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Abstract

The main goals of this thesis are to explain the mathematical background
of the game Lights Out and provide an analytical technique such that
the player is able to:

1. verify if a game is solvable

2. find a solution to a solvable game

i



Introduction

Lights Out is an electronic game released by Tiger Electronics that found
its popularity in the mid to late 90s. The game consists of a 5× 5 board
of luminous buttons. When the game starts, a random pattern of these
lights is switched on and the goal is to eliminate all lights.

This thesis goes over the mathematical framework of the game Lights
Out.

In Chapter 1, some fundamental understanding on the underlying
linear algebra of the game is established. Although all findings hold
true for general fields, we will solely focus on the finite field F2. All
definitions of this chapter stem from G.Fischer[1]. In the second chapter,
the application of the previously acquired mathematical tools will take
place. We will elaborate in detail on how the game works and how we
can apply linear algebra over a finite field in order to find a solution
to a given game. Some of the results in this chapter are based on the
works of M.A. Madsen[2] and M. Anderson[3]. In the final chapter,
we will explore some special properties of Lights Out that are not only
interesting from a mathematical point of view, but helpful for judging
the solvability simply by eye.

Basic knowledge in linear algebra is the only prerequisite for reading
this thesis.

Example of a game of Lights Out
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Chapter 1

Linear algebra background

1.1 Field axioms

Definition 1.1 A field is a tuple (F,+, ·, 0, 1) consisting of a set F with two
mappings

+ : F× F −→ F, (x, y) 7→ x + y

· : F× F −→ F, (x, y) 7→ x · y

and neutral elements 0, 1 ∈ F, such that the following field axioms hold:

(F1) ∀x, y, z ∈ F : x + (y + z) = (x + y) + z (Associativity of addition)

(F2) ∀x, y ∈ F : x + y = y + x (Commutativity of addition)

(F3) ∀x ∈ F : x + 0 = x (Neutral element of addition)

(F4) ∀x ∈ F ∃x′ ∈ F : x + x′ = 0 (Inverse element of addition)

(F5) ∀x, y, z ∈ F : x · (y · z) = (x · y) · z (Associativity of multiplication)

(F6) ∀x, y ∈ F : x · y = y · x (Commutativity of multiplication)

(F7) ∀x ∈ F : x · 1 = x (Neutral element of multiplication)

(F8) ∀x ∈ F \ {0} ∃x′ ∈ F : x · x′ = 1 (Inverse element of multiplication)

(F9) ∀x, y, z ∈ F :

{
x · (y + z) = x · y + x · z
(y + z) · x = y · x + z · x

(Distributivity)

(F10) 1 6= 0 (Non-triviality)

Remark 1.2 It is a direct consequence of the non-triviality axiom that every field
must have at least two elements.
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1.2. The field F2

Example 1.3 The rational numbers Q and the real numbers R, where both sets
are endowed with the usual arithmetic operations of multiplication and addition are
fields.

1.2 The field F2

With the introduction of the field axioms and a few examples one will
rightfully assume that there exist many more different fields,
but when trying to understand a given problem it is generally a good idea
to not just use any arbitrary field but to use something that takes as little as
possible and as much as necessary.
The field of choice for this thesis is the field F2. Not only is it finite, but it is
also the smallest field (up to isomorphism). What this means exactly will be
discussed in the following.

Definition 1.4 Let X be a set and n ∈N. We say the set X has cardinality n and
write |X| = n, if X admits a bijection to {1, . . . , n}. In this case, we call X a finite
set and write |X| < ∞. If X is not finite, we call X an infinite set.

Definition 1.5 A field (F,+, ·, 0, 1) is called finite, if the set F is finite.

Proposition 1.6 There exists exactly one field (up to isomorphism) with two ele-
ments {a, b}. We denote this field by F2 := {0, 1}.

Proof Without loss of generality, we choose a = 0 and b = 1, where 0 is the
neutral element of addition and 1 is the neutral element of multiplication
(the same proof can be performed by exchanging the values of a and b).
Due to the neutral element property of a and b and by applying the axioms
of definition 1.1 we can fill in the operation tables for {a, b} as follows:

+ a b
a a b
b b ?

· a b
a ? a
b a b

We are now left with a · a and b + b. According to our table we do not have
an additive inverse to b hence the only choice is to define b + b = a.
Now for a · a we have two options. Either a · a = b or a · a = a Assume
a · a = b. Then:

1 = b = a + b = (a · b) + (a · a) = a · (b + a) = a · b = a = 0

Which is a contradiction to the non-triviality axiom. Therefore, we conclude:
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1.3. Vector spaces over F2

+ a b
a a b
b b a

· a b
a a a
b a b

This construction proves the existence and uniqueness of a field with two
elements. From now on, we call this field F2. �

Corollary 1.7 (Idempotence) ∀x ∈ F2 : x · x = x

Corollary 1.8 ∀x ∈ F2 : x + x = 0

1.3 Vector spaces over F2

Now that we have constructed F2 it is time to take it one step further. Often
when talking about solving a problem, it is not sufficient to solve it using
only one variable at a time. Lights Out with its 5× 5 board is no exception
to this. It is therefore necessary to somehow ”extend” our ability to execute
calculations. This brings us to the following definition:

Definition 1.9 (Vector space) Let F be a field. A set V with operations

+ : V ×V −→ V, (~x,~y) 7→ ~x +~y

called addition and

· : F×V −→ V, (λ,~x) 7→ λ ·~x

called scalar multiplication is an F-vector space (or vector space over F), if it fulfills
the following properties:

(V1) V equipped with addition is an abelian group1. The neutral element is called
zero vector and is denoted by~0 and the inverse of ~x ∈ V is denoted by −~x.

(V2) The multiplication with scalars must be compatible with the addition as follows:

(λ + µ) ·~x = λ ·~x + µ ·~x, ~x · (λ + µ) = ~x · λ +~x · µ

λ · (µ ·~x) = (λ · µ) ·~x, 1 ·~x = ~x

∀~x,~y ∈ V and λ, µ ∈ F.

1An abelian group is an algebraic structure that satisfies the axioms F1 to F4.
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1.3. Vector spaces over F2

Definition 1.10 (Linear subspace) Let V be an F-vector space and W ⊂ V a
subset. W is called a linear subspace of V if:

W 6= {}
~v, ~w ∈W =⇒ ~v + ~w ∈W
~v ∈W, λ ∈ F =⇒ λ ·~v ∈W

Example 1.11 {~0} ⊂ V is a linear subspace of V.

Remark 1.12 span(~v1, . . . , ~vn) denotes the space that is obtained by ”collecting”
every possible linear combination of ~v1, . . . , ~vn.

Definition 1.13 (Basis) A family B = (~vi)i∈I in a vector space V is called a
generating system of V if

V = span(~vi)i∈I .

A generating system B = (~vi)i∈I of V is called basis of V, if it is linearly inde-
pendent2. V is called finitely generated, if it has a finite generating system i.e.
B = {~v1, . . . ,~vn}. If B is a finite basis, we call n the length of the basis.

Definition 1.14 (Dimension) Let V be a F-vector space. We define

dimF(V) :=

{
∞, if V does not have a finite basis,
n, if V has a basis of length n.

dimF(V) is called the dimension of V over F.

Proposition 1.15 Every vector space V has a basis.

Proposition 1.16 Every basis B of a vector space V has the same length. Hence,
dimF(V) is well-defined.3

Remark 1.17 Let V be a F-vector space, B a basis of V and dimF(V) = n < ∞.
Then we can represent any vector ~v ∈ V in terms of its corresponding coordinates vi.

1. We call ~v, ~w ∈ V orthogonal with respect to B when

〈~v, ~w〉 :=
n

∑
i=1

viwi = 0.

We denote orthogonal vectors by ~v⊥~w.

2. Let U ⊂ V be a linear subspace, then its orthogonal complement is defined as

U⊥ := {~v ∈ V : ~v⊥~u ∀~u ∈ U}.
2Linear independence of B means that for any finite subset {~v1, . . . ,~vr} of B, if

∑r
j=1 λj ·~vj =~0 it follows that λ1 = · · · = λr = 0.

3More about Propositions 1.15 and 1.16 can be found in G.Fischer[1] chapter 2.4.
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1.4. Systems of linear equations over F2

1.4 Systems of linear equations over F2

Having stated the most important concepts in connection to vector spaces,
we now consider mappings between them. Of particular interest are those
mappings, where the structures (addition and multiplication with scalars)
are respected. With the help of the previously developed techniques, we can
now introduce linear maps and define systems of linear equations.

1.4.1 Linear maps and equation systems

Definition 1.18 Let V, W be F2-vector spaces. A map A : V −→ W is said to be
linear if:

(L1) A(~x +~y) = A(~x) + A(~y)

(L2) A(λ~x) = λA(~x)

∀~x,~y ∈ V and λ, µ ∈ F2.

Definition 1.19 Let A be a linear map. Then the set

Im(A) := {~b | ∃~x with A ·~x =~b}

is called the image of A and

Null(A) := {~x | A ·~x =~0}

is called the null space of A.

Proposition 1.20 Let V, W be vector spaces over F2. For a linear map A : V −→
W the following formula holds true:

dim(V) = dim(Null(A)) + dim(Im(A))4

Once bases for the vector spaces V and W have been chosen, a linear map
A : V −→ W may be (uniquely) represented by a matrix, which we will
denote by A = (aij) where i denotes the row entry and j denotes the column
entry.

Henceforward, we use the terms linear map and matrix synonymously.

Example 1.21 Let V = F2
2 and idV : V −→ V, ~v 7→ ~v. Then

idV = (δij) =

(
1 0
0 1

)
.

We call idV the identity matrix.
4Chapter 3.2 of G.Fischer[1].
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1.4. Systems of linear equations over F2

Definition 1.22 (Matrix addition) Let A, B ∈ Fm×n
2 , then

A + B := (aij + bij) ∈ Fm×n
2 .

Definition 1.23 (Matrix multiplication) Let A ∈ Fm×n
2 , B ∈ Fn×l

2 , then

A · B := (
n

∑
j=1

aijbjk) ∈ Fm×l
2

with i ∈ {1 . . . m}, k ∈ {1 . . . l}.

Definition 1.24 (Systems of linear equations) A system of linear equations is
a set of linear equations with one or more unknowns that are all supposed to be
satisfied simultaneously i.e.:

For A ∈ Fm×n
2 ,~b ∈ Fm

2 and ~x ∈ Fn
2 we get the following equation system:

A ·~x =~b, i.e. (
n

∑
j=1

aijxj) = bi f or i = 1, . . . , m.

If~b 6=~0 we call the system inhomogeneous, otherwise the system is called homoge-
neous. The set

Sol(A,~b) := {~x ∈ Fn
2 : A ·~x =~b}

is called solution set of the equation system A ·~x =~b.

Remark 1.25 The dimension of the set of all~b such that A · ~x = ~b is solvable is
called the rank5 of A. Therefore the dimension of the image of A is equal to the rank
of A. Thus the formula from remark 1.20 yields:

dim(Null(A)) = n− r.

Where n is the dimension of V.

1.4.2 Gauss-Jordan elimination

We will now introduce the Gauss-Jordan elimination over F2. It will become
apparent, that it is the key procedure to finding a solution for the game Lights
Out. Let us therefore consider the following system of linear equations:

A ·~x =~b.
5We use r := rank(A).
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1.4. Systems of linear equations over F2

We call A ∈ Fm×n
2 the coefficient matrix of the system. By appending~b ∈ Fm

2
to A we get the following matrix

(A,~b) =

 a11 . . . a1n b1
...

. . .
...

...
am1 . . . amn bm


This matrix is called the extended coefficient matrix and contains all information
about the system of equations.

Definition 1.26 A m× n - matrix A is said to have row-echelon form, if it has the
following form:

Hence, A is in row-echelon form if the following applies:

(1) There exists a number r ∈ {0, . . . , n} such that for every entry ai,j with i > r it
holds that ai,j = 0.

(2) For every i with 1 ≤ i ≤ r we take the smallest index ji of the column in which
there exists an entry unequal to zero i.e.

ji := min{j : ai,j 6= 0}

obviously we have that 1 ≤ ji ≤ n and an additional echelon condition is that

j1 < j2 < . . .< jr.

As for the r = 0, we define the case in which all entries of A are equal to zero
(A = 0M). We call the entries

a1,j1 , a2,j1 , . . . , ar,jr

the pivots of A.
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1.4. Systems of linear equations over F2

Now we will provide a procedure for solving a linear system of equations
where the coefficient matrix A is in row-echelon form. This exact procedure
can later be applied to find a solution for the game Lights Out. For simplicity
reasons, we assume that the pivots are in the first r columns. Then the
expanded coefficient matrix has the form

such that a1,1 6= 0, . . . , ar,r 6= 0.

Theorem 1.27 A ·~x =~b with (A,~b) in row-echelon form is solvable if and only if
bi = 0 for r + 1 ≤ i ≤ m

Proof Assume that there exists a bi 6= 0 such that r + 1 ≤ i ≤ m. Then the
i−th equation is

0 · x1 + · · ·+ 0 · xn = bi 6= 0.

There does not exist such an ~x ∈ Fn
2 .

Now for the reverse direction we assume

br+1 = · · · = bm = 0

We will provide a method such that one can construct a solution for A ·~x =~b.
For this purpose, we distinguish between two types of variables:

xr+1, . . . , xn

which are called free variables, they can obtain arbitrary values and:

x1, . . . , xr

are called bound variables. They are uniquely determined by the choice of
the free variables i.e. set k := n− r as the number of the free variables and
choose λ1, . . . , λk ∈ F2 as parameters and set
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1.4. Systems of linear equations over F2

xr+1 = λ1, xr+2 = λ2, . . . , xr+k = λk.

In order to calculate x1, . . . , xr we start by taking the r-th equation

ar,rxr + ar,r+1λ1 + · · ·+ ar,r+kλk = br.

Due to ar,r 6= 0 we get the following representation

xr =
1

ar,r
(br − ar,r+1λ1 − · · · − ar,r+kλk)

=
1

ar,r
br +

−ar,r+1

ar,r
λ1 + · · ·+

−ar,r+k

ar,r
λk

Which gives us

xr = cr,rbr + dr,1λ1 + · · ·+ dr,kλk.

Plugged in to the (r− 1)-th equation gives analogously

xr−1 = cr−1,r−1br−1 + cr−1,rbr + dr−1,1λ1 + · · ·+ dr−1,kλk

and finally

x1 = c1,1b1 + c1,2b2 + · · ·+ c1,rbr + d1,1λ1 + · · ·+ d1,kλk.

The numbers ci,j and di,j are only dependent on the entries ai,j but not on
b1, . . . , br and λ1, . . . , λk. With the help of matrices, this can be represented as
follows:

or ~x(λ) = C · ~b + D · ~λ

where C is a (n× r) - matrix and D is a (n× k) - matrix. �
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1.4. Systems of linear equations over F2

Having seen how a system of linear equations in row-echelon form can be
solved, we now try to put any system into this form. For this purpose, we
use two types of elementary row operations on the extended coefficient matrix:

1. Swapping two rows

2. Adding λ times the i− th row to the k− th row where i 6= k and λ 6= 0

Theorem 1.28 Every matrix A can be transformed by elementary row operations
into a matrix Ã in row-echelon form. We call this transformation the Gauss-Jordan
elimination method.

Proof We give a concrete procedure, which is carried out step by step and
is structured in such a way that a computer program can be made from it
without great difficulty.
Let A be a m× n- matrix. If A = 0M then by definition it already has row-
echelon form with r = 0.
If A 6= 0M there exists at least one entry ai,j 6= 0. Therefore, there exists a
column which is nonzero. We choose the one with the smallest index j1:

j1 = min{j : ∃i such that ai,j 6= 0}.

If a1,j1 6= 0 we can choose it as pivot, else we search for ai1,j1 6= 0 and exchange
the first row with row i1. Using this procedure, we obtain the first row of Ã.
Therefore, it holds that for the first pivot:

ã1,j1 = ai1,j1 .

Through elementary row operations of type 2 we can erase all entries below
ã1,j1 . If a is one of the entries below then

a + λã1,j1 = 0

so that we can set
λ = − a

ã1,j1
.

The result of these operations is of the following form:

where the entries marked as ∗ stand for arbitrary entries. The matrix A2 has
m− 1 rows and n− j1 columns. In the second step, one has to do the same
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1.4. Systems of linear equations over F2

procedure with A2 as was done with A = A1:
If A2 = 0M then Ã1 is in row-echelon form. Else, we search for j2 > j1 and
the pivot ã2,j2 . The required row operations of A2 can be extended from
row 2 to m of Ã1 without changing the columns from 1 to j1 because they
are all equal to zero. Having transformed A2, we obtain A3 and repeat the
procedure. The reason why this procedure is terminal is that either the rank
of the Ak’s gets smaller or the case Ak = 0M occurs. The final result is:

�
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Chapter 2

Solving Lights Out

2.1 The game

The game Lights Out consists of a 5× 5 matrix with a total of 25 buttons.
Each button has the function of a light, which means that it can either be on
or off. The game starts by a given board of an initial button configuration.
The goal is to turn off all the lights. But there is a catch. Pushing an arbitrary
button will not only change its own state, but also the state of all its vertical
and horizontal neighbours.
A complete strategy for solving the game can be obtained by using linear
algebra over F2.

Figure 2.1: Example of a winning game of Lights Out.

Before elaborating on the mathematical approach to solve the game let us
take a closer look at the game and state some observations.

2.2 Observations

Observation 1: Each button needs to be pressed no more than once. This
observation comes from the fact that pressing a button twice is like not
pressing it at all. Since pressing a button changes the state of that button
and of its immediate vertical and horizontal neighbours, pressing that same

12



2.3. Linear algebra setup

button again will reverse the states and switch the buttons back to their
original states.

Observation 2: The state of each button only depends on how many times it
and its immediate vertical or horizontal neighbours are pressed. This obser-
vation indicates that the order in which you press the buttons is irrelevant.

Observation 3: If we start with the board where all lights are off and press a
sequence of buttons to get a configuration, then starting with that configura-
tion and pressing the same sequence of buttons will result in all the lights
turned off[2].

2.3 Linear algebra setup

In the following, we will use linear algebra to provide a solution to the game.
This can be done with basic matrix operations, Gauss-Jordan elimination and
an understanding of the column and null space of a matrix. Since there are
only two possible states to the buttons, we can do all of our calculations
over the previously introduced field F2. Therefore, let 1 represent on and
0 represent off. Without loss of generality, we can think of the 5× 5 matrix
A ∈ F5×5

2 as a vector~b ∈ F25
2

~b = (b1, b2, . . . , b25)
T

where b1, b2, . . . , b25 denote whether or not the status of the i− th light must
be changed. We refer to this vector~b as the configuration of the matrix A.

Example 2.1 The configuration vector for Figure 2.1 is

~b = (0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1)T

The configuration~b is obtained by pressing a sequence of buttons which we
will denote as

~x = (x1, x2, . . . , x25)
T

where x1, x2, . . . , x25 represent a strategy needed to obtain configuration~b.

Example 2.2 The strategy vector for Figure 2.1 is

~x = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1)T
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2.4. Solvability of the game

Since pushing one button does not only change its own status, but also its
horizontal and vertical neighbours. We get the following system

b1 = x1 + x2 + x6
b2 = x1 + x2 + x3 + x7
...
b7 = x2 + x6 + x7 + x8 + x12
...
b25 = x20 + x24 + x25

It is now straightforward to rewrite this system of linear equations in matrix
form as A ·~x =~b. The coefficient matrix A ∈ F25×25

2 is the following block
matrix

A =


K I5 O O O
I5 K I5 O O
O I5 K I5 O
O O I5 K I5
O O O I5 K


where I5 is the 5× 5 identity matrix, O is the 5× 5 zero matrix and K is
defined as

K :=


1 1 0 0 0
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
0 0 0 1 1



2.4 Solvability of the game

Since solving the game means that we have to find a strategy ~x such that
A · ~x = ~b, we apply our findings from Section 1.4. Thus, a configuration
~b is solvable if and only if it belongs to the column space of the matrix
A. To analyse Col(A), we perform Gauss-Jordan elimination on A. This will
yield RA = E, where E is in row-echelon form and R is the product of the
elementary matrices which perform the reducing row operations.1

The matrices R and E will not be displayed here, but we invite the reader to
calculate them using a computer algebra system. Having done this calcula-
tion, we see that the matrix E is of rank 23 and has the following form:

1More about elementary matrices in G.Fischer[1] chapter 3.7.
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2.4. Solvability of the game

where the last two columns of E are:

(ei,24) = (0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0)T

(ei,25) = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0)T.

Furthermore, we have that A is a symmetric matrix such that the column
space denotes the same space as the row space. Also Row(A) is the or-
thogonal complement of the null space of A, which in turn equals Null(E).
Hence, to describe Col(A), we only need to determine a basis for Null(E).
Since E is in row-echelon form, it is easy to find an orthogonal basis for
Null(E) := span{~n1, ~n2}. By examining the last two columns of E we find
the following two vectors:

~n1 = (0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0)T

~n2 = (1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1)T

where we constructed ~n1 out of (ei,24) by changing the last two entries from
(. . . , 0, 0) to (. . . , 1, 0) and ~n2 out of (ei,25) by changing (. . . , 0, 0) to (. . . , 0, 1).

This brings us to the following result:

Theorem 2.3 A configuration ~b is solvable if and only if it is orthogonal to
Null(E) := span{~n1, ~n2}.

Proof This follows from the fact that if~b is orthogonal to Null(E) = Null(A),
then~b ∈ Row(A) = Col(A) = Im(A). That in turn is equivalent to saying
that Sol(A,~b) = Sol(E,~b) 6= {}. �
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2.5. Finding a solution

Example 2.4 Let us have a look at the following game of Lights Out:

Translating this board to the configuration~b ∈ F25
2 yields:

~b = (0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)T

We take the dot product of the configuration~b with ~n1 and get

〈~b, ~n1〉 = 1 6= 0 which means that the configuration~b is not solvable.

2.5 Finding a solution

We have now found a simple way to check whether or not a configuration
is solvable. So the last question that we have to answer is, how one finds a
solution.
We propose to use the following three steps:

1. Check if a configuration is solvable by applying Theorem 2.3.

2. If it is solvable, continue by performing Gauss-Jordan elimination on the
system (A,~b) by applying the same procedure that was used in proof
of Theorem 1.28.

3. Construct a solution by applying the technique that was provided in the
proof of Theorem 1.27 on the system that was obtained in the previous
step.

Since finding a solution ~x ∈ F25
2 means that one has to compute a number of

operations on a 25× 25 matrix, we suggest to use for this matter a computer
system.
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Chapter 3

Some special properties of Lights Out

3.1 The eigenvectors of Lights Out

For the following part, we assume that the reader already has some knowl-
edge of the eigenvalue problem of a matrix. Otherwise, we advise to study
chapter 4 of G.Fischer [1] before continuing.

The question we will answer in this section is the following:
What is the meaning of a game configuration~b, where the associated strategy
vector ~x is in fact an eigenvector of A with eigenvalue λ? Since we are doing
all calculations over F2, the only possible eigenvalues are 0 or 1.

First case when λ = 0.

We get A ·~x = λ~x =~0. This result gives us two types of information about
the game. Firstly, that the strategy vector ~x is in the null space of the matrix A
and secondly, that the game configuration~b =~0 is trivial i.e. a configuration
where no button had to be pushed.
What is interesting for the case λ = 0 is that we have a nonzero strategy
vector ~x. Hence, we obtain a strategy where we will be able to press a number
of buttons, which results in having changed nothing at all i.e. the board
before executing the strategy ~x looks the same as after the execution of ~x.
The two vectors ~n1,~n2 from section 2.4 form a basis of the λ = 0 eigenspace.

Second case when λ = 1.

For λ = 1 we get A ·~b =~b or (A− I25) ·~b = ~0. Hence, we have to find the
null space of the matrix (A− I25). We get the following matrix for (A− I25):
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3.2. Configurations with palindromic symmetries

(A− I25) =


K̃ I5 O O O
I5 K̃ I5 O O
O I5 K̃ I5 O
O O I5 K̃ I5
O O O I5 K̃


where I5 is the 5× 5 identity matrix, O is the 5× 5 zero matrix and K̃ is
defined as

K̃ :=


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0


Remark 3.1 It can be verified with a computer algebra system that (A− I25) has
rank 20.

Calculating Null(A− I25) we find 5 linearly independent eigenvectors that
satisfy A ·~b =~b.

These vectors have the interesting property that one can solve the game by
just pressing all the lights that are turned on.

Figure 3.1: Illustration of the boards where the configuration is a eigenvector with eigenvalue 1.

3.2 Configurations with palindromic symmetries

For this section, we want to point out another special property of the game
Lights Out, related to solutions of a configuration with palindromic symmetry.

Definition 3.2 We say that a vector ~b ∈ Fn
2 is a palindrome or has palindromic

symmetry if
~bi =~bn−i+1.

Intuitively speaking, this means that it does not matter if you read the vector
from bottom to top or top to bottom. One may have heard of a palindromic
word or phrase where reading it backwards says the same as reading it in
regular order.

18



3.2. Configurations with palindromic symmetries

Example 3.3 The vector (1, 0, 0, 1) and the name ANNA are palindromes.

Theorem 3.4 Every configuration~b with palindromic symmetry is solvable.

Remark 3.5 Hence, if one is able to detect this kind of symmetry in a board config-
uration then its solvability is a given.

Proof of the Theorem First note that the two vectors ~n1,~n2 ∈ Null(A) are
palindromes. Furthermore, we notice that both vectors have a 0 at their 13th
entry. Applying the property of palindromic vectors on the dot product gives
us:

〈~n,~b〉 =
12

∑
i=1

nibi +
25

∑
i=14

n25−i+1b25−i+1 + n13b13︸ ︷︷ ︸
=0

=

Corollary 1.8︷ ︸︸ ︷
12

∑
i=1

nibi +
12

∑
i=1

ni bi = 0

Hence, ~n⊥~b. It follows from Theorem 2.3 that~b is solvable. �

Figure 3.2: Two configurations with palindromic symmetry.
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