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Introduction

Humans have developed an intrinsic ability to classify almost every aspect of
life. This ability turned out to be an indispensable tool in the modern culture,
offering the capacity to understand and handle properly the most diverse
situations. Mathematicians tend to go beyond personal, cultural and social
needs. In particular, the wish to study and understand mathematical objects
leads inevitably to the need of their classification, creating what turned out
to be a centuries-old quest.

With the beginning of the study of manifolds in the 19th century, the attempt
to classify them arose naturally, marking its presence in history throughout
the two last centuries until this day. Spotlighting compact surfaces, a rather
simple classification is given by their orientability. Travelling along a closed
loop on some surface and finding ourselves mirrored, when coming back to
the start, is a sufficient indication that we were travelling on a non-orientable
surface. We rapidly see, that this is not the end of the story, for instance by
considering the sphere and the torus. They are orientable surfaces, but are
obviously not homeomorphic. Indeed, the theorem for the classification of
surfaces takes the following form.

Every compact surface is homeomorphic to either a sphere, or to a
connected sum of tori, or to a connected sum of projective planes.

The notion of an abstract surface not embedded in the Euclidean 3-dimensional
space, as the real projective plane, was not elaborated when the first proofs
of the classification of surfaces appeared. A. Möbius showed in 1861 the
classification theorem for orientable surfaces [14], followed by C. Jordan in
1866 [6] and W. van Dick in 1888 [18], who included non-orientable surfaces.
The first rigorous proofs were done by M. Dehn and P. Heegaard in 1907 [15]
and by Brahana in 1922 [1]. Both proofs rely on the crucial assumption that
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a surface is triangulable, a technical difficulty that was not overcome until
1925 by T. Radó [16].

In this thesis, we present the proof of the classification of surfaces by William
S. Massey [12], published in 1991 in his book ‘A Basic Course in Algebraic
Topology’. Moreover, we complement it with background material, an
extension to manifolds with boundary and other viewpoints on the proof of
the classification theorem.

Chapter 1, 2 and 3 contain the necessary preliminaries to understand surfaces,
their triangulations and connected sums, following the approach taken by
Massey.

Chapter 4 is the highlight of this thesis. Applying the knowledge from the
previous chapters, the main proof reduces itself to two main steps. As for
most proofs on the classification of surfaces, it relies first on a combinatorial
step, showing that every surface admits a polygonal presentation in the
real plane. The application of an elaborated algorithm allows, after a finite
number of manipulations, to classify the surface into the three classes of
the sphere, the connected sum of tori or the connected sum of projective
planes. The second step relies more on topological invariants such as the
Euler characteristic and orientability of a surface. Combining these invariants
leads to the conclusion that the three classes are indeed disjoint.

In Chapter 5, we will discuss the classification of compact bordered surfaces,
which will turn out to be surprisingly simple. For this, we rely on an early
version of the book mentioned above ‘Algebraic Topology: An Introduction’
[11] of Massey.

Chapter 6 is dedicated to alternative viewpoints. With the birth of algebraic
topology in the beginning of the last century, very useful tools emerged and
mathematicians did not miss the chance to use them for the classification
of manifolds. Wanting to present a slightly different point of view, we give
in Section 6.1 an outline of the proof presented in John Lee’s ‘Introduction
to topological manifolds’ written in 2011 [8]. This proof relies partially on
Massey’s approach, while making use of cell complexes for the triangulation
of surfaces. The final part of this proof deals with the fundamental group, a
topological feature that distinguishes compact surfaces, which can also be
found in Massey’s book. Written a whole century after the appearance of
the first proof, this proof is presented in a more complete and exhaustive
manner, leaving few room for uncertainties for the attentive reader. We hope
this to be a welcomed addition for the reader to deepen the understanding
acquired in the preceding chapters.

Balancing out the formal strictness of the last section, we end this thesis
with a more visually appealing proof by John Conway dating 1999 in Section
6.2. Though Conway did not write down the proof himself, we are guided
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through his ideas with beautiful drawings by G. Francis and J. Weeks [4].
Substituting tori by handles, and projective planes by cross caps, we end up
with a different formulation of the classification theorem.

Every compact surface is homeomorphic to either a sphere with handles
or a sphere with crosscaps.
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Chapter 1

Compact surfaces

To understand this thesis it is required to have some understanding of
topological spaces, homeomorphisms and manifolds. Our objects of study
will be compact surfaces which can be orientable or non-orientable. In this
chapter, we will remind of some basic topological definitions, which can be
looked up in [7], [13] or [9]. For the definition of orientability we will follow
Massey’s book [12].

1.1 Topological manifolds

Definition 1.1 A Hausdorff space is a topological space where for every two
distinct points there exists two disjoint neighborhoods of each point.

While the Hausdorff property ensures that the topological space contains
enough open sets to work with, we want to restrict the amount of all possible
sets by defining them in terms of a countable basis, which motivates the
following definition.

Definition 1.2 A topological space is second countable if the topology ad-
mits a countable basis of open sets.

Definition 1.3 A topological space is called locally Euclidean when every
every point of the space has a neighborhood that is homeomorphic to the
open ball {(x1, . . . , xn) ∈ Rn : x2

1 + . . . + x2
n < 1}.

This will ensure in some way, that the topological spaces we are working
with are free of some kind of singularities or intersections.

Definition 1.4 A topological space X is connected if it there are no non-
empty and disjoint open sets A ⊂ X and B ⊂ X such that X = A ∪ B.
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1. Compact surfaces

Definition 1.5 A n-dimensional topological manifold is a locally Euclidean
Hausdorff space of dimension n, where every connected component is second
countable.

In this thesis, we will refer to it in the short form as n-manifold.

Massey does not require second countability in his definition of a topological
manifold. Nevertheless, he writes that he will restrict his attention to mani-
folds with a countable basis. For this reason, we require second countability
as an axiom in the above definition.

Notice further that this is the definition for manifolds without a bound-
ary. On a manifold with boundary each point must have a neighborhood
homeomorphic to an open subset of Rn or to a relatively open subset in the
Euclidean half space {(x1, . . . , xn ∈ R2 : xn ≥ 0}.

In Section 2, we will talk about the triangulation of surfaces and that every
connected 2-manifold is triangulable. Though we will not prove this state-
ment, the need of second countability plays an important role. As Tibor
Radó explains in [16], a triangulation of 2-manifolds is possible as soon as
the second countability axiom is required.

Example 1.6 The Hausdorff property is not something that follows from
other properties like locally Euclidean or connected. For example, consider
the space R × {a} ∪ R × {b} with the equivalence relation (x, a) ∼ (x, b)
for all x ̸= 0 and a ̸= b. This space is clearly locally Euclidean. But the
intersection of every open neighborhood of the point (0, a) with an open
neighborhood of the point (0, b) will always be non-empty, violating the
Hausdorff property.

Now, we have all the pieces to finally define the objects we will study
throughout this thesis, namely compact surfaces.

Definition 1.7 A surface is a connected 2-dimensional topological manifold.

Notice that also here, some are authors understand a surface to be just a syn-
onym for a 2-manifold. We include connectedness in the definition because
of practical reasons, since we will only work with connected 2-manifolds.
The best known example of a surface would be the two-dimensional sphere.
Other surfaces we will work with in this thesis are the torus and the real
projective plane.

Definition 1.8 A topological space is compact if for every open cover of this
space, there exists a finite subcover.

For the classification theorem we study compact surfaces without boundary,
which in some literature are called closed manifolds. Notice that the defini-
tion of surface is not the same for all authors of topology related books. Some
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1.2. Orientability

Figure 1.1: The sphere and the torus are orientable surfaces. The real projective plane, represented
here as the upper hemisphere with its boundary identified, is a non-orientable surface; see Section
1.2.

authors require a surface to be further orientable and a closed manifold. We
will use the above definition and, from here on, the use of the word surface in
this thesis will implicitly contain the assumption, that the manifold has no
boundary. Otherwise, we will explicitly refer to it as a bordered manifold or
a manifold with boundary.

An important thing to have in mind is that compactness is a topological
invariance. Given two homeomorphic spaces if we know that one of them is
compact, then we can immediately conclude, that the second space is also
compact.

1.2 Orientability

Orientability will play an important role throughout this thesis. We will
divide our objects of study into orientable and non-orientable surfaces. A
well-known non-orientable topological space is the Möbius strip, which will
serve us to define orientability.

A Möbius strip is constructed by gluing the ends of a rectangular strip with
a twist in it (see Figure 1.2).

Figure 1.2: A Möbius strip is a non-orientable manifold with boundary.

The center line of the strip will thus form a closed loop. By placing an object
on this line, like some arrow perpendicular to it, we notice that after one
loop the arrow will point in the contrary direction as at the beginning. Going
twice through the loop, the arrow appears with the same orientation as in the
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1. Compact surfaces

beginning. Thus, the Möbius strip is non-orientable, since there exists such
an orientation-reversing path. If the orientation of such an arrow is preserved
after going through a closed path, then we call it an orientation-preserving
path. This motivates the following definition.

Definition 1.9 A surface is orientable if every closed path is orientation-
preserving. If there exists an orientation-reversing closed path, then the
surface is called non-orientable.

An equivalent definition would be:

Definition 1.10 A surface is orientable if there exists no embedding of a
Möbius strip into it. Otherwise the surface is called non-orientable.

Notice that, by Definition 1.7, the Möbius strip is not a surface since it has a
boundary. We call it a bordered surface.

We will see in Section 3.4 that the real projective plane (defined in Section
2.3.3) contains an embedding of a Möbius strip.
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Chapter 2

Triangulation and polygonal
presentation

Our goal throughout this thesis is to establish certain rules to manipulate a
given surface in order to find another simpler surface, that is homeomorphic
to it and which we can easily classify. To achieve this, we want to construct
a model of the surface on the R2-plane, built up by triangles. Gluing the
triangles together by their edges in the right way, we get a surface homeomor-
phic to the surface we started with. This method will be intensely described
in Section 4.1.1. There, the surface is going to be identified as the quotient
space of a polygonal model in R2 with a relation on its edges. In this chapter,
we want to describe the meaning of triangulation and learn how to interpret
representations of surfaces by polygons, in particular, those of the sphere,
the torus and the real projective plane.

2.1 Triangulation of compact surfaces

Definition 2.1 Let S be a compact surface. A triangulation of S is a family
of finitely many closed subsets {T1, ...Tn} that cover S and a family of homeo-
morphisms φi : T′

i −→ Ti, where T′
i is a triangle in the R2-plane. The images

of vertices resp. edges of any T′
i under φi are called vertices resp. edges of Ti.

For this reason the closed sets Ti ∈ S are also called triangles. Moreover, any
two distinct triangles on S are either disjoint or they share exactly one vertex
or exactly one edge.

An example for the violation of the last condition is presented in Figure 2.1,
since the lower triangle on the right intersects the other triangles, but neither
exactly in one edge nor at exactly one vertex.

Since every point of a given surface has a locally Euclidean neighborhood,
each edge of the triangulation is shared exactly by two distinct triangles.
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2. Triangulation and polygonal presentation

Figure 2.1: This does not represent a triangulation of any surface.

This will be an important fact for the proof of Theorem 4.1. Notice further
that triangles sharing the same vertex v can be enumerated in cyclic order
T0, T1, ..., Tn = T0, s.t. Ti and Ti−1 share the same edge for every 1 ≤ i ≤
n. A set of n triangles around the vertex v is unique since, if there was
another set of triangles sharing v, disjoint from the first set, then this would
be homeomorphic to two discs glued at their center. Consequently, no
neighborhood of this vertex v would be homeomorphic to an open disc in
R2, which violates the definition of a surface.

Figure 2.2 shows an example of a triangulation on a tetrahedron, which
we easily recognize as being homeomorphic to a sphere. In this case, a
triangulation is naturally given by the shape of the tetrahedron. Passing every
triangle to the R2-plane and gluing them along corresponding edges leads
finally to a polygon in the R2-plane. If the pairs of boundary edges of this
polygon are glued back together, then it will give a surface homeomorphic to
a sphere.

Figure 2.2: Construction of a polygon representing a tetrahedron with boundary edges identified.
The cycle aa−1bcc−1b−1 represents the boundary.

The exact process for every step is described in Section 4.1.1, as already
hinted above. For better understanding, the reader can always take this
figure as a reference.
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2.1. Triangulation of compact surfaces

One important question is if every surface or even every n-manifold allows
a triangulation. In the beginning of the 20th century mathematicians first
thought that every manifold would be triangulable. This was the so called
triangulation conjecture. Surprisingly, the classification theorem was first
proved by Max Dehn and Poul Heegaard in 1907 assuming that surfaces
are triangulable, before the conjecture was proved by Tibor Radó in 1925 for
2-manifolds [8].

Theorem 2.2 Every two dimensional manifold allows for a triangulation.

Going through such a technical proof would go beyond the scope of this
thesis, so we will skip it, giving [3] or [17] as a reference, the first being a
short proof by P. H. Doyle and D. A. Moran relying on Radós proof. The
triangulation for 0- and 1-manifolds is, on the other hand, trivially given.

With the development of the knowledge of topological spaces in higher
dimensions, the presumption arised, that the triangulation conjecture could
be false. Indeed, Michael Freedman constructed in 1982 a 4-manifold for
which a few years later Andrew Casson proved not to be triangulable. Thus
the triangulation conjecture was proved to be wrong for at least dimension 4
[5]. Three decades after the counterexamples were found, Ciprian Manolescu
was able to prove in 2013, that indeed for every dimension n ≥ 4 there exists
a n-manifold that does not allow a triangulation. An interesting fact that can
be found in his ‘Lectures on the triangulation conjecture” [10] is that all non-
triangulable 5-manifolds are non-orientable. This is just some peculiarity of
the fifth dimension, in dimension 6 there are also some examples of orientable
non-triangulable manifolds. With this, the conjecture was finally disproved
and we know today for sure that only up to dimension three every manifold
allows for a triangulation (when no further restriction is added). Leaving
one last interesting remark with no explanation, we want to highlight, that
smooth manifolds are triangulable in every dimension.

We will address the triangulation of a sphere, a torus and a real projective
plane in Section 2.3, when we have properly defined and represented these
spaces as quotient spaces of some polygon. In the same section, we will
give an example in Figure 2.7 of a triangular subdivision on a torus which
happens not to be a triangulation. This will show that a naive approach of
subdividing a surface into triangles can lead to mistakes.

The triangulation of surfaces is a crucial step for the proof of the classification
theorem. Every proof done until now relies on it. First, there is the need
for manipulating a polygonal presentation of the surface, which is obtained
from the triangulation. Secondly, the triangulation is used to calculate the
Euler characteristic, being itself a topological invariant, which we shall see in
Section 4.2

11



2. Triangulation and polygonal presentation

2.2 Labelling scheme of polygons

In the previous section we defined a triangulation on a surface. It gives us
homeomorphisms from the triangles on the surface to triangles on the plane
R2. Before starting the construction of polygons based on these triangles, we
want to be able to represent polygons properly.

When triangulating our surface, we can label every edge of each triangle and
give the edges an orientation. The orientation is represented by an arrow on
the edge that points from one vertex of the edge (initial vertex) to the second
one (terminal vertex). This helps to keep track of the orientation of every
edge, when passing to the model of the surface in R2. Two edges with the
same label are identified in a way such that both arrows point in the same
direction, matching the initial resp. terminal vertices of both edges.

The boundary of the polygonal model is composed by the edges of the outer
triangles, each edge appearing exactly twice as a pair. Thus the boundary
is a 2n-gon and it can be represented symbolically by recording the letters
that appear on it. Starting at some vertex, we can note down every label of
each successive edge going around the boundary once. An edge a, whose
orientation is against the labeling direction, is denoted by its ‘inverse’ a−1.
Notice that going around the polygon clockwise or counterclockwise is
indifferent for its labelling scheme and so is the choice of the vertex where
the labelling starts. We obtain a symbol that represents the 2n-sided polygon,
called a labelling scheme of the form

aε1
i1

aε2
i2

. . . aε2n
i2n

,

where aik is the label of the k-th edge with ik ∈ {1, . . . , n} and εk ∈ {±1} its
orientation. This contains every information of the polygon, as the number
of edges, their labels and orientations. When the number of edges is small
enough, instead of enumerating the edges by a1, . . . , an we denote them by
a, b, c, . . . for practical reasons. We also omit the positive exponents. When
referring to the polygonal model that represents the surface on the R2-plane,
constructed from the triangulation of the surface, we will call the labelling
scheme polygonal presentation.

The polygon constructed in Figure 2.2 offers an example for such labelling
scheme. Starting at the bottom and going clockwise, we identify this polygon
by aa−1bcc−1b−1. As we already mentioned, every scheme with different
initial vertex or orientation reprsents the same polygon.

In the next chapter, we will see concrete examples of polygonal presentations
of surfaces.
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2.3. Representation of the standard surfaces

2.3 Representation of the standard surfaces

As indicated in the theorem for the classification of surfaces, our main
surfaces of study are: the sphere, the torus and the real projective plane.
Throughout the next chapters, we will often designate them as standard
surfaces. In this chapter, we first define them, and then study their polygonal
representation.

2.3.1 The sphere

The sphere is represented by the set S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.
For its polygonal representation we can first imagine the sphere with a zipper
on the surface. When we open the zipper, the sphere looks like an opened
purse. This idea can be represented as indicated in Figure 2.3, where the
boundary represents the opened zipper.

Figure 2.3: Representation of the sphere as a 2-gon by aa−1.

Thus, the sphere is homeomorphic to the quotient space of a polygon with
its boundary edges identified in pairs. The labelling scheme is aa−1.

2.3.2 The torus

Let X be the square in the R2 plane defined by

{(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},

Then the torus T2 is defined as the quotient space of X under the following
equivalence relation, which is visually shown in Figure 2.4 on the left:

(x, 0) ∼ (x, 1) ∀x ∈ [0, 1]

(0, y) ∼ (1, y) ∀y ∈ [0, 1].

This identification can be visualised by the reader by taking a square sheet of
paper and folding the edges as indicated by the Figure 2.4 on the left. The
polygonal presentation of the torus is given by aba−1b−1.

13



2. Triangulation and polygonal presentation

Figure 2.4: Representation of the torus with the labelling scheme aba−1b−1.

The torus is homeomorphic to the space S1 × S1. Furthermore it can be
shown to be also homeomorphic to the following set in R3:

{(x, y, z) ∈ R3 :
(√

x2 + y2 − 2
)2

+ z2 = 1}.

2.3.3 The projective plane

The real projective plane RP2 is the image of the quotient map of the sphere
S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1} under the equivalence:

(x, y, z) ∼ −(x, y, z) ∀(x, y, z) ∈ S2,

where two diametrically opposite points on the sphere, also called antipodal
points, are being identified.

We observe that the upper hemisphere of S2, namely H = {(x, y, z) ∈ S2 :
z ≥ 0}, contains every equivalence class of the relation above. On the
interior of H every point represents a pair of two antipodal points on the
sphere. On the boundary of H, i.e. the equator of the sphere, we have
that (x, y, 0) ∼ (−x,−y, 0). With this observation, the projective plane is
homeomorphic to the quotient of H under the relation on the boundary, as
shown in the Figure 2.5 on the right. Its labelling scheme is aa.

Since H is homeomorphic to a square in R2, the relation on the boundary
of H devolves to the relation on the boundary of the square as indicated in
Figure 2.5 on the left, where its labelling scheme is abab. In Section 4.1.4,
‘making pairs of the second kind adjacent’, we will show how the polygonal
presentation abab is homeomorphic to aa by cutting and gluing the polygon
in a proper way.

We notice that by identifying every point on a line in R3 going through the
origin, i.e.

∀λ ∈ R\{0} : x ∼ λx ∀x ∈ R3\{0},

14



2.4. The Euler characteristic

Figure 2.5: Two homeomorphic polygonal representations of the real projective plane by abab
(left) and aa (right).

we get a space homeomorphic to RP2. Every space homeomorphic to a
projective plane will also be denoted by the same name.

2.3.4 Triangulation of the standard surfaces

Now that we know how to represent the standard surfaces as quotient spaces
of discs and circles, we can show, how one of many triangulations of these
surfaces looks like in Figure 2.6.

Figure 2.6: Triangulation of the sphere, the torus and the real projective plane.

As promised in the chapter on triangulation, Figure 2.7 shows subdivisions
of a torus which are not triangulations. For instance, on the right one, the
vertex in the middle of the left boundary edge does not appear in the right
boundary edge. By definition of a triangulation this cannot happen, as the
bigger right triangle shares one edge and three vertices with the second
triangle from on the bottom on the left half. Similarly for the torus on the
left, the top left and the bottom right triangle share the same three vertices.

2.4 The Euler characteristic

The Euler characteristic of a surface can be simply calculated from its triangu-
lation. It will give us a very strong criterion to help us to distinguish between

15



2. Triangulation and polygonal presentation

Figure 2.7: These figures do not represent a triangulation of a torus in spite of being a subdivision
into triangles.

some, but sadly not all compact surfaces, as we will see in Section 4.2.

Definition 2.3 The Euler characteristic of a surface S with triangulation
{T1, . . . Tn} is given by the formula

χ(M) = v − e + t,

where

v = total number of vertices,

e = total number of edges,

t = total number of triangles of M (in this case, t = n).

But will the most complicated triangulation of any surface result in the same
Euler characteristic as any other triangulation? The following lemma gives
us the answer.

Lemma 2.4 The Euler characteristic of a surface is independent of the chosen
triangulation.

Proof: Given two different triangulations {T1, . . . , Tm} and {T′
1, . . . , T′

n} of a
surface S, we want to be able to go from the first triangulation to the second,
with a finite number of manipulations. First, we have to set up the rules for
allowed manipulations.

This time, we want to allow for subdivisions of the surface into arbitrary
polygons, not just triangles, and also subdivisions of the kind represented
in 2.8, where edges must not subdivide a region. Moreover, we require the
following three things:

1. the interior of a polygon must be homeomorphic to an open disc;

2. the closure of an edge is homeomorphic to a closed interval in R;

3. the number of faces, edges and vertices stays always finite.

Now we allow the following operations:

• Subdivision of an edge into two by placing a vertex in its interior or

16



2.4. The Euler characteristic

Figure 2.8: Edges ending in the interior of a polygon are allowed.

• removal of a vertex that belongs exactly to two edges, by merging the
these edges together (inverse operation).

• Subdivision of a polygon into two sections by connecting two of its
boundary vertices with an edge or

• amalgamation of two polygons that share an edge, by removing it
(inverse operation).

• Placing a new edge in a region starting at a boundary vertex and ending
freely in the interior or

• removal of an edge whose vertex ends in the interior of a polygon
(inverse operation).

We observe that the quantity v − e + f , where v, e, f are respectively the
number of vertices, edges and faces, remains the same after each operation.
For example subdividing a region with an edge augments the number of
edges and faces respectively by one. Since both are counted with different
signs, v − e + f remains unchanged.

Assume now we lay both triangulations {T1, . . . , Tm} and {T′
1, . . . , T′

n} of
the surface S on top of each other. If there are finitely many intersections,
then reasonably, we will only need finitely many moves to deform the
first triangulation into the second, using the above operations. If there are
infinitely many intersections, then we can get around this problem by moving
one of edges slightly. Proving this second case is not easy and, like Massey,
we will skip it for now. There is a nicer way to prove it using homology
groups in Chapter 13 of [8] or Chapter 9 in Masssey’s book [12]. But if we
believe this to be possible, then the lemma is proved. □

This lemma shows the invariance of the Euler characteristic. Assume we have
two homeomorphic spaces X and Y, which allow for a triangulation TX and
respectively TY. Then TX is mapped to a triangulation T′

Y of the second space
by the given homeomorphism between the two spaces. Using the preceding
lemma, we can transform this triangulation T′

Y into TY using the allowed
manipulations presented in the proof of the lemma. This proves that the two
spaces must have the same Euler characteristic.
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2. Triangulation and polygonal presentation

As mentioned at the end of the above proof, for those readers involved in
the theory of homology, a much simpler proof could be achieved using the
following equation for a CW-complex X (see Section 6.1.1 for its definition):

χ(X) = ∑
n
(−1)nrankHn(X).

Now, we know that whatever triangulation we happened to choose, it will
always give the same Euler characteristic. Leaving things simple, if we want
to determine the Euler characteristic of the sphere, the torus or the projective
plane, we can use the simplest triangulation possible. We leave the reader to
determine the Euler characteristics with help of Figure 2.6 in Section 2.3.4
and we present just the results with the remark, that identified points and
edges are counted exactly once.

• Sphere: χ(S2) = 2;

• Torus: χ(T2) = 0;

• Projective plane: χ(RP2) = 1.

Notice that two non-homeomorphic spaces can have the same Euler charac-
teristic. Compare, for example, the real projective plane and one single point
in R3, both having characteristic of 1. The Euler characteristic only reveals
its importance when two spaces have different characteristics, making them
not homeomorphic, since the Euler characteristic is a topological invariant.
In the case of our three main surfaces, they have distinct Euler characteris-
tics, making them non-homeomorphic to each other. But what about their
connected sums? This we will prove in Section 3.2.
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Chapter 3

Connected sums

We want to understand how two compact surfaces can be glued together
forming another compact surface. For this we define the concept of connect-
ing surfaces. Then we study connected sums of the standard surfaces.

Definition 3.1 The connected sum T1#T2 of two surfaces T1 and T2 is defined
by removing a small disc from both surfaces and identifying their boundaries.

More precisely, we define a homeomorphism on the boundaries of the re-
moved discs:

h : ∂D1 → ∂D2,

which gives an equivalence relation

x ∼ h(x) ∀x ∈ ∂D1.

The connected sum of T1 and T2 is then described by the quotient of their
union under this relation, i.e.

T1 # T2 = (T1 ∪ T2)/∼ .

We remark here that the connected sum is an associative and commutative
operation. This means that the order which surfaces are connected to each
other does not matter.

Further, we acknowledge that the connected sum of two orientable surfaces is
again orientable. If one of the surfaces is non-orientable, then the connected
sum is also a non-orientable surface. This comes from the definition of ori-
entability, since at least one of the surfaces in the sum contains an embedded
Möbius strip.
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3. Connected sums

3.1 Euler characteristic of connected sums

As the Euler characteristic will play an important role in determining whether
or not two surfaces are homeomorphic, we study in this chapter, how the
Euler characteristic changes, when building connected sums of the standard
surfaces.

Proposition 3.2 Let S1 and S2 be compact surfaces. Then

χ(S1#S2) = χ(S1) + χ(S2)− 2.

Proof: Assuming that both S1 and S2 are triangulated, we determine their
Euler characteristics χ(S1) and χ(S2). The connected sum is built by remov-
ing the interior of a disc, in this case of a triangle given by the triangulation,
from both surfaces and by identifying their boundaries. Thus from the total
amount of triangles of S1 ∪ S2, we remove two faces and identify three ver-
tices, respectively three edges, reducing the number of vertices by three and
augmenting the contribution of edges by three. Thus we get:

χ(S1#S2) = χ(S1) + χ(S2)− 3 + 3 − 2 = χ(S1) + χ(S2)− 2,

which proves the claim. □

3.2 Connected sum of spheres

A sphere, where the interior of a closed disc has been removed, is homeomor-
phic to the unit disc on the R2-plane. By identifying the boundaries of two
unit discs we get a surface homeomorphic to a sphere. Thus, the labelling
scheme is just aa−1 independent of the number of connected spheres.

3.2.1 A sphere connected to an arbitrary surface

For the same reason, connecting a sphere to any other surface will lead to the
surface itself, since the sphere will fill in the hole created on the surface by
the removed disc. Hence, we see how the sphere plays the role of a neutral
element in the monoid of compact surfaces up to homeomorphism.

The Euler characteristic of a connected sum of a sphere with any compact
surface S is given by:

χ(S2 # S) = χ(S2) + χ(S)− 2 = χ(S),

using the formula above.
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3.3. Connected sum of tori

3.3 Connected sum of tori

In order to form the connected sum of two tori, we take from each one the
interior of a small disc and designate their boundaries by c resp. c’. Figure
3.1 shows how, after a hole is formed by removing a disc, each torus can
be continuously deformed to a pentagon. Finally by identifying c and c’
together, we get an octagonal shape representing the connected sum.

Figure 3.1: Construction of two connected tori.

By removing a disc from each torus, we actually add a new edge to the
polygon. But since their boundaries are identified and lay in the interior
of the new connected surface, we neither gain nor loose any edges when
connecting tori.
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3. Connected sums

Applying this conclusion inductively, we observe that after connecting n
tori T1# · · · #Tn, we end up with a polygon with 4n edges, i.e. a 4n−gon. A
connected sum of n tori is also called an orientable surface of genus n.

The labelling scheme of a polygon representing the connected sum of n tori
is given by a1b1a−1

1 b−1
1 . . . anbna−1

n b−1
n . The Euler characteristic for n ≥ 2 is,

using the formula in Proposition 3.2, given by:

χ(T2
1 # . . . # T2

n) = 2 − 2n ∈ {−2,−4,−6, . . . }

3.4 Connected sum of projective planes

As a matter of simplicity we take the labelling scheme aa for the real projective
plane as seen in Figure 2.5 on the right. The connected sum of n such spaces
can be done in the same manner of that of the torus explained above in
3.3. Then, we immediately see that we end up with a 2n-gon with the
labelling scheme given by a1a1 . . . anan. This connected sum can be called a
non-orientable surface of genus n.

Figure 3.2: Polygon representing the connected sum of two real projective planes with labelling
aabb.

The Euler characteristic of the connected sum of n projective planes for n ≥ 2
can be any integer smaller or equal to 0:

χ(RP2
1 # . . . # RP2

n) = 2 − n ∈ {0,−1,−2,−3 − 4, . . . }

For even numbers of the Euler characteristic, it is impossible to distinguish
between a connected sum of tori or a connected sum of projective planes.
Thus, we already foresee, that the Euler characteristic will be an important
criterion to classify surfaces, reveling its worth, when combined with another
criterion, which solves this mentioned issue.
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3.5. The Möbius strip in the projective plane

3.5 The Möbius strip in the projective plane

When connecting a real projective plane to a surface, we first remove the
interior a disc out. Surprisingly, a projective plane with a removed disc is
homeomorphic to a well-known topological object: the Möbius strip. We
leave the reader to discover this interesting fact with help of Figure 3.3.

Figure 3.3: The real projective plane with a removed disc is homeomorphic to the Möbius strip.

This also shows that a Möbius strip is embedded in the real projective plane,
making it a non-orientable surface by Definition 1.10.

3.6 The Klein bottle or two connected projective planes

From the previous paragraph we observe that the connected sum of two
projective planes is the sum of two Möbius strips. How do two Möbius
strips glued together look like? As for the real projective plane, there is no
embedding in R3, thus we expect the surface to have self-intersections or
singularities.

Amazingly, there is a nice visualisation of this surface that proudly carries
the name of its discoverer, namely the Klein Bottle. The Klein Bottle is
constructed similarly to the torus, but with one edge orientation reversed,
as it can be observed in Figure 3.4. Its polygon is represented by aba−1b
instead of aba−1b−1 as for the torus. First, two opposite edges of a square
are identified, thus forming a cylinder. Then, one end will have a reversed
orientation relative to the other. In order to visualise this surface in a three
dimensional world, we allow one of the ends to go through the surface,
creating an intersection, such that its orientation matches with the other end
(see first part of Figure 3.5).

Now, what does a Klein bottle have to do with projective planes and Möbius
strips? Well, cutting a Klein bottle in half, as represented in Figure 3.5,
shows that both halves are indeed homeomorphic to Möbius strips, where
the boundaries generated by the cut are the boundaries of Möbius strips.
Thus, a Klein bottle is a sum of two connected real projective planes, as it

23



3. Connected sums

Figure 3.4: The Klein bottle is represented by aba−1b.

is a sum of two Möbius strips. Notice that Figure 3.5 of the Klein bottle is
just an immersion with nice intersections, as no embedding in R3 would be
possible.

Figure 3.5: The Klein bottle (left) cut in half (middle) is homeomorphic to a Möbius strip (right).

If this visual proof of two projective planes being homeomorphic to a Klein
bottle is not so appealing for the reader, then we warmly recommend to take
a look to the approach taken in Chapter 4 of [2]. Starting from the sum of
two projective planes with the polygonal presentation ababcdcd, by cutting
and gluing the polygon we get the presentation abab−1 of the Klein bottle.

3.7 A torus connected to a projective plane

As we mentioned previously, a surface is homeomorphic to exactly one of
the three classes of the classification theorem. It is quite intriguing to which
of such classes a torus connected to a projective plane belongs to.

Lemma 3.3 The connected sum of a torus and a projective plane is homeomorphic
to the connected sum of three projective planes.
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3.7. A torus connected to a projective plane

Proof: In this proof, we want to show the following isomorphisms:

T2 # RP2
(1)∼= K2 # RP2

(2)∼= RP2 # RP2 # RP2

Isomorphism (2) arises due to the fact that a Klein bottle K2 is homeomorphic
to two connected projective planes, as seen in Section 3.4

We know that, after a disc is removed from the real projective plane (in par-
ticular when building a connecting sum), this space becomes homeomorphic
to a Möbius strip M. Thus isomorphism (1) will follow easily from a much
simpler isomorphism:

T2 # M
(3)∼= K2 # M

For this isomorphism (3), we want to first construct T2 # M and K2 # M

separately. To build the connected sum of a torus with a Möbius strip we
remove the interior of a disc from the torus and cut it into two sections
along the edge c. The section with the removed disc is marked with (I I) as
indicated in Figure 3.6 on the left.

Figure 3.6: Torus (left) and Klein bottle (right), where the interior of a disc with boundary b is
removed.

We first connect region I I (separately from region I) to a Möbius strip. Notice
that region I I is homeomorphic to a cylinder with a removed disc. The
boundary of the disc is identified with that of a removed disc of the Möbius
strip. A cylinder is homeomorphic to a sphere with two holes. We already
know that a sphere connected to a surface is just homeomorphic to the
surface itself. Thus a cylinder connected to a surface is homeomorphic to the
surface with two holes (see Figure 3.7, where the dark shaded discs represent
removed discs from the surfaces). We conclude that the connection of region
I I to the Möbius strip is just the Möbius strip perforated twice.

Region (I) is also homeomorphic to a cylinder. We identify region I with this
perforated Möbius strip by the boundaries of the cylinder and get a surface
as in Figure 3.8 on the left.

The same procedure can be done for the Klein bottle with a removed disc
(Figure 3.6, right). Again, we obtain a twice perforated Möbius strip (see
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3. Connected sums

Figure 3.7: Region I I attached to the Möbius strip along d, leading to a Möbius strip with two
holes.

Figure 3.7). Because two opposite boundaries of region I have reversed
orientation, attaching this region to the Möbius strip has to be done more
carefully, as represented in the Figure 3.8 on the right.

Figure 3.8: Region I of the torus (left) resp. Klein bottle (right) attached to a Möbius strip
along the corresponding boundaries.

Figure 3.9: Illustration of the cut made in Figure 3.8.

Now, it only remains to show that both spaces T2 # M and K2 # M are
indeed homeomorphic. This follows immediately by doing a smart cut on
each Möbius strip as indicated by the gray dashed line in Figure 3.8. With
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3.8. The monoid of compact surfaces up to homeomorphism

Figure 3.9, we see that both are homeomorphic to a torus connected to a
rectangle, which has its boundary identified with a twist. Thus, we get
isomorphism (3).

As stated previously, isomorphism (1) is proved by attaching a disc along
the boundary of the Möbius strips of both T2 # M and K2 # M. This proves
the lemma. □

We conclude from this lemma that every connected sum of n tori with m
projective planes is homeomorphic to a connected sum of 2n + m projective
planes (for every torus we get two additional projective planes).

T2 # . . . # T2︸ ︷︷ ︸
n times

# RP2 ∼= #
2·n+1

RP2.

T2 # . . . # T2︸ ︷︷ ︸
n times

# K2 ∼= #
2·n+2

RP2.

T2 # . . . # T2︸ ︷︷ ︸
n times

# RP2 # . . . # RP2︸ ︷︷ ︸
m times

∼= #
2·n+m

RP2.

We use this result to calculate the Euler characteristics of a connected sum of
a projective plane and n tori for n ≥ 1:

χ(RP2 # T2
1 # . . . # T2

n) = 1 − 2n ∈ {−1,−3,−5,−7, . . . },

and for a connected sum of a Klein bottle (or 2 connected projective planes)
and n tori for n ≥ 1:

χ(K2 # T2
1 # . . . # T2

n) = −2n ∈ {−2,−4,−6,−8, . . . }

Every negative integer represents the Euler characteristic of some connected
sum of tori and projective planes. Depending if the number of projective
planes is odd or even, we get an odd resp. an even number for the Euler
characteristic.

3.8 The monoid of compact surfaces up to homeomor-
phism

The compact surfaces up to homeomorphism form a commutative monoid
with the operation given by the connected sum. The sphere is, as we know
from Section 3.2.1, the neutral element. From the classification theorem, we
conclude that the torus and the real projective plane generate this monoid
with the relation T2 # RP2 ∼= RP2 # RP2 # RP2.
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3. Connected sums

Visually, we can represent the monoid as in Figure 3.10. The left column
together with the sphere represents all orientable compact surfaces and the
right column represents all non-orientable compact surfaces.

As a final remark, note that, with the knowledge from the two preceding
chapters, we can give an equivalent formulation of the classification theorem:

Let S be a compact surface. If S is orientable, then it is homeomorphic
to a sphere connected to n tori for n ≥ 0. If S is non-orientable, it
is homeomorphic to either a real projective plane or to a Klein Bottle
connected to n tori for n ≥ 0.
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3.8. The monoid of compact surfaces up to homeomorphism

Figure 3.10: Visualisation of different possible connected sums of the standard surfaces given by
the classification theorem.

29





Chapter 4

Classification of surfaces

We finally have all the necessary tools to prove the theorem of the classifica-
tion of surfaces.

Theorem 4.1 Every compact surface is homeomorphic to either a sphere, or to a
connected sum of tori, or to a connected sum of projective planes.

Sometimes we will refer to these three cases as classes: the class of the sphere,
of the connected tori and of the connected projective planes. Further, when
we say that a surface belongs to some class, we mean that it is homeomorphic
to some surface in one of the classes. In the previous chapters we denoted
the generators of the monoid of compact surfaces up to homeomorphism as
standard surfaces. We extend this designation also for connected sums of
standard surfaces, when we refer to surfaces presented in the form given by
the classification theorem.

The theorem can be divided into two statements, which we are going to
prove separately in part I (Section 4.1) and part II (Section 4.2). First, the
theorem states that every compact surface belongs to one of the three classes.
For this we will develop an algorithm to deform the polygonal presentation
of a surface, until we get a presentation in the form of the standard surfaces.
Notice that connected sums between surfaces of different classes will belong
again to one of the classes. As seen in Section 3.7, tori connected to projective
planes land in the class of connected projective planes. Secondly, the theorem
makes a stronger requirement, namely that every surface is homeomorphic to
one surface, contained in exactly one of the classes. For this, we need to find
some topological invariants, meaning some identities that remain the same
for every homeomorphic surface. As we will see, the Euler characteristic and
orientability will be sufficient to prove this second part.
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4. Classification of surfaces

4.1 Part I: Classification of a surface

Let S be a given compact surface. Our goal is to show that S is the quotient
space of some polygon in the euclidean plane with identifications on its
boundary edges. Then, we want to be able to manipulate the polygon in
certain allowed ways, such that the class to which the surface is homeomor-
phic to, reveals itself, when gluing the boundary edges according to their
identifications. For this we divide this proof in 5 steps:

1. Construction of a polygonal presentation of the surface;

2. Elimination of adjacent edges of the first kind;

3. Identification to a single vertex;

4. Making pairs of the second kind adjacent;

5. Transforming pairs of the first kind into adjacent groups.

Before continuing the proof, we want to name the two possible kind of pairs
that are contained in the boundary of a polygonal model of a surface:

1. Pairs of the first kind are of the form aa−1 (or a−1a);

2. Pairs of the second kind are of the form aa (or a−1a−1).

Figure 4.1: Pairs of the first kind (left) and pairs of the second kind (right).

After every step, we want analyse if the polygon fits the classification theorem,
before continuing with the next step. The polygonal presentation should
finally take one of the standard forms below in order to be categorized:

• A sphere: aa;

• Connected sum of n tori: a1b1a−1
1 b−1

1 . . . anbna−1
n b−1

n ;

• Connected sum of n real projective planes: a1a1 . . . anan;

4.1.1 Step 1: Polygonal presentation of the surface

First, we assume that S is triangulated by n triangles, which is possible by
Theorem 2.2. Then, we enumerate every triangle Ti for i = 1, . . . , n following
an ordering given by the rule below:
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4.1. Part I: Classification of a surface

Every triangle Tk ⊆ S for k = 2, . . . , n shares at least one edge,
denoted by ek, with some preceding triangle, i.e. with some Ti for
i = 1, ..., k − 1.

This ‘enumeration rule’ is always fulfilled in the process of enumerating the
triangles. Otherwise, our surface would split into two disjoint non-empty
closed sets, which contradicts the assumption that a surface is connected.

Now given the triangles T1, . . . Tn and the shared edges e2, . . . en, we start to
construct the model of the surface on the euclidean space. To every triangle
Ti ⊆ S we assign some triangle T′

i ⊆ R2 and a homeomorphism hi : T′
i → Ti,

which is given by the triangulation. We do this for every triangle, while being
careful, such that the assigned triangles T′

i do not intersect each other. If so,
then we can translate them on the R2-plane.

Each triangle T′
i is a closed and bounded set in R2. Hence, the union of

finitely many such sets is the compact set:

T′ =
n⋃

i=1

T′
i .

We define the map
φ : T′ → S

such that
φ|T′

i
= hi

and study its properties.

Claim: φ is a continuous and surjective map.

Proof: The surface S is locally Euclidean. Thus for every point x ∈ S it
exists an open ball B ⊆ S with x ∈ B. Every intersection of this ball with
any triangle Ti ∈ S will be an open set for i = 1, . . . , n. We see that the
preimage of B under φ is open as the union of open sets (notice that hi is an
isomorphism for every i = 1, . . . , n).

φ−1(B) =
n⋃

i=1

h−1
i (B ∩ Ti).

This proves that φ is continuous. Surjectivity follows again automatically
from the definition of φ. □

Claim: φ is a closed map.

Proof: Let C ⊆ T′ be a closed subset of the compact set T′. It follows that
C is itself compact and its image under a continuous map is again compact
(see [7], page 26). Hence φ(C) is a compact subset of the Hausdorff space S.
Thus we conclude that φ(C) is a closed set (see [7], page 28). □
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4. Classification of surfaces

Claim: S has the quotient topology determined by φ.

Proof: We need to show that φ is a surjective quotient map. Surjectivity of φ
follows from the first claim above. According to the definition of a quotient
map, we want to show that a set V ⊆ S is closed if and only if the preimage
φ−1(V) is closed. Assuming that V ⊆ S is closed, then by continuity of φ,
the set φ−1(V) is closed. On the other hand, if φ−1(V) is closed, then, since
φ is a closed map, it will map this set to a closed set. By surjectivity, we get
φ(φ−1(V)) = V. Thus V is closed and we conclude the claim. □

An equivalence relation arises naturally from the identification of the preim-
ages of the shared edges e2, . . . en, chosen through the enumeration rule.
Notice that, from the triangulation of S and the enumeration rule, it follows
that every edge ei for some i ∈ {2, . . . , n} is shared exactly by two distinct
triangles Ti and Tj on S for some j ∈ {1, . . . , i − 1}. Hence φ−1(ei) is an edge
of both the triangles T′

i and T′
j in T′. By identifying these two edges and

doing this for every edge e2, . . . , en, we can build the quotient space D, which
corresponds intuitively to gluing the triangles in R2 together. Each edge on
the boundary appears twice as a pair. With one final claim, we can show that
this space D is in fact the polygonal model we were looking for.

Claim: The space D is homeomorphic to a closed disc in R2.

Proof: The triangles T′
1 ⊆ T′ and T′

2 ⊆ T′ from above are disjoint and both
homeomorphic to a closed disc D2. By the enumeration rule there exist edges
d′ ∈ T′

1 and e′ ∈ T′
2, such that φ(d′) = φ(e′) = e2. Notice that d′ and e′ are

both homeomorphic to the interval [0, 1]. We can define a homeomorphism
h : T′

1 → T′
2 such that h(d′) = e′. Then, we make the identification x ∼ h(x)

for every x ∈ d′. It follows that (T′
1 ∪ T′

2)/∼ is homeomorphic to a closed
disc D2.

Then we proceed by attaching T′
3 to this space. Again by the same argument

(((T′
1 ∪ T′

2)/∼) ∪ T′
3)/∼ ∼= D2,

since T′
3 has an edge e′3, whose image is the same as the image of an edge

(neither d′ nor e′) of one of the previous triangles T′
1 or T′

2.

The enumeration rule enables to successively repeat this process by iden-
tifying edges of every new triangle to one contained in the union of the
preceding triangles. This proves the claim. □

With the equivalence relations given on the edges of the triangles, the map
φ : T′ → S induces a map ψ : D → S. Then S has the quotient topology
induced by ψ. Thus, we can view S has the quotient space of a polygon D
with its edges identified.
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4.1. Part I: Classification of a surface

Now that we have the polygonal presentation of the surface, our goal is to
manipulate the polygon in allowed ways, such that we can finally categorize
it into one of the three classes.

4.1.2 Step 2: Elimination of adjacent edges of the first kind

Adjacent pairs of the first kind can be immediately eliminated by gluing
them together as indicated in Figure 4.2. This is certainly possible, since
the boundary must contain more than two edges, otherwise we would have
been able to finish the classification process in step 1. If we have an adjacent
pair of the first kind, where an edge and its inverse appear in succession as
represented by the scheme a1 . . . ak−1aka−1

k ak+1 . . . an, then we can eliminate
the pair aka−1

k and remain with a1 . . . ak−1ak+1 . . . an.

Figure 4.2: Elimination of pairs of the first kind.

We eliminate every adjacent pair of the first kind, until the polygonal pre-
sentation consists either of exactly one single pair (aa−1 or aa) or until all
remaining pairs consist of non-adjacent pairs of the first kind and pairs of the
second kind. If the remaining boundary consists of only two edges, where its
presentation is of the form aa−1 (i.e. first kind) or aa (i.e. second kind), then
the surface is homeomorphic to a sphere resp. a connected plane. Otherwise
we proceed to apply step 3.

In the example of the tetrahedron in Figure 2.2, we ended up with the
polygonal presentation aa−1bcc−1b−1. The pairs aa−1 and cc−1 are adjacent
pairs of the first kind. After eliminating them, we end up with bb−1. Thus
the tetrahedron is isomorphic to a sphere, which matches also our intuition.

4.1.3 Step 3: Identification to a single vertex

This step is the most ingenious one. The goal here is to identify all vertices
of the polygon into a single one. Even if the purpose of this step is a priori
not clear, it will turn out to be very important for step 4.

Each edge has a start and end point, which may differ. Assume the edge
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4. Classification of surfaces

a starts at P and ends at Q. If P is not to be identified with Q, then they
belong to different equivalence classes of vertices [P] and [Q]. The number
of vertices contained in each equivalence class depends on the identifications
made on the model of the surface and on the number of existent triangles.
Our plan is to eliminate all but one equivalence class of vertices. To simplify
the understanding of this process, we recommend the reader to follow the
steps explained below based on Figure 4.3.

Given a polygonal presentation that has passed through the manipulation
process in step 2, we assume that there are at least two different equivalence
classes of vertices and denote a to be an edge belonging to two different
classes of vertices [P] and [Q]. Let b be an adjacent edge that shares the
vertex [P] with the edge a. We can assume that the edge b is unequal a, since
the polygon went already through step 2, without revealing its form in terms
of standard surfaces.

We want to eliminate one vertex of the equivalence class [P]. This is achieved
by making a cut going from Q to the vertex of the adjacent edge b, which
is not shared by the edge a. We designate the new emerging edge by c.
We know that on the boundary of the polygon the edge b appears again
somewhere, and we glue the piece we cut out to this second representative
edge of b, immerging it in the interior of the polygon.

Figure 4.3: Visualisation of step 3.

Now, we have reduced the number of vertices in the class [P] by one and
increased [Q] by one and we get new edge identifications on the boundary.
Thus we apply step 2 again, in order to eliminate any adjacent pairs of the
first kind, that may have been created.

We repeat the same procedure until the equivalence class of [P] is eliminated,
and continue afterwards with eliminating all equivalence classes of vertices,
until all vertices belong to exactly one class. Finally, we apply again step 2 to
ensure that no adjacent edges of the first kind exist.
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4.1. Part I: Classification of a surface

Notice that a surface represented by aa−1 has exactly two different vertices,
which cannot be reduced to one. But if we would have such a surface, then
the classification process would have terminated before reaching step 3.

If we still cannot classify the surface by now, we continue with step 4.

4.1.4 Step 4: Making pairs of the second kind adjacent

Now our polygon looks quite different from the beginning. We reduced
all equivalence classes of vertices to exactly one, and there are no adjacent
pairs of the first kind. Still the labelling scheme may be a wild sequence of
non-adjacent pairs of edges.

In this step, we want to make any pairs of the second kind adjacent. The
reason for this is that we know that the sum of projective planes have the
polygonal presentation a1a1 . . . anan, where all pairs are adjacent pairs of the
second kind. Hence this step could be seen as a seek for a sum of projective
planes.

Following Figure 4.4, we first identify some pair aa of edges of the second
kind. If they are adjacent, then we are finished. Otherwise we make a
cut connecting both end points of the edges. Then we glue the two pieces
together through the edge a, transforming the non-adjacent pair aa into an
adjacent one bb.

Figure 4.4: Visualisation of step 4.

This step must be repeated until all edges of the second kind are adjacent.
At the end, we analyse the remaining polygon.

If we have no pairs of the first kind, then the polygonal presentation is of the
form: a1a1a2a2 . . . anan. We conclude that the surface is homeomorphic to a
connected sum of projective planes.

If there is one pair of the first kind, then it implies directly the existence of at
least a second pair of the first kind, that appears alternately to the first pair,
such that the polygonal presentation is of the form . . . a . . . b . . . a−1 . . . b−1 . . . .
The reason for the existence of such pairs has to do with step 3. Assume
by contradiction that no such pair appears alternately to the first pair as
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4. Classification of surfaces

represented in Figure 4.5. Then the edge a separates the boundary of the
polygon into two disjoint sets of edges A and B, where every pair of edges
appears solely as a pair in A or solely in B. In step 3, we identified every
vertex into one class. Thus the set A and the set B meet at one vertex,
but apart from that, they are disjoint. At such vertex, the surface would
locally be homeomorphic to two discs connected to each other only at their
centers. But this contradicts the definition of a surface, which must be locally
homeomorphic to a disc. Thus, the labelling scheme must be of the above
form. If the surface is not classifiable by now, we continue with step 5.

Figure 4.5: A pair of edges of the first kind cannot separate the boundary into two sections that
do not share another pair of the first kind.

4.1.5 Step 5: Transforming pairs of the first kind into adjacent
groups

All that remains after step 4 is a polygonal presentation of the kind

. . . a . . . b . . . a−1 . . . b−1 . . .

containing at least two pairs of edges of the first kind. This presentation
suggests the existence of a torus and it is exactly the aim of this step: to
identify connected sums of tori.

Starting with . . . a . . . b . . . a−1 . . . b−1 as represented in Figure 4.6, we make a
cut c going through the end points of the edges a and a−1 and glue it along
the edge b. This allows a connection of the first pair through an edge. Now,
we want to connect the second pair. For this we do a second cut d from
the end vertex of the edge c to the corner formed by . . . ac . . . . Gluing this
piece along edge a, we finally get the polygonal presentation . . . cdc−1d−1 . . . ,
which represents a connected sum with one torus. We repeat this step as
long as necessary, until all tori are identified.

If there are no pairs of the second kind in the presentation, then the surface
is homeomorphic to a connected sum of tori. Otherwise, at some position
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4.1. Part I: Classification of a surface

Figure 4.6: Visualisation of step 5.

of the polygonal presentation, a pair of the first kind will meet a pair of the
second kind. With Section 3.7, we know that this is homeomorphic to three
pairs of the second kind, allowing us to change the polygonal presentation.
Every appearance of a connected sum with a torus near a projective plane
can be transformed into two projective planes, and we see that the surface is
a connected sum of projective planes (see Figure 4.7). This concludes part I
of the proof of Theorem 4.1.
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4. Classification of surfaces

Figure 4.7: A torus connected to a projective plane (top) has a polygonal presentation as in
bottom left, which is homeomorphic to the presentation as in bottom right.

4.2 Part II: Topological invariants

In part I, we proved that every compact surface can be put in one of the
three classes, but it is still not clear that the classification is unique, that for
example a sum of projective planes is not homeomorphic to some sum of
tori. We also do not know if the algorithm in part I will always deliver the
same result, when starting with another polygonal presentation for the same
surface. For this, we want to find criteria that remain invariant under all the
applied transformations.

The Euler characteristic is the first important topological invariant. In Section
3, we calculated the Euler characteristic for connected sums of spheres, tori
and projective planes, which can be summarized in the following proposition.

Proposition 4.2 The Euler characteristic of a compact surface S is given by

• 2, if S ∼= S2,

• 2 − 2n, if S ∼= # n T2,

• 2 − n, if S ∼= # n RP2,

where n > 0 is the number of connected sums.

In Section 3.3 and 3.4 we made the following computations for n ≥ 1.

χ(T2
1 # · · · # T2

n) = 2 − 2n ∈ {0,−2,−4,−6, . . . }
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4.2. Part II: Topological invariants

χ(RP2
1 # · · · # RP2

n) = 2 − n ∈ {1, 0,−1,−2,−3 − 4, . . . }

χ(RP2 # T2
1 # · · · # T2

n) = χ(RP2
1 # · · · # RP2

2n+1)

= 1 − 2n ∈ {−1,−3,−5,−7, . . . }

χ(K2 # T2
1 # · · · # T2

n) = χ(RP2
1 # · · · # RP2

2n+2)

= −2n ∈ {−2,−4,−6,−8, . . . }

The first observation is that connected sums of projective planes can be
partitioned. Either the sum is homeomorphic to:

• the connected sum of tori with one projective plane if the Euler charac-
teristic is odd, or

• the connected sum of tori with two projective planes (or a Klein bottle)
if the Euler characteristic is even.

The second observation is that, given any even number for the Euler charac-
teristic smaller than 0, it is impossible to distinguish if we are dealing with
connected sums of projective planes or of tori.

The Euler characteristic can help us to distinguish between compact surfaces,
but in most cases, it will be insufficient. That is why we need a second
criterion, which arises naturally from observing the main difference between
a torus and a projective plane, namely their orientability.

We can divide compact surfaces into orientable and non-orientable ones. The
sphere and sum of tori we know to be orientable, and connected sums of
surfaces with a real projective plane are always non-orientable.

Orientability being a topological invariant gives us a second criteria to dis-
tinguish surfaces. Together with the Euler characteristic, these two criteria
are sufficient to classify compact surfaces, which we can represent in the
following scheme.
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4. Classification of surfaces

χ(S) is



even,



S is orientable,


χ(S) = 2 :

S ∼= S2

χ(S) ̸= 2 :
S ∼= # t T2

S is non-orientable:
S ∼= # m RP2

∼= K2 # ( # nT2)

odd:
S ∼= # r RP2

∼= RP2 # ( # sT
2)

where t = 1 − χ(S)
2 , m = 2 − χ(S), n = −χ(S)

2 , r = 2 − χ(S) and s = 1−χ(S)
2 .

This result together with the classification theorem imply the following
theorem.

Theorem 4.3 Let S1 and S2 be compact surfaces. Then S1 is homeomorphic to S2 if
and only if their orientability agrees and χ(S1) = χ(S2).

This finally completes the proof of Theorem 4.1 for the classification of
surfaces.
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Chapter 5

Classification of compact surfaces with
boundary

Until now, we developed tools to classify surfaces, restricting ourselves to
the study of compact 2-manifolds without boundary. What happens, if a
surface has a boundary? Is there still some way to classify such surfaces? The
goal of this chapter is the study of compact and connected 2-manifolds with
boundary, also called bordered surfaces, following Massey’s book ‘Algebraic
Topology: An Introduction’ [11].

5.1 Bordered surfaces

What does it mean for a surface to have a boundary? Take some surface M∗

(without boundary) and remove the interior of finitely many disjoint closed
discs. The space obtained is a bordered surface M. The number of bordered
components of M is equal to the number of discs we initially removed. Notice
that these boundary components are compact, connected 1-manifolds.

We can also do the inverse process. Take some surface M with k boundary
components. Then, by attaching k closed discs, one for each boundary
component, we obtain a compact surface.

From here on, we will use the symbol ∗ to denote the surface M∗ without
boundary, obtained from a bordered surface M by gluing the necessary
amount of closed discs. In this process, the location of the bordered compo-
nents does not matter. In fact, we can state the following theorem.

Theorem 5.1 Let M1 and M2 be two bordered surfaces with the same number of
boundary components. Then M1 and M2 are homeomorphic if and only if M∗

1 and
M∗

2 are homeomorphic.

For the ‘if’ part of the theorem, we give an outline of the proof, skipping very
few details regarding mostly the triangulation part, that can be read in [11].
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5. Classification of compact surfaces with boundary

Bordered compact surfaces can be triangulated as we defined in Section 2.1,
with the difference that some edges will be the boundary of only one triangle,
and not of two, as required in Section 4.1.1. This is a plausible consequence
of having bordered components in our surface. At such boundary points, the
surface is locally homeomorphic to the Euclidean half space.

We assume that the triangulation fulfils the condition that no edge has both
vertices contained in the boundary unless the entire edge is contained in it. Oth-
erwise, we can barycentrically subdivide the surface where needed. We
notice that, around every boundary component, we can locally triangulate
the surface along the border, such that the above condition is fulfilled. Then,
these triangles form a polygon that is homeomorphic to a polygonal region
in the plane with one hole in it (see Figure 5.1).

Figure 5.1: Local triangulation around a boundary component.

Assume that M1 and M2 are triangulated, fulfilling the above description
around each boundary component. Then, we apply the algorithm in Section
4.1, while being careful when doing the necessary cuts to avoid the holes
created by the boundary components.

The algorithm of the classification theorem gives finally a standard polygonal
presentation of both surfaces with k holes, also called normal form with k holes.
This normal form is given by first noting down the labelling scheme of the
polygon without the holes inside. Then, starting at one certain vertex, we do
a cut c1 to the first boundary component, labelled B1, and come back to the
initial vertex along the same edge c1. For each hole, we do such cuts c1, . . . ck,
starting every time with the same initial vertex (see Figure 5.2). These cuts
must be pairwise disjoint, except for one end point.

Depending on the surface, we get the following normal forms:

1. Sphere with k holes:

aa−1c1B1c−1
1 c2B2c−1

2 . . . ckBkc−1
k .
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5.2. The classification of bordered surfaces

2. Connected sum of n tori with k holes:

a1b1a−1
1 b−1

1 . . . anbna−1
n b−1

n c1B1c−1
1 c2B2c−1

2 . . . ckBkc−1
k .

3. Connected sum of n real projective planes with k holes:

a1a1 . . . ananc1B1c−1
1 c2B2c−1

2 . . . ckBkc−1
k .

Figure 5.2: Double torus with three boundary components.

If M∗
1 and M∗

2 are homeomorphic, then the first part of the normal forms of
M1 and M2, concerning the surface without holes, coincides. By assumption,
M1 and M2 have the same number of boundary components, making the
second part of the normal forms, which represents the cuts and holes, to be
equal. This concludes the ‘if’ part of the theorem.

5.2 The classification of bordered surfaces

Orientability and the Euler characteristic are sufficient criteria to classify
a compact surface, as we saw in Section 4.2. Starting with a triangulated
compact surface without boundary, when deleting a face of one triangle,
we obtain a compact surface with one boundary component. The Euler
characteristic of this new surface is obviously reduced by one. Analogously,
for every compact surface with k holes, we get that:

χ(M) = χ(M∗)− k.

Thus, together with the preceding theorem, we can give a general classifica-
tion theorem for bordered compact surfaces.
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5. Classification of compact surfaces with boundary

Theorem 5.2 Two compact bordered surfaces are homeomorphic if and only if they
have the same number of boundary components, they are both orientable or non-
orientable, and they have the same Euler characteristic.
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Chapter 6

Other proofs

We remind ourselves that the proof of the classification of surfaces in the
previous chapter was divided into two parts. Part I, in Section 4.1, presented
an algorithm, showing that any surface is homeomorphic to one of the
standard ones of the theorem. Part II, in Section 4.2, shows that these
standard compact surfaces are not homeomorphic to each other. For part I,
most authors follow the same approach taken by Massey, using almost the
same algorithm to manipulate the polygonal presentation of a given surface.
Part II, on the other hand, is proved often with more modern concepts,
such as the first homotopy group π1(X) or the first homology group H1(X).
Nevertheless, the key idea remains the same for most proofs.

In the next pages, we will first study the proof presented in John Lee’s book
‘Introduction to topological manifolds’ [8]. We want to give the reader a good
understanding of this more elaborated proof, without overloading the next
pages with too many technical details. We give special attention to the main
differences and present all the necessary tools of algebraic topology, hoping
to find an equilibrium for readers inexperienced in this matter. At the end,
we will give a quick insight in the marvelous world of John Conway, whose
proof differs significantly from the majority.

6.1 The classification theorem by John Lee

A big difference already in the preparation for the proof of the classification
theorem is the tools which are used for the triangulation and the construction
of the polygonal presentation of the surfaces. The concept used, is that of
complexes, which is very useful, as we will see after a quick introduction in
the basic concepts based on Chapter 5 in Lee’s book.
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6. Other proofs

6.1.1 CW-complexes

Some topological spaces can be obtained, starting from a discrete space, by
attaching cells with successively increased dimension. This concept simplifies
the handling with surfaces significantly.

An open n-cell is a topological space that is homeomorphic to the open unit
ball in Rn. Analogously, a closed cell is homeomorphic to the closed unit
ball.

A topological space X can have a cell decomposition, which is a partition of
X into open cells of various dimensions, fulfilling the following condition:

For each cell e in the partition of dimension n ≥ 1, there exists
a continuous map from some closed n-cell D into X. This map
is a homeomorphism from the interior of D onto e and it maps
the boundary of D into the union of all cells of the partition of
dimension strictly less then n.

A Hausdorff space X together with a specific cell decomposition is then
called a cell complex.

A special case of a cell complex is the CW-complex. A cell decomposition
of a topological space X is a CW-complex if, additionally to the preceding
condition, the following holds:

1. The closure of each cell is contained in a union of finitely many cells;

2. A subset U ⊆ X is open in X if and only if its intersection with every
set C ∈ F is open in C, where F is the family formed by the closure of
every cell.

The second condition gives a weak topology and is necessary for spaces, where
the topological space is constructed by gluing infinitely many cells.

Let’s give a quick counterexample to understand the first condition [19]. Let
X be a closed two dimensional disc. A possible cell decomposition would be
a 2-cell for the interior of the disc and a 0-cell for every point on its boundary.
Since the closure of the 2-cell is a closed disc, it intersects X at infinitely
many cells, violating the first condition. Hence, such a cell decomposition is
not a CW complex. A CW-complex of a disc would be a 0-cell with a 1-cell
attached to it by its end points, and a 2-cell attached by its boundary along
the 1-cell.

The following proposition establishes a connection between manifolds and
CW-complexes.

Proposition 6.1 A locally Euclidean space, whose CW complex has countably many
cells, is a manifold.
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6.1. The classification theorem by John Lee

A special case of CW-complexes is given by simplicial complexes. A k-
simplex [v0, . . . vk] is a set spanned by points (vertices) {v0, . . . , vn} in Rn,
given by

[v0, . . . vk] =

{
k

∑
i=0

tivi : ti ≥ 0 and
k

∑
i=0

ti = 1

}
.

For example a 2-simplex spanned by three vertices is a triangle in R2. A
3-simplex can be seen as a tetrahedron with one vertex at the origin of R3

and all the other three at each unit vector (this is the so called standard
3-simplex).

The space spanned by a non-empty subset of the vertices of a simplex σ
forms also a simplex, called a face of σ. A 2-simplex has three types of faces:
the three vertices are 0-faces, the three edges are 1-faces and the simplex
itself is a 2-face.

A simplicial complex is a collection of simplices in Rn such that every face of
each simplex is also contained in the collection, and such that the intersection
of two simplices of the collection is either empty or a face of each. Further it
is required for the collection to be locally finite.

Taking the union of all simplices in a simplicial complex gives a polyhedron,
which is a topological space with the topology inherited from Rn. This
definition of a polyhedron is the one we will use for the triangulation surfaces
in Theorem 6.3.

It can be shown that every k-simplex is a closed k-cell. Further, an Euclidean
simplicial complex gives a CW decomposition consisting of the relative
interiors of the simplices.

6.1.2 Polygonal presentation and elementary transformations

Definition 6.2 A polygonal presentation, written

P = ⟨S | W1, . . . , Wk⟩

is a finite set S together with finitely many words W1, . . . , Wk in S of length 3
or more, such that every symbol in S appears in at least one word. A word
in S is an ordered tuple of symbols, each of the form a or a−1 for some a ∈ S.

Our meanwhile very well-known compact surfaces have, in this sense, the
following standard presentations:

1. Sphere: ⟨a | aa−1⟩ or ⟨a, b | abb−1a−1⟩,

2. Connected sum of tori: ⟨a1, b1, . . . , an, bn | a1b1a−1
1 b−1

1 · · · anbna−1
n b−1

n ⟩,

3. Connected sum of projective planes: ⟨a1, . . . an | a1a1 . . . anan⟩ or

⟨a1, b1, . . . an, bn | a1b1a1b1 · · · anbnanbn⟩
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6. Other proofs

Then, we proceed by defining the so called elementary transformations of a
polygonal presentation. We want to give a representative of each transforma-
tion without further explanation, hoping it to be self-explanatory together
with its designation. For interested readers we recommend going through
Chapter 6 in Lee’s book [8].

1. Relabelling:

⟨S | a1a2 · · · aia1ai+1 · · · an⟩ 7→ ⟨S | ba2 · · · aibai+1 · · · an⟩

2. Subdividing:

⟨S | a1 · · · aia1ai+1 · · · an⟩ 7→ ⟨S | a1e · · · aia1eai+1 · · · an⟩

⟨S | a1 · · · aia−1
1 ai+1 · · · an⟩ 7→ ⟨S | a1e · · · aie−1a−1

1 ai+1 · · · an⟩

3. Consolidating (replacing adjacent edges):

⟨S | a1a2a3 · · · aia−1
2 a−1

1 ai+1 · · · an, W2, . . . , Wk⟩

7→ ⟨S | a1a3 · · · aia−1
1 ai+1 · · · an, W2, . . . , Wk⟩

4. Reflecting:

⟨S | a1 · · · an, W2, . . . , Wk⟩ 7→ ⟨S | a−1
n · · · a−1

1 , W2, . . . , Wk⟩

5. Rotating:

⟨S | a1a2 · · · an, W2, . . . , Wk⟩ 7→ ⟨S | a2 · · · ana1, W2, . . . , Wk⟩

6. Cutting:

⟨S | W1W2, W3, . . . Wk⟩ 7→ ⟨S | W1e, e−1W2, W3, . . . Wk⟩

7. Pasting:

⟨S | W1e, e−1W2, W3, . . . Wk⟩ 7→ ⟨S | W1W2, W3, . . . Wk⟩

8. Folding

⟨S | W1ee−1, W2, W3, . . . Wk⟩ 7→ ⟨S | W1, W2, W3, . . . Wk⟩

9. Unfolding

⟨S | W1, W2, W3, . . . Wk⟩ 7→ ⟨S | W1ee−1, W2, W3, . . . Wk⟩
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6.1. The classification theorem by John Lee

It is easy to prove that each elementary transformation of a polygonal pre-
sentation produces a topologically equivalent presentation.

The advantage of this notation, is that manipulations on the surface using
these elementary operations can be done in written form, without relying on
images. For example, showing that the Klein bottle is homeomorphic to two
real projective planes as in Section 3.6, would now look as follows:

⟨a, b | abab−1⟩ (presentation of the Klein bottle)

≈ ⟨a, b, c | abc, c−1ab−1⟩ (cut along c)

≈ ⟨a, b, c | bca, ab−1c−1⟩ (rotate both triangles)

≈ ⟨a, b, c | bca, cba−1⟩ (reflect second triangle)

≈ ⟨a, b, c | bca, a−1cb⟩ (rotate second triangle)
≈ ⟨a, b, c | bccb⟩ (paste along the edge a)
≈ ⟨a, b, c | bbcc⟩ (rotate)

Nevertheless, having a figure in mind is really helpful to not get lost in
symbolic notation.

6.1.3 Classification of a surface

In order to prove the classification theorem, first, we want to assume that
every surface is triangulable. This is stated below, using the terminology
given by the simplicial complexes.

Theorem 6.3 Every 2-manifold is homeomorphic to the polyhedron of a 2-dimensional
simplicial complex, in which every 1-simplex is a face of exactly two 2-simplices.

Using this theorem, we construct a polygonal presentation from the polyhe-
dron. Since the polyhedron consists of an union of 2-dimensional simplices,
we can construct a polygonal presentation forming one word of length three
for each 2-simplex (meaning we label the edges of the triangles), while taking
care of the correspondences given by edges shared by the same simplices.
Showing that this representation gives indeed the same polyhedron back,
when the edges are identified (glued back together), we obtain the following
theorem.

Proposition 6.4 Every compact surface admits a polygonal presentation.

With Massey’s approach, we used homeomorphisms from closed sets on the
surface to triangles in the real plane to construct the polygonal presentation.
This established a direct link from the surface to the R2-plane. Lee’s approach
differs slightly, making a detour using polyhedrons, which already are
composed of geometrically planar triangles.

51



6. Other proofs

Applying the algorithm of Section 4.1, we can bring the polygonal presen-
tation into a standard one, using the elementary transformations of Section
6.1.2. We skip a detailed description of this part, since every step of the
algorithm in Lee’s book is very similar to those of Massey. As a side note, we
want to mention that edges of the first kind are called complementary and
edges of the second kind are twisted edges.

6.1.4 The Euler characteristic

If a topological space X can be represented by a finite CW complex of
dimension n, then the Euler characteristic is defined by

χ(X) =
n

∑
k=0

(−1)knk,

where nk is the number of k-cells of X.

Since every polygonal presentation determines a finite CW complex, then the
compact surfaces have a well-defined Euler characteristic.

Compared to what we did in the proof of Theorem 2.4, using the theory of
simplices, it is very simple to show the invariance of the Euler characteristic
under the elementary transformations presented in Section 6.1.2. Every
polygonal presentation of a surface consists of some 0-cells, 1-cells and 2-
cells. The elementary transformations relabeling, reflecting and rotating do not
change the Euler characteristic of a presentation, as there are no changes
in the number of cells for every dimension. For the other transformations,
it can be easily seen that they also do not change the characteristic, since
the changes cancel each other out. For example the operation subdividing
augments the number of edges by one (a pair is counted as one) and of
vertices also by one. Notice that consolidating, pasting and folding are inverse
transformations of respectively subdividing, cutting and unfolding.

6.1.5 Orientability

Surprisingly, Lee’s definition of orientability of a surface differs from Massey’s
definition, which is based on an embedded Möbius strip. In Lee’s book, a
compact surface is orientable if it admits an oriented presentation, which is
a presentation with no twisted pairs (no pairs of edges of the second kind).
Figure 6.1 shows a twisted pair in a polygonal presentation of some compact
surface. Connecting the edges the way indicated in the figure, we observe
that it contains an embedded Möbius band. On the other hand, if no twisted
pair appears in the polygonal presentation, then by the discussion below and
Proposition 6.5, such surface does not contain an embedded Möbius band.
Hence, both definitions are equivalent.
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Figure 6.1: The polygonal presentation with a twisted pair shows the existence of an embedding
Möbius band.

The only elementary transformation that can introduce a twist is reflecting.
Going through the algorithm of the classification theorem, there are some
steps, where a surface must be cut along an edge into two pieces (which is
then represented by two words in the polygonal presentation). When both
pieces are glued back together along some other edge, sometimes one piece
has to be flipped, i.e. reflected, such that the corresponding edges match
orientation. But this reflection only happens, when this pair is a twisted pair.
For orientated pairs on the other hand, it suffices to rotate one piece, until
the two corresponding edges meet.

We conclude that, if a surface is orientable, i.e. if there is no twist in its
polygonal presentation, then no twists are going to be introduced during the
manipulations done by the algorithm. By the classification theorem, such
surface is reduced to one with no twisted pairs, namely a sphere or a sum of
tori. Since the polygonal presentation of the sphere or connected sum of tori
is oriented, we proved the following proposition.

Proposition 6.5 A compact surface is orientable if and only if it is homeomorphic
to the sphere or a connected sum of one or more tori.

From the classification theorem, it follows from this proposition, that the sum
of projective planes is not homeomorphic to an orientable surface.

Proposition 6.6 A connected sum of projective planes is not orientable.

Notice that, in Massey’s approach, the Euler characteristic and orientability
are sufficient to finish the proof of the classification theorem. In Lee’s proof,
on the other hand, they are insufficient criteria, since we cannot deduce
anything about the orientability of connected sums of projective planes
based on his definition of orientability. For Massey, every connected sum
of projective planes contains an embedded Möbius band (see Section 3.5),
making it by definition non-orientable. From Lee’s perspective, it needs more
sophisticated tools to show Proposition 6.6, as we will see in the next section.
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6.1.6 The fundamental group

A polygonal presentation ⟨S | W⟩ gives naturally a CW-complex, where all
vertices are identified to one. Thus the 1-simplices form a wedge sum of
circles, one for each symbol in S. Then a 2-cell is attached along these circles,
respecting the order given by the word W of the presentation.

We see that the 1-simplices form a generating set with a relation given by
the attached two cell. In general, a group can be represented by a set of
generators S and a set of relators R. We denote this group presentation by
⟨S | R⟩. Each of the generators in S determines an element in ⟨S | R⟩, while
each of the relators represents a specific product of powers of the generators.
The group presentation is the quotient,

⟨S | R⟩ = F(S)/R,

where F(S), the free group on S, is the free product of all the infinite cyclic
groups generated by elements of S. R is the normal closure of R in F(S). In
the quotient every relator in R is equal to 1.

Notice that the closure of R is the intersection of all normal subgroups of
F(S) containing R. Thus R is a normal subgroup and ⟨S | R⟩, as the quotient
of a group by a normal subgroup, is again a group.

Identifying this presentation to be the fundamental group (the set of path
classes of loops), we conclude our observations with the following theorem.

Theorem 6.7 Let M be a topological space with the polygonal presentation given
by ⟨α1, . . . , αn | W⟩ with one face, in which all vertices are identified to a single
point. Then π1(M) has the presentation ⟨α1, . . . , αn | W⟩.

The proof of this theorem relies superficially on the description above. We
will skip the exact study of how to attach a 2-cell and the effect on the
presentation of the fundamental group (see [8], page 262).

With the preceding theorem, we can easily compute the fundamental group
of the standard compact surfaces of the classification theorem. Since the stan-
dard presentation identifies every vertex to a single point, their fundamental
groups are given by their presentations in the following way.

π1(S
2) ∼= ⟨∅ | ∅⟩

π1(T
2 # · · · # T2︸ ︷︷ ︸

n times

) ∼= ⟨α1, β1, . . . , αn, βn | α1β1α−1
1 β−1

1 · · · αnβnα−1
n β−1

n = 1⟩

π1(RP2 # · · · # RP2︸ ︷︷ ︸
n times

) ∼= ⟨α1, . . . , αn | α2
1 · · · α2

n = 1⟩

Now, we wish to compare these groups. While this kind of presentation
makes such an attempt difficult, the process gets easier with their abelian-
ization. The abelianization Ab(G) of a group G is given by the quotient
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G/[G, G], where [G, G] is the commutator group. The commutator group
contains every element of the form aba−1b−1 for a, b ∈ G.

The abelianization of the fundamental groups of the standard compact sur-
faces can be calculated using the characteristic property of the abelianization (see
[8], page 266). We will skip a detailed study and present only the results:

Ab(π1(S
2)) = {1},

Ab(π1(T
2 # · · · # T2︸ ︷︷ ︸

n times

)) ∼= Z2n,

Ab(π1(RP2 # · · · # RP2︸ ︷︷ ︸
n times

)) ∼= Zn−1 × Z/2.

As a side note, we want to mention that, for a path-connected space X, the
abelianization of the fundamental group is isomorphic to the first homology
group H1(X). This is the so called Hurewicz Theorem.

We see that the sphere has a trivial fundamental group. Thus it is impossible
for it to be homeomorphic to a connected sum of tori or projective planes.
Next, we observe that the abelianization of the fundamental group of a
connected sum of projective planes contains a non-trivial torsion element,
while the fundamental group of connected tori is torsion-free. We conclude
that a connected sum of tori and a connected sum of projective planes cannot
be homeomorphic. This proves part II of the classification theorem and
Proposition 6.6, which states that a connected sum of projective planes is a
non-orientable surface.

From the rank of these groups we can determine the genus of a compact
surface. The rank of a free abelian group with a finite basis is the number
of elements in the basis. A free abelian group contains no torsion elements,
since a torsion element cannot be uniquely defined in terms of basis elements.
As noticed previously, the abelianization of the fundamental group of the
sum of projective planes contains a torsion element. For this reason, we
extend the definition of the rank of a finitely generated abelian group G
to be the rank of G/Gtor, where Gtor is the torsion subgroup containing all
torsion elements.

For a connected sum of n tori, the rank of the abelianized fundamental group
is 2n. For the connected sum of n projective planes the rank is n − 1. Thus,
by determining the rank of the abelianization of the fundamental group,
we obtain the genus of the surface. The orientability is determined by the
presence or absence of a torsion subgroup.
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6.2 The classification theorem by John Conway

John Conway calls his proof for the classification of surfaces the Zero Irrele-
vance Proof, short ‘ZIP’ proof. His goal was not to substitute the original, but
rather give a different perspective and to go beyond a combinatorial proof of
manipulating polygons. His proof was noted down by George K. Francis and
Jeffrey R. Weeks [4] and, for some rather crucial parts, the technical details
are left out, making it a not so rigorous proof of the classification theorem.
To some extent, it is difficult to have a deepen understanding and it leaves
room for interpretations on how to fill the existent gaps. Our goal here is to
present the main idea of Conway’s ZIP proof as a matter of expanding the
horizon. For this, we will rely mostly on the wonderful illustrations and give
a glance into this new world.

6.2.1 Ordinary surfaces and their classification

In Conway’s vision, compact surfaces are just spheres with some particular
objects attached to them. The proof relies, as we already have seen in previous
proofs, on making cuts and gluing edges together. Conway imagines these
cuts as zip pairs that are being unzipped. Zipped them up one by one, we
can identify at each step, which objects are attached to the sphere. Thus the
name ‘ZIP’ proof. The classification is going to be viewed in the following
way, which we will explain in the pages to come.

Theorem 6.8 Every compact surface is homeomorphic to either a sphere with han-
dles or a sphere with crosscaps.

A torus, for example, can be smoothly deformed into a sphere with a handle
attached to it. Equivalently, a connected sum of n tori is homeomorphic
to a sphere with n handles. In Figure 6.2 on the left, we observe that a
handle attached to a sphere can be represented as a pair of zips with reversed
zipping orientations relative to each other. Following the deformation steps
in alphabetical order, we get a handle.

What happens if the zips have the same relative orientation? Then, in order
to bring the zips together in the right manner, the ‘tubes’ have to intersect
each other. Doing this according to Figure 6.2 on the right, we get a so called
crosshandle. With help of Lemma 6.10, we will recognise this strange space
of a crosshandle attached to a sphere as being homeomorphic to the Klein
bottle.

Summarizing, for a pair of zips that occupy two boundary circles, we get
either a handle or a crosshandle. For a pair occupying a single boundary
circle of a perforation, we distinguish again between two cases. If the zips
‘point’ in the same direction, we can zip them up in one pull, ‘closing’ the
perforation, as in Figure 6.3 on the left. A perforation with such a zip-pair,
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Figure 6.2: A handle (left) and a crosshandle (right) (source [4]).

we call a cap. If the zips have opposite orientations, then again we need to
have some intersection with the surface in order to zip them up. This leaves
a crosscap behind. In this case, it is easy to see from such a zip constellation,
that a crosscap on a sphere is homeomorphic to the real projective plane.

Figure 6.3: A cap (left) and a crosscap (right) (source [4]).

In this manner, we view every compact surface as a sphere with perforations,
some of them with zips on their bordaries, arranged in some particular
way. By zipping up the zips, we obtain a so called ordinary surface, which
is a surface homeomorphic to a sphere with a finite number of handles,
crosshandles, crosscaps, and perforations. The caps do not appear in the list,
since a cap attached to a sphere is just homeomorphic to the sphere itself.
The reason for perforations being on the list is that Conway also considers
bordered surfaces in his proof.
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As we know, after all our study on the classification of surfaces, these building
blocks are more than enough to classify every surface. Indeed:

Theorem 6.9 Every surface is ordinary.

The proof starts as every other, namely by assuming that the surface is trian-
gulated. What is to come, is what substantially differs Conway’s proof from
all the others. We imagine zips along the boundaries of these triangles, hold-
ing two adjacent triangles together, forming what seems to be a patchwork
quilt (see Figure 6.4).

Figure 6.4: Triangulation of a surface with a zip-pair installed along each edge (source [4]).

Unzipping all the zip-pairs, we observe that we get a family of ordinary
surfaces, each triangle being homeomorphic to a sphere with a single per-
foration. The boundary of this perforation represents the boundary of the
triangle and can contain any kind of zips on it. Then, we can start zipping
up the triangles back together one by one. After each addition of a new
triangle, we observe that the surface remains ordinary. Take some zip-pair
and assume first, that one of the zips lies in set of already zipped up triangles,
while the other correspondent zip is in an unzipped triangle. Then zipping
them together yields a connected space, again homeomorphic to a perforated
sphere, which is an ordinary surface.

On the other hand, if for the zip pair both zips are on the boundary of the
zipped up surface, then depending on their arrangement, we get a sphere
with either a handle, a crosshandle, a cap or a crosscap, with or without a
perforation. By definition, this is again an ordinary surface. To see this, we
analyse the three different constellations, in which the zip-pair can appear.
First, assume that the pair occupies a single boundary circle, as in Figure 6.3.
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By zipping them together we clearly get a cap or a crosscap. Now, we assume
that each zip of the pair occupies respectively a boundary circle completely.
By deforming the surface, the circles can be made adjacent to each other as
Figure 6.2. Zipping them together yields a handle or a crosshandle depending
on their relative orientation. Finally, we assume that the two zips occupy each
a boundary circle partially, leaving some gaps (see Figure 6.5, A). We start by
pulling up the circles, forming tubes, and zip the zips together. This gives a
handle with a perforation on top (B). Such perforation, which emerges from
the gaps on the boundary circles, can be smoothly deformed away from the
handle (C). We obtain a space homeomorphic to a sphere with a handle and
a perforation. Depending on the orientation of the zips, we can also get a
crosshandle attached to a sphere with a perforation.

Figure 6.5: A zip-pair in this constellation yields a punctured handle (source [4]).

We conclude that, by zipping the triangles back together one by one, we
can identify all handles, crosshandles, crosscaps and perforations, which
classifies the surface.

6.2.2 A crosshandle or two crosscaps

From the knowledge we obtained so far from the other proofs, we know
that we have too many building blocks. For instance, the crosshandle can be
deleted from the list, since:

Lemma 6.10 A crosshandle is homeomorphic to two crosscaps.

In a more familiar language, this is equivalent to saying, that a Klein bottle is
homeomorphic to the connected sum of two projective planes.

We do a proof by picture (see Figure 6.6), using the opportunity to encourage
the reader to dive into a new proof of this wonderful result. We remark that
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the picture aims to show that there are two ways of zipping everything back
together. Starting in A with the representation of the Klein bottle, we can
either zip along the black arrows, leading to a crosshandle (step B and C) or
along the white arrows, leading to two cross caps (step D to I in alphabetical
order).

Figure 6.6: A crosshandle (C) is homeomorphic to two crosscaps (I) (source [4]).

What happens, when we have simultaneously a handle and a crosscap
attached to a sphere? As we know this corresponds to the connected sum of
a torus and a projective plane, which is homeomorphic to the sum of a Klein
bottle and a projective plane. Translating into Conway’s language, we get:

Lemma 6.11 Handles and crosshandles are equivalent in the presence of a crosscap.

One last time, we leave a beautiful picture for the reader to study (see Figure
6.7). Notice that, on the left-most corner, a crosscap and a handle are attached
to the first square and on the third one (bottom-most), we have a crosscap
and a crosshandle attached to it. Both spaces are homeomorphic to that of
the second square.

From Lemma 6.10, we conclude that, whenever a crosshandle appears, it
can be substituted with two crosscaps. And when a handle and a crosscap
appear simultaneously, then by Lemma 6.11, they can be substituted with
a crosshandle and a crosscap, which is homeomorphic to three crosscaps,
again by Lemma 6.10. With this, we finally conclude the previously stated
classification theorem for compact surfaces without boundary:
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Figure 6.7: The presence of a crosscap transforms a handle into a crosshandle (source [4]).

Every compact surface is homeomorphic to either a sphere with handles
or a sphere with crosscaps.
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