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Abstract

In this thesis we first recall well known concept and results regard-
ing group actions of symplectic manifolds, especially the symplectic
cutting procedure introduced by Lerman in [Ler95]. We study how
lagrangian submanifolds behave with respect to the cutting proce-
dure.
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Introduction

Simplectic geometry is a branch of mathematics that naturally arises in
hamiltonian classical mechanics, where certain systems are associated to
phase spaces that take the form of what is called a symplectic manifold.

This thesis is mainly concerned with the kind of symplectic geometry which
involves a certain type of smooth action of a toric group on a symplectic
manifold. The first chapter aims to introduce all the basic notions and
notations needed.

We first study how we can reduce symmetries of a symplectic manifold. In
mathematical terms we can describe symmetries of a manifold by studying
invariance properties of smooth Lie group actions on it. It is natural to ask
wheater and how we can exploit symmetries in order to reduce the number of
variables when handling a physical problem. In the symplectic setting, this
passes under the name symplectic reduction and is the content of the second
chapter of this thesis. There we also study how a class of submanifolds, the
so called lagrangian submanifolds, of a symplectic manifold behaves under
this process and we provide an important example.

In the third chapter we introduce symplectic cutting, a procedure invented
in the nineties that uses symplectic reduction to decompose a symplectic
manifolds into two symplectic manifolds. This is the central notion of this
thesis.

In the fourth chapter we show that the cutting procedure preserves a special
class of lagrangian submanifolds of symplectic toric manifolds.
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Chapter 1

Preliminaries

We start this paper by introducing basic definitions and facts about sym-
plectic geometry, in order to fix notations and provide all the necessary
knowledge to understand what follows. Some basic knowledge of differen-
tial manifolds and Lie theory is assumed.

1.1 Basics of symplectic geometry

Definition 1.1 Let M be a C∞-differentiable manifold (or smooth). A
non-degenerate closed two form ω ∈ Ω2(M) is called symplectic form, and
the couple (M,ω) is said to be a symplectic smooth manifold.

Examples 1.2 On R2n with coordinates (x1, ..., xn, y1, ..., yn) we have
the symplectic form

ω0 =
n∑
i=1

dxi ∧ dyi

Under the canonical identification with Cn, the above form becomes

ω0 =
n∑
i=1

dzi ∧ dzi

Symplectic forms are obviously not unique on a specified manifold, e.g.
on C∗ we have the symplectic form d log(|z|) ∧ dθ.

In the symplectic category, we define isomorphism exactly as one would
expect.
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1. Preliminaries

Definition 1.3 Let (M1, ω1) and (M2, ω2) be two symplectic manifolds and
let f : M1 → M2. We say that f is a symplectomorphism if it is a diffeo-
morphism and f ∗ω2 = ω1.

We define some special submanifolds.

Definition 1.4 Let (M,ω) be a symplectic manifold, N ⊂ M a submani-
fold and i : N ↪→ M the inclusion. Given x ∈ N we define the symplectic
orthogonal of TxN as

TxN
ω := {v ∈ TxM : ∀w ∈ TxN ωx(v, w) = 0}

We call N :

1. an isotropic submanifold if each tangent space of N is contained in its
symplectic orthogonal;

2. a coisotropic submanifold if each tangent space of N contains its sym-
plectic orthogonal;

3. a lagrangian submanifold if each tangent space of N equals its sym-
plectic orthogonal;

4. a symplectic submanifold if (N, i∗ω) is a symplectic manifold.

A manifold N included in N as set is called an immersed lagrangian if each
tangent space of N equals its symplectic orthogonal, and the inclusion of N
in M is an immersion.

We state the famous Darboux Theorem, which tells us that for symplectic
manifolds, dimension is the only thing that matters locally. In some sense,
symplectic geometry is very topological.

Theorem 1.5 (Darboux) Let (M,ω) be a symplectic manifold and
x ∈ M . Then there are local coordinates (x1, ..., xn, y1, ..., yn) on an
open neighborhood U of x, such that

ω|U =
n∑
i=1

dxi ∧ dyi

Proof. A proof can be found in [Can08]. �

One of the first thing that comes to mind looking at the definition is to
compare symplectic forms with Riemannian metrics1. First, Darboux The-
orem distinghuishes symplectic and Riemannian geometry a lot: in the

1A Riemannian metric is a section of T ∗M ⊗ T ∗M which is an inner product at any
point of M .
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1.1. Basics of symplectic geometry

latter case we have got local invariants, e.g. the curvature; in fact thanks
to Darboux we could say that symplectic manifolds behave similarly to
flat manifolds: in this sense we may interpret closedness as a symplectic
analogue of flatness in the riemannian setting. Second, not every manifold
admits a symplectic structure: necessary conditions for a manifold to be
symplectic are even dimensionality, as linear algebra tells us, and orientabil-
ity, since the top power of the symplectic form is a volume form. There are
also similarities; here we’re going to build one, which will be central in our
definition of moment map. Given a smooth function f ∈ C∞(M) from a
Riemannian manifold (M,m) to R, we have the gradient gradmf ∈ Γ(TM)
defined through ıgradmfm = df . Similarly, given a smooth function, or, as
symplectic geometers like to call functions, hamiltonian, H ∈ C∞(M), we
define the Hamiltonian vector field XH ∈ Γ(TM) associated to H through

ıXH
ω = dH

Both the gradient and the hamiltonian vector field constructions are well-
defined because both the tensor structures are non-degenerate by defintion,
so that they induce an isomorphism between vector fields and one forms on
M .
Let’s consider an example to visualize the situation.

Examples 1.6 Consider the height function H : (θ, h) ∈ S2 → h ∈ R
on the sphere (S2, dθ∧dh). We have dh = ıXH

(dθ∧dh) = dθ(XH)∧dh,
i.e. dθ(XH) = 1, so that XH = ∂θ. Similarly, if we endow S2 with the
induced metric from the euclidean one on R2, we get ıgradmHm = dh, so
gradmH = ∂h.

Here we notice something: gradient and hamiltonian differ by a right an-
gle, in particular the hamiltonian vector fields goes along level sets of the
height function (horizontal circles of the sphere), suggesting a preservation.
Next lemma shows this and moreover tells us that hamiltonian vector fields
maintain the form of the manifold.

Definition 1.7 Let (M,ω) be a symplectic manifold. A vector field on M
is called symplectic if its flow preserves the symplectic form. A vector field
on M is called hamiltonian if it is the hamiltonian vector field of a smooth
function on M .

Lemma 1.8 Let (M,ω) be a symplectic manifold. Any hamiltonian
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1. Preliminaries

vector field on M is symplectic and in addition its integral curves are
contained in a level set of its hamiltonian function.

Proof. Take XH ∈ Γ(TM) be the hamiltonian vector field of the map
H ∈ C∞(M) and denote by ϕ the flow of XH . Then, as ϕ0 = id, ϕ∗0ω = ω,
and

d

dt
ϕ∗tω = ϕ∗tLXH

(ω) = ϕ∗t (dıXH
ω + ıXH

dω) = 0

In alternative, we can prove the first claim by noticing that for a vector field
being symplectic amounts to say that its contraction with the symplectic
form is closed, while it is exact in the hamiltonian case. It is also XH(H) =
LXH

(H) = ıXH
dH = ıXH

ıXH
ω = 0 so that straight from the definitions, for

any time t: H(x) = ϕ∗tH(x) = H(ϕt(x)). �

We conclude that hamiltonian vector fields are nicer objects than gradients.
In this thesis we will almost always assume a further property of hamilto-
nian vector fields: time-periodicity of flows. The functions satisfying this
condition are a particular instance of what we will call ”moment maps”.

1.2 Hamiltonian actions

Consider a smooth action of a Lie group G on a symplectic manifold (M,ω).
We will denote the stabilizer of a point x ∈M by Gx and its orbit by G · x.
Given an element X ∈ g of the Lie algebra of G, we define its fundamental
vector field through

MX
#(x) :=

d

dt
|t=0 exp(−tX) · x

for x ∈M .

Definition 1.9 If the action preserves ω, i.e. if at each point of G the
action is a symplectomorphism, we say that it is symplectic. Notice that
this is equivalent to say that iX#ω is closed for any X ∈ g.

We now recall the construction of the coadjoint representation, which will
be our fixed action of G on g∗, the dual of the Lie algebra of G.

Definition 1.10 Let ψ be the conjugation action of G on itself. We define
the adjoint representation Ad : G → GL(g) through Adg := Dψg(e). We
will call coadjoint representation Ad∗ : G→ GL(g∗) the dual of the adjoint
representation. In a formula:

〈Ad∗gξ,X〉 = 〈ξ,Adg−1X〉
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1.3. Symplectic toric manifolds

The proof that these maps are indeed representations can be found looking
for Proposition 10.20 in [Mer19].

Back to our original action. Let’s suppose that the contraction is exact,
i.e. for any Lie vector X there is µX ∈ C∞(M) s.t. X# is the hamiltonian
vector field for µX .

Definition 1.11 The action of G on (M,ω) is hamiltonian if for any
X ∈ g there is µX ∈ C∞(M) s.t. iX#ω = dµX and if µ ∈ C∞(M, g∗)
defined through 〈µ,X〉 := µX is equivariant with respect to the coadjoint
representation on g∗. We then call (M,ω,G, µ) hamiltonian G-space.

Remark 1.12 Not every symplectic group action is hamiltonian: for exam-
ple, the action of the two torus T2 with standard symplectic form on itself
by translation is symplectic but not hamiltonian, as orbits are symplecto-
morphic to the original torus, and this contradicts Theorem 1.15.
An example of obstruction for a symplectic action on a compact connected
manifold to be hamiltonian is the first de Rahm cohomology (see [Can08]).

1.3 Symplectic toric manifolds

Consider an hamiltonian Tn-space (M,ω,Tn, µ). A cornerstone theorem in
the study of these spaces is the following theorem due to Atiyah[Ati82] and
Guillemin-Sternberg[GS82].

Theorem 1.13 (Atiyah, Guillemin-Sternberg) If M is connected
and compact, then the levels of µ are connected and the image of µ is
the convex hull of the fixed points of the action.

Proof. A proof can be found in [Aud91]. �

In what follows we will constantly assume that our action moves every point.

Definition 1.14 An action of a group G on a manifold M is said to be
effective if the intersection of all stabilizers Gx := {g ∈ G : gx = x}, for
x ∈M , is trivial.

We motivate the main definition thanks to next two facts.

Theorem 1.15 Let the action of Tn on M be effective, then:
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1. Preliminaries

1. there is an n-dimensional orbit;

2. orbits are isotropic embedded submanifolds of (M,ω).

Proof. A proof can be found in [Can08]. �

We will concentrate on the limit case.

Definition 1.16 A symplectic toric manifold is a connected hamiltonian
Tn-space (M,ω,Tn, µ), where the torus action is effective and dim(M) =
2n.

Compact symplectic toric manifold have been classified by Delzant in [Del88]
in the late 80’s by simple, rational and smooth polytopes.

Definition 1.17 A polytope in Rn is a bounded polyhedral set in Rn. A
polytope is said to be:

1. simple, if exactly n edges meet at each vertex;

2. rational, if each edge is of the form x+ tv for a vertex x and v ∈ Zn;

3. smooth, if it is rational and if for each vertex x, with corresponding
edges {x+ tvi}ni=1, the set (v1, ..., vn) ⊂ Zn forms a basis of Zn.

Theorem 1.18 (Delzant) There is a bijection between symplectic toric
manifold modulo equivariant symplectomorphisms and simple, rational
and smooth polytopes modulo translation given by the image of the mo-
ment map.

Proof. This is proved in [Del88]. �

Karshon and Lerman then classified all symplectic toric manifolds in [KL15].
It’s worth mentioning that in general the moment map gives us little in-
formation about the hamiltonian space. Karshon and Lerman showed an
equivalence of categories between symplectic toric manifolds and symplectic
toric bundles to prove the following theorem. This equivalence of categories
is closely related to the notion of symplectic cut introduced by Lerman in
[Ler95] and to its generalization later made by Karshon in [Kar20].

In the following theorem, the definition of unimodular local embedding
requires some further notions on manifold with corners, so we will not define
it in this thesis. However, the content of the theorem is understandable if
we understand unimodular local embeddings as local diffeomorphisms that
send corners of a manifold with corners to smooth cones in Rn, that is, they
straighten corners. Details may be found in [KL15].
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1.3. Symplectic toric manifolds

Theorem 1.19 Consider a unimodular local embedding Ψ : W → Rn

of a manifold with corners W , then:

1. there is a symplectic toric manifold (M,ω,Tn, µ) s.t. M/Tn = W
and µ descends to Ψ;

2. the equivalence classes of symplectic toric manifolds with M/Tn =
W and moment map descending to Ψ are in bijective correspon-
dence with H2(Zn × R).

Proof. This is proved in [KL15]. �

In this work we’ll deal most of the time with symplectic toric manifolds
whose moment map describes it well, i.e. when the the moment map is
proper as a map to a convex set: in this case the image (see Theorem
4.2 in [Ler+96]) is convex and the induced map on the orbit space is an
embedding, so that the above cohomology vanishes; and so:

Theorem 1.20 Consider a connected symplectic toric manifold such
that the moment map is proper as a map into a convex open set. Its
image determines the manifold up to equivariant symplectomorphism.

Proof. This is proved in [KL15]. �

Definition 1.21 Fix n primitive lattice vectors {v1, ..., vn} spanning the
integral lattice Λ of the n-torus, i.e. the kernel of the Lie exponential map
tn ∼= Rn → Tn. A rational polyhedral set in t∗ is a set of the form ∆ =⋂k
i=1{x ∈ t∗ : 〈x, vi〉 ≤ λi} with non-empty interior, where λi ∈ R. Such

a polyhedral set is called Delzant if it also satisfies a smoothness condition,
i.e. whenever for an index set I ⊂ {1, ..., k} one has2 ∆I := {x ∈ t∗ : ∀i ∈
I : 〈x, vi〉 = λi} 6= ∅, then

spanZ{vi : i ∈ I} = Λ ∩ spanR{vi : i ∈ I}

Notice that fixing our choice of the primitive lattice vectors ensures simplic-
ity of the polyhedral set. Smoothness in the ”non polytope” case is very
similar to the polytope case, however it can happen that a polyhedral set
doesn’t have a vertex, or that it is smooth at a vertex, but not everywhere:
for instance, consider the cone hull of (1, 2, 1), (0, 1, 1) and (1, 0, 1).

2Define ∆∅ := int(∆).

7



1. Preliminaries

Theorem 1.22 Consider a connected symplectic toric manifold such
that the moment map is proper as a map into a convex open set. Its
image is the intersection of that convex set with a Delzant polyhedral
set.

Proof. This is a clear consequence of last two theorems. �

Here there are two basic examples.

Example 1.23 Consider the standard symplectic structure on Cn and
consider the action of the n-torus Tn by coordinatewise rotation. This
action gives Cn the structure of a symplectic toric manifold, with stan-
dard moment map given by

µ : (z1, ..., zn) ∈ Cn 7−→ 1

2
(|z1|2, ..., |zn|2)

Indeed, if v = (v1, ..., vn) ∈ Rn, then if we put zj = xj+iyj for xj, yj ∈ R
it is easy to check that (up to the cononical isomorphism for tangent
spaces of vector spaces)

dµv(z) =
n∑
i=1

vi(xidx(xi) + yidx(yi)) =
d

dt

∣∣∣∣
0

(eitv1z1, ..., e
itvnzn)

showing that the action is hamiltonian.

Example 1.24 Similary to what above, CP n with Fubini-Study sym-
plectic structure is a symplectic toric manifold when endowed with the
action of Tn on the last n homogeneous coordinates. The moment map
is

µ : [z0, ..., zn] ∈ CP n 7→ 1

2

(
|z1|2∑n
i=0 |zi|2

, ...,
|zn|2∑n
i=0 |zi|2

)
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Chapter 2

Symplectic reduction

In this chapter we introduce the famous Marsden-Weinstein-Mayer symplec-
tic reduction, a procedure to destroy symmetries of a hamiltonian space. We
then study how reduction behaves under subgroup actions. In the end we
try to establish under which condition the reduction property keeps the
lagrangian property of a submanifold, and one important example is then
presented in detail.

2.1 Marsden-Weinstein-Mayer Theorem

We recall a fundamental construction of hamiltonian geometry, which is
called symplectic reduction and is due to the work of Marsden–Weinstein in
[MW74] and of Meyer in [Mey73]. The idea is to kill the simmetries of an
hamiltonian space in order to lower the dimension of our original manifold.

We could naively hope that the restriction of a symplectic form to a level set
of a regular value of the moment map mantains non-degeneracy, however
its’s not hard to see that the null foliation of the form is the collection of
the coadjoint stabilizer orbits. Since the level set is coisotropic (this is part
of Lemma 2.5), symplectic linear algebra then tells us that we get linear
symplectic forms on the quotient of the tangent spaces, and the reduction
theorem will tell us that under some assumptions we get a symplectic forms
on the orbit spaces of regular levels.

We will cover symplectic reduction for a general Lie group G. However, our
furthere applications only involve the compact connected abelian Lie group
Tn.

9



2. Symplectic reduction

Definition 2.1 Consider a smooth action of a Lie group G on a manifold
M . The action is free if given g1, g2 ∈ G there is x ∈ M such that g1 ·
x = g2 · x, then g1 = g2. The action is proper if it is proper as a map
(g, x) ∈ G×M 7−→ (g · x, x) ∈M ×M .

It is not hard to see that actions of compact Lie groups are proper ac-
tions. Let’s first recall the quotient manifold theorem from differential ge-
ometry.

Theorem 2.2 If a Lie group G acts smoothly, freely and properly on a
manifold M , then the orbit space M/G is a manifold and the projection
π : M →M/G is a principal G-bundle.

Proof. A proof can be found in [Can08]. �

Let G be a Lie group and let (M,ω,G, µ : M → g∗) be a hamiltonian
G-space. Let v ∈ g∗ such that the action of the coadjoint stabilizer Gv

on µ−1(v) is free. Define the orbit space MG
v := µ−1(v)/Gv. By quotien

iv : µ−1(v) ↪→M be the inclusion and πv : µ−1(v)→MG
v be the projection.

Notice that the Gv is in fact the largest subgroup of G acting on µ−1(v), by
definition of moment map. We want πv to have the structure of a principal
Gv-bundle in order to pushforward i∗vω to MG

v : the pushforwarded form will
be symplectic since it is symplectic on the tangent space as we noted above.

Theorem 2.3 (Marsden-Weinstein, Mayer) Let v ∈ g∗ be a regu-
lar value of the moment map µ. If the action of Gv on µ−1(v) is proper,
then:

1. MG
v is a manifold;

2. πv is a principal Gv-bundle;

3. there is a unique symplectic form ωv on MG
v satisfying π∗vωv =

i∗vω.

Proof. A proof can be found in [Can08]. �

An accurate analysis of theorem above suggests us that a ”reduction” con-
struction can be done in a more general setting. One can show that for
any arbitrary coisotropic submanifold C ⊂ (M,ω), (TC)ω ⊂ TC is an in-
tegrable (2n − m)-distribution on C, so that by Frobenius theorem it is
induced by a foliation on C, whose partition is made of isotropic manifolds.
In general, the leaf space of the foliation is not a manifold, however, the
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2.2. Reduction in stages

construction can be done locally: linear algebra tells us that tangent spaces
of the leaf space inherit a symplectic structure which are independent from
the chosen points on the leaves. The interested reader may have a look at
Lecture 3 in [Wei77] for more details.

2.2 Reduction in stages

We will now investigate how this construction behaves with respect to prod-
uct groups. What follows is an extension of chapter 24.3 in [Can08], as
suggested by the last line of it, with some aid from [Mar+06]. For sym-
plicity we will work with 0-levels, where the coadjoint stabilizer is the full
group. This is not a great restriction as in this thesis we will mostly deal
with the abelian case.

Consider a compact connected Lie group G and a normal Lie subgroup H.
Define the inclusion ı : H ↪→ G and the quotient p : G→ G/H. Let (M,ω)
be a connected symplectic manifold, and suppose that (M,ω,G, µG) is a
hamiltonian G-space. We know that (M,ω,H, µH), with µH := Dı(e)∗ ◦µG,
is a hamiltonian H-space. In the remaining of this section we will specify
the group for the inclusions and projections coming from reduction.

Corollary 2.4 Assume that the action of H on µ−1
H (0) is free. Then

there is an action of G/H on MH
0 which is hamiltonian and whose

moment map µG/H satisfies Dp(e)∗ ◦ µG/H ◦ πH0 = µG ◦ iH0 .

Proof. It follows by equivariance of µG and normality of H in G, that G
acts on µ−1

H (0) = µ−1
G (ker(Dı(e)∗)), so we have an action ofG on µ−1

H (0)/H =
MH

0 given by g · (H ·x) := H · (g ·x). Notice that it is πH0 -equivariant. This
action of course passes to an action of G/H on MH

0 .
We construct the moment map µG/H : MH

0 → (g/h)∗. Notice that by equiv-
ariance µG ◦ iH0 is constant on H, since H acts trivially on ker(Dı(e)∗) =
im(Dp(e)∗), and it factors trought the dual of the Lie algebra of the quo-
tient group since ker(Dı(e)∗) = im(Dp(e)∗).
We show that this is indeed a moment map. Let X = Dp(e)[X ′] ∈ g/h,
first we show that −i#Xωred,H = dµXG/H . Let x ∈ µ−1

H (0) and DπH0 (x)[v] ∈

11



2. Symplectic reduction

TH·x
(
MH

0 ), then:

ωred,H
H·(x)(X

#(H · x), DπH0 (x)[v]) = ωred,H

πH
0 (x)

(DπH0 (x)[X ′#(x)], DπH0 (x)[v])

= ((πH0 )∗ωred,H)x(X
′#(x), v)

= ((iH0 )∗ω)x(X
′#(x), v)

= dµX
′

G |x(v) = Dp(e)∗ ◦ dµX′G/H |πH
0 (x)(dπ

H
0 |x(v))

= dµXG/H |H·x(DπH0 (x)(v))

working with the natural identifications of tangent spaces of vector spaces.
Equivariance is a similar mess of notation and follows by equivariance of p
and µG. �

A consequence is that if we reduce first with respect to H then with re-
spect to G/H we get a symplectic manifold symplectomorphic to the G-
reduction.

Corollary 2.5 There is a symplectomorphism between (MH
0 )

G/H
0 and

MG
0 .

Proof. This is just a chasing game. �

Corollary 2.6 Let G1, G2 be two Lie groups, and suppose that a sym-
plectic manifold carries both the structures of a G1-hamiltonian space
and of a G2-hamiltonian space. If the two action commute and the
moment maps are invariant with respect to the other action, then we
have that the reduced space with respect to the G1 action is naturally a
hamiltonian G2-space (and viceversa).

Proof. We just have to prove that (M,ω,G1×G2, (µ1, µ2)) is a hamiltonian
space under these assumption, then the claim follows by Corollary 2.4. This
is easy to see, as the only thing to check is equivariance. �

The results of this section may seem basic to the experts. I initially strug-
gled to understand why Lerman’s manifold (cfr. Theorem 3.4) actually
carried its structure, and in fact didn’t know why as I presented it last year
during a seminar held by Prof. Ana Cannas da Silva on symplectic toric
manifolds. I added these results and their proofs more to let a trace of my
initial difficulty than out of mathematical interest.
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2.3. Lagrangian reduction

2.3 Lagrangian reduction

What follows is mainly a revisitation of [Wei77].

Our aim is to reduce a lagrangian submanifold of a hamiltonian S1-space
(M,ω, S1, µ) to get a lagrangian submanifold of the reduced manifold at
the zero level (Mred, ωred, S

1, µred). We assume that 0 is a regular value
of µ. Fix a lagrangian submanifold L ⊂ M . Denote π : µ−1(0) → M
the orbit projection and i : µ−1(0) ↪→ M , j : µ−1(0) ∩ L ↪→ µ−1(0) and
j : Lred := π(L ∩ µ−1(0)) ↪→ Mred the inclusions (the last two are for the
moment map of sets).

We start from the simplest case. The assumption that L is contained in the
zero level set is necessary in this case, because lagrangianity and invariance
imply that the moment map is constant on L.
We need a preliminary lemma.

Lemma 2.7 For any x ∈ µ−1(0) it is

ker
(
Dπ(x)

)
= Txµ

−1(0)ωx

In particular the foliation induced by the symplectic orthogonal is the
partition of µ−1(0) into the isotropic submanifolds G · x, x ∈M , of M .

Proof. Denote by ψ the action of G on M . Counting dimension we get
that for any x ∈ µ−1(0) it is ker

(
Dπ(x)

)
= Dψx(e)[g] = Tx(G · x), but for

any X ∈ g

Dψx(e)[X] =
d

dt
|t=0ψx(exp(−tX)) = X#(x)

so that ker
(
Dπ(x)

)
= {X#(x) : X ∈ g}. On the other side again by

dimension count we have Txµ
−1(0) = ker

(
Dµ(x)

)
, since 0 is a regular value

of 0. Let v ∈ Txµ−1(0), then for any X ∈ g:

0 = Dµ(x)[v](X) = dµX |x(v) = ω(X#(x), v)

that means v ∈ Tx(G ·x)ωx . Looking a last time at dimensions, we conclude
the proof. �

Lemma 2.8 If the lagrangian L is contained in µ−1(0) and invariant
under the circle action, then Lred is a lagrangian submanifold of Mred.

To prove this lemma we recall that an injective immersion is an embedding
if and only if it is open onto its image.

13



2. Symplectic reduction

Proof. Constant rank theorem tells us that Lred is an immersed lagrangian,
indeed

ker(D(π ◦ j)(x)) = TxL ∩ Txµ−1(0)ωx = Txµ
−1(0)ωx

has constant dimension dim(M)−dim(µ−1(0)). We show that the inclusion
j is open onto its image. Let O ⊂ Lred be open, i.e. π|−1

L (O) = U ∩ L
for some U ⊂ M open, then π(U) ⊂ Mred is open. Then notice that
π−1(π(U)∩Lred) = S1·U∩L and hence π(U∩L) = π(S1·U∩L) = π(U)∩Lred,
by invariance of the lagrangian. This implies j(U) = π(U) ∩ Lred, which is
open in Lred. �

We would like to emulate this proof in the general case, but there are prob-
lems: is the intersection L ∩ µ−1(0) a manifold? Does the projection have
constant rank? To handle correctly this questions we recall two definitions
from differential geometry.

Definition 2.9 Let N1 and N2 be submanifolds of M . We say that they
have clean intersection if N1 ∩N2 is a manifold and if for any x ∈ N1 ∩N2

it holds that
TxN1 ∩ TxN2 = Tx(N1 ∩N2)

Definition 2.10 Let f : M → M ′ be a smooth map and let N be a sub-
manifold of M ′. We say that f is transverse to N if for any x ∈ f−1(N) it
holds that

Tf(x)M
′ = Tf(x)N +Df(x)[TxM ]

We say that two submanifolds N1 and N2 of M intersect transversally if the
inclusion i : N1 ↪→M is transverse to N2.

One can count dimensions to notice that transverse intersection is a partic-
ular case of clean intersection.

Back to our problem. The core of the first part of the previous proof was
that the projection π|L had constant rank. In the general case,

kerD(π ◦ j)(x) = TxL ∩ Txµ−1(0)ωx

for x ∈ L ∩ µ−1(0): we hence want TL ∩ Tµ−1(0)ω to be a bundle.

Lemma 2.11 If the intersection of the lagrangian L and the zero level
µ−1(0) is clean, then Lred is an immersed lagrangian in Mred.

Proof. Thanks to the previous lemma, all that remains is to prove that
TL ∩ Tµ−1(0)ω is a fiber bundle. It is clear that TL ∩ Tµ−1(0) is a bundle.

14



2.3. Lagrangian reduction

TM ∩ Tµ−1(0)ω is a subbundle of the latter: if : U → Rn is a bundle chart
for TL ∩ Tµ−1(0), then if we restrict it to TM ∩ Tµ−1(0)ω, we can set as
image a diffeomorphic copy of some Rm into Rn, as µ−1(0) is coisotropic in
M , i.e. we found a bundle chart. �

We proceed as Lemma 2.8 suggests and we look at the alleged failure of j
to be an open map in the situation of last lemma. Let U ⊂ Lred be open,
then by definition

(π|L∩µ−1(0))
−1(U) = O ∩ L ⊂ L ∩ µ−1(0)

for some O ⊂ µ−1(0) open. In particular V := π(O) ⊂ Mred is open and
π(O ∩ L) = j(U). The problem here is that we don’t know a priori that
O ∩ L is open in µ−1(0), altough it is open in L ∩ µ−1(0). We will ensure
that the image is open by requiring π to be injective on L ∩ µ−1(0). We
proved the following:

Proposition 2.12 If the intersection of the lagrangian L and the zero
level µ−1(0) is clean, and if L touches each leaf of π contained in µ−1(0)
at most once, then Lred is a lagrangian submanifold of Mred.

We have the following immediate corollary.

Corollary 2.13 If the intersection of the lagrangian L and the zero
level µ−1(0) is transverse, and if L touches each leaf of π contained in
µ−1(0) at most once, then L ∩ µ−1(0) can be embedded as a lagrangian
submanifold of Mred.

Proof. Transversality of the intersection means that at each allowed point
x ∈M , TxL+ Txµ

−1(0) = TxM , so linear algebra tells us that

TxL ∩ Txµ−1(0)ωx =
(
TxL+ Txµ

−1(0)
)ωx

= TxM
ωx = {0}

i.e. Dπ(x) is injective. We proved that π|L∩µ−1(0) is an injective immersion.
This is enough as it is well known that submersions are open maps. �

It is important to point out that the condition that the lagrangian should be
preserved only by the trivial subgroup is quite restrictive; one usually has
to go for other directions in order to show that the lagrangian is embedded
(see e.g. Section 2.4 and Chapter 4).

We have thus shown that under some conditions symplectic reduction keeps
the lagrangian property. The reverse operation works too, and its proof is
much easier, as next proposition points out.
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2. Symplectic reduction

Proposition 2.14 Let L ⊂ Mred be a lagrangian submanifold. Then
i(π−1(L)) ⊂M is a lagrangian submanifold.

Proof. Recall that the preimage of a submanifold under a submersion still
is a submanifold. Since π is a principal circle bundle, counting dimensions
we get dim(π−1(L)) = 1

2
dim(M) and by Marsden-Weinstein-Mayer theorem,

the restriction of the symplectic form on M to π−1(L) is the restriction to
L of the pullback of the reduced form, which vanishes. �

Clearly, last proposition tells us that each lagrangian in Mred comes from a
reduction of a lagrangian of M .

We also look at the converse operation: in the nicest possible situation, if
we first reduce a lagrangian and then take its preimage under π, we will
get a ”smaller” lagrangian contained in the zero level set. An interesting
question is: how does the new lagrangian look like? It is not hard to see
that this lagrangian is the union of the orbits intersecting the original one.

Here there is a basic, but already quite interesting, example.

Example 2.15 We build CP n out of Cn+1. Let S1 act on Cn+1 via

eiθ · (z0, ..., zn) := (eiθz0, ..., e
iθzn)

for eiθ ∈ S1 and (z0, ..., zn ∈ Cn+1. This action has a moment map
given by

µ(z1, ..., zn) =
1

2

n∑
i=0

|zi|2 −
1

2

for (z0, ..., zn) ∈ Cn+1, as shown in Example 1.23, and hence µ−1(0) ∼=
S2n+1 ⊂ Cn+1. Clearly, as manifold, the reduced space is diffeomorphic
to CP n. We will call the reduced symplectic form the Fubini-Study form
on CP n.

We reduce the lagrangian Rn+1 of Cn+1. The intersection of S2n+1 and
Rn+1 is transverse, as, for an x in the intersection,

TxS
2n+1 ∼= (R · x)⊥ and TxRn+1 ∼= (R · x)n+1

but they share n directions, as the tangent space to the sphere contains
the perpendicular complex line trough x (2n-dimensions) and the real
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line trough ix (which is the line real line trough the origin which inter-
sect the real line trough x perpendicularly). We can reduce without fur-
ther doubts. The intersection of the two submanifolds Rn+1 and S2n+1 is
”the middle” n-sphere, on which S1 acts by mirroring the points, hence
the reduced space is the real projective n-space RP n in CP n, which of
course is a lagrangian submanifold.

In the next section we will generalize this example.

2.4 Reduction of the real part of a symplectic
manifold

We introduce a special class of lagrangian submanifolds, which will turn out
to be useful also in the fourth chapter. I followed [Sja10] for definitions and
intuitions.

Definition 2.16 A real structure on a symplectic manifold (M,ω) is a
smooth map σ : M → M that is an involution, i.e. σ2 = idM , and anti-
symplectic, i.e. σ∗ω = −ω. Its fixed point set Mσ is called the σ-real part
of M .

Lemma 2.17 Mσ is a lagrangian submanifold of M .

Proof. A proof can be found in [Sja10]. �

We want σ to descend to a real structure σred on the reduced manifold, so
from now on we will assume that

σ(eiθ · x) = e−iθ · σ(x)

for any eiθ ∈ S1 and x ∈ M . This immediately implies that the maximal
subgroup acting on the real part of M is {−1, 1}.

Proposition 2.18 The real part of M satisfies µ(M) = µ(Mσ).

Proof. This is proved in [Dui83]. �

Lemma 2.19 There is a unique well defined real structure σred on Mred

induced from σ.
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2. Symplectic reduction

Proof. By assumption, σ takes circle orbits to circle orbits. By last propo-
sition in every orbit there is a fixes point of σ, so that if x ∈ µ−1(0) there
is y ∈ S1 · x ⊂ µ−1(0), say y = eiθ · x, such that σ(y) = y and hence

µ(σ(x)) = µ(eiθ · σ(y)) = µ(y) = µ(x)

which means that σ preserves the zero level set. So we have an induced
map σred : Mred →Mred. It is clear that it is an involution, since σ is. Let’s
prove it is anti-symplectic. To pass to σ, we apply π∗, which is injective.

π∗σ∗red(ωred) = (σred ◦ π)∗ωred = (π ◦ σ)∗ωred =

= σ∗i∗ω = −i∗ω = −π∗ωred

so σ∗redωred = −ωred. �

We now prove that we can reduce the real part.

Lemma 2.20 The real part Mσ intersects the zero level set transver-
sally.

Proof. We use the strategy applied in [Can18] for the proof of Lemma 4.1,
i.e. we show that the restriction of dµ to the points in Mσ never vanishes
on the interior of the moment polytope. We compute the tangent space to
the real part at one of its points x:

TxM
σ = {γ′(0) : γ ∈ C∞([0, 1],Mσ)} =

= {γ′(0) : γ ∈ C∞([0, 1],M) and σ ◦ γ = γ} =

= {v ∈ TxM : dσx(v) = v}

Let x ∈ Mσ and w ∈ TxM , then, since σ is an involution, w + dσx(w) ∈
TxM

σ and hence
dµx(w + dσx(w)) = 2dµx(w)

but we know that critical points of the moment map are vertices. �

This ensures that the image of Mσ ∩ µ−1(0) under the projection π :
µ−1(0) → Mred is a manifold (in fact an immersed lagrangian), but we
can’t tell for sure that is a lagrangian submanifold, as Mσ can intersect
orbits twice.

Proposition 2.21 Reduction and real part commute, that means

Mσred
red = (Mσ)red
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2.4. Reduction of the real part of a symplectic manifold

Proof. We show there is a bijective immersion (hence a diffeomorphism)
(Mσ)red → Mσred

red . Consider j : µ−1(0) ∩Mσ ↪→ µ−1(0), which passes to
j : (Mσ)red ↪→ Mred. Consider an orbit {−1, 1} · x ∈ Mσ

red, for x ∈ Mσ,
then j({−1, 1} · x) is in Mσred

red in the sense that {−1, 1} · x can be extended
to an orbit S1 · x. Since Mσred

red is (in particular) an immersed submanifold
of Mred, we can regard j as a smooth injective immersion from (Mσ)red to
Mσred

red . To prove surjectivity, consider the orbit S1 · x ∈ Mσred
red , that means

σred(S1 · x) = S1 · x: we show it is the extension of a smaller orbit in the
sense above, i.e. we want an element y ∈Mσ such that

j({−1, 1} · y) = S1 · x

Note that there is an element e2iθ ∈ S1 satisfying σ(x) = e2iθ · x by assump-
tion, so that e−iθ · σ(x) = eiθ · x which, since σ behaves well with respect to
the action, means

σ(eiθ · x) = eiθ · x

Let y = eiθ · x and consider {−1, 1} · y, then of course extending the latter
to a circle orbit will give us S1 · x by the above computations. �
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Chapter 3

Symplectic cutting

As Lerman points out in [Ler95], Guillemin and Sternberg in [GS89] drawed
a connection between symplectic reductions and symplectic blowups: they
described the blow-up of Cn at the origin as a reduction of Cn+1 with
respect to a circle action. In [Ler95], Lerman generalized their idea to
general hamiltonian circle spaces introducing an elegant symplectic surgery
called symplectic cutting.

3.1 Intuition

In the last chapter we focused on a small portion of a given hamiltonian
space, namely regular level sets. In this chapter we will instead consider the
whole manifold during the reduction process; in other words, we will cut a
hamiltonian space at the height of a regular value in two pieces, obtaining
two manifold with boundary, and then try to get rid of the boundary to get
new manifolds which behave well in symplectic terms.

In synthesis, we will prove the following. Given a hamiltonian circle space
(M,ω, S1, µ) with free action on the zero level set, define an equivalence
relation on M as follows: for x, y ∈ µ−1(0), x ∼ y if there is eiθ ∈ S1 such
that eiθ ·x = y; for x, y ∈M−µ−1(0), x ∼ y if x = y. Then by the following
three quotient have a manifold structure:

M≥0 := µ−1[0,∞)/ ∼, Mµ=0 := µ−1/ ∼ and M≤0 := µ−1(−∞, 0]/ ∼

Then there are symplectic structures on these three manifold such that ev-
erything is as expected, i.e.: Mµ=0 is the symplectic reduction of (M,ω, S1, µ)
at zero, Mµ=0 is a 2-codimensional symplectic submanifold of both M≥0 and
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3. Symplectic cutting

M≤0, M≥0 −Mµ=0 is symplectomorphic to µ−1(0,∞) and M≤0 −Mµ=0 is
symplectomorphic to µ−1(−∞, 0). The intuition presented in these lines in-
spired Yael Karshon’s generalization of symplectic cutting that will appear
in [Kar20] and is presented at the end of this chapter.

The main problem to handle this problem symplectically is to find the
correct way to apply reduction. The construction is due to Eugene Lerman
and first appeared in [Ler95].

Let’s see a very easy example of the cutting procedure. Take the sphere
S2 := {z ∈ C : |z| = 1}, on which the circle acts by horizontal rotation,
with moment map (ϕ, h) ∈ S2 7→ x ∈ [−1, 1]:

(0, 0, 1)

(0, 0,−1)

Cut it in three parts according to the recipe above:

And quotient by the equivalence relation to get two smaller spheres and a
point:
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3.2. Lerman’s original symplectic cutting

(0, 0, 1)

(0, 0, 0) (0, 0, 0)

(0, 0, 0)

(0, 0,−1)

3.2 Lerman’s original symplectic cutting

Lerman proved the following theorem using the Marsden-Weinstein-Mayer
reduction theorem (Theorem 2.3); in the remaining of this thesis we will be
mainly using the construction contained in the proof instead of the intuitive
one given in the introduction of this chapter. We will not in general work
with both cut spaces, but as Lerman points out in [Ler95] both spaces may
be interesting depending on the context.

Theorem 3.1 Consider a hamiltonian circle space (M,ω, S1, µ) and
suppose that the circle acts freely on the zero level set of the moment
map. Then there exist other two hamiltonian circle spaces, denoted by
(M≥0, ω≥0, S

1, µ≥0) and (M≤0, ω≤0, S
1, µ≤0), such that:

1. there are equivariant symplectic embeddings

i+ : µ−1(0,∞) ↪→M≥0

and
i− : µ−1(−∞, 0) ↪→M≤0

2. there are equivariant symplectomorphisms

Mred
∼= M≥0 − i+

(
µ−1(0,∞)

)
and

Mred
∼= M≤0 − i−

(
µ−1(−∞, 0)

)
We call these manifolds symplectic cuts of (M,ω, S1, µ) at 0.

23



3. Symplectic cutting

Before proving Theorem 3.1 we do some preliminary work. We have already
seen that the tuple (C, dz ∧ dz, S1, z 7→ 1

2
|z|2) with diagonal action is a

symplectic toric manifold. One can endow the product manifold M × C
with the product form ω̂ := π∗1ω+π∗2(dz ∧ dz), where π1 : M ×C→M and
π2 : M × C → C are the natural projections, to get a third hamiltonian
circle space, whose moment map will be denoted ψ≤0(x, z) := µ(x) + 1

2
|z|2.

One can consider the skew-diagonal action of the circle on S1, which also
gives us a toric structure on the standard complex plane, whose moment
map differs by the one above by a minus sign. Similarly to the diagonal case,
we end up with a hamiltonian space M ×C with moment map ψ≥0(x, z) =
µ(x)− 1

2
|z|2

Lemma 3.2 The circle acts freely on ψ−1
≤0(0) and ψ−1

≥0(0).

Proof. Let (x, z) ∈M×C. If z 6= 0, S1 clearly moves (x, z). If z = 0, then
x ∈ µ−1(0) and S1 moves x by assumption. �

Hence we can reduct M × C at zero in two ways. We now prove Theorem
3.1.

Proof. (of Theorem 3.1) First, define M≥0 as the symplectic reduction
of M × C at zero considering the skew-diagonal action and M≤0 as the
reduction of M × C considering the diagonal action. By Theorem 2.3, ω̂
passes to symplectic forms ω≥0 on M≥0 and ω≤0 on M≤0.

To get the hamiltonian structure on the cut spaces we use Corollary 2.6.
The action of S1 on M can be extended to C by requiring it to be trivial
there, and preserves ψ−1

≤0(0) and ψ−1
≥0(0), since it preserves any level set of

µ. The resulting circle action on the cut spaces has µ restricted to the zero
level sets and pushed down as moment map.

We will prove the rest just for M≥0, as the other one is pretty identical.
Notice that we have a decomposition:

ψ−1
≥0(0) = {(x, z) ∈M × C∗ : µ(x) =

1

2
|z|2} ∪ {(x, 0) ∈M × C : µ(x) = 0}

as manifold with circle action. So we define

ı : x ∈ µ−1(0,∞)→
(
x,
√

2µ(x)
)
∈ ψ−1

≥0(0)

which is clearly an embedding. We define i+ as ı composed with the orbit
map ψ−1

≥0(0) → M≥0; it follows that to show that i+ is an embedding we

have to prove that the image of ı intersects any circle orbit in ψ−1
≥0(0) at
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3.2. Lerman’s original symplectic cutting

most once (cfr. Section 2.3): this is clear. Pulling back ω≥0 via i+ we first
pull back via the orbit map, hence getting the restriction of ω̂ to the level
set ψ−1

≥0(0), and then we pull back via ı, hence getting the restriction of ω
to µ−1(0,∞), since the second component of ı maps to the real line. This
proves that i∗ is a symplectic embedding.

To prove the last statement one notices that the decomposition above in-
duces a commutative diagram:

µ−1(0) ψ−1
≥0(0)

Mred M≥0

x 7→(x,0)

π π

Which shows that the pullback of ω≥0 is ωred since the forms on the reduced
spaces are the forms on the levels sets pushed down. Notice that

Mred
∼= π

{
(x, 0) ∈ µ−1(0)× C}

)
=

= π
(
ψ−1
≥0(0)− {(x, z) ∈M × C∗ : µ(x) = |z|2}

)
=

= M≥0 − i+
(
µ−1(0,∞)

)
This ends the proof. �

The proof of Theorem 3.1 also sheds light on the relationship between the
two constructions of cut spaces (the one in Section 3.1 and the one using
reduction): extending i+ to the zero level set µ−1(0) one gets a surjection
µ−1[0,∞) → M≥0 which as said above is injective on µ−1(0,∞) and is
completely non-injective on orbits in the zero level set.

Example 3.3 Consider the symplectic toric manifold C2. We are go-
ing to cut the moment image R2

≥0 along the line y = 1
2
− x, i.e. with

respect to the circle generated by the element (1, 1) ∈ T2 and with a
translation of −1

2
appearing in the moment map, in two different ways:

we hence have moment maps ψ≤0(z1, z2, w) := 1
2
(|z1|2 + |z2|2 + |w|2− 1)

and ψ≥0(z1, z2, w) := 1
2
(|z1|2 + |z2|2 − |w|2 − 1). One expects to get

(something equivariantly symplectomorphic to) the standard CP 2 cut-
ting below the line. We have level sets

ψ−1
≤0(0) = {(z1, z2, w) ∈ C2 × C : |z1|2 + |z2|2 + |w|2 = 1}
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and

ψ−1
≥0(0) = {(z1, z2, w) ∈ C2 × C : |z1|2 + |z2|2 − |w|2 = 1}

The first reduction gives us the standard ωµ≤0
∼= S5/S1 ∼= CP 2: one

can calculate that the restriction of the standard form on the complex
plane restricts to

− i

2|z|4
z1z2dz1 ∧ dz2 −

i

2|z|4
z2z1dz2 ∧ dz1 =

i

2
∂∂ log(|z|2|)

which is exactly 1
2

times the pullback of the Fubini Study form with
respect to the Hopf fibration, so our cut space and CP 2 are symplec-
tomorphic. Indeed, they are equivariantly symplectomorphic since T2

acts on S5 on the first two coordinates. The second one is the so called
blow-up of C2 at the origin, i.e. the manifold

L := {([p], z) ∈ CP 1 × C2 : ∃λ ∈ C : z = λp}

with symplectic form 1
2
π∗1ωFS + π∗2(dz ∧ dz). To prove this we use the

decomposition of the level set and the decomposition of the blow up in
the exceptional divisor and C2 − {0}. We have

(z1, z2) ∈ C2 − {0} 7−→ (z1, z2,
√
µ(z1, z2)) ∈ µ−1(0,∞)× S1

and, viewing CP 1 as S3/S1:

[z1, z2] 7−→ (z1, z2, 0) ∈ µ−1(0)× {0}

This basic example shed also light on the announced relationship between
cutting and blow-ups: the resulting cut space is the 1

2
-blow-up of C2 at the

origin. Of course, one may blow up at any regular level 0 6= c ∈ R of the
moment map to get a blow-up on whose exceptional subset the symplectic
form will be the standard Fubini-Study form multiplied by a c factor.

3.3 Multi-dimensional cutting

Lerman’s simplectic toric manifold We construct a symplectic toric man-
ifold with a given Delzant polyhedral set

∆ := {x ∈ (tn)∗ : ∀k = 1, ..., d, 〈x, vk〉 ≥ λk}
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as moment image, where v1, ..., vd are primitive lattice vectors and λ =
(λ1, ..., λk) ∈ Rk. What we are going to do is to take the euclidean part of
the tangent bundle of the torus and cut it into the interior int(∆) of our
polyhedral set. We will close the resulting manifold in such a way that the
induced form from the symplectic form keeps non-degeneracy.

onsider the cotangent bundle T ∗Tn of the n-torus, trivialized via left invari-
ant vector fields as Tn×(tn)∗ with action-angle coordinates (θ, ξ), and equip
it with the symplectic form

ωT ∗Tn :=
n∑
k=1

dξk ∧ dθk

Cotangent lifting the multiplication on the torus we get an action of Tn on
T ∗Tn given by θ′ · (θ, ξ) = (θθ′, ξ), for θ′ ∈ Tn and (θ, ξ) ∈ T ∗Tn, which is
hamiltonian with respect to the projection onto the second factor.

We define an homomorphism

ρ∆ : θ ∈ Td 7−→ exp

( d∑
k=1

θ′kvk

)
∈ Tn

and an action of Td on T ∗Tn as

θ′ · (θ, ξ) :=
(
ρ∆(θ′)θ, ξ

)
This action is hamiltonian with moment map µ := Dρ∆(e)∗◦pr2−λ. Notice
that Dρ∆(e)[X] =

∑d
k=1Xkvk ∈ tn, for X ∈ td, by well-known properties of

the exponential, so that Dρ∆(e)∗[ξ] =
∑d

k=1〈ξ, vk〉ek ∈ (td)∗, for ξ ∈ (tn)∗.

Furthermore, we let Td act on (Cd, ωCd := i
2

∑
dzk ∧ dzk) skew-diagonally:

(θ1, ..., θd) · (z1, ..., zd) := (e−iθ1z1, ..., e
−iθdzd)

for (θ1, ..., θd) ∈ Td and (z1, ..., zd) ∈ Cd. This action is hamiltonian with
moment map (z1, ..., zd) 7−→ −1

2
(|z1|2, ..., |zd|2).

Putting all together we get an action of the d-torus on T ∗Tn × Cd with
moment map

α : ((θ, ξ), z) ∈ T ∗Tn × Cd 7−→
d∑

k=1

〈ξ, vk〉 − λ−
1

2
(|z1|2, ..., |zd|2)

i.e. in the end we’ve got the hamiltonian space (T ∗Tn × Cd, ωT ∗Tn ⊕
ωCd ,Td, α).
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Theorem 3.4 The product Td action is free on the zero level set of
α, so the reduced space of (T ∗Tn × Cd, ωT ∗Tn ⊕ ωCd ,Td, α) at zero is a
symplectic manifold. Moreover this space is naturally a 2n-symplectic
toric manifold with moment map image ∆.

Definition 3.5 We denote (L∆, ω∆) the reduced space of (T ∗Tn×Cd, ωT ∗Tn⊕
ωCd ,Td, α) at zero and we call it Lerman’s symplectic toric manifold with
respect to the Delzant polyhedral set ∆.

To prove the theorem we state this simple lemma:

Lemma 3.6 For an index set I ⊂ {1, ..., d} let

TI := {(θ1, ..., θd) ∈ Td : ∀j /∈ I : tj = 0}

Then the smoothness condition on ∆ is equivalent to ρ∆|TI
being injec-

tive for any I ⊂ {1, ..., d} such that ∆I 6= 0.

Proof. Let I ⊂ {1, ..., d} and (θ1, ..., θd) ∈ ker(ρ∆|TI
), i.e. exp

(∑
θkvk

)
=

(0, ..., 0), then
∑

k∈I θkvk ∈ Zn, and hence θk ∈ Z for any k ∈ I. This is
exactly injectivity1. The converse is proven in the same way. �

Proof. (of Theorem 3.4) 1. Let ((θ, ξ), z) ∈ α−1(0). If zk 6= 0, then
the k-th circle of Td acts freely on Cn, hence also on T ∗Tn × Cd. Let
I := {k : zk = 0} = {k : 〈ξ, vk〉 = λk}2; then by last lemma, ρ∆|TI

:
TI → Tn is injective. This proves that TI acts freely on T ∗Tn, since Tn
does by multiplication. This proves that the reduced space is a symplectic
manifold.
2. The standard Tn-action on T ∗Tn descends to a Tn-action on L∆ with
moment map p̃r2 : [(θ, ξ), z] 7→ ξ by Corollary 2.6. Let ξ ∈ t∗, then

ξ ∈ p̃r2(L∆) ⇐⇒ ξ ∈ α−1(0) ⇐⇒ ξ ∈ ∆

by definition of α. �

We analyze freeness of the resulting Tn-action on L∆.

1We’re always pretending that 1 = 2π, rule that should have been set much time
ago...

2This step is legal because of simplicity: there are at most n elements in I.
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3.3. Multi-dimensional cutting

Corollary 3.7 The torus action is free on µ−1
∆ (int(∆)). More generally

the (preimages of) points on a open face all have the same stabilizer,
which is the perpendicular subtorus to that face. In precise terms if an
open face F is characterized by {x ∈ ∆ : ∀j ∈ IF : 〈x, vj〉 = λj}, then
all the points in µ−1

∆ (F ) are stabilized by

TF := exp
(

spanR{vj : j ∈ IF}
)

Proof. Let [θ, ξ, z] ∈ L∆ and θ′ ∈ Tn such that [θ, ξ, z] = [θθ′, ξ, z]. Then
there is t ∈ Td such that θ′ = exp(

∑d
j=1 tjvj) and zj = zje

−itj . If we let as
before I := {k : zk = 0} we get that θ′ = exp(

∑
j∈I tjvj) �

General cutting construction We extend the construction in last subsec-
tion to general a hamiltonian toric space (M,ω,Tn, µ).

Definition 3.8 We define the cut space with respect to the Delzant polyhe-
dral set ∆ ⊂ (tn)∗ of the hamiltonian Tn-space (M,ω,Tn, µ) as the symplec-
tic reduction of M × L∆ at the zero level with respect to the skew-diagonal
action of Tn. Assuming that the Tn-action is free on the zero level of
the product moment map, we denote the resulting symplectic manifold as
(M∆, ω∆).

Of course M∆ inherits the structure of hamiltonian toric space from M : we
denote the resulting space by (M∆, ω∆,Tn, µ∆).

Lemma 3.9 Let (x, y) ∈M×L∆ lie in the zero level set of the product
action, and assume that y lies on an open face F . The stabilizer of (x, y)
is Tx ∩ TF .

Remark 3.10 The original cutting construction described in Section 3.2
is the cut space of a hamiltonian circle space with respect to the Delzant
polyhedral set [0,+∞).

Remark 3.11 The construction described at the beginning of this section
is also a special case of cut space, with M = T ∗Tn.

Remark 3.12 One can also see M∆ as the symplectic reduction at 0 of
M × T ∗Tn × Cd by Tn × Td and hence as the symplectic reduction at 0 of
M × Cd by Td, where in the second case Td acts on M via the exponential
map as in the first paragraph of Section 3.3.
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3. Symplectic cutting

What we did is hence circle-cutting many times a fixed hamiltonian toric
space. In the following we work out the details of these sub-cuttings. This
is useful both for understanding what is going on and to fix a notation for
the following chapter. We will work with ≥ 0 circle cutting, but what is
described works analogously for ≤ 0 cutting.

Let again (M,ω,Tn, µ) denote an hamiltonian toric space and consider the
Delzant polyhedral set ∆ defined above. We assume again that the toric
action is free on the zero level set of the moment map. We work here
with an arbitrary v = vk for some k = 1, ..., d. Consider the circle S1

v :=
exp(Rv) < Tn, i.e. the image of the homomorphism ρ∆ in a one dimensional
case. Similarly to explained above, we have a circle action on M ×C given
by eiθ · (x, z) := (exp(vθ) · x, e−iθz) for x ∈ M and z ∈ C. Then as in the
first section of this chapter we can define (Mv,≥0, ωv,≥0,Tn, µv,≥0) to be the
symplectic reduction of M × C at 0. We call (Mv,≥0, ωv,≥0,Tn, µv,≥0) the
symplectic cutting at level 0 of M along the primitive lattice vector v.

Corollary 3.13 Let ∆ := {x ∈ (tn)∗) : ∀k = 1, ..., d, 〈x, vk〉 ≥ λk}.
If we repeatedly cut the hamiltonian toric space (M,ω,Tn, µ) at level
λi along the primitive lattice vector vi, for i = 1, ..., d, we get a space
equivariantly symplectomorphic to (M∆, ω∆,Tn, µ∆).

Proof. This follows directly by repeated use of Corollary 2.6. �

Hence, we proved that toric cutting is just a chain of circle cuttings. Let’s
see what happens to the moment image when we cut a symplectic toric
manifold.

Proposition 3.14 Consider a symplectic toric manifold (M,ω,Tn, µ)
such that its moment image is a convex rational polyhedral set. If v ∈ t
generates a circle subgroup S1

v of Tn, then the symplectic cutting at level
0 of M along the primitive lattice vector v has

µ(M) ∩ {X ∈ t∗ : 〈v,X〉 ≥ 0}

map.image.

Proof. The moment map of the circle action is µX = 〈µ,X〉. The two
actions clearly commute with invariant moment maps. �

And we have the following corollary.
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3.4. Karshon’s cutting

Corollary 3.15 Consider a sympletic toric manifold (M,ω,Tn, µ) and
a Delzant n-polyhedral set ∆ such that the cut construction is legal.
Then M∆ = L∆∩µ(M). In particular if ∆ ⊂ int(µ(M)), then M∆ = L∆.
If conversely µ(M) ⊂ int(∆), then M∆ = M .

Proof. Let ∆ := {x ∈ (tn)∗) : ∀k = 1, ..., d, 〈x, vk〉 ≥ λk} for primitive
lattice vectors This follows by the combination of Delzant theorem with
Corollary 3.13 and Proposition 3.14. Indeed, as M∆ is obtained by repeated
circle cuts, by last proposition its moment image is exactly µ(M) ∩ ∆.
Delzant theorem concludes the proof. �

3.4 Karshon’s cutting

In [Kar20] Karshon develops a ”cutting”3 construction as a functor from
the category of manifolds with boundary equipped with free circle actions
near the boundary and whose morphisms are equivariant transverse maps,
to the category of smooth manifolds by collapsing orbits on the boundary.

We resume the ideas contained in [Kar20]. In the following M will be a
manifold with boundary equipped with a free cricle action on a neighbour-
hood U of the boundary. We define on M the following equivalence relation:
two points of M are equivalent if and only if they both lie on the boundary
of M and are in the same circle orbit. We denote the quotient space by Mc.

We need some technical definitions:

Definition 3.16 An invariant boundary defining function is a smooth map
f : M → R≥0 such that:

1. f−1(0) = ∂M ;

2. df |∂M never vanishes;

3. There is an invariant neighbourhood V ⊂ U of the boundary such that
f |V is S1-invariant.

Definition 3.17 Consider two manifolds with boundary M and N equipped
with free circle actions on neighbourhoods UM resp. UN of the boundary. A
smooth map ψ : M → N is said to be equivariant transverse if:

1. there is an invariant boundary defining function fN on N such that
fN ◦ ψ is an invariant boundary defining function on M ;

3The name might not be the same when the paper will appear in print.
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3. Symplectic cutting

2. for any point in ∂M there is a neighbourhoof V ⊂ UM ∩ ψ−1(UN) of
it in M such that ψV is S1-equivariant.

We copy here two main theorems proved in [Kar20]. The following is The-
orem 1.1. there.

Theorem 3.18 Let f be an invariant boundary defining function on
M . There is a unique manifold structure on the cut space Mc such that
a function h : Mc → R is smooth if and only if:

1. h ◦ c|int(M) is smooth;

2. for each point in ∂M there is an invariant neighbourhood V ⊂ U
of it and a smooth map H : V × C→ R such that

a) for any iθ ∈ S1 and (x, z) ∈ V ×C we have that H(eiθ ·x, z) =
H(x, eiθz);

b) for any x ∈ V we have that h(c(x)) = H(x,
√
f(x).

The structure is independend of the choiche of f .

Proof. This is proved in [Kar20]. �

The following is Proposition 4.1 in [Kar20].

Theorem 3.19 Consider two manifolds with boundary M and N that
are equipped with free circle actions on neighbourhoods UM resp. UN
of the boundary and an equivariant transverse map ψ : M → N . Then
ψ pushes down to a unique smooth map ψc : Mc → Nc such that
cN ◦ψ = ψc ◦ cM . Moreover, this construction respects compositions of
equivariant transverse maps.

Proof. This is proved in [Kar20]. �

In the end we have the following result.

Corollary 3.20 The cutting construction in this setting yields a func-
tor from the category whose objects are manifolds-with-boundary equipped
with free circle actions near the boundary and whose morphisms are
equivariant transverse maps, to the standard category of smooth mani-
folds.

Proof. This follows directly from the work above. �
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3.4. Karshon’s cutting

In the remainings of this section we prove that Karshon’s cutting is indeed a
generalization of Lerman’s symplectic cutting [Ler95]. An aim of this thesis
is to use a slight modification of Theorem 3.19 to study the behaviour of
certain Z2-invariant submanifolds of a symplectic toric manifold under the
cutting construction. What follows is an expansion of some notes in a
preliminary draft of [Kar20]. [Sni13], [CB97]

From here on consider an hamiltonian circle space (M,ω, S1, µ).

Lemma 3.21 Let c ∈ R be a regular value of µ. Then there is ε > 0
such that for any t ∈ (c − ε, c + ε), µ−1(t) is equivariantly symplecto-
morphic to µ−1(c).

Proof. One can find a proof in [Aud91]. �

Let c ∈ R such that the circle acts freely on µ−1(c). We define4 N :=
µ−1[c,∞), then as c is a regular value of µ, N is a smooth manifold with
boundary, and ∂N = µ−1(c). Moreover, by Lemma 3.21, N is a smooth
manifold with boundary with a free action of the circle near the boundary.

We claim that µc := µ|µ−1[c,∞)−c is an invariant boundary defining function
N → R≥0. Of course µ−1

c (0) = ∂N . Nonetheless, we have the following
lemma.

Lemma 3.22 At any point x ∈M , the image of dµ(x) is the annihila-
tor of Lie algebra of the stabilizer of the circle action at x.

Proof. This follows from the defining relation of the moment map. �

This means that, as the circle action is free near the boundary, µ is a
submersion near the boundary, in particular, µc := µ|µ−1[c,∞) − c is an
invariant boundary defining function.

Of course, the symplectic form ω on M pulls back to a symplectic form on
N . We will still denote this form by ω.

Lemma 3.23 The pullback of ω to ∂N is a basic two form.

Proof. The restriction of the symplectic form ω to µ−1(0) is by symplectic
reduction the pullback of a symplectic form on the reduced space. �

4As with ordinary Lerman’s cutting, we could consider µ−1(−∞, c] and end up with
analogous results.
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3. Symplectic cutting

By an argument contained in Section 6 of [Kar20], the symplectic form ω
on N descends to a symplectic form ωc on Nc. By arguments contained in
Section 2.2 of this thesis, the circle action on N descends to a circle action
on the smooth manifold Nc, which is hence an hamiltonian circle space.

We finally prove that Karshon’s cutting generalizes Lerman’s symplectic
cutting.

Proposition 3.24 There is an equivariant symplectomorphism between
the cut space Nc and the symplectic cutting of M at the level c.

Proof. This is the exact same reasoning as in the comment after the proof
of Theorem 3.1. We have a surjection µ−1[c,∞] → M≥c that is injective
away from the cutting level and completely non-injective on orbits contained
in the cutting level. This means that after passing to Nc, one gets a diffeo-
morphism. The fact that this diffeomorphism is an equivariant symplecto-
morphism follows directly by the construction of the hamiltonian space Nc

and the defining relation of it on the boundary. �
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Chapter 4

Lagrangian cutting

We finally apply the cutting procedure to particular lagrangian submani-
folds of symplectic toric manifolds.

4.1 Toric lagrangian cutting

This is the result of a joint work with Ana Cannas da Silva1. In this
subsection we will exclusively work with symplectic toric n-manifolds.

Consider a symplectic toric manifold (M,ω,Tn, µ) which is either compact
or the standard Cn. We will work with a special class of lagrangian sub-
manifold which are being classified by Cannas da Silva and Karshon in
[CK20].

Definition 4.1 Let n ≥ 0 and 0 ≤ k ≤ n. We call k-dimensional basic
toric subgroup of Tn the subgroup

T k := (S1)k × Zn−k2 < Tn

This is a Lie subgroup of the standard torus and has Lie algebra tnk :=
Rk×πZn−k ⊂ tn. Recall the general linear group of the integers GL(n,Z) =
{A ∈Mn(Z) : det(A) = ±1}.

Definition 4.2 Let n ≥ 0 and 0 ≤ k ≤ n. For A ∈ GL(n,Z), we call
k-dimensional elementary toric subgroup given by A the subgroup T k,A :=
exp(Atnk). We call connected component of the identity in T k,A the subtorus

T k,A0 := exp(Atnk,0)

1That is, most of the ideas of the setting are due to her.
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4. Lagrangian cutting

where tnk,0 = Rn × {0}n−k.

We introduce toric lagrangians.

Definition 4.3 A toric lagrangian in (M,ω,Tn, µ) is a pair (L, T k,A) where
L is a proper connected lagrangian submanifold of (M,ω), 0 ≤ k ≤ n such
that the intersection of L with each Tn-orbit is clean and either exactly one
T k,A orbit or empty. We call T k,A symmetry group of the toric lagrangian.

This means in particular that L is preserved by the action of T k,A and no
other bigger Lie subgroup of Tn.

We relate lagrangians to affine subspaces.

Definition 4.4 Let n ≥ 0 and 0 ≤ k ≤ n. For A ∈ GL(n, Z), we denote
by Sk,Ab the (n− k)-dimensional rational affine subspace of Rn given by the
solutions x ∈ Rn to the equation (AIn×k))

Tu = b, for b ∈ Rk.

Lemma 4.5 Let L be a connected lagrangian in (M,ω,Tn, µ) and A ∈
GL(n,Z). Then there exists b ∈ Rk such that µ(L) ⊂ Sk,Ab if and only

if T k,A0 preserves L

Proof. A proof can be found in [CK20]. �

It follows that the moment image of a toric lagrangian is contained in some
rational affine subspace.

Before stating the main result, we need the following technical lemma.

Lemma 4.6 Consider a free and smooth action of a compact Lie group
G on a manifold M . The orbit map π : M →M/G is a proper map.

Proof. Let C ⊂ M/G be compact. Let (Ui)i be a cover of π−1(C) such
that Ui is compact2. Then (π(Ui))i covers C. We can find a finite subcover
π(O1), ..., π(On). Then π−1(C) ⊂

⋃n
i=1 π

−1(π(Oi)) ⊂
⋃n
i=1G·Ui, i.e. π−1(C)

is a closed subset of a compact set. �

We apply symplectic cutting to this class of lagrangians. We work with
≥ 0-cutting; however, everything that follows holds also for ≤ 0-cutting.
We will call c ∈ R a cutting level for a if S1

a acts freely on µ−1(a).

2This assumption can be made without loss of generality as manifolds are locally
compact spaces, so we can refine any basis this way.
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4.1. Toric lagrangian cutting

Theorem 4.7 Let (L, T k,A) be a toric lagrangian in (M,ω,Tn, µ), a ∈
(πZn) a primitive vector and 0 ∈ R a cutting level for a. If the inter-
section L ∩ µ−1

a (0) is clean and S1
a ∩ T k,A is the discrete two element

subgroup, then we can reduce the lagrangian submanifold L×R of M×C
to obtain a proper lagrangian submanifold La,≥0 of Ma,≥0. We call La,≥0

a cut lagrangian of Ma,≥0.

Proof. Proof. We prove the theorem in six steps.

Step 1: we show µa(L) 6= {0}.
Assume µa(L) = {0}, then by Lemma 4.5 and by definition of µa = 〈µ, a〉,
µ(L) is contained in the (n− 1)-dimensional rational affine subspace aTu =
0. So that if we define A ∈ GL(n,Z) trought Ae1 = a, then T 1,A

0 =
{(ea1iθ, ..., eaniθ) : θ ∈ R} = S1

a, which contradicts second assumption on
the lagrangian. on L. This proves that µa(L) 6= {0}.

Step 2: we show L t µ−1
a (0).

Notice that there is no non-empty open subset of L which is contained
in µ−1

a (c). Indeed, if so, {0} would be both open and closed in µ(M),
contradicting connectedness.
By assumption L ∩ µ−1

a (0) is clean, so in particular the intersection is a
manifold. By what above it follows directly that dim(L∩µ−1

a (0)) < dim(L).
Hence, for any x ∈ L ∩ µ−1

a (0), dim(TxL+ Txµ
−1
a (0)) = 2n = dim(M). We

conclude that the intersection is transverse.

Step 3: we show L× R t ψ−1
≥0(0).

Let (x, z) ∈ L×R∩ψ−1
≥0(0). We have T(x,z)ψ

−1
≥0(0) = ker(dψ≥0(x, z)). Notice

that3 the kernel of dψ≥0 = π∗Mdµa+π
∗
CdµC contains ker(π∗Mdµa)∩ker(π∗CdµC)

as a 1-codimensional susbpace, which is pointwise the direct sum of the
tangent spaces to the µa 0-level set with the tangent space of the unit circle
in C. Hence

T(x,z)(L× R) + T(x,z)ψ
−1
− (0) ⊇ (TxL⊕ TzR) + (Txµ

−1
a (0)⊕ TzS1) =

= (TxL+ Txµ
−1
a (0))⊕ (TzR + TzS

1) =

= (TxL+ Txµ
−1
a (0))⊕ TzC ⊆ T(x,z)(M × C)

as R t S1 in C. Since L t µ−1
a (c) by Step 2, the two inclusions are equalities

(the first by dimensional reasons) and we conclude L× R t ψ−1
≥0(c).

Step 4: we show that the cut lagrangian is immersed in the cut space.
This follows directly by our work on lagrangian reduction in Section 2.3.

3We label the moment map of C by µC and the natural projections of M ×C by πM
and πC respectively.
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4. Lagrangian cutting

Step 5: we show that the cut lagrangian is embedded in the cut space.
To do this, we prove that the inclusion of the reduced lagrangian (L ×
R ∩ ψ−1

≥0(0))/Z2 into the cut space is a proper map. By Lemma 4.6, the

orbit map π : ψ−1
≥0(c) → Ma,≥c is a proper map. Notice that R is a proper

lagrangian in C, so that L×R is a proper lagrangian in M×C. It is known
that the restriction of proper maps to preimages keeps properness, so that
the inclusion L× R ∩ ψ−1

≥0(c) ↪→ ψ−1
≥0(c) is a proper map.

So by commutativity of

L× R ∩ ψ−1
≥0(c) ψ−1

≥0(c)

(L× R ∩ ψ−1
≥0(0))/Z2 Ma,≥c

the inclusion downstairs is a proper map. As embeddings with closed image
are exactly injective proper immersions, we conclude that the image of the
inclusion, that is the cut lagrangian, is properly embedded in the cut space.
This finishes the step and the proof. �

Remark 4.8 One may prove this theorem without passing through transver-
sality. This proof uses diffeomorphisms between level sets away from critical
points (see Morse theory), but is far less elegant.

Theorem 4.9 In the setting of Theorem 4.7, any connected component
of the cut lagrangian (La,≥0, T

k,A) is a toric lagrangian in the cut space.

Proof. By step 5 of the proof of Theorem 4.7, we know that the cut la-
grangian is properly embedded in the cut space. We prove the intersection
properties. Following the decomposition of the cut space, it is

La,≥0
∼=
L ∩ µ−1

a (0)

Z2

t L ∩ µ−1
a (0,∞)

so that away from the cutting level, the relevant intersection condition for
the cut lagrangian to be a toric lagrangian is fulfilled.

The intersection of the cut lagrangian with each Tn-orbit in the cut space is
either exactly one T k,A-orbit or empty by construction and assumptions on
L. We show that this intersection is clean. By the proof of Lemma 2.7 we
get that in out toric setting, Tx(Tn ·x) = {X#

M(x) : X ∈ tn} for any x ∈M .
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4.2. Circle cutting

Hence the tangent space to the torus orbit in the cut space through [x, z],
for (x, z) ∈ ψ−1

≥0(0) is

T[x,z](Tn · [x, z]) = {X#
Ma,≥0

([x, z]) : X ∈ tn}

So, for any [x, 0] ∈ La,≥0, d
dt

∣∣
0

[exp(tX) · x, 0] lies in T[x,0]La,≥0 if and only
if the curve t 7→ exp(tX) · [x, 0] lies in La,≥0 for any [x, 0] ∈ La,≥0, which
happens exactly when t 7→ exp(tX) · x lies entirely in L, i.e. exactly when
X lies in the Lie algebra Atnk of T k,A by assumption. We conclude

T[x,0]La,≥0∩T[x,0](Tn · [x, 0]) = {X#
Ma,≥0

[x, 0] : X ∈ Atnk} = T[x,0](T
k,A · [x, 0])

as desired. �

Remark 4.10 We suspect that the cut lagrangian itself is a toric lagrangian,
i.e. it is connected. The proof of connectedness seems to be non-trivial and
due to time constraints we will not eleborate on that further in this thesis.

Example 4.11 Consider a real structure σ on the symplectic toric
M2n and let L = Mσ. It’s not hard to see that (L,Zn2 ) is a toric la-
grangian. Then we have σ× on M ×C defined by σ×(x, z) := (σ(x), z);
it’s easy to see that σ× defines a real structure on M × C. By Lemma
2.19 we have real structures σ≥0 and σ≤0 and by Lemma 2.20 we can
reduce (M × C)σ

× ∼= Mσ × R in both directions to get lagrangians
L≥0 = (M≥0)σ≥0 and L≤0 = (M≤0)σ≤0.

Corollary 4.12 The cut lagrangian has moment image µ(La,≥0) =
µ(L) ∩ {x ∈ tn : 〈x, a〉 ≥ 0}

Proof. This is a direct consequence of Theorem 4.7 and Proposition 3.14.�

4.2 Circle cutting

We also can try to cut lagrangians in certain symplectic manifolds with
respect to the lagrangian S1 ⊂ C. The substantial difference is that the
moment image of the circle is a point, while the moment image of the real
line is the whole non-negative real axis.
This section is in part a natural question arising from the combination of
symplectic cutting and lagrangian submanifolds and in part motivated by
Alessandro Fasse’s Master thesis [Fas18], where in the concluding remarks
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4. Lagrangian cutting

the author intuited a relationship between symplectic cutting and rational
affine subspaces of Cn.

Consider the symplectic toric manifold (C2, dz ∧ dz,T2, µC), with diagonal
action and moment map µ(z1, z2) = (1

2
|z1|2, 1

2
|z2|2) for (z1, z2) ∈ C2, so that

the moment map image is the first quadrant. One can ask for (immersed or
embedded) toric lagrangians in C2 with a given affine subspace as moment
image. In [Fas18], Fasse outlined the limitations of standard symplectic
reduction to find such lagrangians. Circle cutting is a tool that provides
another way to find these lagrangians. Unfortunately, cutting alone doesn’t
cover the whole proof.

The following theorem is a generalization to arbitrary finite dimension of
the so called first and second ray Theoremm, proved in [Fas18]. It is worth
mentioning that our notion of toric lagrangian slightly differs from the one
adopted in [Fas18].

Theorem 4.13 Let k ∈ R>0, a ∈ Zn and

Nk :=
{
x ∈ Rn

≥0 : 〈a, x〉 =
k2

2

}
a rational affine subspace of Rn

≥0 in the sense that its linear completion
is a rational afffine subspace of Rn. If at least one coordinate of a is
non negative, then there exist an immersed lagrangian Lk of Cn whose
moment image is Nk.

Proof. Consider the half space H := {x ∈ Rn : 〈a, x〉 ≥ 0}, where without
loss of generality we can assume that a is primitive. By Delzant theorem,
if we cut the standard Cn with respect to H in the sense of Section 3.3, we
get a space which is symplectomorphic to the original Cn and will hence
still get denoted by Cn.

We cut the lagrangian Rn at the cutting level µ−1
a (k

2

2
) with respect to the

lagrangian circle of radius k in the complex plane, i.e. we reduce Rn×S1(k).
By the quotient manifold theorem and lagrangianity upstairs, we end up
with a smooth manifold Lk inside the standard Cn, such that ω|Lk

vanishes.

Under the identification of the cut space with the standard Cn, is identified
with {

(r1e
ia1θ, ..., rne

ianθ) ∈ Cn : θ ∈ R,
n∑
i=1

air
2
i =

k2

2

}
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4.2. Circle cutting

via the map
[r1, ..., rn, ke

iθ]Z2 → (r1e
ia1θ, ..., rne

ianθ)

which is well defined as (−1) · (z1, ..., zn, w) = (eia1πz1, ..., e
ianπ,−w) for

(z1, ..., zn, w) ∈ Cn × C.

See [Fas18] for a proof of the fact that Lk is an immersed submanifold of
Cn. �

Remark 4.14 My original aim was to only use cutting. However, it turns
out that in this situation the intersection T(x,y)(Rn× S1(k)∩ψ−1

≥0(0)) is not
clean, as

Rn × S1(k) ∩ ψ−1
≥0(0) =

(
Rn ∩ µ−1

(k2

2

))
× S1(k)

but

T(x,y)(Rn × S1(k)) ∩ T(x,y)ψ
−1
≥0(0) = (TxRn ∩ TxM)⊕ (TyS

1(k) ∩ TyS1(k)

So the only thing we know a priori on the ”cut lagrangian” is that it is a
manifold contained in Cn and that the sympletic form of Cn vanishes on it.

Lemma 4.15 There is a diffeomorphism S1 × RP n−1 → Lk.

Proof. Consider coordinates (r1, ..., rn) on Sn−1 ⊂ Rn such that
∑n

i=1 air
2
i =

k. Then we have a natural map f : S1 × Sn−1 → Lk given by

f(eiθ, r1, ..., rn) := (r1e
ia1θ, ..., rne

ianθ)

This is a smooth surjective map. Notice that

f(eiθ, r1, ..., rn) = f(ei(θ+π), eia1πr1, ..., e
ianπrn)

that is, f is Z2 invariant. Hence f descends to a map from the quotient
(S1 × Sn−1)/Z2

∼= S1 × RP n−1. This induced map is a diffeomorphism. �

Remark 4.16 The symmetry group of Lk is exp(Ra), that is T 1,A for A ∈
GL(n,Z) with a as first column. This means that this cutting procedure
adds symmetries to the lagrangian. By the lemma above it is also clear that
Lk is connected.
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Chapter 5

Final remarks

The arguments presented in this thesis may naturally be extended and
completed. Here there are a few possible ways:

1. Clearly, lagrangian cutting may be naturally extended to arbitrary
hamiltonian toric spaces or/and to the general cutting setting of Def-
inition 3.8.

2. It would be interesting to investigate more on cirlce cutting. While in
Remark 4.13 we pointed out that it is not as powerful as expected, I
presume that there may be stronger assumption on the lagrangian so
that one has not to pass trought hard machinery to prove submanifold
behaviours. I add here a graphical visualization of whats going on whit
circle cutting in another special case:

Consider the cutting of C2 along the half space {(x, y) ∈ R2 : x+y ≤
1
2
} to get a copy of the standard CP 2. Fix r ∈ R>0. We cut the real

part with the circle S1(r):

L×S1(r)∩ψ≤0(0) = {(x, y, reiθ) ∈ L×S1(r) : x2+y2 = −r2+1} ∼= T2

which gets reduced to a torus. This torus has moment image
{

(x, 1−r2
2
−

x) ∈ R2 : x ∈ [0, r
2−1
2

]
}

. Two examples are drawed in Figure 5.1.

3. It would be interesting to apply Karshon’s cutting to lagrangian cut-
ting. We have already outlined in Section 3.4 that the main problem
with her work is to adeguate the setting to Z2 actions. Here there is
a non-rigorous (an maybe completely wrong) proposal.

Assume L intersects L∩µ−1(0) cleanly. L∩µ−1(0,∞) is an n-dimensional
submanifold of M . So, the glued manifold L∩µ−1[0,∞) ∼= L∩µ−1(0)t
L ∩ µ−1(0,∞) is indeed a manifold.
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5. Final remarks

Figure 5.1: The graphical idea of the circle cutting of R2 ⊂ C2 with respect to circles with
radii 1√

2
and 1√

3
respectively. The symplex is the moment image of ψ−1≤0(0), and one in the

cutting procedure projects it to the original quadrant to get the new manifold CP 2. Here
we choose rays (moment images of L× S1(r) ∩ ψ−1≤0(0)) and project them to CP 2.

Proposition 4.1 is available just when we have circle action, which
isn’t the case in our lagrangian setting1. We have to develop further
machinery for manifold with boundary equipped with Z2 actions near
the boundary.

Submanifold behaviour in the Karshon setting Let N be a mani-
fold with boundary equipped with a free circle action near the bound-
ary. Let M be an embedded submanifold with boundary of N and
denote by i : M → N the corresponding embedding. It is rather clear
that by Proposition 4.1 if such a submanifold has a free circle action
near the boundary it gets pushed down to an embedded submanifold
of the cut space Nc. We try to study what happens if the submanifold
is invariant by Z2 and no greater subgroup of S1.

i restricts to a Z2 equivariant map i|∂M : ∂M → ∂N , so it descends
to a map which restricts to

∂M

Z2

→ ∂N

Z2

Recall that we have a principal circle bundle S1 → ∂N → ∂N
S1 . This

1Recall: lagrangian preserved by the circle lie in some level set.
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gives rise to a principal S1

Z2

∼= S1-bundle

S1

Z2

→ ∂N

Z2

→ ∂N

S1

Composing the two we get a map ∂M
Z2
→ ∂N

S1
2. Hence the embedding

descends to a unique map ic : c(M) → Nc such that the diagram
commutes.

Differential structures of subsets. We need the notion of differ-
ential space, initially introduced by Sikorsky and then developed in
[Sni13].

Definition 5.1 A differential space is a pair (P,F) where P is a
topological space and F is a set of continuous real valued functions
such that:

• For any open interval I ⊂ R and function f ∈ F , the sets f−1(I)
form a subbasis for the topology on P ;

• For any n ∈ Z>0, g smooth real valued function on Rn and
f1, ..., fn ∈ F : g ◦ (f1, ..., fn) ∈ F ;

• If f : P → R is a function such that for any p ∈ P there is
an open neighbourhood Up of p and a function fp ∈ F such that
fp|Up = f |Up, then f ∈ F .

Definition 5.2 Let F be a family of real valued functions on a set
R. Endow R with the initial topology determined by F . Define F to
be the set of real valued functions h on R such that for any x ∈ R
there is an open subset U ⊂ R, an integer n > 0, h1, ..., hn ∈ F and
g ∈ C∞(Rn) such that

h|U = g(h1, ..., hn)|U

We say that F generates F .

Lemma 5.3 Let S ⊂ R be a subset of a differential space (R,F),
let i : S ↪→ R be the inclusion and let

R(S) := {f ◦ i : f ∈ F}

2This is a principal bundle morphism between ∂M and ∂N with respect to the
inclusion ([Mer19], D24.18)
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5. Final remarks

Then R(S) generates a differential structure FS on S such that
the differential space topology of S coincides with the subspace
topology. In this setting, the inclusion i is smooth.

Proof. This is Proposition 2.1.8 in [Sni13]. �

This differential strucure on c(M) makes the map c|M : M → c(M)
smooth.

So, in our setting, on c(M) quotient topology and subspace topology
(which is the differential space topology by definition) coincide, as M
is embedded in N and the diagram commutes. All is left to do is first
to show that c(M) is a manifold, then, show that smooth function on
c(M) coincide with the differential structure induced by N .
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