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Abstract

This thesis is an elementary introduction to formulating classical me-
chanics in the language of Riemannian geometry. The four areas of focus
are general mechanical systems, systems with holonomic constraints,
rigid bodies and systems with non-holonomic constraints. The treat-
ment of these four areas provides the necessary tools to solve an array
of prominent problems in classical mechanics within the Riemannian
framework.
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Introduction

The study of the laws governing motion can trace its roots to Ancient Greece,
with Aristotle’s Physics constituting an early attempt. Also Archimedes and
Hero can be highlighted as contributors to early mechanics.
The development of proper classical mechanics, however, began only over
fifteen centuries later with the works of Galileo, Kepler and Descartes. Their
developments paved the way for Newton’s Philosophiae Naturalis Principia
Mathematica, a seminal work that laid the foundation of what is now known
as classical mechanics. After Newton, progressive reformulations and ex-
tensions of his theory managed to generalise it ever more, including Eu-
ler’s study of rigid bodies, the Lagrangian reformulation using calculus of
variations and the subsequent Hamiltonian reinterpretation of Lagrangian
mechanics.
This thesis presents a formulation in the language of Riemannian geometry
of Newtonian mechanics and Euler’s expansion of the theory to rigid bodies.
The beauty of this formulation lies in observing that all phenomena of classi-
cal mechanics can be understood to be objects of the theory of Riemannian
geometry, wherein differential geometric concepts can be applied to describe
the motion of systems of particles. Readers are assumed to have knowledge
of linear algebra, fundamental differential equations, differential geometry
and basic Riemannian geometry.
The thesis is divided in four chapters that have a similar structure: first the
theory is developed and then it is applied to a particular or special case.
The first chapter introduces the basic definitions to study mechanics using
Riemannian geometry and solves the Kepler problem. The second chapter
considers constraints imposed on the position of particles of a system and
analyses the double pendulum as an instance of this phenomenon. Chapter
three turns to rigid bodies and the Euler equations governing their motion
in the absence of external forces. In chapter four constraints on the possible
directions of motion are contemplated, another type of restriction that can be
imposed on a system of particles, and the motion of an ice skate is studied
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as an example thereof.
The present work relies heavily on chapter 5 of the book An Introduction to
Riemannian Geometry by Leonor Godinho and José Natário. Accordingly, the
notation tries to be consistent with that of the book.
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Chapter 1

Mechanical Systems

In this chapter we introduce the first notions essential to studying the me-
chanics of a given system (of particles, for example) within the Riemannian
framework. Once we have the necessary tools, we will apply them to an
example: the Kepler problem, a special case of the two-body problem.

1.1 Basic Definitions

In order to start describing the motions (or mechanics) of a system of particles
in a given ambient space (usually Rn for some n > 0), we need some form of
description of whatever is guiding these motions. This is where Newton’s
Second Law comes in, which, for x : (a, b) ⊆ R → Rn the position of a
particle in Rn, stipulates that

mẍ = F(x, ẋ),

where F is an external force acting upon the particle. This is a second order
ODE, and it is the starting point of the derivation of the equation of motion
of the particle, i.e. the study of the mechanics of the particle.
We would therefore like to generalise Newton’s Second Law and think about
it using the language of Riemannian Geometry. To this end, we introduce the
following definitions.

Definition 1.1 (Mechanical system) A mechanical system is a triple
(M, ⟨·, ·⟩, F ), where:

1. M is a differentiable manifold, called the configuration space;

2. ⟨·, ·⟩ is a Riemannian metric on M yielding the mass operator µ : TM →
T∗M, defined by

µ(v)(w) = ⟨v, w⟩

for all v, w ∈ Tp M and p ∈ M;
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1.1. Basic Definitions

3. F : TM → T∗M is a differentiable map satisfying F (Tp M) ⊆ T∗
p M for all

p ∈ M, called the external force.

A motion of the mechanical system is a solution c : (a, b) ⊆ R → M of the Newton
equation

µ

(
Dċ
dt

)
= F (ċ) (1.1)

Remark 1.2 In the language of Riemannian geometry, whenever the mass of a
system needs to be considered, as in the Newton equation, the mass operator µ is
used.

Remark 1.3 Note that for (M, ⟨·, ·⟩) a Riemannian manifold and c : (a, b) ⊆ R →
M a geodesic on the manifold, we have that

Dċ
dt

= 0

⇔ µ

(
Dċ
dt

)
= 0.

Therefore, we can think of the geodesics of (M, ⟨·, ·⟩) as being the motions of the
mechanical system which has configuration space M, mass operator ⟨·, ·⟩ and van-
ishing external force F = 0, i.e. (M, ⟨·, ·⟩, 0). And this is the mechanical system
that describes a free particle on M.

Definition 1.4 Let (M, ⟨·, ·⟩,F ) be a mechanical system. The external force F is
said to be:

1. positional if F (v) depends only on π(v), where π : TM → M is the natural
projection;

2. conservative if there exists U : M → R such that F (v) = −(dU)π(v) for
all v ∈ TM (the function U is called a potential energy).

A mechanical system whose exterior force is conservative is called a conservative
mechanical system.

To conclude the section of basic definitions, we introduce the generalised
notion of the kinetic energy. For a particle moving in Rn, it is a function of its
mass and its velocity in Rn. The generalisation is a function on the tangent
bundle, and, as in the Newton equation, the mass component comes into
the equation via the mass operator µ. This generalised kinetic energy will
prove essential in the computation of the equations of motion of mechanical
systems.
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1.2. The Newton Equation in Local Coordinates

Definition 1.5 Let (M, ⟨·, ·⟩,F ) be a mechanical system. The kinetic energy is
the differentiable map K : TM → R given by

K(v) =
1
2
⟨v, v⟩

for all v ∈ TM.

1.2 The Newton Equation in Local Coordinates

As is commonly the case with differentiable manifolds, it is convenient to
work with local coordinates. In particular, we are interested in expressing
the Newton equation in local coordinates, as it is the starting point for our
derivation of the equations of motion.

Proposition 1.6 Let (M, ⟨·, ·⟩,F ) be a mechanical system. If (x1, ..., xn) are local
coordinates on M and (x1, ..., xn, v1, ..., vn) are the local coordinates induced on TM,
then

µ

(
Dċ
dt

(t)
)
=

n

∑
i=1

[
d
dt

(
∂K
∂vi (x(t), ẋ(t))

)
− ∂K

∂xi (x(t), ẋ(t))
]

dxi.

In particular, if F = −dU is conservative then the equations of motion are

−∂U
∂xi (x(t)) =

d
dt

(
∂K
∂vi (x(t), ẋ(t))

)
− ∂K

∂xi (x(t), ẋ(t))

for all i ∈ {1, ..., n}.

Proof Let p ∈ M, φ a chart of M around p such that x := φ(p) = (x1, ..., xn).
For v := (v1, ..., vn) ∈ Tp M

(
i.e. v = ∑n

i=1 vi ∂
∂φi = ∑n

i=1 vi ∂
∂xi

)
, for gij :=

〈
∂

∂xi , ∂
∂xj

〉
,

the kinetic energy K at the element of TM whose local coordinates are given
by (x, v) is

K =
1
2
⟨v, v⟩ = 1

2

n

∑
i,j=1

〈
∂

∂xi ,
∂

∂xj

〉
vivj =

1
2

n

∑
i,j=1

gijvivj

⇒ ∀i ∈ {1, ..., n} :
∂K
∂vi =

∂

∂vi

(
1
2

n

∑
j,k=1

gjkvjvk

)
=

n

∑
j=1

gijvj.

If v = ẋ = ẋ(t), x = x(t) and i ∈ {1, ..., n} we therefore get

d
dt

(
∂K
∂vi (x, ẋ)

)
=

d
dt

(
n

∑
j=1

gij(x)ẋj

)
=

n

∑
j,k=1

∂gij(x)
∂xk ẋj ẋk +

n

∑
j=1

gij(x)ẍj. (1.2)
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1.2. The Newton Equation in Local Coordinates

We further get

∂K
∂xi (x, ẋ) =

1
2

n

∑
j,k=1

∂gjk(x)
∂xi ẋj ẋk. (1.3)

By (1.2) and (1.3), we get

d
dt

(
∂K
∂vi (x, ẋ)

)
− ∂K

∂xi (x, ẋ)

=
n

∑
j,k=1

(
∂gij(x)

∂xk − 1
2

∂gjk(x)
∂xi

)
ẋj ẋk +

n

∑
j=1

gij(x)ẍj. (1.4)

Now, we would like to compute ∑n
j=1 gij(x)

(Dċ
dt

)j
for i, j ∈ {1, ..., n}, where

ċ = ċ(t). Our goal is to show that ∑n
j=1 gij(x)

(Dċ
dt

)j
= (1.4). If we can show

this, then the statement will follow, since for all v ∈ Tp M
(

v = ∑n
i=1 vi ∂

∂xi

)
:

µ

(
Dċ
dt

)
(v) =

〈
Dċ
dt

, v
〉

=
n

∑
i,j=1

gij

(
Dċ
dt

)j

vi

=
n

∑
i,j=1

gij

(
Dċ
dt

)j

dxi(v) =

(
n

∑
i,j=1

gij

(
Dċ
dt

)j

dxi

)
(v).

To this end, let us recall the explicit definition of the Christoffel symbols,
which can be derived from their implicit definition:

Γj
kl =

1
2

n

∑
m=1

gjm
(

∂glm

∂xk +
∂gkm

∂xl − ∂gkl

∂xm

)
,

where gjm for j, m ∈ {1, ..., n} are the individual entries of the inverse matrix
of the matrix whose individual entries are given by gij for i, j ∈ {1, ..., n},
meaning that ∑n

j=1 gijgjm = δim. Therefore,

n

∑
j=1

gijΓ
j
kl =

1
2

n

∑
j,m=1

gijgjm
(

∂glm

∂xk +
∂gkm

∂xl − ∂gkl

∂xm

)
=

1
2

(
∂gli

∂xk +
∂gki

∂xl − ∂gkl

∂xi

)
. (1.5)

We would like to rewrite Dċ
dt with the aid of the Christoffel symbols, which we

can do by using the following lemma, which we will state without proving it,
but noting what is needed for its proof.
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1.2. The Newton Equation in Local Coordinates

Lemma 1.7 Let M be a smooth n-dimensional manifold, let ∇ be a connection on
TM. Let (A1, ..., An) be a moving frame on an open set U ⊆ M. For vector fields
X = ∑n

i=1 Xi Ai and Y = ∑n
i=1 Yi Ai on U,

∇XY =
n

∑
j=1

(
X(Y j) +

n

∑
k,l=1

XkYlΓj
kl

)
Aj,

where Γj
kl ∈ C∞(U) for all j, k, l ∈ {1, ..., n} are the Christoffel symbols of ∇ with

respect to (A1, ..., An).

The above lemma can be proved by combining the two defining properties
of a connection, together with the definition of the Christoffel symbols. It
corresponds to Lemma 1.6 in [2], where its proof can be found.
To apply the above lemma to our case, we can take a smooth vector field that
coincides with ċ in the domain of definition of ċ. Also, we note that φ ◦ c = x
and we identify c with x (instead of explicitly using the chart φ).

Remark 1.8 In order to be fully rigorous, we would have to work with an analogous
lemma to the one we are using. The analogous lemma is for connections along smooth
maps between manifolds induced by connections on the manifolds. Further, we would
need to identify the basis elements of the tangent spaces via the required composition
with c, instead of identifying them directly.

Using the lemma, we get

Dċ
dt

=
n

∑
j=1

(
c̈j +

n

∑
k,l=1

ċk ċlΓj
kl

)
∂

∂xj =
n

∑
j=1

(
ẍj +

n

∑
k,l=1

ẋk ẋlΓj
kl

)
∂

∂xj (1.6)

⇒
(

Dċ
dt

)j

=

(
ẍj +

n

∑
k,l=1

Γj
kl ẋ

k ẋl

)
. (1.7)

Finally, by combining (1.5) and (1.7) (and writing gij = gij(x)) we get

n

∑
j=1

gij

(
Dċ
dt

)j

=
n

∑
j=1

gij

(
ẍj +

n

∑
k,l=1

Γj
kl ẋ

k ẋl

)
=

n

∑
j=1

gij ẍj +
n

∑
j,k,l=1

gijΓ
j
kl ẋ

k ẋl

=
n

∑
j=1

gij ẍj +
1
2

n

∑
k,l=1

(
∂gli

∂xk +
∂gki

∂xl − ∂gkl

∂xi

)
ẋk ẋl

=
n

∑
j=1

gij ẍj +
n

∑
k,l=1

(
∂gli

∂xk − 1
2

∂gkl

∂xi

)
ẋk ẋl = (1.4). □
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1.3. The Kepler Problem

1.3 The Kepler Problem

1.3.1 Solving the Kepler Problem

With the few definitions introduced and the expression of the Newton equa-
tion in local coordinates, we can already find a solution to the Kepler problem
in the formalism of Riemannian geometry.

The Kepler problem (in appropriate units) consists in determining the motion
of a particle of mass m = 1 in the central potential

U(r, θ) = −1
r

.

We will work our way to the solution by proving two intermediate claims.

Claim 1.9 The equations of motion of the corresponding mechanical system can be
integrated to

r2θ̇ = pθ ; (1.8)

ṙ2

2
+

p2
θ

2r2 − 1
r
= E, (1.9)

where E and pθ are integration constants.

Remark 1.10 The constant pθ corresponds to the angular momentum of the particle
(observe that its mass m = 1), whereas the constant E is the total energy of the
particle, as the sum of its kinetic and potential energies (cf. (1.10)). Therefore, the
claim implies that both the angular momentum and the total energy of the system
are conserved quantities.

Proof In polar coordinates, {
x = r cos θ

y = r sin θ
,

the Euclidean metric is

⟨·, ·⟩ = dx ⊗ dx + dy ⊗ dy = dr ⊗ dr + r2dθ ⊗ dθ.

Therefore, the kinetic energy is

K(r, θ, vr, vθ) =
1
2
[(vr)2 + r2(vθ)2], (1.10)

and we get the partial derivatives of K

∂K
∂vr = vr;

∂K
∂vθ

= r2vθ ;
∂K
∂r

= r(vθ)2;
∂K
∂θ

= 0.

6



1.3. The Kepler Problem

By Proposition 1.6, the equations of motion are

d
dt
(ṙ)− rθ̇2 = − 1

r2 ; (1.11)

d
dt
(r2θ̇) = 0. (1.12)

By setting pθ := r2θ̇ (which by equation (1.12) is constant as a function of
time) we readily obtain the first desired equation (1.8). To obtain the other
one, let us observe that (1.11) is equivalent to

ṙdṙ −
p2

θ

r3 dr = − 1
r2 dr,

which then integrates to

ṙ2

2
+

p2
θ

2r2 =
1
r
+ E,

where E is an integration constant. □

Claim 1.11 u(t) = 1
r(t) satisfies the linear ODE

d2u
dθ2 + u =

1
p2

θ

. (1.13)

Proof Note that d
dθ = 1

θ̇
d
dt . Together with (1.8) and (1.12), we get

d2

dθ2 (u) =
d2

dθ2

(
1
r

)
=

d
dθ

[
1
θ̇

d
dt

(
1
r

)]
=

d
dθ

(
− ṙ

r2θ̇

)
= −1

θ̇

d
dt

(
ṙ
pθ

)
= − r̈

pθ θ̇
= − pθ r̈

p2
θ θ̇

. (1.14)

Using equations (1.8), (1.11) and (1.14) we conclude.

d2u
dθ2 +u =

−pθ r̈
p2

θ θ̇
+

1
r
=

−r2θ̇r̈
p2

θ θ̇
+

r3θ̇3

p2
θ θ̇

=
−r2(r̈ − rθ̇2)

p2
θ

=
−r2 (− 1

r2

)
p2

θ

=
1
p2

θ

. □

Claim 1.12 Assume that the pericenter (the point in the particle’s orbit closest to
the center of attraction r = 0) occurs at θ = 0. Then the equation of the particle’s
trajectory is

r =
p2

θ

1 + ε cos θ
, (1.15)

where

ε =
√

1 + 2p2
θE. (1.16)

7



1.3. The Kepler Problem

Remark 1.13 (1.15) is the equation of a conic section with eccentricity ε in polar
coordinates.

Proof We first show that u = 1
r where r is given by (1.15) is a solution to

equation (1.13):

d2

dθ2

(
1 + ε cos θ

p2
θ

)
+

1 + ε cos θ

p2
θ

= − ε cos θ

p2
θ

+
1 + ε cos θ

p2
θ

=
1
p2

θ

.

That our solution u of equation (1.13) is unique follows from the Picard-
Lindelöf Theorem, where the necessary conditions to apply the Theorem
(especially the Lipschitz continuity) readily follow from the structure of (1.13)
(note that we need the initial condition that the pericenter occurs at r = 0).
We then proceed to derive the value of ε by inserting (1.15) into (1.9):

E =
p4

θε2θ̇2 sin2 θ

2(1 + ε cos θ)4 +
(1 + ε cos θ)2

2p2
θ

− 1 + ε cos θ

p2
θ

=
p6

θε2θ̇2 sin2 θ + (1 + ε cos θ)5(−1 + ε cos θ)

2p2
θ(1 + ε cos θ)4

.

The above equality must hold for all values of θ, and so it must hold in
particular for θ = 0:

E =
(ε + 1)(ε − 1)

2p2
θ

⇔ 1 + 2p2
θE = ε2.

We take the positive value of the square root for ε due to the initial condition
that the pericenter occurs at θ = 0, which implies that the value of r is
minimal at θ = 0. □

1.3.2 An Interesting Manifold

Having found a solution to the Kepler problem, we consider the manifold
(M, g) := (R2 \ {(0, 0)}, ⟨·, ·⟩), where

⟨·, ·⟩ = 1√
x2 + y2

(dx ⊗ dx + dy ⊗ dy) =
1
r

dr ⊗ dr + rdθ ⊗ dθ, (1.17)

the final form being in polar coordinates. This manifold, as we will show, is
isometric to the surface M̄ of a cone with aperture π

3 . If we then characterise
its geodesics, we will find that they have a similar structure to the equations
of motion in the Kepler problem.
Let

M̄ :=

{(
r
2

cos θ,
r
2

sin θ,

√
3

2
r

)
: r > 0, θ ∈ [0, 2π)

}
;

8



1.3. The Kepler Problem

ḡ := dx ⊗ dx + dy ⊗ dy + dz ⊗ dz. (1.18)

Let f : M → M̄ be defined by f (r cos θ, r sin θ) =
√

r(cosθ, sinθ,
√

3).

Claim 1.14 f is an isometry from (M, g) to (M̄, ḡ).

Proof We must show that

1. f is an immersion.

2. f is a diffeomorphism.

3. f ∗ ḡ = g, where f ∗ ḡ is the pull-back metric on M.

1. f is an immersion:
For p = (r cos θ, r sin θ) ∈ M, the matrix form of d fp is

d fp =


cos θ
2
√

r −
√

r sin θ
sin θ
2
√

r

√
r cos θ

√
3

2
√

r 0

 , (1.19)

which has rank 2, and so is injective.

2. f is a diffeomorphism:
That f is bijective is quite straightforward: the injectivity is clear, for
q ∈ M̄ it holds that q =

(
r
2 cos θ, r

2 sin θ,
√

3
2 r
)

for some r > 0 and

θ ∈ [0, 2π), and so, by taking p =
(

r2

4 cos θ, r2

4 sin θ
)
∈ M, we get that

f (p) = q. Also quite straightforwardly (or recalling how we showed
that f is surjective), we see that f−1 : M̄ → M must be given by
f−1

(
r
2 cos θ, r

2 sin θ,
√

3
2 r
)
=
(

r2

4 cos θ, r2

4 sin θ
)

. We then note that both

f and f−1 are smooth as the composition of smooth functions in both
variables, meaning that f is a diffeomorphism.

3. f ∗ ḡ = g, where f ∗ ḡ is the pull-back metric on M:
Let us recall that for v, w ∈ Tp M for p ∈ M,

( f ∗ ḡ)p(v, w) = ḡ f (p)(d fp(v), d fp(w)).

Our goal is to show that this metric is equal to g on M:
Let v, w ∈ Tp M for p ∈ M, v = vr

∂
∂r + vθ

∂
∂θ , w = wr

∂
∂r + wθ

∂
∂θ . It

9



1.3. The Kepler Problem

holds, by (1.17), (1.18) and (1.19):

gp(v, w) = gp

(
vr

∂

∂r
+ vθ

∂

∂θ
, wr

∂

∂r
+ wθ

∂

∂θ

)
= vrwrgp

(
∂

∂r
,

∂

∂r

)
+ vθwθ gp

(
∂

∂θ
,

∂

∂θ

)
= vrwr

1
r
+ vθwθr

=

〈
vr

1
2
√

r

cos θ
sin θ√

3

+ vθ

√
r

− sin θ
cos θ

0

 ,

wr
1

2
√

r

cos θ
sin θ√

3

+ wθ

√
r

− sin θ
cos θ

0

〉
= ḡ f (p)(d fp(v), d fp(w)) □

Now, let us characterise the geodesics of (M, g), i.e. the motions of (M, g, 0)
(of course, in polar coordinates): The kinetic energy of the mechanical system
is

K(r, θ, ṙ, θ̇) =
1
2

(
1
r

ṙ2 + rθ̇2
)

⇒ ∂K
∂r

=
1
2

(
− ṙ2

r2 + θ̇2
)

;
∂K
∂θ

= 0;
∂K
∂ṙ

=
ṙ
r

;
∂K
∂θ̇

= rθ̇,

which, by Proposition (1.6) implies that the equations of motion are:

d
dt

(
ṙ
r

)
+

1
2

(
ṙ2

r2 − θ̇2
)
= 0

⇔ r̈r − ṙ2

2
− r4θ̇2

2r2 = 0; (1.20)

d
dt
(rθ̇) = 0. (1.21)

To conclude, we note the similar structure of equations (1.9) and (1.20),
especially when substituting equation (1.8) into (1.9). We therefore ask
whether there are solutions to the Kepler problem that are also geodesics of
the surface of a cone with aperture π

3 .
If such a solution were to exist, it would have to satisfy equations (1.12) and
(1.21), implying that r would have to be constant, and therefore θ̇ would also
have be constant (by equation (1.21)). Observing that r cannot be 0, and that
r = const. ⇒ 0 = ṙ = r̈, equation (1.20) would imply that θ̇ = 0. Equation
(1.11) would then yield a contradiction, as we would have

0 = − 1
r2 .

10



1.3. The Kepler Problem

Therefore, there are no solutions to the Kepler problem that are also geodesics
of M.
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Chapter 2

Holonomic Constraints

Oftentimes, we have a system comprised of several particles that are not able
to move freely in the whole configuration space, but are instead restricted
to motions within a smaller subspace. This is the case of a pendulum or a
particle that can only move along a surface in R3, for instance. Holonomic
constraints are the notion we introduce to account for these restrictions.
Further, we need an additional term in the Newton equation, an extra force.
This is the so called reaction force, and it is responsible for enforcing the
restrictions on the motion of a system. In the case of a pendulum, for instance,
the reaction force corresponds to the tension force of the rod.
In this chapter, we present the necessary concepts to account for these
constraints, and we study the example of the double pendulum, one of the
most prominent chaotic systems.

2.1 Holonomic Constraints and Reaction Forces

Definition 2.1 (Holonomic constraint) A holonomic constraint on a mechan-
ical system (M, ⟨·, ·⟩,F ) is a submanifold N ⊆ M with dim(N) < dim(M). A
curve c : (a, b) ⊆ R → M is said to be compatible with N if c(t) ∈ N for all
t ∈ (a, b).

The modification of the Newton equation (1.1) to account for the constraint
is achieved by introducing the reaction force.

Definition 2.2 (Reaction force) A reaction force on a mechanical system with
holonomic constraint (M, ⟨·, ·⟩,F , N) is a map R : TN → T∗M satisfying
R(TpN) ⊆ T∗

p M for all p ∈ M such that, for each v ∈ TN, there is a solu-
tion c : (a, b) ⊆ R → N of the generalised Newton equation

µ

(
Dċ
dt

)
= (F +R)(ċ)

12



2.2. The Double Pendulum

with initial condition ċ(0) = v.

The definition of a reaction force is by no means restrictive insofar as it allows
for many different forces to be a reaction force on a mechanical system.
However, we would like to find a particular reaction force with which to
work. The choice is facilitated by the following definition and subsequent
theorem.

Definition 2.3 A reaction force on a mechanical system with holonomic constraint
(M, ⟨·, ·⟩,F , N) is said to be perfect, or to satisfy the d’Alembert principle, if

µ−1(R(v)) ∈ (TpN)⊥

for all v ∈ TpN and p ∈ N.

The variation of the kinetic energy of a solution of the generalised Newton
equation is

dK
dt

=

〈
Dċ
dt

, ċ
〉

= µ

(
Dċ
dt

)
(ċ) =

F (ċ)(ċ) +R(ċ)(ċ) = F (ċ)(ċ) +
〈

µ−1(R(ċ)), ċ
〉

. (2.1)

Since for any motion compatible with the constraint we have that ċ(t) ∈
Tc(t)N for all t ∈ (a, b) ⊆ R, we have that the last term in the above equation
will vanish if R is a perfect reaction force. In other words, a perfect reaction
force neither contributes nor deducts kinetic energy to a particle whose
motion is compatible with the holonomic constraint. In the case of a single
pendulum, for instance, a perfect reaction force corresponds to a tension
force that is radial along the rod. Since it is radial, there is no damping.

Theorem 2.4 Given any mechanical system with holonomic constraint (M, ⟨·, ·⟩,F ),
there exists a unique reaction force R : TN → T∗M satisfying the d’Alembert prin-
ciple.

The proof can be found in Section 2 of Chapter 5 of [1].

2.2 The Double Pendulum

Having introduced the necessary concepts to account for the restriction on
the position of the particles of a given system, we want to look at an example,
the double pendulum, and compute its equations of motion. As stated in
Definition 2.1, this restriction on the position of the particles will amount to
defining an appropriate submanifold. It is noteworthy that we will be able
to compute the equations of motion, however, without the need of explicitly
computing the reaction force.

13



2.2. The Double Pendulum

Figure 2.1: Double pendulum

2.2.1 Introduction and Equations of Motion

The double pendulum of lengths ℓ1, ℓ2 is the mechanical system defined by
two particles of masses m1, m2 moving in R2 subject to a constant gravitational
acceleration g and the holonomic constraint

N = {(u1, u2) ∈ R4 = R2 × R2 : ∥u1∥ = ℓ1, ∥u1 − u2∥ = ℓ2}

We use the parametrisation ψ : (−π, π)× (−π, π) → N of the holonomic
constraint N given by

ψ(θ, φ) = (ℓ1 sin θ,−ℓ1 cos θ, ℓ1 sin θ + ℓ2 sin φ,−ℓ1 cos θ − ℓ2 cos φ)

to write the equations of motion for the double pendulum. Set p := ψ(θ, φ).
We want to use Proposition 1.6, and so we need to compute the kinetic energy
K of the system. This total kinetic energy is the sum of the individual kinetic
energies of both particles. To compute the kinetic energy of each particle, let
us set (x, y, z, w) := ψ(θ, φ). Then the position of the first particle is given by
(x, y) and that of the second by (z, w). Let ∂

∂θ and ∂
∂φ be the basis vectors of

TpN induced by the local coordinates (θ, φ) on the tangent space. Further,
let v = vθ ∂

∂θ + vφ ∂
∂φ ∈ TpN be the total velocity of the system. Then the

velocities v1 and v2 of each particle are the orthogonal projections of v to the
first and second R2-factors of R4 = R2 × R2, respectively. The expressions of
∂
∂θ and ∂

∂φ in terms of the standard basis of R4
{

∂
∂x , ∂

∂y , ∂
∂z , ∂

∂w

}
are given by

14



2.2. The Double Pendulum

the columns of the matrix representation of the total derivative of ψ at (θ, φ):

Dψ(θ, φ) =

(
∂

∂θ
(p),

∂

∂φ
(p)
)
=


ℓ1 cos θ 0
ℓ1 sin θ 0
ℓ1 cos θ ℓ2 cos φ
ℓ1 sin θ ℓ2 sin φ

 .

Therefore, the velocities v1 and v2 in terms of the standard basis of R4 are
given by

v1 = vθ

(
ℓ1 cos θ

∂

∂x
+ ℓ1 sin θ

∂

∂y

)
;

v2 = vθ

(
ℓ1 cos θ

∂

∂z
+ ℓ1 sin θ

∂

∂w

)
+ vφ

(
ℓ2 cos φ

∂

∂z
+ ℓ2 sin φ

∂

∂w

)
.

Further, note that ⟨·, ·⟩ on TpN for any p ∈ N is just the restriction to TpN ⊆
R4 of the standard metric on R4. Since

{
∂

∂x , ∂
∂y , ∂

∂z , ∂
∂w

}
is an orthonormal

basis, the individual kinetic energies K1 and K2 are

K1 =
1
2

m1⟨v1, v1⟩ = 1
2

m1(vθ)2ℓ2
1;

K2 =
1
2

m2⟨v2, v2⟩ = 1
2

m2[(vθ)2ℓ2
1 + (vφ)2ℓ2

2 + 2vθvφℓ1ℓ2 cos (θ − φ)],

resulting in the total kinetic energy

K = K1 + K2

=
1
2
[(m1 + m2)(vθ)2ℓ2

1 + m2(vφ)2ℓ2
2] + m2vθvφℓ1ℓ2 cos (θ − φ).

Then the partial derivatives are

∂K
∂θ

= −m2vθvφℓ1ℓ2 sin (θ − φ);
∂K
∂φ

= m2vθvφℓ1ℓ2 sin (θ − φ);

∂K
∂vθ

= (m1 + m2)vθℓ2
1 + m2vφℓ1ℓ2 cos (θ − φ);

∂K
∂vφ

= m2vφℓ2
2 + m2vθℓ1ℓ2 cos (θ − φ),

15



2.2. The Double Pendulum

and the expressions that appear on the right hand side of Proposition 1.6 are,
therefore, given by (where we write θ̇ = vθ , φ̇ = vφ and θ̈ = dvθ

dt , φ̈ = dvφ

dt )

d
dt

(
∂K
∂vθ

)
− ∂K

∂θ
= (m1 + m2)θ̈ℓ

2
1 + m2 φ̈ℓ1ℓ2 cos (θ − φ)

− m2 φ̇ℓ1ℓ2 sin (θ − φ)(θ̇ − φ̇) + m2θ̇ φ̇ℓ1ℓ2 sin (θ − φ)

= (m1 + m2)θ̈ℓ
2
1 + m2 φ̈ℓ1ℓ2 cos (θ − φ) + m2 φ̇2ℓ1ℓ2 sin (θ − φ); (2.2)

d
dt

(
∂K
∂vφ

)
− ∂K

∂φ
= m2 φ̈ℓ2

2 + m2θ̈ℓ1ℓ2 cos (θ − φ)

− m2θ̇ℓ1ℓ2 sin (θ − φ)(θ̇ − φ̇)− m2θ̇ φ̇ℓ1ℓ2 sin (θ − φ)

= m2 φ̈ℓ2
2 + m2θ̈ℓ1ℓ2 cos (θ − φ)− m2θ̇2ℓ1ℓ2 sin (θ − φ). (2.3)

The potential energy U : N → R of the system is given by

U(x, y, z, w) := m1gy + m2gw = −m1gℓ1 cos θ − m2g(ℓ1 cos θ + ℓ2 cos φ),

implying that the left hand side of the equations in Proposition 1.6 are given
by

−∂U
∂θ

= −(m1 + m2)gℓ1 sin θ; (2.4)

−∂U
∂φ

= −m2gℓ2 sin φ. (2.5)

By combining equations (2.4) and (2.2), (2.5) and (2.3), we get the equations
of motion of the double pendulum

− ∂U
∂θ

=
d
dt

(
∂K
∂vθ

)
− ∂K

∂θ

⇔ −(m1 + m2)g sin θ = (m1 + m2)θ̈ℓ1

+ m2 φ̈ℓ2 cos (θ − φ) + m2 φ̇2ℓ2 sin (θ − φ); (2.6)

− ∂U
∂φ

=
d
dt

(
∂K
∂vφ

)
− ∂K

∂φ

⇔ −g sin φ = φ̈ℓ2 + θ̈ℓ1 cos (θ − φ)− θ̇2ℓ1 sin (θ − φ). (2.7)
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2.2. The Double Pendulum

2.2.2 Linearisation of the Equations of Motion

We conclude this example by linearising the equations of motion around
θ = φ = 0. We do this by the small-angle approximation sin θ ≈ θ and
cos θ ≈ 1 − θ2

2 ≈ 1. We can impose the initial conditions θ̇0 := θ̇(0) = 0 and
φ̇0 := φ̇(0) = 0, which imply θ̇2 ≈ 0 and φ̇2 ≈ 0. We then get
(2.6) →

−(m1 + m2)gθ = (m1 + m2)θ̈ℓ1 + m2 φ̈ℓ2; (2.8)

(2.7) →

−gφ = φ̈ℓ2 + θ̈ℓ1. (2.9)

The normal modes are the solutions that satisfy the relationship φ = kθ for
k ∈ R a constant. Setting φ = kθ and simplifying some of the terms on both
sides implies (assuming that kℓ2 ̸= −ℓ1) that

(2.9) ⇔ θ̈ = − gk
kℓ2 + ℓ1

θ, (2.10)

which, in turn, implies by substituting θ̈ into equation (2.8) that

− (m1 + m2)gθ = −[(m1 + m2)ℓ1 + m2ℓ2k]
gk

kℓ2 + ℓ1
θ

⇔ (m1 + m2)(kℓ2 + ℓ1) = (m1 + m2)ℓ1k + m2ℓ2k2

⇔ m2ℓ2k2 + (m1 + m2)(ℓ1 − ℓ2)k − ℓ1(m1 + m2) = 0

⇒ k =
−(m1 + m2)(ℓ1 − ℓ2)±

√
(m1 + m2)2(ℓ1 − ℓ2)2 + 4(m1 + m2)ℓ1ℓ2m2

2m2ℓ2

=
ℓ2 − ℓ1 ±

√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2

2M2ℓ2
,

where M2 := m2
m1+m2

.

Remark 2.5 In the expression for k, the discriminant in the square root will always
be bigger than (ℓ2 − ℓ1)

2, implying that k will be positive by taking the sum (+) in
the numerator and negative with the subtraction (−); this corresponds, respectively,
to the oscillations of the individual pendulums being in phase or in opposite phase
(reflected explicitly by the fact that φ = kθ).

Finally, we can find the period T of the normal modes as a function of k. By
equation (2.10), we have (recall that we set θ̇0 = 0)

θ = θ0 cos ωt for θ0 ∈ R and ω =

√
gk

kℓ2 + ℓ1

17



2.2. The Double Pendulum

⇒ T =
2π

ω
= 2π

√
kℓ2 + ℓ1

gk
= 2π

√
ℓ2

g
+

ℓ1

gk
.

Claim 2.6 T is well-defined, and the assumption made for equation (2.10) that
kℓ2 ̸= −ℓ1 holds.

Proof For the positive value k+ of k (where we take the addition in the
numerator), both quantities in the square root are positive, and so T is
well-defined. Also, k+ is positive, and so are ℓ1 and ℓ2, and so the second
statement of the claim always holds.
For the negative value k− of k (where we take the subtraction in the numera-
tor), we have to show that

ℓ2

g
+

ℓ1

gk−
> 0 ⇔ ℓ2 > − ℓ1

k−
. (2.11)

From this inequality will also follow the second statement of the claim. We
prove the inequality (2.11):

ℓ1

k−
=

2M2ℓ1ℓ2

ℓ2 − ℓ1 −
√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2

=
2M2ℓ1ℓ2(ℓ2 − ℓ1 +

√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2)

(ℓ2 − ℓ1)2 − [(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2]

= − ℓ2 − ℓ1 +
√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2

2
,

and, therefore,

ℓ2 > − ℓ1

k−
⇔ ℓ2 >

ℓ2 − ℓ1 +
√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2

2

⇔ ℓ1 + ℓ2 >
√
(ℓ2 − ℓ1)2 + 4ℓ1ℓ2M2 ⇔ 1 > M2,

which holds because, by definition, M2 = m2
m1+m2

∈ (0, 1). □

Remark 2.7 The result for T implies that the period of oscillation of a double
pendulum is bigger if its pendulums oscillate in phase than if they oscillate in
opposite phase.
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Chapter 3

Rigid Body

In this chapter, we turn our attention to rigid bodies and to several concepts
that help characterise them. We often focus on properties of a freely moving
rigid body, a system known as the Euler Top. We also present some results
involving symmetries and observable effects, including the Poinsot Theorem.

3.1 From the Basics to the Geodesics of the Euler Top

3.1.1 Rigid Bodies and Angular Momentum

In its discrete form, a rigid body corresponds to a system of k particles of
masses m1, ..., mk connected by massless rods in such a way that their mutual
distances remain constant. If we assume that one of the particles is fixed at
the origin, the rigid body can be described by the holonomic constraint

N = {(x1, ..., xk) ∈ R3k : x1 = 0 and ∥xi − xj∥ = dij for 1 ≤ i < j ≤ k}.

If at least three particles are not collinear, N is a manifold diffeomorphic to
O(3). To describe a motion in N, we observe that given a point (ξ1, ..., ξk) ∈
N : ∀(ξ̄1, ..., ξ̄k) ∈ N ∃! S ∈ O(3) such that (ξ̄1, ..., ξ̄k) = (Sξ1, ..., Sξk). There-
fore, a motion in N can be characterised by a curve S : (a, b) ⊆ R → O(3).
We further observe that O(3) has two diffeomorphic connected components,
and that a motion necessarily has to happen in either of the connected
components, meaning that we can choose SO(3) instead of O(3) as our con-
figuration space. The generalisation of the discrete case to a continuum rigid
body gives rise to the following definition.

Definition 3.1 (Rigid body with a fixed point) A rigid body with a fixed
point is any mechanical system of the form (SO(3), ⟨⟨·, ·⟩⟩,F ), with

⟨⟨V, W⟩⟩ :=
∫

R3
⟨Vξ, Wξ⟩ dm
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for all V, W ∈ TSSO(3) and all S ∈ SO(3), where ⟨·, ·⟩ is the usual Euclidean inner
product on R3 and m (called the mass distribution of the reference configuration)
is a positive finite measure on R3, not supported on any straight line through the
origin, and satisfying

∫
R3 ∥ξ∥2 dm < +∞.

We are interested in studying the geodesics of (SO(3), ⟨⟨·, ·⟩⟩), i.e. the equa-
tions of motion of (SO(3), ⟨⟨·, ·⟩⟩, 0), a mechanical system known as the Euler
top. We introduce the following quantity as is turns out to be very useful for
their derivation.

Definition 3.2 (Angular momentum) The angular momentum of a rigid body
whose motion is described by S : (a, b) ⊆ R → SO(3) is the vector

p(t) :=
∫

R3
[(S(t)ξ)× (Ṡ(t)ξ)] dm

(where × is the usual cross product on R3).

Theorem 3.3 If S : (a, b) ⊆ R → SO(3) is a geodesic of (SO(3), ⟨⟨·, ·⟩⟩), then
p(t) is constant.

The proof can be found in Section 3 of Chapter 5 of [1]. The proof in the
book uses the following lemma without proving it, which we will do.

Lemma 3.4 There exists a linear isomorphism Γ : so(3) → R3 such that

Aξ = Γ(A)× ξ

for all ξ ∈ R3 and A ∈ so(3). Moreover, Γ([A, B]) = Γ(A) × Γ(B) for all
A, B ∈ so(3) (i.e. Γ is a Lie algebra isomorphism between so(3) and (R3,×)).

Proof Let A ∈ so(3), i.e. A =

 0 a b
−a 0 c
−b −c 0

 for a, b, c ∈ R.

Let Γ : so(3) → R3 be given by Γ(A) =

−c
b
−a

. Then

Aξ = A

ξ1
ξ2
ξ3

 = ξ1

 0
−a
−b

+ ξ2

 a
0
−c

+ ξ3

b
c
0


=

−c
b
−a

×

ξ1
ξ2
ξ3

 = Γ(A)× ξ

That Γ is both injective and surjective follows very easily from its definition.
Its linearity is also pretty straightforward, since for any λ ∈ R, for any
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3.1. From the Basics to the Geodesics of the Euler Top

A =

 0 aA bA
−aA 0 cA
−bA −cA 0

 , B =

 0 aB bB
−aB 0 cB
−bB −cB 0

 ∈ so(3), we have that

Γ(λA + B) = λ

−cA
bA
−aA

+

−cB
bB
−aB

 = λΓ(A) + Γ(B).

We finally need to check the compatibility of Γ with the commutator [·, ·] on
so(3) and the cross product × on R3:
With A, B ∈ so(3) as above, we have that

Γ([A, B]) = Γ(AB − BA)

= Γ

 0 −bAcB + bBcA aAcB − aBcA
−cAbB + cBbA 0 −aAbB + aBbA
aBcA − aAcB −bAaB + bBaA 0


=

−aBbA + aAbB
aAcB − aBcA
−cAbB + cBbA

 =

−cA
bA
−aA

×

−cB
bB
−aB

 = Γ(A)× Γ(B) □

Remark 3.5 Given a curve S : (a, b) ⊆ R → SO(3), we have Ṡ ∈ TSSO(3) and
so ∀t ∈ (a, b) : Ṡ(t) = S(t)A(t) for some A(t) ∈ so(3). Therefore, we can define a
function Ω : (a, b) ⊆ R → R3 given by

Ω(t) = Γ(A(t)), (3.1)

where Γ is the isomorphism of Lemma 3.4. This function then allows us to write
∀t ∈ (a, b), ∀ξ ∈ R3 :

Ṡ(t)ξ = S(t)A(t)ξ = S(t)(Ω(t)× ξ).

3.1.2 Moment of Inertia

Recall Definition 3.2 (angular momentum). By Remark 3.5, together with the
fact that S ∈ SO(3) preserves the cross product × in R3, we can now write

p =
∫

R3
[(Sξ)× (Ṡξ)] dm =

∫
R3
[(Sξ)× (SAξ)] dm

=
∫

R3
S[ξ × (Aξ)] dm =

∫
R3

S[ξ × (Ω × ξ)] dm

= S
∫

R3
[ξ × (Ω × ξ)] dm. (3.2)

This motivates defining the following operator.
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Definition 3.6 (Moment of inertia tensor) The linear operator I : R3 → R3

defined as

I(v) :=
∫

R3
[ξ × (v × ξ)] dm

for all v ∈ R3 is called the rigid body’s moment of inertia tensor.

Remark 3.7 I : R3 → R3 is a linear operator, which means that it can also be
expressed as a 3 × 3-matrix over R. The preference for either form of I will depend
on the particular case.

Proposition 3.8 The moment of inertia tensor of any rigid body is a symmetric
positive definite linear operator, and the corresponding kinetic energy map K :
TSO(3) → R is given by

K(V) =
1
2
⟨⟨V, V⟩⟩ = 1

2
⟨⟨SA, SA⟩⟩ = 1

2
⟨IΩ, Ω⟩

for all V ∈ TSSO(3), S ∈ SO(3) and A ∈ so(3), where V = SA and Ω = Γ(A).

The proof can be found in Section 3 of Chapter 5 of [1].

Proposition 3.9 The matrix representation of the inertia tensor in the canonical
basis of R3 is

∫
R3(y2 + z2) dm −

∫
R3 xy dm −

∫
R3 xz dm

−
∫

R3 xy dm
∫

R3(x2 + z2) dm −
∫

R3 yz dm

−
∫

R3 xz dm −
∫

R3 yz dm
∫

R3(x2 + y2) dm

 . (3.3)

The proof can be found in Section 3 of Chapter 5 of [1].

Recall Proposition 3.8. Given a rigid body, the fact that its moment of inertia
tensor is symmetric implies, by the Spectral Theorem, that it is diagonalisable
by orthogonal matrices. Further, the fact that it is positive definite implies
that its eigenvalues are positive. Therefore, we can define the following
objects.

Definition 3.10 Given a rigid body, there exist three positive numbers I1, I2, I3 ∈
R3, called the principal moments of inertia, and an orthonormal basis of R3

{u1, u2, u3} that determines the so-called principal axes, such that Iui = Iiui for
i ∈ {1, 2, 3}.

3.1.3 The Euler Equations

We can finally present the equations of motion of the Euler top (SO(3), ⟨⟨·, ·⟩⟩, 0),
i.e. the geodesics of (SO(3), ⟨⟨·, ·⟩⟩). These are given by the so-called Euler
equations.
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3.2. The Poinsot Theorem

Proposition 3.11 The equations of motion of the Euler top (SO(3), ⟨⟨·, ·⟩⟩, 0) are
given by the so-called Euler equations

IΩ̇ = (IΩ)× Ω. (3.4)

Lemma 3.12 We have p = SIΩ, where p is the angular momentum of a rigid body,
S : (a, b) ⊆ R → SO(3) the curve describing its motion, I its inertia tensor and Ω
is given by Remark 3.5.

Proof The lemma follows from equation (3.2) and Definition 3.6. □

Proof (Euler Equations) By the above Lemma we have

p = SIΩ.

Then, by Theorem 3.3, we have

0 = ṗ = ṠIΩ + SIΩ̇ = SAIΩ + SIΩ̇

= S(AIΩ + IΩ̇) = S(Ω × (IΩ) + IΩ̇)

⇒ 0 = Ω × (IΩ) + IΩ̇ ⇔ IΩ̇ = (IΩ)× Ω. □

Corollary 3.13 Given a rigid body, let I1, I2, I3 be the principal moments of inertia
and {u1, u2, u3} be a basis of the principal axes. Further, let

Ω =

Ω1

Ω2

Ω3

 and Ω̇ =

Ω̇1

Ω̇2

Ω̇3


be the representations of Ω and Ω̇ in the basis {u1, u2, u3}.
Then, in the basis {u1, u2, u3} of the principal axes, the Euler equations are

I1Ω̇1 = (I2 − I3)Ω2Ω3

I2Ω̇2 = (I3 − I1)Ω3Ω1

I3Ω̇3 = (I1 − I2)Ω1Ω2

. (3.5)

3.2 The Poinsot Theorem

Having characterised the geodesics of the Euler top, we conclude the study
of this mechanical system with a result that will imply the following phe-
nomenon:
Given a freely moving rigid body with principal moments of inertia I1 >
I2 > I3, rotations of the rigid body about its first and third principal axes are
stable, whereas rotations about its second principal axes are unstable. This
is a well-known effect, called sometimes the Dzhanibekov effect or Tennis
Racket Theorem.
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3.2. The Poinsot Theorem

Before proving the Poinsot Theorem, we make a detour into symmetries
of general rigid bodies that will prove helpful to our main result. We take
advantage of this necessary digression to show more properties of symmetries
than are strictly necessary for our main purpose, as symmetries in themselves
are an interesting aspect of the theory of rigid bodies.

Definition 3.14 (Symmetry) A symmetry of a rigid body is an isometry
S ∈ O(3) which preserves the mass distribution (i.e. m(SA) = m(A) for any
measurable set A ⊆ R3).

Proposition 3.15 For S ∈ O(3) a symmetry:

1. SIST = I, where I is the matrix representation of the inertia tensor;

2. if S is a reflection in a plane, then there exists a principal axis orthogonal to
the reflection plane;

3. if S is a nontrivial rotation about an axis, then that axis is principal;

4. if moreover the rotation is not by π, then all axes orthogonal to the rotation
axis are principal.

Proof 1. SIST = I, where I is the matrix representation of the inertia
tensor:
We will show that for all (i, j) ∈ {1, 2, 3}2: (SIST)ij = Iij, which is
equivalent to the proposition statement.
Let {ei} for i ∈ {1, 2, 3} be the canonical basis of R3. We have, for
(i, j) ∈ {1, 2, 3}2 and ⟨·, ·⟩ the standard scalar product on R3:

(SIST)ij = ⟨ei, (SIST)ej⟩

= ⟨ei, S
(∫

R3
[ξ × ((STej)× ξ)] dm

)
⟩

= ⟨ei,
∫

R3
S[ξ × ((STej)× ξ)] dm⟩ (3.6)

Now, recall that for A a 3 × 3 matrix over R and x, y ∈ R3, it holds:

(Ax)× (Ay) = (detA)(A−1)T(x × y).

For S ∈ O(3), the above identity simplifies to

(Sx)× (Sy) = (±1)(ST)T(x × y) = ±S(x × y),

which applied to our computation yields

S[ξ × ((STej)× ξ)] = ±(Sξ)× (S((STej)× ξ))

= ±(Sξ)× (±(S(STej))× (Sξ)) = (Sξ)× (ej × (Sξ)).
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3.2. The Poinsot Theorem

Therefore, and using the assumption that S preserves the mass distri-
bution, we get that

(3.6) = ⟨ei,
∫

R3
[(Sξ)× (ej × (Sξ))] dm⟩

= ⟨ei,
∫

R3
[ξ × (ej × ξ)] dm⟩ = ⟨ei, Iej⟩ = Iij.

2. if S is a reflection in a plane then there exists a principal axis orthogonal
to the reflection plane:
Let S be a reflection on a plane P. Let v ∈ R3 \ {0} such that v ⊥ P ⇔
Sv = −v. Then, by using the property we have already shown that
SIST = I, we get for u := Iv:

Su = SIv = SISTSv = ISv = −Iv = −u
⇒ u ⊥ P ⇔ ∃λ ∈ R such that u = λv.

Finally, we have to show that λ > 0, but this holds because by Proposi-
tion 3.8 I is positive definite, i.e.

0 < ⟨Iv, v⟩ = ⟨u, v⟩ = λ⟨v, v⟩
⇒ λ > 0

3. if S is a nontrivial rotation about an axis then that axis is principal:
Let S be a nontrivial rotation about an axis, let v ∈ R3 \ {0} be a vector
on that axis, which is equivalent to Sv = v holding. Then, for u := Iv
and by using the property 1. that SIST = I we get:

Su = SIv = SISTSv = ISv = Iv = u
⇒ u = Iv is also a vector on the rotation axis.

By an analogous reasoning to the proof of 2., we can then conclude that
the rotation axis is principal.

4. if moreover the rotation is not by π then all axes orthogonal to the
rotation axis are principal: Let {u1, u2, u3} ⊆ R3 be an orthonormal
basis of R3 of principal axes such that u1 lies on the axis of rotation. Let
{I1, I2, I3} ⊆ R>0 be the corresponding principal moments of inertia
(i.e. Iui = Iiui for i ∈ {1, 2, 3}). Then, using the fact that ST ∈ O(3)
preserves ⟨·, ·⟩ and that STu1 = u1 since u1 is on the axis of rotation,
we have

0 = ⟨u1, u2⟩ = ⟨STu1, STu2⟩ = ⟨u1, STu2⟩ ⇒ STu2 ∈ span{u2, u3}.
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3.2. The Poinsot Theorem

Let α, β ∈ R be such that STu2 = αu2 + βu3. Then, using the fact that S
is not a rotation by π ⇒ β ̸= 0 (STu2 is not parallel to u2), as well as
the property 1. that SIST = I ⇔ IST = ST I:

Iu3 = I
(

STu2 − αu2

β

)
=

1
β
(ISTu2 − αIu2) =

1
β
(ST Iu2 − αIu2)

=
1
β
(ST I2u2 − αI2u2) = I2

(
STu2 − αu2

β

)
= I2u3

⇒ {u2, u3} ∈ EigI2(I) ⇒ span{u2, u3} ∈ EigI2(I),

where EigI2(I) is the eigenspace of I to its eigenvalue I2. Property 4. follows
from the last implication. □

We are now ready to prove the Poinsot Theorem.

Definition 3.16 (Inertia ellipsoid) The inertia ellipsoid of a rigid body with
moment of inertia tensor I is the set

E =
{

ξ ∈ R3 : ⟨Iξ, ξ⟩ = 1
}

. (3.7)

Theorem 3.17 (Poinsot Theorem) The inertia ellipsoid of a freely moving rigid
body rolls without slipping on a fixed plane orthogonal to the angular momentum p.

Proof (Poinsot Theorem) Let P be a plane orthogonal to p. For u, v ∈ P, we
have that

⟨u − v, p⟩ = 0 ⇔ ⟨u, p⟩ = ⟨v, p⟩

⇒ ∀λ ∈ R : Pλ := {u ∈ R3 : ⟨u, p⟩ = λ} is a plane orthogonal to p.

Let Sξ be a point where E is tangent to Pλ for some λ ∈ R. Then, and because
of Lemma 3.12,

⟨SIΩ, Sξ⟩ = λ; (3.8)

⟨ISξ, Sξ⟩ = 1. (3.9)

We assume that S ∈ SO(3) is a symmetry (i.e. it preserves the mass distri-
bution), so that the assumptions of Proposition 3.15 are met, and thus, by
statement 1. SI = IS

⇒ ξ =
1
λ

Ω

is a solution to equations (3.8) and (3.9) (assuming λ ̸= 0). To prove that S 1
λ Ω

is indeed a point where E is tangent to Pλ (and not only a point where E and
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3.3. Properties of a Rigid Body with Two Equal Principal Moments of Inertia

Pλ intersect without being tangent), we use the fact that a normal vector of a
plane tangential to E at Sξ ∈ E is a constant multiple of the gradient of E at
Sξ. In our case, this means that the gradient at Sξ should be a multiple of
p = SIΩ, and, indeed,

∇⟨IS
1
λ

Ω, S
1
λ

Ω⟩ = 1
λ2∇⟨ISΩ, SΩ⟩ = 1

λ2∇⟨Iω, ω⟩

=
1

λ2∇(I1ω2
1 + I2ω2

2 + I3ω2
3) =

2
λ2 Iω =

2
λ2 ISΩ =

2
λ2 SIΩ =

2
λ2 p,

where we have used the representation of I and ω in the principal axes basis,
and we have again used Proposition 3.15 to commute I and S. So far, we
know that ξ = 1

λ Ω is the tangent point of E with the plane Pλ. To justify all
the above results, we need to justify the assumption we made that λ ̸= 0. A
posteriori, this holds:

λ = ⟨SIΩ, Sξ⟩ = ⟨SIΩ, S
1
λ

Ω⟩ = 1
λ
⟨IΩ, Ω⟩ = 1

λ
2K

⇒ λ2 = 2K ⇒ λ = ±
√

2K.

The above result implies that Sξ = ± 1√
2K

SΩ = ± 1√
2K

ω are the two points
where E is tangent to a plane orthogonal to p, and all the previous calculations
where we assumed that λ ̸= 0 hold.
To conclude the proof, we show that for these points the velocity is zero,
which will then imply the statement of the theorem. For every given ξ0 ∈ R3

and for A ∈ so(3) such that Ṡξ0 = SAξ0 = S(Ω × ξ0) (cf. Remark 3.5)

d
dt
(Sξ0) = Ṡξ0 = SAξ0 = S(Ω × ξ0).

For ξ0 = ± 1√
2K

Ω the above right hand side vanishes, and the Theorem
follows. □

Remark 3.18 In particular, the proof of Poinsot’s Theorem implies that whenever
the rigid body rotates about one of its principal axes, the angular velocity vector
ω precesses about the principal axes. However, rotations about the first and last
principal axes (the ones corresponding to I1 and I3 whenever I1 > I2 > I3) are stable,
whereas rotations about the second are not.

3.3 Properties of a Rigid Body with Two Equal Principal
Moments of Inertia

We know leave the particular case of the Euler top, and consider another
type of special rigid body: one that satisfies I1 = I2. We want to provide an
expression for its kinetic energy using local coordinates of TSO(3). To this
end, we introduce the so-called Euler angles.
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Definition 3.19 (Euler angles) The Euler angles correspond to the local coordi-
nates (θ, φ, ψ) : SO(3) → (0, π) × (0, 2π) × (0, 2π) associated with the local
parametrisation S : (0, π)× (0, 2π)× (0, 2π) → SO(3) defined by

S(θ, φ, ψ)

=

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1



Proposition 3.20 If I1 = I2, then the kinetic energy of a rigid body in the local
coordinates (θ, φ, ψ, vθ , vφ, vψ) of TSO(3) is given by

K =
I1

2
((vθ)2 + (vφ)2 sin2 θ) +

I3

2
(vψ + vφ cos θ)2. (3.10)

Proof Let S : (a, b) ⊆ R → SO(3) be the curve characterising the motion of
the rigid body. For Ω = Ω(t) as in Remark 3.5, we know, by Proposition 3.8
that

K =
1
2
⟨IΩ, Ω⟩. (3.11)

If we set Ω1, Ω2, Ω3 ∈ R such that Ω =

Ω1

Ω2

Ω3

 is the representation of Ω in

the principal axes coordinate system, we have that

⟨IΩ, Ω⟩ = I1(Ω1)2 + I2(Ω2)2 + I3(Ω3)2. (3.12)

Now, observe that if S is the curve characterising the motion of the rigid
body with respect to the standard basis of R3, then performing a change of
coordinates to determine the curve characterising the motion of the rigid
body with respect to the principal axes coordinate system amounts to left-
multiplication of S by another S̄ ∈ SO(3), which results in a new curve
S̄SI ⊆ R → SO(3). But since this curve is also a subset of SO(3), we can just
set S = S̄S, and then we will be working in the principal axes coordinate
system. What we have to do to prove the result, then, is to find Ω = Γ(A)
for the A ∈ so(3) such that Ṡ = SA holds, which we will then insert into
equation (3.12).
By using the parametrisation of S ∈ SO(3) given by the Euler angles in
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Definition 3.19, we get that

Ṡ(θ, φ, ψ)

= φ̇

− sin φ − cos φ 0
cos φ − sin φ 0

0 0 0

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


+ θ̇

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

0 0 0
0 − sin θ − cos θ
0 cos θ − sin θ

cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1


+ ψ̇

cos φ − sin φ 0
sin φ cos φ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

− sin ψ − cos ψ 0
cos ψ − sin ψ 0

0 0 0


=: φ̇Aφ̇Bφ̇Cφ̇ + θ̇Aθ̇ Bθ̇Cθ̇ + ψ̇Aψ̇Bψ̇Cψ̇,

and also

S−1 = ST

=

 cos ψ sin ψ 0
− sin ψ cos ψ 0

0 0 1

1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cos φ sin φ 0
− sin φ cos φ 0

0 0 1


=: ASBSCS.

Our goal is to compute

A = S−1Ṡ = ST Ṡ = ASBSCS(φ̇Aφ̇Bφ̇Cφ̇ + θ̇Aθ̇ Bθ̇Cθ̇ + ψ̇Aψ̇Bψ̇Cψ̇),

which we will do in intermediate steps:

CS Aφ̇ =

0 −1 0
1 0 0
0 0 0

⇒ BSCS Aφ̇Bφ̇ =

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0



⇒ ASBSCS Aφ̇Bφ̇Cφ̇ =

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

 ;

CS Aθ̇ = Identity ⇒ BSCS Aθ̇ Bθ̇ =

0 0 0
0 0 −1
0 1 0


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⇒ ASBSCS Aφ̇Bφ̇Cφ̇ =

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

 ;

CS Aθ̇ = Identity ⇒ BSCS Aθ̇ Bθ̇ =

0 0 0
0 0 −1
0 1 0


⇒ ASBSCS Aθ̇ Bθ̇Cθ̇ =

0 0 0
0 0 −1
0 1 0

 ;

CS Aψ̇ = Identity ⇒ BSCS Aψ̇Bψ̇ = Identity

⇒ ASBSCS Aψ̇Bψ̇Cψ̇ =

0 −1 0
1 0 0
0 0 0

 ;

The above results put together give us

A = S−1Ṡ = ST Ṡ

= φ̇

 0 − cos θ sin θ
cos θ 0 0
− sin θ 0 0

+ θ̇

0 0 0
0 0 −1
0 1 0

+ ψ̇

0 −1 0
1 0 0
0 0 0


=

 0 −φ̇ cos θ − ψ̇ φ̇ sin θ
φ̇ cos θ + ψ̇ 0 −θ̇
−φ̇ sin θ θ̇ 0


⇒ Ω =

 θ̇
φ̇ sin θ

φ̇ cos θ + ψ̇

 .

Inserting the above result into equation (3.12), and using the assumption that
I1 = I2 we get

⟨IΩ, Ω⟩ = I1(θ̇
2 + φ̇2 sin2 θ) + I3(φ̇ cos θ + ψ̇)2,

which, together with equation (3.11) gives us the desired result. □

Let a rigid body’s motion be described by the curve S : (a, b) ⊆ R → SO(3).
For Ω = Ω(t) as in Remark 3.5, we can introduce the following object.

Definition 3.21 (Instantaneous angular velocity) A rigid body’s
instantaneous angular velocity is the vector ω := SΩ, which determines the axis
about which the rigid body rotates at any given time, with angular velocity ∥Ω∥.

Remark 3.22 By the above definition, Ω is the angular velocity as seen in the rigid
body’s rest frame, and so it determines the axis about which the rigid body rotates in
its rest frame.
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We conclude our study of rigid bodies satisfying I1 = I2 with the following
result about the variation of their angular velocity ω.

Proposition 3.23 1. The angular velocity of a rigid body with I1 = I2 satisfies

ω̇ =
1
I1

p × ω; (3.13)

2. if I1 = I2 = I3, then the rigid body rotates about a fixed axis with constant
angular speed (i.e. ω is constant).

Proof Let S : (a, b) ⊆ R → SO(3) be the curve characterising the motion of
the rigid body. Set Ω = Ω(t) as in Remark 3.5.

1. By the Euler equations in their general form (3.4) and their representa-
tion in the basis of the principal axes (3.5), and considering that in the
basis of the principal axes

I−1 =


1
I1

0 0
0 1

I2
0

0 0 1
I3

 =


1
I1

0 0
0 1

I1
0

0 0 1
I3

 , (3.14)

we have that

Ω̇ = I−1((IΩ)× Ω) = I−1

(I2 − I3)Ω2Ω3

(I3 − I1)Ω3Ω1

0


=

1
I1

(I2 − I3)Ω2Ω3

(I3 − I1)Ω3Ω1

0

 =
1
I1
((IΩ)× Ω). (3.15)

Observe that SIΩ = p by Lemma 3.12. Together with the fact that
S ∈ SO(3) preserves the cross product × in R3, and by equation (3.15),
we have that

SΩ̇ =
1
I1
((SIΩ)× (SΩ)) =

1
I1
(p × ω). (3.16)

Also, we have that

ṠΩ = SAΩ = S(Ω × Ω) = S0 = 0. (3.17)

Combining equations (3.16) and (3.17) we get

ω̇ = ṠΩ + SΩ̇ =
1
I1
(p × ω).
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2. If I1 = I2 = I3, then

(IΩ)× Ω =

0
0
0


⇒ Ω̇ = I−1((IΩ)× Ω) = 0

⇒ ω̇ = ṠΩ + SΩ̇ = 0 □

3.4 Fictitious Forces

To close this chapter, we derive the so-called fictitious forces, which appear
to act on particles when viewed in a non-inertial frame of reference, as is the
case on Earth’s surface, for instance. These are the centrifugal force FCent, the
Coriolis force FCor and the Euler force FE. To this end, let us consider a rigid
body whose motion is described by S : R → SO(3), and a particle with mass
m whose motion in the rigid body’s rest frame is given by ξ : R → R3. For
Ω = Ω(t) as in Remark 3.5 (observe that, by Remark 3.22, Ω is also the rigid
body’s angular velocity in its rest frame), the fictitious forces are defined as

FCent = −mΩ × (Ω × ξ); FCor = −2mΩ × ξ̇; FE = −mΩ̇ × ξ.

For F the external force on the particle as seen in the rigid body’s rest frame,
the equation of motion of the particle is then

m
d2

dt2 (Sξ) = SF. (3.18)

We then get:

d2

dt2 (Sξ) =
d
dt
(Ṡξ) +

d
dt
(Sξ̇) =

d
dt
(S(Ω × ξ)) + Ṡξ̇ + Sξ̈

= Ṡ(Ω × ξ) + S(Ω̇ × ξ) + S(Ω × ξ̇) + S(Ω × ξ̇) + Sξ̈

= S(Ω × (Ω × ξ)) + S(Ω̇ × ξ) + 2S(Ω × ξ̇) + Sξ̈

⇒ SF = m
d2

dt2 (Sξ)

= mS[(Ω × (Ω × ξ)) + (Ω̇ × ξ) + 2(Ω × ξ̇) + ξ̈] =: mSv

⇒ mv = mSTSv = F

⇒ mξ̈ = F − m(Ω × (Ω × ξ))− 2m(Ω × ξ̇)− m(Ω̇ × ξ),

and so we have derived the equation of motion of ξ in the rigid body’s rest
frame, which includes the fictitious forces.

Claim 3.24 If the rigid body is a homogeneous sphere rotating freely (like the Earth,
to a good degree of approximation, for instance) then the Euler force vanishes.
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Proof Recall that the Euler force is defined as FE = −mΩ̇× ξ ( cf. section 3.4).
We will show that Ω̇ = 0.
By Proposition 3.3, the matrix representation of the inertia tensor I of the
rigid body in the canonical basis of R3 is

I =


∫

R3(y2 + z2) dm −
∫

R3 xy dm −
∫

R3 xz dm

−
∫

R3 xy dm
∫

R3(x2 + z2) dm −
∫

R3 yz dm

−
∫

R3 xz dm −
∫

R3 yz dm
∫

R3(x2 + y2) dm

 . (3.19)

If the rigid body is a homogeneous sphere rotating freely, then∫
R3

xy dm =
∫

R3
xz dm =

∫
R3

yz dm = 0,

due to symmetry. Further, and again due to symmetry,∫
R3
(y2 + z2) dm =

∫
R3
(x2 + z2) dm =

∫
R3
(x2 + y2) dm =: α ∈ R.

Therefore,

I =

α 0 0
0 α 0
0 0 α

 . (3.20)

And so we conclude that all principal moments of inertia are equal (I1 =
I2 = I3 = α). By the second case of Proposition 3.23 and with A ∈ so(3) such
that Ṡξ = SAξ = S(Ω × ξ) (cf. Remark 3.5) , we get that

0 = ω̇ = ṠΩ + SΩ̇ = SAΩ + SΩ̇ = S(Ω × Ω) + SΩ̇ = 0 + SΩ̇

(S ∈ S0(3) ⇒ S ̸= 0) ⇒ Ω̇ = 0. □
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Chapter 4

Non-holonomic Constraints

In chapter 2, we studied systems of particles whose motions (and, therefore,
whose positions) are restricted to a subspace of the configuration space.
Non-holonomic constraints account for restrictions to the direction in which
particles of a given system are allowed to move. That is, non-holonomic
constraints impose certain conditions on the velocities of the particles of
a given system. Examples of such systems are given by a wheel rolling
without slipping on a plane or an ice skate that can only move forwards or
backwards along the line on which the skate lies, or rotate about its middle
point, for instance. Analogously to the case of holonomic constraints in
chapter 2, we need an additional term in the Newton equation to impose the
non-holonomic constraints on the system (which is known by the same name:
reaction force). In the case of the ice skate, for example, the reaction force
can be seen as a friction force preventing the skate from sliding sideways.
In the present chapter, we introduce the necessary concepts to consider non-
holonomic constraints on a system. We also study the relationship between
holonomic and non-holonomic constraints. Finally, we consider the example
of a system with non-holonomic constraints given by an ice skate.

4.1 Non-holonomic Constraints and Reaction Forces

4.1.1 Differentiable Distributions and Non-holonomic Constraints

Definition 4.1 (Distribution) A distribution Σ of dimension m on an n-dimensional
differentiable manifold M is a choice of an m-dimensional subspace Σp ⊆ Tp M for
each p ∈ M. The distribution is said to be differentiable if for all p ∈ M there
exists a neighbourhood U containing p and differentiable vector fields X1, ..., Xm on
U such that

Σq = span{(X1)q, ..., (Xm)q}
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4.1. Non-holonomic Constraints and Reaction Forces

for all q ∈ U.

Proposition 4.2 An m-dimensional distribution Σ on an n-dimensional differ-
entiable manifold M is differentiable if and only if for all p ∈ M there exist a
neighbourhood U containing p and 1-forms ω1, ..., ωn−m ∈ Ω1(U) such that

Σq = ker(ω1)q ∩ ... ∩ ker(ωn−m)q

for all q ∈ U, where Ω1(U) denotes the vector space of 1-forms on U.

We will need the following lemma.

Lemma 4.3 Let M be a differentiable manifold of dimension n, let p ∈ M be given,
let U be a neighbourhood containing p. Let ℓ ∈ {0, ..., n − 1}, let τ1, ..., τn−ℓ ∈
Ω1(U). Let q ∈ U be arbitrary. If {(τ1)q, ..., (τn−ℓ)q} are linearly independent,
then dim(ker(τ1)q ∩ ... ∩ ker(τn−ℓ)q) = ℓ.

Proof We prove the lemma by induction on the number of 1-forms, which is
equivalent to backward induction on ℓ ∈ {0, ..., n − 1}:

1. Induction start, ℓ = n − 1: {(τ1)q} being linearly independent means
that the 1-form is not 0, which implies that dim(ker(τ1)q) = n − 1.

2. Induction step: Assume the lemma holds for ℓ+ 1, where ℓ ∈ {0, ..., n −
2} is given. Then for ℓ we have that

dim(ker(τ1)q ∩ ... ∩ ker(τn−ℓ)q) = dim(ker(τ1)q ∩ ... ∩ ker(τn−(ℓ+1))q)

+ dim(ker(τn−ℓ)q)− dim(ker(τ1)q ∩ ...∩ ker(τn−(ℓ+1))q + ker(τn−ℓ)q).

By induction assumption dim(ker(τ1)q ∩ ... ∩ ker(τn−(ℓ+1))q) = ℓ + 1.
Further, since {(τ1)q, ..., (τn−ℓ)q} are linearly independent, in particular
(τn−ℓ)q ̸= 0 ⇒ dim(ker(τn−ℓ)q) = n − 1. Therefore, the statement
will follow if dim(ker(τ1)q ∩ ... ∩ ker(τn−(ℓ+1))q + ker(τn−ℓ)q) = n. To
show this, let v ∈ Tq M. Since dim(Tq M) = n and dim(ker(τn−ℓ)q) =

n − 1, we can choose v1 ∈ Tq M \ ker(τn−ℓ)q. Then Tq M = ker(τn−ℓ)q +
span{v1}. Assume (τi)q(v1) ̸= 0 for some i ∈ {1, ..., n − (ℓ + 1)}.

Then ker(τi)q = ker(τn−ℓ)q and (τi)q = α(τn−ℓ)q for α := (τi)q(v1)

(τn−ℓ)q(v1)
,

i.e. the set {(τ1)q, ..., (τn−ℓ)q} would not be linearly independent, a
contradiction. Therefore v1 ∈ ker(τ1)q ∩ ... ∩ ker(τn−(ℓ+1))q and the
statement follows. □

Proof (Proposition) ⇒: Let p ∈ M be arbitrary. Assume that Σ is differen-
tiable. Then there exists a neighbourhood U containing p and differentiable
vector fields X1, ..., Xm on U such that

Σq = span{(X1)q, ..., (Xm)q}

35



4.1. Non-holonomic Constraints and Reaction Forces

for all q ∈ U. Let q ∈ U. We show that there exist 1-forms ω1, ..., ωn−m ∈
Ω1(U) such that

Σq = ker(ω1)q ∩ ... ∩ ker(ωn−m)q.

Σq ⊆ Tq M is m-dimensional, and if a set of m vectors {(X1)q, ..., (Xm)q}
spans an m-dimensional vector space, then it is a basis. This holds for
all q ∈ U, and so we can complete {X1, ..., Xm} to a moving frame on U
{X1, ..., Xm, Y1, ..., Yn−m}, so that {(X1)q, ..., (Xm)q, (Y1)q, ..., (Yn−m)q} is a basis
of Tq M for all q ∈ U. Take the dual frame {τ1, ..., τm, ω1, ..., ωn−m} made up
of n 1-forms on U such that they are linearly independent at each q ∈ U and
so that ∀q ∈ U:

(τi)q((Xj)q) = δi
j for all (i, j) ∈ {1, ..., m}2

(ωi)q((Yj)q) = δi
j for all (i, j) ∈ {1, ..., n − m}2

(τi)q((Yj)q) = (ω j)q((Xi)q) = 0 for all (i, j) ∈ {1, ..., m} × {1, ..., n − m}

1. Σq ⊆ ker(ω1)q ∩ ... ∩ ker(ωn−m)q:

v ∈ Σq ⇔ v =
m

∑
i=1

λi(Xi)q for some λi ∈ R

⇒ (ω j)q(v) =
m

∑
i=1

λi(ω
j)q((Xi)q) = 0 for all j ∈ {1, ..., n − m}

⇒ v ∈ ker(ω1)q ∩ ... ∩ ker(ωn−m)q.

2. ker(ω1)q ∩ ... ∩ ker(ωn−m)q ⊆ Σq:

v ∈ Tq M ⇔ v =
m

∑
i=1

λi(Xi)q +
n−m

∑
j=1

µj(Yj)q for some λi, µj ∈ R.

v ∈ ker(ω1)q ∩ ... ∩ ker(ωn−m)q ⇒ 0 = (ωk)q(v)

=
m

∑
i=1

λi(ω
k)q((Xi)q) +

n−m

∑
j=1

µj(ω
k)q((Yj)q) = µk

for all k ∈ {1, ..., n − m}

⇒ v =
m

∑
i=1

λi(Xi)q, i.e. v ∈ Σq.

⇐: Again, let p ∈ M be arbitrary. Assume there exist a neighbourhood U
containing p and 1-forms ω1, ..., ωn−m ∈ Ω1(U) such that

Σq = ker(ω1)q ∩ ... ∩ ker(ωn−m)q

for all q ∈ U. Let q ∈ U.
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Claim 4.4 The set of 1-forms {(ω1)q, ..., (ωn−m)q} is linearly independent.

Proof We prove the claim by induction on the number of 1-forms, which is
equivalent to backward induction on the dimension m of the distribution
(m ∈ {1, ..., n − 1}):

1. Induction start, m = n − 1: {(ω1)q} is linearly independent if and only
if (ω1)q ̸= 0, which holds because, by assumption, n − 1 = dim(Σq) =
dim(ker(ω1)q).

2. Induction step: Assume the claim holds for m+ 1, where m ∈ {1, ..., n−
2} is given. If the claim were not to hold, and because by assumption
{(ω1)q ∩ ... ∩ (ωn−(m+1))q} is linearly independent, we would have that

(ωn−m)q = ∑n−(m+1)
k=1 λk(ω

k)q for some λk ∈ R, which would imply that
ker(ω1)q ∩ ... ∩ ker(ωn−m)q = ker(ω1)q ∩ ... ∩ ker(ωn−(m+1))q. However,
by Lemma 4.3 we would have

m = dim(Σq) = dim(ker(ω1)q ∩ ... ∩ ker(ωn−m)q)

= dim(ker(ω1)q ∩ ... ∩ ker(ωn−(m+1))q) = m + 1,

a contradiction. □

Since {(ω1)q, ..., (ωn−m)q} is linearly independent for all q ∈ U, we can
complete the set {ω1, ..., ωn−m} to a local co-frame {τ1, ..., τm, ω1, ..., ωn−m}.
Let {X1, ..., Xm, Y1, ..., Yn−m} be the dual moving frame. By an analogous
argument to the one used for the only if direction, we have that Σq =
ker(ω1)q ∩ ... ∩ ker(ωn−m)q ⊆ span{(X1)q, ..., (Xm)q} for all q ∈ U. Finally,
since both sub-spaces of Tq M are m-dimensional, equality holds. □

From this point on, we assume that all distributions are differentiable.

Definition 4.5 A non-holonomic constraint on a mechanical system
(M, ⟨·, ·⟩,F ) is a distribution Σ on M. A curve c : (a, b) ⊆ R → M is said to be
compatible with Σ if ċ(t) ∈ Σc(t) for all t ∈ (a, b).

4.1.2 Reaction Forces

Similarly to the case of holonomic constraints, non-holonomic constraints are
accounted for in the Newton equation (1.1) by adding the reaction force.
In a Riemannian manifold (M, ⟨·, ·⟩), any distribution Σ determines an or-
thogonal distribution Σ⊥, given by

(Σ⊥)p = (Σp)
⊥ ⊆ Tp M

for all p ∈ M. Therefore, we can consider the two orthogonal projections
T : TM → Σ and ⊥ : TM → Σ⊥. The set of all external forces F : TM → T∗M
satisfying

F (v) = F (vT)
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for all v ∈ TM is denoted by FΣ.

Definition 4.6 A reaction force on a mechanical system with non-holonomic con-
straints (M, ⟨·, ·⟩,F , Σ) is a force R ∈ FΣ such that the solutions of the generalised
Newton equation

µ

(
Dċ
dt

)
= (F +R)(ċ)

with initial condition in Σ are compatible with Σ. The reaction force is said to be
perfect, or to satisfy the d’Alembert principle, if

µ−1(R(v)) ∈ Σ⊥
p

for all v ∈ Tp M and for all p ∈ M.

Consider a solution to the generalised Newton equation. An analogous
computation to (2.1) (and the subsequent explanation) for the variation of
its kinetic energy, together with Definition 4.6, allows us to conclude that a
perfect reaction force neither creates nor dissipates kinetic energy.
We have the following theorem about the existence and uniqueness of per-
fect reaction forces (analogously to the case of holonomic constraints, cf.
chapter 2).

Theorem 4.7 Given a mechanical system with non-holonomic constraints
(M, ⟨·, ·⟩,F , Σ), there exists a unique reaction force R ∈ FΣ satisfying the d’Alembert
principle.

The proof can be found in Section 4 of Chapter 5 of [1].

4.2 Integrable distributions

Given the similarities in the objects we have defined for holonomic and non-
holonomic constraints, a very reasonable question is what the relationship
between these types of constraints might be. To answer, we must consider
so-called integrable distributions.

Definition 4.8 A foliation of dimension m on an n-dimensional differentiable
manifold M is a family F = {Lα}α∈A of subsets of M (called leaves) satisfying:

1. M = ∪α∈ALα;

2. Lα ∩ Lβ = ∅ if α ̸= β;

3. each leaf Lα is pathwise connected, i.e. ∀p, q ∈ Lα∃c : [0, 1] → Lα a
continuous curve such that c(0) = p and c(1) = q;
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4.2. Integrable distributions

4. for each point p ∈ M there exists an open set U containing p and local
coordinates (x1, ..., xn) : U → Rn such that the connected components of the
intersections of the leaves with U are the level sets of (xm+1, ..., xn) : U →
Rn−m.

Definition 4.9 An m-dimensional distribution Σ on a differentiable manifold M is
said to be integrable if there exists an m-dimensional foliation F = {Lα}α∈A on M
such that

Σp = Tp(Lp)

for all p ∈ M, where Lp is the leaf containing p. The leaves of F are called the
integral submanifolds of the distribution.

Integral distributions are particularly simple. For instance, the set of points
q ∈ M which are accessible from a given point p ∈ M by a curve compatible
with the distribution is simply the leaf Lp containing p. If the leaves are
embedded submanifolds of M, then an integrable non-holonomic constraint
is equivalent to a set of holonomic constraints on the mechanical system. This
is the reason why integrable distributions are also known as semi-holonomic
constraints, while non-integrable ones are known as true non-holonomic
constraints. We are therefore interested in identifying integrable distributions.
The Frobenius Theorem provides a necessary and sufficient condition.

Definition 4.10 Let Σ be a distribution on a differentiable manifold M. A differ-
entiable vector field X on M is said to be compatible with Σ if Xp ∈ Σp for all
p ∈ M.

Definition 4.11 A distribution Σ on a differentiable manifold M is said to be
involutive if for any two differentiable vector fields X, Y on M that are compatible
with Σ, [X, Y] is also compatible with Σ.

Theorem 4.12 (Frobenius) A distribution Σ on a differentiable manifold M is
integrable if and only if it is involutive.

The proof can be found in Section 3 of Chapter 2 of [3].

Proposition 4.13 An m-dimensional distribution Σ on an n-dimensional manifold
M is integrable if and only if ∀i ∈ {1, ..., n − m}:

dωi ∧ ω1 ∧ ... ∧ ωn−m = 0

for all locally defined sets of differential forms {ω1, ..., ωn−m} whose kernels deter-
mine Σ.

Proof Let p ∈ M be arbitrary, let U be a neighbourhood containing p, let
q ∈ U. In the proof of the if direction of Proposition 4.2, we argued that if

Σq = ker(ω1)q ∩ ... ∩ ker(ωn−m)q,
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4.2. Integrable distributions

then {(ω1)q, ..., (ωn−m)q} is a linearly independent set for all q ∈ U, and
so we can complete {ω1, ..., ωn−m} to a local coframe {τ1, ..., τmω1, ..., ωn−m}
on U. Let {X1, ..., XmY1, ..., Yn−m} be the moving frame dual to the coframe.
Then

Σq = span{(X1)q, ..., (Xm)q}

for all q ∈ U.
For a given i ∈ {1, ..., n − m}:

dωi =
m

∑
a,b=1

λi
abτa ∧ τb +

m

∑
a=1

n−m

∑
b=1

µi
abτa ∧ ωb +

n−m

∑
a,b=1

νi
abωa ∧ ωb

for some λi
ab, µi

ab, νi
ab ∈ C∞(U).

This implies, on the one hand, that

dωi ∧ ω1 ∧ ... ∧ ωn−m =
m

∑
a,b=1

λi
abτa ∧ τb ∧ ω1 ∧ ... ∧ ωn−m;

and, on the other hand, that ∀j, k ∈ {1, ..., m}:

dωi(Xj, Xk) =
m

∑
a,b=1

λi
abτa ∧ τb(Xj, Xk) +

m

∑
a=1

n−m

∑
b=1

µi
abτa ∧ ωb(Xj, Xk)

+
n−m

∑
a,b=1

νi
abωa ∧ ωb(Xj, Xk) =

m

∑
a,b=1

λi
abδa

j δb
k = λi

jk.

Therefore, by combining the two obtained results, the statement of the propo-
sition is equivalent to the statement Σ is integrable if and only if dωi(Xj, Xk) = 0
for all i ∈ {1, ..., n − m} and for all j, k ∈ {1, ..., m}.
Another expression for dωi(Xj, Xk) is

dωi(Xj, Xk) = Xjω
i(Xk)− Xkωi(Xj)− ωi([Xj, Xk]).

However, for all i ∈ {1, ..., n − m} and for all j ∈ {1, ..., m} : ωi(Xj) = 0, and
so

dωi(Xj, Xk) = −ωi([Xj, Xk]) ⇒ [dωi(Xj, Xk) = 0 ⇔ ωi([Xj, Xk]) = 0].

Now observe that, because of the bilinearity of [·, ·] and the fact that
{(X1)q, ..., (Xm)q} is a basis of Σq, ωi([Xj, Xk]) = 0 for all i ∈ {1, ..., n − m}
and for all j, k ∈ {1, ..., m} if and only if Σ is involutive.
Finally, the proposition follows by the Frobenius Theorem 4.12. □
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4.3 An Ice Skate

We can model an ice skate in a simplified way as a line segment that can
move either in the same direction of the line segment, either forwards or
backwards, or rotate about its middle point (in particular the ice skate
cannot slide sideways). To describe the position of the skate, we can use the
configuration space R2 × S1 and take the first two coordinates (x, y) to be the
middle point of the line segment that represents the ice skate, and the third
coordinate (θ) to be the angle between the line segment representing the
ice skate and the x-axis. From now on we will say ice skate to mean the line
segment representing the ice skate. The restrictions we impose on the possible
motion of the ice skate are equivalent to a non-holonomic constraint on the
system. That the motion of the ice skate can only be along the same direction
of the ice skate means that (ẋ, ẏ) must be proportional to (x, y), which is
itself proportional to (cos θ, sin θ). Therefore, using the characterisation of
distributions provided by Proposition 4.2, we must require that the motion
of the ice skate be compatible with the distribution Σ defined on R2 × S1 by
the kernel of the 1-form

ω = − sin θdx + cosθdy.

To determine whether we are dealing with an integrable distribution, we use
Proposition 4.13. We have

dω = − cos θdθ ∧ dθ − sin θdθ ∧ dy

⇒ dω ∧ ω = − cos2 θdθ ∧ dx ∧ dy + sin2 θdθ ∧ dy ∧ dx
= −dx ∧ dy ∧ dθ ̸= 0,

and so the distribution is not integrable.
Proposition 4.13 makes use in its proof of the Frobenius Theorem 4.12. We
can also show that Σ is not integrable without using the Frobenius Theorem
by making the following observation:
Assume that a distribution Σ̃, m-dimensional, were integrable. Then the set
of all points q ∈ M which are accessible from a given point p ∈ M by a
curve compatible with Σ̃ is the leaf Lp containing p of the corresponding
m-dimensional foliation F on M.
In the case of our present example, the ice skate, we will show that the whole
configuration space R2 × S1 is accessible from any given point p ∈ M by
a curve compatible with Σ, thereby implying that no such foliation exists,
meaning that Σ is non-integrable.

Claim 4.14 Let p, q ∈ R2 × S1. Then there exists a piecewise differentiable curve
c : [0, 1] → R2 × S1 compatible with Σ such that c(0) = p and c(1) = q.

Proof In order to get from p =: (x1, y1, θ1) to q =: (x2, y2, θ2), we need to
break our motion into three steps: first we need to align the ice skate with
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the vector (x2 − x1, y2 − y1) (a rotation), then we need to get to (x2, y2) and
finally we need to rotate the ice skate again to get to q. Set

θ̃ :=

{
arctan y2−y1

x2−x1
if x1 ̸= x2

sgn(y2 − y1)
π
2 if x1 = x2

. (4.1)

Define c : [0, 1] → R2 × S1 as

c(t) :=


(x1, y1, θ1 + 3t(θ̃ − θ1)) for t ∈ [0, 1

3 ]

(x1 + (3t − 1)(x2 − x1), y1 + (3t − 1)(y2 − y1), θ̃) for t ∈ [ 1
3 , 2

3 ]

(x2, y2, θ̃ + (3t − 2)(θ2 − θ̃)) for t ∈ [ 2
3 , 1]

.

c is clearly piecewise differentiable and c(0) = p, c(1) = q. Further,

ċ(t) :=


(0, 0, 3(θ̃ − θ1)) for t ∈ (0, 1

3 )

(3(x2 − x1), 3(y2 − y1), 0) for t ∈ ( 1
3 , 2

3 )

(0, 0, 3(θ2 − θ̃)) for t ∈ ( 2
3 , 1)

,

which is in the kernel of ω = − sin θdx + cosθdy for all t in either of the three
intervals. In particular, for t ∈ ( 1

3 , 2
3 ) this holds by the definition of θ̃ (4.1),

since the definition implies that y2 − y1 = λt sin θ̃ and x2 − x1 = λt cos θ̃ for
some λt ∈ R. Therefore, c is compatible with Σ and the claim follows. □

We conclude by characterising the possible motions of the ice skate.

Claim 4.15 Assume that the kinetic energy of the skate is

K =
M
2
(
(vx)2 + (vy)2)+ I

2
(vθ)2,

and that the reaction force is perfect. Then the motion of the ice skate is either a
straight line or a circle, and it has constant speed.

We will need the following lemma.

Lemma 4.16 Let V be an n-dimensional vector field over R, let f , g ∈ V∗. If
ker( f ) ⊆ ker(g), then g = λ f for some λ ∈ R.

Proof If g = 0 the statement is trivial. Assume, therefore, that g ̸= 0. If
f = 0, then V = ker( f ) = ker(g) ⇒ g = 0.
If f ̸= 0, then dim(im( f )) = 1 (since im( f ) = R) ⇒ dim(ker( f )) = n − 1.
Let {v1, ..., vn−1} be a basis of ker( f ) (if n = 1, we take the empty set). For
v /∈ ker( f ) : {v1, ..., vn−1} ∪ {v} is a basis of V. By setting λ := g(v)

f (v) we have
g(u) = λ f (u) for all u ∈ {v1, ..., vn−1, v} (i.e. for all elements of a basis of V)
and so the lemma follows. □
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Proof (Claim) By Proposition 1.6

µ

(
Dċ
dt

)
= M(ẍdx + ÿdy) + Iθ̈dθ. (4.2)

Observe that, since by assumption the reaction force R is perfect, for all
t ∈ (a, b) ⊆ R:

µ−1(R(ċ(t))) ∈ Σ⊥
c(t) ⇒ ∀v ∈ Σc(t) : R(ċ(t))(v) = ⟨µ−1(R(ċ(t))), v⟩ = 0

⇒ Σc(t) ⊆ ker(R(ċ(t))).

Recalling that Σc(t) = ker(ωc(t)) and by using Lemma 4.16, we can therefore
write

R(ċ(t)) = α(t)ωc(t) (4.3)

for all t ∈ (a, b), where α : (a, b) ⊆ R → R. The motion of the ice skate
must satisfy the generalised Newton equation in Definition 4.6. Since we
have no external force besides the reaction force, the right hand side is given
by equation (4.3) (recall the definition of ω in (4.3)). The left hand side is
given by equation (4.2). Together, we obtain that the motion must satisfy
(not-explicitly stating the dependency of t)

Mẍdx + Mÿdy + Iθ̈dθ = −α sin θdx + α cos θdy.

The motion must also be compatible with the distribution Σ, i.e. (again
leaving the dependency on t implicit, and writing Σ for Σc(t) and ker(ω) for
ker(ω)c(t))

(ẋ, ẏ, θ̇) ∈ Σ = ker(ω) ⇔ ẋ sin θ = ẏ cos θ.

We then obtain a system of ODEs that the motion of the ice skate must satisfy:
Mẍ = −α sin θ

Mÿ = α cos θ

θ̈ = 0
ẋ sin θ = ẏ cos θ

. (4.4)

Firstly, the third ODE of the system (4.4) implies that

θ(t) = θ0 + vθ
0t (4.5)

for some integration constants θ0, vθ
0 ∈ R. We make the following case

distinction:
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1. vθ
0 ̸= 0:

Differentiating the fourth ODE, taking into account that θ is given by
equation (4.5), and substituting the values of ẍ, ÿ and ẏ into the ensuing
equation according to the first, second and fourth ODEs respectively,
we get

d
dt
(ẋ sin θ) =

d
dt
(ẏ cos θ)

⇒ ẍ sin θ + vθ
0 ẋ cos θ = ÿ cos θ − vθ

0ẏ sin θ

⇔ − α

M
sin2 θ + vθ

0 ẋ cos θ =
α

M
cos2 θ − vθ

0 ẋ tan θ sin θ

⇔ 1
cos θ

vθ
0 ẋ =

α

M
⇔ ẋ =

α

Mvθ
0

cos θ. (4.6)

Differentiating ẋ and comparing the resulting equation to the first ODE
in the system (4.4), we see that α(t) = α = const. ∈ R. Finally, we get

x = x(t) =
α

M(vθ
0)

2
sin θ + x0 (4.7)

for some integration constant x0 ∈ R. By substituting equation (4.6)
into the fourth ODE of the system (4.4), we get

ẏ =
α

Mvθ
0

sin θ

and, consequently,

y = y(t) = − α

M(vθ
0)

2
cos θ + y0 (4.8)

for some integration constant y0 ∈ R.
Observe that, by equations (4.7) and (4.8)√

(x − x0)2 + (y − y0)2 =
|α|

M(vθ
0)

2
,

implying that the motion of the ice skate is in a circle of radius |α|
M(vθ

0)
2

centered at (x0, y0) ∈ R2. Further, the speed of the motion is√
(ẋ)2 + (ẏ)2 =

|α|
Mvθ

0
= const. ∈ R.

Remark 4.17 In this case, the reaction force can be understood to be a friction
force preventing the ice skate from sliding sideways, so that it stays in a
circular trajectory.
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4.3. An Ice Skate

2. vθ
0 = 0:

In this case, equation (4.5) implies that θ = θ0 = const. ∈ R. By
differentiating the fourth ODE in the system (4.4) and substituting ẍ
and ÿ into the obtained equation according to the first and second
ODEs in the system (4.4), we get

ẍ sin θ = ÿ cos θ ⇒ − α

M
sin2 θ =

α

M
cos2 θ ⇔ α = 0.

This readily implies, by the first and second ODEs in the system (4.4),
that

ẍ = x0 + vx
0t (4.9)

ÿ = y0 + vy
0t (4.10)

for some integration constants x0, y0, vx
0 , vy

0 ∈ R. The motion of the
ice skate is, therefore, along a straight line though (x0, y0) ∈ R2, with

constant speed
√
(vx

0)
2 + (vy

0)
2.

Remark 4.18 In this case, by the generalised Newton equation in Definition 4.6,
we have that Dċ

dt = 0 ⇒ R(ċ) = µ
(Dċ

dt

)
= 0, and so the reaction force vanishes.

. □
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