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Introduction 

This is an overview of symplectic geometryl-- the geometry of symplectic manifolds. From 
a language for classical mechanics in the XVIII century, symplectic geometry has matured 
since the 1960's to a rich and central branch of differential geometry and topology. A cur- 
rent survey can thus only aspire to give a partial flavor on this exciting field. The following 
six topics have been chosen for this handbook: 

1. Symplectic manifolds are manifolds equipped with symplectic forms. A symplectic 
form is a closed nondegenerate 2-form. The algebraic condition (nondegeneracy) says 
that the top exterior power of a symplectic form is a volume form, therefore symplec- 
tic manifolds are necessarily even-dimensional and orientable. The analytical condition 
(closedness) is a natural differential equation that forces all symplectic manifolds to being 
locally indistinguishable: they all locally look like an even-dimensional Euclidean space 
equipped with the y~ dxi/x dyi symplectic form. All cotangent bundles admit canonical 
symplectic forms, a fact relevant for analysis of differential operators, dynamical systems, 
classical mechanics, etc. Basic properties, major classical examples, equivalence notions, 
local normal forms of symplectic manifolds and symplectic submanifolds are discussed in 

Section 1. 

2. Lagrangian submanifolds 2 are submanifolds of symplectic manifolds of half dimen- 
sion and where the restriction of the symplectic form vanishes identically. By the Lagran- 
gian creed [137], everything is a Lagrangian submanifold, starting with closed 1-forms, 
real functions modulo constants and symplectomorphisms (diffeomorphisms that respect 
the symplectic forms). Section 2 also describes normal neighborhoods of Lagrangian sub- 
manifolds with applications. 

3. Complex structures or almost complex structures abound in symplectic geometry: 
any symplectic manifold possesses almost complex structures, and even so in a compatible 
sense. This is the point of departure for the modern technique of studying pseudoholomor- 
phic curves, as first proposed by Gromov [64]. K~ihler geometry lies at the intersection of 
complex, Riemannian and symplectic geometries, and plays a central role in these three 
fields. Section 3 includes the local normal form for K~ihler manifolds and a summary of 
Hodge theory for K~ihler manifolds. 

4. Symplectic geography is concerned with existence and uniqueness of symplectic 
forms on a given manifold. Important results from K~ihler geometry remain true in the 
more general symplectic category, as shown using pseudoholomorphic methods. This 
viewpoint was more recently continued with work on the existence of certain symplectic 

1The word symplectic in mathematics was coined in the late 1930's by Weyl [142, p. 165] who substituted the 
Latin root in complex by the corresponding Greek root in order to label the symplectic group (first studied by 
Abel). An English dictionary is likely to list symplectic as the name for a bone in a fish's head. 

2The name Lagrangian manifold was introduced by Maslov [93] in the 1960's, followed by Lagrangian plane, 
etc., introduced by Arnold [2]. 
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submanifolds, in the context of Seiberg-Witten invariants, and with topological descrip- 
tions in terms of Lefschetz pencils. Both of these directions are particularly relevant to 
4-dimensional topology and to mathematical physics, where symplectic manifolds occur 
as building blocks or as key examples. Section 4 treats constructions of symplectic mani- 
folds and invariants to distinguish them. 

5. Hamil tonian geometry  is the geometry of symplectic manifolds equipped with a mo- 

ment  map, that is, with a collection of quantities conserved by symmetries. With roots 
in Hamiltonian mechanics, moment maps became a consequential tool in geometry and 
topology. The notion of a moment map arises from the fact that, to any real function on a 
symplectic manifold, is associated a vector field whose flow preserves the symplectic form 
and the given function; this is called the Hamil tonian vector f ie ld  of that (Hamiltonian) 
function. The Arnold conjecture in the 60's regarding Hamiltonian dynamics was a major 
driving force up to the establishment of Floer homology in the 80's. Section 5 deals mostly 
with the geometry of moment maps, including the classical Legendre transform, integrable 
systems and convexity. 

6. Symplect ic  reduction is at the heart of many symplectic arguments. There are infinite- 
dimensional analogues with amazing consequences for differential geometry, as illustrated 
in a symplectic approach to Yang-Mills theory. Symplectic toric manifolds provide exam- 
ples of extremely symmetric symplectic manifolds that arise from symplectic reduction 
using just the data of a polytope. All properties of a symplectic toric manifold may be read 
from the corresponding polytope. There are interesting interactions with algebraic geome- 
try, representation theory and geometric combinatorics. The variation of reduced spaces is 
also addressed in Section 6. 

1. Symplectic manifolds 

1.1. Symplect ic  l inear algebra 

Let V be a vector space over R, and let S2"V x V ~ R be a skew-symmetric bilin- 
ear map. By a skew-symmetric version of the Gram-Schmidt process, 3 there is a basis 
u 1 . . . . .  Uk, el . . . . .  en, f l  . . . . .  fn of V for which s (ui, v) -- S2 (ei, e j )  -- I2 ( f i ,  f j )  -- 0 
and I-2(ei, f j )  = (~ij for all i, j and all v E V. Although such a basis is not unique, it 
is commonly referred to as a canonical  basis. The dimension k of the subspace U = 
{u ~ V [ S2(u, v) = 0 for all v E V} is an invariant of the pair (V, S2). Since k + 2n = 
dim V, the even number 2n is also an invariant of (V, I-2), called the rank of I2. We denote 
by ~ "  V --+ V* the linear map defined by ~ ( v ) ( u )  " -  I2(v ,  u). We say that s is symplec- 

tic (or nondegenerate)  if the associated I2 is bijective (i.e., the kernel U of s is the trivial 
space {0}). In that case, the map S2 is called a l inear symplectic  structure on V, and the 

3Let Ul . . . . .  Uk be a basis of U := {u E V I s v) = 0  for all v E V}, and W a complementary subspace 

such that V = U (9 W. Take any nonzero e 1 E W. There is f l  E W with S-2(e 1 , f l  ) = 1. Let W 1 be the span of 

e l ,  f l  and Wl s2 := {v E V I I2(v, u) -- 0 u E W 1 }. Then W = W 1 (~ Wi Q . Take any nonzero e 2 E W( 2 . There is 

f2 ~ WI s? for which I2(e 2, f2) = 1. Let W2 be the span of e 2, f2, and so on. 
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pair (V, Y2) is called a symplectic vector space. A linear symplectic structure 12 expresses 

a duality by the bijection ~ "  V -~> V*, similar to the (symmetric) case of an inner prod- 
uct. By considering a canonical basis, we see that the dimension of a symplectic vector 
space (V, s must be even, dim V = 2n, and that V admits a basis el . . . . .  en, f l  . . . . .  fn 
satisfying 12 (ei,  f j )  = ~ij and 12 (ei,  e j )  --  0 --  1"2 ( f i ,  f j ) .  Such a basis is then called a 
symplectic basis of (V, 12), and, in terms of exterior algebra, 12 - e I A fF + . . .  + e n A fn , 
where e I . . . . .  en, f {  . . . . .  fn is the dual basis. With respect to a symplectic basis, the map 
12 is represented by the matrix 

0 Id 
- I d  0 ]" 

E X A M P L E S .  

1. The prototype o fa  symplectic vector space i s  (It~ 2n , 120) with 120 such that the canon- 
ical basis el = (1, 0 . . . . .  0) . . . . .  en, f l  . . . . .  fn = (0 . . . . .  0, 1) is a symplectic basis. 
B ilinearity then determines 120 on other vectors. 

2. For any real vector space E, the direct sum V = E G E* has a canonical symplectic 
structure determined by the formula 120(u G or, v � 9  = /3 (u )  - o r (v ) .  If el . . . . .  en 
is a basis of E, and f l  . . . . .  fn is the dual basis, then el G 0 . . . . .  en �9 O, 0 G f l  . . . . .  
0 @ fn is a symplectic basis for V. 

Given a linear subspace W of a symplectic vector space (V, 12), its symplectic orthog- 
onal is the subspace W s~ " -  {v ~ V 112 (v, u) - 0  for all u ~ W}. By nondegeneracy, we 
have dim W + dim W s2 = dim V and (WS2) s~ - W. For subspaces W and Y, we have 
(W N y)S2 = WS2 + yS~, and if W c Y then yS2 __c W s2 . 

There are special types of linear subspaces of a symplectic vector space (V, 12). 
A subspace W is a symplectic subspace if the restriction 12 I w is nondegenerate, that is, 
W n W s~ -- {0}, or equivalently V -- W ~3 W s2 . A subspace W is an isotropic subspace if 
121w ~ 0, that is, W _ W s2. A subspace W is a coisotropic subspace if W s2 _ W. A sub- 
space W is a Lagrangian subspace if it is both isotropic and coisotropic, or equivalently, 
if it is an isotropic subspace with dim W - 1 dim V. A basis el . . . . .  en of a Lagrangian 
subspace can be extended to a symplectic basis: choose f l  in the symplectic orthogonal to 
the linear span of {e2 . . . . .  en }, etc. 

E X A M P L E S .  

1. For a symplectic basis as above, the span of el,  f l  is symplectic, that of el,  e2 
isotropic, that of e l  . . . . .  en, f l  coisotropic, and that of el . . . . .  en Lagrangian. 

2. The graph of a linear map A: E --+ E* is a Lagrangian subspace of E @ E* with the 
canonical symplectic structure if and only if A is symmetric (i.e., (Au)v  = (Av)u).  
Therefore, the Grassmannian of all Lagrangian subspaces in a 2n-dimensional sym- 
plectic vector space has dimension n(n+l) 

2 " 

A symplectomorphism 99 between symplectic vector spaces (V, 12) and (V t, 12t) is a 

linear isomorphism qg"V ~-> V ~ such that q9"12 t = 12.4 If a symplectomorphism exists, 

4By definition, (~p* S-2I)(u, v) -- s (qg(u), ~p(v)). 
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(V, $2) and (V t, S2 t) are said to be symplectomorphic. Being symplectomorphic is clearly 
an equivalence relation in the set of all even-dimensional vector spaces. The existence of 
canonical bases shows that every 2n-dimensional symplectic vector space (V, S2) is sym- 
plectomorphic to the prototype (R 2n, ~20); a choice of a symplectic basis for (V, S-2) yields 
a symplectomorphism to (•2n, I20). Hence, nonnegative even integers classify equivalence 
classes for the relation of being symplectomorphic. 

Let S2(V) be the space of all linear symplectic structures on the vector space V. Take 
a S2 �9 ~2(V), and let Sp(V, S'2) be the group of symplectomorphisms of (V, S2). The 
group GL(V) of all isomorphisms of V acts transitively on S2(V) by pullback (i.e., all 
symplectic structures are related by a linear isomorphism), and Sp(V, S2) is the stabilizer 
of the given $2. Hence, I-2 (V) _~ GL(V) /Sp (V ,  S2). 

1.2. Symplectic forms 

Let co be a de Rham 2-form on a manifold 5 M. For each point p �9 M, the map cop : TpM • 
TpM --+ R is skew-symmetric and bilinear on the tangent space to M at p, and cop varies 
smoothly in p. 

DEFINITION 1.1. The 2-form co is symplectic if co is closed (i.e., its exterior derivative 
dco is zero) and cop is symplectic for all p e M. A symplectic manifold is a pair (M, co) 
where M is a manifold and co is a symplectic form. 

Symplectic manifolds must be even-dimensional. Moreover, the nth exterior power con 
of a symplectic form co on a 2n-dimensional manifold is a volume form. 6 Hence, any sym- 

09 n 
plectic manifold (M, co) is canonically oriented. The form ~ is called the symplectic vol- 
ume or Liouville volume of (M, co). When (M, co) is a compact 2n-dimensional symplectic 
manifold, the de Rham cohomology class [con] e H 2n (M; R) must be nonzero by Stokes 
theorem. Therefore, the class [co] must be nonzero, as well as its powers [co]k = [cok] ~ 0. 
Exact symplecticforms can only exist on noncompact manifolds. Compact manifolds with 
a trivial even cohomology group H2k(M; •), k = 0, 1 . . . . .  n, such as spheres S 2n with 
n > 1, can thus never be symplectic. On a manifold of dimension greater than 2, a function 
multiple fco of a symplectic form co is symplectic if and only if f is a nonzero locally 
constant function (this follows from the existence of a symplectic basis). 

EXAMPLES. 
1. Let M = It~ 2n with linear coordinates X l . . . . .  Xn, Yl . . . . .  Yn. The form 

n 

coo -- Z dxi A dyi 
i=1 

5Unless otherwise indicated, all vector spaces are real and finite-dimensional, all maps are smooth (i.e., C c~) 
and all manifolds are smooth, Hausdorff and second countable. 

6A volume form is a nonvanishing form of top degree. If S2 is a symplectic structure on a vector space V of 
dimension 2n, its nth exterior power S2 n - I-2 A ... A $2 does not vanish. Actually, a skew-symmetric bilinear 
map S2 is symplectic if and only if S'2 n ~ 0. 
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is symplectic, and the vectors ( ~ ) p  . . . .  . (-ff-~,t)p,~ (_ff_~)pO . . . . .  (~_~_n_) p 0  constitute a 
symplectic basis of Tp M. 

i 2. Let M -- C n with coordinates z l . . . . .  zn. The form coo -- ~ ~ dzk A dzk is symplec- 
tic. In fact, this form coincides with that of the previous example under the identifi- 
cation C ~ ~ ~ 2 n ,  Zk - -  Xk + i yk. 

3. The 2-sphere S 2, regarded as the set of unit vectors in R 3, has tangent vectors 
at p identified with vectors orthogonal to p. The standard symplectic form on S 2 
is induced by the standard inner (dot) and exterior (vector) products: cop(U, v) := 
(p, u • v), for u, v ~ T p S  2 - -  {p}• This is the standard area form o n  S 2 with total 
area 47r. In terms of cylindrical polar coordinates 0 <~ 0 < 27r and - 1  <~ z ~< 1 away 
from the poles, it is written co = dO A dz. 

4. On any Riemann surface, regarded as a 2-dimensional oriented manifold, any area 
form, that is, any never vanishing 2-form, is a symplectic form. 

5. Products of symplectic manifolds are naturally symplectic by taking the sum of the 
pullbacks of the symplectic forms from the factors. 

6. If a (2n + 1)-dimensional manifold X admits a contact form, that is, a 1-form ot such 
that ot A (dot) ~ is never vanishing, then the 2-form d(e t ~) is symplectic on X • and 
the symplectic manifold (X x ]K, d(e tc~)) is called the symplectization of the contact 
manifold (X, or). For more on contact geometry, see for instance the corresponding 
contribution in this volume. 

DEFINITION 1.2. Let ( m l ,  col) and (M2, o92) be symplectic manifolds. A (smooth) map 
7t" M1 --+ M2 is symplectic if ~*co2 = col .7 A symplectic diffeomorphism qg" M1 --+ M2 is 
a symplectomorphism. (M1, o91) and (M2, co2) are said to be symplectomorphic when there 
exists a symplectomorphism between them. 

The classification of symplectic manifolds up to symplectomorphism is an open prob- 
lem in symplectic geometry. However, the local classification is taken care of by the Dar- 
boux theorem (Theorem 1.9): the dimension is the only local invariant of symplectic man- 
ifolds up to symplectomorphisms. That is, just as any n-dimensional manifold is locally 
diffeomorphic to ~n, any symplectic manifold ( M  2n , co) is locally symplectomorphic to 
(•2n, coo). As a consequence, if we prove for (R 2n, coo) a local assertion that is invari- 
ant under symplectomorphisms, then that assertion holds for any symplectic manifold. We 
will hence refer to R 2n, with linear coordinates (Xl . . . . .  Xn, Yl . . . . .  Yn), and with sym- 
plectic form coo-- ~-'~in_l dxi A dyi, as the prototype of  a local piece o f  a 2n-dimensional 
symplectic manifold. 

1.3. Cotangent bundles 

Cotangent bundles are major examples of symplectic manifolds. Let (b/, X l . . . . .  xn) be a 
coordinate chart for a manifold X, with associated cotangent coordinates (T*Lt, X l . . . . .  Xn, 

7By definition of pullback, we have (~*cO2)p(U, v) = (co2)~p(p)(d~p(U), dTtp(V)), at tangent vectors u, v 
TrM~ . 
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~1 . . . . .  ~n).8 Define a symplectic form on T*bl by 

co -- ~ dxi A d~i. 
i=1 

One can check that this co is intrinsically defined by considering the 1-form on T*bl, 

ot -- ~ ~i dxi, 
i=1 

which satisfies co -- - d o t  and is coordinate-independent:  in terms of the natural projection 

z r ' M  --+ X, p -- (x, ~) ~ x, the form ot may be equivalently defined pointwise without 
coordinates by 

otp --  (dTrp)*~ E TpM, 

where (dzrp)*:T*X --+ TpM is the transpose of dzrp, that is, o t p ( l ) )  --" ~((dzrp)V) for v E 

Tp M. Or yet, the form ot is uniquely characterized by the property that/z*ot = / z  for every 

1 - f o r m / z : X  --+ T*X (see Proposit ion 2.2). The 1-form ot is the tautological form (or 

the Liouville 1-form) and the 2-form co is the canonical symplectic form on T*X. When  

referring to a cotangent  bundle as a symplectic manifold, the symplectic structure is meant  
to be given by this canonical co. 

Let  X1 and X2 be n-dimensional  manifolds with cotangent  bundles M1 -- T ' X 1  and 

M2 = T 'X2 ,  and tautological  1-forms otl and ot2. Suppose that f :X1 ~ X2 is a diffeo- 

morphism.  Then there is a natural diffeomorphism f~:M1 --+ M2 which lifts f ;  namely, 

for Pl  = ( X l ,  ~1) E M1 we define 

f ~ ( P l )  : P 2  - -  (X2, ~2) ,  
X2 - -  f ( x l )  E X 2  and 

with ~ 1 -  (dfx,)*~2 E Tx~ X1, 

where (dfxl)*'Tx*zX2 -> T*xl X1, so f~l r* 1 is the inverse map of (dfxl)* 

PROPOSITION 1.3. The lift f~ of  a diffeomorphism f : X1 --+ X 2  pulls the tautological 
form on T*X2 back to the tautological form on T 'X1 ,  i.e., (f~)*ot2 -- otl. 

8If an n-dimensional manifold X is described by coordinate charts (b/, Xl . . . . .  Xn) with xi :b/--+ R, then, at 

any x 6 b/, the differentials (dx i )x form a basis of Tx* X, inducing a map 

T ' b /  ~ R 2n , 

(x,~) ~ (xl . . . . .  xn,~l . . . . .  ~n), 

where ~l . . . . .  ~n 6IR are the corresponding coordinates of ~ 6 T'X: ~ = y~in=l ~ i ( d x i )  x .  Then (T'b/, Xl . . . . .  
Xn, ~1 ..... ~n) is a coordinate chart for the cotangent bundle T'X; the coordinates xl ..... Xn, ~1 ..... ~n are 
called the cotangent coordinates associated to the coordinates X l . . . . .  Xn on/g. One verifies that the transition 
functions on the overlaps are smooth, so T*X is a 2n-dimensional manifold. 
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PROOF.  At Pl - -  (Xl ,  ~1) E M1, the claimed identity says (dfa)pl (oe2)p2 - -  ( o e l ) p l ,  where 
P2 - -  f ~ ( P l ) ,  that is, P2 - -  (x2,  ~2) where x 2 -  f ( x l )  and (d fx l )*~2  ----~1. This can be 
proved as follows" 

( d k ) p l  (oe2)p2 - -  ( d k ) p l  (dyg2)p2~2 

---- (d(Tt'2 o f ~ ) ) p ,  ~2 
~k 

= (drrl)* (df)*~, ~2 Pl 

= (dTr l )*  ~1 pl 

= ( a l ) p ,  

by definition of oe2 

by the chain rule 

because 7r2 o f~ = f o rrl 

by the chain rule 

by definition of f~ 

by definition of oel. g] 

As a consequence of this naturality for the tautological form, a diffeomorphism of man- 
ifolds induces a canonical symplectomorphism of cotangent bundles: 

COROLLARY 1.4. The lift f:: " T ' X 1  ----> T ' X 2  of a diffeomorphism f "  X1 --+ X2 is a sym- 
plectomorphism for the canonical symplectic forms, i.e., (f~)* 092 --  CO1. 

In terms of the group (under composition) of diffeomorphisms Diff(X) of a manifold X, 

and the group ofsymplectomorphisms Sympl(T* X, co) of its cotangent bundle, we see that 
the injection Diff(X) --+ Sympl(T* X, o~), f >-, f~ is a group homomorphism. Clearly this 
is not surjective: for instance, consider the symplectomorphism T*X --+ T*X given by 
translation along cotangent fibers. 

EXAMPLE. Let X1 - -  X2 - -  S 1. Then T*S 1 is a cylinder S 1 • 1R. The canonical form is 
the area form c o -  dO/x d~. If f "  S 1 -+ S 1 is any diffeomorphism, then f~" S 1 • 1R --+ 
S 1 x 1R is a symplectomorphism, i.e., is an area-preserving diffeomorphism of the cylinder. 
Translation along the IR direction is area-preserving but is not induced by a diffeomorphism 
of the base manifold S 1 . 

There is a criterion for which cotangent symplectomorphisms arise as lifts of diffeomor- 
phisms in terms of the tautological form. First note the following feature of symplectic 
manifolds with exact symplectic forms. Let oe be a 1-form on a manifold M such that 
co = -doe is symplectic. There exists a unique vector field v whose interior product with 

o0 is oe, i.e., t vco = - o e .  If g : M  ---> M is a symplectomorphism that preserves oe (that is, 
g*oe = oe), then g commutes with the flow 9 of v, i.e., (exptv)  o g = g o (exptv) .  When 

9For p ~ M, (exptv)(p) is the unique curve in M solving the initial value problem 

d__ (exp tv(p)) = v(exp tv(p)) dt 
(exptv)(p)lt=O-- p 

for t in some neighborhood of 0. The one-parameter group of diffeomorphisms exp t v is called the flow of the 
vector field v. 
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M = T * X  is the cotangent bundle of an arbitrary n-dimensional manifold X, and ot is the 
0 tautological 1-form on M, the vector field v is just ~ ~i ~ with respect to a cotangent 

coordinate chart (T'L/, Xl . . . . .  Xn, ~1 . . . . .  ~n). The flow exptv,  -cx~ < t < cx~, satisfies 
( exp tv ) ( x ,  ~) = (x, eta), for every (x, ~) in M. 

THEOREM 1.5. A symplectomorphism g : T * X  -+ T * X  is a lift o f  a diffeomorphism 
f : X --~ X i f  and only i f#preserves  the tautological form: g*t~ = ~ .  

PROOF. By Proposition 1.3, a lift f~ : T * X  -+ T * X  of a diffeomorphism f :X -+ X pre- 
serves the tautological form. Conversely, if g is a symplectomorphism of M that pre- 
serves c~, then g preserves the cotangent fibration: by the observation above, g(x,  ~) = 
(y, r/) =~ g(x ,  X~) = (y, Xr/) for all (x, ~) ~ M and ~ > 0, and this must hold also for )~ ~< 0 
by the differentiability of g at (x, 0). Therefore, there exists a diffeomorphism f :X -+ X 
such that Jr o g = f o Jr, where Jr : M -+ X is the projection map Jr (x, ~) = x, and g = f#. D 

The canonical form is natural also in the following way. Given a smooth function 
h :X --+ R, the diffeomorphism rh of M = T * X  defined by rh(X, ~) = (x, ~ + dhx)  turns 
out to be always a symplectomorphism. Indeed, if Jr :M ~ X, zr (x, ~) = x, is the projec- 
tion, we have r~ot = ot + Jr* dh, so that r~co = co. 

1.4. Moser's trick 

There are other relevant notions of equivalence for symplectic manifolds 1~ besides being 
symplectomorphic. Let M be a manifold with two symplectic forms coo, col. 

DEFINITION 1.6. The symplectic manifolds (M, coo) and (M, col) are  strongly isotopic 
if there is an isotopy p t ' M  --+ M such that P~col --coo. (M, coo) and (M, col) are 
deformation-equivalent if there is a smooth family cot of symplectic forms joining coo 
to col. (M, coo) and (M, o91) are isotopic if they are deformation-equivalent and the de 
Rham cohomology class [cot ] is independent of t. 

Hence, being strongly isotopic implies being symplectomorphic, and being isotopic im- 
plies being deformation-equivalent. We also have that being strongly isotopic implies being 
isotopic, because, if p t ' M  --+ M is an isotopy such that P~col - coo, then cot " -  P~'col is a 
smooth family of symplectic forms joining col to coo and [cot ] = [COl ], Vt, by the homotopy 
invariance of de Rham cohomology. 

Moser [105] proved that, on a compact manifold, being isotopic implies being strongly 
isotopic (Theorem 1.7). McDuff showed that deformation-equivalence is indeed a nec- 
essary hypothesis: even if [coo] = [col] e H2(M; R), there are compact examples where 
(M, coo) and (M, col) are not strongly isotopic; see Example 7.23 in [99]. In other words, 

10Understanding these notions and the normal forms requires tools, such as isotopies (by isotopy we mean a 
smooth one-parameter family of diffeomorphisms starting at the identity, like the flow of a vector field), Lie 
derivative, tubular neighborhoods and the homotopy formula in de Rham theory, covered in differential geometry 
or differential topology texts. 
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fix c 6 H2(M)  and define Sc as the set of symplectic forms co in M with [co] = c. On 
a compact manifold, all symplectic forms in the same path-connected component of Sc 

are symplectomorphic according to the Moser theorem, though there might be symplectic 
forms in different components of Sc that are not symplectomorphic. 

THEOREM 1.7 (Moser). Let M be a compact  manifold with symplectic forms  coo and col. 

Suppose that cot, 0 ~ t ~ 1, is a smooth fami ly  o f  symplectic f o rms  joining coo to col with 

cohomology class [cot ] independent  o f  t. Then there exists an isotopy p : M • • -+ M such 

that Ptcot - coo, 0 ~< t ~< 1. 

Moser applied an extremely useful argument, known as Moser ' s  trick, starting with the 

following observation. If there existed an isotopy p ' M  x IR --+ M such that Ptcot - coo, 

0 ~< t ~< 1, in terms of the associated time-dependent vector field 

dp t  -1  
wt " -  ~ o Pt , t ~ IR, 

we would then have for all 0 ~< t ~< 1 that 

0 -  --~ ( P t cot ) -- P t s v t cot -t- d t ] " > Or, cot -t- d t - -0 .  

Conversely, the existence of a smooth time-dependent vector field vt, t 6 ]I{, satisfying 
the last equation is enough to produce by integration (since M is compact) the desired 

:r 
isotopy p" M x R --+ M satisfying Ptcot -- P0 coo = coo, for all t. So everything boils down 

to solving the equation s cot + ~ m 0 for Yr. 

PROOF. By the cohomology assumption that [~cot] - 0, there exists a smooth family of 

1-forms/zt such that 

dcot 

dt  
= d  lzt, 0 ~ < t ~ < l .  

The argument involves the Poincar6 lemma for compactly-supported forms, together with 
the Mayer-Vietoris sequence in order to use induction on the number of charts in a good 
cover of M; for a sketch, see page 95 in [99]. In the simplest case where cot = (1 - t)co0 + 

tcol with [coo] - [col], we have that @t' - col - coo - d #  is exact. 
The nondegeneracy assumption on cot, guarantees that we can pointwise solve the equa- 

tion, known as Moser ' s  equation, 

t v t c o t +  ~ t  - -  0 

to obtain a unique smooth family of vector fields vt, 0 ~< t ~< 1. Extend vt to all t 6 ]I{. 
Thanks to the compactness of M, the vector fields vt generate an isotopy p satisfying 
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d•t 
dt  = l)t o lot . Then we indeed h a v e  

d . (  dcot) . 
dt (Ptcot) = Pt ~-'vtcot + ~ - -  Pt (dtvtCOt + dlzt) = p;d(tvtCOt + ~t) -- 0, 

where we used Cartan's magic formula in Z;v, COt = dtvt COt + lv tdCOt. D 

EXAMPLE. On a compact  oriented 2-dimensional manifold M, a symplectic form is just 

an area form. Let COo and COl be two area forms on M. If [COo] = [COl], i.e., COo and COl 

give the same total area, then any convex combination of them is symplectic (because they 
induce the same orientation), and there is an isotopy ~ot:M -+ M, t ~ [0, 1], such that 
tp~CO0 - COl. Therefore, up to strong isotopy, there is a unique symplectic representative in 
each nonzero 2-cohomology class of M. 

On a noncompact manifold, given vt, we would need to check the existence for 0 ~< t ~< 1 
of an isotopy Pt solving the differential equation ~ / - -  vt o Pt. 

1.5. Darboux and Moser theorems 

By a submanifold of a manifold M we mean either a manifold X with a closed embedding I 1 

i :X  ~ M, or an open submanifold (i.e., an open subset of M). 
Given a 2n-dimensional  manifold M, a k-dimensional submanifold X, neighborhoods 

/do,/gl of X, and symplectic forms COo, COl o n  / g O , / g l ,  we would like to know whether 
there exists a local symplectomorphism preserving X, i.e., a diffeomorphism q9 :b/0 --+ U1 

with q)*COl = COO and qg(X) - X. Moser 's  Theorem 1.7 addresses the case where X = M. 
At the other extreme, when X is just one point, there is the classical Darboux theorem 
(Theorem 1.9). In general, we have: 

THEOREM 1.8 (Moser theoremmrela t ive  version). Let COo and COl be symplectic forms 
on a manifold M, and X a compact submanifold of M. Suppose that the forms coincide, 
CO01p = COlIp, at all points p ~ X. Then there exist neighborhoods/go and bll of  X in M, 
and a diffeomorphism q) :/do --+/, ' /1 such that 99"COl = COo and ~p restricted to X is the identity 
map. 

PROOF. Pick a tubular neighborhood/g0 of X. The 2-form col - -  090 is closed on/do, and 
satisfies (COl - CO0)p - 0 at all p 6 X. By the homotopy formula on the tubular neighbor- 
hood, there exists a 1-form # on/go such that COl - -  COO ~ d #  and/~p  = 0 at all p 6 X. 

Consider the family COt = (1 - t)CO0 + tCOl --COo d- t d/~ of closed 2-forms on/go. Shrinking 
/do if necessary, we can assume that COt is symplectic for t ~ [0, 1], as nondegeneracy is 

an open property. Solve Moser 's  equation, tvt COt = - # ,  for vt By integration, shrinking/g0 
again if necessary, there exists a local isotopy p"/do x [0, 1 ] -+ M with p~ COt - COo, for all 

t 6 [0, 1]. Since vtlx = 0, we have Ptlx = idx. Set q9 = Pl,/ar - -  Pl (U0). [-7 

11A closed embedding is a proper injective immersion. A map is proper when its preimage of a compact set is 
always compact. 
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THEOREM 1.9 (Darboux). Let (M, co) be a symplectic manifold, and let p be any point 
in M. Then we can find a chart (/g, X l . . . . .  Xn, Yl . . . .  Yn) centered at p where 

co = s dxi A dyi. 
i = 1  

Such a coordinate chart (/g, X l  . . . . .  Xn, Yl . . . . .  Yn) is called a Darboux chart, and the 
corresponding coordinates are called Darboux coordinates. 

The classical proof of Darboux's theorem is by induction on the dimension of the mani- 
fold [2], in the spirit of the argument for a symplectic basis (Section 1.1). The proof below, 
using Moser 's  theorem, was first provided by Weinstein [ 136]. 

PROOF. Apply Moser 's  relative theorem to X -- {p}. More precisely, use any symplec- 
l I I tic basis for (TpM, cop) to construct coordinates (xtl . . . . .  Xn' Yl . . . .  Yn) centered at p and 

valid on some neighborhood/g ' ,  so that cop - y~ dx~ A dy[lp. There are two symplectic 
forms on/g ' :  the given coo = co and o91 - ~ dx~ A dye. By Theorem 1.8, there are neigh- 
borhoods/g0 and/g l  of p, and a diffeomorphism go :/g0 --+/gl such that go(p) - p and 
go*(~ dx~ A dye) -- co. Since go* (y~ dx~ A dye) -- y~ d(x~ o qg) A d(y~ o go), we simply set 

l I new coordinates xi -- X i o (t9, Yi = Yi o gO. W] 

Darboux's  theorem is easy in the 2-dimensional case. Being closed co is locally exact, 
co = dot. Every nonvanishing 1-form on a surface can be written locally as ot = g dh for 
suitable functions g, h, where h is a coordinate on the local leaf space of the kernel foliation 
of ot. The form co -- d g A d h is nondegenerate if and only if (g, h) is a local diffeomor- 
phism. By the way, transversality shows that the normal form for a generic 12 2-form is 
x dx A dy near a point where it is degenerate. 

1.6. Symplectic submanifolds 

Moser 's  argument permeates many other proofs, including those of the next two results 
regarding symplectic submanifolds. Let (M, co) be a symplectic manifold. 

DEFINITION 1.10. A symplectic submanifold of (M, co) is a submanifold X of M where, 
at each p E X, the space TpX is a symplectic subspace of (TpM, cop). 

If i :X ~ M is the inclusion of a symplectic submanifold X, then the restriction of co 
to X is a symplectic form, so that (X, i'co) is itself a symplectic manifold. 

Let X be a symplectic submanifold of (M, co). At each p E X, we have TpM = 
T p X  �9 ( T p X )  ~ (Section 1.1), so the map (TpX)C~ ~ T p M / T p X  is an isomorphism. 
This canonical identification of the normal space of X at p, N p X  :-- T p M / T p X ,  with the 
symplectic orthogonal (TpX)~ yields a canonical identification of the normal bundle N X  

12 Generic here means that the subset of those 2-forms having this behavior is open, dense and invariant under 
diffeomorphisms of the manifold. 
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with the symplectic vector bundle ( T X )  ~ A symplectic vector bundle is a vector bundle 
E --+ X equipped with a smooth 13 field ~2 of fiberwise nondegenerate skew-symmetric 
bilinear maps S-2p : Ep x E p --+ ~,. The symplectic normal bundle is the normal bundle 
of a symplectic submanifold, with the symplectic structure induced by orthogonals. The 
next theorem, due to Weinstein [136], states that a neighborhood of a symplectic sub- 
manifold X is determined by X and (the isomorphism class of) its symplectic normal 
bundle. 

THEOREM 1.1 1 (Symplectic neighborhood theorem). Let (Mo, coo), (M1, col) be symplec- 

tic manifolds with diffeomorphic compact symplectic submanifolds Xo, X1. Let io" Xo 

Mo, i l ' X 1  c_+ M1 be their inclusions. Suppose there is an isomorphism ( b ' N X o - - ~  

N X1 o f  the corresponding symplectic normal bundles covering a symplectomorphism 

~b �9 (Xo, toO)O)'* -+ (X1 , i~col). Then there exist neighborhoods/go C Mo, /gl C M1 of  Xo, 
X1 and a symplectomorphism go'Lto --~ /gl extending ~ such that the restriction of  dq9 to 

the normal bundle N Xo is ~. 

As first noted by Thurston [131], the form S-2 + zr*cox is symplectic in some neighbor- 
hood of the zero section in N X, where r c : N X  --+ X is the bundle projection and cox is 
the restriction of co to X. Therefore, a compact symplectic submanifold X always admits a 

tubular neighborhood in the ambient (M, co) symplectomorphic to a tubular neighborhood 

of  the zero section in the symplectic normal bundle N X. 

PROOF. By the Whitney extension theorem 14 there exist neighborhoods/do C Mo and 
Ul C M1 of X0 and X1, and a diffeomorphism h'L/0 --+/4r such that h o i0 -- i l o q~ and 
the restriction of dh to the normal bundle NXo is the given 4~. Hence coo and h'col are two 
symplectic forms on/go which coincide at all points p ~ X0. The result now follows from 
Moser's relative theorem (Theorem 1.8). V] 

Carefully combining Moser's argument with the existence of an ambient isotopy that 
produces a given deformation of a compact submanifold, we can show: 

THEOREM 1.12. Let Xt,  t ~ [0, 1 ], be a (smooth)family of  compact symplectic submani- 

folds o f  a compact symplectic manifold (M, co). Then there exists an isotopy p" M • IR -+ 

M such that for  all t E [0, 1] we have p~co - co and pt(Xo) = Xt.  

Inspired by complex geometry, Donaldson [32] proved the following theorem on the ex- 
istence of symplectic submanifolds. A major consequence is the characterization of sym- 
plectic manifolds in terms of Lefschetz pencils; see Section 4.6. 

13 Smoothness means that, for any pair of (smooth) sections u and v of E, the real-valued function I2 (u, v)" X 
given by evaluation at each point is smooth. 

14Whitney extension theorem. Let M be a manifold and X a submanifold of M. Suppose that at each p ~ X 

we are given a linear isomorphism Lp : TpM --~ TpM such that Lp[TpX = IdTpX and Lp depends smoothly 
on p. Then there exists an embedding h :iV" --+ M of some neighborhood Af of X in M such that hlx = idx and 
dh p = L p for all p E X. A proof relies on a tubular neighborhood model. 
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THEOREM 1.13 (Donaldson). Let (M, co) be a compact symplectic manifold. Assume that 
the cohomology class [co] is integral, i.e., lies in H2(M; Z). Then, for  every sufficiently 
large integer k, there exists a connected codimension-2 symplectic submanifold X repre- 
senting the Poincar~ dual of  the integral cohomology class k[co]. 

Under the same hypotheses, Auroux extended this result to show that given ot 
H2m(M; Z) there exist positive k, s 6 Z such that kPD[co n-m ] + got is realized by a 2m- 
dimensional symplectic submanifold. 

2. Lagrangian submanifolds 

2.1. First Lagrangian submanifolds 

Let (M, co) be a symplectic manifold. 

DEFINITION 2.1. A submanifold X of (M, co) is Lagrangian (respectively, isotropic and 
coisotropic) if, at each p E X, the space Tp X is a Lagrangian (respectively, isotropic and 
coisotropic) subspace of (TpM, cop). 

If i: X ~ M is the inclusion map, then X is a Lagrangian submanifold if and only if 
i* co -- 0 and dim X - �89 dim M. 

The problem of embedding 15 a compact manifold as a Lagrangian submanifold of a 
given symplectic manifold is often global. For instance, Gromov [64] proved that there 
can be no Lagrangian spheres in (C n , coo), except for the circle in C 2, and more generally 
no compact exact Lagrangian submanifolds, in the sense that ot0 = ~ yj dxj  restricts to 
an exact 1-form. The argument uses pseudoholomorphic curves (Section 3.6). Yet there 
are immersed Lagrangian spheres (Section 2.7). More recently were found topological 
and geometrical constraints on manifolds that admit Lagrangian embeddings into compact 
symplectic manifolds; see, for instance, [ 16,17,115]. 

EXAMPLES. 
1. Any 1-dimensional submanifold of a symplectic surface is Lagrangian (because a 

1-dimensional subspace of a symplectic vector space is always isotropic). 
Therefore, any product of n embedded curves arises as a Lagrangian submanifold 

of (a neighborhood of zero in) the prototype ( • 2 n ,  COO). In particular, a torus 72 n = 
S 1 x . . .  x S 1 can be embedded as a Lagrangian submanifold of any 2n-dimensional 
symplectic manifold, by Darboux's theorem (Theorem 1.9). 

2. Let M -- T*X be the cotangent bundle of a manifold X. With respect to a cotangent 
coordinate chart (T 'U ,  X l ,  . . . ,  Xn, ~1 . . . . .  ~n), the tautological form is ot - ~ ~i dxi  
and the canonical form is co - -dot  - ~ dxi A d~i. 

The zero section Xo "-  {(x, ~) E T*X I~ = 0 in Tx*X} is an n-dimensional sub- 
manifold of T*X whose intersection with T*U is given by the equations ~1 - -  . . . .  

15 An embedding is an immersion that is a homeomorphism onto its image. 



94 A. Cannas da Silva 

~n -- O. Clearly c~ vanishes on X0 A T* U. Hence, if i0:X0 ~ T*X is the inclusion 
map, we have i~co = i~)da = O, and so X0 is Lagrangian. 

A cotangent fiber T~ X is an n-dimensional submanifold of T*X  given by the 
equations xi = (xo)i, i = 1 . . . .  , n, on T*U. Since the xi's are constant, the form c~ 
vanishes identically, and Tx~ X is a Lagrangian submanifold. 

Let Xu be (the image of) an arbitrary section, that is, an n-dimensional submanifold 
of T * X  of the form Xu = {(x, #x)  Ix  ~ X, lZx ~ Tx*X}, where the covector/Zx depends 
smoothly on x, s o / z : X  ~ T*X  is a de Rham 1-form. We will investigate when such an 
X u is Lagrangian. Relative to the inclusion i : X  u ~ T * X  and the cotangent projection 
Jr : T * X  ~ X,  these X# 's  are exactly the submanifolds for which zr o i :Xu ~ X is a 
diffeomorphism. 

PROPOSITION 2.2. The tautological 1-form ~ on T* X satisfies #*~ = lz, for  any 1-form 
lz : X --+ T*X.  

PROOF. Denote by s u : X  --+ T ' X ,  x ~-+ (x,/Zx), the 1-form/z regarded exclusively as a 
map. From the definition, Otp = (dzrp)*~ at p = (x, ~) 6 M. For p = sn(x)  = (x, lZx), we 
have C~p = (dzrp)*lZx. Then, since Jr o su = idx, we have 

(s;.o,)x = (ds# )*  ,.,,, - ( d s . ) *  (d,.:,,)* = (d(,.: o s # ) ) * . x  - ux .  V] 

The map su :X  ~ T ' X ,  su(x)  = (x,/Zx) is an embedding with image the section Xu. 
The diffeomorphism r :X --+ Xu, r (x )  :-- (x, #x) ,  satisfies i o r = su. 

PROPOSITION 2.3. The sections o f  T*X  that are Lagrangian are those corresponding to 
closed 1-forms on X.  

PROOF. Using the previous notation, the condition of Xu being Lagrangian becomes: 
* dot  - -  0 r  d ( s ~ )  - -  0 r dtz = O. 73 i* dc~ = 0 r r* i* dot = 0 r s/z 

W h e n / z  = dh for some h 6 C c~ (X), such a primitive h is called a generating function 
for the Lagrangian submanifold Xu. Two functions generate the same Lagrangian subman- 
ifold if and only if they differ by a locally constant function. When X is simply connected, 
or at least 1 HaeRham (X) = O, every Lagrangian Xu admits a generating function. 

Besides the cotangent fibers, there are lots of Lagrangian submanifolds of T * X  not 
covered by the description in terms of closed 1-forms. Let S be any submanifold of an 
n-dimensional manifold X. The conormal space of S at x 6 S is 

N*S  = {~ E Tx*X I~(v) -- 0 for all v ~ TxS}. 

The conormal bundle of S is N*S  = {(x ,~)  6 T*X  I x  ~ S, ~ ~ N ' S } .  This is an 
n-dimensional submanifold of T* X. In particular, taking S = {x } to be one point, the co- 
normal bundle is the corresponding cotangent fiber Tx*X. Taking S = X, the conormal 
bundle is the zero section X0 of T* X. 
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PROPOSITION 2.4. I f  i" N*S ~ T*X  is the inclusion of  the conormal bundle of  a sub- 
manifold S C X, and ot is the tautological 1-form on T* X, then i*ot = O. 

PROOF. Let (b/, Xl  . . . . .  Xn) be a coordinate chart on X adapted to S, so that b/A S is de- 
scribed by Xk+l . . . . .  Xn -- 0. Let (T'L/,  Xl . . . . .  Xn, ~1 . . . . .  ~n) be the associated cotan- 
gent coordinate chart. The submanifold N*S A T*bl is described by X~+l . . . . .  Xn = 0 
and ~1 . . . . .  ~k = 0. Since ot = ~ ~i dxi on T 'b / ,  we conclude that, at p ~ N* S, 

(i*Ot)p -- OtpITp(N*S) -- Z ~i dxi = 0 .  
O 

i >k  span{ g~/, i <~k} [--] 

/ 

COROLLARY 2.5. For any submanifold S of  X,  the conormal bundle N* S is a Lagrangian 

submanifold of  T* X. 

2.2. Lagrangian neighborhood theorem 

Weinstein [136] proved that, if a compact submanifold X is Lagrangian with respect to 
two symplectic forms coo and col, then the conclusion of the Moser relative theorem (The- 
orem 1.8) still holds. We need some algebra for the Weinstein theorem. 

Suppose that U, W are n-dimensional vector spaces, and 12"U x W --+ R is a bilinear 
pairing; the map 12 gives rise to a linear map ~ ' U  ~ W*, ~ ( u )  - 12 (u, .). Then s is 
nondegenerate if and only if ~ is bijective. 

PROPOSITION 2.6. Let (V, 12) be a symplectic vector space, U a Lagrangian subspace 
of  (V, 12), and W any vector space complement to U, not necessarily Lagrangian. Then 
from W we can canonically build a Lagrangian complement to U. 

PROOF. From 12 we get a nondegenerate pairing 12~'U x W --+ R, so 12 t 'U  ~ W* 
is bijective. We look for a Lagrangian complement to U of the form W t -  {w + A w l  
w 6 W} for some linear map A ' W  --+ U. For W ~ to be Lagrangian we need that 
12(Wl, w2) = I'2t(Aw2)(wm) - ff2'(Awl)(W2). Let A ' -  S) t o A, and look for A t such 

that 12(Wl, w2) = A~(w2)(Wl) - A~(wi)(w2) for all Wl, w2 6 W. The canonical choice 
is At(w) -- - 1 1 2 ( w ,  .). Set A - -  ( . f ) t ) - I  o A t. D 

PROPOSITION 2.7. Let V be a vector space, let 12o and 121 be symplectic forms on V, 
let U be a subspace of  V Lagrangian for  12o and 121, and let W be any complement to U 

in V. Then from W we can canonically construct a linear isomorphism L" V > V such 
that LIu -- Idu and L'121 -- 120. 

PROOF. By Proposition 2.6, from W we canonically obtain complements Wo and W l  to U 
in V such that Wo is Lagrangian for 12o and W1 is Lagrangian for 121. The nondegenerate 

bilinear pairings 12i'Wi x U ~ R, i - 0 ,  1, give isomorphisms ff2i'Wi ~-> U*, i - O ,  1, 
respectively. Let B" Wo ~ W1 be the linear map satisfying S21 o B -- S)o, i.e., 12o (wo, u) -- 
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if21 (Bwo, u), Vwo ~ Wo, Vu ~ U. Let L "= Idu �9 B" U @ W0 --+ U G W1 be the extension 
of B to the rest of V by setting it to be the identity on U. It satisfies: 

(L*S21)(u @ w0, u' @ w6) -- $'21 (u @ Bwo, u I @ BW~o) 

= S21 (u, BW~o) + S21 (Bwo, u') 

= S20(u, w' o) + S20(wo, u') 

= S?O(U �9 wo, u' ~ W'o). [3 

THEOREM 2.8 (Weinstein Lagrangian neighborhood theorem). Let M be a 2n-dimen- 
sional manifold, X a compact n-dimensional submanifold, i : X ~ M the inclusion map, 
and 09o and 091 symplectic forms on M such that i'coo -- i'091 = O, i.e., X is a Lagrangian 
submanifold of  both (M, 09o) and (M, 091). Then there exist neighborhoods/go and bll of  X 
in M and a diffeomorphism q) :/g0 --+/gl such that q9"o91 = 090 and q) is the identity on X, 
i.e., qg(p) = p, Vp ~ X. 

PROOF. Put a Riemannian metric g on M. Fix p 6 X, and let V = TpM, U = TpX and 
W -- U • the orthocomplement of U in V relative to the inner product gp( . ,  .). Since 
i'co0 = i*o91 = 0, the subspace U is Lagrangian for both (V, 0901p) and (V, 0911p). By 
Proposition 2.7, we canonically get from U • a linear isomorphism L p : TpM -+ TpM de- 
pending smoothly on p, such that LplTpX -- Idrpx and L*p091[p = 0901p. By the Whitney 
extension theorem (Section 1.5), there exist a neighborhood N" of X and an embedding 
h :N" ~ M with hlx = idx and dhp -- Lp for p E X. Hence, at any p 6 X, we have 
(h*091)p = (dhp)*091[p - L*p0911p = 0901p. Applying the Moser relative theorem (Theo- 
rem 1.8) to coo and h'091, we find a neighborhood/g0 of X and an embedding f : /g0 ~ N" 
such that f i x  = idx and f*(h*091)=09o on~go. Set q ) = h  o f and/gl = q)(/go). IN 

Theorem 2.8 has the following generalization. For a proof see, for instance, either 
of [61,70,139]. 

THEOREM 2.9 (Coisotropic embedding theorem). Let M be a manifold of  dimension 2n, 
X a submanifold of  dimension k >~ n, i :X ~ M the inclusion, and 090 and COl symplectic 
forms on M, such that i'09o = i'091 and X is coisotropic for  both (M, 09o) and (M, 091). 
Then there exist neighborhoods Lto and Ltl of  X in M and a diffeomorphism ~o :L/0 -+ L/1 
such that q9"091 -- 09o and q)lx = idx. 

2.3. Weinstein tubular neighborhood theorem 

Let (V, $2) be a symplectic linear space, and let U be a Lagrangian subspace. Then there 
is a canonical nondegenerate bilinear pairing Y2 I" V~ U x U --+ IR defined by $21 ([v], u) - 
S2 (v, u) where [v] is the equivalence class of v in V~ U. Consequently, we get a canonical 
isomorphism I ) "  V~ U --+ U*, ~2' ([v]) = S2' ([v], .). 
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In particular, if (M, co) is a symplectic manifold, and X is a Lagrangian submanifold, 
then TpX is a Lagrangian subspace of (TpM,  cop) for each p 6 X and there is a canoni- 

cal identification of the normal  space of X at p,  N p X  := T p M / T p X ,  with the cotangent 

fiber Tp X. Consequently the normal bundle N X and the cotangent bundle T * X  are canon- 

ically identified. 

THEOREM 2.10 (Weinstein tubular neighborhood theorem). Let (M,  co) be a symplec- 

tic manifold, X a compact  Lagrangian submanifold,  coo the canonical  symplectic f o rm  

on T ' X ,  io : X ~ T * X  the Lagrangian embedding as the zero section, and i : X ~ M the 

Lagrangian embedding given by inclusion. Then there are neighborhoods Lto o f  X in T* X,  

lJ o f  X in M,  and a di f feomorphism tp : L/0 -+/A' such that tp*co -- coo and 99 o io = i. 

PROOF. By the standard tubular neighborhood theorem 16 and since N X  ~_ T * X  are 

canonically identified, we can find a neighborhood N'0 of X in T* X, a neighborhood A/" 

of X in M, and a diffeomorphism gr :N'0 ~ JV such that gr o i0 = i. Let coo be the 

canonical form on T * X  and COl  - "  ~*co. The submanifold X is Lagrangian for both 

of these symplectic forms on No. By the Weinstein Lagrangian neighborhood theorem 

(Theorem 2.8), there exist neighborhoods/go and b/1 of X in N'0 and a diffeomorphism 

O:/go -+ /g l  such that O'col - -  c o O  and 0 o io = io. Take ~o = ~ o 0 and b / =  ~o(/do). Then 

go*co = O*lp*co = O'col = coo. [-] 

Theorem 2.10 classifies compact Lagrangian embeddings: up to local symplectomor- 

phism, the set of Lagrangian embeddings is the set of embeddings of manifolds into their 

cotangent bundles as zero sections. 

The classification of compact isotropic embeddings is also due to Weinstein in [137, 

139]. An isotropic embedding of a manifold X into a symplectic manifold (M, co) is a 

closed embedding i : X  ~ M such that i'co = 0. Weinstein showed that neighborhood 

equivalence of isotropic embeddings is in one-to-one correspondence with isomorphism 
classes of symplectic vector bundles. 

The classification of compact coisotropic embeddings is due to Gotay [61 ]. A coisotropic 

embedding of a manifold X carrying a closed 2-form ot of constant rank into a symplectic 

manifold (M, co) is an embedding i :X ~ M such that i'co = ot and i ( X )  is coisotropic 

as a submanifold of M. Let E be the characteristic distribution of a closed form ot of 

constant rank on X, i.e., E p is the kernel of Otp at p 6 X. Gotay showed that then the total 

space E* carries a symplectic structure in a neighborhood of the zero section, such that X 

embeds coisotropically onto this zero section and, moreover, every coisotropic embedding 

is equivalent to this in some neighborhood of the zero section. 

16Tubula r neighborhood theorem. Let M be a manifold, X a submanifold, N X the normal bundle of X in M, 
io : X ~-~ N X the zero section, and i : X ~ M the inclusion. Then there are neighborhoods ld0 of X in N X,/d of 
X in M and a diffeomorphism ~ :/dO --~/d such that ~ o io = i. This theorem can be proved with the exponential 
map using a Riemannian metric; see, for instance, [120]. 
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2.4. Application to symplectomorphisms 

Let (M1, o91) and (M2,092) be two 2n-dimensional symplectic manifolds. Given a diffeo- 

morphism f ' M 1  -> M2, there is a way to express the condition of f being a symplecto- 
morphism in terms of a certain submanifold being Lagrangian. Consider the two projection 
maps pri �9 M1 x M2 --+ Mi, (Pl, p2) ~ Pi, i -- 1, 2. The twisted product form on M1 x M2 
is the symplectic 17 form 

ff~- (Prl)*o91 - (Pr2)*o9 2. 

PROPOSITION 2.1 1. A diffeomorphism f ' M 1  -> M2 is a symplectomorphism if and 
only if  the graph of  f is a Lagrangian submanifold of  (M1 x M2, ff~). 

PROOF. The graph of f is the 2n-dimensional submanifold Graph f = {(p, f ( p ) )  I P 
M1} ___ M1 x M2, which is the image of the embedding y : M 1  --+ M1 x M2, p 

(p, f ( p ) ) .  We have )/*ff~ -- v*pr~ogl - y*pr~og2 = (pr 1 o Y)*o91 - (pr2 o Y ) * o 9 2 ,  and pr 1 o y 
is the identity map on M1 whereas pr 2 o 9/-- f .  So Graph f is Lagrangian, i.e., y*ff~ = 0, 
if and only if f 'o )2  - -  0)1 ,  i.e., f is a symplectomorphism. D 

Lagrangian submanifolds of (M1 • M2, ff~) are called canonical relations, when viewed 
as morphisms between (M1, o91) and (M2, o92), even if dim M1 ~ dim M2. Under a reason- 
able assumption, there is a notion of composition [ 137]. 

Take M 1 - - M 2 -  M and suppose that (M, co) is a compact symplectic manifold 
and f 6 Sympl(M, co). The graphs Graph f and A, of f and of the identity map id" 
M --+ M, are Lagrangian submanifolds of M x M with ff~--pr~o9- pr~og. By the We- 
instein tubular neighborhood theorem, there exist a neighborhood L/of  A in (M x M, ff~) 
and a neighborhood/do of M in ( T ' M ,  coo) with a symplectomorphism ~0 " L/ --+ /go satis- 
fying ~o(p, p) - (p, 0), Yp 6 M. 

Suppose that f is sufficiently C 1-closel 8 to id, i.e., f is in some sufficiently small neigh- 
borhood of the identity id in the C 1-topology. Hence we can assume that Graph f __. b/. 
Let j"  M ~ lg, j (p) = (p, f (p)), be the embedding as Graph f ,  and i ' M  ~ lg, i (p) = 
(p, p), be the embedding as A - -Graphid .  The map j is sufficiently Cl-close to i. These 
maps induce embeddings 99 o j = j o ' M  ~ blo and q9 o i - i o ' M  ~ Lto as 0-section, re- 
spectively. Since the map jo is sufficiently Cl-close to io, the image set jo (M)  intersects 
each fiber TpM at one point/Zp depending smoothly on p. Therefore, the image of jo is 

the image of a smooth section # ' M  --+ T ' M ,  that is, a 1-form/z = jo o (Jr o jo) -1. We 
conclude that Graph f ~ {(p, lZp) I p ~ M, lZp ~ TpM}.  Conversely, if /z is a 1-form suf- 

ficiently Cl-close to the zero 1-form, then {(p, #p)  I P ~ M, #p  ~ TpM} ~ Graph f ,  for 
some diffeomorphism f " M ~ M. 

17More generally, ~-1 (Prl)* COl + )~2(Pr2) * 092 is symplectic for all ~-1, ~-2 E ~ \ {0}. 
18Let X and Y be manifolds. A sequence of maps fi "X--+ Y converges in the cO-topology (a.k.a. the 

compact-open topology) to f" X ~ Y if and only if fi converges uniformly on compact sets. A sequence of 
C | maps fi "X ~ Y converges in the C 1 -topology to f" X ~ Y if and only if it and the sequence of derivatives 
dfi "T X ~ T Y converge uniformly on compact sets. 
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By Proposition 2.3, Graph f is Lagrangian if and only if # is closed. A small C 1- 
neighborhood of id in Sympl(M, 0)) is thus homeomorphic to a Cl-neighborhood of zero 
in the vector space of closed 1-forms on M. So we obtain the model: 

Tid(Sympl(M, 0))) "~ {# ~ s (M) [d/z = 0}. 

In particular, iqd(Sympl(M, 0))) contains the space of exact 1-forms that correspond to 
generating functions, C ~ (M) / {locally constant functions}. 

THEOREM 2.12. Let (M, 0)) be a compact symplectic manifold (and not just one point) 
with 1 HdeRham ( M )  - -  0. Then any symplectomorphism of  M that is sufficiently Cl-close to 
the identity has at least two fixed points. 

PROOF. If f 6 Sympl(M, 0)) is sufficiently Cl-close to id, then its graph corresponds to a 
closed 1-form # on M. As 1 HdeRham(M)  - - 0 ,  we have that # = dh for some h 6 C ~ (M). 
But h must have at least two critical points because M is compact. A point p where #p  = 
dhp -- 0 corresponds to a point in the intersection of the graph of f with the diagonal, that 
is, a fixed point of f .  D 

This result has the following analogue in terms of Lagrangian intersections: if X is a 
compact Lagrangian submanifold of  a symplectic manifold (M, 0)) with 1 HdeRham ( X )  - -  0, 

then every Lagrangian submanifold of  M that is C 1-close 19 to X intersects X in at least 
two points. 

2.5. Generating functions 

We focus on symplectomorphisms between the cotangent bundles M1 = T 'X1 ,  M2 -- 
T* X2 of two n-dimensional manifolds X1, X2. Let or l, 0/2 and o)1,0)2 be the corresponding 
tautological and canonical forms. Under the natural identification 

M1 • M2 = T ' X 1  • T ' X 2  ~ T*(X1 • X2) ,  

the tautological 1-form on T*(X1 • X2) is oe - pr~c~l + pr~oe2, the canonical 2-form on 
T*(X1 • X2) is co = -dc~ - pr~0)l + pr~0)2, and the twisted product form is (5 = pr~0)l - 
pr~0)2. We define the involution 02" M2 --+ M2, (x2, ~2) ~ (x2, -~2),  which yields O'~C~2 - -  

-oe2. Let a -- idM1 • a2"M1 x M2 --+ M1 • M2. Then a*(5 -- pr~0)l + pr~0)2 = 0). If L 
is a Lagrangian submanifold of (M1 • M2, co), then its twist L ~ := a ( L )  is a Lagrangian 
submanifold of (M1 • M2, (5). 

For producing a symplectomorphism M1 -- T 'X1 --+ M2 = T ' X 2  we can start with a 
Lagrangian submanifold L of (M1 • M2, co), twist it to obtain a Lagrangian submanifold 
L a of (M1 • M2, (5), and, if L ~ happens to be the graph of some diffeomorphism ~0: 
M1 --+ M2, then ~0 is a symplectomorphism. 

19We say that a submanifold Y of M is C l-close to another submanifold X when there is a diffeomorphism 
X -+ Y that is, as a map into M, C 1-close to the inclusion X ~-+ M. 
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A method to obtain Lagrangian submanifolds of M1 • M2 "~ T*(X1 • X2)  relies on 
generating functions. For any f 6 C a (X1 x X2), d f  is a closed 1-form on X1 x X2. The 
L a g r a n g i a n  s u b m a n i f o l d  g e n e r a t e d  by f is L f  : - -  {((x ,  y ) ,  ( d f ) ( x , y ) )  ] (x,  y )  E X1 x X2} 

(cf. Section 2.1). We adopt the loose notation 

dx f  :=dx f  (x, y) : =  ( d f ) ( x , y )  projected to r 2 x  1 )< {0}, 

dy f  :=dy f  (x, y):= ( d f ) ( x , y )  projected to {0} x T ; X 2 ,  

which enables us to write Lf  = {(x, y, dxf, dyf )  [ (x, y) ~ Xl X X2} and 

L} = {(x, y, dx f, - d y  f )  I (x, y) ~ S l  x X2  }. 

When L~ is in fact the graph of a diffeomorphism q g " m l  - -  T'X1 ~ M2 --  T* X 2 ,  w e  call 
~0 the symplectomorphism generated by f ,  and call f the generating function of ~p. The is- 
sue now is to determine whether a given L~ is the graph of a diffeomorphism ~0" M1 --+ M2. 
Let (Hi,x1 . . . .  ,Xn), (///2, Yl . . . . .  Yn) be coordinate charts for X1, X2, with associated 
charts (T'H1, xl . . . . .  X n ,  ~ 1 ,  . . . , ~ n ) ,  (T'H2, Yl . . . . .  Yn, O1 . . . . .  O n )  for M1, M2. The set 
L~ is the graph of ~0"M1 ~ M2 exactly when, for any (x, ~) E M1 and (y, 0) 6 M2, we 
have ~p(x, ~) = (y, 0) 4:~ ~ = dx f and 0 = -dy f .  Therefore, given a point (x, ~) 6 M1, to 
find its image (y, 0) = ~o(x, ~) we must solve the Hamilton look-alike equations 

Of (x y) 
~i = -~i ' ' 

Of (X y ) .  

If there is a solution y -- ~01 (x, ~) of the first equation, we may feed it to the second thus 
obtaining 0 = ~02(x, ~), so that q)(x, ~) = (~01 (x, ~), ~02(x, ~)). By the implicit function 
theorem, in order to solve the first equation locally and smoothly for y in terms of x and ~, 
we need the condition 

det 
Oyj i , j=l  

r 

This is a necessary condition for f to generate a symplectomorphism q). Locally this is 
also sufficient, but globally there is the usual bijectivity issue. 

Ix-yl2 the square of Euclidean distance EXAMPLE. Let X1 - X2 - ~ n ,  and f ( x ,  y) = 2 , 

up to a constant. In this case, the Hamilton equations are 

of 
~i --  Ox----i = yi -- Xi'  

Oi --  -- ~Yi --- Yi -- Xi , 

Yi --  Xi + ~i, 

Oi = ~i. 

The symplectomorphism generated by f is q)(x, ~) = (x + ~, ~). If we use the Euclid- 
ean inner product to identify T*R n with TR n, and hence regard ~0 as O:TR n --+ TR n 
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and in terpre t  ~ as the ve loc i ty  vector ,  then the s y m p l e c t o m o r p h i s m  q9 co r r e sponds  to free 

t rans la t iona l  m o t i o n  in E u c l i d e a n  space.  

The  p rev ious  e x a m p l e  can be gene ra l i zed  to the geodesic  f low on a R iemann ian  man-  

ifold. 2~ Let  (X, g)  be a geodes i ca l l y  convex  R i e m a n n i a n  mani fo ld ,  w h e r e  d ( x ,  y)  is the 

R i e m a n n i a n  d i s tance  b e t w e e n  poin ts  x and y. C o n s i d e r  the func t ion  

f : X  x X > IR, f ( x ,  y)  = - ~  
d ( x ,  y)2 

We wan t  to inves t iga te  if  f genera tes  a s y m p l e c t o m o r p h i s m  ~0: T * X  --+ T * X .  Using  the 

ident i f ica t ion  ~ x ' T x X  -> T ~ X ,  v ~ gx(V, .), i nduced  by  the metr ic ,  we  t rans la te  ~0 into 

a map  qS: T X --+ T X. We need  to solve  

{ g,x (v) = ~ = dx f (x,  y) ,  

~y (w)  = rl = - d y  f (x,  y) 
(1) 

for  (y,  r/) in te rms o f  (x, ~) in o rder  to find ~0, or, equivalent ly ,  for  (y,  w) in te rms (x, v) 

in order  to find q~. A s s u m e  that  (X, g) is geodesical ly  complete ,  that  is, every  geodes ic  can 

be  ex t ended  indefini tely.  

PROPOSITION 2.1 3. Under  the identification Tx X ~_ T * X  given by the metric,  the sym- 

p l ec tomorph i sm  generated  by f corresponds to the map 

~ : T X  > T X ,  

(x ,  v)  l > g ( 1 ) ,  ---7-(1) , 

dy 
where F is the geodesic  with initial condit ions g (0) -- x and --d-i-(0) = v. 

20A Riemannian metric on a manifold X is a smooth function g that assigns to each point x 6 X an inner product 
gx on Tx X, that is, a symmetric positive-definite bilinear map gx : Tx X x Tx X ~ JR. Smoothness means that 
for every (smooth) vector field v:X ~ TX the real-valued function x w-~ gx(Vx, Vx) is smooth. A Riemannian 
manifold is a pair (X, g) where g is a Riemannian metric on the manifold X. The arc-length of a piecewise 

smooth curve g "[a,b] --+ X on a Riemannian (X, g) is f f  -37-dz dt, where -3-[dY (t) = dgt (1) E Ty (t) X and dYd__T -- 

V/ dF dF gy(t)(-d-i-, -37-) is the velocity of Y. A reparametrization of a curve Y'[a, b] --~ X is a curve of the form 
Y o r :[c, d] -+ X for some r :[c, d] --~ [a, b]. By the change of variable formula for the integral, we see that 
the arc-length of Y is invariant by reparametrization. The Riemannian distance between two points x and y of a 
connected Riemannian manifold (X, g) is the infimum d(x, y) of the set of all arc-lengths for piecewise smooth 
curves joining x to y. A geodesic is a curve that locally minimizes distance and whose velocity is constant. Given 

dy any curve y ' [ a ,  b] --~ X with -37 never vanishing, there is a reparametrization Y o r ' [ a ,  b] --~ X of constant 
velocity. A minimizing geodesic from x to y is a geodesic joining x to y whose arc-length is the Riemannian 
distance d(x, y). A Riemannian manifold (X, g) is geodesically convex if every point x is joined to every other 
point y by a unique (up to reparametrization) minimizing geodesic. For instance, (JRn, (., .)) is a geodesically 
convex Riemannian manifold (where gx(v, w) = (v, w) is the Euclidean inner product on TJR n ~_ JRn x ]Rn), for 
which the Riemannian distance is the usual Euclidean distance d(x, y) = Ix - Yl. 
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This map ~ is called the geodesic flow on (X, g). 

PROOF. Given (x, v) �9 TX,  let exp(x, v) :R --~ X be the unique geodesic with initial con- 
ditions exp(x, v)(0) = x and d exp(x,v) dt (0) = v. In this notation, we need to show that the 

unique solution of the system of equations (1) is qS(x v) - (exp(x v)(1) d exp(x'v) (1)) 
' ' ' d t  " 

The Gauss lemma in Riemannian geometry (see, for instance, [120]) asserts that geo- 
desics are orthogonal to the level sets of the distance function. To solve the first equation 
for y -- exp(x, u)(1) for some u �9 TxX, evaluate both sides at v and at vectors v ~ �9 TxX 
orthogonal to v, 

[ ] ,[,(ex,(xv)(t)y)2] 1o12 - d - d ( e x p ( x ,  v)(t), y)2 and 0 =  ~-~ 2 
d-t i t =o  t =o  

to conclude that u -- v, and thus y = exp(x, v)(1). 

We have - d y f  (x, y)(w ~) - 0  at vectors w ~ �9 TyX orthogonal to W ' - -  dexp(x,v)dt (1), 

because f ( x ,  y) is essentially the arc-length of a minimizing geodesic. Hence w - k W 
must be proportional to W, and k --- 1 since 

kiwi 2 
d [ -d(x' exp(x' v)(1- t))2] =[v[2 

= gy(kW, W) -- -~-~ 2 t=0 D 

2.6. Fixed points 

Let X be an n-dimensional manifold, and M = T*X its cotangent bundle equipped with 
the canonical symplectic form co. Let f :X x X --+ IR be a smooth function generating a 
symplectomorphism q9 : M --+ M, 99(x, dx f )  = (y, -dy  f ) ,  with the notation of Section 2.5. 
To describe the fixed points of 99, we introduce the function ~ : X ~ R, 7r (x) = f (x, x). 

PROPOSITION 2.14. There is a one-to-one correspondence between the fixed points of the 
symplectomorphism 99 and the critical points of ~. 

PROOF. At xo �9 X, dxo~ = (dx f +dy f)l(x,y)=(xo,xo). Let ~ = dx fl(x,y)=(xo,xo). Recalling 
that L~ is the graph of 99, we have that x0 is a critical point of ~ ,  i.e., dxo 7t = O, if and 
only if dy f[(x,y)=(xo,xo) - - ~ ,  which happens if and only if the point in L~ corresponding 
to (x, y) = (x0, x0) is (x0, x0, ~, ~), i.e., 99(x0, ~) = (x0, ~) is a fixed point. Vq 

Consider the iterates 99N __ 99 o 99 o . . .  o 99, N = 1, 2 . . . . .  given by N successive applica- 
tions of 99. According to the previous proposition, if the symplectomorphism 99N. M --~ M 
is generated by some function f(N), then there is a one-to-one correspondence between 
the set of fixed points of 99N and the set of critical points of ~ ( N ) ' x  ~ •, r  = 
f(N) (X, x). It remains to know whether 99N admits a generating function. We will see that 
to a certain extent it does. 

For each pair x, y e X, define a map X --~ R, z ~ f (x, z) + f (z, y). Suppose that this 
map has a unique critical point z0 and that z0 is nondegenerate. As z0 is determined for 
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each (x, y) implicitly by the equation dy f (x, z0) + dx f (z0, y) -- 0, by nondegeneracy, 
the implicit function theorem assures that zo - zo(x, y) is a smooth function. Hence, the 
function 

f ( 2 )  " X  x X > R, f(2) (x, y)"-- f (x, zo) + f (z0, Y) 

is smooth. Since ~0 is generated by f ,  and z0 is critical, we have 

y ) )  _ - 

= y ) ) -  y ) )  

= (y, - d y f  (2) (x, y)). 

We conclude that the f u n c t i o n  f(2) is a generating function f o r  99 2, as long as, for each 
e Tx* X, there is a unique y e X for which dx f(2) (x, y) equals ~. 
There are similar partial recipes for generating functions of higher iterates. In the case 

of ~0 3, suppose that the function X • X --+ IR, (z, u) w-> f (x, z) + f (z, u) + f (u, y), has 
a unique critical point (zo, uo) and that it is a nondegenerate critical point. A generating 
function would be f(3)(x, y) -- f (x, zo) + f (zo, uo) + f (uo, y). 

When the generating functions f, f(2), f(3) . . . . .  f (N) exist given by these formulas, the 
N-periodic points of tp, i.e., the fixed points of ~0 N, are in one-to-one correspondence with 
the critical points of 

(Xl . . . . .  XN) I > f (Xl ,X2) n t- f (X2, X3) -+-""-Jr- f ( X N - I , X N )  -Jr- f (XN,Xl ) .  

EXAMPLE. Let Z : R  --> It{ 2 be a smooth plane curve that is 1-periodic, i.e., X (s + 1) - 
dx X (s), and parametrized by arc-length, i.e., 1-371 - 1. Assume that the region Y enclosed by 

dx the image of X is convex, i.e., for any s e R, the tangent line {g (s) + t-37 I t e R} intersects 
the image X := 0 Y of g only at the point g (s). 

Suppose that a ball is thrown into a billiard table of shape Y rolling with constant velocity 
and bouncing off the boundary subject to the usual law of reflection. The map describing 
successive points on the orbit of the ball is 

~o" IR/Z x ( -1 ,  1) > IR/Z x ( -1 ,  1), 

(x ,v )  l > (y ,w) ,  

saying that when the ball bounces off X (x) with angle 0 - a r c c o s  v, it will next collide 
with X (Y) and bounce off with angle v - arccos w. Then the function f "  IR/Z • IR/Z --+ R 
defined by f ( x ,  y) - -IX(X) - X(Y)I is smooth off the diagonal, and for ~0(x, v) = (y, w) 
satisfies 

Of (X y ) -  x(y)-x(x) 
~ ' Ix(x)-x(y)l 
Of (X y ) -  x(x)-x(y) 
-g-y ' Ix(x)-x(y)l 

�9 d-z-XI - -  COSO - -  V, ds s=x 

dz  ] = C O S V ~ - - W .  o 

ds s= y 
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We conclude that f is a generating function for ~0. Similar approaches work for higher- 
dimensional billiard problems. Periodic points are obtained by finding critical points of 
real functions of N variables in X, 

(X1,...,XN) I > I x ( x , ) -  x(x2)l + . . .  + IX(XN-, )  - X(XN)I 

+ IX(XN)- x(xl)l, 

that is, by finding the N-sided (generalized) polygons inscribed in X of critical perimeter. 
Notice that R / Z  x ( -1 ,  1) _~ {(x, v) Ix E X, v ~ TxX, Ivl < 1} is the open unit tangent 
ball bundle of a circle X, which is an open annulus A, and the map r --+ A is area- 
preserving, as in the next two theorems. 

While studying Poincar~ return maps in dynamical systems, Poincar6 arrived at the 
following results. 

THEOREM 2.15 (Poincar6 recurrence theorem). Let qg"A --+ A be a volume-preserving 
diffeomorphism of  a finite-volume manifold A, and bl a nonempty open set in A. Then 
there is q ~ lg and a positive integer N such t ha t  q9 u (q )  E ~/[. 

Hence, under iteration, a mechanical system governed by q9 will eventually return arbi- 
trarily close to the initial state. 

PROOF. Let/g0 = L/,/,ill = qg(/ar162 = q92(/ar If all of these sets were disjoint, then, 
since Volume(L//) = Volume(L/) > 0 for all i, the volume of A would be greater or equal 
to Zi Volume(U/) = cx~. To avoid this contradiction we must have q9 k (U) A q9 e (U) ~ 0 for 
some k > s which implies ~0 ~-e (L/) A L/5~ 0. [2 

THEOREM 2.16 (PoincarE's last geometric theorem). Suppose that q9 : A --+ A is an area- 
preserving diffeomorphism of  the closed annulus A -- J~/Z x [ -1 ,  1] that preserves the 
two components of  the boundary and twists them in opposite directions. Then q9 has at 
least two fixed points. 

This theorem was proved in 1913 by Birkhoff [18], and hence is also called the 
Poincard-Birkhoff theorem. It has important applications to dynamical systems and ce- 
lestial mechanics. The Arnold conjecture on the existence of fixed points for symplecto- 
morphisms of compact manifolds (see Section 5.2) may be regarded as a generalization 
of the Poincarr-Birkhoff theorem. This conjecture has motivated a significant amount of 
research involving a more general notion of generating function; see, for instance, [41,55]. 

2.7. Lagrangians and special Lagrangians in C n 

The standard Hermitian inner product h(., .) o n  C n has real and imaginary parts given by 
the Euclidean inner product (., .) and (minus) the symplectic form o~0, respectively: for 
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v -- (Xl + iyl . . . . .  Xn + iyn), u = (al + ibl . . . . .  an + ibn) ~ C n, 

n n n 

h(v ,  u) = ~ ( X k  -+-iyk)(ak - - ibk )  -- ~ ( x k a k  4- ykbk) - - i ~ ( x k b k  -- ykak) 
k = l  k = l  k--1 

= (v, u) - icoo(v, u). 

LEMMA 2.17.  Let W be a subspace o f  (C n , coo) and el . . . . .  en vectors in C n . Then: 

(a) W is Lagrangian i f  and only i f  W • - i W; 
(b) (el . . . . .  en) is an orthonormal basis o f  a Lagrangian subspace i f  and only i f  

(el . . . . .  en) is a unitary basis o f  C n . 

PROOF. (a) We always have co0(v, u) -- - i m h ( v ,  u) = reh ( i v ,  u) = (iv, u). It follows 
that, if W is Lagrangian,  so that co0(v, u) - - 0  for all v, u 6 W, then i W c_ W • These 

spaces must  be equal because they have the same dimension. Reciprocally, when (i v, u) -- 

0 for all v, u E W, the equality above shows that W must  be isotropic. Since dim W = 
dim i W -- dim W • - 2n - dim W, the dimension of W must  be n. 

(b) If (el . . . . .  en) is an orthonormal basis of a Lagrangian subspace W, then, by the 

previous part, (el . . . . .  en, iel ,  . . . ,  ien) is an orthonormal basis of C n as a real vector space. 

Hence (el . . . . .  en) must be a complex basis of C n and it is unitary because h(e j ,  ek) -- 

(e j,  ek) -- icoo(ej, ek) -- •jk. Conversely, if (el . . . .  , en) is a unitary basis of C n, then the 

real span of these vectors is Lagrangian (coo(e j ,  ek) -- - - i m h ( e j ,  ek) - - 0 )  and they are 

orthonormal ((ej ,  ek) = r eh (e j ,  ek) -- 6jk). F] 

The Lagrangian Grassmannian A n is the set of  all Lagrangian subspaces of C n . It fol- 
lows from part (b) of L e m m a  2.17 that An is the set of all subspaces of C n admitting an 
orthonormal basis that is a unitary basis of C n. Therefore, we have 

An " ~ U ( n ) / O ( n ) .  

Indeed U(n)  acts transitively o n  An" given W, W t ~ An with orthonormal bases (el . . . . .  en), 

(e' 1 . . . . .  e~n), respectively, there is a unitary transformation of C n that maps (el . . . . .  e , )  to 

(ell . . . . .  etn) as unitary bases of C n . And the stabilizer of •n E An is the subgroup of those 

unitary transformations that preserve this Lagrangian subspace, namely O(n).  It follows 
that An i s  a compact  connected manifold of dimension n(2+l) ; cf. the last example of 

Section 1.1. 

The Lagrangian Grassmannian comes with a tautological vector bundle 

"-- { (W, e A .  • c" I ,: w},  

whose fiber over W ~ An is the n-dimensional  real space W. It is a consequence of part (a) 

of  L e m m a  2.17 that the following map gives a well-defined global i somorphism of the 

complexification rn | C with the trivial bundle C n over An (i.e., a global trivialization): 

(W,  v Q c) w-~ (W, cv),  for W ~ An,  v ~ W, c ~ C. 
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DEFINITION 2.18. A Lagrangian immersion of a manifold X is an immersion f "  X ~ C n 

such that d f p ( T p X )  is a Lagrangian subspace of (C n, coo), for every p 6 X. 

EXAMPLE. The graph of a map h : R  n ~ i R n is an embedded n-dimensional subman- 

ifold X of C n. Its tangent space at (p,  h ( p ) )  is {v + d h p ( v )  I v ~ Rn}. Let el . . . . .  en 

be the standard basis of R n. Since co0(e~ + dhp(ek) ,  ej -t- d h p ( e j ) )  -- (ek, --i d h p ( e j ) )  -+- 

(ej i dhp(ek) )  we see that X is Lagrangian if and only if 0h_____~ _ 0h_A_; y j  k, which in lK n 
' ' O X j  ~ O X k  ' ' 

is if and only if h is the gradient of some H :R n ---> i R. 

If f "  X --+ C n is a Lagrangian immersion, we can define a Gauss map 

) ~ f ' X  > An,  

p ,  > d f p ( T p X ) .  

Since ,k~ rn = T X and rn | C _~ C__ff_ n, we see that a necessary condition for an immersion 
X --+ C n to exist is that the complexification of TX be trivializable. Using the h-principle 
(Section 3.2), Gromov [65] showed that this is also sufficient: an n-dimensional  manifold 
X admits a Lagrangian immersion into C n i f  and only i f  the complexification o f  its tangent 
bundle is trivializable. 

EXAMPLE. For the unit sphere S n - {(t, x) E R x R n" t 2 -+-Ix[ 2 = 1}, the Whitney sphere 

immersion is the map 

f . S n > C n, 

( t ,x )  l > x + i t x .  

The only self-intersection is at the origin where f ( - 1 ,  0 . . . . .  0) = f ( 1 ,  0 . . . . .  0). Since 
T(t,x)S n = (t, x)  -L, the differential d f ( t , x ) ' ( u ,  v) w-~ v + i ( t v  + ux)  is always injective: 
v + i ( t v  + ux)  = 0 r v - 0 and ux - O, but when x - 0 it is t - 4-1 and T(+I,o)S n = 
{0} x R n, so it must be u = 0. We conclude that f is an immersion. By computing 
coo at two vectors of the form v + i ( tv  + ux) ,  we find that the image d f p ( T p S  n) is an 
n-dimensional isotropic subspace of C n. Therefore, f is a Lagrangian immersion of S n, 
and the complexification T S n | C must be always trivializable, though the tangent bundle 

T S n is only trivializable in dimensions n = 0, 1, 3, 7. 

The special Lagrangian Grassmannian S A n  is the set of all oriented subspaces of C n 

admitting aposi t ive orthonormal basis (el . . . . .  en) that is a special unitary basis of C n. By 
the characterization of Lagrangian in the part (b) of Lemma 2.17, it follows that the ele- 

ments of SAn  are indeed Lagrangian submanifolds. Similarly to the case of the Lagrangian 

Grassmannian, we have that 

SAn  "" S U ( n ) / S O ( n )  

is a compact connected manifold of dimension n(n+l) 1 
2 
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We can single out the special Lagrangian subspaces by expressing the condition on the 
determinant in terms of the real n-form in C n, 

fl := im I2, where I-2 := d zl A . . .  /X d Zn. 

Since for A 6 SO(n), we have detA = 1 and S2(el . . . . .  en) = [2(Ael  . . . . .  Aen), we see 
that, for an oriented real n-dimensional subspace W C C n, the number S2 (el . . . . .  en) does 
not depend on the choice of a positive orthonormal basis (el . . . . .  en) of W, thus can be 
denoted s and its imaginary part f l (W).  

PROPOSITION 2.19. A subspace W of  (C n , COO) has an orientation for  which it is a special 
Lagrangian if and only if W is Lagrangian and f l (W)  = O. 

PROOF. Any orthonormal basis (el . . . . .  en) of a Lagrangian subspace W C C n is the im- 
age of the canonical basis of C n by some A 6 U(n), and 12 (W) = det A 6 S 1 . Therefore, 
W admits an orientation for which such a positive (el . . . . .  en) is a special unitary basis 
of C n if and only if det A = +1, i.e., f l (W) = O. D 

DEFINITION 2.20. A special Lagrangian immersion of an oriented manifold X is a La- 
grangian immersion f :X --+ C n such that, at each p E X, the space dfp (Tp X) is a special 
Lagrangian subspace of (C n, co0). 

For a special Lagrangian immersion f ,  the Gauss map )vf takes values in SAn.  
By Proposition 2.19, the immersion f of an n-dimensional manifold X in (C n, co0) is 

special Lagrangian if and only if f*  coo -- 0 and f * f l  = O. 

EXAMPLE. In C 2, writing Zk = x~ + iy~, we have/3 = dxl  A dy2 -+- dyl A dx2. We have 
seen that the graph of the gradient i V H  is Lagrangian, for any function H:IR 2 --+ lt{. 

OH OH So f ( x l , x 2 )  -- (Xl, x2, i g~l, i g~72) is a Lagrangian immersion. For f to be a special La- 
grangian immersion, we need the vanish of 

f * fl = d x l A d ~x 2 -k d ~ A d x 2 -- - a x-- T q- -~x 22 J d x l A d x 2 . 

Hence the graph of V H is special Lagrangian if and only if H is harmonic. 

If f : X  --+ C n is a special Lagrangian immersion, then f*S2 is an exact (real) volume 
form: f 'X2 = d re(zl dz2 A . . .  A dZn). We conclude, by Stokes theorem, that there can be 
no special Lagrangian immersion of a compact manifold in C n. Calabi-Yau manifolds 21 
are more general manifolds where a definition of special Lagrangian submanifold makes 
sense and where the space of special Lagrangian embeddings of a compact manifold is 
interesting. Special Lagrangian geometry was introduced by Harvey and Lawson [71 ]. For 
a treatment of Lagrangian and special Lagrangian submanifolds with many examples; see, 
for instance, [9]. 

21Calabi-Yau manifolds are compact Kiihler manifolds (Section 3.4) with vanishing first Chem class. 
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3. Complex structures 

3.1. Compatible linear structures 

A complex structure on a vector space V is a linear map J :  V --+ V such that j2  __ - Id .  
The pair (V, J)  is then called a complex vector space.A complex structure J on V is 
equivalent to a structure of vector space over C, the map J corresponding to multipli- 
cation by i. If (V, s is a symplectic vector space, a complex structure J on V is said 
to be compatible (with s or S2-compatible) if the bilinear map G j : V  • V ~ R de- 
fined by G j (u, v) = I-2 (u, Jr )  is an inner product on V. This condition comprises J be- 
ing a symplectomorphism (i.e., S2(Ju, J r )  -- S2(u, v), Vu, v) and the so-called taming: 
S2 (U, J u )  > O, Vu  # O. 

EXAMPLE. For the symplectic vector s p a c e  ( R  2n, s with symplectic basis e l  = 

(1,0 . . . . .  O) . . . . .  en, f l  . . . . .  fn = (0 . . . . .  0, 1), there is a standard compatible complex 
structure J0 determined by Jo(ej) = f j  and Jo( f j )  = - e j  for all j = 1 . . . . .  n. This corre- 
sponds to a standard identification of ~2n with C n, and s Joy) = (u, v) is the standard 
Euclidean inner product. With respect to the symplectic basis e l , . . . ,  en, f l  . . . . .  fn, the 
map J0 is represented by the matrix 

0 - I d ] .  

Id 0 

The symplectic linear group, Sp(2n) := {A ~ GL(2n; R) I S20(Au, Av) = S20(u, v) for all 
U, 1) E I[~ 2n }, is the group of all linear transformations of I~ 2n that preserve the standard sym- 
plectic structure. The orthogonal group O(2n) is the group formed by the linear transfor- 
mations A that preserve the Euclidean inner product, (Au, Av) = (u, v), for all u, v ~ ]~2n. 

The general complex group GL(n; C) is the group of linear transformations A : ]1~ 2n ~ ]~2n 

commuting with Jo, A(Jov) = Jo(Av), for all v ~ ]1~2n. 22 The compatibility between the 
structures S20, (., .) and J0 implies that the intersection of any two of these subgroups of 
GL(2n; IR) is the same group, namely the unitary group U(n). 

As (R 2n, s is the prototype of a 2n-dimensional symplectic vector space, the preced- 
ing example shows that compatible complex structures always exist on symplectic vector 
spaces. 23 There is yet a way to produce a canonical compatible complex structure J after 
the choice of an inner product G on (V, ~ ) ,  though the starting G(u, v) is usually different 
from G j (u, v) :-- 12 (u, Jr) .  

PROPOSITION 3.1. Let (V, I2) be a symplectic vector space, with an inner product G. 
Then there is a canonical compatible complex structure J on V. 

22 j )  Identify the complex n • n matrix X + i Y with the real 2n • 2n matrix ( x y 
23Conversely, given (V, J) ,  there is a symplectic s with which J is compatible: take S-2(u, v) = G(Ju,  v) for 

an inner product G such that j t = _ j .  
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PROOF. By nondegeneracy of f2 and G, the maps u ~ a"2(u, .) and w w-> G ( w ,  .) 

are both isomorphisms between V and V*. Hence, S2(u, v ) =  G ( A u ,  v) for some lin- 
ear A ' V  --+ V.  The map A is skew-symmetric, and the product A A  t is symmetric 24 
and positive: G ( A A t u ,  u ) =  G ( A t u ,  At  u) > 0, for u :/: 0. By the spectral theorem, 
these properties imply that A A  t diagonalizes with positive eigenvalues ~,i, say A A  t -- 

B diag0~l . . . . .  )~2n) B -1 �9 We may hence define an arbitrary real power of A A  t by rescal- 
ing the eigenspaces, in particular, 

~ / A A  t :-- B diag(v/)~l . . . . .  ~ ~ n  )B -1 . 

The linear transformation ~ / A A  t is symmetric, positive-definite and does not depend on 
the choice of B nor of the ordering of the eigenvalues. It is completely determined by its 
effect on each eigenspace of A A t :  on the eigenspace corresponding to the eigenvalue ~.k, 
the map ~/A,i , t  is defined to be multiplication by ~/-~. 

Let J :-- (Av/-A~) -1A. Since A and ~ / A A  t commute, J is orthogonal ( j  j r  _ Id), as 
well as skew-symmetric ( j t  __ _ j ) .  It follows that J is a complex structure on V. Com- 
patibility is easily checked: 

~ ( J u ,  J r )  -- G ( A J u ,  J r )  -- G ( J A u ,  J r )  = G ( A u ,  v) = I2(u ,  v) 

and 

I-2 (u, J u )  -- GCAu,  J u )  = G C - J A u ,  u) -- G ( ~ / A A t u ,  u) > O, 

The factorization A - ~ / A A  t J is called the po lar  decompos i t ion  of A. 

for u ~ 0 .  Vq 

REMARK. Being canonical ,  this construction may be smoothly  performed: when (Vt,  f2t) 

is a family of symplectic vector spaces with a family G t of inner products, all depending 
smoothly on a parameter t, an adaptation of the previous proof shows that there is a smooth 
family Jt of compatible complex structures on (Vt,  I2t).  

Let (V, f2) be a symplectic vector space of dimension 2n, and let J be a complex struc- 
ture on V. If J is I2-compatible and L is a Lagrangian subspace of (V, S2), then J L is 
also Lagrangian and J L = L• where _1_ indicates orthogonality with respect to the inner 
p r o d u c t  G j (u ,  13) = S-2 (u ,  J 13). Therefore, a complex structure J is S-2-compatible i f  and  

only i f  there exists a symplectic basis for V of the form 

el ,  e2 . . . .  , en, f l  - J e l ,  f2  - Je2,  . . . ,  fn  -- Jen.  

Let J ( V ,  I2) be the set o f  all compat ib le  complex  structures in a symplect ic  vector  space 

( V , n ) .  

24A map B ' V  --+ V is symmetric, respectively skew-symmetric, when B t = B, respectively B t -- -B, where 
the transpose B t �9 V ~ V is determined by G(Btu, v) = G(u, By). 
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PROPOSITION 3.2. The set i f (V ,  s is contractible. 25 

PROOF. Pick a Lagrangian subspace L0 of (V, s Let s  I2, L0) be the space of all 
Lagrangian subspaces of (V, S-2) that intersect L0 transversally. Let G(L0) be the space of 
all inner products on L0. The map 

!P :,.7(V, s > /2(V, S2, L0) x G(L0), 

J i > (JLo, GjILo) 

is a homeomorphism, with inverse as follows. Take (L, G) 6/2(V,  s L0) x ~(L0). For 

v 6 L0, v • = {u e L01 G(u, v) = 0} is a (n - 1)-dimensional space of L0; its symplectic 
orthogonal (v-L) s? is (n + 1)-dimensional. Then (v• s? 71L is 1-dimensional. Let Jv be the 

unique vector in this line such that S-2 (v, Jr)  = 1. If we take v's in some G-orthonormal 

basis of L0, this defines an element J E J ( V ,  12). 
The set L;(V, s L0) can be identified with the vector space of all symmetric n x n 

matrices. In fact, any n-dimensional subspace L of V that is transverse to L0 is the graph 
of a linear map JLo --+ L0, and the Lagrangian ones correspond to symmetric maps (cf. 
Section 1.1). Hence, s  s Lo) is contractible. Since G(Lo) is contractible (it is even 
convex), we conclude that ,.7(V, s is contractible. [] 

3.2. Compatible almost complex structures 

An almost complex structure on a manifold M is a smooth 26 field of complex structures 

on the tangent spaces, Jp : TpM --+ TpM, p ~ M. The pair (M, J )  is then called an almost 
complex manifold. 

DEFINITION 3.3. An almost complex structure J on a symplectic manifold (M, co) is 
compatible (with co or co-compatible) if the map that assigns to each point p ~ M the 
bilinear pairing gp : TpM x TpM --4 JR, gp(U, v) : - -  cop(U, Jpv) is a Riemannian metric 
on M. A triple (co, g, J)  of a symplectic form, a Riemannian metric and an almost complex 

structure on a manifold M is a compatible triple when g(., .) = co(., J . ) .  

If (co, J, g) is a compatible triple, each of co, J or g can be written in terms of the other 

two. 

EXAMPLES. 
1. If we identify ]R 2n with C n using coordinates zj = xj + iyj, multiplication by i 

induces a constant linear map J0 on the tangent spaces such that j2  = - I d ,  known 

25 Contractibility of J (V, s means that there exists a homotopy ht : ff (V, s ~ ,7 (V, s 0 ~< t ~< 1, starting 
at the identity h0 = Id, finishing at a trivial map hl :,.7(V, s ~ {J0}, and fixing J0 (i.e., ht(Jo) -- Jo, Vt) for 
some Jo E if(V, s 
26Smoothness means that for any vector field v, the image Jv is a (smooth) vector field. 
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as the standard almost complex structure on ]~2n: 

(0 t 0 0 
Jo ~xj -- Oyj' -- Oxj 

For the standard symplectic form coo -- ~ dxj A dyj and the Euclidean inner product 
go = (', "), the compatibility relation holds: co0(u, v) = go(Jo(u), v). 

2. Any oriented hypersurface Z C ]R 3 carries a natural symplectic form and a natural 
compatible almost complex structure induced by the standard inner (or dot) and exte- 
rior (or vector) products. They are given by the formulas cop(U, v) :-- (Vp, u x v) and 
Jp(v) = Vp x v for v ~ TpZ,  where Vp is the outward-pointing unit normal vector 
at p 6 27 (in other words, v : r  --+ S 2 is the Gauss map). Cf. Example 3 of Sec- 
tion 1.2. The corresponding Riemannian metric is the restriction to Z of the standard 

Euclidean metric (.,.). 
3. The previous example generalizes to the oriented hypersurfaces M C ]K 7. Regarding 

U, V E ]R 7 as imaginary octonions (or Cayley numbers), the natural vector product 
u • v is the imaginary part of the product of u and v as octonions. This induces a 
natural almost complex structure on M given by Jp(v) = Vp x v, where Vp is the 
outward-pointing unit normal vector at p E M. In the case of S 6, at least, this J is 
not compatible with any symplectic form, as S 6 cannot be a symplectic manifold. 

As a consequence of the remark in Section 3.1, we have: 

PROPOSITION 3.4. On any symplectic manifold (M, co) with a Riemannian metric g, there 
is a canonical compatible almost complex structure J. 

Since Riemannian metrics always exist, we conclude that any symplectic manifold has 
compatible almost complex structures. The metric gj (', ") :-- co(', J ' )  tends to be different 

from the given g (., .). 

PROPOSITION 3.5. Let (M, J)  be an almost complex manifold where J is compatible with 
two symplectic forms coo, col Then coo and col are deformation-equivalent. 

PROOF. Simply take the convex combinations cot = (1 - t)co0 + tcol, 0 ~< t ~< 1. D 

A counterexample to the converse of this proposition is provided by the family cot = 

coszrt dxl A dyl + sinTrt dxl A dy2 + sinTrt dyl /x dx2 + coszrt dx2 /x dy2 for 0 ~< t ~< 1. 
There is no J in R 4 compatible with both coo and col = -coo. 

A submanifold X of an almost complex manifold (M, J)  is an almost complex subman- 

ifold when J (T X) ___ T X, i.e., we have Jp v ~ Tp X, V p ~ X, v ~ Tp X. 

PROPOSITION 3.6. Let (M, co) be a symplectic manifold equipped with a compatible al- 
most complex structure J. Then any almost complex submanifold X of (M, J) is a sym- 
plectic submanifold of (M, co). 
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PROOF. Let i : X  ~ M be the inclusion. Then i'co is a closed 2-form on X. Since 
cop(U, v) = gp(Jpu, v), Vp E X, Vu, v E TpX, and since gplTpX is nondegenerate, so is 
COplTpX, and i'co is nondegenerate. V1 

It is easy to see that the set i f (M,  co) of  all compatible almost complex structures on a 
symplectic manifold (M, co) is path-connected. From two almost complex structures J0, J1 
compatible with co, we get two Riemannian metrics go(', ") = co(., J0"), gl (', ") = co(', J1 "). 
Their convex combinations 

gt(', ") - ( 1 -  t)go(', ") + tgl( ' ,  "), O ~ t ~ l, 

form a smooth family of Riemannian metrics. Applying the polar decomposition to the 
family (co, gt), we obtain a smooth path of compatible almost complex structures Jt joining 
J0 to J1. The set i f ( M ,  co) is even contractible (this is important for defining invariants). 
The first ingredient is the contractibility of the set of compatible complex structures on a 
vector space (Proposition 3.2). Consider the fiber bundle f f  --+ M with fiber over p 6 M 
being the space ffp :-- f f (TpM,  COp) of compatible complex structures on the tangent space 
at p. A compatible almost complex structure on (M, co) is a section of ,7. The space of 
sections of ,3 r is contractible because the fibers are contractible. 27 

Thefirst Chern class cl (M, co) of a symplectic manifold (M, co) is the first Chern class 
of (TM,  J) for any compatible J .  The class Cl (M, co) 6 H2(M;  Z) is invariant under de- 
formations of co. 

We never used the closedness of co to obtain compatible almost complex structures. The 
construction holds for an almost symplectic manifold (M, co), that is, a pair of a mani- 
fold M and a nondegenerate 2-form co, not necessarily closed. We could further work with 
a symplectic vector bundle, that is, a vector bundle E --+ M equipped with a smooth field co 
of fiberwise nondegenerate skew-symmetric bilinear maps (Section 1.6). The existence of 
such a field co is equivalent to being able to reduce the structure group of the bundle from 
the general linear group to the linear symplectic group. As both Sp(2n) and GL(n; C) re- 
tract to their common maximal compact subgroup U(n),  a symplectic vector bundle can be 
always endowed with a structure of complex vector bundle, and vice-versa. 

Gromov showed in his thesis [63] that any open 28 almost complex manifold admits a 
symplectic form. The books [42, w and [99, w contain proofs of this statement 
using different techniques. 

THEOREM 3.7 (Gromov). For an open manifold the existence of  an almost complex struc- 
ture J implies that of a symplectic form co in any given 2-cohomology class and such that 
J is homotopic to an almost complex structure compatible with co. 

From an almost complex structure J and a metric g, one builds a nondegenerate 2-form 
co(u, v) = g(Ju,  v), which will not be closed in general. Closedness is a differential re- 

27The base being a (second countable and Hausdorff) manifold, a contraction can be produced using a countable 
cover by trivializing neighborhoods whose closures are compact subsets of larger trivializing neighborhoods, and 
such that each p ~ M belongs to only a finite number of such neighborhoods. 
28A manifold is open if it has no closed connected components, where closed means compact and without 

boundary. 
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lation, i.e., a condition imposed on the partial derivatives, encoded as a subset of jet 
space. One says that a differential relation satisfies the h-principle 29 if any formal solution 
(i.e., a solution for the associated algebraic problem, in the present case a nondegenerate 
2-form) is homotopic to a holonomic solution (i.e., a genuine solution, in the present case a 
closed nondegenerate 2-form). Therefore, when the h-principle holds, one may concentrate 
on a purely topological question (such as the existence of an almost complex structure) in 
order to prove the existence of a differential solution. Gromov showed that, for an open 
differential relation on an open manifold, when the relation is invariant under the group 
of diffeomorphisms of the underlying manifold, the inclusion of the space of holonomic 
solutions into the space of formal solutions is a weak homotopy equivalence, i.e., induces 
isomorphisms of all homotopy groups. The previous theorem fits here as an application. 

For closed manifolds there is no such theorem: as discussed in Section 1.2, the existence 
of a 2-cohomology class whose top power is nonzero is also necessary for the existence 
of a symplectic form and there are further restrictions coming from Gromov-Witten theory 
(see Section 4.5). 

3.3. Integrability 

Any complex manifold 3~ has a canonical almost complex structure J .  It is defined lo- 

and cally over the domain L / o f  a complex chart ~0"b/--+ ]2 ___ C n, by Jp (~-P~lp) - -g-~lp 

jp(_ff_f~lp)O _ ---ff-~jlp,O where these are the tangent vectors induced by the real and imag- 

inary parts of the coordinates of ~0 -- (Zl . . . . .  zn), Zj  = X j  + iyj. This yields a globally 
well-defined J ,  thanks to the Cauchy-Riemann equations satisfied by the components of 
the transition maps. 

An almost complex structure J on a manifold M is called integrable when J is in- 
duced by some underlying structure of complex manifold on M as above. The question 
arises whether some compatible almost complex structure J on a symplectic manifold 
(M, co) is integrable. To understand what is involved, we review Dolbeault theory and the 
Newlander-Nirenberg theorem. 

Let (M, J )  be a 2n-dimensional almost complex manifold. The fibers of the complexi- 
fled tangent bundle, T M  | C, are 2n-dimensional vector spaces over C. We may extend J 
linearly to T M  | C by J(v | c) = Jv | c, v E TM,  c E C. Since j 2  = - I d ,  on the com- 
plex vector space ( T M  |  the linear map Jp has eigenvalues + i .  The (+i)-eigenspaces 
of J are denoted T1,0 and T0,1, respectively, and called the spaces of J-holomorphic and 
of J-anti-holomorphic tangent vectors. We have an isomorphism 

(7/'1,0, 7rO,1) " T M  | C -> 7'1,o G To, l ,  

1 
v l > - ( v - i  J r  v + i J v )  

2 ' ' 

29There are in fact different h-principles depending on the different possible coincidences of homotopy groups 
for the spaces of formal solutions and of holonomic solutions. 
30A complex manifold of (complex) dimension n is a set M with a complete complex atlas {(b/a, Va, qg~), ot E 

index set I } where M = [,,Ja Lid, the Va's are open subsets of C n , and the maps ~Pot :L/~ ~ Va are bijections such 
that the transition maps 7za~ = ~p/~ o ~p~-I : Va/~ ~ V/~ are biholomorphic (i.e., bijective, holomorphic and with 
holomorphic inverse) as maps on open subsets of C n , Vot/~ = ~pa (b/~ A b/~). 
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where the maps to each summand satisfy 7/'1,0 o J = i7/'1,0 and 7/'0,1 o J = - i y r 0 , 1 .  Restrict- 
ing Jr1,0 to T M ,  we see that ( T M ,  J) ~_ T1,0 --~ T0,1, as complex vector bundles, where the 
multiplication by i is given by J in ( T M ,  J) and where T0,1 denotes the complex conjugate 
bundle of T0,1. 

Similarly, J* defined on T * M  | C by J*~ = ~ o J has (+i)-eigenspaces T 1,0 = (Tl,o)* 
and T ~ = (To, l)*, respectively, called the spaces of complex-linear and of complex- 
antilinear cotangent vectors. Under the two natural projections yr 1,~ Jr ~ the complex- 
ified cotangent bundle splits as 

(Tr 1'0, 7 r 0 ' l )  " T * M  @ C -~> T 1'0 �9 T 0'1, 

1 
, > -~(~ - i J*~ ,~  + i J * ~ ) .  

Let 

A k ( T * M  |  "-- A k ( T  I'O ED T O'l ) - -  ~ A e'm, 

g.+m=k 

where A e,m "-- (AeT 1,0) A (AmTO'I), and let ~2k(M; C) be the space of sections of 
A k ( T * M  | C), called complex-valued k-forms on M. The differential forms of  type 
(s  on (M, J) are the sections of A e,m, and the space of these differential forms 
is denoted S-2 e,m. The decomposition of forms by Dolbeault type is F2k(M; C ) -  
~s ff2s Let ~e ,m.  A k ( T * M  @C) ---> A e'm be the projection map, where s + m - k. 
The usual exterior derivative d (extended linearly to smooth complex-valued forms) com- 
posed with two of these projections induces the del and del-bar differential operators, 
0 and 0, on forms of type (s m)" 

0 " - -  ~ g + l ' m  o d "  if2 e 'm > A,.-2s 

and 

: =  7t " s  o d" if2 s > S-2 ( ,m+l .  

If fl E a"2e'm(M), with k = s  + m, then dfl ~ ~2k+l(M; C): 

d e -  
r+s=k+l 

yr r' S d [3 - yr k + l ' ~ d fl + . . .  -+- Off + Off +.. . -+- yr O' k + l d fl . 

In particular, on complex-valued functions we have d f  -- d (re f )  + i d (im f )  and d = 
0 + 0, where 0 = Jr 1'~ o d and 0 = Jr ~ o d. A function f ' M  --+ C is J-holomorphic 
at p ~ M if dfp is complex linear, i.e., dfp o Jp - i d f p  (or dfp 6 TI'~ A function f 
is J-holomorphic if it is holomorphic at all p 6 M. A function f ' M  ~ C is J-anti- 

holomorphic at p E M if d f p is complex antilinear, i.e., d f p o Jp - - i  d f p (or d f p ~ T ~ 
that is, when the conjugate function f is holomorphic at p 6 M. In terms of 0 and 0, 
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a function f is J-holomorphic if and only if 0 f = 0, and f is J-anti-holomorphic if and 

only if Of = 0. 
When M is a complex manifold and J is its canonical almost complex structure, the 

; I-2 e,m is particularly interesting. Let b / c  M be the domain splitting ~2 k (M C) - -  ~g+m=k 
of a complex coordinate chart q9 -- (Zl . . . . .  Zn), where the corresponding real coordinates 

Xl, Yl . . . . .  Xn, Yn satisfy Zj = Xj 4- iyj. In terms of 

a 1 (  a 0 ) 0 1 ( 0 _ ~  j 0-~j) :-- - i ~  and "= - 4 -  i 
Ozj 2 Oxj Oyj Ozj 2 ' 

the (+i)-eigenspaces of Jp (p ~ bl) can be written 

0 

(T1,0)p = C-span ~-77zj �9 j = 1 . . . . .  n} and 
p 

0 c span{ l  / 
Similarly, putting dzj  = dxj  4- i dyj and dzj  - dxj  - i dyj ,  we obtain simple formulas 

ab d-- for the differentials of a b E C e~ (/.g; C) ab  - ~ ab dzj  and Ob -- ~ -b77 z j, and we have , 

T 1'0 -C-span{dz j"  j - 1 . . . . .  n} and T 0'1 -C-span{d?:j" j - 1 . . . . .  n}. I fwe use multi- 

index notation J - (jl  . . . . .  je) where 1 ~< j l  < "'" < je <<. n, IJI -- s and dz j  = dzjl A 
dzj2 A . . .  A dzje, then the set of (s m)-forms on L/is 

Z 
Igl=e, IKl=m 

bj, K dz j  A dZK I bj, K E COO(/.,/; C) }. 

A form/3 6 I2 k (M; C) may be written over/.4 as 

e+m=k IJl=e, IKl=m 
bj, K dz j  A dZK).  

Since d = O + 0 on functions, we get 

d ~ -  z ( z  
e+m=k Igl-e, IKI--m 

dbj, K A dgj  A dZK) 

-- Z ( Z ObJ, K A d z j A d Z K  
g+m=k Igl=g, IKl=m 

r 
E,.Qg+I ,m 

+ Z 
IJl=g, IKl=m 

Obj, K A dz j  A dZK) 

v - -  

ES'2&m+I 
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and conclude that, on a complex manifold, d = O + 0 on forms  o f  any degree. This cannot 
be proved for an almost complex manifold, because there are no coordinate functions z j to 
give a suitable basis of 1-forms. 

When d = O + O, for any form f E s e'm, we have 

{ 0 2 = 0 ,  

0 = d2fl -- 02[3 + Obfl -Jr- boil + 0213 ~ O0 + O0 -- O, 
'~ Y �9 ~ O 2 - -0 .  

E ~f'2s E~f2s ~_~f2g.,m+2 

Since b2 = 0, the chain 0 
Its cohomology groups 

> $2 s O> ~('2e, 1 O> ~f2 e,2 �9 .. is a differential complex. 

s ker 0" if2 g'm + Y2 e'm+l 

HDolbeaul t (M)" im O" s - 1 __+ s 

are called the Dolbeault  cohomology groups. The Dolbeault theorem states that for com- 

s  ~ H m 0))), where 0(s  (g'~ is the sheaf of plex manifolds HDolbeault(M ) (M; 0(s (e' 
forms of type (s 0) over M. 

It is natural to ask whether the identity d = 0 + 0 could hold for manifolds other than 
complex manifolds. Newlander and Nirenberg [106] showed that the answer is no: for an 
almost complex manifold (M, J) ,  the following are equivalent 

M is a complex manifold ~, > N'=_O ~, ,'- d - 8 + 8  

~2 - -0 ,  

where N" is the Nijenhuis tensor: 

N ' ( X ,  Y ) ' =  [ JX ,  JY]  - J [ J X ,  Y] - J [X ,  JY]  - [X, Y], 

for vector fields X and Y on M, [., .] being the usual bracket. 31 The Nijenhuis tensor can 
be thought of as a measure of the existence of J-holomorphic functions: if there exist n 
J-holomorphic functions, f l  . . . . .  fn,  on R 2n, that are independent at some point p, i.e., the 
real and imaginary parts of ( d f l ) p  . . . . .  (dfn)  p form a basis of T p R  2n, then N" vanishes 
identically at p. More material related to Dolbeault theory or to the Newlander-Nirenberg 
theorem can be found in [23,37,62,76,141]. 

EXAMPLE. Out of all spheres, only S 2 and S 6 admit almost complex structures [121, 
w As a complex manifold, S 2 if referred to as the Riemann sphere CI? 1 . The almost 
complex structure on S 6 from Example 3 of Section 3.2 is not integrable, but it is not yet 
known whether S 6 admits a structure of complex manifold. 

31The bracket of vector fields X and Y is the vector field [X, Y] characterized by the property that E[x,Y]f :-- 
Ex(12y f )  - 12y(12X f) ,  for f 6 C ~ (M), where/2x f --df(X). 
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In the (real) 2-dimensional case A/" always vanishes simply because A/" is a tensor, i.e., 
A f ( f X ,  gY) = fgA/ ' (X,  Y) for any f ,  g ~ C~176 and A/'(X, J X )  = 0 for any vector 
field X. Combining this with the fact that any orientable surface is symplectic, we con- 
clude that any orientable surface is a complex manifold, a result already known to Gauss. 
However, most almost complex structures on higher-dimensional manifolds are not inte- 
grable. In Section 3.5 we see that the existence of a complex structure compatible with a 
symplectic structure on a compact manifold imposes significant topological constraints. 

3.4. Kiihler manifolds 

DEFINITION 3.8. A Kiihler manifold is a symplectic manifold (M, co) equipped with an 
integrable compatible almost complex structure J .  The symplectic form co is then called a 

Kiihler form. 

As a complex manifold, a K~ihler manifold (M, co, J )  has Dolbeault cohomology. As it 
is also a symplectic manifold, it is interesting to understand where the symplectic form co 
sits with respect to the Dolbeault type decomposition. 

PROPOSITION 3.9. A Kiihler form co is a O- and O-closed (1, 1)-form that is g&en on a 

local complex chart (lg, Z l . . . . .  Zn) by 

i 17 

j , k = l  

where, at every point p E bl, (hjk(P)) is a positive-definite Hermitian matrix. 

1,1 
In particular, co defines a Dolbeault (1, 1)-cohomology class, [co] E HDolbeault(M). 

PROOF. Being a form in s C) = ~(22'0 • S'21,1 ~) ~(-20,2, with respect to a local complex 

chart, co can be written 

co -- ~ ajk dz j  /~ dzk + Z bjk dz j  /~ dzk -Jr- Z Cjk dz j  /~ dZk 

for some ajk, bjk, Cjk E COX)(///; C ) .  By the compatibility of co with the complex struc- 
ture, J is a symplectomorphism, that is, J 'co  -- co where (J*co)(u, v) := co(Ju, Jr) .  Since 
J* dz j  = dzj  o J -- i dz j  and J* dzj  = dzj  o J = - i  dz j ,  we have J 'co  = co if and only 
if the coefficients ajk and Cjk all vanish identically, that is, if and only if co 6 S21'1. Since 
co is closed, of type (1, 1) and dco - 0co + 0co, we must have 0co - 0 and 0co - 0. Set 

i i i bjk -- ~hjk. As co is real-valued, i.e., co - 7 ~ hjk dz j  A dzk and cb -- - 7  Y~ hjk dzj  A dzk 

coincide, we must have hjk = hkj for all j and k. In other words, at every point p 6 b/, the 
n x n matrix (hjk(P)) is Hermitian. The nondegeneracy amounts to the nonvanishing of 

co n -- n! det(hjk) dzl  A dzl  A . . . A dZn A dzn. 
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Therefore, at every p 6 M, the matrix (h jk (p) )  must be nonsingular. Finally, the positivity 
condition o)(v, J r )  > 0, u g: 0, from compatibility, implies that, at each p ~ b/, the matrix 
(hjk (p))  is positive-definite. D 

Consequently, if co0 and (-01 are both K~ihler forms on a compact manifold M with 
[o)0]--[o)1] E H2eRham(M), then (M, o00) and (M, OOl) are strongly isotopic by Moser's 
Theorem 1.7. Indeed oot = (1 - t)oo0 + tOOl is symplectic for t 6 [0, 1], as convex combi- 
nations of positive-definite matrices are still positive-definite. 

Another consequence is the following recipe for K~ihler forms. A smooth real func- 
tion p on a complex manifold M is strictly plurisubharmonic (s.p.s.h.) if, on each local 

02P (p)) is positive-definite at all p 6/.g. If complex chart (b/, Zl . . . . .  Zn), the matrix (ozjo5k 

p 6 Coo (M; IR) is s.p.s.h., then the form 

i 
co -- - a a p  

2 

is K~ihler. The function p is then called a (global) Kiihler potential. 

EXAMPLE. Let M - -  C n '-~ ]1~ 2n , with complex coordinates (Zl  . . . . .  Zn)  and corresponding 
real coordinates (Xl, yl . . . . .  Xn, Yn) via zj  -- x j  + iyj .  The function 

p(x l ,  Yl . . . . .  Xn, Yn) - ~(x  2 + y2) _ Z IZJ[2= ~ZJZJ 
j= l  

is s.p.s.h, and is a K~ihler potential for the standard K~ihler form: 

i O O p -  i i 
Z 6jk dz j  A dzk -- ~ ~_. d z j / x  d~:j = ~ d x j / x  dyj  = (D O . 

j , k  j j 

There is a local converse to the previous construction of K~ihler forms. 

PROPOSITION 3.10. Let co be a closed real-valued (1, 1)-form on a complex mani- 
i o0 for  fo ld  M and let p E M. Then on a neighborhood gt o f  p we have o o -  ~ p some 

p ~ C~(b/;  IR). 

The proof of this theorem requires holomorphic versions of Poincar6's lemma, namely, 
the local triviality of Dolbeault groups (the fact that any point in a complex manifold admits 

g,m 
a neighborhood b/such that HDolbeaul  t ( ~ )  -= 0 for all m > 0) and the local triviality of the 
holomorphic de Rham groups; see [62]. 

For a K~ihler o0, such a local function p is called a local Kiihler potential. 

PROPOSITION 3.1 1. Let M be a complex manifold, p ~ C ~ (M; R) s.p.s.h., X a complex 
submanifold, and i : X r M the inclusion map. Then i*p is s.p.s.h. 
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PROOF. It suffices to verify this locally by considering a complex chart (z 1 . . . . .  z~) for M 
adapted to X so that X is given there by the equations Z l . . . . .  Zm = 0. Being a 

02 
principal minor of the positive-definite matrix (OzjOS~ (0 . . . . .  O, Zm+l . . . . .  Zn)) the matrix 

(O~m+jOZm+k Ozp (0 ,  . . . .  , 0 ,  Z m + l  . . . .  Zn) )  is also positive-definite. D 

COROLLARY 3.12.  Any complex submanifold of a K~ihler manifold is also Kiihler. 

DEFINITION 3.13.  Let (M, co) be a K~ihler manifold, X a complex submanifold, and 
i :X ~ M the inclusion. Then (X, i'co) is called a Kiihler submanifold. 

E X A M P L E S .  
i 1. Complex vector space (C n, coo) where coo - ~ ~ dzj /x  dzj is K~ihler. According to 

Corollary 3.12, every complex submanifold of C ~ is K~ihler. 
2. In particular, Stein manifolds are K~ihler. Stein manifolds are the properly embedded 

complex submanifolds of C n. They can be alternatively characterized as being the 
i K~ihler manifolds (M, co) that admit a global proper K~ihler potential, i.e., co - ~OOp 

for some proper function p : M --+ IR. 
3. The function z ~ log(lz[ 2 + 1) on C ~ is strictly plurisubharmonic.  Therefore the 

2-form 

i 00 log(Izl 2 -+- 1) COFS - -  

is another K~ihler form on C n This is called the Fubini-Study form on C n . 
4. Let {(L/j, C n, q)j), j = 0 . . . . .  n} be the usual complex atlas for complex projective 

space. 32 The form COFS is preserved by the transition maps, hence 9)~coFS and q)~COFS 
agree on the overlap L/j A L/k. The Fubini-Study form on C]? n is the K~ihler form 

obtained by gluing together the q)j coFS, j -- 0 . . . .  , n. 
5. Consequently,  all nonsingular projective varieties are K~ihler submanifolds. Here by 

nonsingular we mean smooth, and by projective variety we mean the zero locus of 
some collection of homogeneous  polynomials.  

6. All Riemann surfaces are K~ihler, since any compatible almost complex structure is 
integrable for dimension reasons (Section 3.3). 

32The complex projective space CI? n is the complex n-dimensional manifold given by the space of complex 

lines in C n+ 1. It can be obtained from C n+ | \ {0} by making the identifications (z0 . . . . .  Zn) ~ (~.zo . . . . .  ~.Zn) 

for all ~. E C \ {0}. One denotes by [z0 . . . . .  Zn] the equivalence class of (z0 . . . . .  Zn), and calls zo . . . . .  Zn the 
homogeneous coordinates of the point p = [z0 . . . . .  zn ]. (Homogeneous coordinates are, of course, only deter- 

mined up to multiplication by a nonzero complex number ~..) Let b/j be the subset of CI? n consisting of all points 

p = [zo . . . . .  zn] for which zj ~ O. Let 99j :b/j ~ C n be the map defined by 

99j ([Z0 . . . . .  Zn])--- Z.__O_O,..., Z j - I  , Zj+I , . . . ,  Zn 
Zj Zj Zj Zj 

The collection { (b/j, C n , 99j), j = 0 . . . . .  n } is the usual complex atlas for C ~  n . For instance, the transition map 

, , z.i z,, ) defined from the set {(Zl .. , zn) f r o m  (b/0, C n 990) to (b/1,C n 991) i s  990,1(Zl . . . . .  Z n ) = (  1'  z~ . . . . .  z-i- ' " 

C n [zl :/: 0} to itself. 
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7. The Fubini-Study form on the chart/do = {[z0, Zl]  E C ~  1 [ Z0 ~;~ 0} of the Riemann 
sphere C? 1 is given by the formula 

dx A dy 
coFS - -  (X 2 .+. y2  + 1 ) 2 '  

where z~ = z - x + i y is the usual coordinate on C. The standard area form costd - -  z0 
dO A dh is induced by regarding C?  1 as the unit sphere S 2 in ]K 3 (Example 3 of 

1 Section 1.2). Stereographic projection shows that coFs - ~costd. 
8. Complex tori are K~ihler. Complex tori look like quotients C n/Z n where Z n is a lattice 

in C n. The form co = ~ dzj  A dz j  induced by the Euclidean structure is K~ihler. 
9. Just like products of symplectic manifolds are symplectic, also products of K~ihler 

manifolds are K~ihler. 

3.5. Hodge theory 

Hodge [73] identified the spaces of cohomology classes of forms with spaces of actual 
forms, by picking the representative from each class that solves a certain differential equa- 
tion, namely the harmonic representative. We give a sketch of Hodge's idea. The first part 
makes up ordinary Hodge theory, which works for any compact oriented Riemannian man- 
ifold (M, g), not necessarily K~ihler. 

At a point p ~ M, let el . . . . .  en be a positively oriented orthonormal basis of the cotan- 
gent space TpM, with respect to the induced inner product and orientation. The Hodge 
star operator is the linear operator on the exterior algebra of Tp M defined by 

�9 (1)  = e l  A . . .  A en,  

�9 ( e l  A . . .  A e n ) =  1, 

�9 ( e l  A . . .  A ek)  = e k + l  A . . .  A en.  

We see that , ' A k ( T p M )  --+ A n - k ( T p M )  and satisfies ** -- ( - 1 )  k(n-k) . The codifferential 
and the Laplacian are the operators defined by 

= (--1) n(k+l)+l , d ,  : S2k(M) --+ y2k-I(M), 

A = d3 + 3d : S-2 k (M) --+ 12 k (M). 

The operator A is also called the Laplace-Beltrami operator and satisfies A ,  = ,A.  On 
n 02 

I-2~ n) - - C ~ ( R n ) ,  it is simply the usual Laplacian A - - - ~ i = 1  a-~/2. The inner product 

on forms of any degree, 

(., .) : ,.ok (M) x ,f2 k (M) ~, R, (c~,/~) := fM a A ,,8, 
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satisfies (dot, fl) = (ot, 6fl), so the codifferential 6 is often denoted by d* and called 
the adjoint 33 o f  d. Also, A is self-adjoint (i.e., (Aot, fl) = (ot, Aft)), and (Aot, o t ) -  
[dot] 2 + [6ot] 2/> 0, where l" [ is the norm with respect to this inner product. The harmonic 
k-forms are the elements of 7@ " -  {ot 6 12 k I Aot = 0}. Note that Aot - - 0  if and only if 
dot - 6ot -- 0. Since a harmonic form is d-closed, it defines a de Rham cohomology class. 

THEOREM 3.1 4 (Hodge). Every de Rham cohomology class on a compact oriented Rie- 
mannian manifold (M, g) possesses a unique harmonic representative, i.e., there is an 
isomorphism 7-[ k ~ k ndeRham(M; 1R). In  particular, the spaces 7@ are finite-dimensional. 
We also have the following orthogonal decomposition with respect to the inner product on 
forms: S-2 k ~ 7@ @ A(I -2k(M))~  7@ G d~-2 k-1 �9 6S-2 k+l. 

This decomposition is called the Hodge decomposition on forms. The proof of this and 
the next theorem involves functional analysis, elliptic differential operators, pseudodiffer- 
ential operators and Fourier analysis; see for instance [62,83,141]. 

Here is where complex Hodge theory begins. When M is K~ihler, the Laplacian satisfies 
A -- 2(00* + 0* 0) (see, for example, [62]) and preserves the decomposition according to 
type, A.  Y2 e,m ~ 12 e,m. Hence, harmonic forms are also bigraded 

~ _ / k  O ~_./g, m 

g.+m=k 

and satisfy a Ktinneth formula ,]._[e,m (M x N)  ~ ~p+r--e,  q+s=m "]-[P'q (M) | ,]_[r,s (N).  

THEOREM 3.1 5 (Hodge). Every Dolbeault cohomology class on a compact Kiihler man- 
ifold (M, co) possesses a unique harmonic representative, i.e., there is an isomorphism 
~.[g.,m g~,m 

HDolbeaul t (m).  

Combining the two theorems of Hodge, we find the decomposition of cohomology 
groups for a compact K~ihler manifold 

k 
gdeRham(M; C)'~' ~) s HDolbeault (M), 

g~+m=k 

known as the Hodge decomposition. In particular, the Dolbeault cohomology groups 
/~,m HDolbeaul t are finite-dimensional and H g'm "~ H m,e. 
Let b k (M) " -  dim k HdeRham (M) be the usual Betti numbers of M, and let he'm(M) " -  

/~,m 
dim HDolbeaul t (M) be the Hodge numbers of M. 

For an arbitrary compact symplectic manifold (M, co), the even Betti numbers must be 
positive, because cok is closed but not exact (k - 0, 1, . . . ,  n). In fact, if it were cok _ dot, 
by Stokes' theorem we would have fM con _ fM d(ot A con-k) _ O, which contradicts con 
being a volume form. 

33When M is not compact, we still have a formal adjoint of d with respect to the nondegenerate bilinear pairing 
(., .)" s k (M) x s (M) ~ R defined by a similar formula, where I2c ~ (M) is the space of compactly supported 
k-forms. 
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For a compact K~ihler manifold (M, co), there are finer topological consequences coming 
from the Hodge theorems, as we must have b k = Y~e+m=k he'm and h e'm = h m,e. The 

k he,(2k+l_e) = h e'm 2 Y~'~e=0 " odd Betti numbers must be even because b 2k+l Y~e+m=2k+l -- 

The number h 1'~ = lb l  must be a topological invariant. The numbers h e,e are positive, 
e,e e,e 

because 0 7~ [coe] 6 HDolbeault(M). First of all, [coe] defines an element of HDolbeaul t as 
co 6 S21,1 implies that coe 6 S-2e,e, and the closedness of coe implies that ~coe = 0. If it were 
coe = 0/3 for some 13 6 S2 e-l,e, then con = coe/x con-e = ~(~/x con-e) would be 0-exact. But 
[con] r 0 in 2n ~ n,n HdeRham (M; C) HDolbeaul t (M) since it is a volume form. A popular diagram 
to describe relations among Hodge numbers is the Hodge diamond: 

hn,n 
hn,n-1 hn-l,n 

hn,n-2 hn-l ,n-1 hn-2,n 

h2,0 hi,1 h0,2 
hl,O hO,1 

h0,0 

Complex conjugation gives symmetry with respect to the middle vertical, whereas the 
Hodge star operator induces symmetry about the center of the diamond. The middle verti- 
cal axis is all nonzero. 

e,m There are further symmetries and ongoing research on how to compute nDolbeaul t for 
a compact K~ihler manifold (M, co). In particular, the hard Lefschetz theorem states iso- 

morphisms L k . ndeRham(M)n-k -~ > "'deRhamf-ln+k (M) given by wedging with cok at the level of 

forms and the Lefschetz decompositions Hdemaam(M ) "~ ( ~  L~(ker Ln-m+2k+llHm-2~ ). 
The Hodge conjecture claims, for projective manifolds M (i.e., complex submanifolds 

e,e of complex projective space), that the Poincar6 duals of elements in nDolbeault(M) f"l 

H2e(M; Q) are rational linear combinations of classes of complex codimension s sub- 
varieties of M. This has been proved only for the s = 1 case (it is the Lefschetz theorem 
on (1, 1)-classes; see, for instance, [62]). 

3.6. Pseudoholomorphic curves 

Whereas an almost complex manifold (M, J)  tends to have no J-holomorphic functions 
M ~ C at all, 34 it has plenty of J-holomorphic curves C --+ M. Gromov first realized 
that pseudoholomorphic curves provide a powerful tool in symplectic topology in an ex- 
tremely influential paper [64]. Fix a closed Riemann surface (27, j ) ,  that is, a compact 
complex 1-dimensional manifold 27 without boundary and equipped with the canonical 
almost complex structure j .  

34However, the study of asymptotically J-holomorphicfunctions has been recently developed to obtain impor- 
tant results [32,34,13]" see Section 4.6. 
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DEFINITION 3.16. A parametrized pseudoholomorphic curve (or J-holomorphic curve) 
in (M, J )  is a (smooth) map u:Z7 -+ M whose differential intertwines j and J ,  that is, 
dup o jp : Jp odup, Vp E Z.  

In other words, the Cauchy-Riemann equation du + J o du o j = 0 holds. 
Pseudoholomorphic curves are related to parametrized 2-dimensional symplectic sub- 

manifolds. If a pseudoholomorphic curve u : r  ~ M is an embedding, then its image 
S :-- u ( Z )  is a 2-dimensional almost complex submanifold, hence a symplectic submani- 
fold. Conversely, the inclusion i :S ~ M of a 2-dimensional symplectic submanifold can 
be seen as a pseudoholomorphic curve. An appropriate compatible almost complex struc- 
ture J on (M, co) can be constructed starting from S, such that TS is J-invariant. The 
restriction j of J to T S is necessarily integrable because S is 2-dimensional. 

The group G of complex diffeomorphisms of ( r ,  j )  acts on (parametrized) pseudo- 
holomorphic curves by reparametrization: u ~ u o V, for }I ~ G. This normally means that 
each curve u has a noncompact orbit under G. The orbit space .A/lg(A, J) is the set of 
unparametrized pseudoholomorphic curves in (M, J )  whose domain r has genus g and 
whose image u ( r )  has homology class A E Hz(M; Z). The space .A/[g(A, J) is called the 
moduli space of unparametrized pseudoholomorphic curves of genus g representing the 
class A. For generic J ,  Fredholm theory shows that pseudoholomorphic curves occur in 
finite-dimensional smooth families, so that the moduli spaces .A/lg(A, J) can be manifolds, 
after avoiding singularities given by multiple coverings. 35 

EXAMPLE. Usually r is the Riemann sphere CP  1, whose complex diffeomorphisms 
are those given by fractional linear transformations (or MObius transformations). So 
the 6-dimensional noncompact group of projective linear transformations PSL(2; C) acts 
on pseudoholomorphic spheres by reparametrization u w+ u o YA where A -- [ a b] 

' c d  
. , [az+b 1]. PSL(2" C) acts by YA CI? 1 --+ C ~  1 ZA[Z, 1] -- Lc-FUd, 

When J is an almost complex structure compatible with a symplectic form o9, the area of 
the image of a pseudoholomorphic curve u (with respect to the metric gj ( . ,  ") = CO(', J . ) )  

is determined by the class A that it represents. The number 

E(u) "-- co(A) -- f r  u*o9 -- area of the image of u with respect to gj 

is called the energy of the curve u and is a topological invariant: it only depends on [o9] 
and on the homotopy class of u. Gromov proved that the constant energy of all the pseudo- 
holomorphic curves representing a homology class A ensured that the space .A/[g(A, J), 
though not necessarily compact, had natural compactifications .A/[g(A, J) by including 
what he called cusp-curves. 

THEOREM 3.17 (Gromov's  compactness theorem). If (M, o9) is a compact manifold 
equipped with a generic compatible almost complex structure J, and if u j is a sequence 

35A curve u : Z' --+ M is a multiple covering if u factors as u = u' ocr where o- : Z --+ E t is a holomorphic map 
of degree greater than 1. 
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of pseudoholomorphic curves in .A/lg(A, J),  then there is a subsequence that weakly con- 
verges to a cusp-curve in .A/[g(A, J). 

Hence the cobordism class of the compactified moduli space .A/lg(A, J) might be a nice 
symplectic invariant of (M, co), as long as it is not empty or null-cobordant. Actually a 
nontrivial regularity criterion for J ensures the existence of pseudoholomorphic curves. 
And even when ./~-g (A, J) is null-cobordant, we can define an invariant to be the (signed) 
number of pseudoholomorphic curves of genus g in class A that intersect a specified set of 
representatives of homology classes in M [ 112,128,145]. For more on pseudoholomorphic 
curves; see, for instance, [ 100] (for a comprehensive discussion of the genus 0 case) or [ 11 ] 
(for higher genus). Here is a selection of applications of (developments from) pseudoholo- 
morphic curves: 

�9 Proof of the nonsqueezing theorem [64]: for R > r there is no symplectic embedding 
of a ball B 2n of radius R into a cylinder B 2 • •2n-2 of radius r, both in (R 2n, coo). 

�9 Proof that there are no Lagrangian spheres in (C n, coo), except for the circle in C 2, 
and more generally no compact exact Lagrangian submanifolds, in the sense that the 
tautological 1-form ot restricts to an exact form [64]. 

�9 Proof that if (M, co) is a connected symplectic 4-manifold symplectomorphic to 
(R 4, coo) outside a compact set and containing no symplectic S 2,s, then (M, co) sym- 
plectomorphic to (R 4, coo) [64]. 

�9 Study questions of symplectic packing [ 15,98,134] such as: for a given 2n-dimensional 
symplectic manifold (M, co), what is the maximal radius R for which there is a sym- 
plectic embedding of N disjoint balls B 2n into (M, co)? 

�9 Study groups of symplectomorphisms of 4-manifolds (for a review see [97]). Gro- 
mov [64] showed that Sympl(C/? 2, coFs) and Sympl(S 2 • S 2, pr~cr ~3 pr~o') deforma- 
tion retract onto the corresponding groups of standard isometries. 

�9 Development of Gromov-Witten invariants allowing to prove, for instance, the nonex- 
istence of symplectic forms on CI? 2 # C/? 2 # C~ 2 or the classification of symplectic 
structures on ruled surfaces (Section 4.3). 

�9 Development of Floer homology to prove the Arnold conjecture on the fixed points 
of symplectomorphisms of compact symplectic manifolds, or on the intersection of 
Lagrangian submanifolds (Section 5.2). 

�9 Development of symplectic field theory introduced by Eliashberg, Givental and 
Hofer [40] extending Gromov-Witten theory, exhibiting a rich algebraic structure and 
also with applications to contact geometry. 

4. Symplectic geography 

4.1. Existence of symplectic forms 

The utopian goal of symplectic classification addresses the standard questions: 
�9 (Existence) Which manifolds carry symplectic forms? 
�9 (Uniqueness) What are the distinct symplectic structures on a given manifold? 
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Existence is tackled through central examples in this subsection and symplectic con- 
structions in the next two sections. Uniqueness is treated in the remainder of this subsection 
dealing with invariants that allow to distinguish symplectic manifolds. 

A K~ihler structure naturally yields both a symplectic form and a complex structure 
(compatible ones). Either a symplectic or a complex structure on a manifold implies the 
existence of an almost complex structure. Figure 1 represents the relations among these 
structures. In dimension 2, orientability trivially guarantees the existence of all other struc- 
tures, so the picture collapses. In dimension 4, the first interesting dimension, the picture 
above is faithfulmwe will see that there are closed 4-dimensional examples in each region. 
Closed here means compact and without boundary. 

Not all 4-dimensional manifolds are almost complex. A result of Wu [146] gives a nec- 
essary and sufficient condition in terms of the signature 0- and the Euler characteristic 
X of a 4-dimensional closed manifold M for the existence of an almost complex struc- 
ture: 30- + 2X = h 2 for some h c H2(M; Z) congruent with the second Stiefel-Whitney 
class wz(M) modulo 2. For example, S 4 and (S 2 x S 2) #(S 2 x S 2) are not almost com- 
plex. When an almost complex structure exists, the first Chern class of the tangent bundle 
(regarded as a complex vector bundle) satisfies the condition for h. The sufficiency of Wu's 
condition is the remarkable part. 36 

According to Kodaira's classification of closed complex surfaces [82], such a surface 
admits a K~ihler structure if and only if its first Betti number bl is even. The necessity of this 
condition is a Hodge relation on the Betti numbers (Section 3.5). The complex projective 
plane CI? 2 with the Fubini-Study form (Section 3.4) might be called the simplest example 
of a closed K~ihler 4-manifold. 

The Kodaira-Thurston example [131] first demonstrated that a manifold that admits 
both a symplectic and a complex structure does not have to admit any K~ihler structure. 

36Moreover, such solutions h are in one-to-one correspondence with isomorphism classes of almost complex 
structures. 
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even-dimensional and simply connected 

almost complex (and simply connected) 

symplectic (and simply connected) 

complex (and simply connected) 

Fig. 2. 

Take R 4 with dxl A dyl + dx2 A dy2, and F the discrete group generated by the four 
symplectomorphisms: 

(Xl, X2, Yl, Y2) I 

(Xl, X2, Yl, Y2) I 

(Xl, X2, Yl, y2) l 

(Xl, X2, Yl, y2) l 

(Xl -+- 1, X2, Yl, Y2), 

> (Xl, x2 -k- 1, Yl, Y2), 

> (Xl, x2 + Y2, Yl -+- 1, Y2), 

> (Xl, X2, Yl, Y2 -k- 1). 

Then M -- R 4 / F  is a symplectic manifold that is a 2-torus bundle over a 2-torus. Kodaira's 
classification [82] shows that M has a complex structure. However, 7rl (M) = F ,  hence 
H1 (R4/F ;  Z) -- F/[F, F] has rank 3, so bl = 3 is odd. 

Fem~indez-Gotay-Gray [44] first exhibited symplectic manifolds that do not admit any 
complex structure at all. Their examples are circle bundles over circle bundles (i.e., a tower 
of circle bundles) over a 2-torus. 

The Hopfsurface is the complex surface diffeomorphic to S 1 x S 3 obtained as the quo- 
tient C 2 \ {0}/F where F = {2nld [ n 6 Z} is a group of complex transformations, i.e., we 
factor C 2 \ {0} by the equivalence relation (z l, z2) ~ (2Zl, 2z2). The Hopf surface is not 
symplectic because H2(S 1 x S 3) = 0. 

The manifold C p 2 #  C p 2 #  CP 2 is almost complex but is neither complex (since it 
does not fit Kodaira's classification [82]), nor symplectic as shown by Taubes [126] us- 
ing Seiberg-Witten invariants (Section 4.5). 

We could go through the previous discussion restricting to closed 4-dimensional exam- 
ples with a specific fundamental group. We will do this restricting to simply connected 
examples, where Figure 2 holds. 

It is a consequence of Wu's result [146] that a simply connected manifold admits an 
almost complex structure if and only if b~- is odd. 37 In particular, the connected sum 

37 The intersection form of an oriented topological closed 4-manifold M is the bilinear pairing Q M : H 2(M; Z) x 
H2(M; Z) ~ Z, QM(~, t~) := (c~ U 13, [M]), where ot U 13 is the cup product and [M] is the fundamental class. 
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#m C~2 #n C ~2 (of m copies of C ~  2 with n copies of C ~  2) has an almost complex structure 
if and only if m is odd. 38 

By Kodaira 's  classification [82], a simply connected complex surface always admits a 
compatible symplectic form (since b I -- 0 is even), i.e., it is always K~ihler. 

Since they are simply connected, S 4, CI? 2 # C ?  2 # C ?  2 and C ?  2 live in three of the four 

regions in the picture for simply connected examples.  All of C ?  2 #m C ~  2 are also simply 
connected K~ihler manifolds because they are pointwise blow-ups C ?  2 and the blow-down 
map is holomorphic;  see Section 4.3. 

There is a family of manifolds obtained from C ~  2 #9 C~2 --': E (1) by a knot surgery [45] 

that were shown by Fintushel and Stern to be symplectic and confirmed not to admit a 
complex structure [ 109]. The first example of a closed simply connected symplectic man- 
ifold that cannot be K~ihler, was a 10-dimensional manifold obtained by McDuff  [94] as 
follows. The Kodaira-Thurs ton example IK4//-" (not simply connected) embeds symplec- 
tically in (C~  5, COFS) [65,132]. McDuff ' s  example is a blow-up of (C~ 5, a~FS) along the 
image of ~4 //-,. 

Geography problems are problems on the existence of simply connected closed oriented 
4-dimensional  manifolds with some additional structure (such as, a symplectic form or 
a complex structure) for each pair of  topological coordinates. As a consequence of the 
work of Freedman [51] and Donaldson [30] in the 80's, it became known that the homeo- 

morphism class of a connected simply connected closed oriented smooth 4-manifold is 
determined by the two in tegers - - the  second Betti number  and the signature (b2, a )  m 
and the parity 39 of the intersection form. Forgetting about the parity, the numbers (b2, cr) 
can be treated as topological coordinates. For each pair (b2, or) there could well be in- 
finite different (i.e., nondiffeomorphic)  smooth manifolds. Using Riemannian geometry, 
Cheeger  [22] showed that there are at most  countably many different smooth types for 
closed 4-manifolds.  There are no known finiteness results for the smooth types of a given 
topological  4-manifold,  in contrast to other dimensions.  

Traditionally, the numbers  used are (c 2, c2) "-- (3a  + 2X, X) -- (3a  + 4 + 2b2, 2 + b2), 

and frequently just the slope c2/c2 is considered. If M admits an almost complex struc- 
ture J ,  then (TM, J) is a complex vector bundle, hence has Chern classes Cl = Cl (M, J )  
and c2 = c2(M, J). Both c 2 "--ca U Cl and c2 may be regarded as numbers  since 

H 4 (M; Z) ~ Z. They satisfy c 2 -- 30- + 2X (by Hirzebruch's  signature formula) and C2 -- X 

(because the top Chern class is always the Euler class), justifying the notation for the topo- 
logical coordinates in this case. 

Since QM always vanishes on torsion elements, descending to H 2 (M; Z)/torsion it can be represented by a ma- 
trix. When M is smooth and simply connected, this pairing is QM(Ot, fl) :-- fM ot/x fl since nontorsion elements 
are representable by 2-forms. As Q M is symmetric (in the smooth case, the wedge product of 2-forms is symmet- 
ric) and unimodular (the determinant of a matrix representing Q M is -4-1 by Poincar6 duality), it is diagonalizable 
over IR with eigenvalues + 1. We denote by b~- (respectively b 2) the number of positive (respectively negative) 
eigenvalues of Q M counted with multiplicities, i.e., the dimension of a maximal subspace where Q M is positive- 
definite (respectively negative-definite). The signature of M is the difference cr := b + - b2, whereas the second 
Betti number is the sum b2 -- b~- + b 2, i.e., the rank of Q M. The type of an intersection form is definite if it is 
positive or negative definite (i.e., Icrl- b2) and indefinite otherwise. 
38The intersection form of a connected sum M 0 # M1 is (isomorphic to) Q Mo @ Q M1. 
39We say that the parity of an intersection form QM is even when QM(Ot, or) is even for all o~ ~ H2(M; Z), and 

odd otherwise. 
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E X A M P L E S .  The manifold C ~  2 has (b2,  o-) = (1, 1), i.e., (c 2, C2) - -  (9, 3). Reversing 

the orientation C ~  2 has (b2,  o-) - -  ( 1 , - 1 ) ,  i.e., (c 2, c2) = (3, 3). Their connected sum 

C ~ 2 #  CIP 2 has (b2, o - )=  (2, 0), i.e., (c 2, c 2 ) =  (8, 0). The product S 2 x S 2 also has 

(b2,  o - ) =  (2,  0 ) ,  i.e., (c 2, c 2 ) =  (8, 4). But CIp2# C ~  2 has an odd intersection form 
1 0 1  whereas S 2 x S 2 has an even intersection form: [0 ~ vs .  [ 1 0 ] "  

Symplectic geography [60,122] addresses the following question: What is the set of pairs 
of integers (m, n) e Z x Z for which there exists a connected simply connected closed sym- 
plectic 4-manifold M having second Betti number bz(M) - -m and signature o.(M) = n? 
This problem includes the usual geography of simply connected complex surfaces, since 
all such surfaces are K~ihler according to Kodaira's classification [82]. Often, instead of 
the numbers (b2, o.), the question is equivalently phrased in terms of the Chern numbers 
(c 2, c2) for a compatible almost complex structure, which satisfy c 2 = 3o- + 2Z [146] and 
c2 = X, where X -- b2 4- 2 is the Euler number. Usually only minimal (Section 4.3) or 
irreducible manifolds are considered to avoid trivial examples. A manifold is irreducible 
when it is not a connected sum of other manifolds, except when one of the summands is a 
homotopy sphere. 

It was speculated that perhaps any simply connected closed smooth 4-manifold other 
than S 4 is diffeomorphic to a connected sum of symplectic manifolds, where any orien- 
tation is allowed on each summand (the so-called minimal conjecture for smooth 4-mani- 
folds). Szab6 [ 124,125] provided counterexamples in a family of irreducible simply con- 
nected closed nonsymplectic smooth 4-manifolds. 

All these problems could be posed for other fundamental groups. Gompf [57] used sym- 
plectic sums (Section 4.2) to prove the following theorem. He also proved that his surgery 
construction can be adapted to produce non-K~hler examples. Since finitely-presented 
groups are not classifiable, this shows that compact symplectic 4-manifold are not clas- 
sifiable. 

THEOREM 4.1 (Gompf). Every finitely-presented group occurs as the fundamental group 
~1 ( M )  of a compact symplectic 4-manifold (M, o9). 

4.2. Fibrations and sums 

Products of symplectic manifolds are naturally symplectic. As we will see, special kinds 
of twisted products, i.e., fibrations, 4~ are also symplectic. 

40 o A fibrati n (or fiber bundle) is a manifold M (called the total space) with a submersion Jr" M ~ X to a man- 
ifold X (the base) that is locally trivial in the sense that there is an open covering of X, such that, to each set 
b / in  that covering corresponds a diffeomorphism of the form ~0L/-- (Jr, st,/)" Jr -1 (/.4) --+ L / x  F (a local trivial- 
ization) where F is a fixed manifold (the model fiber). A collection of local trivializations such that the sets/.4 
cover X is called a trivializing cover for zr. Given two local trivializations, the second entry of the composition 
q9 V o qgul --- (id, ~UV) on (/g N 12) x F gives the corresponding transition function ~btV(x)" F ~ F at each 
x eb /A ' I ) .  
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DEFINITION 4.2. A symplectic fibration is a fibration z r ' M  ~ X where the model fiber 
is a symplectic manifold (F, ~r) and with a trivializing cover for which all the transition 
functions are symplectomorphisms F ~ F. 

In a symplectic fibration each fiber Jr -1 (x) carries a canonical symplectic form Crx de- 
fined by the restriction of s/~/cr, for any domain b /o f  a trivialization coveting x (i.e., x ~/g).  
A symplectic form co on the total space M of a symplectic fibration is called compatible 
with the fibration if each fiber (Jr -1 (x), Crx) is a symplectic submanifold of (M, co), i.e., Crx 

is the restriction of co to zr-1 (x). 

EXAMPLES. 
1. Every compact oriented 41 fibration whose model fiber F is an oriented surface 

admits a structure of symplectic fibration for the following reason. Let cr0 be an 
area form on F.  Each transition function ~ctV(x) :F  ~ F pulls or0 back to a 
cohomologous area form Crl (depending on ~Pctv(x)). Convex combinations crt = 
( 1  - t)cr0 n t- tcrl give a path of area forms from or0 to Crl with constant class [at]. By 
Moser's argument (Section 1.4), there exists a diffeomorphism p(x) : F ~ F isotopic 
to the identity, depending smoothly on x 6 b/N V, such that ~PctV(x) o p(x) is a sym- 

plectomorphism of (F, cr0). By successively adjusting local trivializations for a finite 

covering of the base, we can make all transition functions into symplectomorphisms. 

2. Every fibration with connected base and compact fibers having a symplectic form 
co for which all fibers are symplectic submanifolds admits a structure of symplectic 
fibration compatible with co. Indeed, under trivializations, the restrictions of co to the 
fibers give cohomologous symplectic forms in the model fiber F. So by Moser's 
Theorem 1.7, all fibers are strongly isotopic to (F, cr) where cr is the restriction of co 
to a chosen fiber. These isotopies can be used to produce a trivializing cover where 
each su (x) is a symplectomorphism. 

In the remainder of this subsection, assume that for a fibration re : M --+ X the total space 
is compact and the base is connected. For the existence of a compatible symplectic form on 
a symplectic fibration, a necessary condition is the existence of a cohomology class in M 
that restricts to the classes of the fiber symplectic forms. Thurston [ 131 ] showed that, when 
the base admits also a symplectic form, this condition is sufficient. Yet not all symplectic 
fibrations with a compatible symplectic form have a symplectic base [138]. 

THEOREM 4.3 (Thurston). Let rc 'M --+ X be a compact symplectic fibration with con- 
nected symplectic base (X, c~) and model fiber (F, cr). I f  there is a class [v] E HZ(M) 

pulling back to [or], then, for sufficiently large k > O, there exists a symplectic form ok 
on M that is compatible with the fibration and is in [v + kzr*oe]. 

PROOF. We first find a form r on M in the class [v] that restricts to the canonical sym- 

plectic form on each fiber. Pick a trivializing cover {~0i - (Jr, si) ]i ~ I} with contractible 

41 An orientedfibration is a fibration whose model fiber is oriented and there is a trivializing cover for which all 
transition functions preserve orientation. 
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domains Ui. Let Pi, i ~ I,  be a partition of unity subordinate to this covering and let 
Pi "--- Pi o 7 f ' M  ~ ]~. Since [v] always restricts to the class of the canonical symplec- 
tic form [Crx ], and the L/i's are contractible, on each Jr/- 1 (Hi) the forms s* cr - v are exact. 
Choose 1-forms )~i such that s*~r -- v + d)~i, and set 

7: "-- V + Z d ( p i X i ) .  

iEI 

Since r is nondegenerate on the (vertical) subbundle given by the kernel of dzr, for k > 0 
large enough the form r + krc*a is nondegenerate on M. D 

COROLLARY 4.4. Let z c ' M  --+ X be a compact oriented fibration with connected sym- 
plectic base (X, a)  and model fiber an oriented surface F o f  genus g ( F )  ~ 1. Then zr 
admits a compatible symplectic form. 

PROOF. By Example 1 above, re :M ~ X admits a structure of symplectic fibration with 
model fiber (F, o'). Since the fiber is not a torus (g (F)  r 1), the Euler class of the tangent 
bundle T F  (which coincides with Cl (F, or)) is )~[cr] for some )~ ~- 0. Hence, the first Chern 
class [c] of the vertical subbundle given by the kernel of dzr (assembling the tangent bun- 
dles to the fibers) restricts to )~[Crx] on the fiber over x E X. We can apply Theorem 4.3 
using the class [v] = )~-1[c]. [2 

A pointwise connected sum M0 # M1 of symplectic manifolds (M0, coo) and (M1, o91) 
tends to not admit a symplectic form, even if we only require the eventual symplectic form 
to be isotopic to col on each Mi minus a ball. The reason [7] is that such a symplectic form 
on Mo # M1 would allow to construct an almost complex structure on the sphere formed 
by the union of the two removed balls, which is known not to exist except on S 2 and S 6. 
Therefore: 

PROPOSITION 4.5. Let (M0, coo) and (M1, col) be two compact symplectic manifolds o f  
dimension not 2 nor 6. Then the connected sum Mo # M1 does not admit any symplectic 
structure isotopic to coi on Mi  minus a ball, i = l, 2. 

For connected sums to work in the symplectic category, they should be done along 
codimension 2 symplectic submanifolds. The following construction, already mentioned 
in [65], was dramatically explored and popularized by Gompf [57] (he used it to prove 
Theorem 4.1). Let (M0,090) and (M1, col) be two 2n-dimensional symplectic manifolds. 
Suppose that a compact symplectic manifold (X, or) of dimension 2n - 2 admits sym- 
plectic embeddings to both i o : X  ~ Mo, i l : X  ~ M1. For simplicity, assume that the 
corresponding normal bundles are trivial (in general, they need to have symmetric Euler 
classes). By the symplectic neighborhood theorem (Theorem 1.11), there exist symplec- 
tic embeddings jo : X • Be --+ Mo and j l  : X • Be --+ M1 (called framings) where Be is 
a ball of radius e and centered at the origin in ~2 such that Jk cok = ~ + dx  A dy and 
jk(P,  O) -- ik(p) ,  Yp E X, k = 0, 1. Chose an area- and orientation-preserving diffeomor- 
phism 4~ of the annulus Be \ B~ for 0 < 6 < e that interchanges the two boundary compo- 
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nents. Let L/k -- jk(X x B~) C Mk, k = 0, 1. A symplectic sum of M0 and M1 along X is 
defined to be 

Mo#x M1 := (M0 \/do) U 4, (M1 \ /dl) ,  

where the symbol Ue means that we identify jl  (P, q) with jo(P, ~(q)) for all p 6 X 
and 6 < Iql < e. As coo and COl agree on the regions under identification, they induce a 
symplectic form on M0 #x M1. The result depends on j0, j l ,  6 and 4~. 

Rational blow-down is a surgery on 4-manifolds that replaces a neighborhood of a chain 
of embedded S2's with boundary a lens space L(n 2, n - 1) by a manifold with the same 
rational homology as a ball. This simplifies the homology possibly at the expense of com- 
plicating the fundamental group. Symington [123] showed that rational blow-down pre- 
serves a symplectic structure if the original spheres are symplectic surfaces in a symplectic 
4-manifold. 

4.3. Symplectic blow-up 

Symplectic blow-up is the extension to the symplectic category of the blow-up operation 
in algebraic geometry. It is due to Gromov according to the first printed exposition of this 
operation in [94]. 

Let L be the tautological line bundle over CI? n- l ,  that is, 

L = { ( [ p ] , z )  l p r C  n\{O}, z = X p f o r s o m e X ~ C }  

with projection to C F  -1 given by Jr : ([p], z) w-~ [p]. The fiber of L over the point [p] 
CP n-1 is the complex line in C n represented by that point_ The blow-up of C n at the 
origin is the total space of the bundle L, sometimes denoted C n. The corresponding blow- 
down map is the map fl : L --+ C n defined by fl ([p], z) = z. The total space of L may be 
decomposed as the disjoint union of two sets: the zero section 

E := {([p],0) l p  6 C n \ {0}} 

and 

S := { ([p], z) I P 6 C n \ {0}, z = Xp for some ,k 6 C* }. 

The set E is called the exceptional divisor; it is diffeomorphic to C ~  n-1 and gets mapped 
to the origin by 13. On the other hand, the restriction of 13 to the complementary set S is 
a diffeomorphism onto C n \ {0}. Hence, we may regard L as being obtained from C n by 
smoothly replacing the origin by a copy of CI? n-1 . Every biholomorphic map f :C n --~ C n 
with f (0) - 0  lifts uniquely to a biholomorphic map f : L  --+ L with f (E) -- E. The lift 
is given by the formula 

/ ( [ p ] ,  z) = { ([Pl (z)] f ( z ) )  
i fz  ~ 0 ,  
i fz = 0 .  
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There are actions of the unitary group U(n) on L, E and S induced by the standard linear 
action on C n, and the map/3 is U(n)-equivariant. For instance,/3*co0 + Jr*coFS is a U(n)- 
invariant K~ihler form on L. 

DEFINITION 4.6. A blow-up symplecticform on the tautological line bundle L is a U(n)- 
invariant symplectic form co such that the difference co-/3*co0 is compactly supported, 

i n where coo = ~ ~ k - 1  d z k / k  dZk is the standard symplectic form on C n. 

Two blow-up symplectic forms are equivalent if one is the pullback of the other by 
a U(n)-equivariant diffeomorphism of L. Guillemin and Sternberg [69] showed that two 
blow-up symplectic forms are equivalent if and only if they have equal restrictions to the 
exceptional divisor E C L. Let ~2 E (e > 0) be the set of all blow-up symplectic forms 
on L whose restriction to the exceptional divisor E _~ CP n-1 is eWFS, where coFs is the 
Fubini-Study form (Section 3.4). An e-blow-up of C n at the origin is a pair (L, co) with 
c o E ~  e. 

Let (M, co) be a 2n-dimensional symplectic manifold. It is a consequence of Dar- 
boux's theorem (Theorem 1.9) that, for each point p E M, there exists a complex chart 

i n 
(l/I, Zl . . . . .  Zn) centered at p and with image in C n where colu - ~ Y~k=l dzk A dzk. It is 
shown in [69] that, for e small enough, we can perform an e-blow-up of M at p modeled 
on C n at the origin, without changing the symplectic structure outside of a small neighbor- 
hood of p. The resulting manifold is called an e-blow-up of M at p. As a manifold, the 
blow-up of M at a point is diffeomorphic to the connected s u m  42 M # C]? n, where C~ n is 
the manifold C/P n equipped with the orientation opposite to the natural complex one. 

EXAMPLE. Let IP(L @ C) be the cIpl-bundle o v e r  C]~ n -1  obtained by projectivizing the 
direct sum of the tautological line bundle L with a trivial complex line bundle. Consider 
the map 

/3 : CIP(L G C) > CIP n, 

([pl,[~p-w]),  ~ [Zp-wl, 

where [)~p : w] on the right represents a line in C n + l  , forgetting that, for each [p] 6 C]~  n - 1  , 

that line sits in the 2-complex-dimensional subspace L[p] G C c C n �9 C. Notice that fl 
maps the exceptional divisor 

E := { ([p], [0" . . . "  0" 1]) I [p] E C~ n-1 } "~ C]~ n -1  

to the point [0 : . . .  : 0 :  1] 6 C~ n, and/3 is a diffeomorphism on the complement 

S := {([p], [Xp'w]) l[p]  E C ~  n - l ,  ~, E C* ,  w E C} ~ C ~  n \ { [0"  . . .  " 0 "  1] }. 

42The connected sum of two oriented m-dimensional manifolds M 0 and M 1 is the manifold, denoted M 0 # M 1 , 
obtained from the union of those manifolds each with a small ball removed Mi \ Bi by identifying the boundaries 
via a (smooth) map ~b:0B 1 ~ 0B 2 that extends to an orientation-preserving diffeomorphism of neighborhoods 
of 0 B1 and 0 B2 (interchanging the inner and outer boundaries of the annuli). 
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Therefore, we may regard CI?(L @ C) as being obtained from CI? n by smoothly replacing 
the point [0" . . .  "0" 1] by a copy of CI? n-1. The space CI?(L G C) is the blow-up of 
CI? n at the point [0" . . .  "0" 1], and fl is the corresponding blow-down map. The manifold 
CI?(L • C) for n = 2 is a Hirzebruch surface. 

When (CI? n-1 , coFS) is symplectically embedded in a symplectic manifold (M, co) with 
image X and normal bundle isomorphic to the tautological bundle L, it can be subject to 
a blow-down operation. By the symplectic neighborhood theorem (Theorem 1.11), some 
neighborhood b /C  M of the image X is symplectomorphic to a neighborhood L/0 c L of 
the zero section. It turns out that some neighborhood of 0L/0 in L is symplectomorphic to 
a spherical shell in (C n , coo). The blow-down of M along X is a manifold obtained from 
the union of M \ b/with a ball in C n. For more details, see [99, w 

Following algebraic geometry, we call minimal a 2n-dimensional symplectic manifold 
(M, co) without any symplectically embedded (C1? n- l ,  coFS), so that (M, co) is not the 
blow-up at a point of another symplectic manifold. In dimension 4, a manifold is mini- 
mal if it does not contain any embedded sphere S 2 with self-intersection - 1 .  Indeed, by 
the work of Taubes [126,129], if such a sphere S exists, then either the homology class 
[S] or its symmetric - [S ]  can be represented by a symplectically embedded sphere with 
self-intersection - 1. 

For a symplectic manifold (M, co), let i" X ~ M be the inclusion of a symplectic sub- 
manifold. The normal bundle NX to X in M admits a structure of complex vector bundle 
(as it is a symplectic vector bundle). Let I?(NX) --+ X be the projectivization of the bundle 
N X  --+ X, let Z be the zero section of NX,  let L ( N X )  be the corresponding tautologi- 
cal line bundle (given by assembling the tautological line bundles over each fiber) and let 
f l ' L ( N X )  --+ N X  be the blow-down map. On the exceptional divisor 

E "-- {([p],0) E L ( N X )  Ip E N X  \ Z} ~ ( N X )  

the map fl is just projection to the zero section Z. The restriction of fl to the comple- 
ment L ( N X )  \ E is a diffeomorphism to N X  \ Z. Hence, L ( N X )  may be viewed as being 
obtained from N X by smoothly replacing each point of the zero section by the projec- 
tivization of its normal space. We symplectically identify some tubular neighborhood L/ 
of X in M with a tubular neighborhood L/0 of the zero section Z in N X. A blow-up of 
the symplectic manifold (M, co) along the symplectic submanifold X is the manifold ob- 
tained from the union of M \ b /and  fi-1 (L/0) by identifying neighborhoods of 0L/, and 
equipped with a symplectic form that restricts to co on M \ L/[94]. When X is one point, 
this construction reduces to the previous symplectic blow-up at a point. 

Often symplectic geography concentrates on minimal examples. McDuff [95] showed 
that a minimal symplectic 4-manifold with a symplectically embedded S 2 with nonnegative 
self-intersection is symplectomorphic either to CI? 2 or to an S2-bundle over a surface. 
Using Seiberg-Witten theory it was proved: 

THEOREM 4.7. Let (M, co) be a minimal closed symplectic 4-manifold. 
(a) (Taubes [129]) I f  b + > 1, then c 2 ~ O. 
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(b) (Liu [89]) I f  b + = 1 and c 2 < O, then M is the total space of  an S2-fibration over 

a surface of  genus g where co is nondegenerate on the fibers, and (c 2, c2) - (8 - 
8g, 4 - 4g), i.e., (M, co) is a symplectic ruled surface. 

A symplectic ruled surface 43 is a symplectic 4-manifold (M, co) that is the total space of 
an S2-fibration where co is nondegenerate on the fbers. 

A symplectic rational surface is a symplectic 4-manifold (M, co) that can be obtained 
from the standard (CI? 2, coFS) by blowing up and blowing down. 

With b~- - 1 and c 2 = 0, we have symplectic manifolds CIP 2 #9 CIp2 =" E (1), the Dol- 

gachev surfaces E (1, p, q), the results E (1)/( of surgery on a fibered knot K C S 3, etc. 

With b~- -- 1 and c 2 > 0, we have symplectic manifolds CIP 2, S 2 • S 2, CI1 ~2 #n CI? 2 for 

n ~< 8 and the Barlow surface. For b + = 1 and c 2 ~> 0, Park [109] gave a criterion for a 
symplectic 4-manifold to be rational or ruled in terms of Seiberg-Witten theory. 

4.4. Uniqueness of  symplectic forms 

Besides the notions listed in Section 1.4, the following equivalence relation for symplectic 
manifolds is considered. As it allows the cleanest statements about uniqueness, this relation 
is simply called equivalence. 

DEFINITION 4.8. Symplectic manifolds (M, coo) and (M, col) are equivalent if they are 
related by a combination of deformation-equivalences and symplectomorphisms. 

Recall that (M, coo) and (M, col) are deformation-equivalent when there is a smooth 
family cot of symplectic forms joining coo to col (Section 1.4), and they are symplecto- 
morphic when there is a diffeomorphism q):M --+ M such that q)*o91 = coo (Section 1.2). 
Hence, equivalence is the relation generated by deformations and diffeomorphisms. The 
corresponding equivalence classes can be viewed as the connected components of the mod- 
uli space of symplectic forms up to diffeomorphism. This is a useful notion when focusing 
on topological properties. 

EXAMPLES. 
1. The complex projective plane CI? 2 has a unique symplectic structure up to symplec- 

tomorphism and scaling. This was shown by Taubes [128] relating Seiberg-Witten 
invariants (Section 4.5) to pseudoholomorphic curves to prove the existence of a 
pseudoholomorphic sphere. Previous work of Gromov [64] and McDuff [96] showed 
that the existence of a pseudoholomorphic sphere implies that the symplectic form is 
standard. 

Lalonde and McDuff [85] concluded similar classifications for symplectic ruled 
surfaces and for symplectic rational surfaces (Section 4.3). The symplectic form on 

43A (rational) ruled surface is a complex (K~ihler) surface that is the total space of a holomorphic fibration over 
a Riemann surface with fiber CI? 1 . When the base is also a sphere, these are the Hirzebruch surfaces I?(L (9 C) 
where L is a holomorphic line bundle over CI? 1 . 
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a symplectic ruled surface is unique up to symplectomorphism in its cohomology 

class, and is isotopic to a standard K~ihler form. In particular, any symplectic form 
on S 2 x S 2 is symplectomorphic to aTr{cr + bTr~cr for some a, b > 0 where ~r is the 

standard area form on S 2. 
Li-Liu [88] showed that the symplectic structure on CP 2 #n C~  2 for 2 ~< n ~< 9 is 

unique up to equivalence. 
2. McMullen and Taubes [ 101 ] first exhibited simply connected closed 4-manifolds ad- 

mitting inequivalent symplectic structures. Their examples were constructed using 
3-dimensional topology, and distinguished by analyzing the structure of Seiberg- 
Witten invariants to show that the first Chern classes (Section 3.2) of the two sym- 
plectic structures lie in disjoint orbits of the diffeomorphism group. In higher di- 
mensions there were previously examples of manifolds with inequivalent symplectic 
forms; see, for instance, [ 111 ]. 

With symplectic techniques and avoiding gauge theory, Smith [117] showed that, 
for each n >~ 2, there is a simply connected closed 4-manifold that admits at least n 
inequivalent symplectic forms, also distinguished via the first Chern classes. It is not 
yet known whether there exist inequivalent symplectic forms on a 4-manifold with 
the same first Chern class. 

4.5. Invariants for 4-manifolds 

Very little was known about 4-dimensional manifolds until 1981, when Freedman [51] 
provided a complete classification of closed simply connected topological 4-manifolds, 
and shortly thereafter Donaldson [30] showed that the panorama for smooth 4-manifolds 
was much wilder. 44 Freedman showed that, modulo homeomorphism, such topological 
manifolds are essentially classified by their intersection forms (for an even intersection 
form there is exactly one class, whereas for an odd intersection form there are exactly two 
classes distinguished by the Kirby-Siebenmann invariant KS, at most one of which admits 
smooth representatives--smoothness requires KS = 0). Donaldson showed that, whereas 
the existence of a smooth structure imposes strong constraints on the topological type 
of a manifold, for the same topological manifold there can be infinite different smooth 
structures. 45 In other words, by far not all intersection forms can occur for smooth 4-mani- 
folds and the same intersection form may correspond to nondiffeomorphic manifolds. 

Donaldson's key tool was a set of gauge-theoretic invariants, defined by counting with 
signs the equivalence classes (modulo gauge equivalence) of connections on SU(2)- (or 
SO(3)-) bundles over M whose curvature has vanishing self-dual part. For a dozen years 
there was hard work on the invariants discovered by Donaldson but limited advancement 
on the understanding of smooth 4-manifolds. 

44It had been proved by Rokhlin in 1952 that if such a smooth manifold M has even intersection form QM (i.e., 
w2 -- 0), then the signature of Q M must be a multiple of 16. It had been proved by Whitehead and Milnor that 
two such topological manifolds are homotopy equivalent if and only if they have the same intersection form. 
45It is known that in dimensions ~< 3, each topological manifold has exactly one smooth structure, and in di- 

mensions ~> 5 each topological manifold has at most finitely many smooth structures. For instance, whereas each 
topological It~ n , n ~ 4, admits a unique smooth structure, the topological R 4 admits uncountably many smooth 
structures. 
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EXAMPLES. Finding exotic 46 smooth structures on closed simply connected manifolds 
with small b2 has long been an interesting problem, especially in view of the smooth 
Poincar6 conjecture for 4-manifolds. The first exotic smooth structures on a rational sur- 

face C~2#n C~ 2 were found in the late 80's for n = 9 by Donaldson [31 ] and for n = 8 
by Kotschick [84]. There was no progress until the recent work of Park [ 110] constructing 

a symplectic exotic C]? 2 #7 CI? 2 and using this to exhibit a third distinct smooth structure 

C]? 2 #8 C~ 2, thus illustrating how the existence of symplectic forms is tied to the existence 
of different smooth structures. This stimulated research by Fintushel, Ozsv~ith, Park, Stem, 
Stipsicz and Szab6, which together shows that there are infinitely many exotic smooth 

structures on CI? 2 #n CI? 2 for n = 5, 6, 7, 8 (the case n = 9 had been shown in the late 80's 
by Friedman-Morgan and by Okonek-Van de Ven). 

In 1994 Witten brought about a revolution in Donaldson theory by introducing a new set 
of invariants--the Seiberg-Witten invariantsmwhich are much simpler to calculate and to 
apply. This new viewpoint was inspired by developments due to Seiberg and Witten in the 
understanding of N = 2 supersymmetric Yang-Mills. 

Let M be a smooth oriented closed 4-dimensional manifold with b~-(M) > 1 (there is a 

version for b+(M) -- 1). All such 4-manifolds M (with any b~(M))  admit a spin-c struc- 
ture, i.e., a Spin c (4)-bundle over M with an isomorphism of the associated SO(4)-bundle 
to the bundle of oriented flames on the tangent bundle for some chosen Riemannian metric. 
Let CM = {a E H2(M; Z) [a - w2(TM)(2)}  be the set of characteristic elements, and let 
Spin c (M) be the set of spin-c structures on M. For simplicity, assume that M is simply 
connected (or at least that H1 (M; Z) has no 2-torsion), so that Spin r (M) is isomorphic to 
CM with isomorphism given by the first Chem class of the determinant line bundle (the 
determinant line bundle is the line bundle associated by a natural group homomorphism 
Spin c (4) ~ U(1)). Fix an orientation of a maximal-dimensional positive-definite subspace 
H 2 (M; N) C H2(M; R). The Seiberg-Witten invariant is the function 

SWM : CM ~ Z 

defined as follows. Given a spin-c structure ot 6 SpinC(M) _~ CM, the image SWM(C~) = 
[AA] 6 Ha(B*; Z) is the homology class of the moduli space .M of solutions (called 
monopoles) of the Seiberg-Witten (SW) equations modulo gauge equivalence. The SW 
equations are nonlinear differential equations on a pair of a connection A on the determi- 
nant line bundle of c~ and of a section ~o of an associated U (2) -bundle, called the positive 
(half) spinor bundle: 

F + = iq(qg) and DAgO -- O, 

where F + is the self-dual part of the (imaginary) curvature of A, q is a squaring oper- 
ation taking sections of the positive spinor bundle to self-dual 2-forms, and DA is the 
corresponding Dirac operator. For a generic perturbation of the equations (replacing the 
first equation by F + = iq(~o) + iv, where v is a self-dual 2-form) and of the Riemannian 

46A manifold homeomorphic but not diffeomorphic to a smooth manifold M is called an exotic M. 
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metric, a transversality argument shows that the moduli space .M is well-behaved and ac- 
tually inside the space/3* of gauge-equivalence classes of irreducible pairs (those (A, ~0) 
for which ~0 ~ 0), which is homotopy-equivalent to C~ ~ and hence has even-degree ho- 
mology groups Hd (/3*; Z) ~_ Z. When the dimension d of .A/[ is odd or when .A//is empty, 
the invariant SWM (or) is set to be zero. The basic classes are the classes c~ 6 CM for which 
SWM(ot) ~: 0. The set of basic classes is always finite, and if ot is a basic class then so is 
- a .  The main results are that the Seiberg-Witten invariants are invariants of the diffeomor- 
phism type of the 4-manifold M and satisfy vanishing and nonvanishing theorems, which 
allowed to answer an array of questions about specific manifolds. 

Taubes [128] discovered an equivalence between Seiberg-Witten and Gromov invariants 
(using pseudoholomorphic curves) for symplectic 4-manifolds, by proving the existence of 
pseudoholomorphic curves from solutions of the Seiberg-Witten equations and vice-versa. 
As a consequence, he proved: 

THEOREM 4.9 (Taubes). Let (M, co) be a compact symplectic 4-manifold. 
If  b-~ > 1, then cl (M, co) admits a smooth pseudoholomorphic representative. 
If  M = M1 # M2, then one of the Mi's has negative definite intersection form. 

There are results also for b + - 1, and follow-ups describe the set of basic classes of a 
connected sum M # N in terms of the set of basic classes of M when N is a manifold with 
negative definite intersection form (starting with C~2). 

In an attempt to understand other 4-manifolds via Seiberg-Witten and Gromov invari- 
ants, some analysis of pseudoholomorphic curves has been extended to nonsymplectic 
4-manifolds by equipping these with a nearly nondegenerate closed 2-form. In particu- 
lar, Taubes [ 130] has related Seiberg-Witten invariants to pseudoholomorphic curves for 
compact oriented 4-manifolds with b~- > 0. Any compact oriented 4-manifold M with 

b + > 0 admits a closed 2-form that vanishes along a union of circles and is symplectic 
elsewhere [54,75]. In fact, for a generic metric on M, there is a self-dual harmonic form co 
which is transverse to zero as a section of A 2 T* M. The vanishing locus of co is the union 
of a finite number of embedded circles, and co is symplectic elsewhere. 

The genetic behavior of closed 2-forms on orientable 4-manifolds is partially un- 
derstood [3, pp. 23-24]. Here is a summary. Let co be a generic closed 2-form on a 
4-manifold M. At the points of some hypersurface Z, the form co has rank 2. At a 
generic point of M, co is nondegenerate; in particular, has the Darboux normal form 
dxl A dyl + dx2 A dy2. There is a codimension-1 submanifold Z where co has rank 2, 

and there are no points where co vanishes. At a generic point of Z, the kernel of ff~ is trans- 

verse to Z; the normal form near such a point is X l dxl A dyl + dx2 A dy2. There is a curve 
C where the kernel of ff~ is not transverse to Z, hence sits in T Z. At a generic point of C, 

the kernel of ff~ is transverse to C; there are two possible normal forms near such points, 
z 2 z 3 

called elliptic and hyperbolic, d(x - T )  A dy + d(xz 4- ty - 7 )  A dt. The hyperbolic and 
elliptic sections of C are separated by parabolic points, where the kernel is tangent to C. 

It is known that there exists at least one continuous family of inequivalent degeneracies in 
a parabolic neighborhood [56]. 
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4.6. Lefschetz pencils 

Lefschetz pencils in symplectic geometry imitate linear systems in complex geometry. 
Whereas holomorphic functions on a projective surface must be constant, there are in- 
teresting functions on the complement of a finite set, and genetic such functions have only 
quadratic singularities. A Lefschetz pencil can be viewed as a complex Morse function 
or as a very singular fibration, in the sense that, not only some fibers are singular (have 
ordinary double points) but all fibers go through some points. 

DEFINITION 4.10. A Lefschetz pencil on an oriented 4-manifold M is a map f : M  \ 
{bl, . . . ,  bn} -+ C~ 1 defined on the complement of a finite set in M, called the base lo- 
cus, that is a submersion away from a finite set {pl . . . . .  Pn+l}, and obeying local models 
(Zl, z2) w-~ Zl/Z2 near the bj's and (zl, z2) ~-+ ZlZ2 near the pj ' s ,  where (Zl, z2) are ori- 
ented local complex coordinates. 

Usually it is also required that each fiber contains at most one singular point. By blowing 
up M at the bj's, we obtain a map to C/? 1 on the whole manifold, called a Lefschetz 
fibration. Lefschetz pencils and Lefschetz fibrations can be defined on higher-dimensional 
manifolds where the bj's are replaced by codimension 4 submanifolds. By working on 
the Lefschetz fibration, Gompf [59,58] proved that a structure of Lefschetz pencil (with a 
nontrivial base locus) gives rise to a symplectic form, canonical up to isotopy, such that the 
fibers are symplectic. 

Using asymptotically holomorphic techniques [ 12,32], Donaldson [34] proved that sym- 
plectic 4-manifolds admit Lefschetz pencils. More precisely: 

THEOREM 4.1 1 (Donaldson). Let J be a compatible almost complex structure on a com- 
pact symplectic 4-manifold (M, o9) where the class [co]/27r is integral. Then J can be de- 
formed through almost complex structures to an almost complex structure J' such that M 
admits a Lefschetz pencil with J1-holomorphic fibers. 

The closure of a smooth fiber of the Lefschetz pencil is a symplectic submanifold 
Poincar6 dual to k[co]/27r; cf. Theorem 1.13. Other perspectives on Lefschetz pencils 
have been explored, including in terms of representations of the free group zrl (C? 1 \ 
{pl, . . . ,  Pn+l}) in the mapping class group Fg of the generic fiber surface [118]. 

Similar techniques were used by Auroux [13] to realize symplectic 4-manifolds as 
branched covers of C ?  2, and thus reduce the classification of symplectic 4-manifolds to a 
(hard) algebraic question about factorization in the braid group. Let M and N be compact 
oriented 4-manifolds, and let v be a symplectic form on N. 

DEFINITION 4.12. A map f ' M  ~ N is a symplectic branched cover if for any p 6 M 
there are complex charts centered at p and f (p) such that v is positive on each complex 
line and where f is given by: a local diffeomorphism (x, y) --+ (x, y), or a simple branch- 
ing (x, y) --+ (x 2, y), or an ordinary cusp (x, y) --+ (x 3 - xy, y). 

THEOREM 4.13 (Auroux). Let (M, co) be a compact symplectic 4-manifold where the 
class [co] is integral, and let k be a sufficiently large integer. Then there is a symplectic 
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branched cover fk : (M,  kco) --+ C ~  2, that is canonical up to isotopy for  k large enough. 
Conversely, given a symplectic branched cover f : M --+ N,  the domain M inherits a sym- 
plectic form canonical up to isotopy in the class f* [v] .  

5. Hamiltonian geometry 

5.1. Symplectic and Hamiltonian vector fields 

Let (M, co) be a symplectic manifold and let H : M  ~ R be a smooth function. By non- 

degeneracy, there is a unique vector field X H on M such that txHco = d H .  Supposing that 

X H is complete  (this is always the case when M is compact),  let p t : M  --+ M,  t �9 JR, be 

its flow (cf. Section 1.3). Each diffeomorphism pt preserves co, i.e., Ptco = co, because 

d Ptco * P* dco) = 0 Therefore, every function on (M, co) pro- d-t --- Pt s  t (d tx i_ ico+ t x  H 
duces a family of symplectomorphisms.  Notice how this feature involves both the nonde- 

generacy and the closedness of co. 

DEFINITION 5.1. A vector field X H such that txi~co = d H  for some H �9 Ce~(M) is a 

Hamiltonian vector field with Hamiltonian function H.  

Hamil tonian vector fields preserve their Hamil tonian functions ( s  = t x H d H  - 

txn txHco -- 0), so each integral curve  { p t ( x )  ] t E ~} of a Hamil tonian vector field X H 
must  be contained in a level set of the Hamil tonian function H.  In (R 2n, coo = ~ d x j / x  

dy j ) ,  the symplectic gradient X H = ~ (a H 0 0 n 0 ) and the usual (Euclidean) gradi- Oyj Oxj Oxj Oyj 
e n t V H = ~ 7 _ , j ( O H  o OH a 77}] ~ + b-77 777 ) of a function H are related by J X H = V H,  where J is 

the standard almost complex structure. 

EXAMPLES. 

1. For the height function H(O, h) = h on the sphere (M, co) -- (S 2, dO/~ dh),  from 

0 Thus, Pt (0 h) = (0 + t h) which is rotation tXl4(dO/x dh)  = dh we get X H = 3--0" , , , 
about the vertical axis, preserving the height H.  

2. Let X be any vector field on a manifold W. There is a unique vector field X~ on 

the cotangent  bundle T * W  whose flow is the lift of the flow of X. Let c~ be the 

tautological form and co -- -dcr  the canonical symplectic form on T* W. The vector 

field X~ is Hamil tonian with Hamil tonian function H :=  tx~ot. 

3. Consider  Euclidean space R 2n with coordinates (ql . . . .  , qn, p l  . . . . .  pn) and coo = 

Y~. d q j / x  dp j .  The curve Pt = (q(t) ,  p ( t ) )  is an integral curve for a Hamil tonian 

vector field X H exactly when it satisfies the Hamilton equations: 

dqi OH 
--Yi - (t ) -- api ' 

~ / ( t )  = aH 
Oqi " 
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4. Newton's  second law states that a particle of mass m moving in configuration space 
ira with coordinates q = (ql, q2, q3) under a potential V(q)  moves along a curve 
q (t) such that 

d2q 
m dt--- T = - V V ( q ) .  

dqi Introduce the momenta Pi = m-d- i- for i -- 1, 2, 3, and energy function H ( q ,  p)  = 
1 12 2--~IP 4- V(q)  on the phase space 47 ]R 6 = T*IR 3 with coordinates (ql, q2, q3, Pl ,  

P2, P3). The energy H is conserved by the motion and Newton's  second law in R 3 is 
then equivalent to the Hamilton equations in IR 6" 

dqi 1 OH 
--d-i- = m Pi  = Opi' 

dpi d2qi ~ O V 
--97- -- m dt 2 ~ Oqi 

OH 
m O q i  " 

DEFINITION 5.2. A vector field X on M preserving co (i.e., such that s  0) is a 
symplectic vector field. 

Hence, a vector field X on (M, co) is called symplectic when txco is closed, and 
Hamiltonian when t xco is exact. In the latter case, a primitive H of t xco is called a 
Hamiltonian function of X. On a contractible open set every symplectic vector field is 
Hamiltonian. Globally, the group nleRham(M) measures the obstruction for symplectic 

vector fields to be Hamiltonian. For instance, the vector field X1 -- ~0~ on the 2-torus 

(M, co) = ( ~ 2 ,  dO1 A dO2) is symplectic but not Hamiltonian. 
A vector field X is a differential operator on functions: X .  f := s  f = d f  (X)  for f e 

C ~ ( M ) .  As such, the bracket W = [X, Y] is the commutator: s  = [F-,x, s  = s  - 
s 1 6 3  (cf. Section 3.3). This endows the set X (M) of vector fields on a manifold M with a 
structure of Lie algebra. 48 For a symplectic manifold (M, co), using t[x,r] -- [ s  tr] and 
Cartan's magic formula, we find that t[x,r]co = dtxtyco 4- txdtyco - tydtxco - t y t x  dco = 
d(co(Y, X)) .  Therefore: 

PROPOSITION 5.3. I f  X and Y are symplectic vector fields on a symplectic manifold 
(M, co), then [X, Y] is Hamiltonian with Hamiltonian function co(Y, X) .  

Hence, Hamiltonian vector fields and symplectic vector fields form Lie subalgebras for 
the Lie bracket [., .]. 

DEFINITION 5.4. The Poisson bracket of two functions f ,  g e C ~ ( M )  is the function 

{f ,g} := co(X f , Xg) = s f . 

47The phase space of a system of n particles is the space parametrizing the position and momenta of the particles. 
The mathematical model for a phase space is a symplectic manifold. 

48A (real) Lie algebra is a (real) vector space ft together with a Lie bracket [., .], i.e., a bilinear map [-, .] "O x 
ft ~ fl satisfying antisymmetry, [x, y] = - [ y ,  x], Vx, y �9 ~, and the Jacobi identity, [x, [y, z]] + [y, [z, x]] + 

[z, [x, y]] = O, Yx, y, z �9 ~t. 
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By Proposi t ion  5.3 we have X{f,g} - - - [ X  f ,  Xg]. Moreover ,  the bracket  {., .} satis- 

fies the Jacobi identity, { f ,  {g, h}} + {g, {h, f}} + {h, {f, g}} -- 0, and the Leibniz  rule, 

{f,  gh} = {f,  g}h + g{f ,  h}. 

DEFINITION 5.5.  A Poisson algebra (79, {., .}) is a commuta t ive  associat ive a lgebra  79 

with a Lie bracket  {.,. } satisfying the Leibniz  rule. 

W h e n  (M,  co) is a symplect ic  manifold,  ( C ~ ( M ) ,  {., .}) is a Poisson algebra,  and the 

map C ~ (M)  --+ X (M) ,  H ~-+ X H is a Lie a lgebra  an t i -homomorph i sm.  

EXAMPLES. 

1. For the prototype (IR 2n ~ dxi  A dyi ) ,  we have Xxi = ~ and X,, i = a_ , so that 
' oyi J .oxi 

{Xi, x j} -- {Yi, Yj} -- 0 and {xi, y j}  = aij for all i, j .  Arbi t rary functions f ,  g 
C ~162 (1R 2n) have the classical Poisson bracket 

~ ( O f  ag 

{ f '  g} = Oxi Oyi 
i=1 

Of O g ) .  

Oyi Oxi 

2. Let G be a Lie group, 49 0 its Lie algebra and 0* the dual vector space of 0. The vector 
field 0 X # genera ted  by X E 0 for the adjoint  action 5~ of  G on 0 has value IX, Y] at 

Y 6 0- The  vector  field X # genera ted  by X E 0 for the coadjoint  action of  G on 0* is 

(X #, Y) = (~, [Y, X]),  V~ E 0", Y 6 0- The  skew-symmet r ic  pairing co on 0 defined 

at ~ ~ 0* by 

(x, Ix, r]} 

has kernel  at ~ the Lie a lgebra  0~ of  the stabil izer of  ~ for the coadjoint  action. 

Therefore ,  co restricts to a nondegenera te  2-form on the tangent  spaces to the orbits 

of  the coadjoint  action. As the tangent  spaces to an orbit  are genera ted  by the vec- 

tor fields X #, the Jacobi  identi ty in 0 implies  that this form is closed. It is cal led the 

canonical  symplect ic  f o r m  (or the Lie-Poisson  or Kir i l lov -Kos tan t -Sour iau  symplec- 
tic structure) on the coadjoint  orbits. The cor responding  Poisson structure on 0* is 

the canonical  one induced by the Lie bracket:  

{f, g}(s e) = (s e, [df~, d &  l) 

49A Lie group is a manifold G equipped with a group structure where the group operation G • G --+ G and 
inversion G --+ G are smooth maps. An action of a Lie group G on a manifold M is a group homomorphism 
G --+ Diff(M), g w-, ~g, where the evaluation map M • G --+ M, (p, g) w-, ~g(p) is a smooth map. The orbit 
of G through p ~ M is {~g(p) I g E G}. The stabilizer (or isotropy) of p ~ M is G p := {g ~ G I 7*g(P) = P}. 
50Any Lie group G acts on itself by conjugation: g ~ G w-, 7*g ~ Diff(G), gig(a) = g �9 a �9 g-1. Let Adg : ~t --+ 0 

be the derivative at the identity of 7*g:G --+ G. We identify the Lie algebra 0 with the tangent space TeG. 
For matrix groups, Adg X = g Xg -1 . Letting g vary, we obtain the adjoint action of G on its Lie algebra 
Ad'G -+ GL(0). Let (., ")'0" • 0 --> JR be the natural pairing (~, X) = ~(X). Given ~ ~ 0", we define Ad~ 
by (Ad~ ~, X) = (~, Adg_l X), for any X 6 0. The collection of maps Ad~ forms the coadjoint action of G on 

the dual of its Lie algebra Ad*'G ---> GL(0*). These satisfy Adg o Ad h = Adg h and Ad~ o Ad~ = Ad~h. 
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for f, g E C ~ (~t*) and ~ 6 ~t*. The differential df~ : T~ ~* ~_ ~* --+ N is identified with 
an element of g _~ ~t**. 

5.2. Arnold conjecture and Floer homology 

There is an important generalization of Poincar6's last geometric theorem (Theorem 2.16) 
conjectured by Arnold starting around 1966. Let (M, co) be a compact symplectic manifold, 
and ht " M  --+ R a 1-periodic (i.e., h t = ht+ 1 ) smooth family of functions. Let p : M x R 
M be the isotopy generated by the time-dependent Hamiltonian vector field vt defined by 
the equation co(vt, .) = dht. The symplectomorphism q9 = Pl is then said to be exactly 
homotopic to the identity. In other words, a symplectomorphism exactly homotopic to the 
identity is the time-1 map of the isotopy generated by some time-dependent 1-periodic 
Hamiltonian function. There is a one-to-one correspondence between the fixed points of q9 
and the period-1 orbits of p. When all the fixed points of such q9 are nondegenerate (genetic 
case), we call ~o nondegenerate. The Arnold conjecture [2, Appendix 9] predicted that 

21"/ 

#{fixed points of a nondegenerate {p} ~> E dim H i (M; R) 
i=0 

(or even that the number of fixed points of a nondegenerate {p is at least the minimal number 
of critical points of a Morse function 51). When the Hamiltonian h : M --+ R is independent 
of t, this relation is trivial: a point p is critical for h if and only if dhp -- 0, if and only 
if Vp = 0, if and only if p(t, p) = p, Vt E R, which implies that p is a fixed point of 
Pl -- {P, so the Arnold conjecture reduces to a Morse inequality. Notice that, according to 
the Lefschetz fixed point theorem, the Euler characteristic of M, i.e., the alternating sum 
of the Betti numbers, ~ ( - 1 ) i  dim H i (M; JR), is a (weaker) lower bound for the number of 
fixed points of ~o. 

The Arnold conjecture was gradually proved from the late 70's to the late 90's by 
Eliashberg [39], Conley-Zehnder [24], Floer [49], Sikorav [116], Weinstein [140], Hofer- 
Salamon [74], Ono [108], culminating with independent proofs by Fukaya-Ono [52] 
and Liu-Tian [90]. There are open conjectures for sharper bounds on the number of 
fixed points. The breakthrough tool for establishing the Arnold conjecture was Floer ho- 
mologyman cx~-dimensional analogue of Morse theory. Floer homology was defined by 
Floer [46-50] and developed through the work of numerous people after Floer's death. 
It combines the variational approach of Conley and Zehnder [25], with Witten's Morse- 
Smale complex [144], and with Gromov's compactness theorem for pseudoholomorphic 
curves [64]. 

Floer theory starts from a symplectic action functional on the space of loops s  of 
a symplectic manifold (M, co) whose zeros of the differential d F : T ( E M )  --+ R are the 
period-1 orbits of the isotopy p above. The tangent bundle T ( s  is the space of loops 
with vector fields over them: pairs (s v), where/~:S 1 - +  M and I ) : S  1 ~ ~.*(TM) is a 

51A Morse function is a smooth function f : M ~ R all of whose critical points are nondegenerate, i.e., at any 
critical point the Hessian matrix is nondegenerate. 



Symplectic geometry 143 

section. Then d f (s v) - f~ co(s - Xh, (s v(t)) dt. The Floer complex 52 is the chain 
complex freely generated by the critical points of F (corresponding to the fixed points 
of ~0), with relative grading index(x, y) given by the difference in the number of positive 
eigenvalues from the spectral flow. The Floer differential is given by counting the number 
n(x, y) of pseudoholomorphic surfaces (the gradient flow lines joining two fixed points): 

C , -  ~ Z(x) and 0(x)--  E n(x,y)(y).  
x ~ Crit (F) y ~Crit (F) 

index(x, y)= 1 

Pondering transversality, compactness and orientation, Floer's theorem states that the ho- 
mology of (C,, 0) is isomorphic to the ordinary homology of M. In particular, the sum of 
the Betti numbers is a lower bound for the number of fixed points of ~0. 

From the above symplectic Floer homology, Floer theory has branched out to tackle 
other differential geometric problems in symplectic geometry and 3- and 4-dimensional 
topology. It provides a rigorous definition of invariants viewed as homology groups of 
infinite-dimensional Morse-type theories, with relations to gauge theory and quantum field 
theory. There is Lagrangian Floer homology (for the case of Lagrangian intersections, 
i.e., intersection of a Lagrangian submanifold with a Hamiltonian deformation of itself), 
instanton Floer homology (for invariants of 3-manifolds), Seiberg-Witten Floer homology, 
Heegaard Floer homology and knot Floer homology. For more on Floer homology; see, 
for instance, [35,113]. 

5.3. Euler-Lagrange equations 

The equations of motion in classical mechanics arise from variational principles. The 
physical path of a general mechanical system of n particles is the path that minimizes a 
quantity called the action. When dealing with systems with constraints, such as the simple 

52The Morse complex for a Morse function on a compact manifold, f : M  ---> •, is the chain complex freely 
generated by the critical points of f ,  graded by the Morse index l and with differential given by counting the 
number n(x,  y) of flow lines of the negative gradient - V f  (for a metric on X) from the point x to the point y 
whose indices differ by 1: 

C. = G Z(x) and O(x} = E n ( x , y ) ( y ) .  
x 6Crit(f) y 6Crit (f) 

! (y)=l (x)- 1 

The coefficient n(x,  y) is thus the number of solutions (modulo R-reparametrization) u :R --+ X of the ordinary 
differential equation d u ( t )  - - - V f ( u ( t ) )  with conditions l i m t ~ _ c ~ u ( t )  = x, l i m t ~ + c ~ u ( t )  = y. The Morse 

index of a critical point of f is the dimension of its unstable manifold, i.e., the number of negative eigenvalues 
of the Hessian of f at that point. For a generic metric, the unstable manifold of a critical point W u (x) intersects 
transversally with the stable manifold of another critical point W s (y). When l(X) - l(y) = 1, the intersection 
W u (x) N W s (y) has dimension 1, so when we quotient out by the R-reparametrization (to count actual image 
curves) we get a discrete set, which is finite by compactness. That (C., 0) is indeed a complex, i.e., 02 = 0, 
follows from counting broken flow lines between points whose indices differ by 2. Morse's theorem states that 
the homology of the Morse complex coincides with the ordinary homology of M. In particular, the sum of all the 
Betti numbers ~ dim H i (M; R) is a lower bound for the number of critical points of a Morse function. 
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pendulum, or two point masses attached by a rigid rod, or a rigid body, the language of 
variational principles becomes more appropriate than the explicit analogues of Newton's  
second laws. Variational principles are due mostly to D'Alembert ,  Maupertius, Euler and 
Lagrange. 

Let M be an n-dimensional manifold, and let F : T M  --+ R be a function on its tangent 

bundle. If F : [a, b] ~ M is a curve on M, the lift of V to T M  is the curve on T M given 

d• (t)). The action of F is by }7" [a, b] --~ TM,  t ~ (F(t) ,  77 

fab fab ,,4• "-- (~,*F)(t)dt = ( dy ) F y ( t ) , - ~ - ( t )  dt. 

For fixed p, q, let 79(a, b, p, q) = {V :[a, b] --+ M smooth I y (a )  = p, F(b) = q}. The 

goal is to find, among all F E 79(a,b, p ,q) ,  the curve that locally minimizes .,4• 
(Minimizing curves are always locally minimizing.) Assume that p, q and the image 
of y lie in a coordinate neighborhood (U, Xl . . . . .  Xn). On TLt we have coordinates 

o 0 . Using this (xl . . . . .  Xn, vl . . . . .  Vn) associated with a trivialization of TU by 0x~ . . . . .  Ox~ 
trivialization, a curve F : [a, b] --~ H, F(t)  = (F1 (t) . . . . .  Fn (t)) lifts to 

:[a, b] > TIA, dF1 dyn ) 
} 7 ( t ) -  yl( t)  . . . . .  F,( t) ,  - ~ ( t )  . . . . .  dt (t) . 

Consider infinitesimal variations of F. Let C l  . . . .  , Cn ~ C~([a,  b]) be such that ck(a) = 
ck(b) = 0 .  For e small, let ye : [a, b] --+/g be the curve ye(t) = (Fl(t)+eCl(t)  . . . . .  Fn (t) -+- 
eCn(t)). Let Ae := A• A necessary condition for y = Y0 E 79(a, b, p, q) to minimize the 
action is that e = 0 be a critical point of Ae. By the Leibniz rule and integration by parts, 
we have that 

] de (0) = ~ Fo(t), ---~-(t) ck(t) -t- ~ FO, ~ - -~( t )  dt 

b OF (...) dt 5 ~  ('" ") ck(t)dt.  

d,Ae For -77-(0) to vanish for all ck's satisfying boundary conditions ck(a) = ck(b) --0,  the 
path Yo must satisfy the Euler-Lagrange equations: 

) ) Oxk Fo(t),--d-/-(t) = d t  ark yo(t),--dT(t) , k =  1 . . . . .  n. 

EXAMPLES. 

1. Let (M, g) be a Riemannian manifold. Let F : T M  ~ IR be the function whose 

restriction to each tangent space is the quadratic form defined by the Riemannian 
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metric. On a coordinate chart F(x, v) = Ivl 2 = y~gij(X)l)il3 j. Let p,q  ~ M and 
y "[a, b] --+ M a curve joining p to q. The action of y is 

,Ay ~ f a  b dy 2 
dt. 

The Euler-Lagrange equations become the Christoffel equations for a geodesic 

d2y k 
dt---T- + Z (F'i~ ~ Y) dyidt dYJdt = 0 ,  

where the Christoffel symbols F k' ij s are defined in terms of the coefficients of the 

Riemannian m e t r i c  (gij is the matrix inverse to gij) by 

, ) l-,i~ = -2 ~ gek Ogij ~ -t OXi OXe " 

2. Consider a point-particle of mass m moving in ]1~ 3 under a force field G. The work 
d• (t)dt. Suppose that G is of G on a path y '[a ,  b] ~ R 3 is W• "- fb  G(y( t ) ) .  --d7 

conservative, i.e., W• depends only on the initial and final points, p -- y(a) and 
q = y(b). We can define the potential energy as V :R 3 --+ I1~, V(q) := W• where y 

is a path joining a fixed base point p0 ~ R 3 to q. Let 7 9 be the set of all paths going 

from p to q over time t ~ [a, b]. By the principle of least action, the physical path 
is the path y ~ 7 9 that minimizes a kind of mean value of kinetic minus potential 
energy, known as the action: 

 b(m 
A• ~- 

dy 
-dT ( t ) - V ( y ( t ) ) )  dt. 

The Euler-Lagrange equations are then equivalent to Newton's second law: 

a V - 0 m - ~  (t) - 
d2x 

- 

In the case of the earth moving about the sun, both regarded as point-masses and 

assuming that the sun to be stationary at the origin, the gravitationalpotentialV (x) - 
const yields the inverse square law for the motion. Ixl 

3. Consider now n point-particles of masses m 1 . . . . .  mn moving in R 3 under a conser- 
vative force corresponding to a potential energy V 6 C~(R3n) .  At any instant t, the 

configuration of this system is described by a vector x -- (xl . . . . .  Xn) in configuration 
space R3n, where xk 6 R 3 is the position of the kth particle. For fixed p, q E R 3n, let 
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T' be the set of all paths y = (Yl  . . . . .  Yn) :[a, b] --+ ]1~ 3n from p to q. The action of a 
path y 6 19 is 

m 
Ay'- -2 d 12 ) - z - ( t )  - v ( •  dt. 

The Euler-Lagrange equations reduce to Newton's law for each particle. Suppose that 
the particles are restricted to move on a submanifold M of ]1~ 3n called the constraint 
set. By the principle of least action for a constrained system, the physical path has 
minimal action among all paths satisfying the rigid constraints. I.e., we single out 
the actual physical path as the one that minimizes A• among all y :[a, b] --+ M with 
y(a) = p and y ( b ) = q .  

In the case where F (x, v) does not depend on v, the Euler-Lagrange equations are sim- 
OF ply ~/ (y0( t ) ,  -~t~ (t)) -- 0. These are satisfied if and only if the curve Y0 sits on the critical 

set of F. For generic F,  the critical points are isolated, hence yo(t) must be a constant 
curve. In the case where F(x, v) depends affinely on v, F(x, v) -- Fo(x) + Y~j=I Fj(x)vj ,  
the Euler-Lagrange equations become 

aF~ (y(t)) -- ~ ( O F i  
axi axj 

j = l  

aFj 
Oxi (t)" 

aFi aFj ) has an inverse Gij(x), w e  obtain the system of first order If the n x n matrix (axj axi 
aF0 ordinary differential equations ~ / ( t )  = ~ Gji(V(t))-~i(Y(t)) .  Locally it has a unique 

solution through each point p. If q is not on this curve, there is no solution at all to the 
Euler-Lagrange equations belonging to 79 (a, b, p, q). 

Therefore, we need nonlinear dependence of F on the v variables in order to have ap- 
propriate solutions. From now on, assume the Legendre condition: 

02 F ) 
det OUi OUj ~ O. 

a2F (X U)) -1 the Euler-Lagrange equations become Letting Gij(x, v) = ( O v i O v j  ' ' 

d2yj 

dt 2 - E a j i ~ x  i Y' - ~  - E a j i  i i,k O-Vii'OX k Y"-d~ ~ "  

This second order ordinary differential equation has a unique solution given initial con- 

dF 02F (x v)) >> 0, u v) i.e., with ditions ? ' ( a ) - p  and 3 y ( a ) -  v. Assume that (aviavj , , , 

the x variable frozen, the function v ~ F(x, v) is strictly convex. Then the path ?'0 
P(a, b, p, q) satisfying the above Euler-Lagrange equations does indeed locally mini- 
mize ,4• (globally it is only critical): 
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PROPOSITION 5.6. For every sufficiently small subinterval [al, bl] of [a, b], YOl[ai,bl] is 
locally minimizing in 79(al, bl, Pl, ql) where PI -- y0(al), ql -- y0(bl). 

P R O O F .  Take c = (c1 . . . . .  Cn) with Ci E C ~176 ([a, b]), Ci (a) = ci (b) -- 0. Let ?'~ -- 7,'0 + ec E 
79(a, b, p, q), and let .Ae = r215 Suppose that yo'[a, b] -+ bl satisfies the Euler-Lagrange 

equations, i.e., d~____~ (0) -- 0. Then 

fa de 2 ( 0 ) =  Z. . OxiOxj ~'0, " ~  cicj  dt 
l,J 

/a + 2 ~.. OXiOVj Y 0 , ~  Ci dt 
t,J 

fa 
b 02F ( dyo ) dci dcj 

+ ~-~.. OViOVj YO,--~-,] dt dt dt. 
l,J 

(A) 

(B) 

(c) 

02F (X U)) ~ 0 at all x, v, we have Since ( OIJi OVj ' 

I(A)l <~ KAICIeL2[a,b], I(B)l ~< KBICILe[a,b] 
dc 

Z L2[a,b] 

and 

(C) >~ Kc 
de]2 
Z L2[a,b] 

where KA, KB, Kc are positive constants. By the Wirtinger inequality 53, if b - a is very 
small, then (C) > I(A)[ + I(B)[ when c ~ 0. Hence, 7/0 is a local minimum. V] 

In Section 5.1 we saw that solving Newton's second law in configuration space •3 is 
equivalent to solving in phase space for the integral curve in T*R 3 - -  ]t~ 6 of the Hamil- 
tonian vector field with Hamiltonian function H. In the next subsection we will see how 
this correspondence extends to more general Euler-Lagrange equations. 

5.4. Legendre transform 

The Legendre transform gives the relation between the variational (Euler-Lagrange) and 
the symplectic (Hamilton-Jacobi) formulations of the equations of motion. 

53The Wirtinger inequality states that, for f ~ C 1 ([a, b]) with f(a) - f(b) = 0, we have 

fa -~- dt ~> ( b - a )  2 ]fl2dt" 

This can be proved with Fourier series. 
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Let V be an n-dimensional vector space, with e l , . . . ,  en a basis of V and vl . . . . .  I)n 

the associated coordinates. Let F :  V --+ IR, F = F(Vl  . . . . .  Vn), be a smooth function. The 
function F is strictly convex if and only if for every pair of elements p, v e V, v 7~ 0, 
the restriction of F to the line {p + xv Ix e R} is strictly convex. 54 It follows from the 
case of real functions on IR that, for a strictly convex function F on V, the following are 
equivalent: 55 

(a) F has a critical point, i.e., a point where dFp = 0; 
(b) F has a local minimum at some point; 
(c) F has a unique critical point (global minimum); and 
(d) F is proper, that is, F (p) ~ + e c  as p --+ ec in V. 

A strictly convex function F is stable when it satisfies conditions (a)-(d) above. 

DEFINITION 5.7. The Legendre transform associated to F e C c~ (V) is the map 

L F : V  ~ V*,  

p l  , d F p e T ; V ~ V * ,  

where Tp V _~ V* is the canonical identification for a vector space V. 

From now on, assume that F is a strictly convex function on V. Then, for every point 
p e V, L F maps a neighborhood of p diffeomorphically onto a neighborhood of L F ( p ) .  

Given ~ e V*, let 

Fe : V ~ 1R, Fe(v) = F(v)  -g . (v) .  

S i n c e  ( d 2 F ) p  = (d2Fe)p, F is strictly convex if and only if Fe is strictly convex. The 

stability set of F is 

SF --  {~ E V* I Fg. is s tab le} .  

The set  S F is open and convex, and L F maps V diffeomorphically on to  S F . (A way to 
ensure that S F = V* and hence that L F maps V diffeomorphically onto V*, is to as- 
sume that a strictly convex function F has quadratic growth at infinity, i.e., there exists 
a positive-definite quadratic form Q on V and a constant K such that F(p)  >~ Q(p) - K, 
for all p.) The inverse to L F  is the m a p  L F I ' S F  --+ V described as follows" for ~ e SF, 

54A function F:V  ~ ~ is strictly convex if at every p e V the Hessian d2Fp is positive definite. Let u = 

i=1 uiei  E V. The Hessian of F at p is the quadratic function on V, 

32F d 2 ] 
(dZF)P (u) : -  Z . .  OviOvj (p)uiuj = - ~  F(p + tu) t=0 " 

l,J 

55A smooth function f :IR ~ IR is strictly convex if f t t  (x) > 0 for all x e IR. Assuming that f is strictly convex, 

the following four conditions are equivalent: f t  (x) - - 0  at some point, f has a local minimum, f has a unique 
(global) minimum, and f ( x )  --+ +c~ as x ~ 4-0o. The function f is stable if it satisfies one (and hence all) 
of these conditions. For instance, e x + ax is strictly convex for any a e ]R, but it is stable only for a < 0. The 
function x 2 + ax is strictly convex and stable for any a �9 R. 
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the value LF 1 (g) is the unique minimum point Pe E V of Fe. Indeed p is the minimum of 
F ( v )  - d F p ( V ) .  

DEFINITION 5.8. The dual funct ion F* to F is 

F*" SF > R,  F*(g.) -- - m i n F e ( p ) .  
pEV 

The dual function F* is smooth and, for all p E V and all g 6 SF, satisfies the Young 

inequality F ( p )  + F*(g.) ~ g(p) .  

On one hand we have V x V* _~ T* V, and on the other hand, since V -- V**, we have 

V x V* ~_ V* x V ~_ T ' V * .  Let otl be the tautological 1-form on T * V  and ot2 be the 

tautological 1-form on T* V*. Via the identifications above, we can think of both of these 

forms as living on V x V*. Since otl ~-~ dfl - ot2, where fl : V x V* --+ R is the function 

f l (p ,  s = s  we conclude that the forms COl = -do t l  and co2 - "  - d o t 2  satisfy col = - - c o 2 .  

THEOREM 5.9. For a strictly convex funct ion F we have that LF 1 -- LF , .  

PROOF. The graph A F of the Legendre transform L F is a Lagrangian submanifold of 

V x V* with respect to the symplectic form COl. Hence, A F is also Lagrangian for o)2. Let 

pr 1 "A F --+ V and pr 2 �9 A F --+ V* be the restrictions of the projection maps V x V* --+ V 

and V x V* --+ V*, and le t i  " A F ~ V x V* be the inclusion map. Then i*otl = d (p r l )*F  

as both sides have value dFp at (p,  dFp)  ~ A F . It follows that i*ot2 = d(i*f l  - (Prl)*F) -- 

d (pr 2)* F*, which shows that A F is the graph of the inverse of L F*. From this we conclude 

that the inverse of the Legendre transform associated with F is the Legendre transform 

associated with F*. [2 

Let M be a manifold and F" T M  --+ R. We return to the Euler-Lagrange equations for 

minimizing the action Ay = f ~* F. At p E M, let Fp "-- FIrpM" T p M  ~ R. Assume that 

Fp is strictly convex for all p E M. To simplify notation, assume also that SFp = Tp M.  The 

Legendre transform on each tangent space L Fp �9 Tp M -~ Tp M is essentially given by the 

first derivatives of F in the v directions. Collect these and the dual functions Fp" Tp M --+ 

IK into maps 

s  T M  > T ' M ,  s -- LFp and H" T * M  > 11~, HITtTM -- Fp. 

The maps H and 12 are smooth, and 12 is a diffeomorphism. 

THEOREM 5.10. Let y" [a, b] --+ M be a curve, and f~ " [a, b] --+ T M its lift. Then y satis- 

f ies the Euler-Lagrange equations on every coordinate chart i f  and only i f  s o f, " [a, b] --+ 

T * M  is an integral curve o f  the Hamiltonian vector f ield X H. 
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PROOF. Let (H, Xl . . . . .  Xn) be a coordinate chart in M, with associated tangent (TH, X l ,  

. . . .  Xn,  Vl . . . . .  Vn) and cotangent (T*/aC, x l ,  . . .  , X n ,  ~1 . . . . .  ~n )  coordinates. On TH we 
have F -  F (x, v), on T*H we have H = H (x, ~), and 

E," TH > T 'H,  H" T*H > R, 

(x ,v)  l > (x,~) ,  ( x ,~ ) ,  > F ~ ( ~ ) - - ~ . v - F ( x , v ) ,  

where ~ "= LF~ (v) - -  OF (x  v )  is called the momentum. Integral curves (x(t) ~(t)) of XH , 

satisfy the Hamilton equations: 

(H) 

dx - ~ ( x ,  ~), 27 
d~ OH ~- ~ (x, ~),  

whereas the physical path x(t)  satisfies the Euler-Lagrange equations" 

(E-L) -~x x , - -~  = d t  Ov X'-d7 " 

ax (t)). For an arbitrary curve x(t),  we want to prove that t w-~ Let (x(t), ~(t)) = s  -d7 

(x(t) ~(t)) satisfies (H) if and only if t w-~ (x(t) ax (t)) satisfies (E-L). The first line of (H) ' ' d - 7  
comes automatically from the definition of ~" 

--LFx ~' " 
�9 " dt 

- - L -  1 OH 
- -  Fx (~)  - -  L F * ( ~ )  - - ~ ( X ,  ~) .  

If (x, ~) = s  v), by differentiating both sides of H (x, ~) = ~ �9 v - F (x, v) with respect 
OH to x, where ~e -- L Fx (v) = ~ (x, v) and v -- -g(, we obtain 

OH OH O~ O~ OF OF OH 
t = . v - ~  ~, ,~ ~ ( x , v ) - - ~ ( x , ~ ) .  

Ox O~ Ox Ox Ox Ox Ox 

Using the last equation and the definition of ~, the second line of (H) becomes (E-L)" 

d~ OH d OF OF 
= - x - 5 -  (x' ~) ~" "~ - - ~ ( x ,  v ) -  (x, v). 

d---~ dt Ov -Ox [q 

5.5. Integrable systems 

DEFINITION 5.1 1. A Hamiltonian system is a triple (M, co, H),  where (M, co) is a sym- 
plectic manifold and H 6 C ~ (M) is the Hamiltonianfunction. 

PROPOSITION 5.12. For a function f on a symplectic manifold (M, co) we have that 
{ f ,  H } -- 0 if and only if f is constant along integral curves of  XH. 
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PROOF. Let Pt be the flow of X H . Then 

d 

dt 
- - ( f  o p,) -- Pts f --- Pt'XH d f  = PttXHtXyco -- ptco(Xf  , X , )  

= p T { f , H } .  D 

A function f as in Proposition 5.12 is called an integral of motion (or a first integral 
or a constant of motion). In general, Hamiltonian systems do not admit integrals of mo- 
tion that are independent of the Hamiltonian function. Functions f l  . . . . .  fn are said to be 
independent if their differentials (d f l )  p . . . . .  (dfn) p are linearly independent at all points 
p in some dense subset of M. Loosely speaking, a Hamiltonian system is (completely) 
integrable if it has as many commuting integrals of motion as possible. Commutativity is 
with respect to the Poisson bracket. If f l  . . . . .  fn are commuting integrals of motion for 
a Hamiltonian system (M, co, H),  then co(Xfi, XUj) = {f/, f j  } = 0, so at each p E M the 
Hamiltonian vector fields generate an isotropic subspace of TpM. When f l  . . . . .  fn are 
independent, by symplectic linear algebra n can be at most half the dimension of M. 

DEFINITION 5.13. A Hamiltonian system (M, co, H)  where M is a 2n-dimensional man- 
ifold is (completely) integrable if it possesses n independent commuting integrals of mo- 

tion, f l  = H, f2 . . . . .  fn. 

Any 2-dimensional Hamiltonian system (where the set of nonfixed points is dense) is 
trivially integrable. Basic examples are the simple pendulum and the harmonic oscillator. 
A Hamiltonian system (M, co, H)  where M is 4-dimensional is integrable if there is an in- 
tegral of motion independent of H (the commutativity condition is automatically satisfied). 
A basic example is the spherical pendulum. Sophisticated examples of integrable systems 
can be found in [ 8,7 2]. 

EXAMPLES. 
1. The simple pendulum is a mechanical system consisting of a massless rigid rod of 

length g, fixed at one end, whereas the other end has a bob of mass m, which may 
oscillate in the vertical plane. We assume that the force of gravity is constant point- 
ing vertically downwards and the only external force acting on this system. Let 0 
be the oriented angle between the rod and the vertical direction. Let ~ be the co- 
ordinate along the fibers of T* S 1 induced by the standard angle coordinate on S 1. 

~2 
The energy function H" T*S 1 --+ R, H(O, ~) = ~ + mg(1 - cos0),  is an appro- 
priate Hamiltonian function to describe the simple pendulum. Gravity is responsible 
for the potential energy V(O) = mg(1 - cos0),  and the kinetic energy is given by 
K(O, ~) - -  1 ~ 2  . 

2. The spherical pendulum consists of a massless rigid rod of length g, fixed at one 
end, whereas the other end has a bob of mass m, which may oscillate freely in all 
directions. For simplicity let m -- g = 1. Again assume that gravity is the only ex- 
ternal force. Let qg, 0 (0 < ~0 < Jr, 0 < 0 < 2re) be spherical coordinates for the 
bob, inducing coordinates r/, ~ along the fibers of T*S 2. An appropriate Hamil- 
tonian function for this system is the energy function H" T* S 2 --+ ~ ,  H (~0, 0, 0, ~) -- 
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1 ~2 
~(r/2 -+- (sinqg)2) -~- COS ~0. The function J(qg, 0, r/, ~) -- ~ is an independent integral of 

motion corresponding to the group of symmetries given by rotations about the vertical 
axis (Section 5.6). The points p 6 T* S 2 where drip and d Jp are linearly dependent 
are: 

�9 the two critical points of H (where both d H  and d J vanish); 
�9 if x 6 S 2 is in the southern hemisphere (x3 < 0), then there exist exactly two 

points, p+ = (x, 77, ~) and p_ -- ( x , - 0 , - ~ ) ,  in the cotangent fiber above x 
where drip and d Jp are linearly dependent; 

�9 since drip and d Jp are linearly dependent along the trajectory of the Hamil- 
tonian vector field of H through p+, this trajectory is also a trajectory of the 
Hamiltonian vector field of J and hence its projection onto S 2 is a latitudinal 
(or horizontal) circle. The projection of the trajectory through p_ is the same 
latitudinal circle traced in the opposite direction. 

Let (M, co, H) be an integrable system of dimension 2n with integrals of motion fl  = 
H, f2 . . . . .  fn. Let c 6 ~n  be a regular value of f := (fl  . . . . .  fn). The corresponding level 
set f - 1  (c) is a Lagrangian submanifold, as it is n-dimensional and its tangent bundle 
is isotropic. If the flows are complete on f - 1  (c), by following them we obtain global 
coordinates. Any compact component of f - 1  (c) must hence be a toms. These components, 
when they exist, are called Liouville tori. A way to ensure that compact components exist 
is to have one of the f / 's  proper. 

THEOREM 5.14 (Amold-Liouville [2]). Let (M, co, H) be an integrable system of  dimen- 
sion 2n with integrals of  motion f l = H, f2 . . . . .  fn. Let c ~ R n be a regular value of  
f :-- (fl  . . . . .  fn).  The level f - 1  (c) is a Lagrangian submanifold of  M. 

(a) I f  the flows of  the Hamiltonian vector fields X f~ . . . . .  X fn starting at a point p E 
f - 1  (c) are complete, then the connected component of  f - 1  (c) containing p is a 
homogeneous space for  R n, i.e., is of  the form R n-k x ~fk for  some k, 0 <<, k <~ n, 
where 7f k is a k-dimensional torus.. With respect to this affine structure, that compo- 
nent has coordinates qgl . . . . .  {/an, known as angle coordinates, in which the flows of  
X f~ . . . . .  X fn are linear 

(b) There are coordinates ~1 . . . . .  ~Pn, known as action coordinates, complementary to 
the angle coordinates, such that the ~i 's  are integrals of  motion and qgl . . . . .  qgn, 
~1 . . . . .  ~n form a Darboux chart. 

Therefore, the dynamics of an integrable system has a simple explicit solution in action- 
angle coordinates. The proof of part (a)mthe easy part of the theoremmis sketched above. 
For the proof of part (b) see, for instance, [2,36]. Geometrically, regular levels being 
Lagrangian submanifolds implies that, in a neighborhood of a regular value, the map 
f : M --+ IR n collecting the given integrals of motion is a Lagrangian fibration, i.e., it is 
locally trivial and its fibers are Lagrangian submanifolds. Part (a) states that there are co- 
ordinates along the fibers, the angle coordinates, 56 in which the flows of Xf~ . . . . .  Xin 
are linear. Part (b) guarantees the existence of coordinates on It~ n, the action coordinates, 

56The name angle coordinates is used even if the fibers are not tori. 
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lPl . . . .  , ~ n ,  complementary to the angle coordinates, that (Poisson) commute among them- 
selves and satisfy {qgi, lpj  } - -  6 i j .  The action coordinates are generally not the given inte- 
grals of motion because q91 . . . . .  qgn, f l  . . . . .  fn do not form a Darboux chart. 

5.6. Symplectic and Hamiltonian actions 

Let (M, co) be a symplectic manifold, and G a Lie group. 

DEFINITION 5.15. An action s7 7 r ' G  -+ Diff(M), g v-> ~ g ,  is a symplectic action if each 
7tg is a symplectomorphism, i.e., 7 r ' G  ~ Sympl(M, co) C Diff(M). 

In particular, symplectic actions of IR on (M, co) are in one-to-one correspondence with 
complete symplectic vector fields on M" 

~ p = e x p t X  < ~ X p - -  
d'~t (p ) 

dt t-0 
p e M .  

We may define a symplectic action ~p of S 1 or IR on (M, co) to be Hamiltonian if the vector 
field X generated by ~p is Hamiltonian, that is, when there is H ' M  ~ R with d H  -- t xco. 
An action of S 1 may be viewed as a periodic action of IR. 

EXAMPLES. 
1. On (IR 2n, coo), the orbits of the action generated by X = ~v~ are lines parallel to 

the yl-axis, {(Xl, Yl - t, x2, Y2 . . . . .  Xn, Yn) I t �9 R}. Since X 1 is Hamiltonian with 
Hamiltonian function Xl, this is a Hamiltonian action of R. 

2. On the 2-sphere (S 2, dO A dh) in cylindrical coordinates, the one-parameter group 
of diffeomorphisms given by rotation around the vertical axis, ~Pt (0, h) -- (0 + t, h) 
(t �9 IR) is a symplectic action of the group S 1 "" 1R/(2re), as it preserves the area form 
dO A dh. Since the vector field corresponding to ~p is Hamiltonian with Hamiltonian 
function h, this is a Hamiltonian action of S 1 . 

When G is a product of S 1 's or JR's, an action ~ : G ~ Sympl(M, co) is called Hamil- 

tonian when the restriction to each 1-dimensional factor is Hamiltonian in the previous 
sense with Hamiltonian function preserved by the action o f  the rest o f  G. 

For an arbitrary Lie group G, we use an upgraded Hamiltonian function #,  known as 
a moment map, determined up to an additive local constant by coordinate funct ions/z  i 
indexed by a basis of the Lie algebra of G. We require that the constant be such that # is 
equivariant, i.e.,/z intertwines the action of G on M and the coadjoint action of G on the 
dual of its Lie algebra. (If M is compact, equivariance can be achieved by adjusting the 
constant so that fm  / zcon = 0. Similarly when there is a fixed point p (on each component 
of M) by imposing # ( p )  = 0.) 

Let G be a Lie group, t~ the Lie algebra of G, and g* the dual vector space of g. 

57A (smooth) action of G on M is a group homomorphism G ~ Diff(M), g w-> lpg, whose evaluation map 
M x G --+ M, (p, g) w-> ~g(p), is smooth. 
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DEFINITION 5.16. An action ap:G --+ Diff(M) on a symplectic manifold (M, co) is a 
Hamiltonian action if there exists a map/~ :M ~ ~t* satisfying: 

�9 For each X 6 ~t, we have dlz x = tx#co, i.e., # x  is a Hamiltonian function for the 
vector field X #, where 
_ # x  :M --+ R, /~x  (p) := (#(p) ,  X), is the component of/x along X, 
- X # is the vector field on M generated by the one-parameter subgroup {exp t X [ 

t EIR}c_G. 
�9 The map/x  is equivariant with respect to the given action 7s on M and the coadjoint 

action: # o ~pg - Adg o/x, for all g E G. 

Then (M, co, G, #)  is a Hamiltonian G-space and # is a moment map. 

This definition matches the previous one when G is an Abelian group R, S 1 o r  qF n, for 
which equivariance becomes invariance since the coadjoint action is trivial. 

E X A M P L E S .  

1. Let T n = {(tl . . . . .  tn) ~ cn:  I t j l -  1, for all j }  be a toms acting on C n by 

( t l  . . . . .  tn )"  (Zl . . . . .  Z n ) -  ( t k l z l  . . . . .  tknzn), where k l  . . . . .  kn ~ Z are fixed. This 
action is Hamiltonian with a moment map # :C n --+ (tn) * _~ R n, #(Zl . . . . .  zn) = 

1 ( k l  Iz 112 kn IZn 12) 2 ' ' " '  " 
2. When a Lie group G acts on two symplectic manifolds (M j, co j),  j = 1, 2, with 

moment maps/Zj : Mj ~ l~*, the diagonal action of G on M1 x M2 has moment map 

/x : M 1  x M 2  - *  ~ * , / ~ ( P l ,  P2 )  - - / ~ 1  ( P l )  -+ - /x2(P2) .  

3. Equip the coadjoint orbits of a Lie group G with the canonical symplectic form (Sec- 
tion 5.1). Then, for each ~ 6 g*, the coadjoint action on the orbit G .  ~ is Hamiltonian 
with moment map simply the inclusion map/x :  G �9 ~ ~ IJ*. 

4. Identify the Lie algebra of the unitary group U (n) with its dual via the inner product 
(A, B) = t race(A'B) .  The natural action of U(n) on (C n, coo) is Hamiltonian with 
moment map/z"  C n --+ u(n) given by/z(z)  = i . zz . Similarly, a moment map for the 

natural action of U(k) on the space (C kx~, coo) of complex (k x n)-matrices is given 
i c k x n  by #(A)  - gAA* for A 6 . Thus the U(n)-action by conjugation on the space 

(C n2, coo) of complex (n x n)-matrices is Hamiltonian, with moment map given by 
i # ( A ) = ~ t A ,  A*]. 

5. For the spherical pendulum (Section 5.5), the energy-momentum map (H, J) : T* S 2 
]I~ 2 is a moment map for the R x S 1 action given by time flow and rotation about 

the vertical axis. 

6. Suppose that a compact Lie group acts on a symplectic manifold (M, co) in a Hamil- 
tonian way, and that q 6 M is a fixed point for the G-action. Then, by an equivariant 
version of Darboux's theorem, 58 there exists a Darboux chart (H, Z l . . . . .  Zn) cen- 

tered at q that is G-equivariant with respect to a linear action of G on C n. Consider 
an e-blow-up of M relative to this chart, for e sufficiently small. Then G acts on the 
blow-up in a Hamiltonian way. 

58Equivariant Darhoux theorem [136]. Let (M, co) be a 2n-dimensional symplectic manifold equipped with 

a symplectic action of a compact Lie group G, and let q be afixedpoint. Then there exists a G-invariant chart 
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The concept of a moment  map was introduced by Souriau [ 119] under the French name 
application moment; besides the more standard English translation to moment map, the 
alternative momentum map is also used, and recently James Stasheff has proposed the 
short unifying new word momap. The name comes from being the generalization of linear 

and angular momenta in classical mechanics.  
Let IR 3 act o n  (IR 6 ~'~ T*R 3, coo -- ~ dxi A dyi) by translations: 

a e ]I~ 3 I > ~a E Sympl(IR 6 coo)  ~ra(X y) -- (x + a, y) ~ , �9 

0 0 ~ and the The vector field generated by X - a = (a l, a2, a3) is X # = a l ~ -+- a2 g~2 + a3 7-~3' 

linear momentum map 

/z" R 6 > IR 3, /z(x, y) = y 

is a moment  map, with/Z a (X, y) -- (# (x ,  y), a) = y .  a. Classically, y is called the momen- 

tum vector corresponding to the position vector x. 
The SO(3)-act ion on IR 3 by rotations lifts to a symplectic action ~ on the cotangent  

bundle R 6. The infinitesimal version of this action is 59 

a e R 3 , > dO(a)  e xsympl ( I I~6) ,  d~/(a)(x ,  y) -- (a x x, a x y). 

Then the angular momentum map 

/Z" I[~ 6 > R 3, /z(x, y ) =  x x y 

is a moment  map, with/Z a (X, y) -- (/z(x, y), a) -- (x x y ) .  a. 
The notion of a moment  map associated to a group action on a symplectic manifold for- 

malizes the Noether principle, which asserts that there is a one-to-one correspondence be- 
tween symmetries (or one-parameter  group actions) and integrals o f  motion (or conserved 

quantities) for a mechanical  system. 

(b/, x! . . . . .  xn, Yl . . . . .  Yn) centered at q and G-equivariant with respect to a linear action of G on IR 2n such 
that 

colbl = ~ dxk A dYk. 
k=l  

A suitable linear action on I~ 2n is equivalent to the induced action of G on Tq M. The proof relies on an equivariant 

version of the Moser  trick and may be found in [70]. 

59The Lie group SO(3) = {A e GL(3" IR) I At A = Id and de tA = 1}, has Lie algebra, g = {A �9 ~[(3; R) I A + 

A t = 0}, the space of 3 x 3 skew-symmetric matrices. The standard identification of 1~ with It~ 3 carries the Lie 

bracket to the exterior product: 

A =  
I 0 --a 3 a2 1 

a 3 0 - -a l  ~ a - - ( a l , a 2 , a 3 ) ,  

--a 2 a I 0 

[ A , B ] = A B - B A  ~ a x b. 
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DEFINITION 5.17. An integral of  motion of a Hamiltonian G-space (M, co, G,/z)  is a 
G-invariant function f : M  --+ R. When /z  is constant on the trajectories of a Hamiltonian 
vector field X f ,  the corresponding flow { e x p t X f  [ t 6 JR} (regarded as an R-action) is a 
symmetry of the Hamiltonian G-space (M, co, G,/z).  

THEOREM 5.18 (Noether). Let (M, co, G, lz) be a Hamiltonian G-space where G is con- 
nected. I f  f is an integral of  motion, the flow of  its Hamiltonian vector field X f is a sym- 

metry. I f  the flow of some Hamiltonian vector field X f is a symmetry, then a corresponding 
Hamiltonian function f is an integral of  motion. 

PROOF. Let # x  = (#, X ) ' M  --~ JR for X ~ O. We have s zx  -- t x ld l z  x = txztx#co = 
- t x# tx l co  = - t x # d  f = -12x# f .  So # is invariant over the flow of X f  if and only if f is 
invariant under the infinitesimal G-action. [] 

We now turn to the questions of existence and uniqueness of moment  maps. 
Let 0 be a Lie algebra, and let C k "-- A~O * be the set of k-cochains on 0, that is, of 

alternating k-linear maps 0 x -.. x 0 ~ R. The linear operator 8" C k ~ C k+l defined by 
8 c ( X o  . . . . .  X k  ) "- Z i  < j ( - 1 ) i  +J c ( [ X i  , X j ], Xo  . . . . .  f ( i  . . . . .  f (  j . . . . .  Xk  ) satisfies 82 - - 0 .  

The Lie algebra cohomology groups (or Chevalley cohomology groups) of 0 are the coho- 

mology groups of the complex 0 a C o 8 C1 ) ~ ~ . . . :  

kerS" C k --+ C k+l 
Hk(0; JR) := . 

lm 8" C k-1 ~ C k " 

It is always H~ JR) = JR. If c 6 C 1 - -  0 " ,  then 8c(X, Y) = - c ( [ X ,  Y]). The commutator 
ideal [0, 0] is the subspace of 0 spanned by {[X, Y] [ X, Y 6 0}- Since 8c -- 0 if and only 
if c vanishes on [0, 0], we conclude that H 1(0; JR) -- [0, 0] ~ where [0, 0] ~ _.c 0* is the 
annihilator of [0, 0]. An element of C 2 is an alternating bilinear map c ' 0  • 0 --+ JR, and 
6c(X, Y, Z) - - c ( [ X ,  Y], Z) + c([X, Z], Y) - c([Y, Z], X). If c -- 8b for some b 6 C 1, 
then c(X, Y) = (Sb)(X, Y) = - b ( [ X ,  Y]). 

If 0 is the Lie algebra of a compact connected Lie group G, then by averaging one can 
show that the de Rham cohomology may be computed from the subcomplex of G-invariant 
forms, and hence H k (0 JR) k ; = HdeRham ( G ) .  

PROPOSITION 5.19. I f  H 1 (0; ]~) - -  H2 (0, JR) -- 0, then any symplectic G-action is Hamil- 
tonian. 

PROOF. Let 7 t : G  --~ Sympl(M, co) be a symplectic action of G on a symplectic mani- 
fold (M, co). Since H 1 (0; N) = 0 means that [0, 0] = 0, and since commutators of sym- 
plectic vector fields are Hamiltonian, we have dTt :0  = [0, 0] -~ xham(M) �9 The action 

is Hamiltonian if and only if there is a Lie algebra homomorphism #* :0 -+ C~176 (M) 
such that the Hamiltonian vector field of/~*(~) is dTt(~). We first take an arbitrary vector 
space lift r : g  --+ C ~ (M) with this property, i.e., for each basis vector X ~ g, we choose 
r ( X )  = r x 6 C ~ ( M )  such that v(rx ~ = dTr(X). The map X w-~ r x may not be a Lie al- 

gebra homomorphism. By construction, r Ix'r] is a Hamiltonian function for [X, Y]#, and 
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(as computed in Section 5.5) {r x, r r } is a Hamiltonian function for - [ X  #, Y#]. Since 
[X, Y]# = - [ X  #, Y#], the corresponding Hamiltonian functions must differ by a constant: 

r t x ' r ~  - { r x , r r } = c(X, r )  ~ R. 

By the Jacobi identity, 6c = 0. Since H2(0; ]R) - - 0 ,  there is b E 0* satisfying c -  6b, 

c (X ,  Y) - - b ( [ X ,  Y]). We define 

# * ' 0  > C ~ ( M ) ,  

X i > l z*(X)  = r X + b ( X )  - l z x .  

Now #* is a Lie algebra homomorphism: #*([X, Y]) = {r x, r r}  = { u  x , u v }. 5 

By the Whitehead lemmas (see, for instance, [77, pp. 93-95]) a semisimple Lie group 
G has H 1 (0; IR) = H2(0; ] t{ ) -  0. As a corollary, when G is semisimple, any symplectic 

G-act ion is Hamiltonian. 6~ 

PROPOSITION 5.20. For a connected Lie group G, i f  H 1 (0; It{) = 0, then moment  maps 

f o r  Hamil tonian G-act ions are unique. 

PROOF.  Suppose that/Zl and/z2 are two moment maps for an action ~p. For each X 6 0, 
# [  and #~  are both Hamiltonian functions for X #, thus # [  - # x  _ c ( X )  is locally con- 

*" C ~ (M) are Lie stant. This defines c ~ 0", X ~ c ( X ) .  Since the corresponding/.L i 0 --+ 

algebra homomorphisms, we have c([X,  Y]) - 0, 'r Y 6 0, i.e., c E [0, 0] ~ - {0}. Hence, 

/Zl - - / ~ 2 .  D 

In general, if # ' M  --+ 0* is a moment map, then given any c 6 [0, 0] ~ #1 = # + c is 
another moment map. In other words, moment maps are unique up to elements of the dual 
of the Lie algebra that annihilate the commutator ideal. 

The two extreme cases are when 

�9 G is semisimple: 

�9 G is Abelian: 

any symplectic action is Hamiltonian, 
moment maps are unique; 
symplectic actions may not be Hamiltonian, 
moment maps are unique up to a constant c 6 0"- 

60A compact Lie group G has H 1 (0; R) = H2(0; IR) - - 0  if and only if it is semisimple. In fact, a compact Lie 
group G is semisimple when 0 = [0, 0]- The unitary group U(n) is not semisimple because the multiples of the 
identity, S 1. Id, form a nontrivial center; at the level of the Lie algebra, this corresponds to the subspace IR. Id of 
scalar matrices, which are not commutators since they are not traceless. Any Abelian Lie group is not semisimple. 
Any direct product of the other compact classical groups SU(n), SO(n) and Sp(n) is semisimple. An arbitrary 
compact Lie group admits a finite cover by a direct product of tori and semisimple Lie groups. 
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5.7. Convexity 

Atiyah, Guillemin and Sternberg [4,68] showed that the image of the moment map for a 
Hamiltonian torus action on a compact connected symplectic manifold is always a poly- 
tope. 61 A proof of this theorem can also be found in [99]. 

THEOREM 5.21 (Atiyah, Guillemin-Stemberg).  Let (M, co) be a compact connected sym- 
plectic manifold. Suppose that ~ : Tf m --+ Sympl(M, co) is a Hamiltonian action o f  an 
m-torus with moment map lZ : M --+ R m . Then: 

(a) the levels I z-1 (c) are connected (c E Rm); 
(b) the image lz (M) is convex; 

(c) # ( M )  is the convex hull o f  the images o f  the f ixed points o f  the action. 

The image /z (M)  of the moment map is called the moment polytope. 

E X A M P L E S .  

1. Suppose that ,~,m acts linearly on (C n, coo). Let )~(1) . . . . .  )~(n) 6 zm be the weights 

appearing in the corresponding weight space decomposition, that is, 

C n '~  + W)~(k), 

k= l  

where, for )~(k) = ( )~k) , . . . ,  X~)), the torus ~m acts on the complex line Vz(k) by 

( e i q , . . . ,  e itm) �9 v - -  e i ~J k7)t j  V. If the action is effective 62, then m ~< n and the 
weights ~(1) . . . . .  )~(n) are part of a Z-basis of Z m. If the action is symplectic (hence 
Hamiltonian in this case), then the weight spaces Vz(k) are symplectic subspaces. In 
this case, a moment map is given by 

1 ~A(k) e 
lz(v) = --~ Iv~(k) l 

k=l  

where 1. [ is the standard norm 63 and v = vz(~) + . . .  + vz(n) is the weight space 
decomposition of v. We conclude that, if T n acts on C n in a linear, effective and 
Hamiltonian way, then any moment m a p / z  is a submersion, i.e., each differential 
d#v  :C n ~ ]I{ n (v 6 C n) is surjective. 

61A polytope in ]~n is the convex hull of a finite number of points in R n . A convex polyhedron is a subset of ]~n 

that is the intersection of a finite number of affine half-spaces. Hence, polytopes coincide with bounded convex 

polyhedra. 

62An action of a group G on a manifold M is called effective if each group element g # e moves at least one 

point p 6 M, that is, (-]pEM Gp -- {e}, where Gp = {g 6 G I g" P = P} is the stabilizer of p. 

0 0 0 0 .  In particular, the 63The standard inner product satisfies (v, w) = co0(v, Jr)  where J b-~ -- i b-~ and J ~ = - i  

standard norm is invariant for a symplectic complex-linear action. 
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2. Consider a coadjoint orbit Oz for the unitary group U(n). Multiplying by i, the orbit 
Oz can be viewed as the set of Hermitian matrices with a given eigenvalue spectrum 
)~ -- ()~1 ~> "'"/> )~n). The restriction of the coadjoint action to the maximal toms 7 
of diagonal unitary matrices is Hamiltonian with moment map # ' O ~  --+ R n taking a 
matrix to the vector of its diagonal entries. Then the moment polytope #(O~) is the 
convex hull C of the points given by all the permutations of ()~1 . . . . .  )~n). This is a 
rephrasing of the classical theorem of Schur (#(O~) ___ C) and Horn (C _ #(O~)). 

Example 1 is related to the universal local picture for a moment map near a fixed point 
of a Hamiltonian toms action: 

THEOREM 5.22. Let (M 2n, co, ~m, lZ ) be a Hamiltonian 7~m-space, where q is a fixed 

point. Then there exists a chart (lg, X l . . . . .  Xn, Yl . . . . .  Yn) centered at q and weights 
~1) . . . . .  )~ (n ) ~ zm such that 

17 

colU -- Y ~  dxk m dyk 
k--1 

and 
1 ~ (k) 2 2 

#l/A - / z ( q )  - ~ .---, ~ (x k + y~). 
k = l  

The following two results use the crucial fact that any effective action of an m-toms on 
a manifold has orbits of dimension m; a proof may be found in [ 19]. 

COROLLARY 5.23. Under the conditions o f  the convexity theorem, i f  the qFm-action is 
effective, then there must be at least m + 1 fixed points. 

PROOF. At a point p of an m-dimensional orbit the moment map is a submersion, i.e., 
( d / Z l ) p  . . . . .  (dlzm)p are linearly independent. Hence, # (p)  is an interior point of/z(M),  
and # (M) is a nondegenerate polytope. A nondegenerate polytope in ~m has at least m + 1 
vertices. The vertices of # (M) are images of fixed points. �89 

PROPOSITION 5.24. Let (M, co, ,~m, ls ) be a Hamiltonian "~m-space. I f  the •m-action is 
effective, then dim M ~> 2m. 

PROOF. Since the moment map is constant on an orbit 69, for p 6 69 the differential 
dlzp" T p m  --+ 0" maps TpO to 0. Thus TpO c__ kerd#p -- (TpO) ~~ where (TpO) c~ is the 
symplectic orthogonal of TpO. This shows that orbits 69 of a Hamiltonian toms action 
are isotropic submanifolds of M. In particular, by symplectic linear algebra we have that 
dim 69 ~< �89 dim M. Now consider an m-dimensional orbit. �89 

For a Hamiltonian action of an arbitrary compact Lie group G on a compact symplec- 
tic manifold (M, co), the following non-Abelian convexity theorem was proved by Kir- 

�9 * of the image of wan [81]: if # M --+ g* is a moment map, then the intersection #(M)  N t+ 
# with a Weyl chamber for a Cartan subalgebra t c_ g is a convex polytope. This had been 
conjectured by Guillemin and Stemberg and proved by them in particular cases. 
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6. Symplectic reduction 

6.1. Marsden-Weinstein-Meyer theorem 

Classical physicists realized that, whenever there is a symmetry group of dimension k 
acting on a mechanical system, the number of degrees of freedom for the position and 
momenta of the particles may be reduced by 2k. Symplectic reduction formulates this 
process mathematically. 

THEOREM 6.1 (Marsden-Weinstein, Meyer [92,102]). Let (M, co, G,/z) be a Hamil- 
tonian G-space (Section 5.6)for  a compact Lie group G. Let i : /x -1 (0) ~ M be the 
inclusion map. Assume that G acts freely on/z-1  (0). Then 

(a) the orbit space Mred = I z - 1  ( 0 ) / G  is a manifold, 
(b) 7r:/z -1 (0) --+ Mred is a principal G-bundle, and 
(c) there is a symplectic form cored on Mred satisfying i'co = Jr*cored. 

DEFINITION 6.2. The symplectic manifold (mred, cored) is the reduction (or reduced 
space, or symplectic quotient) of (M, co) with respect to G, #. 

When M is K~ihler and the action of G preserves the complex structure, we can show 
that the symplectic reduction has a natural K~ihler structure. 

Let (M, co, G, #) be a Hamiltonian G-space for a compact Lie group G. To reduce 
at a level ~ E 0* of/z ,  we need/x -1 (~) to be preserved by G, or else take the G-orbit 
of /z-1 (~), or else take the quotient by the maximal subgroup of G that preserves #-1(~) .  
Since # is equivariant, G preserves # -1  (~) if and only if Adg ~ = ~, Vg E G. Of course, the 
level 0 is always preserved. Also, when G is a torus, any level is preserved and reduction 
at ~ for the moment map #, is equivalent to reduction at 0 for a shifted moment map 
4~:M --+ 0", 4~(P) := #(P)  - ~. In general, let O be a coadjoint orbit in 0* equipped with 
the canonical symplecticformcoo (defined in Section 5.1). Let O -  be the orbit O equipped 
with -coo.  The natural product action of G on M x O -  is Hamiltonian with moment map 
l zo (p ,  ~) = # (p )  - ~. If the hypothesis of Theorem 6.1 is satisfied for M x O - ,  then one 
obtains a reduced space with respect to the coadjoint orbit (,9. 

EXAMPLES.  
i 1. The standard symplectic form on C n is w o - ~  ~ dzi /x d z i -  Y~dxi /x d y i - -  

~ ri dri /x  dOi in polar coordinates. The Sl-action on (C n, coo) where e it E S 1 acts 
0 . This action is as multiplication by e it has vector field X # - 70~ + ~ + " "  + ~ 

Hamiltonian with moment map # ' C  n --~ IR, #(z) = Iz12 since t x#co-  }-~ridri -- 2 ' 
1 dr2i The level 1 2 ~ = d# .  tx- ( - �89  is the unit sphere S 2n-l, whose orbit space is 

the projective space, 

.1( = S 2 n - 1 / S  1 - -  C]p n - 1  



Symplectic geometry 161 

The reduced symplectic form at level - 1  is c o r e d  " -  c o F S  the Fubini-Study symplectic 

form. Indeed, if pr" C n+l \ {0} -+ CI? n is the standard projection, the forms pr*coFS -- 
i0~9 log(lzl 2) and coo have the same restriction to S 2n+1 2 

i Id 2. Consider the natural action of U(k) on C kxn with moment  m a p / z ( A )  = ~ AA* + ~7 
for A E C ~xn (Section 5.6). S i n c e / z - l ( 0 )  - {A E C kxn I AA* = Id}, the reduced 

manifold is the Grassmannian of k-planes in C n" 

~ - 1  (O)/U(k) - G ( k , n ) .  

For the case where G = S 1 and dim M -- 4, here is a glimpse of reduction. Let #"  M --+ 
R be the moment  map and p E # - l  (0). Choose local coordinates near p" 0 along the 

orbit through p, # given by the moment  map, and r/l,/72 the pullback of coordinates on 
Mred -- # - 1 ( 0 ) / S  1 �9 Then the symplectic form can be written 

co -- A dO A dlz + E Bj dO A dr/j + E Cj dlz A dr/j + D dr~1 A dr~2. 

As d / z - -  t (~ )co ,  we must have A = 1, Bj --0.  Since co is symplectic, it must be D # 0 .  

Hence, i 'co -- D dr/1 A dr/2 is the pullback of a symplectic form on Mred. 
The actual proof of Theorem 6.1 requires some preliminary ingredients. 
Let # : M  ~ g* be the moment  map for an (Hamiltonian) action of a Lie group G on a 

symplectic manifold (M, co). Let gp be the Lie algebra of the stabilizer of a point p 6 M, 
0 g ,  , let gv - {~ E I (~, X) - 0 'r E gp} be the annihilator of gp, and let O r be the G-orbit 

through p. Since cop(X~, v) -- (d#v(V),  X), for all v ~ TrM and all X E g, the differential 
d#p : TpM ~ g* has 

0 kerd/zp - (TpOp) ~ and imdlzp -- gp. 

Consequently, the action is locally free 64 at p if and only if p is a regular point of # (i.e., 

d lZp is surjective), and we obtain: 

LEMMA 6.3. If  G acts freely on / z - l (0 ) ,  then 0 is a regular value of lz, the level /z- l(0)  
is a submanifold of M of codimension dim G, and, for p ~ lz -1 (0), the tangent space 
Tp/z- 1 (0) = ker dlz p is the symplectic orthogonal to Tp Op in Tp M. 

In particular, orbits in #-1  (0) are isotropic. Since any tangent vector to the orbit is the 

value of a vector field generated by the group, we can show this directly by computing, 

for any X, Y 6 ~t and p 6 # - 1  (0), the Hamiltonian function for [Y#, X #] - [Y, X] # at that 
point: Cop(X#p, Y~) -- lz[Y'X](p) --O. 

LEMMA 6.4. Let (V, 12) be a symplectic vector space, and I an isotropic subspace. Then 
1-2 induces a canonical symplectic structure ~(2red on I ~ / I. 

64The action is locally free at p when ~tp = {0}, i.e., the stabilizer of p is a discrete group. The action is free at 
p when the stabilizer of p is trivial, i.e., G p = {e}. 
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PROOF. Let [u], [v] be the classes in I S ? / l  of u, v ~ I s?. We have S2(u + i, v + j )  = 
S2 (u, v), Vi, j ~ I ,  because S2 (u, j )  = s (i, v) = S2 (i, j )  -- 0. Hence, we can define 

S'2red([U], [V]) := f2(U, V). This is nondegenerate:  if u ~ I s? has S2(u, v) - 0 ,  for all 
v ~ I s?, then  u ~ (IS?)  s? - -  I ,  i .e . ,  [u] = 0.  [3 

PROPOSITION 6.5.  I f  a c o m p a c t  L ie  group  G acts  f r e e l y  on a m a n i f o l d  M ,  then M ~  G is 

a m a n i f o l d  a n d  the m a p  re" M --+ M ~  G is a p r i n c i p a l  G-bund le .  

PROOF. We first show that, for any p 6 M, the G-orbit  through p is a compact  submani- 
fold of M diffeomorphic to G. 65 The G-orbit  through p is the image of the smooth injec- 

tive map eVp : G --+ M, evp (g) -= g �9 p.  The map evp is proper because, if A is a compact,  
hence closed, subset of M, then its inverse image ( e v p ) - l ( A ) ,  being a closed subset of 

the compact  Lie group G, is also compact.  The differential d ( e v p ) e  is injective because 
# - 0 r X -- O, u  ~ Te G,  as the action is free. At any other point d ( e v p ) e ( X )  -- 0 ~ Xp 

g ~ G, for X ~ TgG we have d ( e v p ) g ( X )  = 0 r d(evp o Rg)e o ( d R g - 1 ) g ( X )  = 0, where 
R g : G  --+ G,  h ~-+ hg ,  is right multiplication by g. But eVp o Rg = eVg.p has an injec- 
tive differential at e, and (dRg-~)g  is an isomorphism. It follows that d ( e v p ) g  is always 

injective, so evp is an immersion.  We conclude that evp is a closed embedding.  
We now apply the slice theorem 66 which is an equivariant tubular neighborhood theo- 

rem. For p 6 M, let q = Jr (p) 6 M / G .  Choose a G-invariant neighborhood U of p as in the 

slice theorem, so that U _~ G x S where S is an appropriate slice. Then Jr (L/) = b / / G  =:  V 
is a neighborhood of q in M ~  G homeomorphic  67 to S. Such neighborhoods V are used 

as charts on M / G .  To show that the associated transition maps are smooth, consider two 

G-invariant  open sets/,/1,/g2 in M and corresponding slices S1, $2. Then $12 = $1 A L/2, 
$21 = $2 Cq L/1 are both slices for the G-action on b/1 N/g2. To compute the transition map 

S12 ~ $21, consider the sequence S12 -> {e} x S12 ~ G x S12 -> Ul AL/2 and similarly 

for $21. The composit ion SI2 ~ L/1 A U2 -~ G x $21 pry $21 is smooth. 
Finally, we show that zr : M  --+ M ~  G is a principal G-bundle.  For p 6 M, q -- zr(p),  

choose a G-invariant neighborhood L /o f  p of the form 7" G x S -> b/. Then V = / g / G  "~ 

S is the corresponding neighborhood of q in M ~  G: 

M D b l  ~ G x S  " ~ G x V  
B 

~Tr 
M / G D _ V  = V 

65Even if the action is not free, the orbit through p is a compact submanifold of M. In that case, the orbit of a 
point p is diffeomorphic to the quotient G/Gp of G by the stabilizer of p. 
66Slice theorem. Let G be a compact Lie group acting on a manifold M such that G acts freely at p ~ M. Let 

S be a transverse section to Op at p (this is called a slice). Choose a coordinate chart Xl . . . . .  Xn centered at p 
such that O p ~ G is given by x 1 . . . . .  x k = 0 and S by Xk_t_ 1 . . . . .  Xn = O. Let Se = S f3 Be where Be is 
the ball of radius e centered at 0 with respect to these coordinates. Let rl : G x S ~ M, o(g, s) -- g . s. Then, for 
sufficiently small e, the map 77: G x Se ~ M takes G x Se diffeomorphically onto a G-invariant neighborhood 
lg of the G-orbit through p. In particular, if the action of G is free at p, then the action is free on/g, so the set of 
points where G acts freely is open. 
67We equip the orbit space M~ G with the quotient topology, i.e., V c M~ G is open if and only if rr -1 (V) is 

open in M. 
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Since the projection on the fight is smooth, Jr is smooth. By considering the overlap of two 
trivializations 4)1"L/1 --~ G • V1 and 4~2 "b/2 --+ G x 1;2, we check that the transition map 
~b2 o q~l 1 -- (O"12, i d ) ' G  • (V1 A ~22) -'+ G • ('1,)1 f-) ],)2) is smooth. [-] 

PROOF OF THEOREM 6.1. Since G acts freely on/z-1 (0), by Lemma 6.3 the level/z-1 (0) 
is a submanifold. Applying Proposition 6.5 to the free action of G on the manifold #-1  (0), 
we conclude the assertions (a) and (b). 

At p e #-1  (0) the tangent space to the orbit Tp O p is an isotropic subspace of the sym- 
plectic vector space (TpM, COp). By Lemma 6.4 there is a canonical symplectic structure 
on the quotient Tp#-l(O)/TpOp. The point [p] ~ Mred - - / z - I ( 0 ) / G  has tangent space 
T[p]Mred ~ Tp#-l(O)/TpOp. This gives a well-defined nondegenerate 2-form cored on 
Mred because co is G-invariant. By construction i ' c o -  Jr*COred where 

u-~(0) 
~zr 

mred 

i 
M 

The injectivity of Jr* yields closedness: Jr* dcored -- drr* cored -- d t  *co - -  t * d c o  -- O. D 

6.2. Applications and generalizations 

Let (M, co, G, #) be a Hamiltonian G-space for a compact Lie group G. Suppose that 
another Lie group H acts on (M, co) in a Hamiltonian way with moment map 4~'M --+ D*- 
Suppose that the H-action commutes with the G-action, that q~ is G-invariant and that/z is 
H-invariant. Assuming that G acts freely on/z-1 (0), let (Mred, cored) be the corresponding 
reduced space. Since the action of H preserves #-1  (0) and co and commutes with the 
G-action, the reduced space (Mred, cored) inherits a symplectic action of H. Since 4~ is 
preserved by the G-action, the restriction of this moment map to /z  -1 (0) descends to a 
moment map ~bred " Mred ---+ D* satisfying ~bred o yt" -- ~b o i, where 7r �9 #-1(0)  --+ Mred and 
i" # -1  (0) ~ M. Therefore, (Mred, cored, H ,  ~bred) is a Hamiltonian H-space. 

Consider now the action of a product group G = G1 x G2, where G1 and G2 are 
compact connected Lie groups. We have 0 = 01 @ 02 and 0 " - 0 ~  r 0~- Suppose that 
(M, co, G, 7r) is a Hamiltonian G-space with moment map 

-- (~1 ,  ~ 2 ) ' M  > 0~ EE) 0~, 

where l~i" M --+ 0~ for i -- 1, 2. The fact that 7s is equivariant implies that 1~1 is invariant 

under G2 and ~2 is invariant under G1. Assume that G1 acts freely on Z1 " -  ~ 1 1  (0). Let 
(M1 -- Z1/G1, c01) be the reduction of (M, co) with respect to G1, 7sl. From the observa- 
tion above, (M1, o91) inherits a Hamiltonian Gz-action with moment map/z2" M1 ~ 0~ 
such that /Z2 o 7 t " -  ~2  o i, where zr 'Z1 --+ M1 and i" Z1 ~ M. If G acts freely on 
7s -1 (0, 0), then G2 acts freely on #21 (0), and there is a natural symplectomorphism 

#21 (0) / G2 "~ ~k-1 (0, 0) / G. 
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This  technique  of  pe r fo rming  reduct ion  with respect  to one factor of  a p roduct  group at a 

t ime is cal led reduction in stages�9 It may  be ex tended  to reduct ion  by a normal  subgroup  

H C G and by the cor responding  quot ient  group G / H .  

EXAMPLE. F ind ing  symmet r i e s  for a mechan ica l  p rob l em m a y  reduce  degrees  of  free- 

d o m  by two at a t ime: an integral  of  mot ion  f for a 2n -d imens iona l  Hami l ton ian  sys tem 

(M,  co, H )  m a y  al low to unders tand  the trajectories of  this sys tem in terms of  the tra- 

jec tor ies  of  a (2n - 2 ) -d imens iona l  Hami l ton ian  sys tem (Mred, cored, n r e d ) .  Loca l ly  this 

process  goes as follows. Let  (U, Xl . . . . .  Xn,~l . . . . .  ~n) be a Darboux  chart  for M such 

that  f - -  ~n 68 Since ~n is an integral  of  mot ion ,  0 = {~n H} -- o/4 the trajectories of  
�9 ~ O X n  ' 

the Hami l ton ian  vector  field X/4 lie on a cons tant  level ~n - - C  (Proposi t ion 5.12), and 

H does not  depend  on Xn. The  reduced space is b/red = {(Xl . . . . .  X n - l , ~ l  . . . . .  ~n-1) I 

3a:  (Xl . . . . .  X n - l , a , ~ l  . . . . .  ~n - l ,C)  E L/} and the reduced Hamil tonian is Hred:Ured 

--+ ~ ,  Hred(Xl . . . . .  X n - l , ~ l  . . . . .  ~n-1) = H(Xl  . . . . .  X n - l , a , ~ l  . . . . .  ~n - l ,C)  for some  a.  
In order  to find the trajectories of  the original  sys tem on the hypersur face  ~n = c, we look 

for the trajectories (xl ( t ) , . . . ,  x, ,-1 (t),  ~1 (t) . . . . .  ~n-1 (t))  of  the reduced  sys tem on L/red, 
dx, (t) = 014 and integrate  the equat ion  --37- ~ to obtain the original  t rajectories where  

x . ( t )  = x.(O) + fo oH ~-n-~n (Xl (t) . . . . .  X n - 1  (t),  ~1 (t) . . . . .  ~ n -1  (t),  c) d t ,  

~ ( t )  = c .  

By Sard 's  theorem,  the s ingular  values of  a m o m e n t  map  / z : M  --+ ~I* fo rm a set of  

measu re  zero. So, per turbing if  necessary,  we may  as sume  that a level  of  # is regular  

hence ,  w h e n  G is compact ,  that any point  p of  that level has finite s tabil izer  G p. Let  

O p be the orbit  of  p .  By  the slice t heo rem for the case of  orbifolds,  near  O p the orbit  

space of  the level  is m o d e l e d  by S~ Gp,  where  S is a Gp- invar ian t  disk in the level  and 

t ransverse  to Op (a slice). Thus,  the orbit  space is an orbifold. 69 This  impl ies  that, when  

G -- qF n is an n- torus ,  for mos t  levels reduct ion  goes through,  however  the quot ient  space 

is not  necessar i ly  a mani fo ld  but  an orbifold.  R o u g h l y  speaking,  orbifolds are s ingular  

mani fo lds  where  each s ingular i ty  is local ly  mode l ed  on • m / F ,  for some  finite group F C 

G L ( m ;  R) .  The  d i f ferent ia l -geometr ic  not ions  of  vector  fields, differential  forms,  exter ior  

68To obtain such a chart, in the proof of Darboux's Theorem 1.9 start with coordinates (Xll . . . . .  Xn't Y lt . . . .  Ynt ) 

such that y1 n -- f and 0x0----r -- X f. 
69Let IMI be a Hausdorff topological space satisfying the second axiom of countability. An orbifold chart on IMI 

/ t - -  

is a triple (V, F, qg), where V is a connected open subset of some Euclidean space R m , F is a finite group that acts 
linearly on V so that the set of points where the action is not free has codimension at least two, and q9 : V ~ I MI is 
a F-invariant map inducing a homeomorphism from V~ F onto its image/g C IMI. An orbifold atlas .A for IMI is 
a collection of orbifold charts on I MI such that: the collection of images L/forms a basis of open sets in [M I, and 
the charts are compatible in the sense that, whenever two charts (VI, F1, q91 ) and ($;2,/'2,992) satisfy b/1 c/.42, 
there exists an injective homomorphism ~. : F1 ~/- '2 and a ~.-equivariant open embedding ~ : V1 ~ ];2 such that 
q92 o ~ -- q91 . Two orbifold atlases are equivalent if their union is still an atlas. An m-dimensional orbifold M 
is a Hausdorff topological space IMI satisfying the second axiom of countability, plus an equivalence class of 
orbifold atlases on IMI. We do not require the action of each group F to be effective. Given a point p on an 
orbifold M, let (V, F, tp) be an orbifold chart for a neighborhood b/of  p. The orbifold structure group of p, 
Fp, is (the isomorphism class of) the stabilizer of a preimage of p under 4~. Orbifolds were introduced by Satake 
in [114]. 
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differentiation, group actions, etc., extend naturally to orbifolds by gluing corresponding 
local F-invariant or F-equivariant objects. In particular, a symplectic orbifold is a pair 
(M, co) where M is an orbifold and co is a closed 2-form on M that is nondegenerate at 
every point. 

EXAMPLES. The  Sl-action on C 2 given by e iO �9 (Zl, Z2) --  (e ikOz l ,  eigOz2),  for some  inte- 

gers  k and s has moment map # ' C  2 --+ R, (Zl, z2) ~ -l(klzll2 + ~1z212). Any ~ < 0 is 

a regular value and # -1  (~) is a 3-dimensional ellipsoid. 
�9 2rrm 

When s = 1 and k >~ 2, the stabilizer of (z 1, z2) is { 1 } if z2 7 ~ 0 and is Zk -- {e ~ -T- I m = 
0, 1 . . . . .  k - 1 } if z2 = 0. The reduced space # -1  (~) /S 1 is then called a teardrop orbifold 
or conehead; it has one cone (or dunce cap) singularity with cone angle ~ ,  that is, a point 
with orbifold structure group Zk. 

When k, s 2 are relatively prime, for Z l, Z2 5; & 0 the stabilizer of (Z l,  0) is Zk, of (0, Z2) 

is Ze and of (Zl, z2) is {1}. The quotient/z-1 (~) /S 1 is called a football orbifold: it has two 
cone singularities, with angles ~ and 2--K 

For S 1 acting on C n by e iO �9 (Zl . . . . .  Zn) - (eiklOzl . . . . .  eiknOZn) the reduced spaces are 

orbifolds called weighted (or twisted) projective spaces. 

Let (M, co) be a symplectic manifold where S 1 acts in a Hamiltonian way, p" S 1 

Diff(M), with moment map # ' M  ~ R. Suppose that: 
�9 M has a unique nondegenerate minimum at q where # (q) = 0, and 
�9 for e sufficiently small, S 1 acts freely on the level set # - 1  (e). 

Let C be equipped with the symplectic form - i  dz A d~. Then the action of S 1 on the 
product 7r" S 1 ~ Diff(M x C), d / t ( p ,  Z) - -  (Pt(P), t .  z), is Hamiltonian with moment 
map 

q ~ ' M x C  >R,  ~ b ( p , z ) - / z ( p ) - l z [  2. 

Observe that S 1 acts freely on the e-level of q5 for e small enough: 

r  (e) -- [ (p ,  Z) e M x C I / z ( p )  - Izl 2 - ~ } 

= {(p ,0)  ~ M x C [ / z ( p ) - -  e} 

O {(p, z) e M x C IIzl 2 -- ~ ( p )  - s > 0}. 

The reduced space is hence 

( ] ) - l ( e ) / S 1  ~' LL-1 ( e ) / S  1 (..J {p E M I l z ( p )  > e}.  

The open submanifold of M given by {p 6 M I # ( p )  > e} embeds as an open dense 
submanifold into ~ - l ( e ) / S  1. The reduced space 4) -1 (e) /S  1 is the e-blow-up of M at q 
(Section 5.6). This global description of blow-up for Hamiltonian Sl-spaces is due to Ler- 
man [86], as a particular instance of his cutting technique. Symplectic cutting is the appli- 
cation of symplectic reduction to the product of a Hamiltonian Sl-space with the standard 
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C as above, in a way that the reduced space for the original Hamiltonian Sl-space embeds 
symplectically as a codimension 2 submanifold in a symplectic manifold. As it is a local 
construction, the cutting operation may be more generally performed at a local minimum 
(or maximum) of the moment  map /z .  There is a remaining Sl-action on the cut space 

>e  1 S 1 ut "-- 4>- (e) /  induced by 

T" S 1 > Dif f (M • C),  rt (p, z) = (Pt (P), z). 

In fact, r is a Hamiltonian S 1-action on M • C that commutes with 7t, thus descends to 

an action ~" S 1 ~ Diff(Mc~t), which is also Hamiltonian. 
Loosely speaking, the cutting technique provides a Hamiltonian way to close the open 

manifold {p 6 M I # ( p )  > e}, by using the reduced space at level e , /z  -1 (e ) /S  1. We may 
similarly close {p 6 M I/z(p)  < e}. The resulting Hamiltonian Sl-spaces are called cut 

spaces, and denoted Mcu t and Mcu t . If another group G acts on M in a Hamiltonian way 
that commutes with the Sl-action, then the cut spaces are also Hamiltonian G-spaces. 

6.3. Moment map in gauge theory 

Let G be a Lie group and P a principal G-bundle o v e r  9 .  70 If A is a c o n n e c t i o n  (form) 71 
1 on P,  and if a 6 S2hori z | g is G-invariant for the product action, then A + a is also a 

1 G connection on P. Reciprocally, any two connections on P differ by an a E (I2hori z | g) . 

70Let G be a Lie group and B a manifold. A principal G-bundle over B is a fibration zr" P ~ B (Section 4.2) 
with a free action of G (the structure group) on the total space P, such that the base B is the orbit space, the map 
Jr is the point-orbit projection and the local trivializations are of the form ~0 u - (Jr, stg)" J r -  1 (b/) ~ / g  x G with 
sbt(g �9 p) = g �9 svl(p)  for all g ~ G and all p 6 Jr -1 (L/). A principal G-bundle is represented by a diagram 

G ~ P 
~rr 
B 

For instance, the Hopff ibration is a principal sl-bundle over $2(= CIP 1 ) with total space S 3 regarded as unit 
vectors in C 2 where circle elements act by complex multiplication. 

71 An action ~ : G ~ Diff(P) induces an infinitesimal action d 7t : ~t --+ X (P) mapping X 6 ~t to the vector field 

X # generated by the one-parameter group {exp tX(e )  I t  ~ I~} c__ G. Fix a basis X 1 . . . . .  Xk of g. Let P be a 
principal G-bundle over B. Since the G-action is free, the vector fields X~ . . . . .  X~ are linearly independent at 

each p ~ P. The vertical bundle V is the rank k subbundle of T P generated by X ~ , . . . ,  X#k" Alternatively, V is 
the set of vectors tangent to P that lie in the kernel of the derivative of the bundle projection 7r, so V is indeed 
independent of the choice of basis for g. An (Ehresmann) connection on P is a choice of a splitting T P = V @ H, 

where H (called the horizontal bundle) is a G-invariant subbundle of T P complementary to the vertical bundle V. 
A connection form on P is a Lie-algebra-valued 1-form A = y~k A | X i E S-21 i -  1 i (P) | g such that A is G-invar- 

iant, with respect to the product action of G on $21 (p)  (induced by the action on P) and on g (the adjoint action), 
and A is vertical, in the sense that t x# A -- X for any X E g. A connection T P -- V 6) H determines a connection 
(form) A and vice-versa by the formula H = ker A = {v ~ T P [tvA = 0}. Given a connection on P, the splitting 
T P  = V (9 H induces splittings for bundles T * P  = V* @ H*,  A2T*p = (A2V *) (9 (V* m H*) @ (A2H*), 

2 S-22 etc., and for their sections: 121 (p)  = S-2vlert (9 12horiz,1 I22 (P) = S22ert (9 S'2mix @ horiz' etc. The corresponding 

connection form A is in S'21ert | g. 
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We conclude that the set .A of all connections on the principal G-bundle P is an affine 
1 space modeled on the linear space a -  (f2hori z | g)C 

Now let P be a principal G-bundle over a compact Riemann surface. Suppose that the 
group G is compact or semisimple. Atiyah and Bott [6] noticed that the corresponding 
space .A of all connections may be treated as an infinite-dimensional symplectic manifold. 
This requires choosing a G-invariant inner product (., .) on ~t, which always exists, ei- 
ther by averaging any inner product when G is compact, or by using the Killing form on 
semisimple groups. 

Since r is an affine space, its tangent space at any point A is identified with the model 
linear space ct. With respect to a basis X1 . . . . .  Xk for the Lie algebra ~t, elements a, b 6 ct 
are written 

a - - E a i |  and b - - E b i |  i. 

If we wedge a and b, and then integrate over B, we obtain a real number: 

2 ,~ S-22(B) x , ( n h o n z ( P ) )  

(a, b) I > E ai A bj (Xi ,  X j )  I 
i,j 

>IR, 

, f A b j ( X i , X j ) .  
B t,j 

We used that the pullback Jr* :S22(B)--+ a"22(p) is an isomorphism onto its image 
(S-2horiz2 ( p ) )  G. When oo (a, b) - 0  for all b ~ ct, then a must be zero. The map co is non- 
degenerate, skew-symmetric, bilinear and constant in the sense that it does not depend on 
the base point A. Therefore, it has the right to be called a symplectic form on A, so the 
pair (A, oo) is an infinite-dimensional symplectic manifold. 

A diffeomorphism f : P  --+ P commuting with the G-action determines a diffeomor- 
phism fbasic : B --+ B by projection. Such a diffeomorphism f is called a gauge transfor- 
mation if the induced fbasic is the identity. The gauge group of P is the group G of all 
gauge transformations of P. 

The derivative of an f 6 ~ takes an Ehresmann connection T P = V @ H to another 
connection T P -- V @ H i ,  and thus induces an action of ~ in the space .A of all connec- 
tions. Atiyah and Bott [6] noticed that the action of G on (,4, co) is Hamiltonian, where the 
moment map (appropriately interpreted) is 

# ' A  > (a,.22(p) | g)G 

A, > curv A, 

i.e., the moment map is the curvature. 72 The reduced space A / / =  i t-1 ( 0 ) / ~  is the space of 

flat connections modulo gauge equivalence, known as the moduli space of flat connections, 
which is a finite-dimensional symplectic orbifold. 

72The exterior derivative of a connection A decomposes into three components, 

2 2 da = (da)vert + (da)mix 4- (da)horiz E (S22ert if) S-2mi x if) S2horiz) | g 
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EXAMPLE. We describe the At iyah-Bot t  construction for the case of a circle bundle 

S 1 P 

~Jr 
B 

Let v be the generator of the Sl-act ion on P,  corresponding to the basis 1 of t~ ~ R. 
A connection form on P is an ordinary 1-form A e ~(-21 ( P )  such that s  -- 0 and t v A  -- 1. 

If we fix one particular connection A0, then any other connection is of the form A -- A0 + a 
1 1 for some a e ct = (~2hori z (P))  G = S2 (B). The symplectic form on ct -- E21 ( B )  is simply 

o)'ct x Ct > /22(B) > IR, 

( a , b )  l > a A b  i > l a m b .  
J8  

The gauge group is ~ -  Maps(B,  S1) ,  b e c a u s e  a gauge transformation is multiplication 

by some element of S 1 over each point in B encoded in a map h ' B  ~ S 1. The action 

~b'G --+ Dif f (P)  takes h e G to the diffeomorphism 

dph " p ' > h(:rt'(p)) . p .  

The Lie algebra of ~ is L i e ~  -- Maps(B,  N) -- C a ( B )  with dual (Lie ~)* -- ~22(B), where 

the (smooth) duality is provided by integration C a ( B )  x f22(B) ~ R ,  (h, 16) ~ fB  hfl .  

The gauge group acts on the space of all connections by 

7t'~7 > Diff(A),  

(h "x w-> ei~ l > (aPh " a ~ a - :r* dO).  

(In the case where P -- S ] x B is a trivial bundle, every connection can be written A -- 

d t  + / 3 ,  with/3 e I21(B). A gauge transformation h e G acts on P by 4 ) h ' ( t , x )  w-> (t + 

O(x) ,  x )  and on A by A ~-+ ~ph_ 1 (A).) The infinitesimal action is 

d~p" Lie G 

X i  

> x ( A ) ,  

> X # - vector field described by (A  ~ A - d X ) ,  

so that X # - - d X .  It remains to check that 

/z" ,4 > (LieG)* - I22(B), 

A I > curv A 

satisfying (da)mix = 0 and (da)vert(X, Y) = [X, Y], i.e., (da)vert -- 1 Y~4,e,m c~mae A Am | Xi,  where the 

c i em's are the structure constants of the Lie algebra with respect to the chosen basis, and defined by [Xg, Xm ] = 

Y~4,e,m Ct~mXi �9 So the relevance of dA may come only from its horizontal component, called the curvature form 

of the connection A, and denoted curv A = (dA)hori z ~ S22 horiz | 0. A connection is called fiat if its curvature is 
zero. 
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is indeed a moment map for the action of the gauge group on ,4. Since in this case curv A -- 
2 G = S 2 2  d A 6 (f2hori z (P))  (B), the action of ~ on f2 2 ( B )  is trivial and # is G-invariant, the 

equivariance condition is satisfied. Take any X ~ LieG - C ~  Since the map #X 'A  
(X, dA) - f8 X .  dA is linear in A, its differential is 

dlzX " a ~ R, 

a l > fBXda.  

By definition of co and the Stokes theorem, we have that 

co(X#,a)-- f t X # ' a - - - f s d X ' a - -  f t X ' d a = d l z X ( a ) ,  Va ~ f21(B), 

so we are done in proving that # is the moment map. 

The function [I/zIIZ'A --~ R giving the square of the L 2 norm of the curvature is the 

Yang-Mills functional, whose Euler-Lagrange equations are the Yang-Mills equations. 
Atiyah and Bott [6] studied the topology of A by regarding II/Zll 2 as  an equivariant Morse 
function. In general, it is a good idea to apply Morse theory to the norm square of a moment 
map [80]. 

6.4. Symplectic toric manifolds 

Toric manifolds are smooth toric varieties. 73 When studying the symplectic features of 

these spaces, we refer to them as symplectic toric manifolds. Relations between the alge- 
braic and symplectic viewpoints on toric manifolds are discussed in [21 ]. 

D E F I N I T I O N  6.6. A symplectic toric manifold is a compact connected symplectic mani- 
fold (M, co) equipped with an effective Hamiltonian action of a toms qF of dimension equal 
to half the dimension of the manifold, dim ql"- I dim M, and with a choice of a corre- 

sponding moment map #. Two symplectic toric manifolds, (Mi, coi, 7s lZi),  i -- 1, 2, are 
equivalent if there exists an isomorphism k:qF1 --+ ~'2 and a ~-equivariant symplectomor- 

phism ~o:M1 --+ M2 such that #1 =/z2  o 99. 

EXAMPLES. 

1. The circle S 1 acts on the 2-sphere (S 2, tOstandard - -  dO/xdh) by rotations, e iv .  (0,  h )  --  

(0 + v, h). with moment map # -- h equal to the height function and moment poly- 
tope [ - 1 ,  1] (see Figure 3). 

73Toric varieties were introduced by Demazure in [29]. There are many nice surveys of the theory of toric vari- 
eties in algebraic geometry; see, for instance, [27,53,79,107]. Toric geometry has recently become an important 
tool in physics in connection with mirror symmetry [26]. 
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1 
# = h  

- 1  

Fig. 3. 

Analogously,  S 1 acts on the Riemann sphere C]~ 1 with the Fubini-Study form 
1 eiO OgFS = ~COstandara, by �9 [z0, zl]  -- [zo, e i~  This is Hamiltonian with moment 

1 IZl[ 2 
map/z[z0, Zl] -- - ~  �9 iz01~-~]Zl 12 , and moment polytope [_1,  0]. 

2. For the qFn-action on the product of n Riemann spheres CP 1 • . . .  • CP 1 by 

( eiO' . . . . .  eiOn) �9 ([Zl, //31] . . . . .  [Zn, 1/3n])-  ([Z,, e iO1 1/31] . . . . .  [//30, eiOn11)l]), 

the moment polytope is an n-dimensional cube. 
3. Let ( C ~  2, O)FS) be 2-(complex-)dimensional complex projective space equipped with 

the Fubini-Study form defined in Section 3.4. The qF2-action on CP 2 by (e iO1 , e i02) �9 
[Z0, Z l, Z2] -- [Z0, eiOlzl,  e i02z2] has moment map 

1 (  [Zl[ 2 [Z212 ) 
lz[zo, z l , z2]  = - ~  iz012 + [Zl[ 2 + iz212, Iz~ 2 + Izll 2 + Iz2[ 2 . 

The image is the isosceles triangle with vertices (0, 0), ( - 1 ,  0) and ( 0 , -  1). 
4. For the qFn-action on (CP n, ogFS) by 

( eiO1 . . . . .  eiOn) " [Z0, Zl . . . . .  Zn] -- [Z0, eiOlzl . . . . .  eiOnzn] 

the moment polytope is an n-dimensional simplex. 

Since the coordinates of the moment map are commuting integrals of motion, a sym- 
plectic toric manifold gives rise to a completely integrable system. By Proposition 5.24, 
symplectic toric manifolds are optimal Hamiltonian toms-spaces. By Theorem 5.21, they 
have an associated polytope. It turns out that the moment polytope contains enough infor- 
mation to sort all symplectic toric manifolds. We now define the class of polytopes that 
arise in the classification. For a symplectic toric manifold the weights )~(1) . . . . .  ~(n) in 
Theorem 5.22 form a Z-basis of Z m, hence the moment polytope is a Delzant  polytope: 

DEFINITION 6.7. A Delzant  polytope in R n is a polytope satisfying: 
�9 simplicity,  i.e., there are n edges meeting at each vertex; 
�9 rationality, i.e., the edges meeting at the vertex p are rational in the sense that each 

edge is of the form p + tui ,  t >~ 0, where ui ~ zn; 
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Fig. 4. 

�9 smoothness, i.e., for each vertex, the corresponding u 1 . . . . .  Un can be chosen to be a 

Z-basis of Z n . 

In R 2 the simplicity condition is always satisfied (by nondegenerate polytopes). In •3, 
for instance, a square pyramid fails the simplicity condition. 

EXAMPLES. Figure 4 represents Delzant polytopes in •2. 

The following theorem classifies (equivalence classes of) symplectic toric manifolds in 
terms of the combinatorial data encoded by a Delzant polytope. 

THEOREM 6.8 (Delzant [28]). Toric manifolds are classified by Delzant polytopes, and 

their bijective correspondence is given by the moment map" 

{toric manifolds} 

( M 2n , co , 7~n , lz ) , 

; {Delzant polytopes}, 

# ( M ) .  

Delzant's construction (Section 6.5) shows that for a toric manifold the moment map 
takes the fixed points bijectively to the vertices of the moment polytope and takes points 
with a k-dimensional stabilizer to the codimension k faces of the polytope. The moment 
polytope is exactly the orbit space, i.e., the preimage under # of each point in the polytope 
is exactly one orbit. For instance, consider (S 2, co -- dO/x dh, S 1 , # -- h), where S 1 acts 

by rotation. The image of # is the line segment I -- [ -1 ,  1]. The product S 1 x I is an 
open-ended cylinder. We can recover the 2-sphere by collapsing each end of the cylinder 
to a point. Similarly, we can build C~ 2 from ,~,2 • A where A is a rectangular isosceles 

triangle, and so on. 

EXAMPLES. 
1. By a linear transformation in SL(2; Z), we can make one of the angles in a Delzant 

triangle into a right angle. Out of the rectangular triangles, only the isosceles one 
satisfies the smoothness condition. Therefore, up to translation, change of scale and 
the action of SL(2; Z), there is just one 2-dimensional Delzant polytope with three 
vertices, namely an isosceles triangle. We conclude that the projective space CP e 
is the only 4-dimensional toric manifold with three fixed points, up to choices of a 
constant in the moment map, of a multiple of coFs and of a lattice basis in the Lie 

algebra of T e. 
2. Up to translation, change of scale and the action of SL(n; Z), the standard n-simplex 

A in R n (spanned by the origin and the standard basis vectors (1, 0 . . . . .  0) . . . . .  
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(0 . . . . .  0, 1)) is the only n-dimensional Delzant polytope with n + 1 vertices. Hence, 
M/x = C ?  n is the only 2n-dimensional toric manifold with n + 1 fixed points, up to 
choices of a constant in the moment map, of a multiple of WFS and of a lattice basis 
in the Lie algebra of qF N. 

3. A transformation in SL(2; Z) makes one of the angles in a Delzant quadrilateral 
into a right angle. Automatically an adjacent angle also becomes 90 ~ Smoothness 
imposes that the slope of the skew side be integral. Thus, up to translation, change of 
scale and SL(2; Z)-action, the 2-dimensional Delzant polytopes with four vertices are 
trapezoids with vertices (0, 0), (0, 1), (s 1) and (s + n, 0), for n a nonnegative integer 
and s > 0. Under Delzant's construction (that is, under symplectic reduction of C 4 
with respect to an action of (S1)2), these correspond to the so-called Hirzebruch 
surfaces--the only 4-dimensional symplectic toric manifolds that have four fixed 
points up to equivalence as before. Topologically, they are S2-bundles over S 2, either 
the trivial bundle S 2 • S 2 when n is even or the nontrivial bundle (given by the blow- 
up of C~ 2 at a point; see Section 4.3) when n is odd. 

Let A be an n-dimensional Delzant polytope, and let (M/x, wA, ,~n,/ZA) be the asso- 
ciated symplectic toric manifold. The e-blow-up of (MA, ogA) at a fixed point of the qI 'n- 
action is a new symplectic toric manifold (Sections 4.3 and 5.6). Let q be a fixed point 
of the qrn-action on (MA, co/x), and let p =/z/x (q) be the corresponding vertex of A. Let 
U l . . . . .  Un be the primitive (inward-pointing) edge vectors at p, so that the rays p + tui, 
t ) 0, form the edges of A at p. 

PROPOSITION 6.9. The e-blow-up of  (M/x, o~/x) at a fixed point q is the symplectic toric 
manifold associated to the polytope AE obtained from A by replacing the vertex p by the 
n vertices p + eui, i = 1, . . . ,  n. 

In other words, the moment polytope for the blow-up of (MA, wA) at q is obtained 
from A by chopping off the comer corresponding to q, thus substituting the original set 
of vertices by the same set with the vertex corresponding to q replaced by exactly n new 
vertices. The truncated polytope is Delzant. We may view the e-blow-up of (M/x, wA) 
as being obtained from M/x by smoothly replacing q by (CI? n- l ,  eCOFS) (whose moment 
polytope is an (n - 1)-dimensional simplex). (See Figure 5.) 

EXAMPLE. The moment polytope for the standard qF2-action on (C~ 2, OJFS) is a right 
isosceles triangle A. If we blow up C~ 2 at [0" 0" l] we obtain a symplectic toric manifold 
associated to the trapezoid below" a Hirzebruch surface (see Figure 6). 
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Let (M, o9, ~n, ~) be a 2n-dimensional  symplectic toric manifold. Choose a suitably 
generic direction in ~n by picking a vector X whose components  are independent over Q. 
This condition ensures that: 

�9 the one-dimensional subgroup ql "x generated by the vector X is dense in qF n, 

�9 X is not parallel to the facets of the moment  polytope A " = / z ( M ) ,  and 
�9 the vertices of A have different projections along X. 
Then the fixed points for the ~,n_action are exactly the fixed points of the action restricted 

to ~,x, that is, are the zeros of the vector field, X # on M generated by X. The projection 

of # along X ,  # x  . _  (# ,  X ) ' M  ~ ~ ,  is a Hamiltonian function for the vector field X # 

generated by X. We conclude that the critical points of # x  are precisely the fixed points of 
the Tn-action (see Figure 7). 

By Theorem 5.22, if q is a fixed point for the ql"n-action, then there exists a chart 
(~'[, X l  . . . . .  X n ,  Yl . . . . .  y /7 )  centered at q and weights )~(1) . . . . .  )~(n) E Z n such that 

/7 

1 ~ ( ~ ( k )  X)(x  2 + yk 2) tz x lu - (lz, x ) l u  - It x (q) - ~ , �9 

k=l 

Since the components  of X are independent over Q, all coefficients (~ (k), X) are nonzero, 

so q is a n o n d e g e n e r a t e  critical point of # x .  Moreover, the index  74 of q is twice the number 

of labels k such that _(~(k),  X) < 0. But the -)~(k)'s are precisely the edge vectors ui 

which satisfy Delzant 's  conditions. Therefore, geometrically, the index of q can be read 

from the moment  polytope A, by taking twice the number of edges whose inward-pointing 

74A Morse function on an m-dimensional manifold M is a smooth function f" M --+ I~ all of whose critical 
points (where d f  vanishes) are nondegenerate (i.e., the Hessian matrix is nonsingular). Let q be a nondegenerate 
critical point for f" M --+ ~. The index of f at q is the index of the Hessian Hq �9 ~m x R m --~ R regarded as a 
symmetric bilinear function, that is, the maximal dimension of a subspace of ~ where H is negative definite. 
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edge vectors at Iz (q) point up relative to X, that is, whose inner product  with X is positive. 
In particular, # x  is a perfect Morse function 75 and we have 

PROPOSITION 6.1 0. Let X ~ ]1~ n have components independent over Q. The degree-2k 

homology group of  the symplectic toric manifold (M, o9, 7f, lz) has dimension equal to the 
number o f  vertices o f  the moment polytope where there are exactly k (primitive inward- 

pointing) edge vectors that point up relative to the projection along the X. All odd-degree 

homology groups of  M are zero. 

By Poincar6 duality (or by taking - X  instead of X), the words point up may be replaced 

by point down. The Euler characteristic of a symplectic toric manifold is simply the number  

of  vertices of  the corresponding polytope. There is a combinatorial  way of unders tanding 

the cohomology  ring [53]. 

A symplectic toric orbifold is a compact  connected symplectic orbifold (M, 09) equipped 

with an effective Hamil tonian action of a toms of d imension equal to half  the d imension 

of the orbifold, and with a choice of a corresponding momen t  map. Symplect ic  toric orb- 

ifolds were classified by Lerman and Tolman [87] in a theorem that generalizes Delzant 's:  

a symplectic toric orbifold is determined by its momen t  polytope plus a positive integer 

label attached to each of the polytope facets. The polytopes that occur are more  general  

than the Delzant  polytopes in the sense that only simplicity and rationality are required; 

the edge vectors U l . . . . .  Un need only form a rational basis of Z n. When  the integer la- 

bels are all equal to 1, the failure of the polytope smoothness  accounts for all orbifold 

singularities. 

6.5. Delzant's construction 

Following [28,66], we prove the existence part (or surjectivity) in Delzant 's  theorem, by 

using symplectic reduction to associate to an n-dimensional  Delzant  polytope A a sym- 

plectic toric manifold ( M a ,  o9a, T n , / z a ) .  
Let  A be a Delzant  polytope in (~n) .76 and with d facets. 77 We can algebraically de- 

scribe A as an intersection of d halfspaces. Let vi ~ Z n, i - 1 . . . . .  d, be the primitive 78 

outward-point ing normal  vectors to the facets of  A. Then, for some )~i E ]/~, we can write 

A -- {x ~ (Rn)* [ (x, vi) ~ ~,i, i = 1 , . . . ,  d}. 

75A perfect Morse function is a Morse function f for which the Morse inequalities [ 103,104] are equalities, i.e., 
b,~ (M) -- C~ and bz (M) - b~-I (M) +.. .  + bo(M) = Cz - Cz-1 +.. .  4- CO where bz (M) = dim Hz (M) and 
Cz be the number of critical points of f with index ~.. If all critical points of a Morse function f have even index, 
then f is a perfect Morse function. 
76Although we identify •n with its dual via the Euclidean inner product, it may be more clear to see A in (Ii~ n)* 

for Delzant's construction. 
77 A face of a polytope A is a set of the form F = P f3 {x E ]~n [ f(x) -- c} where c 6 Ii~ and f 6 (Rn) * satisfies 

f(x) >~ c, Yx ~ P. A facet of an n-dimensional polytope is an (n - 1)-dimensional face. 
78A lattice vector v e Z n is primitive if it cannot be written as v - ku with u e Z n, k 6 Z and Ikl > 1; for 

instance, (1, 1), (4, 3), (1,0) are primitive, but (2, 2), (3, 6) are not. 



Symplectic geometry 175 

v2 

(0, 1) / 

, , .  v 

(o, o) (1, o) 

1)1 

Fig. 8. 

EXAMPLE. When A is the triangle shown in Figure 8, we have 

For the standard basis el - (1 ,0  . . . . .  0) . . . . .  ed -- (0 . . . . .  0, 1) of R d, consider 

~r " ~ d  > R , ,  

ei ~ > l)i. 

LEMMA 6.1 1. The m a p  Jr is onto  a n d  m a p s  Z d onto  Z n. 

PROOF. We need to show that the set { vl . . . . .  vd } spans Z n . At a vertex p, the edge vectors 

ul . . . . .  un e (IRn) * form a basis for (zn)  * which, by a change ofbasis  if necessary, we may 

assume is the standard basis. Then the corresponding primitive normal vectors to the facets 

meeting at p are - u l  . . . . .  - U n .  7-] 

We still call Jr the induced surjective map "I1 "d = IRd/(27rZ d) --~ ~,n = R n / ( 2 z c z n ) .  The 

kernel N of 7r is a (d - n)-dimensional  Lie subgroup of ~,d with inclusion i ' N  ~ ~s 

Let n be the Lie algebra of N. The exact sequence of tori 

1 > N i ~ d  Jr ,~n > > >1 

induces an exact sequence of Lie algebras 

i ]l~d Jr ~ n  
0 > n  > > >0  

with dual exact sequence 

0 > (]l{n) , > ( ]Rd) ,  i* n* ~' > 0 .  
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i Consider C d with symplectic form w0 = g Y~ dzk A dzk, and standard Hamiltonian ac- 

tion of "2 d given by (e itl . . . . .  ei td)  �9 (Zl, . . . , Z d ) -  ( e i t l z l  . . . . .  eitdzd). A moment  map is 
q6 "C d --+ (Rd) * defined by 

1 12 2) . . . .  ~(z l  . . . . .  Z d ) - - - - ~ ( I z l  . . . . .  IZdl + (~1 .,)~d) 

where the constant is chosen for later convenience. The subtorus N acts on C d in a Hamil- 
tonian way with moment  map i* o 4~" C d ~ n*. Let Z = (i* o ~b) -1  (0). 

In order to show that Z (a closed set) is compact  it suffices (by the Heine-Bore l  theorem) 
to show that Z is bounded. Let A t be the image of A by Jr*. First we show that 4~(Z) = A t. 
A value y e (Rd) * is in the image of Z by 4~ if and only if 

(a) y is in the image of 4~ and (b) i * y = O  

if and only if (using the expression for 4' and the third exact sequence) 

(a) (y, ei) <~ ~.i for i = 1 . . . . .  d and 

(b) y - Jr*(x) for some x e (Rn) *. 

Suppose that y - J r *  (x). Then 

(y ,  e i )  <~ ~.i, Vi  ~, ,~ (x ,  Jr (e i ) )  <~ ~.i, 

~, > (x, vi ) <,hi, u 

u 

J, > x E A .  

Thus, y e tp(Z) r y E Jr*(A) = A'. Since A' is compact,  tp is proper and tp(Z) = A', we 
conclude that Z must be bounded, and hence compact. 

In order to show that N acts freely on Z, pick a vertex p of A, and let I -- {il . . . . .  in } be 
the set of indices for the n facets meeting at p. Pick z E Z such that 4~(z) = Jr* (p).  Then 
p is characterized by n equations (p, Vi) = ~.i where i 6 I:  

(P, Vi) --  ~.i ~, ,~ (p ,  Jr (e i ) )  - -  Jt, i 

~, ,'- (Jr * (p ) ,  ei ) - -  )~i 

~, > (~b (Z), ei ) - -  Jl, i 

~, ,~ ith coordinate of 4~(z) is equal to )~i 

1 
~, ,~ - - [z i  12 + )~i ----- )~i 

2 

"(, > Zi - -  O. 

Hence, those z's are points whose coordinates in the set I are zero, and whose other co- 
ordinates are nonzero. Without loss of generality, we may assume that I - { 1 . . . . .  n }. The 

stabilizer of z is 

( ~ d ) z -  {( t l ,  . . . ,  tn, 1 . . . . .  1) ~ T d }. 
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As the restriction Jr :(Nd)z --+ IR n maps the vectors el . . . . .  en to a Z-basis  1) 1 . . . . .  l)n 

of Z n (respectively), at the level of groups Jr :(ql'd)z ~ 3 "n must  be bijective. Since 
N = ker(Jr :ql "d --+ ql'n), we conclude that N A (~'d) z = {e}, i.e., Nz = {e}. Hence all 

N-stabil izers at points mapping to vertices are trivial. But this was the worst  case, since 
other stabilizers Nz, (z' 6 Z) are contained in stabilizers for points z that map to vertices. 

We conclude that N acts freely on Z. 
We now apply reduction. Since i* is surjective, 0 6 n* is a regular value of i* o 4~. 

Hence, Z is a compact  submanifold of C d of (real) dimension 2d - (d - n) -- d + n. 

The orbit space MA = Z / N  is a compact  manifold of (real) dimension d i m Z  - d i m N  -- 

(d + n) - (d - n) = 2n. The point-orbit  map p : Z  ---> MA is a principal N-bundle  over 

MA. Consider  the diagram 

Z 
p ~  

MA 

J c d  

where j ' Z  ~ C d is inclusion. The Marsden-Weins te in -Meyer  theorem (Theorem 6.1) 

guarantees the existence of a symplectic form cozx on MA satisfying 

p*wA -- j*wo. 

Since Z is connected, the symplectic manifold (MA, coA) is also connected. 
It remains to show that (MA, wA) is a Hamil tonian 3"n-space with a momen t  map #zx 

having image #A (MA) = A. Let z be such that 4~(z) -- Jr* (p)  where p is a vertex of A. Let 
a :~n ___> (3-d)z be the inverse for the earlier bijection Jr : (~'d) z --> 3 "n. This is a section, 

i.e., a fight inverse for Jr, in the sequence 

1 > N i ~,d Jr ,~n > > > 1, 
o 

< 

so it splits, i.e., becomes  like a sequence for a product, as we obtain an isomorphism 

(i, a ) ' N  x ~,n ~-> ~,a. The action of the T n factor (or, more rigorously, a ( ~  "n) C qF a) 

descends to the quotient Mzx = Z / N .  Consider  the diagram 

Z 

M~x 

J ~  C d r r/* )* , + (R > (R~) * 

where the last horizontal map is projection onto the second factor. Since the composit ion 

of the horizontal maps is constant along N-orbits ,  it descends to a map 

# A ' M A  > (Nn) * 
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which satisfies #/x o p = a*  o 4} o j .  By reduction for product  groups (Section 6.2), this is 
a momen t  map for the action of qP" on (MA, co/x). The image of/z/x is 

/ZA (M/x) = (/z/x o p ) ( Z )  = (a* o 4} o j ) ( Z )  = (a* o yr*)(A) = A, 

because {p(Z) = zr*(A) and :r o a = id. We conclude that (MA, WA, , ~ n , / s  is the re- 

quired toric manifold corresponding to A. This construction via reduction also shows that 
symplectic toric manifolds are in fact K~ihler. 

EXAMPLE. Here are the details of  Delzant 's  construction for the case of  a segment  

A = [0, a] C R* (n = 1, d = 2). Let v ( =  1) be the standard basis vector in ~ .  Then  A 
is described by ( x , - v )  ~< 0 and (x, v) ~< a, where Vl = - v ,  v2 = v, ~,1 - - 0  and )~2 = a. 

The projection I~ 2 J r  IR, el ~ - v ,  e2 ~ v, has kernel equal to the span of (el + e2), so 
that N is the diagonal  subgroup of "i[ ̀2 -- S 1 • S 1 . The exact sequences become 

1 > N i ~-2 zr > > S 1 > 1, 

t I > (t, t), 

( t l , t2)  I > t 1 it2, 

i ]1~2 :rr 0 ) n > > It~ >0 ,  

x l  > ( x , x ) ,  

( X l , X 2 )  I > X 2 - - X l ,  

o > R , . , ( )  �9 > ~ 2  * i 1l* > > O, 

X I > ( - -X,X) ,  

(X1,X2)  I > XI-~-X2.  

The action of the diagonal  subgroup N = { (e it , e i t)  E S 1 • S 1 } on C 2 by 

(e it, e i t )  �9 (Zl, z2) - (e it za,  e it z2)  

has m o m e n t  map (i* o ~)(Zl ,  z2) - -1(Iz112 + Iz2l 2) + a, with zero-level set 

(i* o ~b)-l(0) - {(Zl, z2) E C 2" Izll 2 + Iz212 - 2a}. 

Hence,  the reduced space is a projective space, (i* o q~)-i ( O ) / N  = C]P 1 . 

6.6. D u i s t e r m a a t - H e c k m a n  t h e o r e m s  

Throughout  this subsection, let (M, 09, G, /z )  be a Hamil tonian G-space,  where  G is an 
n-torus 79 and the momen t  m a p / z  is proper. 

79The discussion in this subsection may be extended to Hamiltonian actions of other compact Lie groups, not 
necessarily tori; see [66, Exercises 2.1-2.10]. 
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If G acts freely o n / z  - 1  ( 0 ) ,  it also acts freely on nearby l e v e l s  ~ - 1  (t), t 6 0" and t ~ 0. 
(Otherwise, assume only that 0 is a regular value of # and work with orbifolds.) We study 

the variation of the reduced spaces by relating 

(Mred-- # - l ( 0 ) / G ,  COred) and ( M t -  # - l ( t ) / G ,  COt). 

For simplicity, assume G to be the circle S 1. Let Z = #-1(0)  and let i ' Z  ~ M be the 
inclusion map. Fix a connection form ot 6 Y21 ( Z )  for the principal bundle 

S 1 Z 
~Jr 
M r e d  

that is, s - 0 and tx#Ot - 1, where X # is the infinitesimal generator for the Sl-action. 
Construct a 2-form on the product manifold Z x ( - e ,  e) by the recipe 

O" - -  7/" * COred - -  d (x c~), 

where x is a linear coordinate on the interval ( - e ,  e) C IR "" g*. (By abuse of notation, we 
shorten the symbols for forms on Z x ( - e ,  e) that arise by pullback via projection onto 

each factor.) 

LEMMA 6.12. The 2-form a is symplectic for e small enough. 

PROOF. At points where x --0,  the form alx=0 - 7f'COred-+-0r A d x  satisfies alx=o(X #, ~ )  
= 1, so a is nondegenerate along Z x {0}. Since nondegeneracy is an open condition, we 
conclude that a is nondegenerate for x in a sufficiently small neighborhood of 0. Closed- 

ness is clear. Vq 

Notice that a is invariant with respect to the Sl-action on the first factor of Z x ( - e ,  e). 
This action is Hamiltonian with moment map x" Z x ( - e ,  e) -+ ( - e ,  e) given by projec- 
tion onto the second factor (since Ex#C~ - -0  and ix#Or - 1)" 

tx#a = - t s#d(xot  ) -- -Ex#(XOt) + dtx#(XOt ) -- dx. 

LEMMA 6.1 3. There exists an equivariant symplectomorphism between a neighborhood 
of Z in M and a neighborhood of Z • {0} in Z x ( - e ,  e), intertwining the two moment 

maps, for  e small enough. 

PROOF. The inclusion i0" Z ~-+ Z • ( - e ,  e) as Z x {0} and the natural inclusion i ' Z  
M are Sl-equivariant coisotropic embeddings. Moreover, they satisfy i ~ a -  i'co since 
both sides are equal to Jr*COred, and the moment maps coincide on Z because i~x - 0 -  
i*/z. Replacing e by a smaller positive number if necessary, the result follows from the 
equivariant version of the coisotropic embedding theorem (Theorem 2.9). 80 D 

8~ coisotropic embedding theorem: Let (Mo, co0), (M1, col ) be symplectic manifolds of  dimen- 

sion 2n, G a compact Lie group acting on (M i , coi ), i = 0, 1, in a Hamiltonian way with moment maps #0 
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Therefore, in order to compare the reduced spaces Mt = lz - l ( t ) / S  1 for t ~ O, we can 

work in Z x ( - s ,  s) and compare instead the reduced spaces x -1 ( t ) / S  1 . 

PROPOSITION 6.14. The space (Mr, cot) is symplectomorphic to ( M r e d ,  c o r e d -  tfl) where 
13 is the curvature form of  the connection ot. 

PROOF. By Lemma 6.13, (Mr, cot) is symplectomorphic to the reduced space at level t for 
the Hamiltonian space (Z • ( - e ,  s), ~r, S 1 , x). Since x - l ( t )  = Z • {t}, where S 1 acts on 

the first factor, all the manifolds x -1 ( t ) / S  1 are diffeomorphic to Z / S  1 = Mrea. As for the 

symplectic forms, let t t"  Z • {t} ~ Z • ( - - 6 ,  6)  be the inclusion map. The restriction of ~r 

to Z x {t} is 

t t O" --- re * cored - -  t dot. 

By definition of curvature, dot = re*ft. Hence, the reduced symplectic form o n  x - 1  ( t ) / S  1 

is cored - -  tfl. D 

In loose terms, Proposition 6.14 says that the reduced forms cot vary linearly in t, for t 

close enough to 0. However, the identification of Mt with Mred as abstract manifolds is not 
natural. Nonetheless, any two such identifications are isotopic. By the homotopy invariance 

of de Rham classes, we obtain: 

THEOREM 6.15 (Duistermaat-Heckman [38]). Under the hypotheses and notation before, 
the cohomology class o f  the reduced symplectic form [cot ] varies linearly in t. More specif- 

2 ically, i f  c -  [-/3] e ndeRham(Mred) is the first Chern class 81 of  the Sl-bundle Z --+ Mred, 
we have 

[cot] - -  [cored] -~- tc. 

and Iz 1, respectively, Z a manifold o f  dimension k ~ n with a G-action, and t i : Z ~ M i , i -- 0, 1, G-equivariant 

coisotropic embeddings. Suppose that t~co 0 = t~o31 and t~# 0 - t ~ l Z  1. Then there exist G-invariant neighbor- 

hoods UO and lg 1 o f  to(Z)  and t 1 (Z)  in M 0 and M 1, respectively, and a G-equivariant symplectomorphism 

99 :t4r 0 ~ /a /1  such that q9 o t o = t 1 and #0 = 99"#1 �9 

81 Often the Lie algebra of S 1 is identified with 2zr iI~ under the exponential map exp: g _~ 27r i/~ --+ S 1, ~ w-> e~. 

Given a principal s l -bundle ,  by this identification the infinitesimal action maps the generator 27ri of 27ri• 

to the generating vector field X #. A connection form A is then an imaginary-valued I-form on the total space 

sa t i s fy ing/2x  # A = 0 and t x # A = 27r i. Its curvature form B is an imaginary-valued 2-form on the base satisfying 

7r* B = d A. By the Chern-Weil  isomorphism, the first Chern class of the principal S 1 -bundle is c -- [ ~ B ]. 

Here we identify the Lie algebra of S ! w i t h / ~  and implicitly use the exponential map e x p : g  ~ It~ --+ S 1 , 

t w-> e 2rcit . Hence, given a principal S ! -bundle, the infinitesimal action maps the generator 1 of R to X #, and 

here a connection form ot is an ordinary 1-form on the total space satisfying/2x#C~ = 0 and tx#Ot -- 1. The 

curvature form fl is an ordinary 2-form on the base satisfying 7r*fl = dot. Consequently, we have A = 27riot, 

B = 27rifl and the first Chern class is given by c = [-/3].  
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D E F I N I T I O N  6.1 6. The Duistermaat-Heckman measure, mDH, on ~t* is the push-forward 
of the Liouville measure 82 by /z"  M -+ ~t*, that is, for any Borel subset L /o f  ~t*, we have 

L (_on 
m D H ( ~ ) - -  -l(b/) n! 

The integral with respect to the Duis termaat -Heckman measure of a compactly- 

supported function h 6 C ~ (9*) is 

f. h dmDH "-- (h o l z ) ~  
�9 n !  

On 9" regarded as a vector space, say 1R n, there is also the Lebesgue (or Euclidean) mea- 

sure, m0. The relation between moll  and m0 is governed by the Radon-Nikodym derivative, 
denoted by dmDH which is a generalized function satisfying dmo ' 

f~ f~ dmDH dmo. h dmDu -- h dmo 

THEOREM 6.17 (Duis termaat-Heckman [38]). Under the hypotheses and notation be- 
fore, the Duistermaat-Heckman measure is a piecewise polynomial multiple o f  Lebesgue 

dmDH is piecewise poly- measure on g* ~ Nn, that is, the Radon-Nikodym derivative f - dmo 

nomial. More specifically, for  any Borel subset bl o f  g*, we have mDH(b/) -- f u  f (x) dx,  
where dx  = dmo is the Lebesgue volume form on Lt and f : 9" "~ Rn --+ R is polynomial 
on any region consisting of  regular values of  lz. 

This Radon-Nikodym derivative f is called the Duistermaat-Heckman polynomial. In 

the case of a toric manifold, the Duis termaat -Heckman polynomial  is a universal constant 
equal to (27r) n when A is n-dimensional.  Thus the symplectic volume of (MA, co•) is 
(2zr) n times the Euclidean volume of A. 

EXAMPLE. For the standard spinning of a sphere (S  2, 09 - -  dO/x dh, S 1 , # = h), the image 

o f / z  is the interval [ - 1 ,  1]. The Lebesgue measure of [a, b] ___ [ - 1 ,  1] is m0([a, b]) - 

b - a. The Duis te rmaat -Heckman measure of [a, b] is 

mDH([a, b]) -- f{(O,h)~S21a<<h<~b} 
dO dh - 2yr(b - a),  

CO t/ 82On an arbitrary symplectic manifold (M 2n , co), with symplectic volume -fly.,, the Liouville measure (or sym- 
plectic measure) of a Borel subset/.4 of M is 

f~ s 
mco(Lt) = n! 

The set/3 of Borel subsets is the a-ring generated by the set of compact subsets, i.e., if A, B 6/3, then A \ B 6 B, 
and if A i 6 13, i -- 1, 2 . . . . .  then [.-J~=l A i E 13. 
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i.e., mDH = 2zrm0. Consequently, the area of  the spherical region between two paral- 
lel planes depends only on the distance between the planes, a result that was known to 
Archimedes around 230 BC. 

PROOF. We sketch the proof of Theorem 6.17 for the case G = S 1 . The proof for the 
general case, which follows along similar lines, can be found in, for instance, [66], besides 
the original articles. 

Let (M, co, S 1 , #)  be a Hamiltonian Sl-space of dimension 2n and let (Mx, cox) be its 
reduced space at level x. Proposition 6.14 or Theorem 6.15 imply that, for x in a sufficiently 
narrow neighborhood of 0, the symplectic volume of Mx, 

fMx n-1 fM 
COx 

vol(Mx) = (n -- 1)' = 
�9 r e d  

(cored -- X fl )n- 1 
( n -  1)l 

is a polynomial in x of degree n - 1. This volume can be also expressed as 

f z  yr*(cored -- Xfl) n-1 
v o l ( M x ) -  ( n -  1)! AOt, 

where c~ is a connection form for the S 1-bundle Z --+ Mre d and fl is its curvature form. 
Now we go back to the computation of the Duistermaat-Heckman measure�9 For a Borel 
subset L /o f  ( - e ,  e), the Duistermaat-Heckman measure is, by definition, 

mDH(/d ' )  = f 
J# --1 (~/) n! 

Using the fact t ha t  (1~-1 ( - E ,  E), CO) is symplectomorphic to (Z x ( - e ,  e), a )  and, more- 
over, they are isomorphic as Hamiltonian S 1-spaces, we obtain 

mDH(b[ )  - -  fZ an 
x/d n! 

Since a - Jr*cored - d ( x a ) ,  its power is a n - nOr*cored -- X dot) n-1 
theorem, we then have 

/x oe A dx. By the Fubini 

fb l[ fz  7t'* (cored -- X f l ) n -  1 
m D H ( l n r  ( n -  1)[ A or] A dx. 

Therefore, the Radon-Nikodym derivative of mDH with respect to the Lebesgue measure, 
dx,  is 

fZ yr*(ah.ed - -  xfl) n-1 
f ( x )  - (n  - 1)! A c~ - vol(Mx). 
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The previous discussion proves that, for x ~ 0, f (x) is a polynomial in x. The same 
holds for a neighborhood of any other regular value of #, because we may change the 
moment map # by an arbitrary additive constant. [--] 

Duistermaat and Heckman [38] also applied these results when M is compact to provide 

a formula for the oscillatory integral fM eitzx c~ -bY., for X 6 g as a sum of contributions of 
the fixed points of the action of the one-parameter subgroup generated by X. They hence 
showed that the stationary phase approximation 83 is exact in the case of the moment map. 
When G is a maximal torus of a compact connected simple Lie group acting on a coadjoint 
orbit, the Duistermaat-Heckman formula reduces to the Harish-Chandra formula. It was 
observed by Berline and Vergne [14] and by Atiyah and Bott [5] that the Duistermaat- 
Heckman formula can be derived by localization in equivariant cohomology. This is an 
instance of Abelian localization, i.e., a formula for an integral (in equivariant cohomology) 
in terms of data at the fixed points of the action, and typically is used for the case of Abelian 
groups (or of maximal tori). Later non-Abelian localization formulas were found, where 
integrals (in equivariant cohomology) are expressed in terms of data at the zeros of the 
moment map, normally used for the case of non-Abelian groups. Both localizations gave 
rise to computations of the cohomology ring structure of reduced spaces [80]. 
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