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Abstract. This is an elementary introduction to symplectic toric manifolds for nonspe-
cialists, starting with a brief review of symplectic manifolds and hamiltonian torus actions.
Symplectic toric manifolds are by now a vast subject, for which the undersized list of refer-
ences below does no justice – the aim of this text is not to be exhaustive or fair, but simply
to give a glimpse into what these spaces are like and why it can be a good idea to add them
to your repertoire of geometric objects.

1. What is Symplectic Geometry?

Geometry concerns the study and measure of space. Symplectic refers to an additional struc-
ture that can be put on some even-dimensional spaces. Symplectic geometry is intrinsically
related to complex geometry and, just like complex geometry, is sometimes counterintuitive.
Whereas local complex geometry is basically modelled on C, C2, C3, etc, local symplectic
geometry is basically modelled on R2, R4, R6, etc.

A symplectic form ω at a point p of a manifold M is a special type of differential 2-form,
i.e., a device that takes two tangent vectors u⃗, v⃗ ∈ TpM as input and returns a real number as
output, that may be interpreted as

ω(u⃗, v⃗) = kind of signed area of parallelogram spanned by u⃗ and v⃗.

By signed area we mean, in particular, a number that may be positive, negative, or zero,
contrasting with usual (euclidean, riemannian, ...) geometries.

In the case of the basic model of R2 with its so-called standard symplectic form,

ω0 ∶= dx ∧ dy ,
this signed area is

ω0(u⃗, v⃗) = det(u1 v1

u2 v2
) = u1v2 − u2v1 ,

thus actually equal to plus or minus the euclidean area of the parallelogram spanned by u⃗ and
v⃗. The sign depends on the orientation of the basis u⃗, v⃗ and ω0(v⃗, u⃗) = −ω0(u⃗, v⃗). Moreover,
there is only zero as output in just one dimension, since ω0(v⃗, v⃗) = 0 for all v⃗.

In the next case of R4, the standard symplectic form,

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 ,

just adds up the contributions from the projections onto the two coordinate planes x1, y1 and
x2, y2. If we have vectors u⃗ = u⃗1 + u⃗2 and v⃗ = v⃗1 + v⃗2 (where u⃗1, v⃗1 and u⃗2, v⃗2 denote the
projections onto the coordinate planes x1, y1 and x2, y2), then

ω0(u⃗, v⃗) = (dx1 ∧ dy1) (u⃗1, v⃗1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A1

+(dx2 ∧ dy2) (u⃗2, v⃗2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

signed area of A2
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can be thought of as a sum of signed areas for the projections A1 and A2 onto each of the
coordinate planes x1, y1 and x2, y2. Other projections are not taken into account.

The higher cases R2n are analogous. In particular, in R6 we have the standard symplectic
form

ω0 ∶= dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3 .

Physicists often regard (x1, x2, x3) as position coordinates and (y1, y2, y3) as momentum (kind
of velocity) coordinates of a particle in 3-dimensional space. The symplectic form ω0 encodes
the mutual entanglement of position and momentum in a somewhat implausible way that
actually fits reality. In Section 2, we will describe the motion of a classical mechanical system
via Hamilton’s equations for position and momentum in terms of a flow on a symplectic
manifold.

Historical remark:

Symplectic geometry is a branch of mathematics, that could be viewed as emerging in
the XIX century from classical mechanics. The mathematicians William Rowan Hamil-
ton (1805-1865) and Sofia Kovalevskaya (1850-1891) were at the onset of this field
and worked on problems related to the motion of rigid bodies. Symplectic geometry
experienced a vigorous expansion in the last 50 years and deals nowadays with many
other geometric problems, stimulated by interactions with diverse areas of mathematics
and physics. The adjective symplectic in mathematics is a calque1 coined by Hermann
Weyl, by substituting the Latin root in complex by the corresponding Greek root, in
order to label the symplectic group.

In general, a symplectic manifold is a pair (M,ω) where M is a manifold (necessarily
even-dimensional, say dimM = 2n) and ω is a closed nondegenerate 2-form on M . Whereas
closedness is a natural differential condition from analysis, nondegeneracy is an algebraic con-
dition saying that at each point any nonzero tangent vector admits a nontrivial pairing with
some other tangent vector – this is what forces the evenness of the dimension.

One of the fundamental theorems in symplectic geometry goes back to Darboux [6] in the
late XIX century in the context of differential systems. What is now known as Darboux’s
theorem states that any symplectic manifold looks locally near any of its points like a neigh-
borhood of the origin in R2n equipped with

ω0 ∶= dx1 ∧ dy1 + . . . + dxn ∧ dyn .

We hence refer to (R2n, ω0) as the local model. Although this shows that there are no local
invariants in symplectic geometry besides the dimension, the local symplectic geometry, i.e.
the symplectic geometry of (R2n, ω0), is already quite interesting and there remain deep open
questions about it. Normal form theorems like Darboux’s play a central role in symplectic
geometry.

1A calque or loan translation is a word or phrase that is introduced through translation of the constituents
into another language.
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On a symplectic manifold (M,ω), the top power of the symplectic form, ωn, is necessarily
a volume form, called the symplectic volume. This follows from the nondegeneracy of ω,
and may be also seen through Darboux’s theorem with ωn0 = n!dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn.
Therefore, a symplectic manifold is symplectically oriented, and nonorientable manifolds cannot
be symplectic.

On a symplectic manifold (M,ω), we are able to integrate the symplectic form ω over a
surface A ⊂M :

∫
A
ω = symplectic area of A.

In the case of (R4, ω0), this yields again a sum of contributions from the two projections onto
each of the coordinate planes x1, y1 and x2, y2:

∫
A
ω = ∫

A1

dx1 ∧ dy1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A1

+∫
A2

dx2 ∧ dy2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
signed area of A2

.

Such a measurement is anisotropic in the sense that (multiple-dimensional) directions are
not all the same. For instance, a nontrivial surface in the x1, x2-plane has one-dimensional
projection onto the x1, y1 and x2, y2 planes, hence has zero symplectic area. Such a surface
in a four-dimensional manifold is called lagrangian. On the other hand, a nontrivial surface in
the x1, y1 plane already has a nonzero symplectic area. Such a surface is called symplectic.

In general, we distinguish different important types of submanifolds in a 2n-dimensional
symplectic manifold (M,ω). A symplectic submanifold is a submanifold where the restric-
tion of the symplectic form is nondegenerate, hence still a symplectic form. Such submanifolds
are again even-dimensional. When n = 1, these submanifolds turn out to be related to complex
curves. An isotropic submanifold is a submanifold where the restriction of the symplectic
form vanishes identically. Any one-dimensional submanifold is isotropic and isotropic subman-
ifolds are at most half-dimensional; this follows from linear algebra. A lagrangian submani-
fold is an n-dimensional isotropic submanifold. Lagrangian submanifolds are thus the largest
isotropic submanifolds and turn out to be related to dynamics.

Examples and nonexamples:

(0) As mentioned, the examples (R2n, ω0) above are the local prototypes of symplectic
manifolds.

(1) Any oriented surface may be equipped with a symplectic structure by choosing any area
form to take the role of symplectic form. In particular, a unit sphere in R3 equipped
with the standard (euclidean) area form is automatically a symplectic manifold. This
area form may be written away from the poles as

ωstd ∶= dθ ∧ dh ,
where h is a height function and θ the angle around that height axis, giving total area
4π; cf. Section 4.

(2) Some of the simplest 4-dimensional symplectic manifolds are products of oriented
surfaces, such as S2 × S2 equipped with a sum of area forms (eventually different on
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each factor), and complex projective space CP2, that is, the space of complex lines in
C3. The standard symplectic form in CP2 (or, for that matter, in CPn) is called Fubini-
Study form and we will give some insight into it in Section 3. In general, products of
symplectic manifolds are symplectic.

(3) The only spheres that may be symplectic are the 2-dimensional ones. Let us see why. In
a sphere Sk of any other dimension, closed 2-forms are always exact (this topological
fact is usually encoded as H2(Sk) = 0 for k ≠ 2). Now, by Stokes’ theorem, a
symplectic form cannot be exact on a compact manifold without boundary, because
if it were ω = dα, then its top power ωn = d(α ∧ ωn−1) would also be exact, which is
impossible for a volume form on such a manifold:

∫
M
ωn = ∫

M
d(α ∧ ωn−1) = ∫

∂M
α ∧ ωn−1 = 0 contradicting ∫

M
ωn > 0 .

By now there are a number of texts on symplectic geometry, a subset of which is [11, 12, 4].
For a beautiful overview geared towards symplectic topology, see McDuff’s lecture [10].

2. What are Hamiltonian Torus Symmetries?

The definition of symplectic form contains exactly what is needed for the following general
assertion: On a symplectic manifold (M,ω), any smooth function H ∶M → R generates (in
a nontrivial way) a flow that preserves both the symplectic structure ω and the function H.

Such a flow is called the hamiltonian flow generated by H and then H is called a corre-
sponding hamiltonian function. The asserted property refers to the existence and uniqueness
(by nondegeneracy of ω) of a vector field X

H
defined by

ω(X
H
, ⋅) = dH(⋅) . ☆

This vector field X
H

satisfies the following equations where we use Cartan’s magic formula,
L

X
= dı

X
+ ı

X
d, for the Lie derivative with respect to a vector field X:

L
XH
ω = d ı

XH
ω

²
dH

+ ıXH
dω

0̄

= 0 and L
XH
H = ı

XH
dH
°
ıXH

ω

= 0 .

This vector field X
H

integrates (by the theorem of Picard-Lindelöf) into a local time evolution,
a.k.a. flow, and the equations L

XH
ω = 0 and L

XH
H = 0 amount infinitesimally to this flow

preserving ω and H. The vector field X
H

is called the hamiltonian vector field of H.

Examples and nonexamples:

(0) For euclidean space (R6, ω0) and any function H ∶ R6 → R, equation ☆ for the flow
generated by H translates into Hamilton’s equations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dxk
dt

= ∂H
∂yk

dyk
dt

= −∂H
∂xk

.
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(1) For the unit sphere (S2, ωstd = dθ∧dh) and hamiltonian function H equal to the height
function h, equation ☆ yields as hamiltonian vector field

X
H
= ∂

∂θ
,

so the corresponding flow rotates around the height axis. This clearly preserves area
ωstd and height H. Notice how this contrasts with the gradient flow of H, which is
basically perpendicular and preserves neither ωstd nor H.

-&%
'$

r
r

r
r

H

0

2

Figure 1. Hamiltonian function for the rotation of S2 around the height axis.

(2) For the 2-torus (T2, ω ∶= dθ1∧dθ2), we have that the rotation given by the vector field
∂
∂θ1

preserves area, yet is not hamiltonian, since the contraction

ω( ∂
∂θ1
, ⋅) = dθ2(⋅)

is closed yet not exact, i.e., there is no corresponding global hamiltonian function.

The flow in Example (1) is also an example of S1-action. Indeed, the time-t evolution ϕt is
given, with respect to these coordinates, by ϕt ∶ (θ, h) z→ (θ+ t, h), so it is 2π-periodic (i.e.,
ϕt+2π ≡ ϕt) and satisfies the group law (i.e., ϕt1 ○ϕt2 ≡ ϕt1+t2). Because it is also hamiltonian,
we call it a hamiltonian S1-action.

Analogously, for a d-dimensional torus Td = S1×. . .×S1 we define a hamiltonian TdTdTd-action
to be an action of Td for which each of the S1-factors acts in a hamiltonian fashion, say with
hamiltonian function Hk, and each of these Hk is invariant by the rest of the action. By
collecting these hamiltonian functions, we build an invariant function

H ∶= (H1, . . . ,Hd) ∶M → Rd .

This upgraded version of hamiltonian function is known as a (special case of) moment map.
The concept of moment map for hamiltonian actions of arbitrary Lie groups has recently
become central in geometry and topology.

Atiyah [2] and, independently, Guillemin and Sternberg [9] proved in the 80’s, that the
image of such a function H ∶M → Rd on a compact, connected symplectic manifold (M,ω)
corresponding to a hamiltonian Td-action is always a convex polytope. Moreover, they showed
that that image is simply the convex hull of the images of the fixed points of the action. This
deep and key theorem is known as the convexity theorem.
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To get rid of lazy factors in that action, we concentrate on faithful (i.e. effective)
actions for which only the identity group element gives rise to the identity diffeomorphism.
We think of effective hamiltonian Td-actions as hamiltonian torus symmetries. Now, if a
d-dimensional torus acts in a faithful and hamiltonian fashion on a 2n-dimensional symplectic
manifold, then it must be d ≤ n. This follows from the fact that the orbits are isotropic, that
isotropic submanifolds are at most half-dimensional, and that Lie theory tells us that a faithful
action of a d-dimensional Lie group always admits orbits equivariantly diffeomorphic to the
group itself, the so-called principal orbits. Therefore, a maximal hamiltonian torus symmetry
is of the form Tn acting on M2n.

3. What are Symplectic Toric Manifolds?

A symplectic toric manifold is a compact connected symplectic manifold (M,ω) with a
maximal hamiltonian torus symmetry, meaning, with a faithful hamiltonian action of a half-
dimensional torus. If dimM = 2n, then we have the n-dimensional torus Tn acting faithfully
and with a moment map

H ∶M → Rn .

Examples and nonexamples:

(0) Examples with (R2n, ω0) are ruled out by lack of compactness. However, most of the
theory could be, and often is, extended to such examples.

(1) The unit sphere (S2, ωstd = dθ ∧ dh) together with the S1-action generated by the
height function H = h is a symplectic toric manifold. We point out some of the
features of this example, to which we will come back in more general set-ups:
(a) The image interval [0,2] is the orbit space, i.e., there is exactly one S1-orbit per

height value. The endpoints of this interval correspond to the two fixed points
(singular orbits), South pole and North pole.

(b) The best coordinates to understand this system are the angle coordinate θ where
the rotation occurs and the function H = h encoding the hamiltonian action, valid
away from the poles. Such coordinates are called action-angle coordinates.
With respect to such coordinates, the symplectic form is simply a product form
dθ ∧ dH, just like a form in the local model space (R2, dx ∧ dy).

(c) The area of an invariant strip on S2 corresponding to a subinterval of [0,2] of
height ∆h is equal to 2π ⋅∆h. This result goes back more than two millenia; see
Section 4.

(1’) We revisit the previous example from a complex viewpoint. Regarding S2 as a Riemann
sphere, we denote by [z0 ∶ z1] the point given by the complex line in C2 through (z0, z1)
and (0,0). The South pole is [1 ∶ 0] and the North pole is [0 ∶ 1]. Now we recast that
example as (CP1, ωFS), where the Fubini-Study symplectic form ωFS is equal to 1

4ωstd,
the element eit of the circle acts by multiplication on the coordinate z1,

eit ⋅ [z0 ∶ z1] = [z0 ∶ eitz1] ,
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which, on a chart, is again a simple shift of the angle coordinate, and the corresponding
hamiltonian function is

H1 ∶=
∣z1∣2

2 (∣z0∣2 + ∣z1∣2)
.

(2) Consider now complex projective space CPn (as a 2n-dimensional real manifold) with
a diagonal action of Tn by

(eiθ1 , . . . , eiθn) ⋅ [z0 ∶ z1 ∶ . . . ∶ zn] = [z0 ∶ eiθ1z1 ∶ . . . ∶ eiθnzn] .
The Fubini-Study symplectic form is a globally well-defined form, which, away from
the hyperplanes zk = 0, is given by the Darboux-type formula

ωFS = dθ1 ∧ dH1 + . . . + dθn ∧ dHn ,

where the component Hk of the moment map H ∶ CPn → Rn is

Hk ∶=
∣zk∣2

2 (∣z0∣2 + . . . + ∣zn∣2)
.

For instance, when n = 3 we get the following picture:

-
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Figure 2. Moment map for the standard action on CP3.

We list again the earlier features, some of which now take more thought to check:
(a) The image simplex is the orbit space, i.e., there is exactly one Tn-orbit per point

on the n-simplex. The vertices of this simplex correspond to the n+1 fixed points,
[1 ∶ 0 ∶ . . . ∶ 0], . . . [0 ∶ . . . ∶ 0 ∶ 1]. The interior points correspond to orbits through
points of the form [z0 ∶ z1 ∶ . . . ∶ zn] with all coordinates zk nonzero.

(b) Best to understand this system are the action-angle coordinates, H1, . . . ,Hn and
θ1, . . . , θn. With respect to these coordinates, and in points mapping by H to the
interior of the simplex, the symplectic form is just like a form in the local model
space (R2n, dx1 ∧ dy1 + . . . + dxn ∧ dyn).

(c) The (symplectic) volume of a Tn-invariant subset H−1(S) is simply equal to
(2π)n ⋅ ∣S∣, where ∣S∣ is the (euclidean-)volume of the subset S of the simplex.

By the convexity theorem, we already know that the moment map image of a 2n-dimensional
symplectic toric manifold is a polytope in Rn. One can show that such a polytope enjoys special
properties: it is simple, i.e., there are n edges meeting at each vertex, it is rational, i.e., the
edges meeting at each vertex τ are of the form τ + tuj, t ≥ 0, with each uj ∈ Zn, and it is
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smooth, i.e., for each vertex, the corresponding u1, . . . , un can be chosen to form a Z-basis of
Zn; see, for instance, [5].

As first proved by Delzant [7], it turns out that this polytope encodes enough information to
reconstruct its originating symplectic toric manifold, and that all such simple, rational, smooth
polytopes occur as moment map images of symplectic toric manifolds. Delzant’s theorem
is a celebrated result classifying symplectic toric manifolds in terms of polytopes:

{ 2n-dim’l symplectic
toric manifolds

} ←→ { simple rational smooth
polytopes in Rn }

where this one-to-one correspondence takes a symplectic toric manifold, (M,ω,H) where the
Tn-action admits H ∶ M → Rn as moment map, to the polytope which is the image of this
moment map:

(M,ω,H) ←→ H(M) .
For such a correspondence, there are underlying notions of equivalence of the objects involved.
In the simplest version, polytopes in Rn are identified up to translation, and symplectic toric
manifolds are identified up to equivariant diffeomorphism preserving the symplectic forms:
(M1, ω1,H1) and (M2, ω2,H2) with actions of Tn are equivalent if and only if there is a
diffeomorphism ϕ ∶ M1 → M2 such that ϕ∗ω2 = ω1 and ϕ(g ⋅ p) = g ⋅ ϕ(p) for all g ∈ Tn and
p ∈M1.

Note that the problem of classifying compact symplectic manifolds in dimension 4 or higher
is completely open. The presence of a hamiltonian torus symmetry significantly helps.

Since there is just one 1-dimensional polytope of length ` up to translation, we see that
the only 2-dimensional symplectic toric manifolds are scaled spheres (S2, `2 ωstd) with rotation
action as above. The panorama for 2-dimensional polytopes is much more rich. Still, up
to translation, the 2-dimensional simple, rational, smooth polytopes with only three vertices
are the triangles with vertices (0,0), (`,0) and (0, `) or their transforms by GL(2;Z). This
is saying that the corresponding symplectic toric manifolds are (CP2,2`ωFS) with standard
T2-action or their transforms by an isomorphism of T2.

The upshot is that any such symplectic toric manifold is given combinatorially in terms
of a polytope in an euclidean space of half the dimension that of the manifold. Hence,
all questions pertaining to such manifolds should admit an answer in terms of polytopes –
a mathematician’s dream! In particular, the earlier properties admit generalizations to all
symplectic toric manifolds (M,ω,H) as follows:

(a) The polytope image is the orbit space, so H is also the point-orbit projection, and the
vertices of the polytope correspond to the fixed points. There are precise descriptions
of the isotropy subgroups in terms of the face-stratification.

(b) There are action-angle coordinates, H1, . . . ,Hn and θ1, . . . , θn, valid at points mapping
to the interior of the polytope, which are the best coordinates to understand this
system. With respect to them, the symplectic form is ω = dθ1 ∧dH1 + . . .+dθn ∧dHn.

(c) The (symplectic) volume of a Tn-invariant subset is equal to (2π)n times the (eu-
clidean) volume of the corresponding subset in the polytope.
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A lot of the geometry of symplectic toric manifolds has already been understood, yet many
interesting questions remain. Currently, these manifolds are used as test grounds for theories
or conjectures in topology, geometry and mathematical physics, such as mirror symmetry.

Many open questions for these manifolds relate to their lagrangian submanifolds. We can
see that connected lagrangian submanifolds invariant by Tn are principal Tn-orbits, i.e., those
corresponding to the interior points of the image polytope. We might now ask about other
lagrangian submanifolds that fit nicely with respect to the torus action, in the sense that
they are invariant by some subgroup of Tn and they intersect Tn-orbits in a clean way. The
image under the moment map of such a lagrangian submanifold of (M,ω,H) lies in the
intersection of the polytope H(M) with an affine subspace. Examples are all principal Tn-
orbits, the standard real part submanifolds like RPn in CPn, lagrangian submanifolds like the
one presented in [3], and many lagrangian submanifolds sitting in level sets of components of
the moment map.

4. Epilogue – all the way from Archimedes

We close by going back more than two millenia to Archimedes’ supposedly favourite work
on measuring spheres and cylinders. In around 200 BC, Archimedes was the first to realize
that the surface area of a sphere between two parallel planes intersecting it depends only on
the distance between those planes and not on the height where they intersect the sphere.
Moreover, Archimedes asserted that the surface area on the sphere is the same as that of a
cylinder with the radius of that sphere and height given by the distance between the planes, as
the following figure illustrates. This is exactly the feature that allows us to write the standard
area form as ωstd = dθ ∧ dh.

Δh

Δh

RR

Figure 3. Spherical and cylindrical strips all with the same area: 2πR ⋅∆h;
image kindly reproduced from [1].

Nowadays, if you know first-year calculus, you may check Archimedes result by computing
an appropriate surface integral using, for instance, cylindrical coordinates (θ, z) to write points

on the sphere as (x, y, z) = (
√
R2 − z2 cos θ,

√
R2 − z2 sin θ, z):

Area = ∫
2π

0
∫

h+∆h

h
Rdz dθ = 2πR ⋅∆h ,
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or else use some approximation method and then take the limit [1]. However, Archimedes did
not know calculus. It seems that he used an approximation argument, for which a relevant
reference is the palimpsest2 discovered in the XX century after some quite adventurous history.

In the 80’s, Duistermaat and Heckman [8] showed powerful results for symplectic manifolds
with hamiltonian torus actions, which may be viewed as a vast generalization of Archimedes’
theorem for the 2-sphere. Just like Archimedes might have had no idea that, more than two
millennia later, his spirit would be at the origin of new mathematics, one wonders what other
leaps await mankind starting from symplectic toric manifolds.
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