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Abstract. We analyse a monotone lagrangian in CP2 that is hamiltonian isotopic to
the standard lagrangian RP2, yet exhibits a distinguishing behaviour under reduction by
one of the toric circle actions, namely it intersects transversally the reduction level set
and it projects one-to-one onto a great circle in CP1. This lagrangian thus provides an
example of embedded composition fitting work of Wehrheim-Woodward and Weinstein.

1. Introduction

Among the myriad of reasons that lagrangian submanifolds are so fundamental in sym-
plectic mathematics is their role in the quest for a symplectic category. This quest was
launched by Alan Weinstein in the early 80’s with an eye towards quantization and was
recently invigorated by results of Katrin Wehrheim and Chris Woodward on quilted Floer
cohomology. We will address an instance of the latter’s work within symplectic reduction.

Suppose we have a symplectic manifold (M,ω) with a hamiltonian action of a torus,
where µ is the moment map and µ−1(a) is a regular level. Assuming that the torus acts
freely on this level set, then the corresponding orbit space is a new symplectic manifold
called the reduced space, (Mred, ωred). We denote ı ∶ µ−1(a) ↪M the inclusion of the level
and π ∶ µ−1(a) ↠Mred the point-orbit projection map from the level.

Let L1 and L2 be lagrangian submanifolds of the original symplectic manifold (M,ω),
and let `1 and `2 be lagrangian submanifolds of the reduced space (Mred, ωred) fulfilling
the following relationships:

L1 = ı(π−1(`1)) (☆1) and `2 = π(ı−1(L2)) (☆2) ,
that means, L1 is the preimage of `1 under π, whereas `2 is the image of L2∩µ−1(a) under
π.

In special circumstances (we have in mind the case when L2 intersects µ−1(a) transver-
sally and the projection from this intersection onto `2 is one-to-one; see Section 2), there
is a straightforward bijection of points in the following intersections via the point-orbit
projection

L1 ∩L2
π←→ `1 ∩ `2 .

Wehrheim and Woodward have shown in [8] that, under nice conditions, this geometric
bijection of generators of the Floer complexes induces an isomorphism in Floer cohomol-
ogy. Their paper generalizes Floer cohomology to sequences of lagrangian correspondences
and establishes an isomorphism of the Floer cohomologies when such sequences are related
by composition of lagrangian correspondences – the symplectic reduction result above be-
ing a special case.
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Whereas pairs of lagrangian submanifolds L1 and `1 related by (☆1) trivially abound,
it has been challenging to identify interesting examples of pairs L2 and `2 related by (☆2),
where the required special geometric circumstances are satisfied.

In this paper we exhibit compact lagrangian submanifolds L2 ⊂ CP2 and `2 ⊂ CP1 of
the latter type and with the desired intersection properties. Moreover, our lagrangians
L2 and `2 are monotone (as required in the setting of [8]). A broader motivation for this
example is the general goal of understanding lagrangian submanifolds – the special case
where the ambient space is a toric manifold such as CP2 providing rich, user-friendly,
and interesting exploration grounds. A broader exploration of such examples within toric
manifolds is in the works.

In Section 2 we describe in detail our symplectic reduction set-up. In Section 3 we
present the concrete example L2 as a non-standard lagrangian RP2 in CP2. In Section 4
we prove that L2 fulfills the desired properties culminating in Theorem 4.5. In Section 5
we rephrase relevant properties in terms of embedded composition required for a symplectic
“category” [9].

Acknowledgements. This work was prompted by a question of Katrin Wehrheim’s and
stimulated by discussions with Meike Akveld and Katrin Wehrheim. Radivoje Bankovic’s
MSc thesis in 2014 provided incentive for developments. The author further acknowledges
instructive conversations with Paul Biran, Agnès Gadbled, Felix Hensel, Yael Karshon,
Leonid Polterovich, Dietmar Salamon and Alan Weinstein. An anonymous referee pro-
vided valuable suggestions to improve various passages.

2. Lagrangians in a symplectic reduction scenario

Let (M,ω) be a 2n-dimensional symplectic manifold equipped with a hamiltonian action
of a k-dimensional real torus T k where k < n and corresponding moment map

µ ∶M Ð→ Rk .

We assume that a ∈ Rk is a regular value of µ such that the reduced space

Mred = µ−1(a)/T k

is a manifold. The latter comes with the so-called reduced symplectic form ωred satisfying
the equality π∗ωred = ι∗ω, where π is the point-orbit projection from the level set and ι is
the level set inclusion:

µ−1(a) ι↪ M
↡ π

Mred

Let `1 ⊂ Mred be a compact lagrangian submanifold of the reduced space. Then its
preimage in M ,

L1 ∶= ι (π−1(`1)) ,
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is always a compact lagrangian submanifold of (M,ω), which happens to lie entirely in
the level set µ−1(a) and be a T k-bundle over Mred.

We are looking for a reverse picture where, starting from a lagrangian in (M,ω), we
obtain a suitable lagrangian in (Mred, ωred). For that purpose, suppose now that we have
a compact lagrangian submanifold L2 ⊂M such that

● L2 ⋔ µ−1(a), that is, L2 and µ−1(a) intersect transversally and

● L2 ∩ µ−1(a)
π↪Mred, that is, L2 intersects each T k-orbit in µ−1(a) at most once,

so the intersection submanifold L2 ∩ µ−1(a) injects into the reduced space Mred via the
point-orbit projection π. In this case, we obtain an embedded lagrangian submanifold in
the reduced space (Mred, ωred), namely

`2 ∶= π (L2 ∩ µ−1(a)) ,

and we call L2 a one-to-one transverse lifting of `2.

In this note, we will concentrate on the case where the symplectic manifold is the
complex projective plane, M = CP2, with a scaled Fubini-Study structure ω so that the
total volume is π2

2 . We regard the circle action where a circle element eiθ ∈ S1 (0 ≤ θ < 2π)
acts by

[z0 ∶ z1 ∶ z2] z→ [z0 ∶ z1 ∶ eiθz2] .

This action has moment map

µ2 ∶ CP2 Ð→ R , µ2[z0 ∶ z1 ∶ z2] = −
1

2

∣z2∣2
∣z0∣2 + ∣z1∣2 + ∣z2∣2

.

And we choose the level a = −1
6 .1 With these choices, we have n = 2, k = 1 and the reduced

space (Mred, ωred) is a complex projective line CP1 with a scaled Fubini-Study form so
that the total area is 2π

3 . The other standard hamiltonian circle action, namely

[z0 ∶ z1 ∶ z2] z→ [z0 ∶ eiθz1 ∶ z2] ,

which has moment map µ1[z0 ∶ z1 ∶ z2] = −1
2

∣z1∣2
∣z0∣2+∣z1∣2+∣z2∣2 , descends to the reduced space,

where we denote the induced moment map µred ∶ CP1 → R.

Pictorially in terms of toric moment polytopes, we have for the original space CP2 a
triangle as image by (µ1, µ2):

1All other levels in the range − 1
4
< a < 0 allow the one-to-one transverse lifting property, but this level

(that of the so-called Clifford torus {[1 ∶ eiθ1 ∶ eiθ2], θ1, θ2 ∈ R}) ensures the monotonicity of `2 since it is
then a great circle.
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and for the reduced space CP1 (reduction carried out with respect to µ2) the line segment
µred(CP1) = [−1

3 ,0]:

0 µred−

1

3

Section 3 exhibits a non-standard lagrangian embedding of RP2 into CP2, which in
Section 4 is shown to be a one-to-one transverse lifting of a great circle in CP1, so we get
an example pair denoted L2, `2.

3. A non-standard lagrangian RP2 in CP2 from representation theory

The example at stake is a lagrangian submanifold L2 of CP2 which arises as an orbit for
an SU(2)-action, similar to a lagrangian studied by River Chiang in [4]. We first define
L2 as a subset of CP2 in terms of complex parameters α and β:

L2 ∶= {[ᾱ2 + β̄2 ∶
√

2(ᾱβ − αβ̄) ∶ α2 + β2] ∣ α,β ∈ C , ∣α∣2 + ∣β∣2 = 1} ,

and give the proofs in these terms, since it was in this perspective that this example first
arose. Further down, we exhibit a convenient real parametrization of L2 and give the
corresponding (simpler) real proofs.

Lemma 3.1. The set L2 is a submanifold of CP2 diffeomorphic to RP2.

Proof. We view CP2 as the space of homogeneous complex polynomials of degree 2 in two
variables x and y up to scaling,

[z0 ∶ z1 ∶ z2] ←→ p[z0∶z1∶z2](x, y) = z0y2 + z1
√

2xy + z2x2 ,

and let the group SU(2) act as follows. An element

A = ( α β
−β̄ ᾱ

) ∈ SU(2) where α,β ∈ C and ∣α∣2 + ∣β∣2 = 1 ,
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acts by the change-of-variables diffeomorphism

(3.1) p(x, y) z→ p ((x, y)A) = p (αx − β̄y, βx + ᾱy) .

Then the set L2 is simply the SU(2)-orbit of the polynomial p[1∶0∶1](x, y) = y2 + x2 or,
equivalently, of the point [1 ∶ 0 ∶ 1], because

(βx + ᾱy)2 + (αx − β̄y)2 = (ᾱ2 + β̄2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
z0

)y2 + 2(ᾱβ − αβ̄)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

z1
√
2

xy + (α2 + β2

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
z2

)x2 .

So L2 is an SU(2)-homogeneous space. Since the stabilizer of [1 ∶ 0 ∶ 1] ∈ L2 is the
subgroup

S ∶= {( cos θ sin θ
− sin θ cos θ

) ,(i cos θ i sin θ
i sin θ −i cos θ

) ∣ θ ∈ [0,2π)}

where the component of the identity is a circle subgroup of SU(2) (hence conjugate to
the Hopf subgroup), it follows that L2 is diffeomorphic to

SU(2) / S ≃ RP2 .

�

Lemma 3.2. The submanifold L2 is lagrangian.

Proof. The fact that L2 is isotropic can be checked either directly (computing the vector
fields generated by the SU(2)-action) or, as done here, analysing a hamiltonian action in
the context of representation theory.

The standard hermitian metric on the vector space V ∶= C2, namely

h(z,w) = z̄Tw = R(z̄Tw)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
euclidean
inner prod.

+i I(z̄Tw)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
standard
sympl. str.

,

induces a hermitian metric on the symmetric power Sym2(V ∗) for which

(3.2) y2 ,
√

2xy , x2

is a unitary basis; here x and y (the linear maps extracting the first and second compo-
nents of a vector in C2) form the standard unitary basis of V ∗. We denote u0, u1, u2 the
corresponding coordinates in Sym2(V ∗) and write an element of Sym2(V ∗) as

p(x, y) = u0y2 + u1
√

2xy + u2x2 .
W.r.t. these coordinates, the symplectic structure on Sym2(V ∗) is the standard structure:

Ω0 = i
2 (du0dū0 + du1dū1 + du2dū2) .

The diagonal circle action on Sym2(V ∗) is hamiltonian with moment map linearly
proportional to ∣u0∣2 + ∣u1∣2 + ∣u2∣2. By symplectic reduction at the level of the unit sphere,
we obtain the space of homogeneous complex polynomials of degree 2 in two variables
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x and y up to scaling, P (Sym2(V ∗)) ≃ S5/S1 ≃ CP2, with the standard Fubini-Study
structure (S1 acts on S5 by the Hopf action).

Now the action of SU(2) on Sym2(V ∗) by the change-of-variables (3.1) is a unitary rep-
resentation (this is the 3-dimensional irreducible representation of SU(2)), hence hamil-
tonian with moment map2

µ̃ ∶ Sym2(V ∗) Ð→ su(2)∗ ≃ R3

defined as follows w.r.t. the real basis

Xa ∶= (i 0
0 −i) , Xb ∶= (0 i

i 0
) , Xc ∶= ( 0 1

−1 0
) ,

of the Lie algebra su(2) and the unitary basis (3.2) of Sym2(V ∗):

µ̃(u0, u1, u2) =
⎛
⎜
⎝

∣u0∣2 − ∣u2∣2
−
√

2R(u0ū1 + u1ū2)
−
√

2I(u0ū1 + u1ū2)

⎞
⎟
⎠
.

This SU(2)-action commutes with the diagonal S1-action, hence descends to a hamiltonian
action of SU(2) on CP2 with moment map

˜̃µ ∶ CP2 Ð→ su(2)∗ ≃ R3 , ˜̃µ[z0 ∶ z1 ∶ z2] =
⎛
⎜
⎝

∣z0∣2 − ∣z2∣2
−
√

2R(z0z̄1 + z1z̄2)
−
√

2I(z0z̄1 + z1z̄2)

⎞
⎟
⎠
,

where now z0, z1, z2 are homogeneous coordinates satisfying ∣z0∣2 + ∣z1∣2 + ∣z2∣2 = 1.

2In general, a symplectic representation ρ ∶ G → Sympl(CN ,Ω0) may be viewed as a hamiltonian

action with moment map µ̃ ∶ CN → g∗, µ̃(z)(X) = i
4
(z∗X̃z − z∗X̃∗z) where z ∈ CN is a point in the

symplectic manifold, X ∈ g is an element in the Lie algebra of Sympl(CN ,Ω0), and X̃ is the corresponding
matrix representative. When the representation is unitary, the formula for the moment map reduces to
µ̃(z)(X) = i

2
z∗X̃z.

In the present case, we determine the matrix X̃ for each of the Lie algebra basis elements Xa,Xb,Xc ∈

su(2): We take their 1-parameter subgroups in SU(2),

(
α β
−β̄ ᾱ

) = (
eit 0
0 e−it

) , (
cos t i sin t
i sin t cos t

) , (
cos t sin t
− sin t cos t

) ,

respectively, and the corresponding curves in Sym2
(V ∗) of the form

⎛
⎜
⎝

ᾱ2 −
√

2ᾱβ̄ β̄2
√

2ᾱβ ∣α∣2 − ∣α∣2 −
√

2αβ̄

β2
√

2αβ α2

⎞
⎟
⎠

with respect to the basis (3.2), to find the matrix representatives by differentiating at t = 0,

X̃a =
⎛
⎜
⎝

−2i 0 0
0 0 0
0 0 2i

⎞
⎟
⎠
, X̃b =

⎛
⎜
⎝

0
√

2i 0
√

2i 0
√

2i

0
√

2i 0

⎞
⎟
⎠
, X̃c =

⎛
⎜
⎝

0 −
√

2 0
√

2 0 −
√

2

0
√

2 0

⎞
⎟
⎠
.
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The submanifold L2 is isotropic because it is an SU(2)-orbit and sits in the zero-level
of the moment map ˜̃µ – indeed we have ∣z0∣2 = ∣z2∣2 and z0z̄1 + z1z̄2 = 0 when z0 = z̄2 and
z1 is imaginary. It follows that L2 is lagrangian because it is half-dimensional. �

There is a convenient real description of L2 by using real (R) and imaginary (I) parts
of complex numbers and defining

X ∶=R(α2 + β2) , Y ∶= I(α2 + β2) and Z ∶= 2I(ᾱβ) .
In these terms, we have

L2 = {[X − iY ∶
√

2iZ ∶X + iY ] ∣ X,Y,Z ∈ R , X2 + Y 2 +Z2 = 1} ,

which also shows that L2 ≃ S2/ ± 1 ≃ RP2, thus reproving Lemma 3.1.

In order to recheck from this perspective that L2 is lagrangian, we use action-angle
coordinates (θ1, µ1, θ2, µ2), with θk ∈ R mod 2π, µk < 0 and µ1 +µ2 > −1

2 , valid in the open

dense subset of CP2 where all homogeneous coordinates are nonzero, which we informally
refer to as the interior of the moment polytope.

We first observe that the action of the circle subgroup (eiθ, e2iθ) preserves L2,

[X − iY ∶ eiθ
√

2iZ ∶ e2iθ(X + iY )] = [ e−iθ(X − iY )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X̃−iỸ

∶
√

2iZ ∶ eiθ(X + iY )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X̃+iỸ

] ;

thus the corresponding vector field ∂
∂θ1

+ 2 ∂
∂θ2

is tangent to L2.

Now, w.r.t. to these action-angle coordinates, our multiple of the Fubini-Study form is
ω = dθ1 ∧ dµ1 + dθ2 ∧ dµ2. Since on a point [X − iY ∶

√
2iZ ∶X + iY ] of L2 we have

µ1 = −1
2Z

2 and µ2 = −1
4(1 −Z2) ,

so dµ1 = −ZdZ and dµ2 = 1
2ZdZ, we can write the pullback of ω to L2 as

−Z (dθ1 − 1
2dθ2) ∧ dZ .

But this pullback form vanishes identically, since we can choose a trivialization of TL2
(over an open dense subset) where the first element is given by the vector field ∂

∂θ1
+ 2 ∂

∂θ2
above, thus concluding the alternative proof of Lemma 3.2.

4. Main theorem about L2

Lemma 4.1. The submanifold L2 intersects transversally the moment map level set
µ−12 (a).

Proof. We claim that in the interior of the moment polytope the restriction of dµ2 to L2
never vanishes. This implies the lemma because the level set µ−12 (a) is a codimension one
submanifold whose tangent bundle is the kernel of dµ2.
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Using the real description of L2 framed above, we parametrize it (in the interior of the
moment polytope) via real coordinates X and Y , choosing

Z =
√

1 −X2 − Y 2 , X2 + Y 2 < 1 ,

so that, in the interior of the moment polytope L2 is the set of points

[ X − iY
√

2i
√

1 −X2 − Y 2
∶ 1 ∶ X + iY

√
2i
√

1 −X2 − Y 2
] .

We evaluate µ2 in points of the above form:

µ2[ X−iY√
2i
√
1−X2−Y 2

∶ 1 ∶ X+iY√
2i
√
1−X2−Y 2

] = −1
4(X2 + Y 2) .

This shows that the differential of µ2 only vanishes when µ2 itself vanishes, which never
happens in the interior of the moment polytope. �

Lemma 4.2. In the interior of the moment polytope, the manifold L2 intersects at most
once each orbit of the second circle action in CP2.

Proof. Using the real description, we compare two points in L2 which map to the interior
of the moment polytope, say

P = [X − iY ∶
√

2iZ ∶X + iY ] and p = [x − iy ∶
√

2iz ∶ x + iy]

where X,Y,Z, x, y, z ∈ R ∖ {0} are such that X2 + Y 2 +Z2 = 1 and x2 + y2 + z2 = 1.

The goal is to check that such points can never be nontrivially related by the second
circle action, that is, to check that an equality

[X − iY ∶
√

2iZ ∶ eiθ(X + iY )] = [x − iy ∶
√

2iz ∶ x + iy]

can only occur when eiθ = 1. For that purpose, we compare the ratios of homogeneous
coordinates

X − iY
x − iy
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

w

= Z

z®
real

= eiθ ⋅ X + iY
x + iy
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

w

.

Since the middle term is real, it must be w = w and thus eiθ = 1. �

Remark 4.3. A different proof of Lemma 4.2 was first found by Radivoje Bankovic in [1].
There he analysed L2 as a singular fibration over the moment map image tilted segment,
within the 2-torus fibers, using our earlier lemmas.

Remark 4.4. The lagrangian L2 has double intersections with orbits of the first circle
action: [X − iY ∶

√
2iZ ∶ X + iY ] and [X − iY ∶ −

√
2iZ ∶ X + iY ]. In general, the

lagrangian L2 has single intersections with orbits of subgroups of the form (eikθ, ei(2k±1)θ)
with k = 0,1,2, . . .. This can be checked as in the proof of Lemma 4.2.



A CHIANG-TYPE LAGRANGIAN IN CP2 9

Theorem 4.5. The lagrangian submanifold L2 is a one-to-one transverse lifting of a great
circle `2 in CP1.

Proof. Lemmas 4.1 and 4.2 show that L2 is a one-to-one transverse lifting of a compact
lagrangian submanifold `2 in CP1. In order to see that `2 is a great circle it is enough to
note that it lies in the middle level set of µred. �

Note that the lagrangian L2 is monotone (see the proof of theorem A in section 6 of
Biran [2]), has minimal Maslov index 3 and has HFk(L2,L2) ≃ Z2 for every k = 0,1,2
(see also Corollary 1.2.11 of Biran and Cornea [3]). Having chosen the level a = −1

6 , we
obtain that the corresponding lagrangian `2 in the reduced space is a great circle, hence
also monotone.

The result in Lemma 4.2 is interesting in itself since it shows a contrast between the
lagrangian L2 and the standard embedding of RP2 in CP2 as the fixed locus of complex
conjugation: the standard embedding intersects each orbit of the second circle action
twice (in the interior of the moment polytope), namely, for each point [y0 ∶ y1 ∶ y2] with
y0, y1, y2 ∈ R, there is also the point [y0 ∶ y1 ∶ −y2] related by the second circle action, and
similarly for the first circle action.

However, L2 is hamiltonian isotopic to the standard RP2 according to Theorem 6.9
of Li and Wu [6] going back to work of Hind [5]. We can even explicitly write such a
hamiltonian isotopy.

5. Embedded composition

We recall the relevant notions of lagrangian correspondence and lagrangian composition
introduced by Weinstein [9] as, respectively, “morphism” between symplectic manifolds
and “morphism composition,” and the notion of embedded composition introduced by
Wehrheim and Woodward [8] in order to promote Weinstein’s “category” to an actual
2-category.

Let (M0, ω0), (M1, ω1) and (M2, ω2) be symplectic manifolds. For convenience we refer
to (Mi,−ωi) simply as M−

i and let M+
i mean (Mi, ωi), so these spaces are the same

manifold equipped with opposite symplectic forms. Then M−
i ×M+

j denotes the product
manifold Mi×Mj equipped with −ωi+ωj where we mean to add here the standard pullbacks
to a product manifold.

A lagrangian correspondence L is simply a lagrangian submanifold of such a product
M−

i ×M+
j . One writes LT for the same submanifold regarded as a lagrangian in the reverse

product M−
j ×M+

i , related by the transposition map Mi ×Mj →Mj ×Mi, (p, q) ↦ (q, p).
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The notion of lagrangian correspondence generalizes that of symplectomorphism, since
the graph of a symplectomorphism ϕ ∶Mi →Mj may be viewed as a lagrangian correspon-
dence in M−

i ×M+
j . But now the symplectic manifolds may even have different dimensions.

A lagrangian L in a symplectic manifold (M,ω) may be viewed as a lagrangian in the
product pt− ×M+ where the point manifold is a trivial symplectic manifold. More inter-
estingly, the level set µ−1(a) in a reduction scenario as in Section 2 may be viewed as a
lagrangian correspondence in M−

red ×M+; this widely known fact is explained below.

Two lagrangian correspondences may be composed as follows, generalizing the compo-
sition of symplectomorphisms. Let L01 be a lagrangian submanifold of M−

0 ×M+
1 and let

L12 be a lagrangian submanifold of M−
1 ×M+

2 . The composition of L01 and L12 is the
following subset of M0 ×M2:

L01 ○L12 ∶= {(p0, p2) ∣ ∃p1 ∈M1 with (p0, p1) ∈ L01 and (p1, p2) ∈ L12} .
In terms of the factor projections

M0 ×M1 ×M1 ×M2

π0 ↙ ↘ π2
M0 M2

the composition is the set

L01 ○L12 = (π0, π2)(L01 ×L12 ∩M0 ×∆M1 ×M2) ,
where ∆M1 denotes the preimage of the middle diagonal in M0×M1×M1×M2 via the nat-
ural projection onto M1×M1; hence, it is the subset of all points of the form (p0, p1, p1, p2).

Of course, this composition might be a singular set. Yet, in the best scenario, we have
that:

● the intersection L01 ×L12 ∩M0 ×∆M1 ×M2 is transverse , so this is a submanifold
with dimension 1

2 dim(M0 ×M2) and
● the projection map (π0, π2) from the above intersection to M0 ×M2 is an injective

immersion,

so, in this case, the lagrangian composition is an embedded submanifold of M0 ×M2.
Furthermore, this composition is indeed lagrangian with respect to the symplectic form
−ω0+ω2. In this best scenario, we say that the lagrangian submanifold L01○L12 of M−

0 ×M+
2

is an embedded composition (a.k.a. congenial composition [7]).

In the reduction framework described in Section 2 we can view the level set µ−1(a) as a
lagrangian in two different ways and use it to compose with other lagrangians. Concretely,
we consider the lagrangian submanifolds defined by

Lµ ∶= (π, ι)(µ−1(a)) ⊂ M−
red ×M+ .

and
LTµ ∶= (ι, π)(µ−1(a)) ⊂ M− ×M+

red

These submanifolds are isotropic because π∗ωred = ι∗ω. Although these submanifolds
depend on the specific level set, we omit a in their notation.
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In terms of Lµ, of LTµ and of lagrangian composition, lagrangians `1, L1, `2 and L2 as
in Section 2 (now viewed in pt− ×M+

red or pt− ×M+) may be described as

L1 = `1 ○Lµ = ι(π−1(`1))
and

`2 = L2 ○LTµ = π(L2 ∩ µ−1(a)) .
The first composition is always a straightforward embedded composition, whereas the
second is an embedded composition exactly when the two earlier conditions are satisfied:

● L2 and µ−1(a) intersect transversally and
● L2 intersects each T k-orbit in µ−1(a) at most once.

Therefore, `2 = L2 ○ LTµ is an embedded composition exactly when L2 is a one-to-one
transverse lifting of `2.

Since ` ○Lµ = ι(π−1(`)) is always an embedded composition, informally we have a map

{lagrangians in Mred}
○LµÐ→ {lagrangians in M}

` z→ ι(π−1(`))
where we view Mred and M as pt− ×M+

red and pt− ×M+, respectively.

However, in the other direction there is no well-defined map:

{lagrangians in M}
○LTµ
−− → {lagrangians in Mred}

In these terms, the lagrangian L2 ⊂ CP2 from Sections 3 and 4 is such that `2 = L2○LTµ ⊂
CP1 is an embedded composition; hence, the above “map” is well defined for L2.
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