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Abstract

In this thesis we give the basic definitions of a symplectic vector space and symplectic form, which
are the foundations of symplectic linear algebra. We then focus mainly on the types of subspaces
and structures that can be defined on symplectic vector spaces.

iii



Introduction

Symplectic linear algebra is a branch of mathematics necessary to introduce and study symplectic
manifolds and, more generally, symplectic geometry. The main objects of study are the so-called
symplectic vector spaces, i.e., real vector spaces equipped with additional structures called sym-
plectic forms.

This thesis is primarily concerned with the study of symplectic vector spaces, the interactions
between their subspaces and the structures that can be defined on them.

In the first chapter we introduce the basic definitions useful for all chapters. We define the sym-
plectic group, i.e., morphisms that preserve the symplectic form, and study the properties of its
elements, such as their eigenvalues. We also study the subspaces of a symplectic vector space and
how they behave under the action of the symplectic group. We then discuss a particular type of
subspaces: Lagrangian subspaces.

In the second and third chapters, we focus on some specific functions and structures. First the
Maslov index, which can be defined for loops of symplectic matrices and Lagrangian subspaces.
Then we define what is a complex structure on a vector space and, more specifically, a compatible
complex structure defined on a symplectic vector space. We study the characteristics of the space
composed of all these compatible complex structures and, in particular, the important fact that
this space is contractible.

In the last chapter, we focus on the affine non-squeezing theorem, which sheds light on one of
the first counter-intuitive aspects of symplectic geometry. In fact, this theorem states that a ball
can only be embedded in a symplectic cylinder via a symplectic map, if its radius is less or equal
to the radius of the cylinder. In other words, the ball cannot be squeezed more than its initial
width, which would instead be possible with a non-symplectic volume-preserving map. We then
introduce the concept of linear symplectic width and study in detail the case of ellipsoids.
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Chapter 1

Basics of Symplectic Linear Algebra

1.1 Symplectic Vector Spaces

The first important notions that we introduce are the symplectic form and the symplectic vector
space. We also define the concept of canonical form of a symplectic form and the symplectic basis
of a symplectic vector space. We let V be a finite dimensional real vector space.

Definition 1.1.1. Let
ω : V × V → R

be a non-degenerate, skew-symmetric bilinear form, then ω is called symplectic form.

Remark. It follows from the definition that ω(v, v) = 0 ∀v∈V , and if ω(v, w) = 0 ∀v∈V , then
w = 0

Definition 1.1.2. Let V be vector space equipped with a symplectic form ω, then (V, ω) is called
symplectic vector space.

Example 1.1.3. Let V= R2n with basis {e1, ..., en, f1, ..., fn} and define ω such that ω(ei, ej) = 0,
ω(fi, fj) = 0, ω(ei, fj) = δi,j . Then (V, ω) is a symplectic vector space.

Remark. We can define the same concepts for a finite dimensional vector space over a field K with
characteristic 0.

Example 1.1.4. Let V be a vector space of dimension n and V ∗ its dual. If we define U := V ⊕V ∗

and ω : U → U such that ω((v, α), (v′, α′)) = α′(v)−α(v′) then (U, ω) is a symplectic vector space.

Definition 1.1.5. Let (V, ω) be a symplectic vector space, then for any subspace U ⊆ V we define
the ω-orthogonal space Uω := {v ∈ V : ω(v, w) = 0,∀w ∈ U}.

Proposition 1.1.6. Let V be a finite dimensional real vector space of dimension m and ω a
bilinear form, then

1. if ω is symmetric with rank r there exits a basis e of V such that the representation of ω
relative to e is

ϵ1
. . .

ϵr
0

. . .
0


where ϵi = ±1
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2 1.1. Symplectic Vector Spaces

2. if ω is skew-symmetric with rank r there exists a basis e of V such that the representation of
ω relative to e is 0 Idn 0
−Idn 0 0
0 0 0

 where Idn is the identity matrix of dimension n = r/2

Proof. 1. A proof can be found in [3]

2. Let e1, en+1 ∈ V such that ω(e1, e1+n) ̸= 0 (such vectors must exist if ω ̸= 0). By rescaling
e1 we can assume ω(e1, e1+n) = 1. Since ω is skew-symmetric we have ω(e1, e1) = 0 and
ω(e1+n, e1+n) = 0. So the restriction of ω on the space U1 spanned by e1 and e1+n is(

0 1
−1 0

)
Let U2 = Uω

1 , then the intersection U1 ∩ U2 is trivial and for any v ∈ V we have

v − ω(v, e1+n)e1 + ω(v, e1)e1+n ∈ U2

So V = U1 ⊕ U2. We can then repeat the procedure on U2 and find e2 and e2+n such
that ω(e2, e2+n) = 1. Inductively we find the basis e.

Remark. Since we focus on non-degenerate skew-symmetric bilinear form, i.e. with rank r = 2n =

m, we can consider only the case with matrix representation
(

0 Idn
−Idn 0

)
and V must have an

even dimension.

Corollary 1.1.7. Every finite dimensional symplectic vector space (V, ω) has even dimension.

We can identify the space of skew-symmetric bilinear form as the space ∧2V ∗. So if e = {e1, ...e2n}
is a basis of V and e∗ its dual, then for any ω ∈ ∧2V ∗ represented by the matrix Ae = (aij) relative
to e we can also write ω as

ω =
∑

i<j aije
∗
i ∧ e∗j

Remark. Since elements of ∧2V ∗ are represented by anti-symmetric matrices and with all the
entries of the main diagonal equal to 0, for a vector space V of dimension 2n we have dim ∧2V ∗ =
(2n)(2n−1)

2 .

Corollary 1.1.8. For every skew-symmetric bilinear form ω ∈ ∧2V ∗ there exits a basis e of V
such that the representation of ω relative to e is

ω =
∑

i<j e
∗
i ∧ e∗j

This representation is called a canonical form of ω and e a symplectic basis of V. This representa-
tion also allows us to identify every symplectic vector spaces (V, ω) of dimension 2n with the one
presented in Example 1.1.3 (later we will re-prove this statement with the definition of symplecto-
morphism).

We now introduce a map that will be useful in the next sections. For a symplectic form ω we
define ω♭ as follows

ω♭ : V → V ∗

v 7→ ω♭(v)
where ω♭(v)(w) = ω(v, w) ∀w ∈ V
Since we work with finite dimensional V it follows that ω♭ is an isomorphism if and only if ω is
non-degenerate. It also follows that for any subspace U ⊆ V Uω is equal to the pre-image of
ann(U) ⊆ V ∗ under ω♭, so dimUω = dimV − dimU and, since per definition follows that U ⊆
(Uω)ω, we have (Uω)ω = U.
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1.2 Symplectomorphisms and Symplectic Groups
Definition 1.2.1. Let (V1, ω1) and (V2, ω2) be symplectic vector spaces. Then a linear map
ϕ : V1 → V2 is called symplectic if ϕ∗ω2 = ω1, i.e. if for any v and w in V1 it holds ω1(v, w) =
ω2(ϕ(v), ϕ(w)). If ϕ is also bijective it is called symplectomorphism. In this case (V1, ω1) and
(V2, ω2) are called symplectomorphic.

Remark. If V1 and V2 have same dimension and the linear map ϕ satisfies ϕ∗ω2 = ω1 then it is also
injective, since ω1 and ω2 are non-degenerate and so ϕ(v) = 0 implies v = 0. From a dimension
argument follows that ϕ is also surjective, so it is a symplectormorphism.

It is easy to see that the set of symplectomorphisms of a symplectic vector space (V, ω) forms a
group under the usual composition.

Definition 1.2.2. The group of symplectomorhisms of a symplectic vector space (V, ω) is called
symplectic group and denoted Sp(V ).

As said before with Proposition 1.1.6 we can conclude the following very important theorem.

Theorem 1.2.3. Every symplectic vector space (V, ω) of dimension 2n is symplectomorphic to
R2n with the symplectic form of Example 1.1.3.

In Section 1.4 we will also report another proof for this theorem.

With this result we can consider Sp(V ) ∼= Sp(R2n) a subset of the general linear group GL2n(R)
(i.e. the group of invertible 2n× 2n matrices). Then using the second part of Proposition 1.1.6 we
get

ω(v, w) = vT
(

0 Idn
−Idn 0

)
w = vTJw, where J =

(
0 Idn

−Idn 0

)
So we can conclude that an element M of GL2n(R) is in Sp(R2n) if and only if it satisfies the
condition

vTJw = ω(v, w) = ω(Mv,Mw) = vTMTJMw, ∀v, w ∈ V

And that is if and only if
MTJM = J .

This has as immediate consequence that for every M ∈ Sp(R2n) we have (detM)2 = 1, we will
later show that is indeed detM = 1 since Sp(R2n) is a connected space. Another consequence is
that, if M is symplectic, so is MT . This can be seen using the fact that Sp(R2n) is a group, so also
M−1 is symplectic and then taking the inverse of (M−1)TJM−1 = J we get MJMT = J , since
J−1 = −J

We conclude this section focusing on the dimension of Sp(V ). Saying that all symplectic vector
spaces of same dimension are symplectomorphic to R2n, and so also to each other, means that
GL2n(R) acts transitively on ∧2V ∗. The stabiliser at ω is Sp(V ). Therefore if dim V = 2n we get

dim Sp(V ) = dim GL2n(R)− dim ∧2V ∗ = (2n)2 − (2n)(2n−1)
2 = 2n2 + n

1.3 Eigenvalues of Symplectic Matrices
We can say something about the eigenvalues of elements in Sp(R2n).

Theorem 1.3.1 (Symplectic Eigenvalue Theorem). Let M be an element of Sp(R2n), then all its
eigenvalues other than 1 and -1, which have even multiplicity, come either in pairs λ, λ with same
multiplicity and |λ| = 1 or in quadruples λ, λ, λ−1, λ

−1
, with same multiplicity and |λ| ≠ 1.
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Proof. For anyM ∈ GL2n(R) the eigenvalues come in complex conjugates pairs of same multiplicity
and since Sp(R2n) ⊆ GL2n(R) this also holds for the symplectomorphisms. Then fromMTJM = J
follows that M−1 and MT are similar matrices, and therefore also M and M−1. This means that
for every λ eigenvalue of M, also λ−1 is an eigenvalue with same multiplicity. Finally, since the
product of all eigenvalues is equal to detM = 1 (this will be proved in Section 2.1) we have that
the multiplicity of 1 and −1 must be even.

We have also some results about the eigenspaces for a special case of symplectic matrices.

Lemma 1.3.2. Let M ∈ Sp(R2n) be diagonalizable and with all eigenvalues real. We denote Eλ

the eigenspace for the eigenvalue λ. Then we have

Eω
λ =

⊕
λµ ̸=1Eµ

Proof. Let v ∈ Eλ and w ∈ Eµ, then we have

ω(v, w) = ω(Mv,Mw) = λµω(v, w)

so for λµ ̸= 1 and v ∈ Eλ it holds ω(v, w) = 0 ∀w ∈ Eµ, hence Eµ ⊆ Eω
λ . Then applying

the formula dimV = dimU + dimUω for the dimension of a subspace and the fact that M is
diagonalizable we finish the proof.

Lemma 1.3.3. Let M ∈ Sp(R2n) be diagonalizable and with all eigenvalues real. Then ∀α ≥ 0
holds Mα ∈ Sp(R2n).

Proof. Since M is diagonalizable with real eigenvalues there exists a orthonormal basis of eigen-
vectors. Hence, if we denote Eλi the eigenspace for the eigenvalue λi we can write

R2n =
k⊕

i=1

Eλi

Then for any two vectors u, v ∈ R2n we can write them as

u =
∑k

i=1 ui and v =
∑k

i=k vi

where ui, vi ∈ Eλi . Then since M is symplectic we have

ω(ui, vj) = ω(Mui,Mvj) = λiλjω(ui, vj)

hence either λiλj = 1 or ω(ui, vj) = 0. Therefore for any α ≥ 0

ω(Mαu,Mαv) =
∑k

i,j=1 ω(M
αui,M

αvj) =
∑k

i,j=1(λiλj)
αω(ui, vj) =

∑k
i,j=1 ω(ui, vj) = ω(u, v)

Remark. Lemmas analogous to the above hold when M is symmetric and positive definite.

In order to state the last result about the eigenvalues of a symplectic matrix we need to introduce
a new definition.

Definition 1.3.4. Let V be a vector space and ϕ a morphism of V, then ϕ is called stable if ∀ϵ > 0
there exists a θ > 0 such that |ϕNv| < ϵ ∀N ∈ N, if |v| < θ.

Lemma 1.3.5. If M ∈ Sp(R2n) has an eigenvalue λ such that |λ| ≠ 1, then M is not stable.

Proof. Let M ∈ Sp(R2n) with eigenvalue λ such that |λ| ̸= 1. We can assume without loss of
generality that |λ| > 1 (otherwise we can use λ−1 thanks to Theorem 1.3.1). Then given v ∈ Eλ

we have MNv = λNv, in particular |MNv| = |λ|N |v|, which goes to infinity as N goes to infinity.
Therefore, M cannot be stable.
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1.4 Subspaces

In this section we will classify and analyse the different kind of subspaces of a symplectic vector
space.

Definition 1.4.1. Let (V, ω) be a symplectic vector space and U ⊆ V a subspace with ω-orthogonal
Uω. We then say that U is

1. isotropic if U ⊆ Uω, i.e. if ω |U= 0

2. coisotropic if Uω ⊆ U , i.e. if Uω is isotropic

3. Lagrangian if U = Uω, i.e. U is both isotropic and coisotropic

4. symplectic if U ∩ Uω = {0}, i.e. if ω |U is non-degenerate

Remark. At the end of section 1.1 we have showed the formula dimV = dimU + dimUω, from
which we see that if dimV = 2n then all the isotropic subspaces have dimension smaller or equal
n, all the coisotropic have dimension bigger or equal n and all the Lagrangian subspace have
dimension n.

Remark. If U ⊆ V is a symplectic subspace it follows from the definition that U ∩ Uω = {0} and
therefore, from the previous formula for the dimension follows that V = U ⊕ Uω.

Example 1.4.2. If we use the same set up as in Example 1.1.3 and we define U1 = span(e1, e2),
U2 = span(e1, ..., en, f3, ..., fn) = Uω

1 , U3 = span(e1, ..., en) and U4 = span(e1, f1). Then U1 is
isotropic, U2 coisotropic, U3 Lagrangian and U4 symplectic.

If we are in a case where the conditions of Lemma 1.3.2 hold, we have as straightforward conse-
quences of the same lemma that Eλ for |λ| ≠ 1 are isotropic, because λλ ̸= 1 so Eλ ⊆ Eω

λ . For
λ = ±1 Eλ is symplectic, because eigenspaces of different eigenvalues are disjoint and for all λ we
have Eλ ⊕ Eλ−1 is symplectic, because Eλ ∩ Eω

λ−1 = {0} and Eλ−1 ∩ Eω
λ = {0}.

Now we state two important lemmas.

Lemma 1.4.3. Every symplectic vector space (V, ω) has a Lagrangian subspace.

Proof. Since for every v ∈ V we have ω(v, v) = 0, V has an isotropic subspace. Let L ⊆ V be
a maximal isotropic subspace, namely that it is not contained in any isotropic subspace of larger
dimension. Then L must be Lagrangian since if there exists v ∈ Lω\L then L⊕ span(v) is a larger
isotropic subspace that contains L.

From this proof we also conclude that a maximal isotropic subspace is a Lagrangian subspace.
Therefore we have the following corollary.

Corollary 1.4.4. Every isotropic subspace is contained in a Lagrangian subspace.

Lemma 1.4.5. Let L1, ..., Ln be a collection of Lagrangian subspaces of V . Then exists a La-
grangian subspace L such that L ∩ Li={0} ∀i.

Proof. Let L be an isotropic subspace such that L∩Li={0}, for example span(v) for a v ∈ V such
that v /∈ Li ∀i (such v must exists since all the Li have dimension equal to half of dimV ), and
such that L is not contained in any larger isotropic subspace transversal to all Li. We show that
L is in fact Lagrangian. Assume it is not, it means that Lω is a coisotropic subspace that strictly
contains L. Define π: Lω → Lω/L the quotient map. Then all the space π(Lω ∩ Li) are isotropic
subspace of Lω/L, because all Li are Lagrangian and (Lω)ω = L. So we can choose a u ∈ Lω/L
such that u /∈ π(Lω ∩ Li) ∀i. Let L′ = π−1(span(u)) ⊆ Lω. Then L′ strictly contains L and is
an isotropic subspace of Lω ⊆ V that is also transversal to all Li, which is a contradiction to our
choice of L.
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As a consequence of Lemma 1.4.3 and 1.4.5 can provide the following alternative proof of Theorem
1.2.3.

Proof. (Theorem 1.2.3) Let L1, L2 be Lagrangian subspaces of (V, ω) such that they are transver-
sal, then we have that

L1 × L2 → R
(v, w) 7→ ω(v, w)

is non-degenerate, which means that

L2
ι
↪−→ V

ω♭

−→ V ∗ ι∗−→ L∗
1

is an isomorphism, where ι is the inclusion map. So we have L2
∼= L∗

1. Let {e1, ..., en} be a
basis of L1 and {f1, ..., fn} its dual basis for L∗

1
∼= L2. Define e={e1, ..., en, f1, ..., fn}, since L1 and

L2 are Lagrangian and transversal we get that ω with respect to e has the form of Example 1.1.3,
which is called symplectic standard form and so e is the symplectic basis.

This proof also shows the following corollary.

Corollary 1.4.6. Assume we have two symplectic vector spaces (V, ω) and (V ′, ω′) of same di-
mension with Lagrangian subspaces Li ⊆ V and L′

i ⊆ V ′, i = 1, 2, such that L1∩ L2 = {0} and
L′
1∩ L′

2 = {0}. Then there is a symplectomorphism ϕ: V → V ′ such that ϕ(L1) = L′
1 and ϕ(L2)

= L′
2.

1.5 Radicals and Reduction

In this section we will focus on a symplectic vector space (V, ω) of dimension 2n and a subspace
U ⊆ V of dimension k. We will exhibit two invariants of U . First we claim that, for any ϕ ∈ Sp(V ),
we have k =dimϕ(U) and, secondly, that also rank ω |ϕ(U) is invariant under any ϕ ∈ Sp(V ). We
will show that these are the only two symplectic invariants, namely, if two subspaces have the
same values for these parameters, then there exists an element of Sp(V ) which takes one to the
other, in this case we also say they are symplectomorphic. For this purpose, we need some more
definitions and constructions. Here, (V, ω) always denotes a symplectic vector space of dimension
2n and U a subspace of V of dimension k, we also denote by 2ℓ the rank of the restriction of ω to
U (2ℓ = rank ω |U ).

First we observe from Proposition 1.1.6 that for any symplectic vector space of dimension two
we can find a basis {e1, e2}, so that the space is represented as span(e1, e2), where ω(e1, e1) =
ω(e2, e2) = 0 and ω(e1, e2) = 1. If we have two such spaces that are ω-orthogonal to each other
we get that their sum is still a symplectic vector space of dimension four. Applying this procedure
iteratively on any symplectic vector space of dimension 2r we arrive to write it as an ω-orthogonal
sum of r spaces, each of whom of dimension two.

Definition 1.5.1. The radical of U is defined by

rad U = U ∩ Uω

It is therefore equal to the kernel of the restriction of ω to U , i.e.

rad U = {u ∈ U | ω(u, v) = 0 ∀v ∈ U}

It follows from the definition that rad U is an isotropic subspace and

dim(rad U) = dim U − rank ω |U= k − 2ℓ

With this concept we can state another definition.
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Definition 1.5.2. The symplectic space associated to U , also called reduced space, is given by

Ured = U/rad U

It is clear that this space is symplectic, i.e. it inherits a symplectic form ωU which is non-degenerate.
Its dimension is a direct consequence of the definition and it holds

dim Ured = dim U − dim (rad U) = k − (k − 2ℓ) = 2ℓ

Moreover, from the definitions of rad U and Ured, we have that there exists a subspace (W,ω |W )
of (U, ω) which is isomorphic to Ured. Therefore W is symplectic and ω-orthogonal to rad U , and
it satisfies

U = rad U ⊕W

We can finally state the theorem, which will give us the desired results.

Theorem 1.5.3. Let (V, ω) be a symplectic vector space, U a subspace and W another subspace
ω-orthogonal to rad U such that

U = rad U ⊕W

Let e1, ..., er be a basis of rad U , then we can find f1, ..., fr ∈ V such that ω(ei, fi) = 1 and
Ui = span(ei, fi) are symplectic subspace ω-orthogonal to W for any i and ω-orthogonal to each
other for different indices. So if we define the subspace U := U1 ⊕ ...⊕ Ur ⊕W it contains U per
construction and is symplectic. Moreover, for any symplectic vector space (V ′, ω′) any injective
and symplectic linear map ϕ : U → V ′ can be extended to ϕ : U → V ′ which is still symplectic.

Before the proof we state and prove an important corollary that will allow us to conclude what we
wanted to show.

Corollary 1.5.4. Let V and V ′ be symplectomorphic symplectic vector spaces, U ⊆ V and ϕ :
U → V ′ an injective and symplectic linear map. Then ϕ can be extended to a symplectomorphism
ϕ : V → V ′.

Proof. From Theorem 1.5.3 we can always extend ϕ to ϕ : U → V ′ so without loss of generality we
can assume that U is symplectic. Therefore, we can write V = U ⊕Uω. Let U ′ := ϕ(U) and define
U ′′ ⊆ V ′ to be ω-orthogonal to U ′ and such that V ′ = U ′ ⊕ U ′′. Since U and U ′ are symplectic it
follows that Uω and U ′′ are both symplectic and have same dimension (= dim V −dim U) so from
Theorem 1.2.3 they are symplectomorphic. We can therefore extend ϕ to a symplectomorphism
between V and V ′.

From this corollary we see that for a symplectic vector space (V , ω) with subspaces U1 and
U2 with same dimension and such that rank ϕ |U1= rank ϕ |U2 follows that these subspaces
are symplectomorphic. In fact ,we can write Ui = rad Ui ⊕ Wi as in Theorem 1.5.3, where
dim rad U1 = dim rad U2 and dim W1 = dim W2, then map the basis of rad U1 to the basis of
rad U2 and W1 to W2. Finally we can, as shown in the corollary, extend this map to a symplecto-
morphism of V .

For completeness we provide now a proof of Theorem 1.5.3.

Proof. First we prove that we can construct U which satisfies the desired properties. We note from
the definition that W must be isomorphic to Ured, hence it is symplectic. We proceed by induction
over the dimension of radU . If this is 0 we have nothing to show because U is already symplectic.
Assume the statement holds for dim rad U < r. Now let dim rad U = r and define

U0 := span(e1, ..., er−1)⊕W .
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From this construction follows that U0 is ω−orthogonal to er, since er ∈ rad U = span(e1, ..., er−1, er)
and U0 ⊆ U . So we have er ∈ Uω

0 . It also holds

rad Uω
0 = rad U0 = span(e1, ..., er−1)

so er ∈ Uω
0 \rad Uω

0 . That means we can find a v ∈ Uω
0 such that ω(er, v) ̸= 0. By rescaling

v we can call it fr and get ω(er, fr) = 1. Let Ur := span(er, fr) then, since Ur ⊆ Uω
0 we have

U0 ⊆ Uω
r .

Now we can apply the induction hypothesis to U0 as a subspace of Uω
r , since dim rad U0 = r − 1

and U0 = rad U0 ⊕W . That means we have f1, ..., fr−1 ∈ Uω
r ⊆ V such that Ui := span(ei, fi) are

symplectic subspaces ω−orthogonal to each other, to W and of course to Ur. So we can define the
space

U := U1 ⊕ ...⊕ Ur ⊕W

which has the desired properties.
We now prove the second part of the theorem. Let ϕ : U → V ′ be an injective and symplectic
linear map. Define e′i := ϕ(ei) for i ∈ {1, ..., r} and W ′ := ϕ(W ). Since ϕ is symplectic follows
that W ′ is still symplectic and ω′−orthogonal to span(e′1, ..., e′r). We can apply the first part of
the theorem to ϕ(U) = span(e′1, ..., e

′
r) ⊕W ′ and find f ′1, ..., f

′
r ∈ V ′ such that ω′(e′i, f

′
i) = 1 and

U ′
i := span(e′i, f

′
i) are ω′−orthogonal to W ′ and to each other. Finally, we can set ϕ(fi) := f ′i to

extend ϕ to U while staying symplectic.

1.6 Lagrangian Grassmannian
We now focus more on the set of Lagrangian subspaces.

Definition 1.6.1. The set of all the Lagrangian subspaces of (V, ω) is called Lagrangian Grass-
mannian and is denoted by Lag(V, ω), or simply Lag(V).

In particular we have the following proposition.

Proposition 1.6.2. Let V be a real vector space of dimension 2n endowed with two symplectic
forms ω1 and ω2, such that Lag(V, ω1) = Lag(V, ω2). Then there exists a real number λ ∈ R∗ such
that ω1 = λω2.

Proof. Let ω1 and ω2 be two symplectic forms on V that satisfy Lag(V, ω1) = Lag(V, ω2). This
condition, together with Corollary 1.4.4, implies that the pairs of vector which are symplec-
tically orthogonal to each other with respect to ω1, respectively ω2, are the same. Now let
e = {e1, ..., en, f1, ..., fn} be a symplectic basis of V with respect to ω1, that means

ω1(ei, fj) = δij and ω1(ei, ej) = 0 = ω1(fi, fj) ∀i, j ∈ {1, ..., n}.

Hence, we have

ω2(ei, fj) = λi · δij and ω2(ei, ej) = 0 = ω2(fi, fj) ∀i, j ∈ {1, ..., n}

where λi ∈ R∗ ∀i ∈ {1, ..., n}. Now for any i ̸= j we can compute

ω1(ei + ej , fi − fj) = ω1(ei, fi) + 0− 0− ω1(ej , fj) = 1− 1 = 0.

Therefore, we also have

0 = ω2(ei + ej , fi − fj) = ω2(ei, fi) + 0− 0− ω2(ej , fj) = λi − λj .
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It follows that for any i and j we have λi = λj =: λ and ω2(ei, fj) = λδij = λω1(ei, fj). Since e is
a basis of V we can conclude that for any u, v ∈ V we have ω2(u, v) = λω1(u, v).

We have seen that for any L ∈ Lag(V ) we have dim L = 1
2 dimV = n and rank ω |L= 0, hence,

from Corollary 1.5.4, we have that for any pair of subspaces L1, L2 elements of Lag(V ) they are
symplectomorphic. That means that the group Sp(V ) acts transitively on Lag(V ). Thus if we
denote by GL the isotropy group (or stabiliser) of L ∈ Lag(V ), i.e. the subgroup of Sp(V ) for
which we have ϕ(L) = L, ∀ϕ ∈ GL, we get to write Lag(V ) in the form

Lag(V ) ∼= Sp(V )/GL

To find the matrix representation of an element in GL we can consider a symplectic basis {e1, ..., en,
f1, ..., fn} of V such that L = span(e1, ..., en). Then if M is an element of GL ⊆ Sp(V ) its repre-
sentation relative to this basis must be

M =

(
A B
C D

)
where C = 0 because it must fix L, ATD = Idn and BTD − DTB = 0 because it must be
symplectic.

Another set of interesting subspaces of V for a given element L ∈ Lag(V ) is the following

τ(L) := {L′ ∈ Lag(V ) : L⊕ L′ = V }

We can see that given two elements of τ(L), denoted L′ and L′′, they are symplectomorphic
since they both are in Lag(V ). If we call ϕ the map that takes L′ to L′′ we can actually restrict
it to L′, indeed we get ϕ′ : L′ → V , with ϕ′L′ = L′′. Now from Corollary 1.5.4 we can extend ϕ′

to a map ϕ′′ : V → V which leaves unchanged L, since L⊕L′ = V = L⊕L′′. Moreover, ϕ′′ is still
a symplectomorphism, therefore is an element of GL. That means GL acts transitively on τ(L),
indeed, the following statement holds.

Proposition 1.6.3. Let L ∈ Lag(V ), τ(L) and GL defined as above, then

τ(L) ∼= GL/GLn(R)

Proof. Let L′ ∈ τ(L). Find a symplectic basis {e1, ..., en, f1, ..., fn} of V such that L = span(e1, ..., en)
and L′ = span(f1, ..., fn). Then let M ∈ GL which also fixes L′, so its matrix representation must
have the form

M =

(
A 0
0 B

)
for some A,B ∈ GLn(R). Since it is in Sp(V ), for all v, w ∈ V we have that

vTMT

(
0 Idn

−Idn 0

)
Mw = vT

(
0 Idn

−Idn 0

)
w

Therefore we deduce B = (AT )−1. That means, if we denote by GL,L′ the stabiliser of L′ in
GL, that GL,L′ ∼= GLn(R) and the proposition follows.

Corollary 1.6.4. τ(L) is an affine space isomorphic to a n(n+1)
2 −dimensional subspace of Rn2

.

Proof. Form the above statement we can identify τ(L) with the elements of GL modulo GLn(R).
We have seen that the matrix representation for M ∈ GL is

M =

(
A B
0 D

)
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which modulo GL,L′ ∼= GLn(R) becomes (
Idn B′

0 Idn

)
where B′ is symmetric. So τ(L) is isomorphic to the space of real symmetric n × n matrices,
which has dimension n(n+1)

2 .





Chapter 2

Maslov Indices

2.1 Relations among Classical Lie Groups
For this section we need the identification of R2n with Cn in the classical way, i.e. a vector z = (x, y)
with x, y ∈ Rn corresponds to the vector x + iy ∈ Cn. The multiplication by J0 := −J , where
J is the matrix introduced in Section 1.2, corresponds with the multiplication by i in Cn. With
this identification we can consider the group GLn(C) as a subgroup of GL2n(R). Moreover, we
can see the unitary group U(n) = {U ∈ Cn×n : UU† = Idn} as a subgroup of Sp(R2n) in the
following way: write U ∈ U(n) as U = X + iY where X,Y ∈ Rn×n and satisfy XY T = Y XT and
XXT + Y Y T = Idn. Then we can define

M =

(
X −Y
Y X

)
and it follows from the discussion in Section 1.2 and the properties of X and Y that M ∈ Sp(R2n).
We denote by O(2n) the orthogonal group, which is also subgroup of GL2n(R).

Lemma 2.1.1. It holds

Sp(R2n) ∩O(2n) = Sp(R2n) ∩GLn(C) = O(2n) ∩GLn(C) = U(n)

Proof. Let M ∈ GL2n(R), then

M ∈ GLn(C) ⇐⇒ MJ0 = J0M

M ∈ Sp(R2n) ⇐⇒ MTJ0M = J0

M ∈ O(2n) ⇐⇒ MTM = Idn

and any two of these conditions imply the third. For the last equality, we can write

M =

(
A B
C D

)
then if M ∈ Sp(R2n) ∩ O(2n) we have from above that M is also in GLn(C), it means that
MJ0 = J0M , i.e. A = D and B = −C. We also have MTJ0M = J0 and MTM = Idn, so by a
straightforward calculation we have ATC = CTA and ATA + CTC = Idn, which are exactly the
condition given above for U := A+ iC to be unitary.

Proposition 2.1.2. The inclusion of U(n) into Sp(R2n) is a homotopy equivalence, in particular
Sp(R2n) is a connected space.

It follows a corollary that we have already anticipated in Section 1.2.

12
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Corollary 2.1.3. For any M ∈ Sp(R2n) we have detM = 1.

Proof. We need to define a homotopy inverse of the inclusion ι : U(n) ↪→ Sp(R2n). We define

F : Sp(R2n)× [0, 1] → Sp(R2n)

F (M, t) = ft(M) =M(MTM)−t/2

then MTM , and therefore also its inverse, is symplectic, symmetric and positive definite, so
from Lemma 1.3.3 follows that (MTM)−t/2 ∈ Sp(R2n) for any t ≥ 0. Hence ft is well defined
and is continuous. We have f0 = id and ft ◦ ι = id since for M ∈ U(n) follows MTM = Id.
We also have f1(Sp(R2n) ⊆ U(n) because f1(M) is symplectic and orthogonal. So if we define
g := f1 : Sp(R2n) → U(n) we get

g ◦ ι = idU(n) and ι ◦ g ≃ f0 = idSp(R2n)

hence g is the homotopy inverse of ι and Sp(R2n) ≃ U(n).

Corollary 2.1.4. For every M ∈ Sp(R2n), there exists a unique symplectic polar decomposition,
namely we can write

M = UP
where

U :=M(MTM)−1/2 ∈ U(n) and P := (MTM)1/2

is symmetric and positive definite.

Proof. Since M ∈ Sp(R2n) ⊆ GL2n(R) we know that M has a unique polar decomposition, which
is the one written above. From the proof of previous proposition we see that both U and P are
indeed in Sp(R2n).

Proposition 2.1.5. The fundamental group of U(n) is isomorphic to the integers.

The idea of the proof is to show that the map det : U(n) → S1 induces an isomorphism π1(U(n)) →
π1(S

1) ∼= Z. An explicit proof can be found in [5].

Corollary 2.1.6. The fundamental group of Sp(R2n) is isomorphic to the integers.

This follows from the homotopy invariance of the fundamental group. An explicit isomorphism
between π1(Sp(R2n)) and Z is given by the so called Maslov index.

2.2 Maslov Index for Loops of Matrices

Theorem 2.2.1 (Maslov Index for loops of symplectic matrices). There exists a unique function
µ called Maslov index, which assigns to every loop

α : [0, 1] → Sp(R2n)

an integer µ(α) ∈ Z and satisfies the following axioms:

1. Two loops are homotopic relative to endpoints if and only if they have the same Maslov index.

2. For any two loops α and β we have µ(αβ) = µ(α) + µ(β)

3. For n′ + n′′ = n we can identify Sp(R2n′
)⊕ Sp(R2n′′

) as a subgroup of Sp(R2n) then µ(α′ ⊕
α′′) = µ(α′) + µ(α′′)
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4. The loop α : [0, 1] → Sp(R2) where

α(t) =

(
cos(2πt) − sin(2πt)
sin(2πt) cos(2πt)

)
has Maslov index 1.

Hence, µ induces an isomorphism between π1(Sp(R2n)) and Z.

Proof. We first define a map ρ : Sp(R2n) → S1 in the following way: let M be in Sp(R2n) and U
be the orthogonal part in its polar decomposition. We can define

ρ(M) := det(U) .

Then for a loop α : [0, 1] → Sp(R2n) we define

µ(α) := deg(ρ ◦ α) .

An equivalent definition of this degree is the following: let g be the function

g : R → S1

t 7→ e2πit

and let h : [0, 1] → R be the lift of ρ ◦ α such that g ◦ h = e2πih(t) = ρ ◦ α(t) = det(U(t)),
where U(t) is the orthogonal part in the polar decomposition of α(t) ∈ Sp(R2n). Then we have
µ(α) = h(1) − h(0). Since α is a loop µ(α) is in Z. It follows from Propositions 2.1.2 and 2.1.5
that ρ induces an isomorphism of fundamental groups π1(Sp(R2n) → Z, this proves the first ax-
iom. The second axiom holds for loops α and β in π1(U(n)), since then also αβ is in π1(U(n)),
and the orthogonal part of its polar decomposition is the product of the ones of α and β. Since
π1(U(n)) ∼= π1(Sp(R2n)) the axiom holds for every symplectic loops. The third axiom follows from
the construction of ρ and µ, and the fourth axiom is obvious because α(t) ∈ Sp(R2n)∩O(2n) = U(n)
so the orthogonal part in its polar decomposition is U(t) = cos(2πt) + i sin(2πt) = e2πit so
µ(α) = h(1) − h(0) = 1 − 0. So we have constructed a function µ which satisfies the required
properties. We still have to prove that this function is indeed unique. Let us assume that it exists
another function µ′ which satisfies the four axioms and we’ll prove by induction on n that µ = µ′.
For the basic case n = 1 we have that Sp(R2) = O(2) and therefore from the fourth axiom follows
that for every loop α which takes values in Sp(R2) must holds µ′(α) = 1 = µ(α). Now we can
assume that µ′(α) = µ(α) for every loop that takes values in Sp(R2k) for some 1 ≤ k < n. Let
α : [0, 1] → Sp(R2n) be a loop, and let s = µ(α). Since we have proved that Sp(R2n) retracts to
U(n) we can homotopically deform α such that it takes values in U(n). Next we define the loop

u(t) =


e2πist

1
. . .

1

 ∈ U(n)

which takes values in U(n). It follows from the definition of µ that µ(u) = s so from axiom
one we have that α and u are homotopic. We can now decompose u(t) in a sum of two elements
u = u1 ⊕ u2 where u1 is the element

u1 =

(
cos(2πst) − sin(2πst)
sin(2πst) cos(2πst)

)
∈ Sp(R2)

and u2 is a constant loop in Sp(R2(n−1)). We can now apply axiom three and the induction
hypothesis to get

µ′(α) = µ′(u) = µ′(u1) + µ′(u2) = s+ 0 = µ(α).
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2.3 Maslov Index for Loops of Lagrangian Subspaces
Next, we look at the Maslov index for loops of Lagrangian subspaces. First, we need a new way
to identify Lag(V ). Since we have proved that any symplectic space is symplectomorphic to R2n

we look at the elements of Lag(V ) as subspaces of R2n. In section 1.4 we have seen that given
two elements L1, L2 of Lag(V ) they are symplectomorphic to each other, we now prove that the
element of Sp(R2n) that take L1 to L2 is in U(n).

Lemma 2.3.1. Let L1 and L2 be in Lag(R2n), then there exists a symplectic matrix M ∈ Sp(R2n)∩
O(2n) = U(n) such that L2 =ML1.

Proof. We consider our vector space as R2n with the symplectic basis {e1, ..., en, f1, ..., fn} and we
show that for every L ∈ Sp(R2n) there exists an element M of U(n) that take the Lagrangian
subspace L0 := span(e1, ..., en) to L. We construct the matrix M in the following way, let X,Y be
real matrices in Rn×n and define the matrix

Z =

(
X
Y

)
∈ R2n×n

so that A := Im(Z) is a subspace of R2n. The elements of A are of the form z = (Xu, Y u), where
u is a vector in R2n. The conditions necessary and sufficient for Z such that A is a Lagrangian
subspace are: rankZ = n and XTY = Y TX, so that for any z = (Xu, Y u) and z′ = (Xu′, Y u′)
we have ω(z, z′) = uT (XTY − Y TX)u′ = 0. With a rescaling of X and Y we can get the columns
of Z to be an orthonormal basis of A, in this case holds also

U := X + iY ∈ U(n)

Now we can define Z as above such that its columns are an orthonormal basis of L and let

M :=

(
X −Y
Y X

)
then M ∈ Sp(R2n) ∩O(2n) and ML0 = L.

Corollary 2.3.2. U(n) acts transitively on Lag(V ) and we can write Lag(V ) ∼= U(n)/O(n).

This follows from the proof of previous lemma and the fact that U = X+ iY ∈ U(n) is determined
by L up to right multiplication by an element of O(n).

From Corollary 2.3.2, Proposition 2.1.5 and the homotopy long exact sequence

...→ π1(O(n)) → π1(U(n)) → π1(Lag(R2n)) → 0

where can be computed that the map π1(O(n)) → π1(U(n)) is the zero map, it follows that also
π1(Lag(V )) is isomorphic to Z. Also in this case the explicit isomorphism is a function called
Maslov Index.

Theorem 2.3.3 (Maslov Index for loops of Lagrangian subspaces). There exists a unique function
µ called Maslov Index which assigns to any loop

α : [0, 1] → Lag(R2n)

an integer µ(α) ∈ Z and satisfies the following axioms:

1. Two loops are homotopic relative to endpoints if and only if they have the same Maslov index.

2. For any two loops α : [0, 1] → Lag(R2n) and β : [0, 1] → Sp(R2n) we have

µ(βα) = µ(α) + 2µ(β)
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3. For n′ + n′′ = n we can identify Lag(R2n′
)⊕ Lag(R2n′′

) as a subspace of Lag(R2n), then

µ(α′ ⊕ α′′) = µ(α′) + µ(α′′)

4. A constant loop α0 has Maslov index zero.

5. The loop

α : [0, 1] → Lag(R2)
α(t) := eπitR

has Maslov index one.

Proof. The construction is very similar to the one of Theorem 2.2.1. Again we first define a func-

tion ρ : Lag(R2n) → S1 in the following way: let L ∈ Lag(R2n) and Z =

(
X
Y

)
∈ R2n×n as in the

proof of Lemma 2.3.1 such that L = Im(Z) and U := X + iY ∈ U(n). Then we define

ρ(L) := det(U2)

Again for a loop α : [0, 1] → Lag(R2n) we let the Maslov index to be

µ(α) := deg(ρ ◦ α)

or equivalently for a lift h : [0, 1] → R such that

e2πih(t) = ρ ◦ α(t) = det(U(t)2)

we have

µ(α) = h(1)− h(0)

It follows that µ takes values in Z and it depends only on the homotopy class of the loop α.
Conversely if we have two loops α1 and α2 such that µ(α1) = µ(α2) we show that they are indeed
homotopic. Without loss of generalities we can assume that α1(0) = α2(0) = Rn × {0}. Let

Uj(t) = Xj(t) + i Yj(t) a path in U(n) such that αj(t) = Im

(
Xj(t)
Yj(t)

)
for j = 1, 2 and Uj(0) = Id.

With right multiplication by an orthogonal matrix we can get

Uj(1) =


±1

1
. . .

1


so we can define U(t) := U2(t)U1(t)

−1 which is a loop in π1(U(n)). We also have that this
loop is contractible since deg(det(U1(t)

2)) = µ(α1) = µ(α2) = deg(det(U2(t)
2)) which implies that

the loop det(U(t)) ∈ π1(S
1) is contractible and so, with Proposition 2.1.5 we have that U(t) is

contractible. That means that U1(t) and U2(t) are homotopic and therefore so are α1 and α2. This
proves axiom 1. The second axiom follows from the construction of ρ and µ and the fact that a
loop β ∈ π1(Sp(R2n)) is homotopic to a loop in π1(U(n)), this follows from Proposition 2.1.2. The
third, fourth and fifth axioms follow from straightforward calculation. Again the axioms define
uniquely the Maslov index.
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Remark. An alternative definition, actually the first one that was introduced, of the Maslov index
for loops of Lagrangian subspaces is the (signed) number of intersection of a loop α with the so
called Maslov cycle Σ(n). This one is defined as the set of all the Lagrangian subspaces that
intersect non transversally the subspace {0} × Rn, i.e.,

Σ(n) := {L ∈ Lag(R2n) : L ∩ ({0} × Rn) ̸= {0}}

It can then be proved that this definition also satisfies the five axioms of Theorem 2.3.3.





Chapter 3

Compatible Triples

3.1 Additional Structures on a Symplectic Vector Space
In this chapter we focus on the complex structures and how they act on a symplectic vector space.
First we give the definition of complex structure.

Definition 3.1.1. A linear complex structure on a vector space V is an automorphism

J : V → V

such that

J2 = −Id .

A real vector space V of even dimension (like a symplectic vector space) with such a structure J
becomes a complex vector space, where the multiplication by i corresponds to the multiplication
by J . So the scalar multiplication over C is given by

C× V → V

(x+ iy, v) 7→ (x+ yJ)v

Example 3.1.2. The automorphism of R2n given by the matrix

J0 =

(
0 −Id
Id 0

)
is a linear complex structure and is called the standard complex structure.

Now we show that every linear complex structure is isomorphic to the standard complex structure
of Example 3.1.2.

Proposition 3.1.3. Let V be a real vector space of dimension 2n and let J be a complex structure
on V , then there exists an isomorphism

Φ : R2n → V

such that

JΦ = ΦJ0

Proof. From linear algebra we know that every complex vector space has a complex basis, i.e. there
exists a basis {v1, ..., vn} over C. Then {v1, Jv1, ..., vn, Jvn} is a basis over R and we can define Φ

19
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in the following way

Φu =
∑n

j=1(xjvj + yjJvj)

where u = (x1, ..., xn, y1, ..., yn). It is then easy to check that this map satisfies the required
property.

Next we look at the case where a complex structure is defined on a symplectic vector space V .

Definition 3.1.4. A complex structure J on a symplectic vector space (V, ω) is called ω-compatible
(or just compatible) if

g(v, w) := ω(v, Jw)

defines a positive definite inner product.

Remark. It follows from the definition that a compatible complex structure on V is also an element
of Sp(V ). Indeed using the symmetry property of an inner product we have

ω(Jv, Jw) = g(Jv,w) = g(w, Jv) = ω(w, J2v) = −ω(w, v) = ω(v, w).

As before we have a symplectic vector space (V, ω). If it has a compatible complex structure J we
can consider it as a complex vector space as done above. Moreover, it can become a Hermitian
vector space (i.e. a complex vector space with a Hermitian inner product) where the Hermitian
inner product is given by

h(v, w) := g(v, w) + iω(v, w)

where g is the inner product induced by ω and J . h is complex linear with respect to the second
entry and complex anti-linear with respect to the first entry:

h(v, Jw) = g(v, Jw) + iω(v, Jw) = −ω(v, w) + ig(v, w) = ih(v, w)

h(Jv,w) = g(Jv,w) + iω(Jv,w) = ω(v, w)− ig(v, w) = −ih(v, w)

moreover h(v, v) > 0 for v ̸= 0. It follows from the construction of h that an element A ∈ Sp(V )
that preserves h must also preserve the positive definite inner product g, hence, by Lemma 2.1.1,
that is an element of the unitary group.

Definition 3.1.5. When we have a compatible complex structure J on a symplectic vector space
(V, ω), and g is the inner product induced by ω and J , we call the triple (V, ω, J) a Kähler vector
space while (ω, J, g) is called a compatible triple.

Remark. We can equivalently define a compatible complex structure in the following way: J on
(V, ω) is ω-compatible if ∀v, w ∈ V we have

ω(Jv, Jw) = ω(v, w)
and

ω(v, Jv) > 0 ∀v ̸= 0.

We then have as a consequence that

gJ := ω(v, Jw)

defines a positive definite inner product. The positive definiteness comes from the second con-
dition, moreover gJ is bilinear because so is ω. Lastly the symmetry follows from

gJ(w, v) = ω(w, Jv) = −ω(Jv,w) = ω(Jv,−w) = ω(Jv, J2w) = ω(v, Jw) = gJ(v, w)
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3.2 The Space J(V, ω)

Proposition 3.2.1. Let (V, ω) be a symplectic vector space and J a linear complex structure on
V . The following are equivalent

(i) J is ω-compatible

(ii) (V, ω) has a symplectic basis of the form
v1, ..., vn, Jv1, ..., Jvn

(iii) There exists an isomorphism Φ : R2n → V such that

Φ∗ω = ω0 and Φ∗J = J0

where ω0 is the symplectic form of Example 1.1.3 and J0 the standard complex structure of
Example 3.1.2

(iv) J satisfies ω(v, Jv) > 0 ∀v ̸= 0 and ∀L ∈ Lag(V ) we have JL ∈ Lag(V )

Proof. We first prove that (i), (ii) and (iii) are equivalent, and then that so are also (i) and (iv).
(i) implies (ii) because, from Lemma 1.4.3, V has a Lagrangian subspace L. Let {v1, ..., vn} be a
basis of L orthonormal with respect to the inner product g induced by J . Then we have

ω(vi, Jvj) = g(vi, vj) = δi,j
and

ω(Jvi, Jvj) = ω(vi, vj) = 0

Hence {v1, ..., vn, Jv1, ..., Jvn} is a symplectic basis of (V, ω).

We see that (ii) implies (iii) by defining

Φ : R2n → V

z 7→
∑n

i=1(xivi + yiJvi)

for z = (x1, ..., xn, y1, ..., yn) and (iii) follows from a simple computation. (iii) implies (i) be-
cause J∗

0ω0 = ω0 and Φ∗ is an intertwining.

We now prove that (i) implies (iv). If J is compatible it follows from definition that ω(v, Jv) > 0 for
any nonzero v ∈ V . Moreover, for any u, v ∈ L we have ω(Ju, Jv) = ω(u, v) = 0 so that ω |JL= 0.
This together with the fact that J is an isomorphism proves that JL ∈ Lag(V ). Conversely if we
assume (iv) we prove that g(v, w) := ω(v, Jw) defines an inner product. It is positive definite by
assumption and bilinear by construction. Now assume g is not symmetric, i.e. there exist u, v ∈ V
such that

ω(v, Ju) ̸= ω(u, Jv)

obviously v is nonzero, so ω(v, Jv) > 0. Now define

w := u− ω(v,Ju)
ω(v,Jv)v

so we get

ω(w, Jv) = ω(u, Jv)− ω(v, Ju) ̸= 0

and we have that w, Jv and v, Jw are linearly independent. Moreover, since
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ω(v, Jw) = ω(v, Ju)− ω(v,Jv)
ω(v,Jv)ω(v, Ju) = 0

we have a L ∈ Lag(V ) such that v, Jw ∈ L. So it follows Jv,w ∈ JL, but, since ω(w, Jv) ̸= 0,
JL /∈ Lag(V ), which contradicts the assumption of (iv), so g must be symmetric. Hence, we have
proved that J is compatible.

We denote by J(V, ω) the space of compatible complex structures and, following the notation of
[6], we denote by Riem(V ) the set of all positive definite inner products on V , which is a convex
open subset of the space of symmetric bilinear forms S2V ∗.

Theorem 3.2.2. Let (V, ω) be a symplectic vector space, then there exists a canonical surjective
map

F : Riem(V ) → J(V, ω)

Moreover, if we denote by G the map
G : J(V, ω) → Riem(V )

which assigns to each J ∈ J(V, ω) its induced inner product g we get F ◦G(J) = J .

Proof. To construct the map F we precede in the following way. First given a positive definite
inner product k ∈ Riem(V ) we define an invertible matrix A such that ∀v, w ∈ V we have

k(v, w) = ω(v,Aw)

Since k is symmetric while ω is skew-symmetric follows that AT = −A. So if we compute the
polar decomposition of A we get

A = UP

where U = A(ATA)−1/2 = A(−A2)1/2 and P = (ATA)1/2 = (−A)1/2. That means that U
and P commute, therefore we get

A2 = U2P 2 = U2(−A2)

so U2 = −Id, which means U is a complex structure. Moreover we have

ω(v, Uw) = ω(v,AP−1w) = k(v, P−1w) = k(P−1/2v, P−1/2w)

so ω(v, Uw) is a positive definite inner product. We can then define F (k) = U , this function
satisfies by construction F ◦G = Id and is surjective.

We now state and prove a proposition which actually will be a consequence of the next theorem,
but that can already be proved with the previous theorem.

Proposition 3.2.3. Let (V, ω) be a symplectic vector space. Then given any two compatible
complex structure J0, J1 ∈ J(R2n, ω0) they are homotopic, i.e. there exists a function which
assigns to every t ∈ [0, 1] a compatible complex structure, and such that for t = 0 it gives J0 and
for t = 1 it gives J1. This function defines a path in J(R2n, ω0) from J0 to J1, so it means that
J(R2n, ω0) is path connected.

Proof. In the previous theorem we have proved that given any k ∈ Riem(V ) it arises a compatible
complex structure, which can be called Jk, and that any J ∈ J(R2n, ω0) can be generated in this
way. This means given J0, J1 ∈ J(R2n, ω0) there exist k0, k1 ∈ Riem(V ) such that Jki = Ji for
i = 1, 2. Next, since Riem(V ) is convex, we can define
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kt := tk0 + (1− t)k1, t ∈ [0, 1]

and we have that the arisen compatible complex structure Jkt
is the function we were looking

for.

3.3 Contractibility of J(V, ω)

Theorem 3.3.1. Let (V, ω) be a symplectic vector space of dimension 2n, then J(V, ω) is con-
tractible.

For this theorem there exist many proofs. We first provide two brief proofs and then sketch another
one a bit more interesting.

Proof. (1) Let X := Riem(V ) and Y := J(V, ω). We know that X is contractible because it is a
convex subset of a vector space. Let ϕ : X × I → X be a contraction, where ϕ0 = IdX and ϕ1
is a constant map to a point of X. Then using the functions F and G from Theorem 3.2.2 and
defining ψ := F ◦ ϕ ◦ (Id×G), we get that ψ is a contraction of Y .

Proof. (2) In this proof we assume V = R2n and ω = ω0 (this is possible due to Theorem 1.2.3) and
we prove that J(R2n, ω0) is diffeomorphic to the space of symmetric, positive definite, symplectic
matrices in R2n×2n, this space is indeed contractible from Lemma 1.3.3. First we have that a
matrix J ∈ R2n×2n is in J(R2n, ω0) if it satisfies

J2 = −Id JTJ0J = J0 vT (−J0)Jv > 0 ∀v ∈ V

where the first condition ensures that J is a complex structure, and the other two that it is
ω0−compatible. From these condition follows that

(J0J)
T = −JTJ0 = JTJ0J

2 = J0J

so we can define P := −J0J which is symplectic, symmetric and positive definite by construc-
tion. On the contrary if we have a matrix P symplectic, symmetric and positive definite and we
define J := −J−1

0 P = J0P follows that J ∈ J(R2n, ω0). In fact we have

vT (−J0)Jv = V T (−J0)J0Pv = vTPv > 0

since P is positive definite,

JTJ0J = PTJT
0 J0J0P = PTJ0P = J0

because P is symplectic, and

J2 = J0PJ0P = J0P
TJ0P = J0J0 = −Id

because P is symmetric. Therefore we have established a diffeomorphism between these two space,
which proves the theorem.

Before we present the last proof of Theorem 3.3.1, we need to introduce the concept of Siegel upper
half plane.

Definition 3.3.2. The Siegel upper half plane is defined as the open contractible subspace of Cn×n

composed by symmetric matrices of the form Z = X + iY , where the imaginary part Y is positive
definite. It is denoted by Sn.
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It can then be proved (see Appendix A) that the symplectic group Sp(R2n) acts transitively on Sn

and that the stabiliser of (i ·Id) ∈ Sn is the subgroup U(n) ⊆ Sp(R2n) with the usual identification.
So we can write

Sn
∼= Sp(R2n)/U(n).

Proof. (3) The idea of this proof (which we give in a non rigorous way) is to show that J(R2n, ω0) is
diffeomorphic to Sn. It follows from Proposition 3.2.1 that Sp(R2n) acts transitively on J(R2n, ω0)
and from Lemma 2.1.1 we know that the stabiliser of J0 is Sp(R2n) ∩GLn(C) = U(n). Therefore
there exists a bijection between J(R2n, ω0) and Sn. This map can be construct in the following way:

J : Sn → J(R2n, ω0)
with

J(Z) =

(
XY −1 −Y −XY −1X
Y −1 −Y −1X

)
where Z = X + iY ∈ Sn

it can then be proved that this map is actually a diffeomorphism.

Remark. It follows from the third proof of Theorem 3.3.1 that

J(R2n, ω0) ∼= Sp(R2n)/U(n)

which leads to the next corollary.

Corollary 3.3.3. J(R2n, ω0) has dimension (2n2 + n)− n2 = n2 + n.





Chapter 4

The Affine Non-Squeezing Theorem

4.1 General Statement of Theorem
The theorem we are now going to treat is very important and is one of the first results based on the
theory outlined in previous chapters that shows a counter-intuitive aspect of symplectic geometry.
In the whole chapter we use as symplectic vector space R2n and denote by ω0 the symplectic
standard form as in Example 1.1.3. We also need some new definitions.

Definition 4.1.1. A map ϕ : R2n → R2n is called affine symplectomorphism if it has the form

ϕ(z) =Mz + z0

where M ∈ Sp(R2n) and z0 ∈ R2n. The group of affine symplectomorphisms is denoted by
ASp(R2n).

Definition 4.1.2. Let {e1, ..., en, f1, ..., fn} be the standard symplectic basis of R2n with the sym-
plectic standard form ω0. Then the symplectic cylinder of radius R is defined as

Z2n(R) := B2(R)× R2n−2 = {z ∈ R2n : ⟨e1, z⟩2 + ⟨f1, z⟩2 ≤ R2}

where B2(R) is the two dimensional ball of radius R and ⟨· , ·⟩ the Euclidean inner product in
R2n.

Remark. The Euclidean inner product is the inner product generated by ω0 and the compatible
complex structure J0 used in Example 3.1.2, indeed, we have ⟨u , v⟩ = ω0(u, J0v) for any u and v.
We can now state the main theorem of this chapter, which claims that a ball in R2n can only be
embedded by an affine symplectomorphism into a symplectic cylinder if the radius of the ball is
smaller or equal to the radius of the cylinder. In other words, it is impossible to "squeeze" a ball
more than its "symplectic width" allows.

Theorem 4.1.3. Given ϕ ∈ ASp(R2n) and assume that

ϕ(B2n(r)) ⊂ Z2n(R)

then it follows r ≤ R.

Proof. Without loss of generality we can assume r = 1 and show R ≥ 1. We can also write ϕ in
the form ϕ(z) = Az + z0 for a A ∈ Sp(R2n). Now let {e1, ..., en, f1, ..., fn} be a symplectic basis
and define

u := AT e1 v := AT f1 a := ⟨e1, z0⟩ b := ⟨f1, z0⟩

26
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Then the assumption ϕ(B2n(r)) ⊂ Z2n(R) can be written as

sup|z|≤1 (⟨e1, ϕ(z)⟩2 + ⟨e2, ϕ(z)⟩2) ≤ R2

⇒ sup|z|≤1 (⟨e1, Az + z0⟩2 + ⟨e2, Az + z0⟩2) ≤ R2

⇒ sup|z|≤1 ((⟨AT e1, z⟩+ ⟨e1, z0⟩)2 + (⟨AT e2, z⟩+ ⟨e2, z0⟩)2 ≤ R2

⇒ sup|z|≤1 ((⟨u, z⟩+ a)2 + (⟨v, z⟩+ b)2) ≤ R2

Now, since A ∈ Sp(R2n),we also have AT ∈ Sp(R2n), and it follows 1 = ω0(e1, f1) = ω0(u, v) =
⟨u, J−1

0 v⟩ ≤ |u| | − J0v| = |u| |v|, where the inequality follows from the Cauchy-Schwarz inequality.
So we can assume without loss of generality |u| ≥ 1 and choose z0 := ± u

|u| , where the sign of z0 is
chosen to be equal the sign of a. So we get

1 ≤ |u|2 ≤ (|u|+ |a|)2 ≤ (⟨u, z0⟩+ a)2 + (⟨v, z0⟩+ b)2 ≤ R2

and therefore we can conclude R2 ≥ 1.

4.2 Linear Non-squeezing Property
In this section, we define a concept, the non-squeezing property, that generalises the discussion
introduced with Theorem 4.1.3 and we will also see some consequences of the theorem. First we
need some more definitions.

Definition 4.2.1. A matrix M ∈ R2n×2n is said to be anti-symplectic if we have M∗ω0 = −ω0.

Definition 4.2.2. A set B ⊆ R2n is called a linear (resp. affine) symplectic ball of radius r, if
there exists an element M ∈ Sp(R2n) (resp. M ∈ ASp(R2n)) such that MB2n(r) = B, where
B2n(r) is the 2n-dimensional ball of radius r.

Definition 4.2.3. A set Z ⊆ R2n is called a linear (resp. affine) symplectic cylinder of radius R,
if there exists an element M ∈ Sp(R2n) (resp. M ∈ ASp(R2n)) such that MZ2n(R) = Z, where
Z2n(R) is defined as in the previous section.

Definition 4.2.4. A matrix M ∈ R2n×2n is said to have the linear non-squeezing property if for
all linear symplectic ball B of radius r and for all linear symplectic cylinder Z of radius R we have

MB ⊆ Z ⇒ r ≤ R

We can now state a theorem, which says that the non-squeezing property characterises the sym-
plectic and anti-symplectic matrices.

Theorem 4.2.5. Let M ∈ R2n×2n be invertible such that both M and M−1 have the non-squeezing
property. Then M is either symplectic or anti-symplectic, i.e. M∗ω0 = ±ω0.

Proof. Let assume by contradiction that M is neither symplectic nor anti-symplectic. That means
we can find some vectors u, v ∈ R2n such that

ω0(Mu,Mv) ̸= ±ω0(u, v)

Since M is invertible, and if necessary rescaling u, we can assume without loss of generality
0 < |ω0(Mu,Mv)| < |ω0(u, v)| = 1. We can write

0 < λ2 := |ω0(Mu,Mv)| < ω0(u, v) = 1
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Therefore we can construct two symplectic bases {u1, ..., un, v1, ..., vn} and {u′1, ..., u′n, v′1, ..., v′n}
of R2n where

u1 = u, v1 = v, u′1 = λ−1Mu, v′1 = ±λ−1Mv

If we denote by ϕ ∈ Sp(R2n) the matrix which takes the standard symplectic basis {e1, ..., en, f1, ..., fn}
to {u1, ..., un, v1, ..., vn} and by ϕ′ ∈ Sp(R2n) the matrix that takes {e1, ..., en, f1, ..., fn} to
{u′1, ..., u′n, v′1, ..., v′n} we can then define A := ϕ′−1Mϕ. The matrix A satisfies

Ae1 = λe1 Af1 = ±λf1

which means

AB2n(1) ⊆ Z2n(λ)

⇒ ϕ′−1MϕB2n(1) ⊆ Z2n(λ)

Hence if we denote by B the linear symplectic ball of radius 1 given by ϕB2n(1) and by Z the
linear symplectic cylinder of radius λ given by ϕ′Z2n(λ) we get

MB ⊆ Z

Since λ < 1 this is a contradiction with the assumption that M has the non-squeezing property.

In the previous section we mentioned the "symplectic width" of a set just in an intuitive way, we
can actually give a more rigorous definition.

Definition 4.2.6. Given a subset A ∈ R2n we define its linear symplectic width as

wL(A) = sup{πr2|ϕ(B2n(r)) ⊆ A, ϕ ∈ ASp(R2n)}

Directly from this definition follow two properties, namely:

1. (monotonicity) If ϕ(A) ⊆ B for some ϕ ∈ ASp(R2n) ⇒ wL(A) ≤ wL(B)

2. (conformality) wL(λA) = λ2wL(A)

Meanwhile a third property follows from Theorem 4.1.3.

3. (non-triviality) wL(B
2n(r)) = wL(Z

2n(r)) = πr2

From monotonicity and Theorem 4.1.3 follows that elements of ASp(R2n) preserve the linear
symplectic width of sets, and in a very similar way we conclude the same thing for anti-symplectic
maps. Also in this case we can prove that preserving the linear symplectic width is actually a
property that characterises the (anti-)symplectic maps. First we need to recall some definitions.

Definition 4.2.7. A quadratic form in n variables is a polynomial Q in n variables with all terms
of degree two. We call Q a positive definite quadratic form, if for all x ∈ Rn\{0} we have Q(x) > 0.

We also recall that every quadratic form Q can be represented by a unique matrix AQ = (aij)ij
such that for any x = (x1, .., xn) we have Q(x) = xTAT

Qx =
∑n

i,j=1 aijxixj .

Definition 4.2.8. Let Q be a positive definite quadratic form in 2n variables. Then the set defined
as EQ = {z ∈ R2n|Q(z) ≤ 1} is called ellipsoid centred at zero.

Remark. The 2n-dimensional ball B of radius r is an ellipsoid centred at zero defined by the
positive definite quadratic form Q(z) =

∑2n
i=1

z2
i

r2 .
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Theorem 4.2.9. Let ϕ : R2n → R2n be a linear map. Then the following are equivalent.

(i) ϕ preserves the linear symplectic width of ellipsoids centred at zero.

(ii) ϕ is either symplectic or anti-symplectic.

Proof. We have already said that (ii) implies (i). Now we prove the contrary. We assume that ϕ
satisfies (i) and we prove that it has the non-squeezing property, which means, due to Theorem
4.2.5, that it is actually either symplectic or anti-symplectic. First, we notice that ϕ is invertible,
otherwise ϕB2n(1) would have linear linear symplectic width zero. Moreover, also ϕ−1 satisfies (i),
indeed let E be an ellipsoid then wL(E) = wL(ϕϕ

−1E) = wL(ϕ
−1E). Now, we prove that ϕ (and

similarly ϕ−1) has the non-squeezing property. Let B be a linear symplectic ball of radius r and
Z a linear symplectic cylinder of radius R such that ϕB ⊆ Z. Then from (i) and the properties of
wL we have

πr2 = wL(B) = wL(ϕB) ≤ wL(Z) = πR2

which means r ≤ R. Therefore ϕ and ϕ−1 have the non-squeezing property, hence ϕ is either
symplectic or anti-symplectic.

4.3 Linear Symplectic Width of an Ellipsoid

The main result we want to show in this section is following theorem.

Theorem 4.3.1. Let E ⊆ R2n be an ellipsoid centred at zero. Then we have

wL(E) = supB⊂E wL(B) = infZ⊃E wL(Z)

where the supremum runs over all affine symplectic balls contained in E and the infimum runs
over all affine symplectic cylinders containing E.

In order to prove this theorem we first need two lemmas.

Lemma 4.3.2. Let (V, ω) be a symplectic vector space of dimension 2n and g : V × V → R be an
inner product. Then there exists a basis {u1, ..., un, v1, ...vn} of V which is orthogonal with respect
to g and a standard symplectic basis with respect to ω. Moreover it can be chosen such that

g(ui, ui) = g(vi, vi), ∀i ∈ {1, ..., n}

Proof. A proof of this lemma can be found in [5]

For the next lemma we need to introduce some notation. Let r be an n-tuple, r = (r1, ..., rn), such
that 0 < r1 ≤ .... ≤ rn. Then we define the ellipsoid E(r) as the set

E(r) = {z ∈ Cn|
∑n

i=1 |
zi
ri
|2 ≤ 1}

Lemma 4.3.3. Given any compact ellipsoid

E = {w ∈ R2n|
∑2n

i,j=1 aijwiwj ≤ 1}

then there exists a matrix ϕ ∈ Sp(R2n) such that ϕE = E(r) for an n-tuple r = (r1, ..., rn)
with 0 < r1 ≤ ... ≤ rn, which is uniquely determined by E.

The n-tuple r is then called the symplectic spectrum of the ellipsoid E and it is invariant under
linear symplectic maps. In fact, two ellipsoids in R2n centred at zero are linearly symplectomorphic
if and only if they have the same spectrum.
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Proof. We define the positive definite inner product

g(v, w) =
∑2n

i,j=1 aijviwj

on R2n. Then we can write E as

E = {w ∈ R2n|g(w,w) ≤ 1}

By Lemma 4.3.2, we have a basis e = {u1, ..., un, v1, ..., vn} of R2n which is orthogonal with respect
to g and standard symplectic with respect to ω0. We also have

g(ui, ui) = g(vi, vi) =: 1
r2i

where we can assume r1 ≤ ... ≤ rn. Now we denote by ϕ the symplectomorphism that takes
the standard basis of R2n to e, i.e.

ϕz =
∑n

i=1(xiui + yivi)

where z = (x1, ..., xn, y1, ..., yn). So it follows that

g(ϕz, ϕz) =
∑n

i=1
x2
i+y2

i

r2i
and we get

E(r) = {z ∈ R2n|
∑n

i=1
x2
i+y2

i

r2i
≤ 1} = {z ∈ R2n|g(ϕz, ϕz) ≤ 1} = ϕ−1E

We still have to prove the uniqueness of the n-tuple 0 < r1 ≤ ... ≤ rn. Denote by ∆(r) the
diagonal matrix 

1/r21
. . .

1/r2n
1/r21

. . .
1/r2n


We have that z ∈ E if and only if zT∆(r)z ≤ 1. Assume there exists a ϕ ∈ Sp(R2n) such that
E = ϕ−1E(r′), we have to prove that r = r′. That means zTϕT∆(r′)ϕz = zT∆(r)z, ∀z ∈ R2n, i.e.
ϕT∆(r′)ϕ = ∆(r). Since ϕ is symplectic we have J0ϕT = ϕ−1J0, which leads to

ϕ−1J0∆(r′)ϕ = J0∆(r)

Hence J0∆(r) and J0∆(r′) must have the same eigenvalues. But since the eigenvalues of J0∆(r)
are ±i/r21, ...,±i/r2n we have r = r′.

Now we can prove Theorem 4.3.1.

Proof. Let r = (r1, ..., rn) be the symplectic spectrum of E, with 0 < r1 ≤ ... ≤ rn, from Lemma
4.3.3 we know that there exists a matrix ϕ ∈ Sp(R2n) such that ϕE = E(r). Then we have

B2n(r1) ⊆ E(r) ⊆ Z2n(r1)

⇒ ϕ−1B2n(r1) ⊆ E ⊆ ϕ−1Z2n(r1)

and since



Chapter 4. The Affine Non-Squeezing Theorem 31

wL(ϕ
−1B2n(r1)) = πr21 = wL(ϕ

−1Z2n(r1))

we get

infZ⊃E wL(Z) ≤ πr21 ≤ supB⊂E wL(B)

Now suppose we have an affine symplectic ball B of radius r contained in E and an affine sym-
plectic cylinder Z of radius R containing E. It follows

ϕB ⊆ ϕE ⊆ Z2n(r1)

therefore from Theorem 4.1.3 we have r ≤ r1. On the other hand we have

B2n(r1) ⊆ ϕE ⊆ ϕZ

still due to Theorem 4.1.3 we get r1 ≤ R. So we have

infZ⊃E wL(Z) ≥ πr21 ≥ supB⊂E wL(B)

and we can conclude

infZ⊃E wL(Z) = πr21 = supB⊂E wL(B) .

From definition we have wL(E) = supB⊂E wL(B) that concludes the proof.

Remark. If r = (r1, ..., rn) is the symplectic spectrum of an ellipsoid E, with 0 < r1 ≤ ... ≤ rn,
then we have wL(E) = πr21





Appendix A

Siegel Upper Half Plane

In this appendix we prove the following theorem, first presented by Carl Ludwig Siegel in [7], which
was cited in Chapter 3 and says that the symplectic group acts transitively on the Siegel upper half
plane Sn. We first remind the definition of Sn. It is the subspace of Cn×n composed by symmetric
matrices Z = X + iY , where Y is positive definite. We use here the same notation as in Chapter
3. The following formulation is presented in [1].

Theorem. The symplectic group Sp(R2n) acts on Sn by the transformation

Sp(R2n)× Sn → Sn

(ϕ,Z) 7→ ϕ(Z) := (AZ +B) · (CZ +D)−1

where ϕ =

(
A B
C D

)
, and A,B,C,D are n× n blocks.

This action is transitive and the stabiliser of (i · Id) ∈ Sn is the unitary group U(n). Therefore, we
have

Sn
∼= Sp(R2n)/U(n).

Proof. This proof is taken from [2] and [4]. First we need to check that this is actually a group
action. In order to do this, we have to prove that the matrix (CZ +D) is always invertible and
that for any Z ∈ Sn and ϕ ∈ Sp(R2n) we have ϕ(Z) ∈ Sn. Moreover, we have to prove that for
ϕ, ψ ∈ Sp(R2n) we have ϕ(ψ(Z))) = (ϕψ)(Z). Let Z = X + iY be in Sn, that means, ZT − Z = 0
and Y > 0. These conditions on Z can be rewritten in the following form

(
ZT Id

)
J

(
Z
Id

)
= 0 and − 1

2i

(
Z Id

)
J

(
Z
Id

)
> 0

where Z = X − iY denotes the complex conjugate of Z and J =

(
0 Idn

−Idn 0

)
. Then given

ϕ =

(
A B
C D

)
∈ Sp(R2n) we define E := AZ +B and F := CZ +D, or equivalently

ϕ

(
Z
Id

)
=

(
E
F

)
Then, since ϕ is symplectic, we have

(
ET FT

)
J

(
E
F

)
=

(
ZT Id

)
ϕTJϕ

(
Z
Id

)
=

(
ZT Id

)
J

(
Z
Id

)
= 0

It follows that ETF = FTE. We also have
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− 1
2i

(
E F

)
J

(
E
F

)
= − 1

2i

(
Z Id

)
ϕTJϕ

(
Z
Id

)
= − 1

2i

(
Z Id

)
J

(
Z
Id

)
> 0

Therefore, we get − 1
2i (EF − FE) > 0. Now we can prove that F is invertible. Assume v is

a solution of Fv = 0. That means vF = 0, therefore v(EF − FE)v = 0, so v = 0, i.e. F is
invertible. Now we can write ϕ(Z) = EF−1. Since we have seen that ETF = FTE we get that
EF−1 is symmetric. Lastly, we have

− 1
2iF (F

−1E − EF−1)F > 0
i.e.

− 1
2i (EF

−1 − EF−1) > 0

hence, Im(ϕ(Z)) = Im(EF−1) > 0. We have proved that ϕ(Z) is symmetric and its imaginary
part is positive definite, which means it is in Sn. Now we want to prove that given ϕ, ψ ∈ Sp(R2n)

we have ϕ(ψ(Z)) = (ϕψ)(Z). Let ϕ =

(
A B
C D

)
and ψ =

(
E F
G H

)
, then we have

ϕ(ψ(Z)) = ϕ(EZ + F )(GZ +H)−1)

= (A(EZ + F )(GZ +H)−1 +B)(C(EZ + F )(GZ +H)−1 +D)−1

= (A(EZ + F )(GZ +H)−1 +B)(GZ +H)(GZ +H)−1(C(EZ + F )(GZ +H)−1 +D)−1

= (A(EZ + F ) +B(GZ +H))(C(EZ + F ) +D(GZ +H))−1

= ((AE +BG)Z + (AF +BH))((CE +DG)Z + (CF +DH))−1

= (ϕψ)(Z) .

Therefore we have proved that this is actually a well-defined group action.

Finally, we prove that this action is indeed transitive and that the stabiliser of (i · Id) is the uni-
tary group. Given any Z ∈ Sn, where Z = X + iY , since Y is positive definite we can define the
following matrix

ϕ =

(
Y 1/2 XY −1/2

0 Y −1/2

)
It is then easy to check that ϕ ∈ Sp(R2n) and ϕ(i · Id) = Z. This means that any Z ∈ Sn

is in the orbit of (i · Id), i.e. the action is transitive. Now we take the matrix (i · Id) and

ϕ =

(
A B
C D

)
∈ Sp(R2n) such that ϕ(i · Id) = i · Id. That means

(AiId+B) · (CiId+D)−1 = i · Id
and this is if and only if

(iA+B) = iD − C
i.e.,

A = D and B = −C

Therefore ϕ is in the stabiliser of (i · Id) if and only if

ϕ =

(
A −B
B A

)
and since it is symplectic it satisfies ABT = BAT and AAT + BBT = Idn. This is precisely the
definition of the unitary group given in Section 2.1, therefore we can write Sn

∼= Sp(R2n)/U(n).
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