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Abstract

The Borsuk–Ulam theorem from algebraic topology states that for every con-
tinuous function from the n-dimensional unit sphere to the (n+ 1)-dimensional
Euclidean space there are two antipodal points on the sphere that get mapped
to the same point. Using the notion of transversality from differential topology,
we prove a version of the statement based on the mod 2 winding number of a
function. Then we apply it to solve combinatorial problems such as the necklace
splitting problem and the ham sandwich theorem.
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Chapter 1

Introduction

The Borsuk–Ulam theorem is named after the mathematicians Karol Borsuk
and Stanislaw Ulam. In 1933, Karol Borsuk found a proof for the theorem con-
jectured by Stanislaw Ulam. However, as Jǐŕı Matoušek mentioned in [Mat03,
Chapter 2, Section 1, p. 25], an equivalent theorem in the setting of set cov-
erings, namely the Lusternik—Schnirelmann theorem, appeared already three
years before in an article written by Lazar Aronovich Lyusternik and Lev Gen-
rikhovich Schnirelmann ([LŠ47]).

The chapters 2 to 4 of this Bachelor thesis are mainly based on chapters 1 and
2 of the book [GP10] by Victor Guillemin and Alan Pollack. In these chapters
of the book, fundamental concepts from analysis, topology and differential geo-
metry are recalled and the notion of transversality is introduced.
The final chapter of this thesis is based on chapter 3 of the book [Mat03] by Jǐŕı
Matoušek. This book approaches the Borsuk–Ulam theorem from a combinat-
orial viewpoint by proving Tucker’s lemma and showing that it is equivalent to
the Borsuk–Ulam theorem. Furthermore, it contains a geometric proof of the
Borsuk–Ulam theorem.

In Chapter 2, we introduce preliminary material such as manifolds, tangent
spaces, derivatives and homotopy and prove some theorems that we will need.
In Chapter 3, we define the concept of transversality and prove some of its prop-
erties. Then we extend the main results from the second chapter to manifolds
with boundary to obtain theorems needed to define the mod 2 winding number
at the end of the chapter. In Chapter 4, we state and prove the Borsuk–Ulam
theorem and derive another version of the theorem, which will be more handy in
Chapter 5 on applications of the theorem. There we discuss the ham sandwich
theorem, multicolor partitions and the necklace splitting problem.

I wish to express my sincere thanks to my adviser, Professor Ana Cannas da
Silva, for supervising this thesis. She spent a lot of time answering my questions
concerning the material as well as the writing process and guided me when I
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lost sight of the goal. I also wish to thank Manuel Wiedmer for discussing some
of the exercises in the book with me. Moreover, I wish to thank him and Nils
Jensen for proofreading this thesis and giving me valuable comments.
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Chapter 2

Preliminaries

In this chapter we state the basic things we need in this thesis. For a more
detailed introduction we refer the reader to [GP10, Chapter 1, Sections 1–4].
The statements we prove are mostly exercises from this book.

2.1 Manifolds

We start with defining the spaces we are going to work on, namely manifolds. To
do so we need the following definitions, which are taken from [GP10, Chapter 1,
Section 1]. In this book as well as in this thesis, the words “map” and “function”
are used equivalently.

Definition 2.1. A neighborhood of a point x ∈ Rn is an open set V ⊆ Rn such
that x ∈ V .

Definition 2.2. A map f : U → Rm, where U ⊆ Rn is an open set, is called
smooth if it has continuous partial derivatives of all orders.

Definition 2.3. Let f : X → Rm be defined on an arbitrary subset X ⊆ Rn.
Then f is called smooth if for each x ∈ X there exists an open set U ⊆ Rn
containing x and a smooth map F : U → Rm such that F and f agree on U ∩X.
In this case we say that f admits a local extension to a smooth map on open
sets.

Definition 2.4. Let X and Y be subsets of two Euclidean spaces. A smooth
map f : X → Y is called a diffeomorphism if it is bijective and the inverse map
f−1 : Y → X is also smooth.

Definition 2.5. A subset X ⊆ RN is a k-dimensional manifold if it is locally
diffeomorphic to Rk, that is, if for each x ∈ X there exists a neighborhood
V ⊆ X that is diffeomorphic to an open set U ⊆ Rk. Such a diffeomorphism
φ : U → V is called a parametrization of the neighborhood V and its inverse
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φ−1 : V → U is called a coordinate system on V . If we write the map φ−1 in
coordinates φ−1 = (x1, . . . , xk), then the k smooth functions x1, . . . , xk on V
are called coordinate functions.

A parametrization of the neighborhood V ⊆ X of x is called a local paramet-
rization of X about x.
Unless specified otherwise, we use the letters X, Y and Z to denote manifolds.
Moreover, we implicitly assume that X ⊆ RN and Y ⊆ RM are of dimension k
and l respectively.

Definition 2.6. If X and Z are manifolds in RN and Z ⊆ X, then Z is called
a submanifold of X.

Notice that a manifold X in Rn is a submanifold of RN . Moreover, any open
subset of X is a submanifold of X.

The following theorem tells us that we can construct new manifolds by taking
the Cartesian product of manifolds.

Theorem 2.7. If X and Y are manifolds, then so is X × Y . Moreover, we
have dim(X × Y ) = dim(X) + dim(Y ).

An outline of the proof can be found in [GP10, Chapter 1, Section 1, p. 4–5],
but there are some steps — in particular the proof of the next Lemma — left
for the reader. As the map (2.1) will be important for us later, we give a proof
of this step.

Lemma 2.8. If φ : U → X is a local parametrization around x ∈ X and ψ : V →
Y is a local parametrization around y ∈ Y , then the map

φ× ψ : U × V → X × Y, (u, v) 7→ (φ(u), ψ(v)) (2.1)

is a local parametrization of X × Y around (x, y).

Proof. Notice that U × V ⊆ Rk × Rl ⊆ Rk+l is open. Let φ : U → X be a
local parametrization of X around x, that is, there exists a neighborhood Ox
of x in X such that φ : U → Ox is a diffeomorphism. Analogously, assume that
ψ : V → Oy is a diffeomorphism, where Oy is a neighborhood of y in Y . We
have that Ox ×Oy ⊆ X × Y is open.
First, the function

φ× ψ : U × V → Ox ×Oy, (u, v)→ (φ(u), ψ(v))

is smooth by Definition 2.2 because both of its components are assumed to be
smooth. Moreover, it is bijective because both its components are.
It is left to show that

(φ× ψ)−1 : Ox ×Oy → U × V

is smooth.
By assumption, φ−1 : Ox → U and ψ−1 : Oy → V are smooth. The sets Ox
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and Oy are open in X and Y respectively, but X and Y need not be open
in RN and RM respectively. Hence, Ox and Oy need not be open in RN and
RM respectively. The maps φ−1 and ψ−1 are smooth in the sense of Definition
2.3. That is, around each x̃ ∈ Ox and each ỹ ∈ Oy there exist neighborhoods
Θx̃ ⊆ RN and Θỹ ⊆ RM and smooth maps Φ: Θx̃ → U and Ψ: Θỹ → V such
that Φ = φ−1 on Θx̃ ∩Ox and Ψ = ψ−1 on Θỹ ∩Oy.
Then Θx̃×Θỹ is open in RN×RM and φ−1×ψ−1 equals the smooth map Φ×Ψ
on (Ox ∩Θx̃)× (Oy ∩Θỹ). Since this holds for each (x̃, ỹ) ∈ Ox ×Oy, the map
φ−1 × ψ−1 is smooth on the not necessarily open subset Ox ×Oy of RN ×RM .
We are done with the proof since (φ× ψ)−1 = φ−1 × ψ−1.

2.2 Derivative and Tangent Space

This section is based on [GP10, Chapter 1, Section 2–3]. We recall the definition
of the derivative of a smooth map defined on an open set in Euclidean space from
analysis. Then we use it to define the tangent space of a manifold at a certain
point. As we will see, tangent spaces will be the domains for the derivative of a
smooth map between manifolds.

Definition 2.9. For an open set U ⊆ Rn, let f : U → Rm be a smooth map
and let x ∈ U . The derivative of f in the direction of the vector h ∈ Rn at the
point x ∈ U is defined by

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

Recall that the derivative dfx : Rn → Rm is linear and satisfies the chain rule:

Theorem 2.10 (The Chain Rule on open subsets of Euclidean spaces). Assume
that U ⊆ Rn and V ⊆ Rm are open sets and let f : U → V and g : V → Rl be
smooth maps. Then for each x ∈ U ,

d(g ◦ f)x = dgf(x) ◦ dfx.

Lemma 2.11. If the smooth map f : U → Rm, defined on an open set U ⊆ Rn,
is linear, then f ≡ dfx for any x ∈ U .

Proof. Let x ∈ U be arbitrary. We use linearity of f in Definition 2.9 to get for
any h ∈ Rn:

dfx(h) = lim
t→0

f(x+ th)− f(x)

t
.

= lim
t→0

f(x) + t · f(h)− f(x)

t
.

= f(h),

which completes the proof.
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Let X ⊆ RN be a k-dimensional manifold. Suppose that φ : U → X, where
U ⊆ Rk is open, is a local parametrization around x such that φ(0) = x. The
best linear approximation to φ : U → X at 0 is the map

h : Rk → RN , u 7→ φ(0) + dφ0(u) = x+ dφ0(u).

Definition 2.12. Let X and φ be as above. The tangent space of X at x is
the vector subspace of RN defined by the image of dφ0, namely

Tx(X) := im(dφ0).

That the definition of the tangent space is independent of the choice of local
parametrization is shown in [GP10, Chapter 1, Section 2, p. 9–10]. This justifies
the article “the” in the definition above.
If X ⊆ Rk is an open set containing 0, then we can take the identity map
id : X → X as our local parametrization φ around 0. Using the fact that the
derivative of the identity map from the Euclidean space X ⊆ Rk to itself is the
identity map from Rk to itself, we get

T0(X) = im(dφ0) = Rk,

showing that for any open subset U ⊆ Rk containing 0, we have T0(U) = Rk.
We need this result for Definition 2.16 of the derivative of a smooth map between
manifolds.

A proof of the following Lemma can be found in [GP10, Chapter 1, Section 2,
p. 9–10].

Lemma 2.13. Let X ⊆ RN be a k-dimensional manifold. If Tx(X) is its
tangent space at some x ∈ X, then

dim(Tx(X)) = dim(X) = k.

Now we move on to show that the tangent space of a product manifold is the
product of the tangent spaces.

Lemma 2.14. Let X and Y be manifolds. For every x ∈ X and y ∈ Y we have

T(x,y)(X × Y ) = Tx(X)× Ty(Y ).

Proof. Suppose that φ : U → X and ψ : V → Y are local parametrizations
around x and y respectively such that φ(0) = x and ψ(0) = y. By Lemma 2.8,
the map φ×ψ defined by (2.1) is a local parametrization of X×Y around (x, y).
The best linear approximation to φ× ψ is given by

(u, v) 7→ (φ× ψ)(0, 0) + d(φ× ψ)(0,0)(u, v).

7



Assuming the identity d(φ × ψ)(0,0)(u, v) = (dφ0 × dψ0)(u, v) and applying
Definition 2.12, we get

T(x,y)(X × Y ) := im(d(φ× ψ)(0,0))

= im(dφ0 × dψ0)

= im(dφ0)× im(dψ0)

=: Tx(X)× Ty(Y ).

This concludes the proof.

Next, we show that the tangent space of RN is the vector space itself.

Lemma 2.15. Let V be a vector subspace of RN . Then Tx(V ) = V for any
x ∈ V .

Proof. Assume that V is a vector subspace of RN of dimension k. Consider the
basis {v1, v2, . . . , vk} of V . Now, we have that the map

φ : Rk → V, (a1, . . . , ak) 7→
k∑
i=1

aivi

is a linear diffeomorphism. Hence, Lemma 2.11 implies φ ≡ dφa for any a ∈ Rk,
in particular for a = 0. Therefore, Definition 2.12 of the tangent space tells us
that

Tx(V ) := im(dφ0) = im(φ) =: V

which is what we wanted to show.

Now we introduce the derivative of a smooth map between manifolds.

Definition 2.16. Let X and Y be manifolds of dimension k and l respectively.
Suppose f : X → Y is a smooth map. Let x ∈ X and define y := f(x). Assume
that φ : U → X and ψ : V → Y are local parametrizations of X about x and
Y about y respectively such that φ(0) = x and ψ(0) = y. Define the function
h := ψ−1 ◦ f ◦φ such that the following diagram commutes for U small enough:

X Y

U V

f

φ

h

ψ

The derivative of f at x is the linear map dfx : Tx(X)→ Ty(Y ) between tangent
spaces defined by

dfx := dψ0 ◦ dh0 ◦ dφ−1
0 ,

where dφ0 is the directional derivative according to Definition 2.9 of the map
φ : U → RN from an open subset in some Euclidean space to RN , where N ∈ N
is large enough such that X ⊆ RN . Analogously, dψ0 is the derivative of the
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map ψ : V → RM , where M ∈ N is chosen such that Y ⊆ RM . This leads to
the commuting diagram:

Tx(X) Ty(Y )

Rk Rl

dfx

dφ0

dh0

dψ0

One may check that dfx is independent of the choice of parametrizations φ and
ψ.
Local parametrizations enable us to construct smooth maps on open subsets
of Euclidean spaces from smooth maps between arbitrary manifolds. Hence,
they allow us to extend the chain rule on Euclidean spaces (Theorem 2.10) to
manifolds.

Theorem 2.17 (The Chain Rule). If X
f−→ Y

g−→ Z is a sequence of smooth
maps of manifolds, then

d(g ◦ f)x = dgf(x) ◦ dfx.

For a proof we refer the reader to [GP10, Chapter 1, Section 2, p. 10–11].

In the remainder of this section, we state and prove some further properties of
tangent spaces. We apply them to show that the derivatives of the inclusion
and the projection maps are identical to the inclusion and the projection maps
respectively, but on the corresponding tangent spaces.

Lemma 2.18. Assume that Z is an l-dimensional submanifold of X and let
z ∈ Z. Then there exists a local coordinate system {x1, . . . , xk} defined in a
neighborhood U of z in X such that U ∩X is defined by equations

xl+1 = 0, . . . , xk = 0.

The proof of Lemma 2.18 uses the local immersion theorem from [GP10, Chapter
1, Section 3, p. 15].

Lemma 2.19. If Y is a manifold and X ⊆ Y is a submanifold, then for any
x ∈ X we have Tx(X) ⊆ Tx(Y ).

Proof. Let x ∈ X be an arbitrary element of the submanifold X of Y ⊆ RM .
Suppose that the map ψ : V → Y is a local parametrization of Y around x
defined on an open subset V ⊆ Rl such that ψ(0) = x, that is, there exists a
neighborhood W ⊆ Y of x such that ψ : V →W is a diffeomorphism.
The set W ∩X is a neighborhood of x in X. Define the set

U := ψ−1(W ∩X) = {v ∈ V : ψ(v) ∈W ∩X}.

By Lemma 2.18, ψ can be chosen in such a way that only the first k components
of points in U are nonzero and the other components vanish. Hence, we may
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view U as a subset of Rk. Since ψ is continuous and W ∩X is open, U is also
open.
The map

φ := ψ|U : U →W ∩X
is a parametrization of X around x satisfying φ(0) = x.
By Definition 2.12 of the tangent space, we get

Tx(X) := im(dφ0) = im(d(ψ|U )0) ⊆ im(dψ0) =: Tx(Y )

showing the desired inclusion.

With Lemma 2.19 above we we are able to show that the derivative of the
inclusion map is the inclusion map and, in particular, that the derivative of the
identity is again the identity.

Lemma 2.20. Let Y ⊆ RN be a manifold and assume that X ⊆ Y is a sub-
manifold. Denote the inclusion map from X to Y by i : X → Y, x 7→ x. Then
for any x ∈ X, the derivative dix is the inclusion map from Tx(X) to Tx(Y ).
In particular, for any x ∈ X, the derivative of the identity map id : X → X
from a manifold to itself is the identity map d(id)x : Tx(X) → Tx(X) from the
corresponding tangent space to itself.

Proof. Choose an arbitrary x ∈ X and let ψ : V → Y and W be as in the proof
above such that U := ψ−1(W ∩X) can be viewed as a subset of Rk. The map
φ := ψ|U : U → X parametrizes X around x. Then

h := ψ−1 ◦ i ◦ ψ|U

is the inclusion map from U to V . Using the fact that the statement is true for
maps between Euclidean spaces, that is, dh0 is the inclusion from Rk to Rl, we
get that the derivative

dix := dψ0 ◦ dh0 ◦ d(ψ|U )−1
0

is the inclusion map from Tx(X) to Ty(Y ).

A consequence of Lemma 2.20 is that the derivative of the restriction of a smooth
map to a submanifold is the restriction of the derivative of this map to the
tangent space of the submanifold.

Lemma 2.21. Let f : X → Y be a smooth map and suppose that Z is a sub-
manifold of X. Then for any x ∈ Z we have d(f |Z)x = dfx|Tx(Z).

Proof. We may write the map f |Z as f |Z = f◦i, where i : Z → X is the inclusion
map. By Lemma 2.20, its derivative dix : Tx(Z) → Tx(X) at any x ∈ Z is the
inclusion map. Thus, we compute for any x ∈ Z

d(f |Z)x = d(f ◦ i)x = dfi(x) ◦ dix = dfx|Tx(Z),

which is the desired identity.
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The next statement shows that the tangent space of an arbitrary open subset
of a manifold at any point is the same as the tangent space of the manifold.

Lemma 2.22. If O is an open subset of the manifold X, then Tx(O) = Tx(X)
for any x ∈ O.

Proof. We claim that if X is a k-dimensional manifold in RN and O ⊆ X is an
open subset, then O is a k-dimensional submanifold of X.
Since any open subset O of a manifold X is a submanifold of X, Lemma 2.20
implies that Tx(O) ⊆ Tx(X), so proving that the dimensions of O and X coin-
cide will conclude the proof.
Let x ∈ O. Since O ⊆ X, x possesses a neighborhood V in X that is dif-
feomorphic to an open set U ⊆ Rk, where we denote the diffeomorphism by
φ : U → V . As O and V are neighborhoods of x, their intersection O ∩ V is
a neighborhood of x in O. Thus φ|P : P → O ∩ V parametrizes O ∩ V around
x, where P := φ−1(O) is open as it is the preimage of an open set under the
continuous function φ.
Thus for x ∈ O we found a local parametrization φ : P → O with P ⊆ Rk.

The next result will be of importance in the proof of the Borsuk–Ulam theorem.

Proposition 2.23. Let f : X × Y → X be the projection map (x, y) 7→ x.
Then its derivative df(x,y) : Tx(X)×Ty(Y )→ Tx(X) is the analogous projection
(u, v)→ u.

Proof. Let φ : U → X and ψ : V → Y with U ⊆ Rk and V ⊆ Rl be local
parametrizations of X around x ∈ X and Y around y ∈ Y respectively. Define
η := φ× ψ as in (2.1), then

X × Y X

U × V U

f

η

h

φ

commutes with h := φ−1 ◦ f ◦ η.
If we adapt the notation of Definition 2.16 to this setting, then we define

df(x,y) := dφ0 ◦ dh0 ◦ dη−1
0 : T(x,y)(X × Y )→ Tx(X)

such that the diagram

T(x,y)(X × Y ) Tx(X)

Rk × Rl Rk

df(x,y)

dη0

dh0

dφ0
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commutes.
Let (u, v) ∈ U × V be arbitrary. Then the definitions of η and f lead to

h(u, v) := φ−1(f(η(u, v)))

= φ−1(f(φ(u), ψ(v)))

= φ−1(φ(u))

= u.

Hence h : U ×V → U is the projection map in Euclidean space. Moreover, since
h is linear we have dh0 ≡ h by Lemma 2.11.
If we use Lemma 2.14, then the commutative diagram on the level of derivatives
becomes:

Tx(X)× Ty(Y ) Tx(X)

Rk × Rl Rk

df(x,y)

dη0

h

dφ0

Let (x0, y0) ∈ Tx(X) × Ty(Y ) be such that for some u0 ∈ Rk and v0 ∈ Rl we
have

dη0(u0, v0) = (x0, y0).

Then

df(x,y)(x0, y0) = (dφ0 ◦ h ◦ dη−1
0 )(x0, y0)

= (dφ0(h(u0, v0)))

= dφ0(u0)

= x0

which concludes the proof.

The following proposition will lead us down the path to the inverse function
theorem, which is applied in the proofs of several results in this thesis.

Proposition 2.24. If f : X → Y is a diffeomorphism between manifolds, then
dfx is an isomorphism of tangent spaces at each x ∈ X.

Proof. If f is a diffeomorphism between manifoldsX and Y , then the dimensions
of X and Y coincide, that is, k = l. Let x ∈ X and define y := f(x) ∈ Y . Using
Definition 2.16, we get the commutative diagram:

Tx(X) Ty(Y )

Rk Rk

dfx

dφ0

dh0

dψ0
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Since linearity of dfx := dψ0 ◦ dh0 ◦ dφ−1
0 follows from Definition 2.16, it is left

to show that dfx is bijective.
We proceed by constructing the inverse dfx: Since f is a diffeomorphism, its
inverse map f−1 : Y → X exists and is smooth. When we denote the identity
map by id and take an arbitrary x ∈ X,then we get for y = f(x)

dfx ◦ d(f−1)y = dff−1(y) ◦ d(f−1)y

= d(f ◦ f−1)y by Theorem 2.17

= d(id)y

= id by Lemma 2.20

and

d(f−1)y ◦ dfx = d(f−1)f(x) ◦ dfx
= d(f−1 ◦ f)x by Theorem 2.17

= d(id)x

= id by Lemma 2.20

showing that d(f−1)y is the right and left inverse of dfx.

The implication in the proposition above works only in a local sense in the
opposite direction. But this already suffices to obtain a valuable result. We
state it after introducing the local setting.

Definition 2.25. Assume that X and Y are manifolds of the same dimension
and let x ∈ X. A smooth map f : X → Y is called a local diffeomorphism at x
if there exists a neighborhood of x in X that is mapped diffeomorphically by f
onto a neighborhood of y := f(x) in Y .

The following version of the theorem is taken from [GP10, Chapter 1, Section
3, p. 13]

Theorem 2.26 (The Inverse Function Theorem). Let f : X → Y be a smooth
map between manifolds and let x ∈ X. If the derivative dfx at x is an isomorph-
ism, then f is a local diffeomorphism around x.

A proof of the theorem for Euclidean space can be found in [Spi65, Chapter
2, p. 35]. Using local parametrizations, one can translate the proof to smooth
maps between manifolds.

2.3 Homotopy

In this tiny section, we recall a fundamental concept from topology needed in
the next chapter.
In the following, we write I to denote the unit interval [0, 1] ⊆ R.
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Definition 2.27. Two smooth maps f0 : X → Y and f1 : X → Y are called
homotopic, abbreviated by f0 ∼ f1, if there exists a smooth map F : X×I → Y
such that F (x, 0) = f0(x) and F (x, 1) = f1(x). The map F is called a homotopy
between f0 and f1.

One can verify that homotopy is an equivalence relation. The equivalence class
of a mapping is called its homotopy class.

2.4 The Preimage Theorem

As we will see in the statement of the namesake theorem of this section, we would
like to consider values y in the target manifold Y of a smooth map f : X → Y
for which the derivative dfx at every x in the preimage of y under f is surjective.
In this section, we give these values a special name. But first we give a name
to points in the domain manifold for which the derivative is surjective. The
following definitions are taken from [GP10, Chapter 1, Section 4 and 7].

Definition 2.28. For a smooth map f : X → Y , a point x ∈ X is called regular
point of f if dfx : Tx(X)→ Ty(Y ) is surjective.

Instead of saying that x is a regular point of f one can say that f is regular at
x.

Definition 2.29. If x ∈ X is not a regular point of f : X → Y , then x is a
critical point of f .

Sometimes, we also want to put the function in the foreground:

Definition 2.30. A smooth map f : X → Y is a submersion at x ∈ X if
dfx : Tx(X)→ Tf(x)(Y ) is surjective. If f is a submersion at every x ∈ X, then
f is called submersion.

Note that f is a submersion at x if and only if x is a regular point of f .

The next definitions transfer this notion of “regularity” to the target manifold.

Definition 2.31. Let f : X → Y be a smooth map. We call y ∈ Y a regular
value for f if dfx : Tx(X)→ Ty(Y ) is surjective for every x ∈ f−1(y).

An arbitrary value y ∈ Y is a regular value of f if every x ∈ f−1(y) is a regular
point of f . We point out that if y ∈ Y is not contained in the image of f , that
is, f−1(y) = ∅, then y belongs to the set of regular values of f .

Definition 2.32. Any y ∈ Y that is not a regular value of f is called a critical
value.

If at least one x ∈ f−1(y) is a critical point of f , then y is a critical value of f .

While the second statement of the next proposition is a consequence of the
inverse function theorem (Theorem 2.26), the first and third implication follow
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directly from the definitions above. But since the third statement will play a
role in the proof of the Borsuk–Ulam theorem, we point it out.

Proposition 2.33. Assume that f : X → Y is a smooth map between manifolds
and let y ∈ Y be a regular value.

1. If dim(X) > dim(Y ), then f is a submersion at each x ∈ f−1(y).

2. If dim(X) = dim(Y ), then f is a local diffeomorphism at each x ∈ f−1(y).

3. If dim(X) < dim(Y ), then every point in f(X) is a critical value and the
regular values are those contained in Y \ f(X).

We will elaborate the second statement in the last section of this chapter, where
we state and prove the stack of records theorem.

The inverse function theorem is also needed to prove the next theorem from
[GP10, Chapter 1, Section 4, p. 20].

Theorem 2.34 (Local Submersion Theorem). Suppose that f : X → Y is a
submersion at x and define y := f(x). Then there exist local coordinates around
x and y such that

f(x1, . . . , xk) = (x1, . . . , xl).

Finally, we state the theorem which designates this section. This fundamental
prerequisite for the next chapter and already for the final section of this chapter
is taken from [GP10, Chapter 1, Section 4, p. 21]. On this page also a proof
using the local submersion theorem can be found.

Theorem 2.35 (The Preimage Theorem). Suppose that y is a regular value of
f : X → Y . Then its preimage f−1(y) is a submanifold of X of dimension

dim(f−1(y)) = dim(X)− dim(Y ).

We conclude this section by stating the following proposition from [GP10,
Chapter 1, Section 4, p. 24], which will be important for us in the beginning of
the next chapter.

Proposition 2.36. Let y be a regular value of the smooth map f : X → Y and
define Z := f−1(y), which is a submanifold by the preimage theorem. Then
the kernel of the derivative dfx : Tx(X) → Ty(Y ) at any x ∈ Z is precisely the
tangent space to Z, namely

ker(dfx) = Tx(Z).

2.5 Sard’s Theorem

In the previous section, we simply stated the preimage theorem, but we did not
discuss how useful it is when we consider an arbitrary element y in the codomain
of a smooth function f : X → Y . If there are only a few regular values, then
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we could not gain much from the theorem. However, we will see in this section
that this is not the case.
We first need some definitions, which are taken from [GP10, Chapter 1 section
7, p. 39].

Definition 2.37. A rectangular solid in Rl is a cartesian product of l intervals
in Rl and its volume is the product of the lengths of the intervals.

Definition 2.38. A set A ⊆ Rl has measure zero if it can be covered by
a countable number of rectangular solids with arbitrary small total volume,
that is, if for every ε > 0 there exists a countable collection {S1, S2, . . . } of
rectangular solids in Rl such that

A ⊆
⋃
i∈N

Si and
∑
i∈N

vol(Si) < ε.

Using local parametrizations, we are able to extend the definitions above to
manifolds.

Definition 2.39. Let Y be a manifold. A subset C ⊆ Y is said to have measure
zero if for every local parametrization ψ of Y , the preimage ψ−1(C) in Euclidean
space has measure zero.

It is important to notice that we only need to check that ψ−1(C) has measure
zero for some parametrizations and not all of them: If there exists a countable
collection of local parametrizations ψα such that

⋃
α ψα(ψ−1

α (C)) covers C ⊆ Y
and ψ−1

α (C) has measure zero for all α, then C has measure zero. Indeed, since⋃
α ψα(ψ−1

α (C)) is a cover of C, we may write C =
⋃
α ψα(ψ−1

α (C)). Let ψ be
an arbitrary parametrization (not necessarily one of the ψα). Then

ψ−1(C) = ψ−1

(⋃
α

ψα(ψ−1
α (C))

)
=
⋃
α

(ψ−1 ◦ ψα)(ψ−1
α (C)).

Since ψ−1
α (C) has mesure zero for each α, and ψ−1 ◦ ψα is a smooth map from

Rk to itself for some k ∈ N, C has measure zero. This follows from the fact
that if A ⊆ Rl has measure zero and g : Rl → Rl is smooth, then g(A) has
measure zero. A proof of this statement can be found in [GP10, Appendix 1, p.
204–205].

The next theorem, whose proof can be found in [GP10, Appendix 1, p. 205–207],
tells us that the Preimage Theorem (Theorem 2.35) cannot only be applied in
some edge cases but “nearly all the time”.

Theorem 2.40 (Sard’s Theorem for manifolds). The set of critical values of a
smooth map of manifolds has measure zero.

16



2.6 The Stack of Records Theorem

We conclude this chapter by proving the stack of records theorem from [GP10,
Chapter 1, Section 4, p. 26].

Theorem 2.41 (Stack of Records Theorem). Suppose that y is a regular value of
f : X → Y , where X is compact and has the same dimension as Y . Then f−1(y)
is a finite set {x1, . . . , xL} for some L ∈ N and there exists a neighborhood U
of y in Y such that f−1(U) is a disjoint union V1 ∪ · · · ∪ VL, where Vi is a
neighborhood of xi in X and f maps each Vi diffeomorphically onto U for any
i ∈ {1, . . . , L}.

Proof. First we show that f−1(y) is a finite set. Using results from topology,
we infer this from the following two assertions.

Claim 1. The set f−1(y) is compact.

Claim 2. The set f−1(y) is a 0-dimensional manifold.

Proof of Claim 1. We view RM as a metric space with the standard topology,
that is, a set is open in RM if it can be written as a union of open balls. Since
the manifold Y is a subspace of RM , it is metrizable, that is, there exists a
metric on Y which induces the standard topology on it. Thus the point set {y}
is a closed subset of Y . Since f is continuous, the preimage f−1({y}) is closed
in X. Now we use the fact that a closed subset of a compact space is compact
to conclude that f−1({y}) is compact.

Proof of Claim 2. Since y is a regular value of f , the preimage theorem (The-
orem 2.35) implies that f−1(y) is a submanifold of X. Moreover, f−1(y) is
0-dimensional as dim(X) = dim(Y ).

From topology we know that the single possible connected 0-dimensional man-
ifold is the point and disconnected 0-dimensional manifolds are discrete sets.
Hence, f−1(y) is discrete and compact. Therefore, it is a finite set, say

f−1(y) = {x1, . . . , xL}.

Now we prove the second part of the theorem. Since y is a regular value of f ,
the derivative dfxi is surjective for each i ∈ {1, . . . , L}. In particular, as the
dimensions of X and Y coincide, dfxi is an isomorphism.
By the inverse function theorem (Theorem 2.26), f is a local diffeomorphism
at xi for each i ∈ {1, . . . , L}, that is, for each i ∈ {1, . . . , L} there exists a
neighborhood Si of xi in X and a neighborhood Ti of f(xi) = y such that
f |Si : Si → Ti is a diffeomorphism. Since f−1(y) is finite, we may shrink the Si
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if needed such that we have Si ∩ Sj = ∅ for i 6= j ∈ {1, . . . , L}.
The set

Ũ :=

L⋂
i=1

Ti

is an open set containing y since it is a finite intersection of neighborhoods
of y. Now we restrict the Si such that their image under f is Ũ . For each
i ∈ {1, . . . , L} we define

Ṽi := Si ∩ f−1(Ũ).

Since the sets Si and U are open and f is continuous, these sets Ṽi are open.
Then each Ṽi is diffeomorphic to Ũ , where the diffeomorphism is given by

f |Ṽi : Ṽi → Ũ .

The union of the sets Ṽi is an open set and the set

X \
L⋃
i=1

Ṽi

is a closed subset of the compact manifold X, hence it is compact itself. Using
the fact that the image of a compact set under a continuous map is compact,
the set

f(X \
L⋃
i=1

Ṽi)

is compact, in particular closed. Moreover, it does not contain y. Indeed, if y
was contained in f(X \

⋃L
i=1 Ṽi), then there must be a preimage point of y that

lies in X \
⋃L
i=1 Ṽi. That is, there exists a preimage point of y for which we did

not remove an ambient neighborhood, a contradiction.
One may think that the Ṽi and U are the desired sets. But this is not the case
due to the following issue: We know that the preimage points of y are contained
in U , but if we take some ỹ ∈ Y \ {y}, then it might occur that some of its

preimages are contained in X \
⋃L
i=1 Ṽi.

We solve this problem as follows: Since f(X \
⋃L
i=1 Ṽi) is closed and does not

contain y, its complement Y \ f(X \
⋃L
i=1 Ṽi) is open and contains y. Now we

take an arbitrary neighborhood R ⊆ Y \ f(X \
⋃L
i=1 Ṽi) of y. Thus

R ∩ f(X \
L⋃
i=1

Ṽi) = ∅, (2.2)

which guarantees that no point in X \
⋃L
i=1 Ṽi gets mapped to R. We define

U := Ũ ∩R and Vi := Ṽi ∩ f−1(R),
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which are open sets since R is open and f is continuous. Then the map
f |Vi : Vi → U is a diffeomorphism for each i ∈ {1, . . . , L}. Moreover, we have

f−1(U) =

L⋃
i=1

(Vi ∩ f−1(R)).

On the one hand, we have f−1(U) = f−1(Ũ) ∩ f−1(R) and each Vi is a subset
of f−1(Ũ).
On the other hand, if x ∈ f−1(U), then (2.2) implies that

f−1(R) ∩ (X \
L⋃
i=1

Ṽi) = ∅.

Hence, x ∈
⋃L
i=1 Vi. This concludes the proof.
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Chapter 3

Transversality

In this chapter, we introduce the notion of transversality and state some of its
properties. Transversality is the key to extend the results about manifolds in
the first two sections to manifolds with boundary in the third section of this
chapter. Moreover, it will be a valuable tool in the proof of the Borsuk–Ulam
theorem. This chapter is based on [GP10, Chapter 1, Sections 5–7 and Chapter
2, Sections 1–5].

3.1 Definition and Properties

Definition 3.1. Let f : X → Y be a smooth map and let Z be a submanifold
of Y . The map f is transversal to Z, written f t Z, if and only if for every
x ∈ f−1(Z)

im(dfx) + Ty(Z) = Ty(Y ). (3.1)

If f is transversal to Z = {0}, then (3.1) becomes im(dfx) = Ty(Y ), which
means that f is a submersion at every x ∈ f−1(Z).
If f is a submersion, then dfx : Tx(X)→ Ty(Y ) is surjective for every x ∈ X. In
this case, (3.1) is satisfied for any submanifold Z of Y . This shows that for an
arbitrary function, being a submersion is more powerful than being transversal
to some submanifolds of the codomain of the function.

Lemma 3.2. If f : X → Y is a submersion, then f is transversal to any sub-
manifold Z of Y .

We now define what it means for two submanifolds to be transversal.

Definition 3.3. Let X and Z be submanifolds of Y . Then X and Z are said
to be transversal, written X t Z, if for every x ∈ X ∩ Z we have

Tx(X) + Tx(Z) = Tx(Y ). (3.2)
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Note that if X and Z are disjoint submanifolds of Y , then (3.2) is automatically
satisfied and X t Z. On the other hand, if X and Z are transversal and not
disjoint, then dim(X) + dim(Z) ≥ dim(Y ), as otherwise (3.2) would not hold.
This condition on the dimensions is the reason why two curves in R3 can never
intersect transversally, except when they do not intersect at all.

Before we formulate the theorem extending the preimage theorem (Theorem
2.35), we introduce the term “codimension” to write it in a more compact way.

Definition 3.4. The codimension of an arbitrary submanifold Z ⊆ X is defined
by

codimX(Z) := dim(X)− dim(Z).

Theorem 3.5. If the smooth map f : X → Y is transversal to a submani-
fold Z ⊆ Y , then the preimage f−1(Z) is a submanifold of X. Moreover, the
codimension of f−1(Z) in X equals the codimension of Z in Y , that is,

codimX(f−1(Z)) = codimY (Z).

If Z is just a single point, then the theorem becomes the preimage theorem
(Theorem 2.35). The proof we give below follows the one in [GP10, Chapter
1, Section 5, p. 27–28]. It uses independent functions, which are defined as
follows.

Definition 3.6. Let X be a k-dimensional manifold and let l ≤ k. The smooth
functions g1, . . . , gl : X → R are said to be independent at some x ∈ X if their
derivatives d(g1)x, . . . , d(gl)x : Tx(X)→ R are linearly independent on Tx(X).

If we define g := (g1, . . . , gl) : X → Rl, then dgx : Rk → Rl is an l × k matrix at
each x ∈ X. Since l ≥ k, dgx is surjective if and only if rank(dgx) = l, that is,
if g1, . . . , gl are independent at x.
Before we prove Theorem 3.5, we state the next lemma, which is a consequence
of Lemma 2.18.

Lemma 3.7. Let Z be a submanifold of X with codimension m and let z ∈ Z be
an arbitrary point. Then there exist m independent functions g1, . . . , gm : U →
R, where U is neighborhood of z in X, such that g := (g1, . . . , gm) vanishes
exactly on Z ∩ U .

For further properties of independent functions we refer the reader to [GP10,
Chapter 1, Section 4, p. 23–24].

Proof of Theorem 3.5. We use the observation that f−1(Z) is an r-dimensional
manifold if and only if each point x ∈ f−1(Z) has a neighborhood U in X such
that f−1(Z) ∩ U is an r-dimensional manifold.

Lemma 3.7 implies that we may write the submanifold Z of Y with codimension
m in a neighborhood U of each y ∈ Z in Y as the zero set of m independent
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functions
g1, . . . , gm : U → R,

where m = codimY (Z).
Define g := (g1, . . . , gm) : U → Rm. Then Z ∩ U = g−1(0). Take x ∈ X
such that f(x) = y. Then x ∈ f−1(Z). Moreover, we have f−1(Z ∩ U) =
f−1(Z) ∩ f−1(U). Since f−1(U) is a neighborhood of x in X, our goal is to
show that f−1(Z) ∩ f−1(U) is a manifold. Then we can apply the observation
from above to conclude the proof.
Notice that

f−1(Z) ∩ f−1(U) = f−1(Z ∩ U) = f−1(g−1(0)) = (g ◦ f)−1(0).

Thus the preimage theorem (Theorem 2.35) implies that f−1(Z) ∩ f−1(U) is a
manifold if 0 is a regular value of g ◦ f : X → Rm, that is, if

d(g ◦ f)x = dgy ◦ dfx : Tx(X)→ Tg(y)(Rm) = Rm

is surjective for every x ∈ (g ◦ f)−1(0).
Since g1, . . . , gm are independent at y, dgy : Ty(Y )→ Rm is surjective. Moreover,
since g|Z∩U ≡ 0 by assumption, dgy : Ty(U)→ Rm satisfies

dgy|Ty(Z) = dgy|Ty(Z∩U) by Lemma 2.22

= d(g|Z∩U )y by Lemma 2.21

= 0.

Hence, Ty(Z) ⊆ ker(dgy). We even have

Ty(Z) = ker(dgy) (3.3)

since the dimensions coincide:

dim(ker(dgy)) = dim(Y )− dim(im(dgy))

= dim(Y )− dim(Rm)

= dim(Y )−m
= dim(Z)

= dim(Ty(Z)).

Thus the composition dgy ◦ dfx is surjective at x precisely if the image of dfx
and Ty(Z) span Ty(Y ), namely

im(dfx) + Ty(Z) = Ty(Y ).

But this equation holds at each x ∈ f−1(Z) by our assumption that f is trans-
versal to Z.

To complete the proof we need to show the identity for the codimensions.
The preimage theorem (Theorem 2.35) for the regular value 0 of g ◦ f implies
that

dim((g ◦ f)−1(0)) = dim(X)− dim(Rm).
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Using the fact that the dimensions of f−1(Z) and f−1(Z ∩ U) coincide, we get

codimX(f−1(Z)) = dim(X)− dim(f−1(Z))

= dim(X)− dim(f−1(Z) ∩ f−1(U))

= dim(X)− dim((g ◦ f)−1(0))

= dim(X)− (dim(X)− dim(Rm))

= codimY (Z),

as m = codimY (Z). This concludes the proof.

From Theorem 3.5, one can derive the following theorem (taken from [GP10,
Chapter 1, Section 5, p. 30]).

Theorem 3.8. The intersection of two transversal submanifolds X and Z of Y
is a submanifold. Moreover,

codimY (X ∩ Z) = codimY (X) + codimY (Z). (3.4)

If we write (3.4) in terms of the dimension, then it still depends on dim(Y ).
Therefore, whether X and Z are transversal depends on the manifold Y they
are contained in. In particular, if X and Z are transversal for some ambient
manifold Y , then we can find a manifold W of larger dimension containing both
X and Z such that X and Z are not transversal as submanifolds of W .

The next propositions are exercises in [GP10, Chapter 1, Section 5, p. 32–33].
The first one is needed to prove the latter one, which will be applied twice in
the proof of the Borsuk–Ulam theorem.

Proposition 3.9. Let f : X → Y be a map transversal to a submanifold Z in
Y . Then for any x ∈ X, Tx(f−1(Z)) is the preimage of Tf(x)(Z) under the
linear map dfx : Tx(X)→ Tf(x)(Y ), that is,

Tx(f−1(Z)) = (dfx)−1(Tf(x)(Z)).

Proof. For any point y ∈ Z, where Z is a submanifold of Y with codimension
m, we can find U as well as g1, . . . , gm : U → R and g : U → Rm as in the proof
of the extension of the preimage theorem (Theorem 3.5). As we have seen in
the proof, the transversality assumption f t Z is equivalent to 0 being a regular
value of F := g ◦ f : X → Rm.
If we apply Proposition 2.36 to the regular value 0 and the smooth map F , then
for any x ∈ F−1(0) we get

ker(dFx) = Tx(F−1(0)).

Notice that F−1(0) = f−1(g−1(0)) = f−1(Z∩U), where Z∩U is a neighborhood
of y. For x ∈ F−1(0) with f(x) = y we have dFx = dgy ◦ dfx, which leads us to
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the expression

ker(dFx) = {v ∈ Tx(X) : dfx(v) ∈ ker(dgy)}
= {v ∈ Tx(X) : dfx(v) ∈ Ty(Z)} by (3.3)

= (dfx)−1(Ty(Z))

Thus we get

(dfx)−1(Ty(Z)) = ker(dFx)

= Tx(F−1(0))

= Tx(f−1(Z ∩ U))

= Tx(f−1(Z) ∩ f−1(U))

= Tx(f−1(Z)),

where the last step is Lemma 2.22 applied to the open subset f−1(Z)∩ f−1(U)
of f−1(U). This uses that f is continuous and U is open in Y .

Proposition 3.10. Let X
f−→ Y

g−→ Z be a sequence of smooth maps of mani-
folds. Suppose that g is transversal to a submanifold W of Z. Then f t g−1(W )
if and only if g ◦ f tW .

Proof. Since g is transversal to W , every y ∈ g−1(W ) satisfies

im(dgy) + Tg(y)(W ) = Tg(y)(Z). (3.5)

Suppose that f is transversal to g−1(W ). Then every x ∈ f−1(g−1(W )) satisfies

im(dfx) + Tf(x)(g
−1(W )) = Tf(x)(Y ). (3.6)

We want to show that for any such x we have

im(d(g ◦ f)x) + Tg(f(x))(W ) = Tg(f(x))(Z). (3.7)

Let x ∈ f−1(g−1(W )) be arbitrary. If we define y := f(x) ∈ g−1(W ) and
z := g(f(x)) ∈W , then our goal (3.7) becomes

im(dgy ◦ dfx) + Tz(W ) = Tz(Z). (3.8)

By (3.5) we know that for every v1 ∈ Tz(Z) we can find some v2 ∈ Ty(Y ) and
v3 ∈ Tz(W ) such that

v1 = dgy(v2) + v3.

Now (3.6) implies that we may write v2 as v2 = dfx(v4) +v5 for v4 ∈ Tx(X) and
v5 ∈ Ty(g−1(W )). Using linearity of the derivative dgy, we get

v1 = dgy(dfx(v4) + v5) + v3 = dgy(dfx(v4)) + dgy(v5) + v3. (3.9)
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By Theorem 3.5, g−1(W ) is a submanifold of Y . Since we may view the derivat-
ive of the restriction of g to g−1(W ) at y as a map dgy : Ty(g−1(W ))→ Tz(W ),
we have that dgy(v5) is an element of Tz(W ).
If we define

v6 := dgy(v5) + v3 ∈ Tz(W )

and insert it into (3.9), then v1 can be written as

v1 = dgy(dfx(v4)) + v6,

that is, v1 can be decomposed into a sum of an element in Tz(W ) and an element
in the image of Tx(X) under d(g ◦ f)x. Since v1 ∈ Tz(Z) was arbitrary, this
proves (3.8) and finishes the first direction of the proof.

Now assume that g ◦ f tW , that is, (3.8) holds for any x ∈ f−1(g−1(W )). Let
x ∈ f−1(g−1(W )) be such an element. Our goal is to prove (3.6), where we
define y := f(x) ∈ g−1(W ) and z := g(f(x)) ∈ W as before. Take an arbitrary
element w1 ∈ Ty(Y ). Then dgy(w1) ∈ Tz(Z) and by (3.8), this can be written
as

dgy(w1) = dgy(dfx(w2)) + w3

for some w2 ∈ Tx(X) and w3 ∈ Tz(W ). Linearity of dgy leads us to

dgy(w1 − dfx(w2)) = dgy(w1)− dgy(dfx(w2)) = w3 ∈ Tz(W ),

showing that w1 − dfx(w2) is contained in (dgy)−1(Tz(W )), which is equal to
Ty(g−1(W )) by Proposition 3.9.
If we define w4 := w1 − dfx(w2), then we may write w1 as

w1 = dfx(w2) + w4,

which is (3.6). This concludes the proof.

3.2 Extension to Manifolds with Boundary

The following section is based on [GP10, Chapter 2 Section 1]. Our goal is to
make our results applicable to more general spaces by allowing manifolds to have
a boundary. To do this we introduce the notion of a manifold with boundary
and show that our previous results for manifolds can be extended to manifolds
with boundary. For this extension, we use the notion of transversality.

Definition 3.11. We define the upper half-space in Rk by

Hk := {(x1, . . . , xk) ∈ Rk : xk ≥ 0}.

One can show that Hk is among other spaces like the closed unit ball not a
manifold. In order to treat these spaces, we need the following definition.
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Definition 3.12. A set X ⊆ RN is a k-dimensional manifold with boundary
if every point of X possesses a neighborhood that is diffeomorphic to an open
set in the space Hk. As in the definition of manifolds, such a diffeomorphism is
called a local parametrization of X.
The boundary of X is the set of points that are contained in the image of the
boundary of Hk under some local parametrization. The boundary is denoted
by ∂X.
The interior of X is its complement, namely

int(X) := X \ ∂X.

We want to point out that the boundary and the interior of a manifold X are
not the same as the topological boundary and interior of X viewed as a subset
of RN .
Note that the manifolds from Definition 2.5 are manifolds with boundary, where
the boundary is the empty set. Manifolds without boundary are called bound-
aryless.

As before, we want to obtain new manifolds with boundary by putting two of
them together via the Cartesian product. However, there are cases in which
the Cartesian product of two manifolds with boundary is not a manifold with
boundary. For example, the unit square [0, 1] × [0, 1] fails to be a manifold
with boundary because none of its corner points has a neighborhood that is
diffeomorphic to an open set in Hk. But the next proposition guarantees us a
possibility to generate new manifolds with boundary.

Proposition 3.13. The product of a boundaryless manifold X and a manifold
with boundary Y is a manifold with boundary. Moreover,

∂(X × Y ) = X × ∂Y

and
dim(X × Y ) = dim(X) + dim(Y ).

A proof of this statement can be found in [GP10, Chapter 2, Section 1, p. 58].
For a verification that we may extend the notions of tangent spaces and de-
rivatives to manifolds with boundary we refer the reader to [GP10, Chapter 2,
Section 1, p. 59].

Another application of the inverse function theorem (Theorem 2.26) is the proof
of the following result:

Proposition 3.14. Assume that X is a k-dimensional manifold with boundary.
Then int(X) is a k-dimensional boundaryless manifold and ∂X is a (k − 1)-
dimensional boundaryless manifold.

In particular, the proposition tells us that if x ∈ ∂X, then Tx(∂X) is a lin-
ear subspace of Tx(X) of codimension 1. We introduce the following function
and highlight a result concerning its derivative, which follows immediately from
Lemma 2.21.
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Definition 3.15. Let f : X → Y be a smooth map of manifolds. Then we
define ∂f := f |∂X : ∂X → Y .

Lemma 3.16. Let f : X → Y be a smooth map of manifolds. Then at any
point x ∈ ∂X, the derivative of ∂f is the restriction of dfx to the subspace
Tx(∂X) ⊆ Tx(X), namely

d(∂f)x = dfx|Tx(∂X).

As argued in [GP10, Chapter 2, Section 1, p. 60], a transversality assumption
along the boundary is required to extend Theorem 3.5 to manifolds with bound-
ary. This is realized by demanding the transversality condition on the function
f as well as additionally on the function ∂f .

Theorem 3.17. Suppose that f is a smooth map from a manifold with boundary
X to a boundaryless manifold Y . If both f : X → Y and ∂f : ∂X → Y are
transversal to a boundaryless submanifold Z in Y , then f−1(Z) is a manifold
with boundary, where the boundary is given by

∂(f−1(Z)) = f−1(Z) ∩ ∂X.

Moreover, as in Theorem 3.5, we have

codimX(f−1(Z)) = codimY (Z).

A proof of this theorem can be found in [GP10, Chapter 2, Section 1, p. 61–62].

We need the following generalized version of Sard’s Theorem, which is taken
from [GP10, Chapter 2, Section 1, p. 62]. Since it will play a crucial role in the
proof of the Borsuk–Ulam theorem, we prove it afterwards.

Theorem 3.18 (Sard’s Theorem). Let f : X → Y , where X is a manifold with
boundary and Y is a boundaryless manifold. Then almost every point of Y is a
regular value of both f : X → Y and ∂f : ∂X → Y .

Proof. We show that the set {crit. values of f or ∂f}, where we abbreviate
“critical” by “crit.”, has measure zero.
Lemma 3.16 implies that if d(∂f)x is surjective at some x ∈ ∂X (that is, d(∂f)x
is regular at x), then

dfx|Tx(∂X) : Tx(∂X)→ Ty(Y )

is surjective. Then also dfx is regular at x. Hence, if y ∈ Y is a critical value
of f , then there exists some x ∈ f−1(y) such that dfx is not surjective. Either
x ∈ ∂X, then y is a critical value of ∂f , or x ∈ int(X), in which case y is a
critical value of fint(X). Thus

{crit. values of f} ⊆ {crit. values of ∂f} ∪ {crit. values of fint(X)}. (3.10)
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Notice that we can replace {crit. values of f} by {crit. values of f or ∂f} and
the inclusion still holds.
Sard’s theorem for manifolds (Theorem 2.40) applied to both of the boundaryless
manifolds int(X) and ∂(X) tells us that both sets on the right hand side of (3.10)
have measure zero. Since the union of two sets of measure zero has measure
zero, {crit. values of f or ∂f} is contained in a set of measure zero. Therefore,
it has itself measure zero, which finishes the proof.

We conclude this section by stating the classification theorem of manifolds from
[GP10, Chapter 2, Section 2, p. 65] and a valuable corollary on the page after.

Theorem 3.19 (The Classification of one-dimensional Manifolds). Every com-
pact, connected, 1-dimensional manifold with boundary is diffeomorphic to [0, 1]
or S1. In particular, compact, connected, 1-dimensional manifolds without
boundary are diffeomorphic to S1.

For a proof of the theorem we refer the reader to [GP10, Appendix 2, p. 208–
211].

Corollary 3.20. The boundary of any compact 1-dimensional manifold with
boundary consists of an even number of points.

3.3 The Transversality Homotopy Theorem

This section contains a series of theorems that are prerequisites to prove the
transversality homotopy theorem. In the long run, this theorem leads us to the
notion of the mod 2 winding number, which is needed to even formulate our
version of Borsuk–Ulam theorem.

Let X, Y and S be manifolds, where Y and S are boundaryless and X is
supposed to have boundary. By Proposition 3.13, X × S is a manifold with
boundary, where the boundary is given by ∂(X × S) = ∂X × S. Suppose that
fs : X → Y with s ∈ S is a family of smooth maps. We consider the map

F : X × S → Y, F (x, s) := fs(x)

from the manifold with boundary X × S to the boundaryless manifold Y .

With this setting, we are able to state the transversality theorem. The version
below is taken from [GP10, Chapter 2, Section 3, p. 68].

Theorem 3.21 (The Transversality Theorem). In the setting above, assume
F : X×S → Y to be smooth. Let Z be a boundaryless submanifold of Y . If both
F and ∂F are transversal to Z, then for almost every s ∈ S, both fs and ∂fs
are transversal to Z.

The proof given in [GP10, Chapter 2 Section 3, p. 68–69] uses main results
from the previous section, namely Theorem 3.17 and Sard’s theorem (Theorem
3.18).
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The next proposition is a corollary of the ε-neighborhood theorem in [GP10,
Chapter 2 Section 3, p. 69–70].

Proposition 3.22. Let f : X → Y be a smooth map, where Y is a boundaryless
manifold. Then there exists an open ball S with 0 ∈ S in some Euclidean space
and a smooth map F : X × S → Y such that F (x, 0) = f(x), and for any fixed
x ∈ X the map S → Y, s 7→ F (x, s) is a submersion. In particular, both F and
∂F are submersions.

Consider an arbitrary smooth map f : X → Y , where Y is a boundaryless
manifold, and let Z be a boundaryless submanifold of Y . Proposition 3.22 tells
us that there exists a smooth map F : X×S → Y such that F (x, 0) = f(x) and
both F and ∂F are submersions. By Lemma 3.2, F and ∂F are transversal to
Z. Now we go the other way around and define the family of smooth maps

fs : X → Y, fs(x) := F (x, s)

with s ∈ S. We point out that

f0(x) := F (x, 0) = f(x).

Theorem 3.21 implies that for almost every s ∈ S, both fs and ∂fs are trans-
versal to Z. Each fs is homotopic to f , where the homotopy is given by

H : X × I → Y, (x, t) 7→ F (x, ts).

Therefore, we obtain the transversality homotopy theorem, which allows us to
introduce the mod 2 intersection number in the following section.

Theorem 3.23 (Transversality Homotopy Theorem). For any smooth map
f : X → Y and any boundaryless submanifold Z of the boundaryless manifold
Y , there exists a smooth map g : X → Y homotopic to f such that g t Z and
∂g t Z.

3.4 The Mod 2 Intersection Number

In the whole section we consider the following setting: We denote by X and Y
manifolds, where X is compact and not necessarily contained in Y . We assume
Z to be a closed submanifold of Y such that dim(X) + dim(Z) = dim(Y ).
Suppose that f : X → Y is a smooth map. If f is transversal to Z, then f−1(Z)
is a closed 0-dimensional submanifold of X by Theorem 3.5. Indeed,

dim(X)− dim(f−1(Z)) = codimX(f−1(Z))

= codimY (Z) by Theorem 3.5

= dim(Y )− dim(Z)

= dim(X)
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shows that dim(f−1(Z)) = 0. Moreover, since Z is closed and f is continuous,
f−1(Z) is compact because it is a closed subset of a compact set. Since 0-
dimensional manifolds are discrete sets, f−1(Z) is a finite set since it is compact.

Definition 3.24. Two submanifolds X and Z of Y have complementary di-
mension if dim(X) + dim(Z) = dim(Y ).

This allows us to give the following defintion.

Definition 3.25. For X,Y, Z and f as in the setting above, we define the mod
2 intersection number of f with Z by

I2(f, Z) := |f−1(Z)| mod 2.

Definition 3.26. We define the mod 2 intersection number of an arbitrary
smooth map g : X → Y , with Z as before, by

I2(g, Z) := I2(f, Z),

where f is homotopic to g and transversal to Z.

We are always able to find such a map f as above by the transversality homotopy
theorem (Theorem 3.23).

The next theorem tells us that if we find two smooth functions f0, f1 : X → Y
that are transversal to Z and homotopic to a given smooth map g, then we do
not get different values for I2(g, Z) depending on whether we choose f0 or f1.

Theorem 3.27. If f0, f1 : X → Y are homotopic smooth maps that are both
transversal to Z, where X, Y and Z are manifolds with the properties specified
in the beginning of this section, then I2(f0, Z) = I2(f1, Z).

We give an outline of the proof in [GP10, Chapter 2, Section 4, p. 78–79]:
We denote the homotopy of f0 and f1 by F : X × I → Y . By Proposition 3.13,
X × I is a manifold with boundary and the boundary is given by

∂(X × I) = X × {0} ∪X × {1}. (3.11)

Then ∂F t Z follows from (3.11), as ∂F ≡ f0 on X × {0} and ∂F ≡ f1 on
X × {1} and both are transversal to Z.
An extended version of the transversality homotopy theorem (Theorem 3.23)
which is called “Extension Theorem” in [GP10, Chapter 2, Section 3, p. 72] lets
us assume that F t Z.
By Theorem 3.17, F−1(Z) is a submanifold of X × I with boundary

∂(F−1(Z)) = F−1(Z) ∩ ∂(X × I) = f−1
0 (Z)× {0} ∪ f−1

1 (Z)× {1} (3.12)
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of dimension 1 because

dim(X) + 1 = dim(X) + dim(I)

= dim(X × I) by Proposition 3.13

= codimX×I(F
−1(Z)) + dim(F−1(Z))

= codimY (Z) + dim(F−1(Z)) by Theorem 3.17

= dim(Y )− dim(Z) + dim(F−1(Z))

= dim(X) + dim(F−1(Z)). (3.13)

Then the corollary to the classification of 1-manifolds (Corollary 3.20) implies
that ∂(F−1(Z)) consists of an even number of points. Then (3.12) gives the
desired result.

Since homotopy is an equivalence relation, we get:

Corollary 3.28. If g0, g1 : X → Y are arbitrary homotopic maps, then we have
I2(g0, Z) = I2(g1, Z).

We need the next theorem from [GP10, Chapter 1, Section 4, p. 80] for the
proof of final theorem of this chapter.

Theorem 3.29 (Boundary Theorem). Suppose that X is the boundary of some
compact submanifold W of Y and g : X → Y is a smooth map. If g may be
extended to all of W , then I2(g, Z) = 0 for any closed submanifold Z of Y of
complementary dimension with respect to X, that is, Z satiesfies the identity
dim(X) + dim(Z) = dim(Y ).

The proof that can be found on the same page as the theorem proceeds by
applying the transversality homotopy theorem (Theorem 3.23) to the extension
G : W → Y . For an arbitrary closed submanifold Z of Y this theorem provides
a smooth map F : W → Y homotopic to G such that both F and f := ∂F are
transversal to Z. Since g = ∂G, f is homotopic to g. By Definition 3.26 of the
mod 2 intersetion number for an arbitrary smooth map, we have

I2(g, Z) = I2(f, Z) = |f−1(Z)| mod 2.

By Proposition 3.14, dim(W ) = dim(X) + 1 and Theorem 3.17 implies that
F−1(Z) is a manifold with boundary of dimension 1 since

dim(X) = dim(Y )− dim(Z)

= codimY (Z)

= codimW (F−1(Z))

= dim(W )− dim(F−1(Z))

= dim(X) + 1− dim(F−1(Z)).

Moreover, F−1(Z) is compact because Z is closed. But then |f−1(Z)| =
|(∂F )−1(Z)| is an even number by Corollary 3.20. Thus the boundary theorem
follows.
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The following theorem shows that the next object we will introduce is well-
defined. Hence, we include a proof of it, where both the theorem and its proof
are taken from [GP10, Chapter 2, Section 4, p. 80–81].

Theorem 3.30. If f : X → Y is a smooth map of a compact manifold X into
a connected manifold Y and dim(X) = dim(Y ), then I2(f, {y}) is the same for
all y ∈ Y .

Proof. Let f : X → Y be a smooth map between manifolds with the properties
from the statement. Take an arbitrary y ∈ Y and consider it as a submanifold
{y} of Y . If f is not transversal to {y}, then, by the transversality homotopy
theorem (Theorem 3.23), we can replace it by a map that is homotopic to f and
transversal to {y}.
The stack of records theorem (Theorem 2.41) tells us that there exists a neigh-
borhood U of y such that its preimage f−1(U) can be decomposed into a disjoint
union

f−1(U) = V1 ∪ · · · ∪ Vn,

where Vi is an open subset of X and f |Vi : Vi → U is a diffeomorphism for each
i ∈ {1, . . . , n}. Thus each z ∈ U has n preimages and satisfies

I2(f, {z}) = n mod 2.

Therefore, the function

h : Y → N, y 7→ I2(f, {y})

is locally constant. But since Y is connected, h must be globally constant.

The next tool is needed to define the mod 2 winding number in the following
section.

Definition 3.31. Let X and Y be manifolds such that X is compact, Y is
connected and their dimensions coincide, that is, dim(X) = dim(Y ). We define
the mod 2 degree of a smooth map f : X → Y by

deg2(f) := I2(f, {y}),

where it does not matter which y ∈ Y we take due to the theorem above.

We determine the mod 2 degree of a smooth map f as above by taking an
arbitrary regular value y of f and counting its preimage points, namely,

deg2(f) = |f−1(y)| mod 2. (3.14)

Since the mod 2 degree is a mod 2 intersection number, we may apply Corollary
3.28 to get the following result:

Theorem 3.32. Homotopic maps have the same mod 2 degree.
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3.5 The Mod 2 Winding Number

Assume that X is a compact, connected (n − 1)-dimensional manifold and let
f : X → Rn be a smooth map. Let z ∈ Rn be not contained in the image of f .
To study how f wraps X around in Rn we count how often the unit vector that
points from z in the direction of f(x), namely the vector

u(x) :=
f(x)− z
‖f(x)− z‖

,

points in a given direction. This leads us to the final definition we need for the
Borsuk–Ulam theorem.

Definition 3.33. Let the map f be as above. The mod 2 winding number of
f around z is

W2(f, z) := deg2(u).

The next theorem is an exercise from [GP10, Chapter 2, Section 5, p. 87]. We
need it for the proof of the Borsuk–Ulam theorem.

Theorem 3.34. Let X and f be as above. Suppose that there exists a compact
manifold D with boundary X, and let F : D → Rn be a smooth map extending
f , that is, ∂F = f . Suppose that z is a regular value of F that does not belong to
the image of f . Then F−1(z) is a finite set and W2(f, z) = |{F−1(z)}| mod 2.
That is, f winds X around z as often as F hits z, modulo 2.

An instruction for the proof can be found in the book.
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Chapter 4

The Borsuk–Ulam Theorem

In this chapter, we introduce and prove the following version of the theorem
from [GP10, Chapter 2, Section 6, p. 91]. It will be a tool to deduce a more
functional version at the end of this chapter.

Theorem 4.1. Let f : Sk → Rk+1 be a smooth map whose image does not
contain the origin. If f is an odd function in the sense that for all x ∈ Sk we
have

f(−x) = −f(x), (4.1)

then W2(f, 0) = 1.

The proof given in this chapter follows the inductive proof in [GP10, Chapter
2, Section 6, p. 91–92]. The authors leave parts of the proof as an exercise for
the reader. We fill in more details, for example as in the next section.

4.1 Prerequisites

The following lemmas are prerequisites for the base case and the inductive step
respectively of the proof.

Lemma 4.2. Let f : S1 → S1 be a smooth map. Then there exists a smooth map
g : R → R satisfying f(cos t, sin t) = (cos g(t), sin g(t)) and g(2π) = g(0) + 2πq
for some integer q. Moreover, deg2(f) = q mod 2.

Proof. Let f : S1 → S1 be a smooth map. The map p : R → S1 given by
p(t) := (cos t, sin t) is a local diffeomorphism winding the real line around the
circle. In particular, p is surjective.
In the first step, we find a smooth map g : [0, 2π] → R such that p ◦ g = f ◦ p
and g(2π) = g(0) + 2πq. Then, in the second step, we will show that g can be
extended to the entire real line by requiring g(t+ 2π) = g(t) + 2πq for all t ∈ R.
In the last step, we will compute the mod 2 degree of f .

34



Step 1: As p is locally bijective, we would like to set

g := p−1 ◦ f ◦ p. (4.2)

We now show the following two claims.

Claim 1. For every t ∈ [0, 2π] there exists a connected neighborhood Ut of t
such that on Ut we can define g by (4.2).

Claim 2. The map g can be defined by (4.2) on the interval [0, 2π].

Proof of Claim 1. Let t ∈ [0, 2π] be arbitrary. The map f ◦ p : R → S1 is
smooth since it is the composition of the smooth maps f and p. Let Vt be a
neighborhood of f(p(t)) that is not the full circle. Then p is invertible on Vt and
continuity of f ◦ p implies that we can choose Ut ⊆ (f ◦ p)−1(Vt) as a connected
neighborhood of t in R. Then we can define g|Ut := p−1 ◦ f ◦ p|Ut .

Proof of Claim 2. We define the set

X := {t ∈ [0, 2π] : g can be defined by (4.2) on [0, t]}.

• Firstly, X is nonempty: Since p is surjective, we can find a preimage of
the point f(p(0)) under p. Then we may define g(0) := p−1(f(p(0))) and
thus 0 ∈ X.

• Secondly, X is open: Assume that we can define g by (4.2) on [0, t]. Then
we apply Claim 1 to define g on a neighborhood of t. One can verify
that the two definitions of g, namely the one for [0, t] and the one for Ut,
coincide on [0, t]∩Ut after possibly shifting g by a multiple of 2π. Hence,
g can be defined by (4.2) on [0, t] ∪ Ut.

• Thirdly, X is closed because [0, 2π] \X is open: If t /∈ X, then, again by
Claim 1, no point of Ut can be in X because otherwise we could extend
X similar as above such that it would contain t.

Since X is nonempty, open, closed and connected, X must be the whole interval
[0, 2π].

The map g : [0, 2π] → R defined by (4.2) is smooth since it is a composition of
smooth maps.
To complete this step we apply the definitions of p and f as well as periodicity
of sine and cosine to get

(cos(g(0 + 2π)), sin(g(0 + 2π))) = p(g(0 + 2π))

= f(p(0 + 2π))

= f(cos(0 + 2π), sin(0 + 2π))

= f(cos(0), sin(0))

= (cos(g(0)), sin(g(0))) (4.3)
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Using properties of sine and cosine, one can verify that (4.3) implies that

g(2π) = g(0) + 2πq (4.4)

for some q ∈ Z.

Step 2: We extend the smooth map g : [0, 2π] → R from the first step to the
interval [0, 4π] by defining

g̃ : [0, 4π]→ R, g̃(t) =

{
g(t) if t ∈ [0, 2π]

g(t− 2π) + 2πq if t ∈ [2π, 4π].

Since g(2π − 2π) + 2πq = g(0) + 2πq = g(2π) by (4.4), g̃ is well-defined and
continuous. Moreover, for t ∈ [0, 2π], g̃ satisfies

g̃(t+ 2π) = g(t+ 2π − 2π) + 2πq = g(t) + 2πq = g̃(t) + 2πq.

We need to show that g̃ is even smooth. If we replace the interval [0, 2π] by
[π, 3π] in the first step, then we obtain a smooth function h : [π, 3π] → R such
that p ◦ h = f ◦ p and h(3π) = h(π) + 2πr for some r ∈ Z. For each t ∈ [π, 3π]
we have

p(h(t)) = f(p(t)) = p(g̃(t)

or, equivalently,

(cos(h(t)), sin(h(t))) = (cos(g̃(t)), sin(g̃(t))).

This implies that g̃(t) − h(t) = 2π · k(t), where k : [π, 3π] → Z is a continuous
function since g̃ and h are continuous. Thus k is constant and we may write
g̃(t) = h(t) − 2πk, which shows that g̃ is smooth in a neighborhood of 2π.
Therefore, g̃ is smooth and an extension of g. This procedure allows us to
extend g to the whole real line, as desired.

Step 3: Sard’s theorem (Theorem 3.18) implies the existence of some v ∈ S1

such that f(v) is a regular value for f . By surjectivity of p, there exists some
t ∈ R such that p(t) = v. Then f(v) = f(p(t)) = p(g(t)).
Since S1 is connected, the mod 2 degree of f is well-defined. We apply (3.14)
to the regular value f(v) to compute it:

deg2(f) = |f−1(f(v))| mod 2

= |f−1(p(g(t)))}| mod 2

= |{x ∈ S1 : f(x) = p(g(t))}| mod 2 (4.5)

Since p : [t, 2π+ t]→ S1 is bijective, we are able to further transform the above
such that the following equation holds modulo 2:

|{x ∈ S1|f(x) = p(g(t))}| ≡ |{y ∈ [t, 2π + t) : f(p(y)) = p(g(t))}|
≡ |{y ∈ [t, 2π + t) : p(g(y)) = p(g(t))}|
≡ |{y ∈ [t, 2π + t) : ∃k ∈ Z≥0 : g(y) = g(t) + 2πk}|,
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where the last equality follows from the definition of p.
If we define

Nk := |{y ∈ [t, 2π + t) : g(y) = g(t) + 2πk}|,

then we get

deg2(f) ≡ |{y ∈ [t, 2π + t) : ∃k ∈ Z≥0 : g(y) = g(t) + 2πk}|

≡
∞∑
k=0

|{y ∈ [t, 2π + t) : g(y) = g(t) + 2πk}|

≡
∞∑
k=0

Nk. (4.6)

Since g is continuous and

lim
y→t+2π

g(y) = g(t) + 2πq

the intermediate value theorem implies that any value in [g(t), g(t) + 2πq) must
be achieved by g. Thus for every k ∈ {0, 1, . . . , q−1}, we haveNk ≥ 1. Moreover,
the number Nk must be odd for every k ∈ {0, 1, . . . , q−1} because there cannot
be any contact points between g and the horizontal lines through the points of

{g(t) + 2πk : k ∈ N ∪ {0}}. (4.7)

Indeed, since f(v) = p(g(t)) is a regular value, for any x ∈ f−1(p(g(t))) the
derivative

dfx : Tx(S1)→ Tp(g(t))(S
1)

must be surjective. In particular, dfx is an isomorphism because

dim(Tx(S1)) = 1 = dim(Tf(x)(S
1)).

Thus dfx never vanishes, but this is a necessary condition for obtaining a contact
point.
For k ≥ q we have that Nk is an even number. Indeed, there are again no contact
points with the horizontal lines through the points (4.7) and that intersection
points of g and an arbitrary line with k ≥ q come in pairs follows from applying
the intermediate value theorem twice: once when increasing from a value below
such a line to a value above the chosen line, and again when decreasing from
the above value to a value below the line. Hence, by splitting the infinite sum
from (4.6) we obtain modulo 2

deg2(f) ≡
q−1∑
k=0

Nk +

∞∑
k=q

Nk ≡
q−1∑
k=0

Nk ≡
q−1∑
k=0

1 = q

which is the desired result.
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Lemma 4.3. If a is regular value for a smooth map h satisfying the symmetry
condition (4.1), then −a is also a regular value for h.

Proof. If a is a regular value for h, then for every x ∈ h−1(a), we have that dhx
is surjective. Let x ∈ h−1(−a). Then h(x) = −a and (4.1) implies

h(−x) = −h(x) = a,

that is, −x ∈ h−1(a). Since

dhx(v) = lim
t→0

h(x+ tv)− h(x)

t

= lim
t→0

−h(−x− tv) + h(−x)

t

= − lim
t→0

h(−x− tv)− h(−x)

t

= −dh−x(−v)

and −Rk := {−x : x ∈ Rk} = {x ∈ Rk} = Rk, we get that dh−x is surjective.
Since x ∈ h−1(−a) was arbitrary, the statement follows.

Lemma 4.4. The function

h : Rk+1 \ {0} → Sk, x 7→ x

‖x‖

is a submersion.

Proof. Lemma 2.21 implies that the derivative of the restriction of h to any
submanifold M of Rk+1 \ {0} is

d(h|M )x = dhx|Tx(M) : Tx(M)→ Th(x)(S
k).

This implies that if d(h|M )x is surjective for some x ∈M , then dhx is surjective
as well. In other words, if h|M is a submersion at x, then h is a submersion at
x.
If we consider M = Sk, then h|M is the identity map. This is a submersion at
every x ∈ M since its derivative is the identity map by Lemma 2.20, which is
surjective.
Now we take Mλ := {x ∈ Rk+1 : ‖x‖ = λ} \ {0} to be the sphere of radius
λ > 0 around the origin. Then h|M is equal to id

λ , which is again a submersion
at every x ∈Mλ.
Since λ > 0 was arbitrary and

⋃
λMλ = Rk+1\{0}, we get that h is a submersion

at every x ∈ Rk+1 \ {0}. Therefore, h is a submersion.
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4.2 Proof of the Theorem

Now we have all the tools we need to prove the Borsuk–Ulam theorem.

Theorem 4.1. Let f : Sk → Rk+1 be a smooth map whose image does not
contain the origin. If f is an odd function in the sense that for all x ∈ Sk we
have

f(−x) = −f(x), (4.1)

then W2(f, 0) = 1.

Proof of Theorem 4.1. We prove the theorem by induction on the dimension k
starting with the base case k = 1. Take a smooth map f : S1 → S1 satisfying
(4.1). Since we may write x ∈ S1 as x = (cos(t), sin(t)) for some t ∈ R, (4.1)
translates to

− f(cos(t), sin(t)) = f(− cos(t),− sin(t)) (4.8)

Applying Lemma 4.2 twice as well as the identities − cos(t) = cos(t + π) and
− sin(t) = sin(t+ π), we get

− f(cos(t), sin(t)) = (− cos(g(t)),− sin(g(t))) (4.9)

and

f(− cos(t),− sin(t)) = f(cos(t+ π), sin(t+ π))

= (cos(g(t+ π)), sin(g(t+ π))). (4.10)

Combining the equations above and using the identities again leads to

(cos(g(t+ π)), sin(g(t+ π))) = (− cos(g(t)),− sin(g(t)))

= (cos(g(t) + π), sin(g(t) + π)). (4.11)

Once again (4.11) implies that

g(t) = g(t+ π) + 2πk − π = g(t+ π) + π(2k − 1).

Define the odd number n := −(2k − 1). Then g(t) = g(t+ π)− πn or

g(t+ π) = g(t) + πn. (4.12)

According to Lemma 4.2, g satisfies g(2π) = g(0) + 2πq for some q ∈ Z. If we
apply (4.12) twice with t = 0 and t = π, then

g(0) + 2πq = g(2π)

= g(π + π)

= g(π) + πn

= g(0) + 2πn

and hence q = n is an odd number. Now Lemma 4.2 implies that deg2(f) = 1.
This shows the base case.
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For the inductive step, suppose that the theorem is true for k − 1 and let
f : Sk → Rk+1 \ {0} satisfy the properties from the statement. We prove the
theorem holds true for the dimension k in four steps after outlining the idea of
the proof.
The idea of the proof: We compute W2(f, 0) by counting how often f inter-
sects a line ` in Rk+1. Thereby we choose a line ` that does not intersect the
image of the equator, where we view Sk−1 to be the equator of Sk under the
embedding (x1, . . . , xk) 7→ (x1, . . . , xk, 0), that is,

Sk−1 := {(x1, x2, . . . , xk+1) ∈ Sk : xk+1 = 0}.

Choosing ` disjoint from the image of Sk−1 under f allows us to employ the
inductive hypothesis to show that the equator winds around ` an odd number
of times.
Define the smooth map

g := f |Sk−1 : Sk−1 → Rk+1 \ {0}, x 7→ f(x)

to be the restriction of f to the equator. Notice that g satisfies (4.1). In the
third step, we modify g to apply the inductive hypothesis to it.

Step 1: First, we use f and g to define maps that are symmetric around the
origin. With this maps and Sard’s theorem we are able to find a line ` that is
indeed never touched by g and that satisfies f t `.

Define the maps

g

‖g‖
: Sk−1 → Sk and

f

‖f‖
: Sk → Sk.

Both maps inherit the symmetry property (4.1) from f and g respectively. In-

deed, if we have f(x)
‖f(x)‖ = a for some x ∈ Sk, then

−a =
−f(x)

‖f(x)‖
=

f(−x)

‖−f(−x)‖
=

f(−x)

‖f(−x)‖

and analogously for g
‖g‖ .

By Sard’s theorem (Theorem 3.18), there exists a unit vector a ∈ Sk that is
a regular value for both maps g

‖g‖ and f
‖f‖ . Lemma 4.3 implies that −a is a

regular value for g
‖g‖ and f

‖f‖ too.

Define the line
` := R · a.

The fact that a and −a are regular values for g
‖g‖ implies that the line ` never

hits the image of g. This follows from the third implication of Proposition 2.33.
Indeed, since

dim(Sk−1) = k − 1 < k = dim(Sk),
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every point in g
‖g‖ (S

k) is a critical value and the regular values are the values

not hit by g
‖g‖ . Thus a and −a are not in the image of g

‖g‖ , which shows that g

does not intersect the line `. We need this fact in the next step.
The following claim concludes the first step of the proof.

Claim 1. The values a and −a are regular values of the function f
‖f‖ if and only

if f t `.

Proof of Claim 1. Consider the sequence

Sk
f−→ Rk+1 \ {0} h−→ Sk,

where
h : Rk+1 \ {0} → Sk, x 7→ x

‖x‖
denotes the division by the Euclidean norm. Let W := {−a, a}, then W is a
submanifold of Sk and

` \ {0} = h−1({−a, a}) = h−1(W ).

Lemma 4.4 states that h is a submersion. Then Lemma 3.2 implies that h is
transversal to any submanifold of Sk. In particular, h is transversal to W .
Assume now that a and −a are regular values of f

‖f‖ = h ◦ f , that is, for any

x ∈ f−1(h−1({a,−a})) we have

im(d(h ◦ f)x) = Th(f(x))(S
k). (4.13)

This immediately implies h ◦ f t W . Since h t W and h ◦ f t W , Proposition
3.10 implies that f t h−1(W ), where h−1(W ) = ` \ {0}. Since 0 is not in the
image of f , we get f t `.
For the other direction, suppose that f is transversal to `. Since ` \ {0} is
a submanifold of `, we also have f t ` \ {0}. By Proposition 3.10 we have
h ◦ f tW , that is, for any x ∈ f−1(h−1(W ))

im(d(h ◦ f)x) + Th(f(x))(W ) = Th(f(x))(S
k).

But since W is only a finite set of points, it has dimension 0. As its tangent
space Th(f(x))(W ) is a vector space of the same dimension, it vanishes. Thus
the equation above becomes (4.13), that is, a and −a are regular values of h◦f .
This concludes the proof of the claim.

The fact that f is transversal to ` is an essential ingredient in the final step.

Step 2: We express the winding number in a different way by using the sym-
metry condition (4.1) for f

‖f‖ and restricting f to the upper hemisphere.
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If we put z = 0 into Definition 3.33, we obtain a connection between the mod 2
winding number of f and the map f

‖f‖ , namely

W2(f, 0) = deg2

(
f

‖f‖

)
=

∣∣∣∣∣
(

f

‖f‖

)−1

(a)

∣∣∣∣∣ mod 2. (4.14)

The symmetry condition (4.1) for f
‖f‖ implies that antipodal points have the

same number of preimages under f
‖f‖ , that is,∣∣∣∣∣

(
f

‖f‖

)−1

(a)

∣∣∣∣∣ =

∣∣∣∣∣
(

f

‖f‖

)−1

(−a)

∣∣∣∣∣ (4.15)

The assumption that the origin is not contained in the image of f implies that

f−1(`) = f−1(` \ {0}). (4.16)

The next claim allows us to further improve our expression for the winding
number.

Claim 2. We have f(x) ∈ R<0 · a if and only if f
‖f‖ (x) = −a. Similarly,

f(x) ∈ R>0 · a if and only if f
‖f‖ (x) = a.

Proof of Claim 2. Assume that f(x) = −λa for some λ ∈ R>0. Then

‖f(x)‖ = ‖−λa‖ = λ ‖a‖ = λ

and

−a = −λ
λ
a =

−λa
‖f(x)‖

=
f(x)

‖f(x)‖
=

f

‖f‖
(x).

For the other direction, suppose that f
‖f‖ (x) = −a. Then f(x) = −‖f(x)‖ a,

thus f(x) ∈ R<0 · a.
The proof of the second statement can be obtained by deleting the minus signs
above.

In particular, Claim 2 implies that∣∣∣∣∣
(

f

‖f‖

)−1

(−a)

∣∣∣∣∣ = |f−1(R<0 · a)| and

∣∣∣∣∣
(

f

‖f‖

)−1

(a)

∣∣∣∣∣ = |f−1(R>0 · a)|.
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Applying this, (4.15) and (4.16), we get

|f−1(`)| = |f−1(` \ {0})|
= |f−1(R<0 · a) ∪ f−1(R>0 · a)|
= |f−1(R<0 · a)|+ |f−1(R>0 · a)|

=

∣∣∣∣∣
(

f

‖f‖

)−1

(−a)

∣∣∣∣∣+

∣∣∣∣∣
(

f

‖f‖

)−1

(a)

∣∣∣∣∣
= 2

∣∣∣∣∣
(

f

‖f‖

)−1

(a)

∣∣∣∣∣ , (4.17)

where from the second to the third line we used the fact that preimages of
disjoint sets, namely R<0 · a and R<0 · a, are disjoint.
The symmetry condition (4.1) tells us how f behaves on the lower hemisphere
Sk− = {x ∈ Sk : xk+1 ≤ 0} given that we know its behaviour on the upper
hemisphere Sk+ = {x ∈ Sk : xk+1 ≥ 0}. Thus it suffices to investigate f on the
upper hemisphere. Both hemispheres Sk+ and Sk− are manifolds with boundary
and the boundary is in both cases given by the equator Sk−1. Notice that their
intersection Sk+ ∩ Sk− = Sk−1 is exactly the equator.
Let

f+ := f |Sk+ : Sk+ → Rk+1 \ {0} and f− := f |Sk− : Sk− → Rk+1 \ {0}

be the restrictions of f to the upper and to the lower hemisphere respectively.
No point of the equator Sk−1 gets mapped to ` by f since g does not intersect `.
Hence no point of f−1(`) can simultaneously be contained in Sk+ and Sk−, that
is,

f−1
+ (`) ∩ f−1

− (`) = ∅. (4.18)

Using the symmetry condition (4.1) once again leads us to

|f−1
+ (`)| = |f−1

− (`)|. (4.19)

Indeed, if there exists x ∈ ` such that f+(v) = x for some v ∈ Sk+, then −v ∈ Sk−
and (4.1) implies

−x = −f+(v) := −f(v) = f(−v) =: f−(−v).

Thus if for a point x ∈ ` we can find a preimage in the upper hemisphere, then
its antipodal point −x, which is also in `, is hit by the antipode of the preimage
of a point in the lower hemisphere. As this argumentation works in the other
direction too, the cardinality of preimage points under f+ and f− must be equal.
Recall that 0 ∈ ` has no preimages under f . We get

|f−1(`)| = |f−1
− (`) ∪ f−1

+ (`)|
= |f−1

− (`)|+ |f−1
+ (`)| by (4.18)

= 2|f−1
+ (`)| by (4.19) (4.20)
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If we combine (4.17) and (4.20) with (4.14), then we get

W2(f, 0) = |{f−1
+ (`)}| mod 2. (4.21)

Step 3: We modify g by composing it with a projection map π such that we
may apply the inductive hypothesis for the composition π ◦ g.

We are not allowed to apply the induction hypothesis for g : Sk−1 → Rk+1 \ {0}
because the dimension of the image domain is k + 1 instead of k. To reduce
the dimension of the image domain by 1, we define V to be the orthogonal
complement of the line `. As ` has dimension 1, V has dimension k. Let
π : Rk+1 → V be the orthogonal projection and identify V with the Euclidean
space Rk.
To apply the induction hypothesis to π ◦ g : Sk−1 → V , we need to show that
π ◦ g satisfies the symmetry condition (4.1) and that the origin is not in the
image of π ◦ g. Using linearity of π and the symmetry condition (4.1) for g, we
get for any x ∈ Sk−1:

−(π ◦ g)(x) = −π(g(x)) = π(−g(x)) = π(g(−x)) = (π ◦ g)(−x).

Moreover, if there exists x ∈ Sk−1 such that π(g(x)) = 0, then g(x) is contained
in π−1(0) = `. But this cannot happen because ` and the image of g are disjoint.
Hence,

W2(π ◦ g, 0) = 1. (4.22)

Step 4: We apply the steps above and use some previous results to conclude
the proof.

In the first step we proved that f t `. Then f+ t ` because transversality of
a function is passed on if we restrict it to any subset of the domain. Now we
want to apply Proposition 3.10 to the sequence

Sk+
f+−−→ Rk+1 π−→ V

to show that π ◦ f+ t {0}. To do this we need to show that π is transversal to
{0}, that is, for any x ∈ π−1({0}) = ` we have

im(dπx) + Tπ(x)({0}) = Tπ(x)(V ).

Since Tπ(x)({0}) = 0, this is equivalent to showing that dπx is surjective for any
x ∈ `, that is, π is a submersion at each x ∈ `.
If we think of the projection π as the map

π : V × `→ V, (v, r) 7→ v,

then, by Proposition 2.23, its derivative

dπ(v,r) : Tv(V )× Tr(`)→ Tv(V )
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is the analogous projection. Since V and ` are vector spaces, we have Tv(V ) = V
and Tr(`) = ` by Lemma 2.15. Hence dπx ≡ π, where we defined x := (v, r).
Thus dπx is surjective. Thus π is a submersion at every

y ∈ Tv(V )× Tr(`) = T(v,r)(V × `) = Tx(Rk+1).

As discussed above, Proposition 3.10 now implies that π ◦ f+ t {0}, that is, for
any x ∈ (π ◦ f+)−1(0) = f−1

+ (π−1(0)) we have

im(d(π ◦ f+)x) + Tπ(f+(x))({0}) = Tπ(f+(x))(V ).

Once again we have Tπ(f+(x))({0}) = 0. Hence d(π ◦ f+) is surjective at every

x ∈ f−1
+ (π−1(0)). Thus 0 is a regular value of π ◦ f+.

Recall that the upper hemisphere Sk+ is a manifold with boundary and its bound-
ary is Sk−1. The function π ◦ f+ extends π ◦ g, that is, ∂(π ◦ f+) = π ◦ g. If we
apply Theorem 3.34 to the regular value 0 of π ◦ f+ that is not in the image of
π ◦ g, then

W2(π ◦ g, 0) = |{(π ◦ f+)−1(0)}| mod 2. (4.23)

Using the results from previous steps, we finally get

W2(f, 0) = |{f−1
+ (l)}| by (4.21)

= |{f−1
+ (π−1(0)}|

= W2(π ◦ g, 0) by (4.23)

= 1 mod 2. by (4.22)

This concludes the proof.

4.3 Another Version of the Theorem

For the applications in the next chapter we need the following version of the
theorem.

Theorem 4.5 (The Borsuk–Ulam Theorem). For every continuous function
f : Sk → Rk there exists a point x ∈ Sk such that f(x) = f(−x).

In the remainder of this chapter we show that this version follows from Theorem
4.1.

Corollary 4.6. Let f be as in Theorem 4.1. Then f intersects every line
through the origin at least once.

Proof. Assume by contradiction that there exists some a ∈ Sk such that the
line ` = R× a through the origin is not hit by f . If we go back to step 2 in the
proof of Theorem 4.1 and insert (4.17) into (4.14), we obtain

W2(f, 0) =
1

2
|{f−1(`)}| = 0.

But this contradicts Theorem 4.1. Note we do not need a to be a regular value
of f for the formula to be valid.
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In particular, since we may write any line ` through the origin as ` = R · a for
some unit vector a ∈ Sk, any function f as in Theorem 4.1 intersects ` at least
twice. Indeed, if f(x) = r · a ∈ ` is an intersection point of f and `, then the
opposite point (−r) · a = −f(x) = f(−x) is another intersection point of f and
`.

Theorem 4.7. Every smooth function from Sk to Rk satisfying the symmetry
condition (4.1) must have a zero.

Proof. We prove the theorem by contradiction. Assume that the smooth map
f : Sk → Rk satisfies (4.1) and does not have a zero, that is, f : Sk → Rk \ {0}.
We decompose f as

f(x) = (f1(x), . . . , fk(x))

and define the smooth map g : Sk → Rk+1 by

g(x) := (f1(x), . . . , fk(x), 0).

Since f has no zeroes, g has no zeroes. By Corollary 4.6, g intersects every line
through 0 at least once. But g does not intersect the xk+1-axis, which leads to
the desired contradiction.

Proof of Theorem 4.5. Define the smooth map g : Sk → Rk by

g(x) := f(x)− f(−x).

Then g satisfies (4.1) since

g(−x) := f(−x)− f(x) = −(f(x)− f(−x)) =: −g(x).

Theorem 4.7 implies that g has a zero x0 and we have f(x0) = f(−x0) by
definition of g.

We conclude this chapter with an example for k = 2 to illustrate Theorem 4.5:
Since the temperature and the air pressure on the earth are smooth functions,
there always exist two places on opposite ends of the earth having exactly the
same temperature and air pressure.
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Chapter 5

Applications of the
Borsuk–Ulam Theorem

In this chapter, which is based on [Mat03, Chapter 3, Section 1–2], we state and
prove some applications of the Borsuk–Ulam theorem.

5.1 The Ham Sandwich Theorem

We need the following definition.

Definition 5.1. A hyperplane in Rd is a (d − 1)-dimensional affine subspace,
that is, a set of the form

h = {x ∈ Rd : aTx = b}

for some vector a ∈ Rd \ {0} and some scalar b ∈ R. Each hyperplane defines
two (closed) half-spaces, namely H− = {x ∈ Rd : aTx ≤ b} and H+ = {x ∈ Rd :
aTx ≥ b}.

Now, we recall a few definitions from measure theory to state the version of the
namesake theorem of this section for measures. The definitions are taken from
[Sch17, Chapter 1, Section 1–2].

Definition 5.2. Let Ω be a nonempty set. A set system A ⊆ 2Ω is called a
σ-field on Ω if Ω ∈ A and A is closed under complements and countable unions,
that is,

• if A ∈ A, then Ac ∈ A and

• if Ai ∈ A for all i ∈ N, then
⋃
i∈NAi ∈ A.

Definition 5.3. Let Ω be a nonempty set and assume that A is a σ-field on Ω.
A map µ : A → [0,∞] with µ(∅) = 0 is called a measure if µ is σ-additive on A,
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that is, for all pairwise disjoint sets Ai ∈ A with i ∈ N, we have

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Definition 5.4. A probability measure on a σ-field A on Ω is a measure µ such
that µ(Ω) = 1.

Definition 5.5. A measure µ : A → [0,∞] on a σ-field A on Ω is called finite
(on A) if |µ(A)| <∞ for all A ∈ A.

Definition 5.6. If A ⊆ 2Ω is a σ-field on a nonempty set Ω, then we call (Ω,A)
a measurable space and A ∈ A a measurable set.

The next definitions are taken from [Mat03, Chapter 3, Section 1, p. 47].

Definition 5.7. A measure µ on Rd is called a finite Borel measure if all open
subsets of Rd are measurable and 0 < µ(Rd) <∞.

Definition 5.8. A finite Borel measure on Rd assigning to every hyperplane
measure 0 is called a mass distribution in Rd.

Now, we are able to formulate the ham sandwich theorem from [Mat03, Chapter
3, Section 1, p. 47].

Theorem 5.9 (Ham Sandwich Theorem for measures). If µ1, µ2, . . . , µd are
mass distributions in Rd, then there exists a hyperplane h such that for all
i ∈ {1, 2, . . . , d}, we have

µi(h
+) =

1

2
µi(Rd), (5.1)

where h+ denotes one of the half-spaces defined by h.

The ham sandwich theorem tells us that any d mass distributions in Rd can be
simultaneously bisected by a hyperplane.
For our daily life this means that for every sandwich made of ham, cheese and
bread, we are able to apply a knife in such a way that all three layers get
simultaneously cut into halves by one single planar cut.
Notice that it does not matter which half-space we take since we assign measure
zero to hyperplanes.

Proof. Consider an arbitrary point u = (u0, u1, . . . , ud) of the sphere Sd ⊆ Rd+1.
If at least one of u1, u2, . . . , ud is nonzero, then we assign to u the half-space

h−(u) := {(x1, . . . , xd) ∈ Rd : u1x1 + · · ·+ udxd ≤ u0}.

We denote by h+(u) the other half-space defined by the hyperplane

{x ∈ Rd : u1x1 + · · ·+ udxd = u0}.
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Since

h−(−u) := {(x1, . . . , xd) ∈ Rd : −(u1x1 + · · ·+ udxd) ≤ −u0}
= {(x1, . . . , xd) ∈ Rd : u1x1 + · · ·+ udxd ≥ u0}
= h+(u), (5.2)

antipodal points of Sd correspond to opposite half-spaces.
If we plug the two possibilities of u excluded above, namely u = (1, 0, . . . , 0)
and u = (−1, 0, . . . , 0), into the definition of h−(u), then we get

h−((1, 0, . . . , 0)) = h+((−1, 0, . . . , 0)) = Rd

and
h−((−1, 0, . . . , 0)) = h+((1, 0, . . . , 0)) = ∅,

which are not half-spaces.
The function f = (f1, . . . , fd) : Sd → Rd defined by

fi(u) := µi(h
−(u))

is continuous, that is, if (un)n∈N is a sequence of points converging to u, then
µi(h

−(un)) converges to µi(h
−(u)). This step uses the Dominated Convergence

Theorem ([Sch17, Chapter 2, Section 3, p. 62]) and is shown in [Mat03, Chapter
3, Section 1, Proof of Theorem 3.1.1].
By the Borsuk–Ulam theorem (Theorem 4.5) there exists a point v ∈ Sd such
that f(v) = f(−v), that is, for every i ∈ {1, . . . , d} we have

µi(h
−(v)) = µi(h

−(−v)).

We point out that v cannot be (1, 0, . . . , 0) or (−1, 0, . . . , 0), as for any i ∈
{1, . . . , d}

fi((1, 0, . . . , 0)) = µi(Rd) ∈ (0,∞)

but
fi((−1, 0, . . . , 0)) = µi(∅) = 0.

Thus the sets h−(v) and h−(−v) are half-spaces. Using (5.2), this leads us to

µi(h
−(v)) = µi(h

+(v)) for every i ∈ {1, . . . , d}.

In words, these equations tell us that there is a pair of opposite half-spaces such
that for each i ∈ {1, . . . , d}, the values measure µi assigns to them coincide.
Therefore, the boundary of the half-space h−(v) satisfies the desired property
(5.1).

Now we focus on the case where the masses are concentrated at finitely many
points. Our goal is to obtain a discrete version of Theorem 5.9.

Definition 5.10. Let A ⊆ Rd be a finite point set. A hyperplane h bisects A
if both of the open half-spaces defined by h contain at most

⌊
1
2 |A|

⌋
points of A.
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In particular, if a hyperplane h bisects a finite set A containing an odd number
2k+1 of points, then each of the open half-spaces may contain at most k points.
Thus at least one point must lie on h.

Definition 5.11. A finite point set A ⊆ Rd is said to be in general position if
no d+ 1 points lie in a common hyperplane.

The next theorem and its proof come from [Mat03, Chapter 3, Section 2, p.
48–49].

Theorem 5.12 (Ham Sandwich Theorem for point sets). For any d finite point
sets in Rd, there exists a hyperplane h simultaneously bisecting all of them.

Proof. Let A1, A2, . . . , Ad ⊆ Rd be finite point sets. We prove the theorem in
three cases, where we weaken the assumptions on the point sets in each case.

Case 1: Assume that

1. each Ai contains an odd number of points,

2. the point sets are pairwise disjoint, that is,

Ai ∩Aj = ∅ for all i 6= j ∈ {1, . . . , d}, and

3. the disjoint union
⋃d
i=1Ai is in general position.

The idea is to replace the points of Ai by sufficiently small balls and apply
Theorem 4.5 to them.

Let Aεi be the set obtained from Ai by replacing each point by a ball of radius

ε, where we choose ε > 0 small enough such that no d+ 1 balls of
⋃d
i=1A

ε
i can

be intersected by a common hyperplane. By Theorem 5.9 applied to the mass
distributions µ1, . . . , µd that distribute the mass uniformly over the Aε1, . . . , A

ε
d,

there exists a hyperplane h simultaneously bisecting the sets Aεi .
Since each Ai contains an odd number of points, each Aεi is a union of an odd
number of balls. As discussed after Definition 5.10, h must then intersect at
least one of the balls of each Aεi . The third assumption implies that h intersects
at most d balls at all. Hence, h intersects exactly one ball of each Aεi .
Consider a ball of some Ai which is intersected by h. Since the mass of the ball
is distributed uniformly over the ball, h divides the ball exactly in half. Thus
h passes through the center of the ball. Therefore, h bisects Ai. Since Ai was
arbitrary, we get the result.

Case 2: Assume that each Ai has odd cardinality. We reduce this case to the
first one by using a perturbation argument: We shift the points a bit such that
they satisfy the second and third assumption from the first case.

For every η > 0, move each point of each Ai by at most η in such a way that
the obtained sets Ai,η satisfy the second and third assumption. Since we are
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in the previous case, there exists a hyperplane hη simultaneously bisecting the
Ai,η. We write

hη = {x ∈ Rd : aTη x = bη}

and we may assume that aη is a unit vector. Indeed, if this is not the case, then

we simply replace bη by
bη
‖aη‖ and aη by

aη
‖aη‖ , that is, we divide the equation by

‖aη‖.
Note that the bη lie in a bounded interval. Indeed, since

⋃d
i=1Ai is finite and

the points in
⋃d
i=1Ai,η have at most distance η from

⋃d
i=1Ai, there exists r > 0

such that the ball Br(0) of radius r around 0 contains
⋃d
i=1Ai,η for all η < 1.

If |bη| > |r|, then Br(0) is contained in one of the two half-spaces defined by
hη, which is a contradiction to the definition of hη. This uses the fact the hη is
orthogonal to aη and the distance between hη and 0 is |bη|. Thus |bη| ≤ |r|, so
the bη lie in a bounded interval B. Hence, the set {(aη, bη) : aη ∈ Sd−1, bη ∈ B}
is contained in the compact set Sd−1 ×B.
Compactness implies the existence of a cluster point (a, b) of the pairs (aη, bη)
as η → 0. Define the hyperplane

h := {x ∈ Rd : aTx = b}.

Now, we consider a strictly decreasing sequence (ηj)j∈N converging to 0 such
that (aη, bη) → (a, b). If a point x has distance δ > 0 from h, then it has
distance at least 1

2δ from hηj for all sufficiently large j. Hence, if k points of Ai
for i ∈ {1, . . . , d} are contained in one of the two open half-spaces defined by
h, then for all j large enough, the corresponding open half-space determined by
hηj contains at least k points of Ai,ηj . In particular, if one half-space defined by
h contains

⌊
1
2 |Ai|

⌋
+ 1 points of Ai, then the corresponding half-space defined

by hηj contains at least
⌊

1
2 |Ai,ηj |

⌋
+ 1 points of Ai,ηj , which means that hηj

does not bisect Ai,ηj , a contradiction. Therefore, each half-space defined by h
cannot contain more than

⌊
1
2 |Ai|

⌋
points of Ai, which shows that h bisects each

each Ai.

Case 3: We conclude the proof by allowing the sets Ai to contain an even
number of points.

Suppose that we are given finite point sets A1, . . . , Ad, where some of them have
even cardinality. If we delete an arbitrary point from each even-sized set, then
the d odd-sized sets we obtain can be bisected by a hyperplane h according
to the second case. We conclude the proof by showing that this h bisects the
original sets A1, . . . , Ad too:
A set Ai containing 2k points is bisected if both of the open half-spaces defined
by h contain at most k points. If we delete exactly one arbitrary point from Ai,
then we obtain a set with 2k − 1 points, which is bisected if both half-spaces
contain at most k−1 points. Adding the deleted point back to its corresponding
half-space leads to at most k points in each half-space. Thus Ai gets bisected.
Since Ai was an arbitrary set with even cardinality, h bisects A1, A2, . . . , Ad.
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For later applications we need the following corollary of Theorem 5.12, which
is taken from [Mat03, Chapter 3, Section 1, p. 49]. Its proof comes from this
book as well.

Corollary 5.13 (Ham Sandwich Theorem for point sets in general position).

Let A1, . . . , Ad ⊆ Rd be disjoint finite point sets such that
⋃d
i=1Ai is in general

position. Then there exists a hyperplane h that bisects each Ai such that there
are exactly

⌊
1
2 |Ai|

⌋
points from Ai in each of the open half-spaces defined by h,

and at most one point of Ai lies on the hyperplane h.

Proof. The ham sandwich theorem for point sets (Theorem 5.12) provides us
with a hyperplane h simultaneously bisecting A1, . . . , Ad. But h may contain
more than one point of some Ai. Indeed, in the worst case h may contain d
points of a single Ai, but h cannot contain more than d points since

⋃d
i=1Ai is

in general position.
Now, we choose the coordinate system in such a way that h is the horizontal
hyperplane

h = {x ∈ Rd : xd = 0}.

The set

B := h ∩ (

d⋃
i=1

Ai)

consists of at most d points. One can show that
⋃d
i=1Ai being in general position

implies that the points in B are affinely independent. We claim that we are able
to shift h in such a way that only one point of each odd-sized Ai and no point
of each even-sized Ai remains on h.
To define a new hyperplane we need d affinely independent points. Hence, we
add d − |B| points of h to B such that the resulting set C ⊆ h consists of
d affinely independent points. The affinely independence allows us to decide
whether we want a point of h to either stay on h or to move below or above h.
For every a ∈ C we choose a point ã as follows: If a /∈ B or a is a point in B
that should stay on h, then we take ã := a. For the other points in B we define
ã := a + εed or ã := a − εed, depending on whether we want a to lie below or
above h.
Denote by h̃ = h̃(ε) the hyperplane determined by the d affinely independent
points ã. The hyperplane h̃(ε) is well-defined for all sufficiently small ε > 0
because for such ε the ã remain affinely independent. Moreover, the motion
of h̃(ε) is continuous in ε. For ε small enough, the relative position to the
hyperplanes of all other points, that is, points contained in the open half-spaces
defined by h, does not change. This proves the existence of a desired hyperplane.
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5.2 Multicolor Partitions

The first theorem in this section is a statement about multicolored partitions.
To state it we need the next definitions.

Definition 5.14. A set C ⊆ Rd is called convex if for each x, y ∈ C the line
segment from x to y, namely the image of the function

f : [0, 1]→ Rd, t 7→ (1− t)x+ ty

is entirely contained in C.

Definition 5.15. The convex hull of a set X ⊆ Rd is the intersection of all
convex sets containing X.

The theorem is taken from [Mat03, Chapter 3, Section 2, p. 53–54]. As we
will see in the proof, which follows the one from the book, the theorem is a
consequence of the ham sandwich theorem for point sets in general position
(Corollary 5.13).

Theorem 5.16. Assume that A1, . . . , Ad ⊆ Rd are point sets in Rd, each con-
taining n points. Let the points in Ai have color i. Then the sets Ai are disjoint
since no point can be colored with two different colors. Suppose that the disjoint
union

⋃d
i=1Ai is in general position. Then the points of

⋃d
i=1Ai can be parti-

tioned into “rainbow” d-tuples, that is, each d-tuple contains one point of each
color, with disjoint convex hulls.

Proof. We prove the theorem by induction on n.
For n = 1 there is only one “rainbow” d-tuple, so there is nothing to check.
For the inductive step we assume that the statement is true for each j < n. We
must distinguish two cases:
If n is even, then there exists a hyperplane bisecting each Ai and containing no
point of

⋃d
i=1Ai by Corollary 5.13. Then each of the two half-spaces defined

by the hyperplane contains the half of points of each Ai, that is, n
2 points of

each Ai. The inductive hypothesis tells that in each half-space we can find n
2

“rainbow” d-tuples with disjoint convex hulls. Since none of these crosses the
hyperplane, we get n such d-tuples with disjoint convex hull, which is what we
wanted to show.
If n is odd, then, again by Corollary 5.13, there exists a hyperplane bisecting
each Ai and containing exactly one point of each color. Each of the open half-
spaces defined by the hyperplane contains

⌊
n
2

⌋
= n−1

2 points of each Ai. Hence,
we may apply the induction hypothesis. By the same argument as above, the two
open half-spaces together give us n− 1 “rainbow” d-tuples with disjoint convex
hulls. The nth “rainbow” d-tuple is formed by the points on the hyperplane
and the convex hull of this d-tuple is contained in the hyperplane. The convex
hulls remain disjoint since no convex hull in the open half-spaces crosses the
hyperplane.
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5.3 The Necklace Theorem

We begin this section by stating the necklace splitting problem following [Mat03,
Chapter 3, Section 2, p. 54].

The necklace splitting problem: Assume that two thieves steal a precious
necklace consisting of different kinds of gemstones such as diamonds or rubies,
which are set in pure platinum. The thieves would like to divide the stones
of each kind evenly because they do not know the values of the stones. But
since the chain itself is precious itself, they want to do as few cuts as possible
to waste as little platinum as possible. In this section, we answer the question
“How many cuts do the thieves have to make?”.

We assume the necklace to be open (with two ends). Moreover, we assume that
there are d kinds of gemstones and the number of each kind is even. Before we
state the necklace theorem from [Mat03, Chapter 3, Section 2, p. 54], we define
the moment curve, which is needed for the first of the two proofs we give, and
show one of its properties.

Definition 5.17. The moment curve in Rd is defined by

γ : R→ Rd, t 7→ (t, t2, . . . , td).

The following lemma and its proof are taken from [Mat03, Chapter 1, Section
6, p. 17].

Lemma 5.18. No hyperplane intersects the moment curve in Rd in more than
d points.

Proof. Each hyperplane h has an equation a1x1 + a2x2 + · · · + adxd = b with
0 6= a := (a1, . . . , ad)

T . If a point γ(t) = (t, t2, . . . , td) of the moment curve lies
on h, then it must satisfy

a1t+ a2t
2 + · · ·+ adt

d = b.

Hence, the values of t for which γ(t) lies on h are the real roots of the polynomial

p(t) := (

d∑
i=1

ait
i)− b

of degree at most d. The polynomial p has at most d roots. Thus there are at
most d intersection points of h and the moment curve. Since h was arbitrary,
the statement is proven.

Theorem 5.19 (The Necklace Theorem). Every open necklace with d kinds of
stones can be divided evenly between two thieves using no more than d cuts.

We will give two proofs of the theorem, where both of them are taken from
[Mat03, Chapter 3, Section 2, p. 55–56].
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Proof of Theorem 5.19 using Ham Sandwich Theorem. Take a necklace with n
gemstones. We place the necklace into Rd along the moment curve by defining
the point sets

Ai := {γ(k) : the kth gemstone is of the ith kind, k ∈ {1, . . . , n}}.

We call the points in Ai the stones of the ith kind. Notice that the sets Ai are
disjoint by definition since a gemstone cannot be a diamond and a ruby at the
same time. By Lemma 5.18, the union

⋃d
i=1Ai is in general position. The ham

sandwich theorem for point sets in general position (Corollary 5.13) implies that
there exists a hyperplane h simultaneously bisecting each Ai. By Lemma 5.18,
h cuts the moment curve (and hence also the necklace) in at most d places.
Since each set Ai has even cardinality, h does not cut any gemstones. Therefore,
these at most d cuts divide the necklace evenly between the thieves.

The following theorem from [Mat03, Chapter 3, Section 2, p. 55] is a preliminary
result for the second proof of the necklace theorem.

Theorem 5.20 (Hobby–Rice Theorem). Let µ1, µ2, . . . , µd be continuous prob-
ability measures on [0,1]. Then there exists a partition of [0,1] into d+1 intervals
I0, I1, . . . , Id (using d cut points) and signs ε0, ε1, . . . , εd ∈ {−1, 1} with

d∑
j=0

εj · µi(Ij) = 0 for i ∈ {1, 2, . . . , d}.

We postpone the proof for a moment and focus on the second proof of the
necklace theorem, which is taken from [Mat03, Chapter 3, Section 2, p. 56],
instead.

Second Proof of Theorem 5.19. We denote by ti the amount of gemstones of
the ith kind. Then n =

∑d
i=1 ti. We think of the necklace as the interval [0, 1],

where the kth stone corresponds to the segment
[
k−1
n , kn

)
. We define the d

characteristic functions fi : [0, 1]→ {0, 1} for x ∈
[
k−1
n , kn

)
by

fi(x) =

{
1 if the kth stone of the necklace is of the ith kind

0 otherwise.

These functions allow us to define d measures µ1, . . . , µd on [0, 1] by

µi(A) :=
n

ti

∫
A

fi(x)dx.

Each µi(A) denotes the fraction of gemstones of the ith kind that is on part A
of the necklace.
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The Hobby–Rice theorem (Theorem 5.20) implies that there exists a partition
of [0, 1] into d+ 1 intervals I0, I1, . . . , Id such that for each i ∈ {1, 2, . . . , d}

d∑
j=0

= εj · µi(Ij) = 0,

where εj ∈ {−1, 1} for each j ∈ {0, . . . , d}. The intervals Ij with εj = +1 are
given to the first thief, while the second thief gets the intervals Ij with εj = −1.
This division is fair, but it can happen that gemstones need to get cut to achieve
this division. In this case, the division is called “nonintegral”. To get a division
where no gemstones get cut we use the following rounding procedure, which is
based on induction on the number of “nonintegral” cuts. If a gemstone of the ith
kind is cut, then either the cut is unnecessary, or there is another cut through
a gemstone of this kind since the number of gemstones of each kind is even.
In the latter case, we can move both cuts away from the gemstones to reduce
the number of “nonintegral” cuts. Notice that moving the cuts away from the
gemstones does not change the balance. Hence, we are done by induction.

We conclude this thesis with proving the Hobby–Rice theorem. The proof fol-
lows the one in [Mat03, Chapter 3, Section 2, p. 56].

Proof of Theorem 5.20. Let x = (x1, x2, . . . , xd, xd+1) ∈ Sd be an arbitrary
point. We define for each i ∈ {0, 1, . . . , d+ 1} the cut point

zi :=

i∑
k=1

x2
k.

Notice that 0 = z0 ≤ z1 ≤ · · · ≤ zd ≤ zd+1 = 1. Hence, we can subdivide the
interval [0, 1] into d + 1 smaller intervals by associating the cuts at the points
{zi : i ∈ {0, 1, . . . , d + 1}} with x. In particular, the intervals are given by
Ij = [zj−1, zj ] for j ∈ {1, 2, . . . , d+ 1}, and Ij has length x2

j .
The sign for Ij is given by εj := sign(xj). Now, we can define the continuous
function

g = (g1, . . . , gd) : Sd → Rd with gi(x) :=

d+1∑
j=1

sign(xj) · µi([zj−1, zj ]).

The function gi(x) indicates the amount of gemstone of the ith kind given to
the first thief minus the amount of this gemstone given to the second thief.
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Moreover, each gi is antipodal since

gi(−x) =

d+1∑
j=1

sign(−xj) · µi([zj−1, zj ])

= −
d+1∑
j=1

sign(xj) · µi([zj−1, zj ])

= −gi(x).

By Theorem 4.7, there exists a point x ∈ Sd such that g(x) = 0. For this x a
fair division is obtained.
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