√
p(1− p) + q(1− q)

2
, (86)

However, this argument is not necessarily valid because the matrix is not a Wigner matrix. For the
special case q = 1 − p, all entries of A − E[A] have the same variance and they can be made to
be identically distributed by conjugating with ggT . This is still an impressive result, it says that if
p = 1− q then p− q needs only to be around 1√

n
to be able to make an estimate that correlates with

the original partitioning!
An interesting regime (motivated by friendship networks in social sciences) is when the average

degree of each node is constant. This can be achieved by taking p = a
n and q = b

n for constants a and
b. While the argument presented to justify condition (86) is not valid in this setting, it nevertheless
suggests that the condition on a and b needed to be able to make an estimate that correlates with the
original partition is

(a− b)2 > 2(a+ b). (87)

Remarkably this was posed as conjecture by Decelle et al. [DKMZ11] and proved in a series of
works by Mossel et al. [MNS14b, MNS14a] and Massoulie [Mas14].

9.3.1 Three of more communities

The stochastic block model can be similarly defined for any k ≥ 2 communities: G is a graph on
n = km nodes divided on k groups of m nodes each. Similarly to the k = 2 case, for each pair (i, j) of
nodes, (i, j) is an edge of G with probability p if i and j are in the same set, and with probability q if
they are in different sets. Each edge is drawn independently and p > q. In the sparse regime, p = a

n

and q = b
n , the threshold at which it is possible to make an estimate that correlates with the original

partition is open.
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Open Problem 9.1 Consider the balanced Stochastic Block Model for k > 3 (constant) communities
with inner probability p = a

n and outer probability q = b
n , what is the threshold at which it becomes

possible to make an estimate that correlates with the original partition is open (known as the par-
tial recovery or detection threshold). We refer the reader to [DKMZ11, ZMZ14, GZC+15] for more
information on this and many other interesting conjectures often motivated from statistical physics.

9.4 Exact recovery

We now turn our attention to the problem of recovering the cluster membership of every single node
correctly, not simply having an estimate that correlates with the true labels. We’ll restrict to two
communities for now. If the probability of intra-cluster edges is p = a

n then it is not hard to show that
each cluster will have isolated nodes making it impossible to recover the membership of every possible
node correctly. In fact this is the case whenever p� 2 logn

n . For that reason we focus on the regime

p =
α log(n)

n
and q =

β log(n)

n
, (88)

for some constants α > β.
Let x ∈ Rn with xi = ±1 representing the partition (note there is an ambiguity in the sense that

x and −x represent the same partition). Then, if we did not worry about efficiency then our guess
(which corresponds to the Maximum Likelihood Estimator) would be the solution of the minimum
bissection problem (81).

In fact, one can show (but this will not be the main focus of this lecture, see [ABH14] for a proof)
that if √

α−
√
β >
√

2, (89)

then, with high probability, (81) recovers the true partition. Moreover, if

√
α−

√
β <
√

2,

no algorithm (efficient or not) can, with high probability, recover the true partition.
We’ll consider a semidefinite programming relaxation algorithm for SBM and derive conditions for

exact recovery. The main ingredient for the proof will be duality theory.

9.5 The algorithm

Note that if we remove the constraint that
∑

j xj = 0 in (81) then the optimal solution becomes x = 1.

Let us define B = 2A− (11T − I), meaning that

Bij =


0 if i = j
1 if (i, j) ∈ E(G)
−1 otherwise

(90)

It is clear that the problem
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max
∑
i,j

Bijxixj

s.t. xi = ±1, ∀i (91)∑
j

xj = 0

has the same solution as (81). However, when the constraint is dropped,

max
∑
i,j

Bijxixj

s.t. xi = ±1,∀i, (92)

x = 1 is no longer an optimal solution. Intuitively, there is enough “−1” contribution to discourage
unbalanced partitions. In fact, (92) is the problem we’ll set ourselves to solve.

Unfortunately (92) is in general NP-hard (one can encode, for example, Max-Cut by picking an
appropriate B). We will relax it to an easier problem by the same technique used to approximate the
Max-Cut problem in the previous section (this technique is often known as matrix lifting). If we write
X = xxT then we can formulate the objective of (92) as∑

i,j

Bijxixj = xTBx = Tr(xTBx) = Tr(BxxT ) = Tr(BX)

Also, the condition xi = ±1 implies Xii = x2
i = 1. This means that (92) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (93)

X = xxT for some x ∈ Rn.

The fact that X = xxT for some x ∈ Rn is equivalent to rank(X) = 1 and X � 0.This means that
(92) is equivalent to

max Tr(BX)

s.t. Xii = 1,∀i (94)

X � 0

rank(X) = 1.

We now relax the problem by removing the non-convex rank constraint

max Tr(BX)

s.t. Xii = 1,∀i (95)

X � 0.
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This is an SDP that can be solved (up to arbitrary precision) in polynomial time [VB96].
Since we removed the rank constraint, the solution to (95) is no longer guaranteed to be rank-1.

We will take a different approach from the one we used before to obtain an approximation ratio for
Max-Cut, which was a worst-case approximation ratio guarantee. What we will show is that, for some
values of α and β, with high probability, the solution to (95) not only satisfies the rank constraint
but it coincides with X = ggT where g corresponds to the true partition. After X is computed, g is
simply obtained as its leading eigenvector.

9.6 The analysis

Without loss of generality, we can assume that g = (1, . . . , 1,−1, . . . ,−1)T , meaning that the true
partition corresponds to the first n

2 nodes on one side and the other n
2 on the other.

9.6.1 Some preliminary definitions

Recall that the degree matrix D of a graph G is a diagonal matrix where each diagonal coefficient Dii

corresponds to the number of neighbours of vertex i and that λ2(M) is the second smallest eigenvalue
of a symmetric matrix M .

Definition 9.1 Let G+ (resp. G−) be the subgraph of G that includes the edges that link two nodes in
the same community (resp. in different communities) and A the adjacency matrix of G. We denote by
D+
G (resp. D−G ) the degree matrix of G+ (resp. G−) and define the Stochastic Block Model Laplacian

to be

LSBM = D+
G −D

−
G −A

9.7 Convex Duality

A standard technique to show that a candidate solution is the optimal one for a convex problem is to
use convex duality.

We will describe duality with a game theoretical intuition in mind. The idea will be to rewrite (95)
without imposing constraints on X but rather have the constraints be implicitly enforced. Consider
the following optimization problem.

max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) (96)

Let us give it a game theoretical interpretation. Suppose that is a primal player (picking X) whose
objective is to maximize the objective and a dual player, picking Z and Q after seeing X, trying to
make the objective as small as possible. If the primal player does not pick X satistying the constraints
of (95) then we claim that the dual player is capable of driving the objective to −∞. Indeed, if there
is an i for which Xii 6= 1 then the dual player can simply pick Zii = −c 1

1−Xii and make the objective
as small as desired by taking large enough c. Similarly, if X is not positive semidefinite, then the
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dual player can take Q = cvvT where v is such that vTXv < 0. If, on the other hand, X satisfy the
constraints of (95) then

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) ,

since equality can be achieve if, for example, the dual player picks Q = 0n×n, then it is clear that the
values of (95) and (96) are the same:

max
X,

Xii ∀i
X�0

Tr(BX) = max
X

min
Z, Q

Z is diagonal
Q�0

Tr(BX) + Tr(QX) + Tr (Z (In×n −X))

With this game theoretical intuition in mind, it is clear that if we change the “rules of the game” and
have the dual player decide their variables before the primal player (meaning that the primal player
can pick X knowing the values of Z and Q) then it is clear that the objective can only increase, which
means that:

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z, Q

Z is diagonal
Q�0

max
X

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) .

Note that we can rewrite

Tr(BX) + Tr(QX) + Tr (Z (In×n −X)) = Tr ((B +Q− Z)X) + Tr(Z).

When playing:
min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z),

if the dual player does not set B+Q−Z = 0n×n then the primal player can drive the objective value
to +∞, this means that the dual player is forced to chose Q = Z −B and so we can write

min
Z, Q

Z is diagonal
Q�0

max
X

Tr ((B +Q− Z)X) + Tr(Z) = min
Z,

Z is diagonal
Z−B�0

max
X

Tr(Z),

which clearly does not depend on the choices of the primal player. This means that

max
X,

Xii ∀i
X�0

Tr(BX) ≤ min
Z,

Z is diagonal
Z−B�0

Tr(Z).

This is known as weak duality (strong duality says that, under some conditionsm the two optimal
values actually match, see, for example, [VB96], recall that we used strong duality when giving a
sum-of-squares interpretation to the Max-Cut approximation ratio, a similar interpretation can be
given in this problem, see [Ban16]).
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Also, the problem

min Tr(Z)

s.t. Z is diagonal (97)

Z −B � 0

is called the dual problem of (95).
The derivation above explains why the objective value of the dual is always larger or equal to

the primal. Nevertheless, there is a much simpler proof (although not as enlightening): let X,Z be
respectively a feasible point of (95) and (97). Since Z is diagonal and Xii = 1 then Tr(ZX) = Tr(Z).
Also, Z −B � 0 and X � 0, therefore Tr[(Z −B)X] ≥ 0. Altogether,

Tr(Z)− Tr(BX) = Tr[(Z −B)X] ≥ 0,

as stated.
Recall that we want to show that ggT is the optimal solution of (95). Then, if we find Z diagonal,

such that Z −B � 0 and

Tr[(Z −B)ggT ] = 0, (this condition is known as complementary slackness)

then X = ggT must be an optimal solution of (95). To ensure that ggT is the unique solution we
just have to ensure that the nullspace of Z −B only has dimension 1 (which corresponds to multiples
of g). Essentially, if this is the case, then for any other possible solution X one could not satisfy
complementary slackness.

This means that if we can find Z with the following properties:

1. Z is diagonal

2. Tr[(Z −B)ggT ] = 0

3. Z −B � 0

4. λ2(Z −B) > 0,

then ggT is the unique optima of (95) and so recovery of the true partition is possible (with an efficient
algorithm).

Z is known as the dual certificate, or dual witness.

9.8 Building the dual certificate

The idea to build Z is to construct it to satisfy properties (1) and (2) and try to show that it satisfies
(3) and (4) using concentration.

If indeed Z − B � 0 then (2) becomes equivalent to (Z − B)g = 0. This means that we need to
construct Z such that Zii = 1

gi
B[i, :]g. Since B = 2A− (11T − I) we have

Zii =
1

gi
(2A− (11T − I))[i, :]g = 2

1

gi
(Ag)i + 1,
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meaning that
Z = 2(D+

G −D
−
G ) + I

is our guess for the dual witness. As a result

Z −B = 2(D+
G −D

−
G )− I −

[
2A− (11T − I)

]
= 2LSBM + 11T

It trivially follows (by construction) that

(Z −B)g = 0.

Therefore

Lemma 9.2 If
λ2(2LSBM + 11T ) > 0, (98)

then the relaxation recovers the true partition.

Note that 2LSBM + 11T is a random matrix and so this boils down to “an exercise” in random matrix
theory.

9.9 Matrix Concentration

Clearly,
E
[
2LSBM + 11T

]
= 2ELSBM + 11T = 2ED+

G − 2ED−G − 2EA+ 11T ,

and ED+
G = n

2
α log(n)

n I, ED−G = n
2
β log(n)

n I, and EA is a matrix such with 4 n
2 ×

n
2 blocks where the

diagonal blocks have α log(n)
n and the off-diagonal blocks have β log(n)

n . We can write this as EA =
1
2

(
α log(n)

n + β log(n)
n

)
11T + 1

2

(
α log(n)

n − β log(n)
n

)
ggT

This means that

E
[
2LSBM + 11T

]
= ((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β)

log n

n
ggT .

Since 2LSBMg = 0 we can ignore what happens in the span of g and it is not hard to see that

λ2

[
((α− β) log n) I +

(
1− (α+ β)

log n

n

)
11T − (α− β)

log n

n
ggT

]
= (α− β) log n.

This means that it is enough to show that

‖LSBM − E [LSBM ]‖ < α− β
2

log n, (99)

which is a large deviations inequality. (‖ · ‖ denotes operator norm)
We will skip the details here (and refer the reader to [Ban15b] for the details), but the main idea is

to use an inequality similar to the ones presented in the lecture about concentration of measure (and,
in particular, matrix concentration). The main idea is to separate the diagonal from the non-diagonal
part of LSBM − E [LSBM ]. The diagonal part depends on in and out-degrees of each node and can
be handled with scalar concentration inequalities for trinomial distributions (as it was in [ABH14] to
obtain the information theoretical bounds). The non-diagonal part has independent entries and so its
spectral norm can be controlled by the following inequality:
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Lemma 9.3 (Remark 3.13 in [BvH15]) Let X be the n × n symmetric matrix with independent
centered entries. Then there exists a universal constant c′, such that for every t ≥ 0

Prob[‖X‖ > 3σ + t] ≤ ne−t2/c′σ2
∞ , (100)

where we have defined

σ := max
i

√∑
j

E[X2
ij ], σ∞ := max

ij
‖Xij‖∞.

Using these techniques one can show (this result was independently shown in [Ban15b] and [HWX14],
with a slightly different approach)

Theorem 9.4 Let G be a random graph with n nodes drawn accordingly to the stochastic block model
on two communities with edge probabilities p and q. Let p = α logn

n and q = β logn
n , where α > β are

constants. Then, as long as √
α−

√
β >
√

2, (101)

the semidefinite program considered above coincides with the true partition with high probability.

Note that, if √
α−

√
β <
√

2,

then exact recovery of the communities is impossible, meaning that the SDP algorithm is optimal.
Furthermore, in this regime one can show that there will be a node on each community that is more
connected to the other community that to its own, meaning that a partition that swaps them would
have more likelihood. In fact, the fact that the SDP will start working essentially when this starts
happening appears naturally in the analysis; the diagonal part corresponds exactly to differences
between in and out-degrees and Lemma 9.3 allows one to show that the contributions of the off-
diagonal part are of lower order.

Remark 9.5 A simpler analysis (and seemingly more adaptable to other problems) can be carried out
by using by Matrix Bernstein’s inequality [Tro12] (described in the lecture about Matrix Concentration).
The idea is simply to write LSBM − E [LSBM ] as a sum of independent matrices (where each matrix
corresponds to a pair of nodes) and to apply Matrix Bernstein (see [ABH14]). Unfortunately, this only
shows exact recovery of a suboptimal threshold (suboptimal essentially by a factor of 2).

9.10 More communities

A natural question is to understand what is the exact recovery threshold for the Stochastic Block
Model on k ≥ 2 communities. Recall the definition: The stochastic block model can be similarly
defined for any k ≥ 2 communities: G is a graph on n = km nodes divided on k groups of m nodes
each. Similarly to the k = 2 case, for each pair (i, j) of nodes, (i, j) is an edge of G with probability p
if i and j are in the same set, and with probability q if they are in different sets. Each edge is drawn
independently and p > q. In the logarithmic degree regime, we’ll define the parameters in a slightly
different way: p = α′ logm

m and q = β′ logm
m . Note that, for k = 2, we roughly have α = 2α′ and β = 2β′,

which means that the exact recovery threshold, for k = 2, reads as: for
√
α′ −

√
β′ > 1
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recovery is possible (and with the SDP algorithm), and for
√
α′−
√
β′ < 1 exact recovery is impossible.

Clearly, for any k > 2, if
√
α′−
√
β′ < 1 then exact recovery will also be impossible (simply imagine

that n oracle tells us all of the community memberships except for those of two of the clusters, then
the problem reduces to the k = 2 case). The remarkable fact is that, for k = o(logm) this is enough,
not only for exact recovery to be possible, but also for an SDP based algorithm (very similar to the
one above) to achieve exact recovery (see [AS15, ABKK15, HWX15, PW15]). However, for k ≈ log n,
the situation is not understood.

Open Problem 9.2 What is the threshold for exact recovery on the balanced symmetric Stochas-
tic Block Model in k ≈ log n communities and at what threshold does the SDP succeed at exactly
determining the communities? (see [ABKK15]).

9.11 Euclidean Clustering

The stochastic block model, although having fascinating phenomena, is not always an accurate model
for clustering. The independence assumption assumed on the connections between pairs of vertices
may sometimes be too unrealistic. Also, the minimum bisection of multisection objective may not be
the most relevant in some applications.

One particularly popular form of clustering is k-means clustering. Given n points x1, . . . , xn
and pairwise distances d(xi, xj), the k-means objective attempts to partition the points in k clusters
A1, . . . , Ak (not necessarily of the same size) as to minimize the following objective35

min

k∑
t=1

1

|At|
∑

xi,xj∈At

d2(xi, xj).

A similar objective is the one in k-medians clustering, where for each cluster a center is picked (the
center has to be a point in the cluster) and the sum of the distances from all points in the cluster to
the center point are to be minimized, in other words, the objective to be minimized is:

min

k∑
t=1

min
ct∈At

∑
xi∈At

d(xi, ct).

In [ABC+15] both an Linear Programming (LP) relaxation for k-medians and a Semidefinite
Programming (SDP) relaxation for k-means are analyzed for a points in a generative model on which
there are k disjoint balls in Rd and, for every ball, points are drawn according to a isotropic distribution
on each of the balls. The goal is to establish exact recovery of these convex relaxations requiring the
least distance between the balls. This model (in this context) was first proposed and analyzed for
k-medians in [NW13], the conditions for k-medians were made optimal in [ABC+15] and conditions
for k-means were also given. More recently, the conditions on k-means were improved (made optimal
for large dimensions) in [IMPV15a, IMPV15b] which also coined the term “Stochastic Ball Model”.

For P the set of points, in order to formulate the k-medians LP we use variables yp indicat-
ing whether p is a center of its cluster or not and zpq indicating whether q is assigned to p or not
(see [ABC+15] for details), the LP then reads:

35When the points are in Euclidean space there is an equivalent more common formulation in which each cluster is
assign a mean and the objective function is the sum of the distances squared to the center.
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min
∑

p,q d(p, q)zpq,

s.t.
∑

p∈P zpq = 1, ∀q ∈ P
zpq ≤ yp∑
p∈P yp = k

zpq, yp ∈ [0, 1], ∀p, q ∈ P.

the solution corresponds to an actual k-means solution if it is integral.
The semidefinite program for k-means is written in terms of a PSD matrix X ∈ Rn×n (where n is

the total number of points), see [ABC+15] for details. The intended solution is

X =
1

n

k∑
t=1

1At1
T
At ,

where 1At is the indicator vector of the cluster At. The SDP reads as follows:

minX
∑

i,j d(i, j)Xij ,

s.t. Tr(X) = k,
X1 = 1
X ≥ 0
X � 0.

Inspired by simulations in the context of [NW13] and [ABC+15], Rachel Ward observed that the
k-medians LP tends to be integral even for point configurations where no planted partition existed,
and proposed the conjecture that k-medians is tight for typical point configurations. This was recorded
as Problem 6 in [Mix15]. We formulate it as an open problem here:

Open Problem 9.3 Is the LP relaxation for k-medians tight for a natural (random) generative model
of points even without a clustering planted structure (such as, say, gaussian independent points)?

Ideally, one would like to show that these relaxations (both the k-means SDP and the k-medians
LP) are integral in instances that have clustering structure and not necessarily arising from generative
random models. It is unclear however how to define what is meant by “clustering structure”. A
particularly interesting approach is through stability conditions (see, for example [AJP13]), the idea
is that if a certain set of data points has a much larger k − 1-means (or medians) objective than a
k-means (or medians) one, and there is not much difference between the k and the k + 1 objectives,
then this is a good suggestion that the data is well explained by k clusters.

Open Problem 9.4 Give integrality conditions to either the k-medians LP or the k-means SDP based
on stability like conditions, as described above.

9.12 Probably Certifiably Correct algorithms

While the SDP described in this lecture for recovery in the Stochastic Block Model achieves exact
recovery in the optimal regime, SDPs (while polynomial time) tend to be slow in practice. There
are faster (quasi-linear) methods that are also able to achieve exact recovery at the same threshold.
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However, the SDP has an added benefit of producing a posteriori certificates. Indeed, if the solution
from the SDP is integral (rank 1) then one is (a posteriori) sure to have found the minimum bisection.
This means that the SDP (above the threshold) will, with high probability, not only find the minimum
bisection but will also produce a posteriori certificate of such,. Such an algorithms are referred to as
Probably Certifiably Correct (PCC) [Ban16]. Fortunately, one can get (in this case) get the best of
both worlds and get a fast PCC method for recovery in the Stochastic Block Model essentially by
using a fas method to find the solution and then using the SDP to only certify, which can be done
considerably faster (see [Ban16]). More recently, a PCC algorithm was also analyzed for k-means
clustering (based on the SDP described above) [IMPV15b].

9.13 Another conjectured instance of tightness

The following problem is posed, by Andrea Montanari, in [Mon14], a description also appears in [Ban15a].
We briefly describe it here as well:

Given a symmetric matrix W ∈ Rn×n the positive principal component analysis problem can be
written as

max xTWx
s. t. ‖x‖ = 1

x ≥ 0
x ∈ Rn.

(102)

In the flavor of the semidefinite relaxations considered in this section, (102) can be rewritten (for
X ∈ Rn×n) as

max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0
rank(X) = 1,

and further relaxed to the semidefinite program

max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0.

(103)

This relaxation appears to have a remarkable tendency to be tight. In fact, numerical simulations
suggest that if W is taken to be a Wigner matrix (symmetric with i.i.d. standard Gaussian entries),
then the solution to (103) is rank 1 with high probability, but there is no explanation of this phe-
nomenon. If the Wigner matrix is normalized to have entries N (0, 1/n), it is known that the typical
value of the rank constraint problem is

√
2 (see [MR14]).

This motivates the last open problem of this section.

Open Problem 9.5 Let W be a gaussian Wigner matrix with entries N (0, 1/n). Consider the fol-
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lowing Semidefinite Program:
max Tr(WX)
s. t. Tr(X) = 1

X ≥ 0
X � 0.

(104)

Prove or disprove the following conjectures.

1. The expected value of this program is
√

2 + o(1).

2. With high probability, the solution of this SDP is rank 1.

Remark 9.6 The dual of this SDP motivates a particularly interesting statement which is implied by
the conjecture. By duality, the value of the SDP is the same as the value of

min
Λ≥0

λmax (W + Λ) ,

which is thus conjectured to be
√

2 + o(1), although no bound better than 2 (obtained by simply taking
Λ = 0) is known.
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10 Synchronization Problems and Alignment

10.1 Synchronization-type problems

This section will focuses on synchronization-type problems.36 These are problems where the goal
is to estimate a set of parameters from data concerning relations or interactions between pairs of
them. A good example to have in mind is an important problem in computer vision, known as
structure from motion: the goal is to build a three-dimensional model of an object from several
two-dimensional photos of it taken from unknown positions. Although one cannot directly estimate
the positions, one can compare pairs of pictures and gauge information on their relative positioning.
The task of estimating the camera locations from this pairwise information is a synchronization-type
problem. Another example, from signal processing, is multireference alignment, which is the problem
of estimating a signal from measuring multiple arbitrarily shifted copies of it that are corrupted with
noise.

We will formulate each of these problems as an estimation problem on a graph G = (V,E). More
precisely, we will associate each data unit (say, a photo, or a shifted signal) to a graph node i ∈ V . The
problem can then be formulated as estimating, for each node i ∈ V , a group element gi ∈ G, where the
group G is a group of transformations, such as translations, rotations, or permutations. The pairwise
data, which we identify with edges of the graph (i, j) ∈ E, reveals information about the ratios gi(gj)

−1.
In its simplest form, for each edge (i, j) ∈ E of the graph, we have a noisy estimate of gi(gj)

−1 and
the synchronization problem consists of estimating the individual group elements g : V → G that are
the most consistent with the edge estimates, often corresponding to the Maximum Likelihood (ML)
estimator. Naturally, the measure of “consistency” is application specific. While there is a general
way of describing these problems and algorithmic approaches to them [BCS15, Ban15a], for the sake
of simplicity we will illustrate the ideas through some important examples.

10.2 Angular Synchronization

The angular synchronization problem [Sin11, BSS13] consist in estimating n unknown angles θ1, . . . , θn
from m noisy measurements of their offsets θi− θj mod 2π. This problem easily falls under the scope
of synchronization-type problem by taking a graph with a node for each θi, an edge associated with
each measurement, and taking the group to be G ∼= SO(2), the group of in-plane rotations. Some of its
applications include time-synchronization of distributed networks [GK06], signal reconstruction from
phaseless measurements [ABFM12], surface reconstruction problems in computer vision [ARC06] and
optics [RW01].

Let us consider a particular instance of this problem (with a particular noise model).
Let z1, . . . , zn ∈ C satisfying |za| = 1 be the signal (angles) we want to estimate (za = exp(iθa)).

Suppose for every pair (i, j) we make a noisy measurement of the angle offset

Yij = zizj + σWij ,

where Wij ∼ N (0, 1). The maximum likelihood estimator for z is given by solving (see [Sin11, BBS14])

max
|xi|2=1

x∗Y x. (105)

36And it will follow somewhat the structure in Chapter 1 of [Ban15a]
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Figure 22: Given a graph G = (V,E) and a group G, the goal in synchronization-type problems is to
estimate node labels g : V → G from noisy edge measurements of offsets gig

−1
j .

There are several approaches to try to solve (105). Using techniques very similar to the study
of the spike model in PCA on the first lecture one can (see [Sin11]), for example, understand the
performance of the spectral relaxation of (105) into

max
‖x‖2=n

x∗Y x. (106)

Notice that, since the solution to (106) will not necessarily be a vector with unit-modulus entries,
a rounding step will, in general, be needed. Also, to compute the leading eigenvector of A one would
likely use the power method. An interesting adaptation to this approach is to round after each iteration
of the power method, rather than waiting for the end of the process, more precisely:

Algorithm 10.1 Given Y . Take a original (maybe random) vector x(0). For each iteration k (until
convergence or a certain number of iterations) take x(k+1) to be the vector with entries:

(
x(k+1)

)
i

=

(
Y x(k)

)
i∣∣(Y x(k)
)
i

∣∣ .
Although this method appears to perform very well in numeric experiments, its analysis is still an

open problem.

Open Problem 10.1 In the model where Y = zz∗ + σW as described above, for which values of σ
will the Projected Power Method (Algorithm 10.1) converge to the optimal solution of (105) (or at
least to a solution that correlates well with z), with high probability?37

37We thank Nicolas Boumal for suggesting this problem.
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Figure 23: An example of an instance of a synchronization-type problem. Given noisy rotated copies
of an image (corresponding to vertices of a graph), the goal is to recover the rotations. By comparing
pairs of images (corresponding to edges of the graph), it is possible to estimate the relative rotations
between them. The problem of recovering the rotation of each image from these relative rotation
estimates is an instance of Angular synchronization.

We note that Algorithm 10.1 is very similar to the Approximate Message Passing method presented,
and analyzed, in [MR14] for the positive eigenvector problem.

Another approach is to consider an SDP relaxation similar to the one for Max-Cut and minimum
bisection.

max Tr(Y X)

s.t. Xii = 1,∀i (107)

X � 0.

In [BBS14] it is shown that, in the model of Y = zz∗ + σW , as long as σ = Õ(n1/4) then (107)
is tight, meaning that the optimal solution is rank 1 and thus it corresponds to the optimal solution
of (105).38. It is conjecture [BBS14] however that σ = Õ(n1/2) should suffice. It is known (see [BBS14])
that this is implied by the following conjecture:

If x\ is the optimal solution to (105), then with high probability ‖Wx\‖∞ = Õ(n1/2). This is the
content of the next open problem.

Open Problem 10.2 Prove or disprove: With high probability the SDP relaxation (107) is tight as
long as σ = Õ(n1/2). This would follow from showing that, with high probability ‖Wx\‖∞ = Õ(n1/2),
where x\ is the optimal solution to (105).

38Note that this makes (in this regime) the SDP relaxation a Probably Certifiably Correct algorithm [Ban16]
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Figure 24: Illustration of the Cryo-EM imaging process: A molecule is imaged after being frozen
at a random (unknown) rotation and a tomographic 2-dimensional projection is captured. Given a
number of tomographic projections taken at unknown rotations, we are interested in determining such
rotations with the objective of reconstructing the molecule density. Images courtesy of Amit Singer
and Yoel Shkolnisky [SS11].

We note that the main difficulty seems to come from the fact that W and x\ are not independent
random variables.

10.2.1 Orientation estimation in Cryo-EM

A particularly challenging application of this framework is the orientation estimation problem in
Cryo-Electron Microscopy [SS11].

Cryo-EM is a technique used to determine the three-dimensional structure of biological macro-
molecules. The molecules are rapidly frozen in a thin layer of ice and imaged with an electron micro-
scope, which gives 2-dimensional projections. One of the main difficulties with this imaging process is
that these molecules are imaged at different unknown orientations in the sheet of ice and each molecule
can only be imaged once (due to the destructive nature of the imaging process). More precisely, each
measurement consists of a tomographic projection of a rotated (by an unknown rotation) copy of the
molecule. The task is then to reconstruct the molecule density from many such measurements. As
the problem of recovering the molecule density knowing the rotations fits in the framework of classical
tomography—for which effective methods exist— the problem of determining the unknown rotations,
the orientation estimation problem, is of paramount importance. While we will not go into details
here, there is a mechanism that, from two such projections, obtains information between their ori-
entation. The problem of finding the orientation of each projection from such pairwise information
naturally fits in the framework of synchronization and some of the techniques described here can be
adapted to this setting [BCS15].
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10.2.2 Synchronization over Z2

This particularly simple version already includes many applications of interest. Similarly to before,
given a graph G = (V,E), the goal is recover unknown node labels g : V → Z2 (corresponding to
memberships to two clusters) from pairwise information. Each pairwise measurement either suggests
the two involved nodes are in the same cluster or in different ones (recall the problem of recovery in
the stochastic block model). The task of clustering the graph in order to agree, as much as possible,
with these measurements is tightly connected to correlation clustering [BBC04] and has applications
to determining the orientation of a manifold [SW11].

In the case where all the measurements suggest that the involved nodes belong in different com-
munities, then this problem essentially reduces to the Max-Cut problem.

10.3 Signal Alignment

In signal processing, the multireference alignment problem [BCSZ14] consists of recovering an unknown
signal u ∈ RL from n observations of the form

yi = Rliu+ σξi, (108)

where Rli is a circulant permutation matrix that shifts u by li ∈ ZL coordinates, ξi is a noise vector
(which we will assume standard gaussian i.i.d. entries) and li are unknown shifts.

If the shifts were known, the estimation of the signal u would reduce to a simple denoising problem.
For that reason, we will focus on estimating the shifts {li}ni=1. By comparing two observations yi and
yj we can obtain information about the relative shift li − lj mod L and write this problem as a
Synchronization problem

10.3.1 The model bias pitfall

In some of the problems described above, such as the multireference alignment of signals (or the orien-
tation estimation problem in Cryo-EM), the alignment step is only a subprocedure of the estimation
of the underlying signal (or the 3d density of the molecule). In fact, if the underlying signal was
known, finding the shifts would be nearly trivial: for the case of the signals, one could simply use
match-filtering to find the most likely shift li for measurement yi (by comparing all possible shifts of
it to the known underlying signal).

When the true signal is not known, a common approach is to choose a reference signal z that is not
the true template but believed to share some properties with it. Unfortunately, this creates a high risk
of model bias: the reconstructed signal û tends to capture characteristics of the reference z that are
not present on the actual original signal u (see Figure 10.3.1 for an illustration of this phenomenon).
This issue is well known among the biological imaging community [SHBG09, Hen13] (see, for example,
[Coh13] for a particularly recent discussion of it). As the experiment shown on Figure 10.3.1 suggests,
the methods treated in this paper, based solely on pairwise information between observations, do not
suffer from model bias as they do not use any information besides the data itself.

In order to recover the shifts li from the shifted noisy signals (108) we will consider the following
estimator

argminl1,...,ln∈ZL

∑
i,j∈[n]

∥∥R−liyi −R−ljyj∥∥2
, (109)
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Figure 25: A simple experiment to illustrate the model bias phenomenon: Given a picture of the
mathematician Hermann Weyl (second picture of the top row) we generate many images consisting
of random rotations (we considered a discretization of the rotations of the plane) of the image with
added gaussian noise. An example of one such measurements is the third image in the first row. We
then proceeded to align these images to a reference consisting of a famous image of Albert Einstein
(often used in the model bias discussions). After alignment, an estimator of the original image was
constructed by averaging the aligned measurements. The result, first image on second row, clearly
has more resemblance to the image of Einstein than to that of Weyl, illustration the model bias issue.
One the other hand, the method based on the synchronization approach produces the second image of
the second row, which shows no signs of suffering from model bias. As a benchmark, we also include
the reconstruction obtained by an oracle that is given the true rotations (third image in the second
row).

which is related to the maximum likelihood estimator of the shifts. While we refer to [Ban15a] for a
derivation we note that it is intuitive that if li is the right shift for yi and lj for yj then R−liyi−R−ljyj
should be random gaussian noise, which motivates the estimator considered.

Since a shift does not change the norm of a vector, (109) is equivalent to

argmax
l1,...,ln∈ZL

∑
i,j∈[n]

〈R−liyi, R−ljyj〉, (110)

we will refer to this estimator as the quasi-MLE.
It is not surprising that solving this problem is NP-hard in general (the search space for this

optimization problem has exponential size and is nonconvex). In fact, one can show [BCSZ14] that,
conditioned on the Unique Games Conjecture, it is hard to approximate up to any constant.
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10.3.2 The semidefinite relaxation

We will now present a semidefinite relaxation for (110) (see [BCSZ14]).
Let us identify Rl with the L×L permutation matrix that cyclicly permutes the entries fo a vector

by li coordinates:

Rl

 u1
...
uL

 =

 u1−l
...

uL−l

 .
This corresponds to an L-dimensional representation of the cyclic group. Then, (110) can be rewritten:∑

i,j∈[n]

〈R−liyi, R−ljyj〉 =
∑
i,j∈[n]

(R−liyi)
T R−ljyj

=
∑
i,j∈[n]

Tr
[
(R−liyi)

T R−ljyj

]
=

∑
i,j∈[n]

Tr
[
yTi R

T
−liR−ljyj

]
=

∑
i,j∈[n]

Tr
[(
yiy

T
j

)T
RliR

T
lj

]
.

We take

X =


Rl1
Rl2

...
Rln

 [ RTl1 RTl2 · · · RTln
]
∈ RnL×nL, (111)

and can rewrite (110) as

max Tr(CX)
s. t. Xii = IL×L

Xij is a circulant permutation matrix
X � 0
rank(X) ≤ L,

(112)

where C is the rank 1 matrix given by

C =


y1

y2
...
yn

 [ yT1 yT2 · · · yTn
]
∈ RnL×nL, (113)

with blocks Cij = yiy
T
j .
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The constraints Xii = IL×L and rank(X) ≤ L imply that rank(X) = L and Xij ∈ O(L). Since the
only doubly stochastic matrices in O(L) are permutations, (112) can be rewritten as

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
Xij is circulant
X ≥ 0
X � 0
rank(X) ≤ L.

(114)

Removing the nonconvex rank constraint yields a semidefinite program, corresponding to (??),

max Tr(CX)
s. t. Xii = IL×L

Xij1 = 1
Xij is circulant
X ≥ 0
X � 0.

(115)

Numerical simulations (see [BCSZ14, BKS14]) suggest that, below a certain noise level, the semidef-
inite program (115) is tight with high probability. However, an explanation of this phenomenon
remains an open problem [BKS14].

Open Problem 10.3 For which values of noise do we expect that, with high probability, the semidef-
inite program (115) is tight? In particular, is it true that for any σ by taking arbitrarily large n the
SDP is tight with high probability?

10.3.3 Sample complexity for multireference alignment

Another important question related to this problem is to understand its sample complexity. Since
the objective is to recover the underlying signal u, a larger number of observations n should yield
a better recovery (considering the model in (??)). Another open question is the consistency of the
quasi-MLE estimator, it is known that there is some bias on the power spectrum of the recovered
signal (that can be easily fixed) but the estimates for phases of the Fourier transform are conjecture
to be consistent [BCSZ14].

Open Problem 10.4 1. Is the quasi-MLE (or the MLE) consistent for the Multireference align-
ment problem? (after fixing the power spectrum appropriately).

2. For a given value of L and σ, how large does n need to be in order to allow for a reasonably
accurate recovery in the multireference alignment problem?

Remark 10.2 One could design a simpler method based on angular synchronization: for each pair
of signals take the best pairwise shift and then use angular synchronization to find the signal shifts
from these pairwise measurements. While this would yield a smaller SDP, the fact that it is not
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using all of the information renders it less effective [BCS15]. This illustrates an interesting trade-off
between size of the SDP and its effectiveness. There is an interpretation of this through dimensions of
representations of the group in question (essentially each of these approaches corresponds to a different
representation), we refer the interested reader to [BCS15] for more one that.
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