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Abstract

This text is a survey on the subject of differential topology, and in par-
ticular Morse theory. Morse theory uses critical points of functions to
make statements about the homotopy type of given manifolds. The
main theorems that we prove in the second chapter are quite remark-
able, as they allow a precise characterization of topological spaces us-
ing just the critical points of a suggestively called Morse function.

The present work can be divided into three parts. In the first chapter,
we define manifolds of Euclidean space, as well as useful tools to recog-
nize when a given subset of Rn is indeed a manifold. Towards the end
of the chapter, we define Morse functions and go over some of their
properties. This first part can be seen as a preparation section where
we describe the setting in which Morse theory will then be used.

The second chapter contains the statements and proofs of the main
results of Morse theory, using the machinery developed in the previous
chapter.

The last two chapters present applications of Morse theory as a way to
characterize and classify the homotopy type of topological spaces. We
present the Reeb theorem and a way to compute the homology groups
of complex projective spaces as examples. We also give a classification
of compact 1-manifolds using two different methods: Morse theory,
and parametrization by arc-length.
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Introduction

This introduction is meant to explain in detail from which sources each part
of the text comes from. As said in the abstract, this work is a survey on
differential topology and Morse theory. The text mainly follows the books
” Differential Topology” by Guillemin and Pollack [9] and ”Morse Theory”
by Milnor [8].

The first chapter is mostly based on [9]. The definition 1.48 concerning the
concept of the Hessian as a bilinear form, the statement and proof of the
Morse Lemma 1.53 and everything else between definition 1.48 and remark
1.54, as well as the discussion about 1-parameter groups (section 1.8), how-
ever, come from [8]. A few of the proofs about the properties of Morse
functions were inspired by [3], which is a compilation of solutions to exer-
cise proposed in [9].

The second chapter is mostly based on [8]. The definition of a deformation
retract as well as the notions of adjunction space and cell-complex were
taken from lecture notes of an algebraic topology class given at ETH by
Will Merry in 2017-2018 [6]. The brief explanation on Riemannian metrics
comes from lecture notes by Andrews [2]. The precisions on the cellular
approximation theorem were found in Hatcher’s book ”Algebraic Topology”
[4]. In its proof of theorem 2.22, Milnor uses results from an article from
Whitehead given here [10].

The third chapter deals with examples given in [8], whereas the forth chapter
has two main sources. The proof by parametrization by arc-length comes
from another of Milnor’s books, namely ”Topology from the differentiable
Viewpoint” [7]. The proof using Morse theory is an Appendix of [9], except
for the proof of the lemma 4.11, which was inspired from [1].

The Appendix A about the general definition A.12 of a smooth manifold
and the necessary assumptions come from another set of lecture notes by
Will Merry, namely his 2018 differential geometry course [5]. The precision
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on submanifolds comes from [11]. Appendix B was again taken from [9].

The illustrations were taken from [9], [8], and [7] and come directly from the
proof that is followed in this text.

The objective of this text is to explain the ideas of the above sources and
to arrange them in a way that is as coherent and natural as possible. As
mathematics constitute a very interconnected field, it is difficult to write
something that is entirely self-contain but I do hope that this survey is able
to shed light on the elegance of the powerful results and applications of
Morse theory.
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Chapter 1

Manifolds of Euclidean space and
smooth maps

One of the goals of differential geometry is the use of calculus to derive
geometric properties of different spaces. To do this, it is sometimes neces-
sary to generalize the basic tools of calculus, which are initially defined for
subsets of Euclidean space. Such a generalization is most naturally made
for objects that ”locally look like” Euclidean space. Objects with this prop-
erty are called manifolds and are the subject of this chapter. We need a few
definitions to formalize what we mean by ”locally looking like Euclidean
space”.

1.1 First definitions and examples

We start by giving a few very important definitions:

Definition 1.1 Let U ⊆ Rn be an open set. A map f : U → Rm is called smooth
if its partial derivatives of all orders are continuous.

This definition only works for functions with open domains, since the def-
inition of partial derivative makes no sense otherwise. We can however
generalize our definition as follows:

Definition 1.2 A map f : X → Rm for X an arbitrary subset of Rn is called
smooth if for all x in X, there exists an open set U ⊆ Rn and a smooth map
F : U → Rm such that F |U∩X= f . We say that f can be locally extended to a
smooth map F on an open set U.

Definition 1.3 A smooth map f : X → Y between subsets of two Euclidean spaces
is a diffeomorphism if it is bijective and if the inverse map f−1 : Y → X is also
smooth. We say that X and Y are diffeomorphic if there exists such a map.
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1. Manifolds of Euclidean space and smooth maps

In the context of differential topology, diffeomorphic spaces are considered
to be equivalent. They can be regarded as two instances of the same mathe-
matical object.

We are now ready to formalize our definition of a manifold:

Definition 1.4 Let X be a subset of Rn. We say that X is a k-dimensional mani-
fold if for all x in X there exists a neighbourhood V ⊂ X of x that is diffeomorphic
to an open set U ⊂ Rk. A diffeomorphism Φ : U → V is called a parametrization
of the neighbourhood V. The inverse map Φ−1 : V → U is called a coordinate
system on V. When we write the map Φ−1 = (x1, . . . , xk), the k smooth func-
tions x1, . . . , xk are called coordinate functions on V. The number k is called the
dimension of the manifold and we often write dim(X) = k.

Remark 1.5 Let X ⊂ Rn. Recall that the (relatively) open sets of X are the sets
that can be written as an intersection U ∩X, where U is an open subset of Rn. This
equips X with the relative topology. When not otherwise specified, it is with this
topology that we will take subsets of Euclidean space.

Remark 1.6 This definition of a manifold is not the most general one. It is in-
deed not mandatory for a manifold X to be a subset of Euclidean space. The more
abstract definition is however not particularly useful to the development of Morse
theory, which is the main goal of this text. The definition given here also has the
advantage to be more geometrically intuitive, as stressed out by Guillemin and Pol-
lack in [9]. However, Milnor [8], which is the other main source for this text does
not explicitly assume manifolds to be subsets of Euclidean space. The technical as-
sumptions necessary for a topological space to be a manifold in whole generality are
relegated to the Appendix A. For the following discussion, it is enough to think of
manifolds as objects that can easily and smoothly be injected in Euclidean space. A
property of Euclidean space that will be used several times in this text is the second
axiom of countability. A recall of the definition can be found in Appendix A.

Another closely related definition is that of a submanifold:

Definition 1.7 Let X and Z be manifolds in Rn with X ⊆ Z, then we say that
Z is a submanifold of X. In particular, X is a submanifold of Rn, and any open
subset of X is a submanifold of x.

Remark 1.8 This definition of a submanifold is a weak one, it is sometimes useful
to make stronger assumptions. This is explained briefly in Appendix A.

Remark 1.9 At this point, it is worth noting that every property that we have
defined so far are local properties. They are valid for a point x in a neighbourhood
of this point only. For example, smoothness of a mapping, or being a manifold are
local properties. This can be opposed to the term global, which refers to properties of
mathematical objects as a whole. The distinction between local and global properties
will be of importance in a few proofs later so it is important to keep it in mind.
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1.2. Tangent spaces and derivatives

We now want to define the derivative of a smooth map between two mani-
folds. To do this, we will need to define some new concepts.

1.2 Tangent spaces and derivatives

We begin this section by recalling the definition of a derivative for a mapping
between two Euclidean spaces.

Definition 1.10 Let f be a smooth map from an open set of Rn into Rm and let
h ∈ Rn be an arbitrary vector. Then, the derivative of f in direction h taken at a
point x in the domain of the function is defined by:

d fx(h) = lim
t→0

f (x + th)− f (x)
t

For x fixed, the map d fx : Rn → Rm sending h to d fx(h) is a linear, which
is a known fact from calculus. Another important result from analysis is the
chain rule, which states that for open sets U ⊆ Rn and V ⊆ Rm and smooth
maps f : U → V and g : V → Rl we have, for any x in U

d(g ◦ f )x = dg f (x) ◦ d fx

The derivative of a map is the best possible linear approximation of that
function. In that spirit, we can use derivatives to investigate the linear space
that best approximates a manifold X at a given point x. Suppose that X is a
submanifold of Rn and that Φ : U → X is a local parametrization around x,
with U an open set in Rk. By translation of the open set U, we can assume
without loss of generality that Φ(0) = x We will use this fact frequently in
order to ease the notation. The best linear approximation of Φ : U → X at 0
is the map:

u 7→ Φ(0) + dΦ0(u) = x + dΦ0(u)

With that in mind, we can define the concept of a tangent space.

Definition 1.11 The tangent space of X at the point x is the image of the map
dΦ0 : Rk → Rn. It is denoted by Tx(X). The elements of Tx(X) are called tangent
vectors to X at the point x.

Remark 1.12 (i) Tx(X) is a vector subspace of Rn

(ii) The parallel translate x + Tx(X) of the tangent space is the closest flat approx-
imation of X at the point x

Before going any further, it is important to notice that our definition of
tangent space is not quite finished yet. Indeed, what would happen if one
chooses another parametrization around x? Would the tangent space be
different? Luckily, this is not the case as we will show below:
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1. Manifolds of Euclidean space and smooth maps

Lemma 1.13 The tangent space Tx(X) is well-defined, i.e. it is independent of the
choice of parametrization.

Proof Assume that Ψ : V → X is another parametrization around x. Once
again, we may suppose after translation that Ψ(0) = x. Now, if we shrink
the sets U and V sufficiently, we may also assume that Φ(U) = Ψ(V). We
then define the map h := Ψ−1 ◦Φ : U → V. As it is the composition of two
diffeomorphims and because the images of Φ and Ψ coincide, the map h is a
diffeomorphism as well. Rearranging the definition of h, we write Φ = Ψ ◦ h.
Differentiating this equation yields : dΦ0 = dΨ0 ◦ dh0. This equality implies
that the image of dΦ0 is contained in the image of dΨ0. Doing the exact
same thing, but reversing the roles of Φ and Ψ yields the converse inclusion.
Thus, we obtain that Tx(X) = dΦ0(Rk) = dΨ0(Rk), which shows that Tx(X)
is well-defined. �

Another fact worth noting is that the dimension of the tangent space as a
vector space is the same as the dimension of its manifold.

Lemma 1.14 Let X be a k-dimensional manifold embedded in Rn and x be a point
in X. Then the vector space Tx(X) has dimension k.

Proof Let U be an open set in Rk and Φ : U → V be a parametrization
around x, with once again Φ(0) = x Let W be an open set in Rn and F :
W → Rk be a map extending Φ−1. Then the composition F ◦Φ is the identity
map on U. Since the derivative of a linear map is the same linear map (this
is a fact from analysis), we get that the sequence

Rk Tx(X) RkdΦ0 dFx

must be the identity on Rk. This implies that dΦ0 : Rk → Tx(X) is an
isomorphism and thus the dimension of Tx(X) is k. �

We are now ready to construct the derivative of a smooth map f : X → Y
between manifolds. We want this derivative to be a linear transformation
of tangent spaces d fx : Tx(X) → Tf (x)(Y). Additionally, we would like
this map to have two properties. First of all, it should extend our previous
definition of derivative, i.e. if X and Y are open sets in Euclidean spaces,
the two definitions of derivative should coincide. Moreover, the chain rule
should hold for our new definition of derivative. Let Φ : U → X be a
parametrization around x and Ψ : V → Y be one around y = f (x), with
U ⊆ Rk and V ⊆ Rl . Once again, assume that Φ(0) = x and Ψ(0) = y. By
shrinking U if necessary, we have the following commutative diagram:

X Y

U V

f

Φ

h=Ψ−1◦ f ◦Φ

Ψ

8



1.2. Tangent spaces and derivatives

By taking derivatives, we obtain a commutative square of linear maps:

Tx(X) Ty(Y)

Rk Rl

d fx

dΦ0

dh0

dΨ0

Since Φ is a diffeomorphism, its derivative dΦ0 is an isomorphism, (this is
easily shown) and thus the only possible definition for d fx is the following:

d fx = dΨ0 ◦ dh0 ◦ dΦ−1
0

As with the definition of tangent space, it is important to show that this
definition is independent of the choice of parametrization, and this is done
in the exact same way as for the tangent space, i.e. in Lemma 1.13

Now that the concept of derivative of a map between manifolds is well
defined, we need to check whether the chain rule holds as we wanted. Let
f : X → Y and g : Y → Z be two smooth maps between manifolds. Let
Φ : U → X be a parametrization of X around x, Ψ : V → Y one of Y around
y = f (x) and finally, let η : W → Z parametrize Z around z = g(y). Assume
again that each parametrization sends 0 to x, y and z respectively. We obtain
the following commutative diagram:

X Y Z

U V W

f g

Φ

h=Ψ−1◦ f ◦Φ

Ψ

j=η−1◦g◦Ψ

η

We observe the square:

X Z

U W

g◦ f

Φ

j◦h

η

By definition, we have :

d(g ◦ f )x = dη0 ◦ d(j ◦ h)0 ◦ dΦ−1
0

Using the chain rule for Euclidean sets, we know that d(j ◦ h)0 = (dj)0 ◦
(dh)0. This yields:

d(g ◦ f )x = (dη0 ◦ dj0 ◦ dΨ−1
0 ) ◦ (dΨ0 ◦ dh0 ◦ dΦ−1

0 ) = dgy ◦ d fx

This proves that the chain rule holds.
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1. Manifolds of Euclidean space and smooth maps

1.3 The inverse function theorem and immersions

Now that we have the tools needed to differentiate on manifolds, we can
start examining how maps between manifolds behave depending on the di-
mension of the given manifolds. This will illustrate other ways to show
whether an object is a manifold and give criteria to determine when a geo-
metric object is well-behaved enough to be a manifold.

We start with a generalization of the inverse function theorem to manifolds.

Definition 1.15 Let X and Y be smooth manifolds of the same dimension. If a map
f : X → Y carries a neighbourhood of a point x diffeomorphically onto a neighbour-
hood of the point y = f (x), we say that f is a local diffeomorphism at x. If f is
a local diffeomorphism at every point, we simply call it a local diffeomorphism.

Theorem 1.16 (The inverse function theorem) Let f : X → Y be a smooth
map such that the derivative d fx at the point x is an isomorphism. Then f is a local
isomorphism at x.

Proof This result is already known for open subsets of Euclidean space. The
proof is similar, it just needs to be reformulated in the language of manifolds
using parametrizations. �

The inverse Function theorem 1.16 can only be applied when both manifolds
have the same dimension. Now, let us assume that dimX < dimY. In this
situation the best thing we can require for the derivative at a certain point is
for it to be injective.

Definition 1.17 If the derivative d fx : Tx(X) → Ty(Y) at the point x of a map
f : X → Y between two manifolds X andY is injective, the map f is called an
immersion at x. If f is an immersion at every point x ∈ X, we simply say that f
is an immersion.

Example 1.18 The simplest example of an immersion is the inclusion of Rk into
Rl for k ≤ l where a point (x1, . . . , xk) is sent to (x1, . . . , xk, 0, . . . , 0). We call this
map the canonical immersion.

An interesting result is that the canonical immersion is actually, up to dif-
feomorphism, the only immersion there is. This means that with the right
choice of parametrization, i.e. the right choice of diffeomorphism, we can
write any immersion as the canonical immersion. This is formalized in the
following theorem:

Theorem 1.19 (Local immersion theorem) Let f : X → Y be an immersion at
x, and let y = f (x). Then there exist local coordinates around x and y such that f
is locally equivalent to the canonical immersion near x, i.e.

f (x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

10



1.3. The inverse function theorem and immersions

Proof We start by choosing local parametrizations with Φ(0) = x , Ψ(0) = y
and such that the following diagram commutes:

X Y

U V

f

Φ

g

Ψ

The function g above is uniquely defined by commutativity of the diagram.
Our goal is to augment g in such a way that we may use the inverse function
theorem 1.16. Since f is an immersion, g is one as well and thus dg0 : Rk →
Rl is injective. By a well-suited change of basis in Rl we may assume that
the linear function dg0 has an l × k matrix of the form:(

Ik
0

)
Here, Ik denotes the identity matrix in Rk. Now, let us define a map G :
U ×Rl−k → Rl by

G(x, z) = g(x) + (0, z)

The function G maps an open set of Rl into Rl and the derivative dG0 is
the identity matrix Il . Thus, we may use the inverse Function theorem 1.16,
which tells us that G is a local diffeomorphism of Rl at 0. Now, the map Ψ
is a diffeomorphism and thus also a local diffeomorphism at 0. Therefore,
the map Ψ ◦ G is a local diffeomorphism at 0 as well, and we can use it as
a local parametrization of Y around the point y. Moreover, by shrinking U
and Y if necessary, we get the following diagram to commute:

X Y

U V

f

Φ

ι

Ψ

Where ι denotes the canonical immersion. This completes the proof. �

An immediate corollary of this theorem is the fact that if f is an immersion
at the point x, it is also an immersion in a neighbourhood of x.

Now that we have characterized immersions a bit more precisely, let us
examine the image of an immersion with the following question in mind:
is the image of an immersion a submanifold? It is easy to find examples
where that is not the case. What are the missing conditions that will allow
us to make images of immersions nice submanifolds? Let us define some
new concepts:
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1. Manifolds of Euclidean space and smooth maps

Definition 1.20 A map f : X → Y is called proper if the preimage of every
compact set in Y is compact in X.

Definition 1.21 An immersion that is injective and proper is called an embed-
ding.

With these new definitions we can now answer our question with the follow-
ing theorem:

Theorem 1.22 An embedding f : X → Y maps X diffeomorphically onto a sub-
manifold of Y.

Proof From the Local Immersion Theorem 1.19, we know that f maps any
sufficiently small neighbourhood W of a point x diffeomorphically onto its
image f (W). If we can show that the set f (W) is open for any open set
W, any point of f (X) will lie within a parametrizable neighbourhood, and
thus f (X) will be a submanifold. For a contradiction, let us assume that
f (W) is not open in f (X). Then there exists a sequence of points yi in
f (X) that do not lie in f (W) but that converge to a point y ∈ f (W). The
set {yi, y} is compact because the yi’s converge. Therefore, because f is
proper, its preimage in X is also compact. By injectivity, every yi has exactly
one preimage point xi, and y has one preimage point x which must lie in W.
Since the preimage set {xi, x} is compact, we have a converging subsequence
(that we will still denote by xi) with a limit point z ∈ X. Then by continuity
we have f (xi) → f (z). Since we also have f (xi) → f (x) and since f is
injective, we must have x = z, which means, that for i big enough, we have
xi ∈ W. This contradicts our construction of the yi’s that do not belong
to W. Thus, f (X) is a manifold. It is now easy to check that the map
f : X → f (X) is a diffeomorphism, since it is already known that it is a
local diffeomorphism and that it is bijective with f−1 also locally known to
be smooth. �

1.4 Submersions

Let us now tackle the other dimensional case, namely, when k = dim(X) ≥
dim(Y) = l. Let f : X → Y with f (x) = y. The strongest condition we can
demand for the derivative d fx : Tx(X)→ Ty(Y) is surjectivity.

Definition 1.23 In the setting above, if d fx is surjective, we call f a submersion
at x. If f is a submersion at every point, we simply call it a submersion.

Example 1.24 As with immersions, the simplest example of a submersion is called
the canonical submersion and is the standard projection of Rk onto Rl for k ≥ l,
i.e. the maps that sends a point (x1, . . . , xk) to the point (x1, . . . , xl).

A similar statement as the Local Immersion Theorem also holds for submer-
sions:
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1.4. Submersions

Theorem 1.25 (Local Submersion Theorem) Let f : X → Y be a submersion
at x, and y = f (x). Then there exist local coordinates around x and y such that
f (x1, . . . , xk) = (x1, . . . , xl) for k ≥ l, i.e f is locally equivalent to the canonical
submersion near x.

Proof Just as in the proof of the of the Local Immersion Theorem 1.19, we
choose two parametrizations Φ and Ψ mapping x and y to 0 and such that
the usual diagram commutes:

X Y

U V

f

Φ

g

Ψ

Again, we seek to modify g in order to apply the Inverse Function theorem
1.16. As dg0 : Rk → Rl is surjective, by a change of basis in Rk, we may
assume that dg0 has the l × k matrix (Il , 0). We now define G : U → Rk as
follows:

G(a) = (g(a), al+1, . . . , ak),

for a = (a1, . . . , ak). The matrix representation of dG0 is the identity ma-
trix Ik and thus G is a local diffeomorphism at 0. We can therefore define
an inverse G−1 from a neighbourhood U′ of 0 into U. By construction, g
is the canonical submersion composed with G and thus we can write the
canonical submersion as the function g ◦ G−1. We then obtain the following
commutative square, where s is the canonical submersion:

X Y

U′ V

f

Φ ◦G−1

s

Ψ

�

As with immersions, an immediate corollary of this theorem is that a sub-
mersion at x is also a submersion in a whole neighbourhood of x.

We will now use the tools developed above to investigate the geometric
nature of preimage sets such as f−1(y) for a smooth map f : X → Y between
manifolds.

Definition 1.26 Let f : X → Y be a smooth map of manifolds. A point y ∈ Y is
called a regular value for f if d fx : Tx(X) → Ty(Y) is surjective for every x in
X such that f (x) = y. A point y ∈ Y that is not a regular value of f is called a
critical value.

Theorem 1.27 (Preimage theorem) Let y be a regular value of f : X → Y, then
the preimage set f−1(y) is a submanifold of X with dimension dim( f−1(y)) =
dim X− dim Y.

13



1. Manifolds of Euclidean space and smooth maps

Proof Since y is a regular value of f , f is a submersion at every point of the
preimage, and thus for any x in f−1(y), by the local Submersion theorem
1.25, we can select local coordinates such that

f (x1, . . . , xk) = (x1, . . . xl)

and such that y corresponds to (0, . . . , 0). This allows us to write the preim-
age set as the set of points of the form (0, . . . , 0, xl+1, . . . , xk). In other words,
let U be the neighbourhood of x on which the coordinates xi are defined.
Then, f−1(y)∩U is the set of points where x1 = 0, . . . xl = 0. The remaining
functions xl+1, . . . xk constitute a coordinate system on f−1(y) ∩ U, which
is a relatively open subset of f−1(y). This exactly shows that f−1(y) is a
submanifold of dimension k− l and thus concludes the proof. �

The theorem above gives us another characterization of manifolds, which is
often very useful when one wants to show that a particular object is indeed
a manifold.

We may now consider a variant of the preceding argument to derive some
results that will be of importance later. Let us take g1, . . . , gl l smooth, real-
valued functions on a manifold X with dimX = k ≥ l. Each gi is smooth and
thus the maps d(gi)x are linear functionals on the tangent space Tx(X). We
now define the function g as follows:

g = (g1, . . . , gl) : X → Rl

It is easily verified that dgx : Tx(X)→ Rl is surjective if and only if the linear
functionals d(gi)x are linearly independent. This leads us to the following
definition.

Definition 1.28 In the setting described above, we say that the functions g1, . . . , gl
are independent at x if the functionals d(gi)x for 1 ≤ i ≤ l are linearly indepen-
dent.

Proposition 1.29 If the smooth, real-valued functions g1, . . . , gl on X are inde-
pendent at each point where they all vanish, then the set Z of commons zeros is a
submanifold of X with dimension dim(X)− l

Proof If we set g = (g1, . . . , gl), the fact that the functions gi are independent
is equivalent to saying that dgx is surjective for every x in Z, which means
that (0, . . . , 0) ∈ Rl is a regular value of g. The result then follows directly
from the Preimage theorem 1.27. �

Definition 1.30 Let X be a smooth manifold and Z ⊆ X be a submanifold of X.
We define the codimension of the submanifold Z by the formula codim(Z) =
dim(X)− dim(Z)

14



1.5. Transversality

With this definition, the statement of the previous proposition can be re-
stated in the following terms: ”l independent functions on X cut out a sub-
manifold of codimension l.”

We now state and prove two partial converses to proposition 1.29.

Proposition 1.31 (partial converse 1) If y is a regular value of the smooth map
f : X → Y then the preimage submanifold f−1(y) can be cut out by independent
functions

Proof It is enough to choose a diffeomorphism h of a neighbourhood V of y
onto a neighbourhood of the origin in Rl , such that h(y) = 0. Set g = h ◦ f .
It is easily checked that 0 is a regular of g since y is a regular value of f .
Therefore, we can take the l functions g1, . . . , gl . �

Proposition 1.32 (partial converse 2) Every submanifold of X is locally cut out
by independent functions. More specifically, for Z a submanifold of codimension l
and for an arbitrary point z ∈ Z, we claim that there exist l independent functions
g1, . . . , gl defined on an open neighbourhood W of z in X such that Z ∩W is the
set of the common zeros of the gi’s.

Proof The result follows directly from the Local Immersion theorem 1.19 for
the immersion Z →W. �

We end this section with another way to characterize the tangent space.

Proposition 1.33 Let Z be the preimage set of a regular value y ∈ Y under the
smooth map f : X → Y. Then the kernel of the derivative d fx : Tx(X)→ Ty(Y) at
any point x is exactly the tangent space to Z, i.e the space Tx(Z).

Proof The map f is constant on Z, and thus the map d fx must be zero on
Tx(Z), which means that Tx(Z) must be included in the kernel. But at the
same time d fx : Tx(X) → Ty(Y) is surjective for any x in Z, which means
that we must have, for x ∈ Z

dim(ker(d fx)) = dim(Tx(X))− dim(Ty(Y)) = dim(X)− dim(Y) = dim(Z)

Thus, Tx(Z) is a subspace of the kernel with the same dimension. Therefore,
the two must be equal. �

1.5 Transversality

In this section, we will try to generalize the results that we have previously
shown for preimage sets of the form f−1(y). Let f : X → Y be a smooth
map of manifolds. Assume Z to be a submanifold of Y. We will examine
the set of solutions to the condition f (x) ∈ Z instead of considering the
preimage of a single point. What assumptions are now necessary to make

15



1. Manifolds of Euclidean space and smooth maps

sure that f−1(Z) is a reasonable geometric object, i.e. a manifold? Being
a manifold is a local property. That is, f−1(Z) is a manifold if and only if
every point x ∈ f−1(Z) has a neighbourhood U in X such that f−1(Z) ∩U
is a manifold. This observation allows us to reduce the relation f (x) ∈ Z
to the simpler case we have already considered previously, i.e. when Z is
a single point, say y ∈ Y. In this case, using the results from the previous
section (partial converse 1 1.31), we may write Z in a neighbourhood of
y as the zero set of l independent smooth functions g1, . . . , gl , with l the
codimension of Z in Y. Then, around any point x such that f (x) = y,
the preimage f−1(Z) is the zero set of the functions g1 ◦ f , . . . gl ◦ f . We
can then define g = (g1, . . . , gl) and apply our former results to the map
g ◦ f : W → Rl where W is a neighbourhood around our point x. Hence,
(g ◦ f )−1(0) will be a submanifold if 0 is a regular value of g ◦ f .

The condition we have obtained seems rather arbitrary, since the maps gi are
not necessarily unique. However, it is possible to reformulate the condition
in terms of f only, which will insure that everything we have done is well-
defined. By the chain rule, we have that:

d(g ◦ f )x = dgy ◦ d fx,

and thus the linear map d(g ◦ f )x : Tx(X) → Rl is surjective if and only if
dgy carries the image of d fx onto the whole of Rl . But g is a submersion
by construction and thus dgy : Ty(Y) → Rl is surjective linear map, whose
kernel is by proposition 1.33, Ty(Z). Thus, dgy carries a subspace of Ty(Y)
onto Rl exactly when if that subspace and Ty(Z) span the whole of Ty(Y).
We therefore conclude that g ◦ f is a submersion at the point x ∈ f−1(Z) if
and only if

Image(d fx) + Ty(Z) = Ty(Y) (1.1)

Definition 1.34 If the condition above is fulfilled, we say that the map f is transver-
sal to the submanifold Z, and we write f t Z

This whole discussion is summed up in the following theorem, that we inci-
dentally proved above:

Theorem 1.35 If the smooth map f : X → Y is transversal to a submanifold
Z ⊆ Y, then the preimage f−1(Z) is a submanifold of X. Moreover, the codimension
of f−1(Z) in X is equal to the codimension of Z in Y.

Remark 1.36 When Z is just a point y, its tangent space is the zero subspace of
Ty(Y). Thus, f is transversal to y if d fx(Tx(X)) = Ty(Y) for all x ∈ f−1(y). This
exactly means that y is a regular value of f . Hence, regularity is actually a special
case a transversality.

We now examine an important special case of the theorem above. This deals
with the transversality of the inclusion map i of one submanifold X ⊆ Y

16
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with another submanifold Z ⊆ Y. First, we notice that i−1(Z) = X ∩ Z and
that the derivative dix : Tx(X)→ Tx(Y) is simply the inclusion map of Tx(X)
into Tx(Y). This yields that i t Z if and only if, for every x ∈ X ∩ Z:

Tx(X) + Tx(Z) = Tx(Y). (1.2)

It is worth noting that this equation is symmetric in X and Z.

Definition 1.37 When the equation 1.2 above holds, we say that the two submani-
folds X and Z are transversal, and we write X t Z.

We obtain the following theorem:

Theorem 1.38 The intersection of two transversal submanifolds X and Z of Y is
again a submanifold. Moreover, the codimension is additive with respect to intersec-
tion, i.e. :

codim(X ∩ Z) = codimX + codimZ

Proof By definition 1.37 of the transversality of two submanifolds, we have
that i−1(Z) = X ∩ Z is a submanifold of Y. Moreover, by the previous
theorem (theorem 1.35), we know that the codimension of i−1(Z) = X ∩ Z
in X is equal to the codimension of Z in Y, i.e.

dim(X)− dim(X ∩ Z) = dim(Y)− dim(Z)

⇔ dim(Y)− dim(X ∩ Z) = dim(X) + dim(Z)− 2dim(X ∩ Z) (1.3)

By symmetry of the transversality condition, we can also write:

dim(Z)− dim(X ∩ Z) = dim(Y)− dim(X)

⇔ −2dim(X ∩ Z) = 2dim(Y)− 2dim(X)− 2dim(Z) (1.4)

Plugging the second equation (1.3) into to first one (1.4) yields

dim(Y)− dim(X ∩ Z) = 2dim(Y)− dim(X)− dim(Z)

which is exactly what we wanted. �

Remark 1.39 The transversality of X and Z also depends on the ambient space Y
in which they lie.

1.6 Homotopy and Stability

We begin this section by defining one of the fundamental terms in topology,
namely homotopy (for smooth maps). Let us denote by I the unit interval
[0, 1]

17
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Definition 1.40 (Homotopy of smooth maps) Let f0, f1 : X → Y be two smooth
maps of manifolds. We say that f0 and f1 are homotopic and we write f0 ' f1
if there exists a smooth map F : X × I → Y such that F(x, 0) = f0(x) and
F(x, 1) = f1(x) for all x ∈ X. We call the map F a homotopy between f0 and
f1. We can think of homotopy as a smoothly evolving family of maps ft : X → Y
connecting f0 to f1. To recover this family of maps, simply set ft(x) = F(t, x).

Definition 1.41 One can show that being homotopic is an equivalence relation on
smooth maps, and the resulting equivalence classes are called homotopy classes.

The notion of homotopy allows us to mathematically formalize the concept
of stability. For a given property of a function to stable, it should still be
valid if the function is slightly deformed. This intuitive picture leads us to
the next definition.

Definition 1.42 A property of the map f0 is called stable if whenever a map f0 :
X → Y has this property and ft : X → Y is a homotopy of f0, then there exists an
ε > 0 such that each ft with t < ε also has the property. The collection of maps that
possesses a specific stable property is called a stable class of maps.

The next theorem shows that all the properties that we have defined so far
are stable, if the domain manifold is compact.

Theorem 1.43 (Stability theorem) The following classes of smooth maps of a
compact manifold X into a manifold Y are stable classes:

1. local diffeomorphisms

2. immersions

3. submersions

4. maps transversal to any specified closed submanifold Z ⊂ Y

5. embeddings

6. diffeomorphisms

Proof The proof for the first four classes is done in the same way. Local dif-
feomorphisms are actually immersions in the special case dim(X) = dim(Y),
so we start with the proof for immersions. Let f0 be an immersion and let ft
be a homotopy of f0. We want to find an ε > 0 such that the map d( ft)x is
injective for all (x, t) ∈ X × [0, ε) ⊆ X × I. Because X is compact, any open
neighbourhood of X × 0 will contain X × [0, ε] for ε small enough. Thus, it
is enough to show that each point (x0, 0) has a neighbourhood U ⊆ X× I in
which d( ft)x is injective for all (x, t) ∈ U. This is a local assertion, and thus
we may assume that X is an open set in Rl and Y an open set in Rk. Since
d( f0)x0 is injective, the Jacobian(

∂( f0)i

∂xj
(x0)

)
18
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is an l × k matrix containing a k× k submatrix with non-zero determinant.
But by definition 1.40 of a homotopy, each partial derivative

∂( ft)i

∂xj
(x)

is continuous as a function on X × I. Since the determinant is also a con-
tinuous function, we must have a neighbourhood around (x0, 0) where the
Jacobian still contains a k× k submatrix with non-zero determinant, which
is exactly what we wanted to prove. The proof for submersions is identical.
For the fourth class, it is enough to recall that transversality can locally be
expressed as a submersion condition and then use the previous part.

Let us now prove the claim for the class of embeddings. Since X is compact,
the only thing left to show is the stability of the injectivity condition. For
this, we define the smooth map G : X × I → Y × I by G(x, t) = ( ft(x), t).
Towards a contradiction, we assume that embeddings do not form a stable
class, and so there exist a sequence (ti)→ 0 and distinct points xi and yi such
that G(xi, ti) = G(yi, ti). By compactness of X, we may take a subsequence
to get xi → x0, and similarly yi → y0. Then, by continuity:

G(x0, 0) = lim G(xi, ti) = lim G(yi, ti) = G(y0, 0)

But G(x0, 0) = f0(x0) and G(y0, 0) = f0(y0) and hence by injectivity of f0
we must have x0 = y0. Locally, we may work in Euclidean space and thus
consider the matrix dG(x0,0), which is just

a1

d( f0)x0

...
al

0 . . . 0 1


where the numbers aj are not important. Since d( f0)x0 is injective, its matrix
must have k independent rows, which implies that dG(x0,0) has k + 1 inde-
pendent rows, so dG(x0,0) is an injective linear map. This implies that G is an
immersion around (x0, 0) and thus by the local immersion theorem, it must
be injective in some neighbourhood of of (x0, 0). But for i large enough we
have that both (xi, ti) and (yi, ti) belong to this neighbourhood, which leads
to a contradiction.

The last remaining class of stable functions is the class of diffeomorphisms.
Since a homotopy is a smooth deformation of a smooth function, any ft will
be a smooth map as well. We have already proven that injectivity was sta-
ble so it remains to show the same for surjectivity. Since a diffeomorphism
is continuous by definition, points that belong to the same connected com-
ponent cannot be mapped to two different connected components. We can
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thus without loss of generality assume that X is connected. Incidentally, be-
cause f0 is a diffeomorphism, Y must be connected as well. Additionally, we
know that ft is local diffeomorphism for t small enough, which implies that
it maps open sets onto open sets. Hence, Im( ft) = ft(X) is an open set. But
since X is compact and ft continuous, we also have that ft(X) is compact.
Since we are looking at manifolds of Euclidean space (or more generally be-
cause we require our topological spaces to be Hausdorff), any compact set
is closed, which means that ft(X) is closed. Since Y is connected and ft(X)
is both open and closed, we must have ft(X) = Y, for t small enough which
shows surjectivity. The inverse f−1

t is already locally known to be smooth
so the proof is complete. �

1.7 Sard’s Theorem and Morse Functions

What we have seen so far is that regular values are useful to characterize
preimage sets as nice geometric objects, namely manifolds. The next ques-
tion that might come to mind is the following: ”How common are regular
values?” Maybe such a condition is too strong to be of any use once we are
dealing with concrete examples of maps of manifolds. Luckily for us, this is
not the case, as the next result shows:

Theorem 1.44 (Sard’s theorem) The set of critical values of a smooth map of man-
ifolds f : X → Y has measure zero.

Proof The proof can be found in the Appendix, since it has little to do with
the topological considerations which interest us the most in this text. �

Corollary 1.45 The regular values of any smooth map f : X → Y are dense in Y.
Moreover, for any countable number of smooth maps fi : X → Y the points of Y
that are simultaneously regular values for all of the fi’s are dense.

Proof This follows directly from Sard’s theorem B.1 above and from the
fact that the union of a countable number of sets of measure zero still has
measure zero. �

We now give a new terminology for concepts that we have already encoun-
tered:

Definition 1.46 Let f : X → Y be a smooth map of manifolds. A point x in X is
called a regular point of f if d fx : Tx(X) → Ty(Y) is surjective. One sometimes
says that f is regular at x. This is exactly the condition that f is a submersion at
x. We now just have a new name for it. If d fx is not surjective, we call x a critical
point of f .

Let us, for a moment, consider smooth functions on a manifold X, that is
functions f : X → R. Then f is either regular at the point x, or d fx = 0.
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1.7. Sard’s Theorem and Morse Functions

The local submersion theorem 1.25 gives us the local behaviour of f at all
its regular points. The goal is now to develop the machinery required to
characterize the behaviour of f around critical points as well. It is worth
noting that many maps are often compelled to have critical points by the
topology of the manifolds on which they are defined. For example, a func-
tion f on a compact manifold X (for X not a single-point space) must take
on a maximum and a minimum. If the value f (x) is extremal, then f cannot
be a coordinate system around x, which implies that the derivative d fx is
0. However, there is a class of critical points that is ”best-behaved”. It is
known from analysis that an easy way to check whether a critical point is a
maximum, a minimum, or a saddle point is to compute the Hessian matrix

H =
(

∂2 f
∂xi∂xj

)
. The definiteness of H then gives information about the nature

of the critical point.

Definition 1.47 If the Hessian matrix is non-singular at a critical point x, we say
that x is a non-degenerate critical point of f .

The non-degeneracy property is independent from the coordinate system
that we choose, and this will be clear from the intrinsic definition of the
Hessian that we will give now:

Definition 1.48 If x is a critical point of f we define a symmetric bilinear func-
tional f∗∗ on Tx(X), X being the manifold on which f is defined. The bilinear form
f∗∗ is called the Hessian of f at the point x, and is constructed as follows: if
v, w ∈ Tx(X), then we can extend those two vectors to smooth vector fields v̄ and
w̄ on X and we set

f∗∗(v, w) = v̄x(w̄( f ))

The notation might seem unfamiliar, so let us break it down a bit: v̄x is the
value of the vector field at the point x, which is of course just the tangent
vector v. Furthermore, if g is a smooth function on X, we interpret v(g) as
the directional derivative of g at the point x in the direction v, which is a
real number. In our case, our function g is w̄( f ), which is a function on X
defined by w̄( f )(p) = w̄p( f ).

Let us now check that f∗∗ is indeed symmetric:

Proposition 1.49 The Hessian bilinear functional is symmetric.

Proof We have:

v̄x(w̄( f ))− w̄x(v̄( f )) = [v̄, w̄]x( f ) = 0

The vector field [v̄, w̄] is called the Poisson bracket of v̄ and w̄. It is essentially
defined by the subtraction on the left-hand side, but it is not very important
for our discussion. What is important is that the Poisson bracket is a vector
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field and thus [v̄, w̄]x( f ) is a directional derivative of f at the point x. Since x
is a critical point of f , all directional derivatives must be zero, which justifies
the last equality and thus proves symmetry. �

The symmetry of f∗∗ allows us to check that it is well-defined, i.e. indepen-
dent of the choice of extensions v̄ and w̄. By symmetry, we can write

v(w̄( f )) = v̄x(w̄( f )) = w̄x(v̄( f )) = w(v̄( f ))

Since the left-hand side is independent of v̄ and the right-hand side indepen-
dent of w̄, the Hessian is indeed well-defined.

Remark 1.50 If (x1, . . . , xn) is a local coordinate system and v = ∑n
i=1 ai

∂ f
∂xi

∣∣∣
x
, w =

∑n
j=1 bj

∂ f
∂xj

∣∣∣
x
, we can choose w̄ = ∑n

j=1 bj
∂

∂xj
where the bj’s are constant functions.

This yields:

f∗∗(v, w) = v(w̄( f ))(x) = v

(
n

∑
j=1

bj
∂ f
∂xj

)
=

n

∑
i,j=1

aibj
∂2 f

∂xi∂xj
(x)

so the Hessian matrix defined previously and known from analysis represents f∗∗
with respect to the basis ∂

∂x1

∣∣∣x, i = 1, . . . , n

We can now introduce some useful terminology.

Definition 1.51 The index of a bilinear functional H on a vector space V is defined
to be the maximal dimension of a subspace W ⊆ V on which H is negative definite.
The nullity of H is the dimension of the null-space, i.e. the space N = {v ∈
V|H(v, w) = 0 ∀w ∈ V}.

A critical point p in a manifold X can thus be non-degenerate if and only if
f∗∗ on TpX has nullity 0. We will refer to the index of f∗∗ as the index of f at
p.

We will shortly state and prove the Morse Lemma 1.53, which shows that
the behaviour of a function at critical points is entirely determined by the
index of the given function. First, we need a technical lemma.

Lemma 1.52 Let f be a smooth function in a convex neighbourhood V of 0 in Rn

such that f (0) = 0. Then

f (x1, . . . , xn) =
n

∑
i=1

xigi(x1, . . . , xn)

for some smooth functions gi defined in V and such that gi(0) =
∂ f
∂xi

(0).
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Proof

f (x1, . . . , xn) =
∫ 1

0

d f (tx1, . . . , txn)

dt
dt =

∫ 1

0

n

∑
i=1

∂ f
∂xi

(tx1, . . . , txn) · xi dt.

Therefore we can simply define gi(x1, . . . , xn) =
∫ 1

0
∂ f
∂xi

(tx1, . . . , tn)dt �

Lemma 1.53 (Morse Lemma) Let f be a smooth map on a manifold and p be a
non-degenerate critical point of f . Then there is a local coordinate system (y1, . . . , yn)
in a neighbourhood U of p with yi(p) = 0 for all i and such that, for all x in U, we
have:

f (x) = f (p)− (y1(x))2− · · · − (yλ(x))2 + (yλ+1(x))2 + · · ·+ (yn(x))2 (1.5)

where λ is the index of f at p.

Proof We first show that if f can be written as above inside the neighbour-
hood U, then the number λ must be the index of f at p. Let (z1, . . . , zn) be
an arbitrary coordinate system such that

f (x) = f (p)− (z1(x))2 − · · · − (zλ(x))2 + (zλ+1(x))2 + · · ·+ (zn(x))2.

Then we must have:

∂2 f
∂zi∂zj

(p) =


−2 if i = j ≤ λ,
2 if i = j > λ,
0 otherwise ,

Thus, the matrix representing the Hessian f∗∗ with respect to the basis
∂

∂z1

∣∣∣
p
, . . . , ∂

∂zn

∣∣∣
p

is given by the diagonal matrix



−2
. . .
−2

2
. . .

2


Therefore, there is a subspace of TpX of dimension λ where f∗∗ is negative
definite, and a subspace V of dimension n− λ where f∗∗ is positive definite.
If there were a subspace of dimension strictly greater than λ where f∗∗ were
negative definite, then this subspace would intersect with V, which is not
possible, since f∗∗ is positive definite on V. This shows that λ is the index
of f at p. Now, we need to show that such a suitable coordinate system
(y1, . . . , yn) exists. Without loss of generality, we can assume that p is the
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origin of Rn and that f (p) = f (0) = 0. Using the previous lemma 1.52, we
may write

f (x1, . . . , xn) =
n

∑
j=1

xjgj(x1, . . . , xn)

for (x1, . . . , xn) in some convex neighbourhood of 0. Since 0 is assumed to
be a critical point of f , lemma 1.52 gives us

gj(0) =
∂ f
∂xj

(0) = 0

Therefore we can apply lemma 1.52 once again to the functions gj, which
yields

gj(x1, . . . , xn) =
n

∑
i=1

xihij(x1, . . . , xn)

for some smooth functions hij. Putting everything together, we can write

f (x1, . . . , xn) =
n

∑
i,j=1

xixjhij(x1, . . . , xn).

We may assume that hij = hji by using the following trick. We write
h̄ij = 1

2 (hij + hji). Then, we have indeed that h̄ij = h̄ji and f = ∑ xixjh̄ij.
Furthermore, lemma 1.52 also gives that the matrix (h̄ij(0)) is actually equal

to ( 1
2

∂2 f
∂xi∂xj

(0)), which is non-singular by assumption. We claim there is a
non-singular transformation of the coordinate system that yields the desired
from for f , by shrinking the neighbourhood around 0 if necessary. This pro-
cess is similar the diagonalization proof for quadratic forms. The proof of
this claim uses induction. Let us assume by induction that there exist coor-
dinates u1, . . . , un in a neighbourhood U1 of 0 such that

f = ±(u1)
2 ± · · · ± (ur−1) + ∑

i,j≥r
uiujHij(u1, . . . , un)

in U1 and such that the matrices (Hij(u1, . . . , un)) are symmetric. After a lin-
ear coordinate transformation in the last n− r + 1 variables, we may assume
that Hrr(0) 6= 0. Let g(u1, . . . , un) denote the square root of |Hrr(u1, . . . , un)|.
The function g is a smooth, non-zero function of u1, . . . , un at least on some
smaller neighbourhood U2 ⊆ U1 of 0. We can now introduce new coordi-
nates v1, . . . , vn by vi = ui for i 6= r. For the r-th coordinate function, we
set

vr(u1, . . . , un) = g(u1, . . . , un)

[
ur + ∑

i>r
ui Hir(u1, . . . , un)/Hrr(u1, . . . , un)

]
.
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The inverse function theorem 1.16 ensures that v1, . . . , vn will be valid coor-
dinate functions on a sufficiently small neighbourhood U3 of 0. Then it is
easy to check that

f = ∑
i≤r
±(vi)

2 + ∑
i,j>r

vivjH′ij(v1, . . . , vn)

By iterating this process as many times as needed, namely n times, we get
the desired coordinate system, which completes the proof. �

Remark 1.54 The Morse lemma 1.53 thus tells us that we can locally describe the
behaviour of a function around non-degenerate critical points. Two direct conse-
quences of the lemma is that non-degenerate critical points are isolated, and thus in
particular, a function on a compact manifold only has finitely many non-degenerate
critical points. Indeed for each point x take an open set Ux such that Ux contains at
most one critical point. This constitutes an open cover X and compactness gives us
a finite subcover and thus finitely many critical points.

It is now useful to define a new class of functions.

Definition 1.55 A function whose critical points are all non-degenerate is called a
Morse function.

Morse functions are really useful, because they give a lot of information
about the topology of their domain manifold. This is the main topic of this
text and will be discussed at length in the next chapter. Another interesting
point is that Morse functions are actually quite common, in a sense that will
be specified in the theorem below. The occurrence of critical points that are
degenerate is thus a rare phenomenon.

Theorem 1.56 Let us take a manifold X ⊆ Rn of dimension k, with x1, . . . , xn the
usual coordinate functions on Rn. Let f : X → R be an arbitrary smooth function
and a = (a1, . . . , an) ∈ Rn. We define a new function fa on X by setting

fa = f + a1x1 + · · ·+ anxn

Then the function fa is a Morse function for almost every a ∈ Rn.

We divide the proof in two steps by first stating the same result in Rk as a
lemma.

Lemma 1.57 Let f be a smooth function on an open set U ⊆ Rk. Then for almost
every a = (a1, . . . , ak) ∈ Rk, the function fa defined as above is a Morse function
on U.

Proof We again define the map g : U → Rk as follows:

g =

(
∂ f
∂x1

, . . . ,
∂ f
∂xk

)
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1. Manifolds of Euclidean space and smooth maps

Now, we can write the derivative of fa at a point p by

(d fa)p =

(
∂ fa

∂x1
(p), . . . ,

∂ fa

∂xk
(p)

)
= g(p) + a

Thus p is a critical point of fa if and only if g(p) = −a. Now, we observe
that since fa and f have the same second partial derivatives, they also have
the same Hessian, namely the matrix (dg)p. Now let us assume that −a is a
regular value of g. Then, whenever g(p) = −a, (dg)p is non-singular, which
exactly means that every critical point of fa is non-degenerate. Finally, using
Sard’s theorem B.1, we know that our assumption that −a is a regular value
of g holds for almost every a ∈ Rk, which completes the proof. �

Proof (proof of Theorem 1.56) Let x be any point in X and x1, . . . , xn the
usual coordinate functions on Rn. We first claim and prove the following:
the restrictions of some k of these coordinate functions xi1 , . . . , xik to X con-
stitute a coordinate system in a neighbourhood of x. Let Φ1, . . . , Φn be the
standard basis of linear functionals on Rn. Then some k of these functionals
Φi1 , . . . , Φik are linearly independent when we restrict them to the tangent
space Tx(X). Now, the derivative of the function xi : Rn → R is exactly
the functional Φi : Rn → R, and so the derivative of the restriction of xi to
X must be the restriction of Φi to Tx(X). The linear independence of the
functionals Φik implies that the map (xi1 , . . . , xik) : X → Rk is a local diffeo-
morphism at x. Since the point x we had was arbitrary, we can cover X with
open subsets Uα such that for each α, some k of the coordinate functions
form a coordinate system. Furthermore, since we are in the Euclidean space
Rn, the second axiom of countability holds and we thus may assume that
there are countably many Uα’s. Let us take one of these sets Uα and assume
without loss of generality and to ease the notation that (x1, . . . , xn) is a co-
ordinate system on Uα. For any n− k-tuple c = (ck+1, . . . , cn) we define the
function

f(0,c) = f + ck+1xk+1 + · · ·+ cnxn

By lemma 1.57, we know that for almost every b ∈ Rk, the function

f(b,c) = f(0,c) + b1x1 + · · ·+ bkxk

is a Morse function on the open set Uα. Now, let Sα be the set of all a ∈ Rn

such that fa is not a Morse function on Uα. What we have shown with
our previous construction is that every ”horizontal slice” Sα ∩ Rk × c has
measure zero, when considered as a subset of Rk. It is a consequence of
Fubini’s theorem that every Sα consequently has measure 0 in Rn. It is clear
that a function has a degenerate critical point in X if and only if it has one
in some set Uα. Thus the set of a ∈ Rn for which fa is not a Morse function
is the union of all the sets Sα. We know that there are countably many Uα
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1.7. Sard’s Theorem and Morse Functions

and thus countably many Sα. Since the union of a countable number of sets
of measure zero still has measure zero, the proof is complete. �

We finish this section with a few interesting facts about Morse functions.

Example 1.58 Let f : Sk−1 → R be the height function (x1, . . . , xk) 7→ xk on
the sphere. We can view f as the restriction of the projection π : Rk → R to the
sphere. This implies that for x ∈ Sk−1, the derivative d fx : Tx(Sk−1) → R is
the restriction of the derivative of the projection π, which is dπx = π because the
projection is a linear map. Thus, x will be a critical point if and only if we have
Tx(Sk−1) = Rk−1 × {0}. To characterize the tangent space in another way, let
us examine the function g : Sk−1 → R defined by g(x) = ||x||2. It is then clear
that 1 is a regular value of g and that we have g−1(1) = Sk−1. Using proposition
1.33, we may write Ta(Sk−1) = ker(x 7→ 2atx) where at is the transpose of a.
Then, we have that Tx(Sk−1) = Rk−1 × {0} if and only if a = (0, . . . , 0, 1) = N
or a = (0, . . . , 0,−1) = S. The critical points are thus the two poles N and S.
One can compute the Hessian matrix of the function composed with the inverse
of the stereographic projections to verify that those critical points are indeed non-
degenerate. Thus f is a Morse function.

Proposition 1.59 Let f be a smooth function on an open set U ⊆ Rk. For each
x ∈ U, we denote by H(x) the Hessian matrix of f at the point x. Then f is a
Morse function if and only if the following inequality holds across the set U.

det(H)2 +
k

∑
i=1

(
∂ f
∂xi

)2

> 0 (1.6)

Proof ”⇒” Let us take an arbitrary point x ∈ U. If x is a regular point, then
we must have ∂ f

∂xi
6= 0 for some i, which is enough to give us the desired

inequality 1.6. If x is a critical point, it must be non-degenerate because
f is a Morse function, and thus we must have det(H) 6= 0, which again
directly yields 1.6.

”⇐” Let x ∈ U be a critical point of f . Then we have that ∂ f
∂xi

(x) = 0 for
i = 1, . . . , k. But then we must have by assumption that det(H)2 > 0,
which implies that H is non-singular. Since we chose an arbitrary
critical point, we can conclude that f is a Morse function, as desired.
�

Proposition 1.60 Let ft : Rk → R be a family of homotopic functions. Suppose
additionally that f0 is a Morse function in some neighbourhood U of a compact set
K. Then each ft is also a Morse function on U for t sufficiently small.

Proof The argument is fairly similar to the proof of the stability theorem.
The compactness of K implies that any open neighbourhood of K × {0} in
Rk × [0, 1] contains K× [0, ε] for some ε > 0 small enough.
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Then, because every ft is smooth and the homotopy is smooth as well,
each partial ∂ ft

∂xi
(x) is smooth as a function of Rk × [0, 1], and similarily for

∂2( ft)i
∂x2

i
(x), and hence also for det(Ht)(x), where Ht denotes the Hessian ma-

trix of ft. This implies that

det(H)2 +
k

∑
i=1

(
∂ f
∂xi

)2

> 0

in some neighbourhood L of K× [0, 1]. Thus by the first remark of this proof,
there exists some neighbourhood V × [0, ε] ⊂ L where this inequality holds.
Then, using proposition 1.59 concludes the proof. �

Proposition 1.61 (Stability of Morse functions) Let f be a Morse function on
the compact manifold X, and let ft be a homotopic family of functions with f0 = f .
Then each function ft is a Morse function for t sufficiently small. In other words,
the property of being a Morse function is a stable property.

Proof For an arbitrary point x ∈ X, let Φ : Rk ⊃ Vx → X be a local
parametrization around x such that Φ(0) = x. Now choose r such that
Br(0) ⊂ Vx where Br(0) denotes the Euclidean ball of radius r around 0.
We define Ux = Φ(Br(0)), which is an open neighbourhood of the compact
set Φ(B r

2
(0) (Compactness follows from Φ being a diffeomorphism of Eu-

clidean spaces). Using the previous theorem 1.60 we know that there exists
εx > 0 such that ft is a Morse function on Ux for all t in [0, εx).

Since X is a compact manifold, and {Ux}x∈X is an open cover of X, we can
find a finite subcover Ux1 , . . . , UxN . By setting ε = min{εx1 , . . . , εxn}, we get
that ft is a Morse function on the whole manifold X for t in [0, ε). This
completes the proof. �

Proposition 1.62 Let X be a compact manifold, then there exist Morse functions
on X which take distinct values for each of the critical points.

Proof The idea of the proof is to use the stability of Morse functions to mod-
ify the values of the functions slightly at critical points where it is necessary.
More precisely, let f be a Morse function on the compact manifold X. One
can construct f using theorem 1.56. Let x1, . . . xN be its critical points. For ev-
ery critical point, we take a smooth cut-off function ρi that is identically 1 on
a small neighbourhood of xi and 0 outside a slightly bigger neighbourhood.
We then choose constants a1, . . . , aN such that for i 6= j

f (xi) + ai 6= f (xj) + aj.

We then define the function g = f + ∑N
i=1 aiρi. Since the ρi’s are constant

around the critical points of f , this new function has the same critical points,
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and they are non-degenerate again because the ρi’s are locally constant. We
can choose the coefficients ai to be very small so that g get arbitrarily close
to f . The function g is then a Morse function taking different values at every
critical point. �

1.8 1-parameter group of diffeomorphisms

We conclude this chapter by a technical discussion that will be of use later.

Definition 1.63 A 1-parameter group of diffeomorphisms of a manifold M is
a C∞ map

ϕ : R×M→ M

such that the following holds:

1. for each t ∈ R, the map ϕt : M → M defined by ϕt(q) = ϕ(t, q) is a
diffeomorphism of M onto itself.

2. for all t, s ∈ R, we have ϕt+s = ϕt ◦ ϕs

Given such a 1-parameter group ϕ of diffeomorphisms of M, we define the vector
field X on M as follows. For every smooth real valued function f , set

Xq( f ) = limh→0
f (ϕh(q))− f (q)

h

This vector field is said to generate the group ϕ

Lemma 1.64 A smooth vector field X on M which vanishes outside of a compact
set K ⊆ M generates a unique 1-parameter group of diffeomorphims of M.

Proof Given any smooth curve t → c(t) ∈ M we define the velocity vector
dc
dt ∈ Tc(t)M by the identity dc

dt ( f ) = limh→0
f c(t+h)− f c(t)

h . Now, let ϕ be a 1-
parameter group of diffeomorphisms generated by the vector field X. Then,
we obtain the following equalities:

dϕt(q)
dt

( f ) = lim
h→0

f (ϕt+h(q))− f (ϕt(q))
h

= lim
h→0

f (ϕh(p))− f (p)
h

= Xp( f ),

where p = ϕt(q). Thus, the curve t 7→ ϕt(q) satisfies the differential equation

dϕt(q)
dt

= Xϕt(q) (1.7)

with the initial condition ϕ0(q) = q. Note that if we use local coordi-
nates u1, . . . , un, the differential equation has the more familiar form dui

dt =
xi(u1, . . . , un), for i = 1, . . . , n. It is known form analysis that such a differen-
tial equation, at least locally, has a unique solution depending smoothly on
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1. Manifolds of Euclidean space and smooth maps

the initial condition. Hence, for every q ∈ M, there exists a neighbourhood
U and a number ε > 0 such that the differential equation 1.7 has a unique
smooth solution for q ∈ U and |t| < ε.

Using compactness, we can cover K with finitely many of these sets U. We
now define ε0 > 0 to be the smallest ε among all the finitely many pairs
(U, ε). For, q /∈ K, we set ϕt(q) = q. This yields a solution to 1.7 for all
q ∈ M, as long as |t| < ε0. This solution is smooth as a function of both
variables, and granted |t|, |s|, |t + s| < ε0, it is clear that ϕt+s = ϕt ◦ ϕs.

We now need to define ϕt for |t| ≥ ε0. Since any number t can be written as
k times ε0/2 plus a remainder r < ε0. Then, for t = k(ε0/2) + r with k ≥ 0,
we an write

ϕt = ϕε0/2 ◦ ϕε0/2 ◦ · · · ◦ ϕε0/2 ◦ ϕr

where ϕε0/2 is iterated k times. If k < 0, we can just replace ε0/2 by −ε0/2
iterated −k times. Thus, ϕt is well defined for all values of t. As a composi-
tion of smooth functions, it is smooth and it is clear by construction that it
satisfies the condition ϕs+t = ϕt ◦ ϕs. This completes the proof. �
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Chapter 2

Morse theory

2.1 An important example

The reason for all the terminology we introduced in the first chapter is that
critical points of Morse functions can be used to describe the topology of
the manifold on which the Morse functions are defined. This is actually
what is meant with Morse theory. We will shortly illustrate this with a very
insightful example that actually serves as an introduction in Milnor’s book
[8]. However, we first need a few new concepts.

Definition 2.1 Let X and Y be topological spaces, with X′ ⊂ X a closed subset.
Let f : X′ → Y be a continuous map. The adjunction space X ∪ f Y is defined to
be the disjoint union X t Y where we identify x with f (x) for all x in X′. More
formally, we have that X ∪ f Y = (X tY)/ ∼, where ∼ is the smallest equivalence
relation, such that x ∼ f (x), ∀x ∈ X′

An informal way of thinking about this space is by taking Y and attaching
X \ X′ to it. We will now focus on a particular instance of adjunction space.

Definition 2.2 Let Bn be the closed unit ball of dimension n with n ≥ 1, and Sn−1

be the n− 1-unit sphere. We call the space En := Bn \ Sn−1 the standard n-cell.
This is actually just the open unit ball. For the case n = 0, we define E0 to simply
be a point. If X is a topological space, and E ⊆ X is a subset homeomorphic to En,
we call E an n-cell in X. If Y is another topological space, and f : Sn−1 → Y is
continuous, the space Bn ∪ f Y is said to be obtained from Y by attaching an n-cell.

We now have the necessary vocabulary to tackle Milnor’s example.

Example 2.3 Let M be a torus tangent to the plane V, and let f : M → R denote
the height function above the plane. We define Ma to be the set of all x ∈ M such
that f (x) ≤ a. Then, by choosing different values for a, we observe the following:

1. If a < 0 = f (p) then Ma is the empty set.
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2. Morse theory

2. If f (p) < a < f (q), then Ma is homeomorphic to a 2-cell.

3. If f (q) < a < f (r), then Ma is homeomorphic to a cylinder.

4. If f (r) < a < f (s), then Ma is homeomorphic to a compact manifold of
genus one having a circle as boundary.

5. If f (s) < a, then Ma is the full torus.

Figure 2.1: A torus tangent to a plane (from [8])

We would like to describe the change of the set Ma as a passes through the points
f (p), f (q), f (r), and f (s). For that we define yet another new concept.

Definition 2.4 A continuous map f : X → Y between two topological spaces is
called a homotopy equivalence if there exists a continuous map f : Y → X such
that g ◦ f ' IdX and f ◦ g ' IdY, where, as in Chapter 1, ”'” denotes the relation
of being homotopic. If there exists a homotopy equivalence between two spaces X
and Y, we say that those two spaces have the same homotopy type.

Remark 2.5 • It is clear that homeomorphic spaces have the same homotopy
type, however, the converse is in general not true.
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• If a topological space has the same homotopy type as a point, it is often called
contractible.

Let us now examine how the homotopy type of Ma changes. (All the illustrations
below were taken from [8]).

• (1) → (2) is the operation of attaching a 0-cell, since a 2-cell is contractible
and thus has the same homotopy type as a 0-cell, which is just a point.

• (2)→ (3) is the operation of attaching a 1-cell.

• (3)→ (4) again consists in attaching a 1-cell.

• (4)→ (5) is the operation of attaching a 2-cell.

Furthermore, we can observe that the points p, q, r, s at which the homotopy type
of Ma changes are the critical points of f . At p, we can choose coordinates (x, y)
such that f = x2 + y2, at s such that f = constant − x2 − y2, and at q and r
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such that f = constant + x2 − y2. An important thing to note at this point is that
the number of minus signs in the expression of f (which we already defined as the
index of f ) is the dimension of the cell we need to attach to go from one homotopy
type of Ma to the next. In the rest of this chapter, we will generalize this idea for
differentiable functions on manifolds.

2.2 Homotopy type in terms of critical values

For the following section for a smooth map f on a manifold M, we denote
by Ma the preimage set f−1(−∞, a] = {p ∈ M : f (p) ≤ a}.

We begin with a topological definition.

Definition 2.6 Let X be a topological space and let X′ ⊆ X be a subspace. Let
ι : X′ → X denote the inclusion. We call X′ a deformation retract of X if there
exists a smooth map r : X → X′ such that r ◦ ι = idX′ and ι ◦ r ' idX.

The proof of the next theorem uses tools from differential geometry that are
not the main focus of this text but will be briefly described here. The concept
we want to define here is that of a Riemannian metric, which allows us to
define lengths and angles on smooth manifolds. Every smooth manifolds
admits a Riemannian metric and we will outline a proof of this without
getting into the details too much. The main ingredient is a partition of
unity, a concept that may be familiar from analysis. For this description of
manifolds, we use the more general setup of appendix A and not just the
definition we had of manifolds of Euclidean space.

Definition 2.7 A Riemannian metric g on a smooth manifold M is a smoothly
chosen inner product gx : Tx M × Tx M → R on every tangent space Tx M of M.
More precisely, ∀x ∈ M, gx has the following properties:

1. gx(u, v) = gx(v, u), ∀u, v ∈ Tx M

2. gx(u, u) ≥ 0, ∀u ∈ Tx M

3. g(u, u) = 0 ⇐⇒ u = 0

Moreover, g is smooth in the sense that for any smooth vector fields X and Y, the
map x 7→ gx(Xx, Yx) is smooth.

Remark 2.8 Locally, we can describe a metric in terms of its coefficient in a local
chart, defined by gij = g(∂i, ∂j). The smoothness of g is equivalent to the smooth-
ness of all the coefficients gij.

Example 2.9 Rn can be given a Riemannian metric in many ways. For example,
let fij be bounded smooth functions such that fij = f ji. Then, for C big enough, the
functions gij = Cδij + fij are positive definite everywhere, and so define a Rieman-
nian metric. Here δij denotes the Kronecker delta function.
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Proposition 2.10 Every smooth manifold M admits a Riemannian metric.

Proof (sketch) Let us pick an atlas {ϕα : Uα → Vα} and a subordinate par-
tition of unity {ρα}. On each of the sets Vα ⊂ Rn take a Riemannian metric
g(α) as in example 2.9. We then define

g(u, v) = ∑
α

ραg(α)(Dϕα(u), Dϕα(v))

We can then verify that all the desired properties hold. �

Theorem 2.11 Let f : M → R be a smooth function on a manifold M. Let a < b
and suppose that f−1[a, b] is compact and contains no critical points of f . Then Ma

is diffeomorphic to Mb. Moreover, Ma is a deformation retract of Mb, so that the
inclusion map ι : Ma → Mb is a homotopy equivalence.

Proof The idea of the proof is to push Mb onto Ma along the orthogonal tra-
jectories of the hypersurfaces f = constant. To do this, choose a Riemannian
metric on M, and let 〈X, Y〉 denote the inner product of two tangent vectors
determined by this choice of metric. The gradient of f is the vector field ∇ f
on M, which fulfills the identity

〈X,∇ f 〉 = X( f )

for any vector field X, and where X( f ) denotes the directional derivative
of f along X. Now, ∇ f vanishes precisely at the critical points of f . If
c : R→ M is a curve with velocity vector dc

dt , note the identity

〈dc
dt

,∇ f
〉
=

d( f ◦ c)
dt

.

Define the map ρ : M → R to be smooth and equal to 1/〈∇ f ,∇ f 〉 on the
compact set f−1[a, b] and vanishing outside a compact neighbourhood of
this set. Then, we may define a vector field X satisfying the condition of
lemma 1.64 as follows:

Xq = ρ(q)(∇ f )q

Thus, X generates a 1-parameter group of diffeomorphisms ϕt : M → M.
For a fixed point q in M, let us now consider the function t 7→ f (ϕt(q)). If
ϕt(q) belongs to f−1[a, b], then we have

d f (ϕt(q))
dt

=
〈dϕt(q)

dt
,∇ f

〉
= 〈X,∇ f 〉 = 1

Hence, the correspondence t 7→ ϕt(q) is linear with derivative 1 as long as
f (ϕt(q)) lies between a and b. Now, the diffeomorphism ϕb−a : M → M
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clearly carries Ma diffeomorphically onto Mb, which proves the first state-
ment of the theorem. Now let us define a 1-parameter family of maps
rt : Mb → Mb as follows:

rt(q) =

{
q if f (q) ≤ a
ϕt(a− f (q))(q) if a ≤ f (q) ≤ b

Then r0 is the identity, and r1 is a retraction from Mb to Ma. Hence Ma is a
deformation retract of Mb. This completes the proof. �

Remark 2.12 The compactness of f−1[a, b] is a necessary condition.

We have seen that the homotopy type does not change between two preim-
age sets if there are no critical points involved. We now formalize what we
have seen in our example 2.3 with the torus; namely that when we have a
critical point, ”passing through it” with the level set changes the homotopy
by attaching an n-cell. Here is the precise statement:

Theorem 2.13 Let f : M → R be a smooth function on a manifold M and let
p ∈ M be a non-degenerate critical point of f with index λ. Write c = f (p).
Assume that for some ε < 0, the set f−1[c− ε, c + ε] is compact and contains no
critical point of f except for p. Then the set Mc+ε has the homotopy type of Mc−ε

with a λ-cell attached

Proof The proof of this is quite lengthy and necessitates a few intermediate
steps. To make the process as clear as possible, we first describe the idea of
the proof and then get into the details. All the figures in this proof come
from [8].

We will define a new function F : M → R which coincides with f except
that we demand F < f in a small neighbourhood of p. Thus, the preimage
set F−1(−∞, c− ε] will be equal to Mc−ε together with a small region H near
the point p. Then, a rather direct argument will show that if we take the cell
eλ in a suitable way, Mc−ε ∪ eλ is a deformation retract of Mc−ε ∪ H. Finally,
using the previous theorem on F and F−1[c − ε, c + ε] we will show that
Mc−ε ∪ H is a deformation retract of Mc+ε, which will conclude the proof.

The following figure (2.2) illustrates this idea. H is the horizontally shaded
region.
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2.2. Homotopy type in terms of critical values

Figure 2.2: idea of the proof

Choose a coordinate system u1, . . . , un in a neighbourhood U of p such that

f = c− (u1)
2 − · · · − (uλ)

2 + (uλ+1)
2 + · · ·+ (un)

2

holds in U. This is possible by the Morse Lemma 1.53. Thus, the critical
point p will have coordinates u1(p) = · · · = un(p) = 0. Take ε > 0 suffi-
ciently small so that

1. The set f−1[c− ε, c + ε] is compact and contains no critical point other
than p.

2. The image of the neighbourhood U under the diffeomorphic embed-
ding (u1, . . . , un)→ Rn contains the ball (u1, . . . , un) : ∑n

i=1(ui)
2 ≤ 2ε.

Now, we define the λ-cell that we will need as follows:

eλ = (u1)
2 + · · ·+ (uλ)

2 ≤ ε and uλ+1 = · · · = un = 0.
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Figure 2.3: The cell eλ

The figure (2.3) above illustrates the situation. The axes represent the hyper-
planes uλ+1 = · · · = un = 0 and u1 = . . . uλ = 0 respectively. The circle
represents the boundary of the ball of radius

√
2ε and the hyperbolas are

the hypersurfaces f−1(c − ε) and f−1(c + ε). The region Mc−ε is shaded,
f−1[c − ε, c] is filled with big dots and f−1[c, c + ε] is the region with the
small dots.

Looking at the intersection eλ ∩Mc−ε, we see that it is precisely the boundary
of eλ, denoted by ėλ. Thus, eλ is attached to Mc−ε, as we wanted.

We now want to prove that Mc−ε ∪ eλ is a deformation retract of Mc+ε. In
order to do this, we construct a new smooth function F : M→ R as follows.
First, let µ : R → R be a smooth function satisfying the following three
conditions:

1. µ(0) > ε

2. µ(r) = 0 for r ≥ 2ε

3. −1 < µ′(r) ≤ 0 for all r,

where µ′(r) denotes the derivative of µ. Now let F coincide with f outside
of the coordinate neighbourhood U and let us define F inside U as

F = f − µ((u1)
2 + · · ·+ (uλ)

2 + 2(uλ+1)
2 + · · ·+ 2(un)

2)

It is easy to see that F is smooth and well-defined on the whole of M. At
this point, it is convenient to introduce the following notations. We define
ξ, η : U → [0, ∞) by

ξ = (u1)
2 + · · ·+ (uλ)

2 and η = (uλ+1)
2 + · · ·+ (un)

2
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Then we have f = c− ξ + η and F(q) = c− ξ(q) + η(q)− µ(ξ(q) + 2η(q)),
for all q in U.

Claim 1 F−1(−∞, c + ε] = Mc+ε

Proof Outside of the ellipsoid given by ξ + 2η ≤ 2ε, the functions f and F
agree. Inside the ellipsoid, we have

F ≤ f = c− ξ + η ≤ c +
1
2

ξ + η ≤ c + ε

which is what we wanted. �

Claim 2 The critical points of F are the same as those of f .

Proof Note that we have:

∂F
∂ξ

= −1− µ′(ξ + 2η) < 0 and
∂F
∂η

= 1− 2µ′(ξ + 2η) ≥ 1.

Since dF = ∂F
∂ξ dξ + ∂F

∂η dη, where dξ and dη are simultaneously 0 only at the
point p, it follows that F has no other critical point than p. �

Claim 3 The region F−1(−∞, c− ε] is a deformation retract of Mc+ε.

Proof Consider the set F−1[c− ε, c + ε]. By the first claim, together with the
inequality F ≤ f , we have that F−1[c− ε, c + ε] ⊆ f−1[c− ε, c + ε], therefore
F−1[c− ε, c + ε] is compact. The only possible critical point contained in this
region is p, but we have

F(p) = c− µ(0) < c− ε,

which means that F−1[c− ε, c + ε] has no critical points. Using theorem 2.11
now yields the assertion. �

It will be convenient to write F−1(−∞, c− ε] as Mc−ε ∪ H, where H denotes
the closure of F−1(−∞, c− ε] \Mc−ε.

We now return to our cell eλ, which we defined as containing all the points
q where ξ(q) ≤ ε and η(q) = 0. Since we have that ∂F

∂ξ < 0, we obtain, for
q ∈ eλ,

F(q) ≤ F(p) < c− ε.

At the same time however, any point q in eλ fulfils f (q) ≥ c− ε. This means
that the cell eλ is contained in the set H.
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Figure 2.4: The region H

In Figure (2.4), Mc−ε is the darkened region, H contains the vertical arrows
and F−1[c − ε, c + ε] is the dotted area. The arrows inside H represent a
deformation retract rt that is described in the claim below.

Claim 4 Mc−ε ∪ eλ is a deformation retract of Mc−ε ∪ H.

Proof We want to construct a deformation retraction rt : Mc−ε ∪ H →
Mc−ε ∪ eλ. We define this map rt to be the identity outside of the coordi-
nate neighbourhood U. Inside of the region U, it is necessary to distinguish
three cases.

Case 1 In the region where ξ ≤ ε let rt be the following map

(u1, . . . , un) 7→ (u1, . . . , uλ, tuλ+1, . . . , tun)

With this definition, r1 is just the identity, and r0 maps the whole re-
gion into the cell eλ. Since we have that ∂F

∂η > 0, each rt will map
F−1(−∞, c− ε] into itself.

Case 2 Inside the region ε ≤ ξ ≤ η + ε, we define rt to be

(u1, . . . , un) 7→ (u1, . . . , uλ, stuλ+1, . . . , stun)
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2.2. Homotopy type in terms of critical values

where st ∈ [0, 1] is defined as follows

st = t + (1− t)((ξ − ε)/η)1/2.

Then r1 is again the identity, and r0 maps the entire region into the
hypersurface f−1(c− ε). One can verify that the functions stui are still
continuous as ξ → ε and η → 0. This definition coincides with that of
case 1 in the limit case when ξ = ε.

Case 3 For the region η + ε ≤ ξ (which is exactly Mc−ε), we simply define
rt to be the identity, which again coincides with case 2 for ξ = η + ε.

This proves Claim 4. �

With Claim 3 and 4, the proof of theorem 2.13 is complete. �

Figure 2.5: The deformation retract

Remark 2.14 We can easily generalize the proof of the previous theorem to the
following result. Suppose that there are k non-degenerate critical points p1, . . . , pk
with indices λ1, . . . , λk in f−1. Then Mc+ε has the same homotopy type as Mc−ε ∪
eλ1 ∪ · · · ∪ eλk .

Remark 2.15 A similar argument also allows us to show that Mc is a deformation
retract of F−1(−∞, c] , which is a deformation retract of Mc+ε. Thus, Mc−ε ∪ eλ is
a deformation retract of Mc.

We now define a new type of topological spaces, and later see that their
homotopy type is the same as a lot of other topological spaces, which makes
them really useful.

Definition 2.16 Let X′ ⊆ X be topological spaces such that X′ is closed in X. A
cellular decomposition of the pair (X, X′) is a sequence of subspaces

X′ = X−1 ⊆ X0 ⊆ X1 ⊆ · · · ⊆ X

such that
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2. Morse theory

1. X carries the colimit topology, i.e a set C ⊆ X is closed if and only if C ∩ Xn

is closed for every n ≥ −1

2. For each n ≥ 0, Xn is obtained from Xn−1 by attaching n-cells. (If X′ = ∅
and n = 0, we mean that X0 is a discrete set of points.)

We call the pair (X′, X) a relative cell complex. If X′ = ∅, we say that X is a cell
complex, and we write just X instead of (X, ∅). The topological space Xn is called
the n-skeleton of (X, X′) and the decomposition (Xn), n ≥ −1 is the skeleton
filtration of (X, X′).

Remark 2.17 Cell complexes are also often called CW-complexes, where the C
stands for ”closure finite”, and the W for ”weak topology”.

Before stating our main result about cell complexes, we prove two topologi-
cal lemmas about spaces with cells attached.

Lemma 2.18 (Whitehead) Let ϕ0 and ϕ1 be homotopic maps from the sphere ėλ

to the topological space X. Then the identity map of X extends to a homotopy
equivalence

k : X ∪ϕ0 eλ → X ∪ϕ1 eλ

Proof We define k by the formulae
k(x) = x for x ∈ X
k(tu) = 2tu for 0 ≤ t ≤ 1

2 , u ∈ ėλ

k(tu) = ϕ2−2tu(u) for 1
2 ≤ t ≤ 1, u ∈ ėλ

where ϕt is the homotopy between ϕ0 and ϕ1. We can define a correspond-
ing map

l : X ∪ϕ1 eλ → X ∪ϕ0 eλ

by similar formulae. It is then just a matter of checking that the compositions
lk and kl are homotopic to the respective identity maps. �

Lemma 2.19 Let ϕ : ėλ → X be an attaching map. Any homotopy equivalence
f : X → Y extends to a homotopy equivalence

F : X ∪ϕ eλ → Y ∪ f ϕ eλ

Proof We define F as follows{
F|X = f
F|eλ = identity

Let g : Y → X be a homotopy inverse to f and define G : Y ∪ f ϕ eλ →
X ∪g f ϕ eλ by the corresponding conditions G|Y = g and G|eλ = identity.
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2.2. Homotopy type in terms of critical values

Since g f ϕ is homotopic to ϕ, it follows from lemma 2.18 that there is a
homotopy equivalence

k : X ∪g f ϕ eλ → X ∪ϕ eλ

We will first show that kGF : x ∪ϕ eλ → X ∪ϕ eλ is homotopic to the identity.

Let ht be a homotopy between g f and the identity. Using the specific defini-
tion we had for k, G, and F, we have:

kGF(x) = g f (x) for x ∈ X
kGF(tu) = 2tu for 0 ≤ t ≤ 1

2 , u ∈ ėλ,
kGF(tu) = h2−2t ϕ(u) for 1

2 ≤ t ≤ 1, u ∈ ėλ.

The required homotopy qτ : X ∪ϕ eλ → X ∪ϕ eλ is now given by
qτ(x) = hτ(x) for x ∈ X,
qτ(tu) = 2

1+τ tu for 0 ≤ t ≤ 1+τ
2 , u ∈ ėλ,

qτ(tu) = h(2−2t+τ)ϕ(u) for 1+τ
2 ≤ t ≤ 1, u ∈ ėλ.

Thus, F has a left homotopy inverse. The proof that F is a homotopy equiv-
alence will now be purely formal, and will use the following

Claim 5 If a map F has a left homotopy inverse L and a right homotopy inverse R,
then F is a homotopy equivalence; and R (or L) is a two-sided homotopy inverse.

Proof Let id denote the identity map. The relations LF ' id and FR ' id
imply that

L ' L(FR) = (LF)R ' R.

This yields RF ' LF ' id, which proves that R is a two-sided inverse. �

We now conclude the proof of the lemma as follows. The relation kGF ' id
asserts that F has a left homotopy inverse, and we can conduct a similar
proof for the map G.

1. Since k(GF) ' id, and k is known to have a left inverse, it follows that
(GF)k ' id.

2. Since G(Fk) ' id and G is known to have a left inverse, we get (Fk)G '
id.

3. Since F(kG) ' id and kG is also the left inverse of F, F is a homotopy
equivalence, exactly as we wanted. �

The proof of our next theorem requires an important result of algebraic
topology called the cellular approximation theorem that we will only state
here. The proof can be found in Hatcher’s Algebraic Topology, from which
the following definition and statement are taken.
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2. Morse theory

Definition 2.20 Let f : X → Y be a map between two cell complexes. We say that
f is a cellular map if for all n ≥ −1, f (Xn) ⊂ Yn.

Theorem 2.21 (cellular approximation theorem) Every map f : X → Y be-
tween cell complexes is homotopic to a cellular map.

We can now state another important result about the homotopy type of a
topological space with respect to its critical points.

Theorem 2.22 If f is a differentiable function on a manifold M with no degenerate
critical points, and if each set Ma is compact, then M has the homotopy type of a
cell-complex, with one cell of dimension λ for each critical point of index λ

Proof Let c1 < c2 < c3 < . . . be the critical values of f : M → R. The
sequence ci has no cluster point since each Ma is compact. For a < c1,
we have Ma = ∅. Assume that a 6= c1, c2, . . . and that Ma has the same
homotopy type has a cell-complex. Let c be the smallest ci such that a <
ci. By theorems 2.11 and 2.13, and remark 2.14, Mc+ε has the homotopy
type of Mc−ε ∪ϕ1 eλ1 ∪ · · · ∪ eλj(c) for some maps ϕ1, . . . , ϕj(c), for ε small
enough. Furthermore, there is a homotopy equivalence h : Mc−ε → Ma. By
assumption, we also have a homotopy equivalence h′ : Ma → K, where K
is a cell-complex. Then, by cellular approximation (theorem 2.21), each map
h′ ◦ h ◦ ϕj is homotopic to a map

ψj : ėλ → (λj − 1)− skeleton of K.

Then K ∪ψ1 ∪eλ1 ∪ · · · ∪ψj(c) eλj(c) is a cell-complex, and has the same homo-
topy type as Mc+ε by the lemmas 2.18 and 2.19.

By induction it follows that each of the Ma has the same homotopy type of a
cell-complex. If M is compact, this completes the proof. If M is not compact,
but all critical points lie in one of the compact sets Ma, a proof similar to
the one of theorem 2.11 shows that Ma is a deformation retract of M, so the
proof is complete in that case as well.

If there are infinitely many critical points, then the construction above yields
the following infinite sequence of homotopy equivalences:

Ma1 ⊂ Ma2 ⊂ Ma3 ⊂ . . .

K1 ⊂ K2 ⊂ K3 ⊂ . . .

Each of these homotopy equivalences extends the previous one. Let K de-
note the union of the Ki in the direct limit topology, i.e. the finest possible
compatible topology, and let g : M→ K be the limit map. Then g induces iso-
morphisms of homotopy groups in all dimensions. We only need to apply
theorem 1 of ”Combinatorial homotopy I” [10] by Whitehead to conclude
that g is a homotopy equivalence. �
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2.2. Homotopy type in terms of critical values

Remark 2.23 We have also proved that each Ma has the homotopy type of a finite
cell-complex, with one cell of dimension λ for each critical point of index λ in Ma.
This is true even if a is a critical value.
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Chapter 3

Examples and applications

3.1 A few application of Morse theory

In this section, we use the machinery of Morse theory to obtain interesting
topological facts. The following section uses concepts of algebraic topology
that we unfortunately do not have time to explain in this text. If the reader
is however familiar with homology, this chapter should be accessible.

We first prove a nice application of the big theorems of the previous section.
In example 1.58, we saw that the height function on a sphere has exactly
two critical points and that they are non-degenerate. Here is a much more
general statement.

Theorem 3.1 (Reeb) If M is a compact manifold and f is a differentiable function
on M with only two critical points, both non-degenerate, then M is homeomorphic
to a sphere.

Proof The two critical points must be the minimum and the maximum
points, since M is compact. Without loss of generality, let us say that
f (p) = 0 is the minimum, and f (q) = 1 is the maximum. If ε is small
enough, using the Morse lemma 1.53, the sets Mε and f−1[1− ε, 1] are closed
n-cells. But Mε is homeomorphic to M1−ε by theorem 2.11. Thus M is the
union of two closed n − cells, M1−ε and f−1[1− ε, 1], matched along their
boundary. It is now easy to construct a homeomorphism between M and
Sn. �

Remark 3.2 The theorem still holds with degenerate critical points, but the proof
is not as easy.

Let us illustrate the use of the machinery we have developed with another
example.

Definition 3.3 The complex projective space CPn is the space of lines in Cn+1

that go through the origin. We can see it as a space of tuples (z0, . . . , zn) ∈ Cn+1
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3. Examples and applications

such that (z0, . . . , zn) is identified with (λz0, . . . , λzn) for λ ∈ C. Since the factor λ
is arbitrary, we may choose ∑n

j=0 |zj|2 = 1 for the representative of each equivalence
class. We denote the equivalence class of (z0, . . . , zn) by (z0 : · · · : zn).

We define a real valued function f on CPn by f (z0 : · · · : zn) = ∑n
j=0 cj|zj|2

where the cj’s are distinct real constants. We consider the following local
coordinate system. Let U0 be the set of (z0 : · · · : zn) such that z0 6= 0, and
set

|z0|
zj

z0
= xj + iyj

The functions x1, y1, . . . , xn, yn : U0 → R are then the required coordinate
functions, as they map U0 diffeomorphically onto the open unit ball in R2n.
Additionally, we have that |zj|2 = x2

j + y2
j for 1 ≤ j ≤ n and |z0|2 = 1−

∑n
j=1(x2

j + y2
j ). Given these equations, we may write the function f in the

neighbourhood U0 as follows:

f = c0 +
n

∑
j=1

(cj − c0)(x2
j + y2

j )

The only critical point in U0 is thus the center point of the coordinate system,
i.e. p0 = (1 : 0 : 0 : · · · : 0). The function f is non-degenerate at this
point, and its index is twice the number of j with cj < c0. Reasoning in the
exact same way, we can use coordinate systems centered around the points
p1 = (0 : 1 : 0 : · · · : 0), p2 = (0 : 0 : 1 : 0 : · · · : 0), . . . , pn = (0 : · · · : 0 : 1).
Thus, the only critical points (all non-degenerate) of f are exactly the points
p1, . . . , pn. The index of f at the point pk is twice the number of j with
cj < ck. Since all the cj’s are distinct, every possible even index between 0
and 2n occurs exactly once. We may now use theorem 2.22 to conclude that
CPn has the homotopy type of a cell-complex of the form

e0 ∪ e2 ∪ e4 ∪ · · · ∪ e2n.

We thus have been able the characterize the homotopy type of all the com-
plex projective spaces with the use of Morse theory.

Remark 3.4 The reader familiar with algebraic topology will see that the above
computation allows us the calculate the homology groups of CPn. Indeed, using
cellular homology, we have:

Hi(CPn; Z) =

{
Z for i = 0, 2, 4,. . . , 2n
0 for other values of i

3.2 Morse inequalities

When Morse treated this topic, the theorem 2.22 had not been proven yet. To
go around this, Morse described the connections between the topology of a
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manifold M and the critical points of function f on M via a collection of in-
equalities. We will now describe Morse’s original method. In the following
pages, we will, as indicated before, use some concepts from algebraic topol-
ogy such as homology groups that we will not be able to define in every
details to avoid an important detour.

Definition 3.5 Let S be a function from certain pairs of spaces to the integers. We
call S subadditive if whenever X ⊃ Y ⊃ Z, we have S(X, Z) ≤ S(X, Y) +
S(Y, Z). If we have equality, we call S additive.

We now give an example of such a function with the following definitions.

Definition 3.6 Let (X, Y) be a pair of topological spaces (as defined in the setting
of homology groups) and let F be any field serving as coefficient group. We define
Rλ(X, Y) to be the rank over F of Hλ(X, Y; F) so long as this rank is finite. We call
this number the λ-th Betti number of (X, Y).

Rλ is a subadditive function, which we can see from the long exact sequence
for a triple of spaces (X, Y, Z):

. . . Hλ(Y, Z) Hλ(X, Z) Hλ(X, Y) . . .

An example of additive function is the so-called Euler characteristic χ(X, Y)
defined as follow:

χ(X, Y) = ∑(−1)λRλ(X, Y)

Lemma 3.7 Let S be subadditive and let X0 ⊂ · · · ⊂ Xn. Then S(Xn, X0) ≤
∑n

i=1 S(Xi, Xi−1). If S is additive then equality holds.

Proof We prove the claim by induction on n. For n = 1, the inequal-
ity is trivial and for n = 2, this is the definition of subadditivity (respec-
tively of additivity). Now let’s assume that the claim holds for n− 1, then
S(Xn−1, X0) ≤ ∑n−1

i=1 S(Xi, Xi−1). Therefore, we have

S(Xn, X0) ≤ S(Xn, Xn−1) + S(Xn−1, X0) ≤
n

∑
i=1

S(Xi, Xi−1) (3.1)

and the result holds for n. This completes the proof. �

Remark 3.8 Let us write S(X, ∅) = S(X). Then, taking X0 = ∅ in Lemma 3.7
yields

S(Xn) ≤
n

∑
i=1

S(Xi, Xi−1) (3.2)

with equality if S is an additive function.
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We can now make a connection between the Betti number of a compact
manifold M and the number of critical points of a function f on M with the
following result.

Theorem 3.9 (Weak Morse inequalities) If Cλ denotes the number of critical
points of index λ on the compact manifold M, then

1. Rλ(M) ≤ Cλ , and

2. ∑(−1)λRλ(M) = ∑(−1)λCλ

Proof Let M be a compact manifold and f a differentiable function on M
with isolated, non-degenerate critical points. Let a1 < · · · < ak be such that
Mai contains exactly i critical points, and Mak = M. Then, if we denote by
λi the index of the i-th critical point, we have:

H∗(Mai , Mai−1) = H∗(Mai−1 ∪ eλi , Mai−1) = H∗(eλi , ˙eλi) =

{
coefficient group if ∗ = λi

0 otherwise

where the second equality is obtained by excision. We can then apply the
inequality 3.2 to ∅ = Ma0 ⊂ · · · ⊂ Mak = M with S = Rλ to get

Rλ(M) ≤
k

∑
i=1

Rλ(Mai , Mai−1) = Cλ

where Cλ denotes the number of critical points of index λ. Applying the
same formula to S = χ, we get

χ(M) =
k

∑
i=1

χ(Mai , Mai−1) = C0 − C1 + · · · ± Cn �

We can get sharper inequalities than what we have just demonstrated. To do
this, we need the following lemma:

Lemma 3.10 The function Sλ is subadditive, where

Sλ(X, Y) = Rλ(X, Y)− Rλ−1(X, Y) + Rλ−2(X, Y)− · · · ± R0(X, Y)

Proof Given an exact sequence

. . . A B C . . . D 0h i j k

of vector spaces note that the rank of the homomorphism h plus the rank of
i is equal to the rank of A. Iterating this, we get:

rank h = rank A− rank i
= rank A− rank B + rank j
= rank A− rank B + rank C− rank k
= . . .
= rank A− rank B + rank C− · · · ± rank D
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Hence, the right-hand side of the last equality is non-negative. Now, con-
sider the long exact sequence of a triple X ⊃ Y ⊃ Z. We use the above
computation on the connecting homomorphism

Hλ+1(X, Y) Hλ(Y, Z).∂

This yields

rank ∂ = Rλ(Y, Z)− Rλ(X, Z) + Rλ(X, Y)− Rλ−1(Y, Z) + · · · ≥ 0

Collecting the terms appropriately, we can rewrite this as

Sλ(Y, Z)− Sλ(X, Z) + Sλ(X, Y) ≥ 0

which is what we wanted to prove. �

We can now use the subadditive function Sλ on the spaces ∅ ⊂ Ma1 ⊂
Ma2 ⊂ · · · ⊂ Mak to get the Morse inequalities:

Sλ(M) ≤
k

∑
i=1

Sλ(Mai , Mai−1) = Cλ − Cλ−1 + · · · ± C0 (3.3)

or equivalently

Rλ(M)− Rλ−1(M) + · · · ± R0(M) ≤ Cλ − Cλ−1 + · · · ± C0 (3.4)

Remark 3.11 The weak Morse inequalities from lemma 3.9 are a consequence of
equation 3.4. Indeed adding the equations 3.4 for λ and λ− 1 together yields the
first weak inequality, and comparing the equations 3.4 for λ and λ− 1 with λ > n
gives us the weak equality.

We now give an illustration of the use of the Morse inequalities.

Corollary 3.12 If Cλ+1 = Cλ−1 = 0 then Rλ = Cλ and Rλ+1 = Rλ−1 = 0

Proof Suppose that Cλ+1 = 0. We have

Rλ+1(M)− Rλ(M) + · · · ± R0(M) ≤ Cλ+1 − Cλ + · · · ± C0

and
Rλ(M)− Rλ−1(M) + · · · ± R0(M) ≤ Cλ − Cλ−1 + · · · ± C0.

Adding the two together yields Rλ+1 ≤ Cλ+1 and thus Rλ+1 = 0. Now,
comparing equation 3.4 for λ and λ + 1, we have

Rλ(M)− Rλ−1(M) + · · · ± R0(M) ≤ Cλ − Cλ−1 + · · · ± C0

and

−Rλ(M) + Rλ−1(M)− · · · ∓ R0(M) ≤ −Cλ + Cλ−1 − · · · ∓ C0.
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Multiplying the second inequality by −1 and comparing the two gives us an
equality:

Rλ − Rλ−1 + · · · ± R0 = Cλ − Cλ−1 + · · · ± C0.

If we now suppose that Cλ−1 = 0, the exact same argument yields Rλ−1 = 0
and

Rλ−2 − Rλ−3 + · · · ± R0 = Cλ−2 − Cλ−3 + · · · ± C0.

Subtracting this equality from the one above completes the proof. �
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Chapter 4

Classification of compact 1-manifolds

In this chapter, we will show two alternative ways of classifying compact
1-manifolds. The first one will use parametrizations by arc-length and will
follow what is done in Milnor’s ”Topology from the differentiable View-
point” [7]. The other method will use Morse theory as in Guillemin and
Pollack’s ”Differential Topology” [9].

4.1 Proof via parametrization by arc-length

Here is the theorem that we want to prove, first by using parametrization by
arc-length:

Theorem 4.1 Any smooth, connected 1-dimensional manifold is diffeomorphic ei-
ther to the circle S1 or to some interval of real numbers.

Since any interval is diffeomorphic to either (0, 1), (0, 1], or [0, 1] it follows
that there are only four distinct connected 1-manifolds up to diffeomor-
phism.

For the first proof, we will need the concept of arc-length. In the following,
I denotes an interval.

Definition 4.2 A map f : I → M is a parametrization by arc-length if it maps
I diffeomorphically onto any open subset of M, and if the vector d fs(1) ∈ Tf (s)M
has length 1 for all s ∈ I.

Remark 4.3 Any given local parametrization I′ → M can be transformed into a
parametrization by arc-length by a change of variables.

Remark 4.4 Since a parametrization by arc-length maps I onto an open subset of
M, I can only have boundary points if M has boundary points as well.
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Lemma 4.5 Let f : I → M and g : J → M be parametrizations by arc-length.
Then f (I) ∩ g(J) has at most two components. If it has one component, then f can
be extended to a parametrization by arc-length of f (I) ∪ g(J). If the intersection
has two components, then M is diffeomorphic to S1.

Proof The composition g−1 ◦ f maps some relatively open subset of I dif-
feomorphically onto a relatively open subset of J because f and g are dif-
feomorphisms. Moreover, because we are dealing with parametrization by
arc-length, the derivative of g−1 ◦ f must be equal to ±1 everywhere.

Now, consider the graph Γ ⊂ I × J, consisting of all (s, t) such that f (s) =
g(t). Since g−1 ◦ f is continuous, its graph Γ must be closed. (This is the
closed graph theorem in its point-set topology version.) Thus, Γ is closed
subset of I × J, and since it is has derivative equal to ±1, it is made up of
line segments with exactly that slope. Now, by combining the fact that Γ is
closed and that g−1 ◦ f is locally a diffeomorphism, we know that these line
segments must extend to the boundary of I × J. Bijectivity of g−1 ◦ f then
assures us that there is at most one segment on each of the four edges of
I× J. This proves that the graph Γ has at most two components, and if there
are two, they must have the same slope.

Figure 4.1: Three possible scenarios for the graph Γ (from [7]

If Γ has only one connected component, then the map g−1 ◦ f extends to a
linear map L : R→ R. By piecing f and g ◦ L together, we get the extension
that we wanted, namely

F : I ∪ L−1(J)→ f (I) ∪ g(J).

If Γ has two connected components, we may assume without loss of gener-
ality that they have slope 1 and so must be arranged as in the figure (4.1).
Let us write J = (γ, β). Translating J if needed, we may, again without loss
of generality, assume that γ = c and δ = d, so that

a < b ≤ c < d ≤ α < β
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Let now θ = 2π/(α − a). We define the diffeomorphism h : S1 → M as
follows:

h(cosθ, sinθ) =

{
f (t) for a < t < d,
g(t) for c < t < β.

Since S1 is compact and h is a diffeomorphism, the image h(S1) is compact.
But since it is also open, it must be the entire manifold M, which completes
the proof. �

Proof (Classification Theorem) Any arbitrary parametrization by arc-length
can be extended to a parametrization by arc-length f : I → M that we call
maximal. It is maximal in the sense that we cannot get a parametrization
by arc-length over a larger interval than I. Let us assume that M is not dif-
feomorphic to S1. We will show that in that case, f is surjective and thus a
diffeomorphism. If the open set f (I) were not the whole of M, there would
be a limit point of f (I) in M \ f (I). If we parametrize a neighbourhood of x
by arc-length and then apply lemma 4.5, we see that f can be extended over
a larger interval, which contradicts our hypothesis of f being maximal. �

4.2 Proof via Morse functions

In this section, we prove a slightly different version of theorem 4.1, and
in order to do this, we first want to generalize our definition of manifold.
Indeed, objects such as a closed ball or a compact cylinder are not manifolds
as in definition 1.4 because neighbourhoods of points on the boundaries are
not diffeomorphic to open subsets of Rn. The simplest example of this is the
upper half space Hk ⊂ Rk consisting of all points where the last coordinate
is non-negative. The boundary of Hk is Rk−1 under its usual embedding in
Rk

Definition 4.6 A subset X ⊆ Rn is a k-dimensional manifold with boundary
if every point of X possesses a neighbourhood diffeomorphic to an open set in the
space Hk (of course with the relative topology). As in the first chapter, such a
diffeomorphism is called a local parametrization of X. The boundary of X, which
we denote by ∂X, is the set of all the points that belong to the image of the boundary
of Hk under some local parametrization. We define the interior of X to be Int(X) =
X \ ∂X.

Remark 4.7 One should not confuse the boundary and the interior of a manifold as
we have just defined them with the topological definitions of boundary and interior.
The two notions agree for dim(X) = n, but not in the case dim(X) < n. It is also
worth noting that the smooth manifolds as in definition 1.4 are also manifolds with
boundary. However, their boundary is empty.

The main theorem that we want to prove is now the following:
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4. Classification of compact 1-manifolds

Theorem 4.8 Every compact connected one-dimensional manifold with boundary
is diffeomorphic either to a circle or a closed interval.

As in the previous section, we first need to prove intermediate steps. All the
illustrations in the proofs below are taken from [9].

Lemma 4.9 (smoothing lemma) Let g be a smooth function on [a, b] with posi-
tive derivative everywhere except at one interior point c. Then there exists a globally
smooth function g̃ that agrees with g near the endpoints and has positive derivative
everywhere

Proof Let ρ : R → R be a smooth non-negative function vanishing outside
of a compact subset of the interval (a, b), and such that it is equal to 1 near
c. Additionally, assume we have

∫ b
a ρ = 1. We define

g̃(x) = g(a) +
∫ x

a
[kρ(s) + g′(s)(1− ρ(s))]ds,

where k is the positive constant given by

k = g(b)− g(a)−
∫ b

a
g′(s)(1− ρ(s))ds

It is now easy to verify that g̃ has all the given properties. �

In order to prove the theorem, we choose a Morse function f on the compact
one dimensional manifold X. We denote by S the finite (see remark 1.54) set
of critical points of f united with the boundary points of X. Then, the set
X \ S consists of a finite number of connected 1-manifolds L1, . . . , Ln.

We now take a few steps towards our full proof, with first the following
proposition.

Proposition 4.10 f maps each Li diffeomorphically onto an open interval of R.

Proof Let L denote an arbitrary Li. Since f is a local diffeomorphism, and L
is connected, f (L) is open and connected in R. Moreover, f (L) is contained
in f (X), which is compact since X is compact, and thus we must have f (L) =
(a, b). It remains to show that f : L → (a, b) is injective. The proof will
then be complete because smoothness follows from the fact that f is a local
diffeomorphism. Let p be any point of L and set c = f (p). We want to show
that every other point q ∈ L can be joined to p be a curve γ : [c, d] → L (or
a curve γ : [d, c]→ L) such that f ◦ γ = identity and γ(d) = q. Since f (q) =
d 6= c = f (p), this yields injectivity. Since f is a local diffeomorphism, it is
clear that the set Q of all the points q that can be joined by a such a curve γ
is both open and closed. Therefore, Q = L �

Here is another statement that will be of use.
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4.2. Proof via Morse functions

Lemma 4.11 Let L be a subset of the one-dimension manifold with boundary X
such that L is diffeomorphic to an open interval of R. Then its closure L̄ contains
at most two points that are not in L

Proof Given a diffeomorphism g : (a, b) → L, let x, y, and z be three dis-
tinct points in L̄ \ L. We want to reach a contradiction. Let us take se-
quences (xn), (yn) and (zn) in L converging to those three points respectively.
Since g is a diffeomorphism, the sequences g(xn), g(yn) and g(zn) can only
converge towards a or b. Without loss of generality, we may assume that
g(xn) → a as well as g(yn) → a. But since x and y are distinct, there exist
open neighbourhoods Ux of x and Uy of y in X such that Ux ∩Uy = ∅. By
definition of convergence, for N big enough, we also must have xk ∈ L ∩Ux
and yk ∈ L ∩Uy as soon as k > N. Then, because g is a diffeomorphism,
g(L∩Ux) and g(L∩Uy) must be disjoint relatively open subsets of the inter-
val (a, b). However they also have the property that for any open subset V
of a, we have V ∩ g(L ∩Ux) 6= ∅ as well as V ∩ g(L ∩Uy) 6= ∅. The second
property contradicts the fact that the two sets are disjoint. The proof is thus
complete. �

Here, the diffeomorphism f from Li to an open interval extends to the clo-
sure L̄i This implies that each of the Li’s has precisely two boundary points
and the figure (4.2) below cannot occur.

Figure 4.2: Li cannot have exactly one boundary point.

Then, since X is a manifold, each point p ∈ S belongs to the boundary of
one or two L̄i. Indeed, if p belonged to the boundary of more than two of the
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4. Classification of compact 1-manifolds

sets L̄i we would no longer have a manifold, as figure (4.3) below illustrates.
In the case where p belongs to exactly one of the L̄i, we have p ∈ ∂X.

Figure 4.3: This cannot happen because we are dealing with a manifold.

Let us now take a sequence L1, . . . , Lk such that each consecutive pair L̄i,
L̄i+1 has a common boundary point that we call pi for i = 1, . . . , k− 1. We
call such a sequence of Li’s a chain. Let us denote by p0 the other boundary
point of L̄1 and by pk the other boundary point of L̄k. There are only finitely
many Li’s and thus there exists a maximal chain, i.e. a chain that we cannot
extend by appending another Lj after the last set of the sequence (Lk).

We are now ready for the last claim towards the full proof of the classification
theorem.

Proposition 4.12 If L1, . . . , Lk is a maximal chain, then it contains every Li. If L̄1
and L̄k have a common boundary point X is diffeomorphic to a circle. Otherwise it
is diffeomorphic to a closed interval.

Proof Let us assume that one of the Li’s (that we now call L to simplify the
notation) is not part of the maximal chain that we chose. Then L̄ cannot
contain the points p0 or pk, since we could otherwise extend the chain. But
since X is a manifold, as discussed before, L̄ does not contain any other point
pj. Hence, the union

⋃k
i=1 L̄i does not intersect with any of the L̄ excluded

from the chain. From this fact, we conclude that
⋃k

i=1 L̄i is both open and
closed in X, and thus by connectivity:

X =
k⋃

i=1

L̄i
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4.2. Proof via Morse functions

We know from proposition 4.10 that f behaves nicely on every Li, but it may
reverse directions as it goes through some of the boundary points as shown
in figure (4.4) Let ai = f (pi) so that f maps the manifold Li diffeomorphi-
cally onto the interval (ai−1, ai) or (ai, ai−1) depending on which interval
makes sense. Now, for every index i between 1 and k, we pick a function
τi : R→ R carrying ai−1 to i− 1 and ai to i. Note that τi is an affine function,
i.e. is of the form t 7→ αt + β. We now define the function fi : L̄i → [ai−1, i]
to be the composition τi ◦ f .

Figure 4.4: f may reverse direction when going through a critical point.

We now have two cases. Firstly, if a0 6= ak, then the fi agree on points
where the domains of definition overlap, and we can thus define a map
F : X → [0, k] by just setting F = fi on L̄i. By definition, F is continuous
and a diffeomorphism at every point except p1, . . . , pk−1. Fortunately we
can use the smoothing lemma 4.9 to obtain a global diffeomorphism. In
the other scenario, we have a0 = ak. We define gj = exp[i(2π/k)j] where
i is the imaginary root. In a similar way as above, we can then define a
map G : X → S1 by simply setting G = gj on L̄j, which is continuous and a
diffeomorphism at every point except for, again, p1, . . . , pk−1. Another use of
the smoothing lemma 4.9 makes G a global diffeomorphism, and completes
the proof of the classification theorem. �
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Appendix A

A More general setup for manifolds

We use this appendix to present a more general definition of a smooth man-
ifold. We also specify which assumptions are to be made on a topological
space to avoid pathological cases when defining manifolds. It will then be
clear that manifolds of Euclidean space as we have defined them are a spe-
cial case.

We start with a few topological definitions.

Definition A.1 Let X be a topological space. We say that X is Hausdorff if for
any pair of points x 6= y there exist open subsets U, V such that x ∈ U, y ∈ V and
U ∩V = ∅

Definition A.2 Let X be a topological space with an open cover {Ua}a∈A. A
refinement of this cover is another open cover {Vb}b∈B such that for every b ∈ B
there exists an a ∈ A with Vb ⊂ Ua. Moreover, an open cover {Ua}a∈A is called
locally finite if for every x ∈ X there exists an open neighbourhood W of x such
that the set {a ∈ A|Ua ∩W 6= ∅} is a finite set. In other words, the W intersects
with only finitely many sets of the open cover.

Definition A.3 A topological space is called paracompact if every open cover ad-
mits a locally finite refinement.

Definition A.4 A topological space X is called locally Euclidean of dimension
n if for every point x ∈ X, there exists an open U of x and an open set V ⊂ Rn and
a homeomorphism σ : U → V.

We are now ready to define topological manifolds, which we will than equip
with a so-called smooth structure to get smooth manifolds.

Definition A.5 A topological space M is called a topological manifold of di-
mension n if:

1. M is locally Euclidean of dimension n.

61



A. A More general setup for manifolds

2. M is Hausdorff and has at most countably many connected components.

3. M is paracompact.

Remark A.6 It is a fact that manifolds in Euclidean space meet all the requirements
to be topological manifolds.

We now recall the definition of a concept that is used in the main text several
times.

Definition A.7 We say that a topological space X is second countable if it has a
countable basis. One also says that the second axiom of countability holds.

Remark A.8 It is again a fact of point-set topology that any Hausdorff locally
Euclidean topological space is second countable if and only if it is paracompact and
has at most countably many connected components. This shows that our definition
of topological manifold implies the second axiom of countability and that we used in
the more specific setting of manifolds of Euclidean space.

We now define the tools to make a topological manifold into a smooth man-
ifold.

Definition A.9 Let M be a topological manifold of dimension n. A smooth atlas
on M is a collection

Σ = {σa : Ua → Va|a ∈ A}

where {Ua}a∈A is an open cover of M, the Va’s are open sets in Rn, and each
σa : Ua → Va is a homeomorphism such that the following compatibility condition
holds: Suppose we have a, b ∈ A such that Ua ∩ Ub 6= ∅ then the composition
(called transition map) given by

σ−1
b ◦ σa : σa(Ua ∩Ub)→ σb(Ua ∩Ub)

should be a diffeomorphism. We call the maps σa the charts of the atlas.

Definition A.10 We say that two smooth atlases Σ1 and Σ2 are equivalent if their
union is a smooth atlas as well. It is clear that this defines an equivalence relation
on the set of smooth atlases on a given topological manifold.

Definition A.11 A smooth structure on a topological manifold is an equivalence
class of smooth atlases.

We can now define a smooth manifold in the broader sense.

Definition A.12 A smooth manifold of dimension n is a pair (M, Σ) where M
is a topological manifold of dimension n and Σ is a smooth structure on M.

Remark A.13 Again, smooth manifolds of Euclidean space as defined in the first
chapter are a special case of the definition A.12.
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We conclude this section with an alternative and stronger definition of a
submanifold that is sometimes necessary to avoid pathological examples.

Definition A.14 (embedded submanifold) A subset N of an n-dimensional smooth
manifold M is called an (embedded) submanifold of dimension k, for k ≤ n if for all
x ∈ N there exists a chart σ : U → V ⊂ Rn of M with x ∈ U such that σ(N ∩U)
is the intersection of a k-dimensional plane with σ(U). The pairs (N ∩U, σ|N∩U)
form an atlas on N.

Remark A.15 With this definition, the inclusion map from N to M is a topolog-
ical embedding, which implies that the submanifold topology of N coincides with
the relative topology. A weaker definition of a submanifold can be made when the
inclusion map is only an injective immersion and not an embedding. In this case
the submanifold topology and the relative topology may be different.
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Appendix B

Proof of Sard’s theorem

We give a proof of Sard’s theorem, which, although less topological than the
rest of the text, is nonetheless important. Here is the statement of theorem
1.44 again.

Theorem B.1 Let f : X → Y be a smooth map of manifolds, and let C be the set of
critical points of f in X. Then the set of critical values f (C) has measure zero in Y.

We divide our proof into several steps. The first important observation is
that we can use the second axiom of countability to find countable collec-
tions of open sets Ui and Vi such that the Ui’s cover X and the Vi’s cover Y
with f (Ui) ⊆ Vi. Additionally, we want the Ui’s and Vi’s to be diffeomorphic
to open euclidean sets. Therefore, the proof of Sard’s theorem B.1 reduces
to the following theorem:

Theorem B.2 Let U be an open set in Rn and f : U → Rp be a smooth map. Let
C be the set of critical points of f . Then f (C) has measure zero in Rp.

Proof The theorem is obviously true for n = 0, so we now prove the as-
sertion by induction, assuming the theorem to hold for n− 1. We start by
partitioning C into a sequence C ⊇ C1 ⊇ C2 ⊇ . . . , where C1 is the set of
all x ∈ U such that (d f )x = 0 and, for i ≥ 1, Ci is the set of all x such that
all the partial derivatives up to order i vanish at the point x. The sets Ci are
closed subsets of C.

We now prove the following

Claim 6 The image f (C \ C1) has measure zero.

Proof Our goal is to find an open set V around each x ∈ C \ C1 such that
f (C ∩ V) has measure zero. By the second axiom of countability again,
C \ C1 is covered by countably many of these neighbourhoods and this will
yield our claim. For any x ∈ C \ C1 there is a partial derivative, let us say
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B. Proof of Sard’s theorem

∂ f /∂x1 for simplicity, that does not vanish at the point x. We define the map
h : U → Rn as follows:

h(x) = ( f1(x), x2, . . . , xn)

The derivative dhx is non-singular by construction, so h maps a neighbour-
hood V of x diffeomorphically onto an open set V ′. We can now examine
the composition g = f ◦ h−1 which maps V ′ into Rp with the same critical
values as the function f restricted to V. By construction, g has the property
that it maps points of the form (t, x2, . . . , xn) ∈ V ′ to points of the form
(t, y2, . . . , yp) ∈ Rp. In other words, it preserves the first coordinate. Thus,
for every t, g induces a map gt : (t×Rn−1) ∪ V ′ → t×Rp−1. We can now
write the derivative of g in the form

∂gi

∂xj
=

1 0

∗ ∂gt
i

∂xj


Since the determinant of the matrix on the right is just det(∂gt

i /∂xj), a point
of r×Rn is critical for gt if and only if it is critical for g. Using the induction
hypothesis, Sard’s theorem holds for n− 1 and so the set of critical values
of gt has measure zero. Consequently, using Fubini’s theorem, the set of
critical values of g is of measure 0. �

Our second claim is the following

Claim 7 f (Ck \ Ck+1) is of measure zero for k ≥ 1.

Proof This proof is similar to the one we conducted above, but a bit simpler.
For x ∈ Ck \ Ck+1 there is a derivative of order k + 1 that is not zero at the
point x. We can therefore find a partial derivative of order k (let us call it ρ)
that vanishes at x by definition of Ck but such that ∂ρ/∂x1 does not vanish at
x. We chose the derivative in direction x1 to ease the notation, and this can
be done without loss of generality. We then define the function h : U → Rn

in the same fashion as before by h(x) = (ρ(x), x2, . . . , xn). As above, h
maps a neighbourhood V of x diffeomorphically onto an open set V ′. By
construction, h maps Ck ∩V into the hyperplane 0×Rn−1. This implies that
the map g = f ◦ h−1 has all its critical points of type Ck in the hyperplane
0×Rn−1. Let ḡ : (0×Rn−1) ∩V ′ → Rp be the restriction of g. By induction,
the set of critical values of ḡ has measure zero. Additionally, since the critical
points of g of type Ck are clearly critical points of ḡ the image of these critical
points is of measure zero, which implies that f (Ck ∩ V) has measure zero.
Ck \ Ck+1 can be covered by countably many such sets V, which proves the
claim. �

We conclude with this last claim
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Claim 8 For k > n/p− 1, f (Ck) is of measure zero.

Proof Let S ⊂ U be a cube whose sides are of length δ. If k > n/p − 1,
we will show that f (Ck ∩ S) has measure zero. Since Ck can be covered by
countably many such cubes, this will prove the claim. By Taylor’s theorem,
the compactness of S and the definition of Ck, we observe that

f (x + h) = f (x) + R(x, h)

where we can bound the last term as follows

|R(x, h)| < a|h|k+1

This holds for x in Ck ∩ S such that x + h ∈ S. The constant a only depends
on f and S. To proceed, we divide S into rn cubes with sides of length δ/r.
Let us take S1 to be one of these small cubes containing a point x ∈ Ck. Then,
we can write any other point of S1 as x + h, with the bound

|h| <
√

n

(
δ

r

)

Using the first estimation, we have that f (S1) lies in a cube with sides
of length b/rk+1 centered about δ(x). The constant b is given by b =
2a(
√

nδ)k+1. From this follows that f (Ck ∩ S) is contained in the union of at
most rn cubes with a volume v bounded by

v ≤ rn

(
b

rk+1

)p

= bprn−(k+1)p

With the assumption that k + 1 > n/p, we have v → 0 as r → ∞, so that
f (Ck ∩ S) must have measure zero. �

Putting the three claims together completes the proof of Sard’s theorem
B.1. �
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