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Abstract

In this thesis we first introduce complex manifolds and hermitian met-
rics on them, starting from the point of view of smooth manifolds. We
then generalize the Laplacian to differential forms and, using the theory
of elliptic operators, introduce harmonic form. Afterwards, we show a
regularity theorem for periodic elliptic operators and deduce the Hodge
decomposition for differential forms from it. We use these harmonic
forms to prove the Hodge decomposition theorem for compact Kähler
manifolds. We end by applying this theorem to the so called Hodge
diamond, whose structure we discuss.
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Introduction

Developed in the 1930’s by William V. D. Hodge, Hodge theory encompasses
some classic theorems and is of fundamental importance to many fields in
geometry, such as Riemannian geometry, complex geometry and, despite it
being a analytic theory, algebraic geometry. In this thesis we present two
important theorems in Hodge theory, namely the Hodge decomposition theo-
rem for differential forms and the Hodge decomposition theorem for compact
Kähler manifolds, which is a consequence of the former.

In Chapter 1, starting from the point of view of smooth manifolds, we
introduce complex manifolds, followed by some basic structures on them,
such as hermitian metrics and almost complex structures, and the cohomol-
ogy of their smooth differential forms. Afterwards, we introduce the Hodge
∗-operator and use it to give the space of differential forms some structure.
Basic knowledge about complexified manifolds, such as its tangent and cotan-
gent bundle and the integration of forms is assumed. This chapter is mainly
based on [Wel08, Chapter 1 and 5], [GH94, Chapter 0], [Huy05, Chapter 1
and 2] and [Voi02, Chapter 2 and 3]. Additional references are mentioned in
the parts they are relevant in.

In Chapter 2, we start by giving a generalization of the Laplacian opera-
tor on Rn to arbitrary differential forms on a compact manifold. After that,
we show the Hodge decomposition theorem for differential forms. To that
end, we first introduce elliptic operators and their generaliztions, elliptic
complexes. We then proceed to use the theory of Fourier series to show a
regularity theorem for periodic elliptic operators on Rn, which we then use
to deduce a regularity theorem for the generalized Laplacians, which in turn
leads to our desired decomposition theorem. Basic knowledge of Fourier series
is assumed, as is some basic knowledge about Sobolev spaces in the setting of
Fourier series, although all properties we use are listed and a proof of these
properties is referenced. The first two sections of this chapter are mainly
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based on [Wel08, Chapter 4] and [Voi02, Chapter 5] and [Gui05], while the
last two chapters will follow [War83, Chapter 6] very closely. Again any
additional references are mentioned in the parts where they are relevant.

In Chapter 3, we first show a relation betweed some different Laplacians
and then use the decomposition theorem from the second chapter to deduce
the Hodge decomposition theorem for compact Kähler manifolds. We end
this thesis by taking a look at the Hodge diamonds for such manifolds and
investigate their structure. This chapter is mainly based on [Wel08, Chapter
5], [Voi02, Chapter 6], [Huy05, Chapter 3] and [GH94, Chapter 0], plus some
additional references for individual parts towards the end.
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Chapter 1

Preliminaries

We begin by going over some preliminaries about complex manifolds. In Sec-
tion 1.1, we introduce complex manifolds and revise some basic notions about
vector bundles. In Section 1.2, we introduce almost complex structures with
a focus on those induced by an actual complex structure. Section 1.3 revises
some basic notions about the de Rham complex and introduces the Dolbeault
complexes. In Section 1.4, we take a look at hermitian metrics and ,in Section
1.5, we introduce the Hodge ∗-operator and use it to define an inner product
on the space of differential forms.

1.1 Complex manifolds and vector bundles

Recall that a smooth function f : U ⊆ C → C is called holomorphic if it
satisfies the Cauchy-Riemann equations. Namely if we write z = x + iy and
split f = u(x, y) + iv(x, y) into its real and imaginary parts, then we require

∂ u

∂ x
=
∂ v

∂ y

∂ u

∂ y
= −∂ v

∂ x
.

We define the operators

∂

∂ z
=

1

2

(
∂

∂ x
− i ∂

∂ y

)
and

∂

∂ z
=

1

2

(
∂

∂ x
+ i

∂

∂ y

)
.

Taking a look at the real and imaginary parts, we see that the Cauchy-
Riemann equations are equivalent to ∂ f

∂ z = 0 in which case the ordinary com-

plex derivative is just given by ∂ f
∂ z . With that in mind, we say that a smooth

function f = (f1, . . . , fm) : Cn → Cm is holomorphic if all its components are
holomorphic in each variable, namely

∂ fj
∂ zk

= 0

1



1.1. Complex manifolds and vector bundles

for all j = 1, . . . ,m and k = 1, . . . , n.

Definition 1.1.1 A complex manifold is a smooth manifold such that there
exist an open cover {Ui}i∈I together with charts ϕi : Ui → Cn, such that Ui is
homeomorphic to ϕi(Ui) for all i ∈ I and the transition functions ϕj ◦ ϕ−1

i :
ϕi(Ui∩Uj)→ ϕj(Ui∩Uj) are holomorphic for all i, j ∈ I. The pairs (Ui, ϕi) are
called holomorphic charts and the set {(Ui, ϕi)i∈I} of all these holomorphic
charts is called a holomorphic atlas. A function f : U → C on an open
subset U is holomorphic if it is holomorphic in all holomorphic charts, meaning
that f ◦ ϕ−1

i : ϕi(U ∩ Ui)→ C is holomorphic for every i ∈ I.

Definition 1.1.2 A complex submanifolds S of a complex manifold X is
a subset such that around every x ∈ S there is a holomorphic chart (U,ϕ) of
X such that ϕ(U ∩ S) = ϕ(U) ∩ Ck×{0}.

Example 1.1.3 We define CPn as the set of complex lines in Cn+1. Explic-
itly

CPn = {[z]∼ | z = (z0, . . . , zn) 6= 0},

where z ∼ w if z = λw for some λ ∈ C and we write [z0 : . . . : zn] for
[(z0, . . . , zn)]∼. We cover CPn with Ui = {[zo : . . . : zn] | zi 6= 0} and define
charts ϕi : Ui → Cn

ϕi([z0 : . . . : zn]) =

(
z0

zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . . ,

zn
zi

)
.

These charts indeed define a complex structure since, assuming without loss
of generality that i > j, on ϕi(Ui ∩ Uj) ⊆ Cn we have that

ϕj ◦ ϕ−1
i (z1, . . . , zn) =

(
z1

zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zi−1

zj
,

1

zj
,
zi+1

zj
, . . . ,

zn
zj

)
,

which is holomorphic.

Although complex manifolds and smooth manifolds are defined similarly, they
have some differences. For example, by Whitney’s theorem (see [Lee12, Theo-
rem 6.15]), every smooth manifold of dimension n can be smoothly embedded
into R2n+1. For complex manifolds there may be no holomorphic embedding
into Cm for any m.

Proposition 1.1.4 Every holomorphic map from a compact complex mani-
fold X to C is constant.

Proof Let f : X → C be a holomorphic function. Since holomorphic func-
tions are continuous and X is assumed to be compact, |f | has a maximum.
Let x0 be a point where this maximum is assumed. Let ϕ : U → Cn be a
coordinate chart around x0 that sends x0 to 0 and let Bε(0) be an open ball of

2



1.1. Complex manifolds and vector bundles

radius ε around 0 ∈ Cn contained in the image of ϕ. For any z ∈ Bε(0) ⊆ Cn
define the holomorphic function

gz : B1(0)→ C, w 7→ f ◦ ϕ−1(wz).

Since |gz| is maximal at w = 0, gz, and hence f , are constant by the maximum
principle (see [Hor73, Corollary 1.2.12]). �

We now turn our attention to vector bundles.

Definition 1.1.5 A smooth vector bundle of rank k over a smooth mani-
fold X is a smooth manifold E together with a smooth surjective map π : E →
X, such that for each x ∈ X, its fiber Ex := π−1(x) has the structure of a k di-
mensional real vector space and such that for each x ∈ X there is a open neigh-
bourhood U of x, such that there is a diffeomorphism ϕ : π−1(U) → U × Rk,
called a local trivialization, such that ϕ|x : Ex → {x} × Rk is a linear map.

The best known examples for vector bundles are the tangent bundle T (X)
and cotangent bundle T ∗(X).

Definition 1.1.6 A complex vector bundle is a smooth vector bundle π : E →
X, such that every fiber Ex has the structure of a complex vector space and
the local trivializations π−1(U) → U × Ck ∼= U × R2k are complex linear. A
holomorphic vector bundle is a complex vector bundle π : E → X such that E
and X are complex manifolds and π is a holomorphic map.

Definition 1.1.7 A vector bundle homomorphism between smooth vector
bundles E and F over X is a map ϕ : E → F such that ϕ(Ex) ⊆ Fx for all
x ∈ X and such that ϕ|Ex : Ex → Fx is linear. If ϕ is a diffeomorphism and
all ϕ|Ex are linear isomorphisms we call ϕ a bundle isomorphism.

Ex Fx

{x}

ϕ|Ex

πE πF

For a vector bundle homomorphism ϕ : E → F we write

kerϕ =
⋃
x∈X

kerϕ|Ex and imϕ =
⋃
x∈X

imϕ|Ex

Definition 1.1.8 Let π : E → X be a smooth vector bundle. A section of E
over an open set U is a map ξ : U 7→ π−1(U) such that π ◦ ξ = id. We denote
the set of smooth sections U → E by E(U,E).

We denote exterior powers of the cotangent bundle as
∧pT ∗(X) and write

Ωk(X) = E(X,
∧pT ∗(X)). Also note that a smooth vector bundle isomor-

phism induces an isomorphism of the sections.
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1.2. Almost complex structures

Definition 1.1.9 Let f : X → Y be a smooth map and πY : E → Y a smooth
vector bundle, then we define the pullback bundle πX : f∗E → X as

f∗E = {(x, e) ∈ X × E | f(x) = π(e)}

with πX(x, e) = x.

Intuitively speaking, the pullback bundle attaches to x ∈ X the fiber Ef(x).

Definition 1.1.10 Let U ⊆ X be open. A local frame of a smooth vector
bundle π : E → X of degree k over U is, if one even exists, a collection of k
everywhere linear independent smooth sections.

Note that if ξ1, . . . , ξk is a local frame we can write every section as g1ξ1 + · · ·+
gkξk for smooth functions gi, giving us a identification E(U,E) ∼= (C∞(U,R))k.

1.2 Almost complex structures

Definition 1.2.1 Let V be a finite dimensional real vector space. A linear
complex structure on V is a linear map J : V → V such that J2 = − id.

If a real vector space admits a linear complex structure, it is necessarily even
dimensional since

0 ≤ (det(J))2 = det(J2) = det(− id) = (−1)dimR(V ).

Two linear complex structures, J1 on V1 and J2 on V2, are said to be isomorphic
if there exist a linear isomorphism ϕ : V1 → V2 such that ϕJ1 = J2ϕ. The
complex linear structure enables us to view V as a complex vector space by
defining (a+ bi)v = av + bJv. In the other, direction we get a complex linear
structure on the underlying real vector space of a complex vector space from
multiplication with i.

Proposition 1.2.2 Every linear complex structure is isomorphic to R2n with

J0 =

[
0 − idn

idn 0

]
Proof View V as a complex vector space and let (v1, . . . , vn) be a complex
basis, then (v1, . . . , vn, Jv1, . . . , Jvn) is a real basis for which J is represented
by J0. �

Denote by VC := V ⊗R C the complexification of V . Extending the linear
complex structure J to VC by J(v⊗ z) = J(v)⊗ z we obtain a complex linear
automorphism that still satisfies J2 = − id, thus having minimal polynomial
t2 − 1. Therefore its eigenvalues are i and −i. We denote the eigenspaces in
VC for i by

V 1,0 = {v ⊗ z ∈ VC | J(v ⊗ z) = v ⊗ iz}

4



1.2. Almost complex structures

and for −i by

V 0,1 = {v ⊗ z ∈ VC | J(v ⊗ z) = v ⊗−iz}.

We thus get a decomposition VC = V 1,0 ⊕ V 0,1. Defined as such, VC carries
two distinct linear complex structures, namely J and multiplication by i, the
latter of which shall simply be referred to as the complex structure of VC. The
decomposition of v ∈ VC into its components in V 1,0 and V 0,1 is given by

v =
1

2
(v − iJv)︸ ︷︷ ︸
∈V 1,0

+
1

2
(v + iJv)︸ ︷︷ ︸
∈V 0,1

.

Note that, viewed as complex vector spaces, V and V 1,0 are isomorphic under
the projection map

v 7→ 1

2
(v − iJv).

We can now define complex conjugation on VC by v ⊗ z = v ⊗ z. Note that
complex conjugation on VC is a R-linear isomorphism between V 1,0 and V 0,1,
as J(v⊗z) = v⊗iz implies J(v ⊗ z) = J(v)⊗z = J(v ⊗ z) = v ⊗ iz = −iv ⊗ z.
These are also complex subspaces of VC. For the complex vector space VC with
dimC(VC) = dimR(V ) = 2n let

∧
VC =

2n⊕
p=0

∧p
VC

denote its exterior algebra. For VC both
∧
V 1,0 and

∧
V 0,1 are complex sub-

spaces of
∧
VC with trivial intersection. Define∧p,q

V :=
∧p

V 1,0 ⊗C
∧q

V 0,1

which we identify with its image in
∧p+q VC. We thus get a decomposition

∧
VC =

∧
V 1,0 ⊕ V 0,1 =

2n⊕
p+q=0

∧p
V 0,1 ⊗C

∧q
V 0,1 =

2n⊕
k=0

 ⊕
p+q=k

∧p,q
V

 .

Notice that, since dimC(V 1,0) = dimC(V 0,1) = dimC(V ) = n,
∧p,q V = 0

whenever either p > n or q > n. Now let W be the real dual space of V .
J induces a linear complex structure on W through Jw = w ◦ J . We can
now do the same procedure for W to obtain WC and a decomposition of
its exterior powers. Note that complex linear extensions of elements in W ∗

generate W ∗C and that W 1,0 is the dual space of V 1,0 as for a basis element
vj ∈ V with dual basis vector wj ∈ W such that wj(vj) = 1 we have that
(wj − iJwj)

(
1
2(vj − iJvj)

)
= 1. Similarly W 0,1 is the dual space of V 0,1.

We now turn our attention to complex and almost complex manifolds.

5



1.2. Almost complex structures

Definition 1.2.3 Let X be a differentiable manifold. An almost complex
structure on X is a vector bundle isomorphism J : T (X)→ T (X) such that
Jx : TxX → TxX is a linear complex structure for every x ∈ X.

Observe that giving X an almost complex structure is the same as giving
T (X) the structure of a complex vector bundle. A complex structure on X
induces an almost complex structure on X as follows. If (z1, . . . , zn) are local
holomorphic coordinates, then (x1 = <z1, y1 = =z1, . . . , xn = <zn, yn = =zn)
are real local coordinates and we can define J as the bundle map satisfying

J

(
∂

∂xj

)
=

∂

∂yj
and J

(
∂

∂yj

)
= − ∂

∂xj
,

which is clearly smooth. Now let ζ1, . . . , ζn be other holomorphic coordinates
with <ζj = ξj and =ζj = ηj . Let f = u+iv be the transition function between
z and ζ. The components u and v induce a real change of coordinates, namely
ξ = u(x, y) and η = v(x, y). Let J be the almost complex structure induced
by z and J ′ be the almost complex structure induced by ζ, then, using the
Cauchy-Riemann equations, we compute

J ′
(

∂

∂xk

)
=J ′

 n∑
j=1

∂uj
∂xk

∂

∂ξj
+
∂vj
∂xk

∂

∂ηj


=

n∑
j=1

∂uj
∂xk

∂

∂ηj
− ∂vj
∂xk

∂

∂ξj

=

n∑
j=1

∂vj
∂yk

∂

∂ηj
+
∂uj
∂yk

∂

∂ξj

=
∂

∂yk
.

Since now J ′( ∂
∂yk

) = J ′(J ′( ∂
∂xj )) = J ′2( ∂

∂xj ) = − ∂
∂xj , J and J ′ coincide,

showing that the induced almost complex structure is independent of the
choice of holomorphic coordinates and thus well-defined.

Proposition 1.2.4 A smooth map f between complex manifolds X1 and X2

is holomorphic if and only if f∗J1 = J2f∗, where J1 and J2 are the induced
almost complex structures and f∗ denotes the induced map on the tangent
spaces.

Proof Let x ∈ X1 and let z1 = x1 + iy1, . . . , zn = xn + iym and ζ1 = ξ1 +
iη1, . . . , ζm = ξm + iηm be local coordinates around x and f(x). Let fj =
uj + ivj denote the real and imaginary parts if the components of f . The

6



1.2. Almost complex structures

expression

(J2f∗ − f∗J1)

(
∂

∂xi

)
=J2

 n∑
j=1

∂uj
∂xi

∂

∂ξj
+
∂vj
∂xi

∂

∂ηj

− f∗( ∂

∂yi

)

=

n∑
j=1

∂uj
∂xi

∂

∂ηj
− ∂vj
∂xi

∂

∂ξj
−

n∑
j=1

∂uj
∂yi

∂

∂ξj
+
∂vj
∂yi

∂

∂ηj

=
n∑
j=1

(
∂uj
∂xi
− ∂vj
∂yi

)
∂

∂ηj
−
(
∂vj
∂xi

+
∂uj
∂yi

)
∂

∂ξj

is 0 if and only if f fulfills the Cauchy-Riemann equations. �

For a complex manifold X, we can complexify its tangent and cotangent spaces
fiberwise to

T (x)C = T (X)⊗R C and T ∗(x)C = T ∗(X)⊗R C .

We represent sections of theses spaces just as sums α+ iβ where α and β are
either in E(X,T (X)) or Ω1(X) respectively. Using the unique induced almost
complex structure, we obtain just as in the vector space case decompositions

T (X)C = T (X)1,0 ⊕ T (X)0,1 and T ∗(X) = T ∗(X)1,0 ⊕ T ∗(X)0,1,

where T (X)1,0 is the kernel of the bundle homomorphism id−iJ id : T (X)→
T (X) and T (X)0,1 is the kernel of the bundle homomorphism id +iJ id and
similarly for T ∗(X).

Let X1 be an n-dimensional complex manifold and X2 be an m-dimensional
complex manifold with coordinates z and ζ as above. Let f : X1 → X2 be
smooth. Note that, if f is holomorphic, then f∗ maps T (X1)1,0 to T (X2)0,1,
as for v ∈ Tp(X)1,0 we have J2f∗v = f∗J1v = f∗iv = if∗v, and similarly, f∗
also maps T (X1)0,1 to T (X2)0,1. The real Jacobian JR of f representing f∗ is
given by the 2m× 2n matrix

JR =


(
∂uj
∂xk

)
j,k

(
∂uj
∂yk

)
j,k(

∂vj
∂xk

)
j,k

(
∂vj
∂yk

)
j,k


where 1 ≤ j ≤ m and 1 ≤ k ≤ n. We now extend f∗ by complex lin-
earity to a map between the complexified tangent spaces. For the basis
∂
∂z1

, . . . , ∂
∂zn ,

∂
∂z1

, . . . , ∂
∂zn

and ∂
∂ζ1

, . . . , ∂
∂ζn

, ∂

∂ζ1

, . . . , ∂

∂ζn
, the Jacobian JC

representing f∗ is now given by

JC =


(
∂ fj
∂ zk

)
j,k

(
∂ fj
∂ zk

)
j,k(

∂ fj
∂ zk

)
j,k

(
∂ fj
∂ zk

)
j,k


7



1.3. Complex differential forms

Written out explicitly this just means

f∗
∂

∂zk
=

m∑
j=1

∂fj
∂zk

∂

∂ζj
+
∂f j
∂zk

∂

∂ζj

f∗
∂

∂zk
=

m∑
j=1

∂fj
∂zk

∂

∂ζj
+
∂f j
∂zk

∂

∂ζj

Note that
∂f
∂z =

∂f
∂z and therefore if f is holomorphic we get

JC =


(
∂ fj
∂ zk

)
j,k

0

0
(
∂ fj
∂ zk

)
j,k


Proposition 1.2.5 Every complex manifold is orientable.

Proof Since all transition functions are by assumption holomorphic, we get

det(JR) = det(JC) = det


(
∂ ζj
∂ zk

)
j,k

0

0
(
∂ ζj
∂ zk

)
j,k


= det

(
∂ ζj
∂ zk

)
det

(
∂ ζj
∂ zk

)
=

∣∣∣∣det

(
∂ ζj
∂ zk

)∣∣∣∣2 > 0

Therefore any holomorphic atlas induces an orientation. �

1.3 Complex differential forms

Definition 1.3.1 The exterior derivative on a smooth manifold is the map
d : Ωp(X) 7→ Ωp+1(X) given in local coordinates by

d
∑
|I|=p

αIdxI =
∑
|I|=p

n∑
i=1

∂ αI
∂ xi

dxi ∧ dxI ,

where we used multi-index notation, meaning for I = {i1, . . . , im} ⊆ {1, . . . , n}
we write

dxI = dxi1 ∧ · · · ∧ dxim ,

such that i` < ik for ` < k.

An important property of the exterior derivative is that it commutes with
pullbacks. For a proof see [Lee12, Proposition 14.26]. The exterior derivative
yields the de Rham complex.

0 Ω0(X) Ω1(X) Ω2(X) · · ·d d d

8



1.3. Complex differential forms

The de Rham complex forms a chain complex, since

d(dα) = d
∑
|I|=p

n∑
i=1

∂ αI
∂ xi

dxi ∧ dxI

=
∑
|I|=p

n∑
i,j=1

∂2 αI
∂ xi ∂ xj

dxj ∧ dxi ∧ dxI

=
∑
|I|=p

∑
i<j

∂2 αI
∂ xi ∂ xj

dxj ∧ dxi ∧ dxI +
∂2 αI
∂ xj ∂ xi

dxi ∧ dxj ∧ dxI


= 0.

We now define the complex-valued differential forms on U ⊆ X as smooth
sections of the complexified contangent bundle, namely as elements of
E(U,

∧kT ∗(X)C) which we denote by Ωk
C(U). Extending d by complex linear-

ity we obtain the complexified de Rham complex

0 Ω0
C(X) Ω1

C(X) Ω2
C(X) · · ·d d d ,

which again forms a chain complex, as d2(α+iβ) = d(dα+idβ) = d2α+id2β =
0. The de Rham cohmology groups with real coefficients are now defined as

Hk(X,R) = {ker d : Ωk(X)→ Ωk+1(X)}/{im d : Ωk−1(X)→ Ωk(X)}.

And, similarly, we have the de Rham cohomology groups with complex coef-
ficients

Hk(X,C) = {ker d : Ωk
C(X)→ Ωk+1

C (X)}/{im d : Ωk−1
C (X)→ Ωk

C(X)}.

Lemma 1.3.2 For the complexified de Rahm complex we have that

Hk(X,R)⊗ C ∼= Hk(X,C).

Proof First note that, by complex linearity of d, a complex-valued differential
form γ = α + iβ is closed if and only if α and β are closed. Using this, we
define the maps

Hk(X,R)⊗ C ∼= Hk(X,C)

[ϕ]⊗ u+ iv 7→ [(u+ iv)ϕ]

[α]⊗ 1 + [β]⊗ i 7→[α+ iβ]

which are inverse to each other. �
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1.3. Complex differential forms

Let X be an almost complex manifold and, for k = p+ q, let πp,q denote the

projection
∧kT ∗(X)C →

∧p,qT ∗(X)C. On Ωp,q
C (X) we define

∂ = πp+1,q ◦ d
∂ = πp,q+1 ◦ d

For an arbitrary almost complex manifolds we only have

d =
∑

r+s=p+q+1

πr,s ◦ d = ∂+ ∂+rest.

Definition 1.3.3 We call an almost complex structure integrable if d =
∂+ ∂.

The significance of this definition is that, if d = ∂+ ∂, then for α ∈ Ωp,q(X)

0 = d2α = (∂+ ∂)2α = ∂2 α︸︷︷︸
∈Ωp+2,q(X)

+ ∂ ∂ α+ ∂ ∂ α︸ ︷︷ ︸
∈Ωp+1,q+1(X)

+ ∂
2
α︸︷︷︸

∈Ωp,q+2(X)

.

Therefore, for an integrable almost complex structure, we have ∂2 = ∂
2

= 0
and ∂ ∂ = − ∂ ∂.

Proposition 1.3.4 Let X be a complex manifold, then the induced almost
complex structure is integrable.

Proof For local holomorphic coordinates z = (z1, . . . , zn), we have for α ∈
Ωp,q

d
∑
I,J

αI,JdzI ∧ dzJ =
∑
I,J

dαI,J ∧ dzI ∧ dzJ

=
∑
I,J

n∑
k=1

(
∂αI,J
∂xk

dxk +
∂aI,J
∂yk

dyk

)
∧ dzI ∧ dzJ

=
∑
I,J

n∑
k=1

(
∂αI,J
∂zk

dzk +
∂aI,J
∂zk

dzk

)
∧ dzI ∧ dzJ

= ∂
∑
I,J

aI,JdzI ∧ dzJ + ∂
∑
I,J

aI,JdzI ∧ dzJ

Thus any induced almost complex structure is integrable. �

Remark 1.3.5 The above proof basically boils down to the fact that an in-
duced almost complex structure also comes with certain coordinates for which
it takes a specific form. It turns out that the converse is also true, namely that
every integrable almost complex structure is induced by a complex structure.
This is the so called Newlander-Nierenberg theorem. For a proof see [Hor73,
Theorem 5.7.4].

10



1.3. Complex differential forms

Example 1.3.6 Any almost complex structure on a manifold X of dimension
2 is integrable. Since the complex fiber dimensions of T ∗(X)1,0 and T ∗(X)0,1

are 1, we have that Ω2,0(X) = Ω0,2(X) = 0 and therefore

Ω0
C(X) = Ω0,0(X)

Ω1
C(X) = Ω1,0(X)⊕ Ω0,1(X)

Ω2
C(X) = Ω1,1(X).

Hence, ∂ and ∂ are the only components d can even split into.

Ω0,0(X)

Ω1,0(X) Ω0,1(X)

Ω1,1(X)

∂ ∂

∂ ∂

Proposition 1.3.7 On a complex manifold both ∂ and ∂ follow the Leibniz
rule

∂(α ∧ β) = ∂ α ∧ β + (−1)p+qα ∧ ∂ β
∂(α ∧ β) = ∂ α ∧ β + (−1)p+qα ∧ ∂ β

where α ∈ Ωp,q(X) and β ∈ Ωr,s(X).

Proof Using d = ∂+ ∂ we compute

d(α ∧ β) = dα ∧ β + (−1)p+qα ∧ dβ
∂(α ∧ β) + ∂(α ∧ β) = ∂ α ∧ β + (−1)p+qα ∧ ∂ β︸ ︷︷ ︸

∈Ωp+r+1,q+s(X)

+ ∂ α ∧ β + (−1)p+qα ∧ ∂ β︸ ︷︷ ︸
∈Ωp+r,q+s+1(X)

The statement now follows from the fact that all terms involving ∂ have bide-
gree different from the terms involving ∂. �

Definition 1.3.8 The Dolbeault complexes of a complex manifold X are
the chain complexes

0 Ωp,0(X) Ωp,1(X) Ωp,2(X) · · ·∂ ∂ ∂

The Dolbeault cohomology groups are now defined as

Hp,q(X) = {ker ∂ : Ωp,q(X)→ Ωp,q+1(X)}/{im d : Ωp,q−1(X)→ Ωp,q(X)}.

11



1.4. Hermitian manifolds

These groups, although they are similarly defined as the de Rham groups, can
differ widely from them. Take for example C. We have Ω0

C(X) = Ω0,0(X)
for all complex manifolds X. Since for any connected manifold X of real
dimension n and for f ∈ Ω0

C(X), we have

df =
n∑
j=1

∂f

∂xj
dxj ,

df = 0 implies that f is constant. On the other hand, for a connected complex
manifold X of complex dimension n, we have

∂ f =

n∑
i=1

∂f

∂zi
dzi,

∂ f = 0 implies that f is holomorphic. Although, by Proposition 1.1.4,
H0(X,C) = H0,0(X) for any compact complex manifold X, on C this is
certainly not the case, as there is a plethora of holomorphic functions on C.

Definition 1.3.9 The Betti numbers of a real manifold X are bk =
dimCH

k(X,C) and the Hodge numbers of a complex manifold are hp,q =
dimCH

p,q(X).

Thus, for every connected manifold we have b0 = 1, as every constant function
is a multiple of the function constant 1. For compact complex manifolds
we also have h0,0 = 1, by the same reasoning as before, but on C we have
h0,0 =∞.

Definition 1.3.10 For a complex manifold X, we call elements in ker ∂ :
Ωp,0(X)→ Ωp,1(X) holomorphic forms.

Note that

∂
∑
|J |=p

fJdzJ =
∑
|J |=p

n∑
k=1

∂fJ
∂zk

dzk ∧ dzJ = 0

implies, that a form is holomorphic if and only if its coefficients in local holo-
morphic coordinates are holomorphic functions.

Remark 1.3.11 The cohomology of the de Rham complex defined here is iso-
morphic to the singular cohomology with complex coefficients (see [Lee12, The-
orem 18.14]). Furthermore, these de Rham and Dolbeault cohomology groups
can be shown to be isomorphic to the sheaf cohomology groups of Ω0

C(X) and
Ω0,q(X) (see [Wel08, Chapter II]).

1.4 Hermitian manifolds

Recall that, on a complex vector space V , a hermitian inner product is a
map h : V × V → C, such that h is complex linear in the first argument,

12



1.4. Hermitian manifolds

conjugate symmetric in the second, meaning h(u, v) = h(v, u) for u, v ∈ V ,
and positive definite, meaning h(v, v) > 0 for all v ∈ V \ {0}. Now let V
be a complex vector space viewed as a real vector space with its induced
linear complex structure J . Let {x1, . . . , xn} be a complex basis of V , then
{x1, y1 = Jx1, . . . , xn, yn = Jxn} is a real basis of V . The hermitian inner
product h is a real bilinear map on V with the additional property that if
we write hj,k := h(xj , xk), then h(xj , yk) = −ihj,k, h(yj , xk) = ihj,k and
h(yj , yk) = hj,k. We can now extend h to VC by complex bilinearity and see
that, if u, v ∈ V ⊆ VC, with u = u1,0 + u0,1 and v = v1,0 + v0,1 their splittings
into their components in V 1,0 and V 0,1, then

h(u1,0, v0,1) =
1

4
(h(u, v) + ih(u, Jv)− ih(Ju, v) + h(Ju, Jv)) = h(u, v)

Thus, writing zj = xj+iyj and zj = xj−iyj , we have h(zj , zk) = h(x1,0
j , x0,1

k ) =
h(xj , xk) = hj,k. Therefore, we can write

h =
n∑

i,j=1

hj,kz
j ⊗ zk.

Taking real and imaginary parts of h we obtain h = g− iω, where g = <h and
ω = −=h are real bilinear forms on V that extend to complex bilinear forms
on VC. Expanding the expression for h we get

n∑
i,j=1

hj,kz
j ⊗ zk =

n∑
i,j=1

hj,k(x
j ⊗ xk + yj ⊗ yk)− i

n∑
i,j=1

hj,k(x
j ⊗ yk − yj ⊗ xk︸ ︷︷ ︸

xj∧yk

)

Therefore, using zj ∧ zk = (xj + iyj) ∧ (xk − iyk) = −2ixj ∧ yk, we obtain

ω =
i

2

n∑
j,k=1

zj ∧ zk.

Remark 1.4.1 There are different conventions in use for the wedge product.
The one we use defines for vectors v1, . . . , vn and covectors w1, . . . , wn the
pairing as w1∧· · ·∧wn(v1, . . . , vn) = det(wi(vj)i,j). The alternative definition
defines w1 ∧ · · · ∧ wn(v1, . . . , vn) = 1

n! det(wi(vj)i,j), in which case one has to
set h = g − 2iω so that both expressions for ω coincide. For more details on
these conventions see [War83, Definition 2.09 and the remarks in 2.10].

Definition 1.4.2 We call ω the fundamental form of h.

Lemma 1.4.3 g = <h is a scalar product on V viewed as a real vector space
that satisfies g(·, ·) = g(J ·, J ·).

13



1.4. Hermitian manifolds

Proof Let u, v 6= 0 ∈ V . First note that since h is non-degenerate, h(v, v) > 0
and thus g(v, v) > 0. Symmetry follows from g(u, v) = <h(u, v) = <h(v, u) =
g(v, u). Lastly, h(J ·, J ·) = −i2h(·, ·) = h(·, ·) implies g(·, ·) = g(J ·, J ·). �

Lemma 1.4.4 The fundamental form ω of h is a non-degenerate alternating
bilinear map that satisfies ω(·, ·) = g(·, J ·) = −g(J ·, ·).

Proof Let u, v 6= 0 ∈ V . First of all note that =h(u, v) = =h(v, u) =
−=h(v, u), showing that ω is indeed alternating. Now note that g(u, Jv) =
<h(u, Jv) = < − ih(u, v) = =h(u, v) = ω(u, v). Non-degeneracy now follows
from the fact that g is non-degenerate. �

If (V, 〈·, ·〉) is a euclidean vector space the inner product gives rise to a hermi-
tian inner product on VC by setting h(u⊗ z, v ⊗ w) = zw〈u, v〉

Proposition 1.4.5 On V 1,0, we have that g = 2h.

Proof Let u, v ∈ V , then

g(u− iJu, v − iJv) =g(u, v) + ig(u, Jv)− ig(Ju, v) + g(Ju, Jv)

=2g(u, v) + 2ig(u, Jv)

=2h(u, v) �

Now turning over to manifolds we define a hermitian metric fiberwise as in
the vector space case such that the coefficients vary smoothly.

Definition 1.4.6 A hermitian metric on a complex vector bundle E → X
is a family of hermitian inner products 〈·, ·〉x on the fibers Ex that depend
smoothly on x, meaning that for any two sections ξ, η ∈ E(U,E) on an open
set U we have, that x 7→ 〈ξ(x), η(x)〉x is a smooth complex valued function on
U .

Proposition 1.4.7 Every complex vector bundle π : E → X admits a hermi-
tian metric.

Proof Choose an open cover {Uα}α of X such that E is trivializable over all
Uα and a smooth partition of unity ρ subordinate to {Uα}α (for a proof that
such a ρ exists we refer to [Lee12, Theorem 2.23]). Let ϕα : π−1Uα → Uα×Ck
be local trivializations, then we define for ξ, η ∈ E(U,E)

h(ξ, η) :=
∑
α

ρα〈ϕα(ξ(x)), ϕα(η(x))〉

where 〈·, ·〉 denotes the standard hermitian inner product on Ck. Since lin-
ear combinations of hermitian inner products with positive weights are again
hermitian inner products this indeed defines a hermitian metric on E. �
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1.4. Hermitian manifolds

Definition 1.4.8 A hermitian manifold is a complex manifold with a her-
mitian metric on its real tangent space, viewed as complex vector bundle
through the induced almost complex structure.

We can as before then extend the hermitian metric to a complex bilinear map
on the complexified tangent space of the form

h =
n∑

j,k=1

hj,kdzj ∧ dzk

Example 1.4.9 On Cn we have the standard metric

n∑
j=1

dzj ⊗ dzj =
n∑
j=1

dxj ⊗ dxj + dyj ⊗ dyj − i (dxj ⊗ dyj − dyj ⊗ dxj)︸ ︷︷ ︸
dxj∧dyj

.

Thus the real part is just the standard inner product of Cn ∼= R2n and the
fundamental form the standard symplectic form.

Example 1.4.10 We can make CPn into a Kähler manifold with the so called
Fubini-Study form, which, on the open sets Ui of Example 1.1.3 with coor-

dinates (w1, . . . , wn) =
(
z0
zi
, . . . , zi−1

zi
, zi+1

zi
, . . . , znzi

)
, is given by

ω =
i

2
∂ ∂ log

(
n∑
k=1

|wk|2 + 1

)
.

We now want to show that this is indeed a well-defined global form. Note that

n∑
k=1

|wk|2 + 1 =

n∑
`=0

∣∣∣∣z`zi
∣∣∣∣2 .

Thus, using

log

(
n∑
`=0

∣∣∣∣z`zi
∣∣∣∣2
)

= log

(
n∑
`=0

∣∣∣∣z`zj
∣∣∣∣2
)

+ log

(∣∣∣∣zjzi
∣∣∣∣2
)
,

and that, assuming without loss of generality that i > j,
zj
zi

= wi on Ui, we

only need to verify ∂ ∂ log(|wi|2) = 0. Indeed,

∂ ∂ log(|wi|2) = ∂
1

wiwi
∂ wiwi = ∂

dwi
wi

= 0.

Computing ω explicitly,

i

2
∂ ∂ log

(
n∑
k=1

|wk|2 + 1

)
=
i

2
∂

n∑
`=1

w`∑n
k=1 |wk|2 + 1

dw`

=
i

2

n∑
j,`=1

(
∑n

k=1 |wk|2 + 1)δj` − w`wj
(
∑n

k=1 |wk|2 + 1)2
dwj ∧ dw`
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1.4. Hermitian manifolds

we see that the hermitian metric associated to the Fubini-Study form, called
the Fubini-Study metric, is given by

h =
n∑

j,`=1

(
∑n

k=1 |wk|2 + 1)δj` − w`wj
(
∑n

k=1 |wk|2 + 1)2
dwj ⊗ dw`

The Fubini-study form is closed since

dω =(∂+ ∂)
i

2
∂ ∂ log

(
n∑
k=1

|wk|2 + 1

)

=
i

2
∂2 ∂ log

(
n∑
k=1

|wk|2 + 1

)
− i

2
∂ ∂

2
log

(
n∑
k=1

|wk|2 + 1

)
=0

and real since

ω =
i

2
∂ ∂ log

(
n∑
k=1

|wk|2 + 1

)
= − i

2
∂ ∂ log

(
n∑
k=1

|wk|2 + 1

)
= ω.

To show that the Fubini-Study metric is a genuine metric we only need to show
that it is positive definite. This follows from the fact that for all u,w ∈ Cn \{0}

n∑
j,`=1

(|w|2 + 1)δj,`uju` − w`wjuJu` = |u|2 + |u|2|w|2 − 〈w, u〉〈w, u〉 ≥ |u|2,

where we used the Cauchy-Schwarz inequality.

Definition 1.4.11 A complex projective manifold is a compact complex
manifold that can be embedded as a complex submanifold of CPn for some n.

Definition 1.4.12 A Kähler manifold is a complex manifold X with a her-
mitian metric h = g − iω such that ω is closed.

Proposition 1.4.13 A complex submanifold M of a Kähler manifold (X,h)
is again Kähler.

Proof Let ι : M → X be the inclusion map. Since h|TM is a hermitian metric
on M , the statement follows from d(ω|TM ) = dι∗ω = ι∗dω = 0. �

Corollary 1.4.14 Every complex projective manifold is Kähler.

Proposition 1.4.15 A hermitian metric h on a complex manifold X is a
Kähler metric if and only if it osculates to order 2 with the standard met-
ric on Cn, meaning that around every point x0 ∈ X there exist holomorphic
coordinates z1, . . . , zn, such that

h =
n∑

i,j=1

δi,j +O
(
|z|2
)
dzi ⊗ dzj .
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1.4. Hermitian manifolds

Proof First note that, if h is of said form, dω|x0 = 0 is immediate. For
the other direction, choose coordinates w1, . . . , wn, such that hi,j(x0) =
h( ∂

∂wi |x0 ,
∂

∂wj
|x0) = δi,j . Such coordinates always exist, as we can choose

any coordinates that map x0 to 0 and then compose with a linear map from
Cn to Cn, that maps ∂

∂w1
, . . . , ∂

∂wn to a orthonormal basis of h. In these
coordinates, ω writes as

ω =
i

2

n∑
i,j=1

(
δi,j +

n∑
k=1

αi,j,kwk + βi,j,kwk +O
(
|w|2

))
dwi ∧ dwj ,

where the αi,j,k =
∂ hi,j
∂ zk

(x0) and
∂ hi,j
∂ zk

(x0). Note that hi,j = hj,i implies

αi,j,k = βj,i,k and that dω(x0) = 0 implies αi,j,k = αk,j,i and βi,j,k = βi,k,j as

dω|x0 =
i

2

n∑
i,j,k=1

αi,j,kdwk ∧ dwi ∧ dwj + βi,j,kdwk ∧ dwi ∧ dwk.

We now define the coordinates z1, . . . , zn as

zk = wk +
1

2

n∑
`,m=1

αm,k,`w`wm.

Then

dzk = dwk +

n∑
`,m

αm,k,`w`dwm.

And verify

i

2

n∑
k=1

dzk ∧ dzk =
i

2

n∑
k=1

dwk ∧ dwk +
i

2

n∑
k,`,m=1

αm,k,`w` ∧ dwk

+
i

2

∑
k,`,m

βk,`,mw`dwk ∧ dwm +
i

2

n∑
`,m=1

O(|w|2)dw` ∧ dwm

=
i

2

n∑
i,j=1

δi,jdwi ∧ dwj +
i

2

n∑
i,j,k=1

αi,j,kwkdwi ∧ dwj

+
i

2

∑
i,j,k

βi,j,kwkdwi ∧ dwj +

n∑
i,j=1

O(|w|2)dwi ∧ dwj

=ω +
∑
i,j

O(|z|2)dwi ∧ dwj .

We conclude by noting that, by definition, O(|w|2) = O(|z|2). �
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1.5. Hodge ∗-operator

1.5 Hodge ∗-operator

Let V be a finite dimensional real vector space with inner product 〈·, ·〉. Let
{e1, . . . , en} be an ordered orthonormal basis of V giving it an orientation.
Extending the inner product to

∧
V by setting

〈αIeI , βJeJ〉 =

{
αIβJ if I = J

0 else

making {eI}I⊆{1,...,n} an orthonormal basis and we define vol = e1 ∧ · · · ∧ en.

Definition 1.5.1 The Hodge ∗-operator on an euclidean vector space V
of real dimension n, is the linear map ∗ :

∧d V →
∧n−d V given by

eI 7→ sgn(I)eIc, where Ic is an ordered complement and sgn(I) is such
that sgn(I)eI ∧ eIc = vol.

For α, β ∈
∧d we compute

α ∧ ∗β =
∑
|I|=d

αIeI ∧
∑
|J |=d

βJ sgn(J)eJc =
∑
|I|,|J |=d

αIβJ sgn(J)eI ∧ eJc

eI ∧ eJc 6= 0 if and only if I = J , in which case eI ∧ eIc = sgn(I) vol. We get
that

α ∧ ∗β =
∑
|I|=d

αIβI vol = 〈α, β〉 vol

Extending the inner product to a hermitian inner product
∧
VC, we get that

α ∧ ∗β = 〈α, β〉 vol .

Note that ∗1 = vol.

Remark 1.5.2 Defined like this, ∗ has been conjugate linearly extended. In
the literature one often finds that ∗ gets extended complex linearly, in which
case our version ∗ would be denoted ∗, meaning that ∗ gets composed with
complex conjugation.

Lemma 1.5.3 On
∧kVC we have that

∗2 = (−1)k(n−k) id .

Proof By definition ∗2eI = sgn(I) sgn(Ic)eI . Thus ∗2 = ε id for ε ∈ {−1,+1}.
Using that for any u ∈

∧pVC and v ∈
∧qVC we have that u∧ v = (−1)pqv ∧ u

we compute

eI ∧ ∗eI = vol

= ∗ eI ∧ ∗2eI
=ε ∗ eI ∧ eI
=ε(−1)k(n−k)eI ∧ ∗eI .

Thus ε = (−1)k(n−k). �
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1.5. Hodge ∗-operator

Let now X be a compact orientable riemannian manifold and fix an orienta-
tion. Then we can define the ∗-operator fiberwise on

∧kT ∗(X) by requiring
that at x0 ∈ X, if ∂

∂x1
|x0 , . . . , ∂

∂xn |x0 is an ordered orthonormal basis, then

{dxI}|I|=k forms an orthonormal basis. Note that this definition actually
needs orientability, since otherwise we couldn’t define an ordered basis in a
consistent way.

We extend the riemannian metric g by sesquilinearity to a hermitian metric
h on T ∗C(X) and set dµ = ∗1 as its canonical volume form. With this, we now
define an inner product on the space of differential forms by setting

(α, β) =

∫
X
α ∧ ∗β =

∫
X
h(αx, βx)xdµ.

If X isn’t compact, we instead require the differential forms to be compactly
supported. For a hermitian manifold we use its associated riemannian metric
which yields the following formula.

Proposition 1.5.4 On a hermitian manifold we have that dµ = ωn

n! .

Proof Since this is a fiberwise statement it suffices to prove it in the vector
space case. Let x1, . . . , xn be a complex orthonormal basis, meaning hi,j = δi,j ,
such that x1, y1 = Jx1, . . . , xn, yn = jxn is a real basis, then we saw that

g =
n∑
j=1

xj ⊗ xj + yj ⊗ yj

and therefore vol = x1 ∧ y1 ∧ · · · ∧ xn ∧ yn. On the other hand we have

ω =
n∑
j=1

xj ∧ yj

. Thus the statement follows from

ωn = n!x1 ∧ y1 ∧ · · · ∧ xn ∧ yn. �
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Chapter 2

Harmonic forms

The main goal of this chapter is to establish the Hodge decomposition theorem
for differential forms. In Section 2.1, we first generalize the Laplacian operator
to the de Rham and the Dolbeault complexes. Elements of the kernels of these
Laplacians are called harmonic forms. We then show in Section 2.2, that these
operators are elliptic. Afterwards, in Section 2.3, we use the theory of Fourier
series to prove a regularity theorem for periodic elliptic operators in Rn. In
Section 2.4, we deduce the Hodge decomposition theorem for forms. This
decomposition allows us to identify the spaces of harmonic forms with the
cohomology classes of the de Rham and Dolbeault complexes, which are of
great importance in the Chapter 3.

2.1 Laplacian operators

In this section, we define harmonic forms by generalizing the Laplacian on
Rn to differential forms of arbitrary degree on compact orientable riemannian
manifolds.

Proposition 2.1.1 Let (X,h) be a riemannian manifold with dimR(X) = n.
The adjoint operator of d : Ωk

C(X)→ Ωk+1
C (X) is given by

d∗ : Ωk
C(X)→ Ωk−1

C (X), d∗ = (−1)nk+n+1 ∗ d∗

Proof Let α ∈ Ωk−1
C (X) and β ∈ Ωk

C(X). Using the Leibniz rule d(α∧ ∗β) =
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2.1. Laplacian operators

dα ∧ ∗β + (−1)k−1α ∧ d ∗ β, we compute

(dα, β) =

∫
X
dα ∧ ∗β

=

∫
X
d(α ∧ ∗β)︸ ︷︷ ︸

=0

−
∫
X

(−1)k−1α ∧ d ∗ β

=

∫
X

(−1)kα ∧ (−1)(n−k+1)(k−1) ∗ (∗d ∗ β)

=

∫
X
α ∧ ∗(−1)nk+n+1(∗d ∗ β)

= (α, d∗β),

where we used that d ∗ β is a (n− k + 1)-form. �

We now show the analogous statement for the Dolbeault operators.

Proposition 2.1.2 Let (X,h) be a hermitian manifold with dimC(X) = n.
The adjoints of ∂ : Ωp,q(X) → Ωp+1,q(X) and ∂ : Ωp,q(X) → Ωp,q+1(X) are
given by ∂∗ = − ∗ ∂ ∗ and ∂

∗
= − ∗ ∂ ∗.

Proof We first show ∂
∗

= −∗∂ ∗. Again using linearity we consider α ∈ Ωp,q−1

and β ∈ Ωp,q. We compute

(∂ α, β) =

∫
X
∂ α ∧ ∗β

=

∫
X
∂(α ∧ ∗β)− (−1)p+q−1α ∧ ∂ ∗β.

Note that α ∧ ∗β ∈ Ωn,n−1(X) where d = ∂ so we can proceed

=

∫
X
d(α ∧ ∗β)︸ ︷︷ ︸

=0

+

∫
X

(−1)p+qα ∧ (−1)p+q+1 ∗ (∗ ∂ ∗β)

=

∫
X
α ∧ ∗(− ∗ ∂ ∗β)

=(α, ∂
∗
β).

Since for manifolds with even real dimension, such as complex manifolds,
d∗ = − ∗ d∗, we can use d = ∂+ ∂ and Proposition 2.1.1 to compute

∂∗+ ∂
∗

= d∗ = − ∗ d∗ = − ∗ ∂ ∗ − ∗ ∂ ∗.

Thus we get ∂∗ = − ∗ ∂ ∗. �

Note that we also could have directly used d = ∂+ ∂ with Proposition 2.1.1
and compare bidegrees to obtain the same result.
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2.2. Elliptic operators

Definition 2.1.3 For the operators d, ∂ and ∂ we define their Laplacians as
∆d = d∗d+ dd∗, ∆∂ = ∂∗ ∂+ ∂ ∂∗ and ∆∂ = ∂

∗
∂+ ∂ ∂

∗
.

Notice that all these Laplacians are self-adjoint.

Corollary 2.1.4 On a compact riemannian manifold, ∆dα = 0 if and only
if dα = 0 and d∗α = 0. The same holds for ∆∂ and ∆∂.

Proof If α ∈ ker d∩ ker d∗ then ∆dα = dd∗α+ d∗dα = 0. On the other hand,
if α ∈ ker ∆d we compute

0 = (α,∆dα) = (dα, dα) + (d∗α, d∗α) = ‖dα‖2 + ‖d∗α‖2

implying dα = 0 and d∗α = 0. The proofs for ∆∂ and ∆∂ are similar. �

Let L be either d, ∂ or ∂ and let Ep be either Ωp
C(X) or Ωq,p(X), depending on

which operator L represents. We now concern ourselves with finding solutions
to the equation ∆Lω = η. Observe that for all ϕ ∈ Ep, a solution ω satisfies

(∆Lω, ϕ) = (η, ϕ) = (ω,∆Lϕ).

This allows us to rephrase our problem. Namely, any solution ω induces a
bounded linear form ` : Ep → C by defining `(ϕ) = (ω, ϕ). This linear form
satisfies `(∆Lϕ) = (η, ϕ). We call any linear form ` satisfying this condition
a weak solution of ∆Lω = η. Every solution ω ∈ Ep of course induces such a
weak solution. The remainder of this chapter is devoted to showing that the
converse also holds. Namely, that every weak solution `(·) is given by (ω, ·),
for some ω ∈ Ep.

2.2 Elliptic operators

In this section we introduce elliptic operators and show that the Laplacians
∆d and ∆∂ are elliptic operators. For some preparation, let E and F be vector
bundles over X and denote by T ′(X) the real cotangent bundle T ∗(X) without
the zero section. Let π : T ′(X) → X be the restriction of the projection and
let π∗E and π∗F denote the pullback bundles of E and F .

Definition 2.2.1 A differential operator of order k between smooth complex
vector bundles E and F over X is a map L : E(X,E)→ E(X,F ), such that for
any choice of local coordinates and any local frames f1, . . . , fn ∈ E(U,E) and
g1, . . . , gm over any, for both bundles trivializable, open set U , can be written
as (

L

(
n∑
k=1

ξkfk

))
i

=
n∑
j=1
|α|≤p

ai,jJ
∂|α| ξj

∂ xα1
1 · · · ∂ x

αn
n
gj

for ai,jJ smooth complex valued functions on U . The space of all differential
operators from E to F of order k is denoted by Diffk(E,F ).
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2.2. Elliptic operators

We now define elliptic operators and their generalisations, elliptic complexes.
To that end, we start with some motivation for the subsequent definitions.
Let U ⊆ Rn be open and consider the space of complex valued functions
on U viewed as sections in E(U,U × C). Let L be a differential operator
E(U,U × C)→ E(U,U × C) of order k, which we can write as

L =
∑
|J |≤k

aJD
J

where aJ ∈ E(U,U × C), J = (j1, . . . , jn), |J | = j1 + · · ·+ jn and

DJ =

(
1

i

)|J | ∂|J |

∂ xj11 . . . ∂ xjnn
,

such that at least one aJ 6= 0 with |J | = k. Identify T ∗(U) ∼= U × Rn with
coordinates (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn). The symbol of L is now defined
as

σ(L)(x, ξ) =
∑
|J |=k

aJξ
J ,

where ξJ = ξj1 . . . ξjn . We now call such a differential operator L elliptic if
σ(L)(x, ξ) 6= 0 for all (x, ξ) ∈ T ′U . We can equivalently view σ(L) as a bundle
map π∗(U × C) → π∗(U × C). Since the fiber over (x, ξ) is isomorphic to C,
σ(L)(x, ξ) is given by the linear map z ∈ C 7→ σ(L)(x, ξ)z ∈ C. In this context
a differential operator is elliptic, if its symbol induces a bundle isomorphism.
Similarly, for a differential operator E(U,U × Cn) → E(U,U × Cm) let ϕ =
(ϕ1, . . . , ϕn) ∈ E(U,U × Cn)

(L(ϕ))i =
m∑
`=1

∑
|J |≤k

ai,`J D
Jϕ`.

Again, only taking components of degree k, we define the symbol of L as the
bundle map π∗(U ×Cn)→ π∗(U ×Cm) that, for (x, ξ), is given by the n×m
matrix

σ(L)(x, ξ) =

∑
|J |=k

ai,`J ξ
J


i,`

.

We say that the differential operator is elliptic if its symbol is a bundle isomor-
phism, meaning for all (x, ξ) the matrix representing σ(L)(x, ξ) is invertible.

Definition 2.2.2 Let L : E(X,E) → E(X,F ) be a differential operator of
order k. The symbol σ(L) of L is the bundle homomorphism π∗E → π∗F
obtained by assigning each (x, ξ) ∈ T ′(X) the linear map represented in local
coordinates by the matrix of the top degree part of L with all ∂

∂xi replaced by
ξi. The operator L is called an elliptic operator, if its symbol is a bundle
isomorphism π∗E → π∗F .
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2.2. Elliptic operators

Note that this requires E and F to have the same fiber dimension. By the
chain rule we immediately see that σ(L ◦ L′) = σ(L)σ(L′), given in local
coordinates by matrix multiplication. That the symbol is well defined boils
down to the following, informally speaking. Let x and y be local coordinates
and let

n∑
i=1

ξidxi =
n∑
i=1

ηidyi.

Therefore

ξi =
n∑
j=1

∂yj
∂xi

ηj .

Hence

ξii1 . . . ξik =

 n∑
j1=1

∂yj1
∂xi1

ηj1

 . . .

 n∑
jk=1

∂yjk
∂xik

ηjk


=

n∑
j1,...,jk=1

∂yj1
∂xi1

. . .
∂yjk
∂xik

ηj1 . . . ηjk.

On the other hand, the Leibniz rule implies

∂

∂yi

(
f
∂

∂yj

)
= f

∂

∂yi

∂

∂yj
+
∂f

∂yi

∂

∂yj︸ ︷︷ ︸
of lower

order

,

and thus

∂

∂xi1
. . .

∂

∂xik
=

 n∑
j1=1

∂yj1
∂xi1

∂

∂yj1

 . . .

 n∑
jk=1

∂yjk
∂xik

∂

∂yjk


=

n∑
j1,...,jk=1

∂yj1
∂xi1

. . .
∂yjk
∂xik

∂

∂yi1
. . .

∂

∂yik

+ lower order terms.

Therefore, only taking the top order parts makes ∂
∂xi1

. . . ∂
∂xik

and ξi1 . . . ξik
transform alike.

Definition 2.2.3 Let E be a sequence of vector bundles E1, . . . , En over a
compact orientable manifold X with differential operators Li : E(X,Ei) →
E(X;Ei+1) of a fixed order k between them, such that Li ◦ Li+1 = 0. Then

E(X,E1) E(X,E2) . . . E(X,En)
L1 L2 Ln−1
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2.2. Elliptic operators

is called an elliptic complex, if the sequence of symbols

0 π∗E1 π∗E2 . . . π∗En 0
σ(L1) σ(L2) σ(Ln−1)

is exact. For such a complex we define its cohomology as

H i(E) = kerLi
/

imLi−1.

For an elliptic complex E, we can equip each Ei with a hermitian metric and
thus equip E(X,Ei) with an inner product

(α, β)Ei =

∫
X
〈α(x), β(x)〉Eidµ

This now allows us to define the adjoint operators L∗i : E(X,Ei+1)→ E(X;Ei)
of Li by demanding (Liα, β)Ei+1 = (α,L∗iβ)Ei .

Remark 2.2.4 We can extend the notion of elliptic complexes to non-
compact orientable manifolds, in which case we to restrict ourselves to com-
pactly supported sections, in order to have well defined hermitian products.

Lemma 2.2.5 Let L : E(X,E)→ E(X,F ) be a differential operator of order
k between vector bundles E and F over a manifold X, both equipped with a
hermitian metric. Then the adjoint of L exists and is again a differential
operator L∗ : E(X,F )→ E(X,E).

Proof We closely follow [Wel08, Proposition 2.8]. Using a partition of unity
it suffices to consider sections that are compactly supported in a small enough
open subset of X, over which E and F are trivializable. Choosing local frames,
we can write

(ξ, η)E =

∫
Rn
ηThEξϕdx,

where ϕdx a representation of the volume form dµ in local coordinates. We
can now write the differential operator L as a matrix∑

|α|≤k

Aα(x)Dα

where the Aα are matrices of smooth functions on X. Writing everything out
we obtain

(Lξ, η)F =

∫
Rn

∑
|α|≤k

ηThFAαD
α(ξ)ϕdx
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2.2. Elliptic operators

Integrating |α| times by parts, we now obtain

(Lξ, η) =

∫
Rn

∑
|α|≤k

Dα(ηThFAαϕ)ξdx

=

∫
Rn

∑
|α|≤k

Dα(ηThFAαϕ)h−1
E ϕ−1

hEξϕdx

=

∫
Rn

∑
|α|≤k

Dα
(
ηhTFA

T
αϕ
)(

hE
−1
)T

ϕ−1

T

hEξϕdx.

Demanding that∑
|α|≤k

BαD
αη =

∑
|α|≤k

Dα
(
ηhTFA

T
αϕ
)(

hE
−1
)T

ϕ−1,

implicitly defines the matrices Bα. Moreover, the symbol of L∗ consists only
of the terms in which η alone gets differentiated, as all other terms have lower
order derivatives of η. Thus

σ(L∗)(x, τ) =
∑
|α|=k

ταhFAαh
−1
E

T
.

We verify

(ξ, σ(L∗)(x, τ)η)Fx =ξ
T
hE

∑
|α|=k

ταhFAαh
−1
E

T
η

=
∑
|α|=k

ταξ
T
Aα

T
hF η

=
∑
|α|=k

(
ταAαξ

)T
hF η

=(σ(L)(x, τ)ξ, η)

Therefore, we see that σ(L∗)(x, τ) = σ(L)(x, τ)∗. �

Example 2.2.6 For compactly supported Cm-valued functions on Rn and a
differential operator

Lξ =
∑
|α|≤k

aαD
αξ,

the formula above simplifies to

L∗ξ =
∑
|α|≤k

Dα(aα
T ξ).
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2.2. Elliptic operators

So, for the exterior derivative d on 0-forms, which we identify with complex
valued functions, d is just the n× 1 matrix

∂
∂x1

...
∂

∂xn

 = i

D
1

...
Dn


and thus, d∗ is given by the 1× n matrix

−i
(
D1 · · · Dn

)
= −

(
∂
∂x1

· · · ∂
∂xn

)
.

We compute

∆df = −
n∑
i=1

∂2

∂ x2
i

f = −∆f.

Thus the Laplacian ∆d is just the negative of the ordinary Laplacian ∆ on
Rn. This actually also holds for all other forms. We claim that ∆dfIdxI =
(−∆f)dxI . Note that since for we can always find a permutation sending I
to {1, . . . ,m} and absorb a potential minus sign into f , it suffices to show the
claim for forms of the form fdx1 ∧ · · · ∧ dxm. We compute

dfdx1 ∧ · · · ∧ dxn =∑
k>m

∂ f

∂ xk
(−1)mdx1 ∧ · · · ∧ dxm ∧ dxk

∗dfdx1 ∧ · · · ∧ dxn =∑
k>m

∂ f

∂ xk
(−1)k−1dxm+1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn

d ∗ dfdx1 ∧ · · · ∧ dxn =∑
k>m
`≤m

∂2 f

∂ xk ∂ x`
(−1)k−1dx` ∧ dxm+1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn

+
∑
k>m

∂2 f

∂ x2
k

(−1)mdxm+1 ∧ · · · ∧ dxn

∗d ∗ dfdx1 ∧ · · · ∧ dxn =∑
k>m
`≤m

∂2 f

∂ xk ∂ x`
(−1)nm−m+`+1dx1 ∧ · · · ∧ dx`−1 ∧ dx`+1 ∧ · · · ∧ dxm ∧ dxk

+
∑
k>m

∂2 f

∂ x2
k

(−1)mndx1 ∧ · · · ∧ dxm
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2.2. Elliptic operators

and, similarly,

∗fdx1 ∧ · · · ∧ dxn = fdxm+1 ∧ · · · ∧ dxn
d∗fdx1 ∧ · · · ∧ dxn =∑

`≤m

∂ f

∂ x`
dx` ∧ dxm+1 ∧ · · · ∧ dxn

∗d∗fdx1 ∧ · · · ∧ dxn =∑
`≤m

∂ f

∂ x`
(−1)nm−n+`+1dx1 ∧ · · · ∧ dx`−1 ∧ dx`+1 ∧ dxm

d ∗ d∗fdx1 ∧ · · · ∧ dxn =∑
`≤m
k>m

∂2 f

∂ x` ∂ xk
(−1)nm−n+`+mdx1 ∧ · · · ∧ dx`−1 ∧ dx`+1 ∧ dxm ∧ dxk

+
∑
`≤m

∂2 f

∂ x2
`

(−1)nm−ndx1 ∧ · · · ∧ dxm.

Finally, we can compute

∆dfdx1 ∧ dxm = d∗dfdx1 ∧ dxm + dd∗fdx1 ∧ dxm
=(−1)nm+1 ∗ d ∗ dfdx1 ∧ dxm + (−1)nm+n+1d ∗ d ∗ fdx1 ∧ dxm

=
∑
k>m
`≤m

∂2 f

∂ xk ∂ x`
(−1)m+`dx1 ∧ · · · ∧ dx`−1 ∧ dx`+1 ∧ · · · ∧ dxm ∧ dxk

−
∑
k>m

∂2 f

∂ x2
k

dx1 ∧ · · · ∧ dxm

+
∑
`≤m
k>m

∂2 f

∂ x` ∂ xk
(−1)`+m+1dx1 ∧ · · · ∧ dx`−1 ∧ dx`+1 ∧ dxm ∧ dxk

−
∑
`≤m

∂2 f

∂ x2
`

dx1 ∧ · · · ∧ dxm

=−
n∑
k=0

∂2 f

∂ x2
k

dx1 ∧ · · · ∧ dxm

=(−∆f)dx1 ∧ · · · ∧ dxm.

Proposition 2.2.7 The complexified de Rham complex is elliptic.

Proof Let (x, ξ = ξ1dx1 + · · ·+ ξndxn) ∈ T ′(X) be fixed and let us calculate
its symbol at (x, ξ) for forms of degree p, which is a linear map between finite
dimensional vector spaces, σ(d)(x, ξ) :

∧p T ∗xX ⊗ C →
∧p+1 T ∗xX ⊗ C. Since
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2.2. Elliptic operators

the exterior derivative of a p-form α is given by

d
∑
|J |=p

αJdxJ =
∑
|J |=p

n∑
j=1

(
i

(
1

i

∂

∂xj
αJ

))
dxj ∧ dxJ ,

we get for its symbol the linear map∑
|J |=p

αJdxJ 7→ i
∑
|J |=p

αJ

n∑
j=1

ξjdxj ∧ dxJ ,

which can be written in short as α 7→ iξ∧α. That this sequence is exact follows
from the following linear algebra argument. Let V be a finite dimensional
complex vector space with an ordered basis {e1, . . . , en}. We want to show
that the sequence Lp :

∧p V →
∧p+1 V , given by v 7→ u ∧ v for a fixed u ∈ v,

is exact. Since we can extend any element of V to a basis, we can assume
that, without loss of generality, u = e1. It is clear that Lp+1 ◦ Lp = 0, so we
only need to show that Lp+1v = 0 means, that v ∈ imLp for v 6= 0. But this
is clear since, Lp+1v = 0 means that v =

∑
|J |=p vJeJ only has vJ 6= 0 if 1 ∈ J .

Removing the e1 from all eJ now gives an element that maps to v. �

Proposition 2.2.8 The Dolbeault complexes are elliptic.

Proof Similarly to the case of the de Rham complex, let (x, ξ) ∈ T ′X be
fixed and let ξ = ξ1,0 + ξ0,1 be the decomposition of ξ into its components
under the embedding T ′X ↪→ T ∗X⊗C. Then a similar computation as before
shows that σ(x, ξ)(∂)(α) = iξ0,1 ∧ α, which, by the same reasoning as before,
is exact. �

Note that since ∂ α = ∂ α, ∂ : Ωp,q(X) → Ωp+1,q(X) also forms an ellitpic
complex with symbol α 7→ iξ1,0 ∧ α.

Definition 2.2.9 Let E be an elliptic complex. For all j we define a Laplacian
∆Lj : E(X,Ej)→ E(X,Ej) by ∆Lj = L∗jLj + Lj−1L

∗
j−1.

Proposition 2.2.10 The Laplacians of an elliptic complex are elliptic oper-
ators.

Proof Since we have that

σ(x, ξ)(∆L) = σ(x, ξ)(L)σ(x, ξ)(L)∗ + σ(x, ξ)(L)∗σ(x, ξ)(L)

which is a composition of linear maps between the finite dimensional inner
product space (Ej)x, the statement follows from the following linear algebra
argument. Consider the following sequence of finite dimensional inner product
spaces which is assumed to be exact at V .

U V WA B
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2.2. Elliptic operators

We now want to show that AA∗ +B∗B is an automorphism of V . Since V is
finite dimensional it suffices to show that (AA∗ +B∗B)v 6= 0 for every v 6= 0.
We compute

〈(AA∗ +B∗B)v, v〉V = ‖A∗v‖2V + ‖Bv‖2V
If Bv 6= 0 we are done. Otherwise assume there is a v 6= 0 such that Bv = 0.
Since the sequence is exact at V , there is a u ∈ U such that Au = v. We now
have that

‖v‖2 = (Au, v) = (u,A∗v) > 0

and thus A∗v 6= 0. �

Corollary 2.2.11 On any compact orientable riemannian manifold, ∆d is an
elliptic operator and on any compact complex manifold, both ∆∂ and ∆∂ are
elliptic.

In the special case of Rn with the standard metric and only looking at com-
pactly supported forms we can calculate the symbol for ∆d explicitly. To that
end we start with a useful a identity that will also be useful later on.

Lemma 2.2.12 On Rn with standard metric, only looking at compactly sup-
ported forms, we have the operator that maps a form α to dxi ∧ α, which we
shall denote as dxi∧, is adjoint to contracting with ∂

∂xi , meaning

(dxi∧)∗ = ι ∂
∂ xi

.

Proof A direct computation shows for α ∈ Ωk−1
C (X)

(dxi ∧ α, β) =

∫
X
dxi ∧ α ∧ ∗β

=(−1)k−1

∫
X
α ∧ ∗(∗−1dxi ∧ ∗)β

=(−1)k−1

∫
X
α ∗

(
(−1)(k−1)(n−k+1) ∗ dxi ∧ ∗

)
β

=(α, (−1)n(k+1) ∗ dxi ∧ ∗β).

It thus remains to show that (−1)n(k+1) ∗dxi∧∗ = ι ∂
∂ xi

. Since, as in Example

2.2.6, for every I ⊆ {1, . . . , n} with |I| = k we can, up to a sign, find a
permutation mapping I to {1, . . . , k}, it suffices to show the statement for
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2.3. Regularity for periodic elliptic operators

dx1 ∧ · · · ∧ dxk. We compute

(−1)n(k+1)∗dxi ∧ ∗dx1 ∧ · · · ∧ dxk
=(−1)n(k−1) ∗ dxi ∧ dxk+1 ∧ · · · ∧ dxn
=(−1)i−1dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxk
=(−1)i−1(ι ∂

∂ xi

dxi) ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxk

=(−1)i−1ι ∂
∂ xi

dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxk

=ι ∂
∂ xi

dx1 ∧ · · · ∧ dxk,

where we used that

ιY (α ∧ β) = ιY (α) ∧ β + (−1)kα ∧ ιY (β). �

From this proof we immediately see that ((ξ1dx1 + · · ·+ ξndxn)∧)∗ = ιξ1 ∂
∂ x1

+

· · ·+ ιξn ∂
∂ xn

.

Proposition 2.2.13 The symbol of Rn with the standard metric, when only
considering compactly supported forms, then we have σ(∆d)(x, ξ) = −‖ξ‖2 id
and for Cn we have that σ(∆∂)(x, ξ) = σ(∆∂)(x, ξ) = −1

2‖ξ‖
2 id.

Proof For ξ = ξ1dx1 + · · · + ξndxn, write η(ξ) = ξ1
∂
∂x1

+ · · · + ξn
∂

∂xn . For
any differential form α in the complexified de Rham complex, we have

σ(δd)(x, ξ) =iιη(ξ)iξ ∧ α+ iξ ∧ (iιη(ξ)α)

=− (ιη(ξ)ξ) ∧ α
=− ‖ξ‖2α.

The statement for ∆∂ and ∆∂ follow by the same argument and the fact that
by Proposition 1.4.5, we have that ‖ξ1,0‖2 = ‖ξ0,1‖2 = 1

2‖ξ‖
2. �

2.3 Regularity for periodic elliptic operators

In this section, we show a regularity theorem for periodic elliptic operators
on Rn. Throughout, we follow [War83, Chapter 6] very closely. Fix n and m
and let P denote the space of smooth 2π periodic functions Rn → Cm. Then
remember that, for a function u ∈ P, its Fourier series is given by∑

ξ∈Zn

uξe
i〈x,ξ〉

with

uξ =
1

(2π)n

∫
(0,2π)n

u(x)e−i〈x,ξ〉dx

and converges absolutely and uniformly to u.
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2.3. Regularity for periodic elliptic operators

Definition 2.3.1 For m and n fixed let S denote the set of all functions
u : Zn → Cm, where we write uξ for u(ξ). For any s ∈ Z we now define the
Sobolev space W s as

W s =

u ∈ S | ∑
ξ∈Zn

(
1 + |ξ|2

)s |uξ|2 <∞
 .

We henceforth identify u ∈ P with the coefficients of its Fourier series viewed
as the function ξ 7→ uξ ∈ S. This embeds P into S. Since for u ∈ P we have
that ( ∂

∂xj u)ξ = −iξjuξ, we can extend the differential operators Dα to S by

setting (Dαu)ξ = ξαuξ. For u, v ∈ W s, we define their scalar product in W s

as
〈u, v〉s =

∑
ξ∈Zn

(1 + |ξ|2)s〈uξ, vξ〉,

which is well defined since, by the Cauchy-Schwarz inequality, we have that∣∣∣∣∣∣
∑
ξ∈Zn

(1 + |ξ|2)s〈uξ, vξ〉

∣∣∣∣∣∣
2

≤

∑
ξ∈Zn

(1 + |ξ|2)s|uξ|2
∑

ξ∈Zn

(1 + |ξ|2)s|vξ|2
 .

Therfore, defining the Sobolev s-norm as ‖ · ‖s = 〈·, ·〉s, we see that W s

consists of all u ∈ S with ‖u‖s < ∞. The following Proposition summarizes
some properties of these Sobolev spaces that we will need later and is part of
[War83, Theorem 6.18], where a direct proof can be found.

Proposition 2.3.2 The Sobolev spaces W s have the following properties.

I ‖u‖t ≤ ‖u‖s for t < s and u ∈ S, giving us inclusions

· · · ⊇W s−1 ⊇W s ⊇W s+1 ⊇ . . . .

We can therefore define W−∞ =
⋃
s∈ZW

s. For u ∈ P we also have
Parseval’s identity

‖u‖0 = ‖u‖ :=
1

(2π)n

∫
(2π)n

|u|2dx.

Therefore, W 0 is the completion of P with respect to | · |.

II P is dense in W s for all s.

III For r < s < t and any constant c1 > 0 there is a constant c2, depending
c1, such that

‖u‖2s ≤ c1‖u‖2t + c2‖u‖2r .

IV Dα is a bounded linear map W s+|α| →W s with ‖Dαu‖s ≤ ‖u‖s+|α|.
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2.3. Regularity for periodic elliptic operators

V For any smooth periodic function f : Rn → C, there exist constants
c1, c2 > 0 such that for any u ∈ P we have that

‖fu‖s ≤ c1 sup |f |‖u‖s + c2‖u‖s−1.

This especially implies, that there is a constant c > 0 such that

‖fu‖s ≤ c‖u‖s.

We also have the following two fundamental lemmas.

Lemma 2.3.3 (Sobolev) Let s ≥
⌊
n
2

⌋
+1+m and u ∈W s. Then u corresponds

to a Ck function.

Lemma 2.3.4 (Rellich) For s > r the inclusion W s ⊆ W r is a compact
operator, meaning it maps bounded sets to sets whose closure is compact.

For a proof see [War83, Theorem 6.22] for Sobolev’s lemma and [War83, The-
orem 6.23] for Rellich’s lemma. Note that as a direct consequence of Sobolev’s
lemma we get ⋂

s∈Z
W s = P .

We will henceforth call an operator periodic, if all its coefficients are in P.
Let us now take a look at how periodic differential operators interact with the
Sobolev norms.

Lemma 2.3.5 Let L be a periodic operator of order k and fix s ∈ Z. Then
there exist constants c1, c2 > 0 such that

‖Lu‖s ≤ c1M‖u‖s+k + c2‖u‖s+k−1

where M is an upper bound to the absolute values of the coefficients of the
highest order order part of L.

Proof In the case m = 1, we have that

‖Lu‖s =

∥∥∥∥∥∥
∑
|J |≤k

aJD
Ju

∥∥∥∥∥∥
s

≤
∑
|J |≤k

‖aJDJu‖s

≤
∑
|J |≤k

cJ,1 sup |aJ |‖DJu‖s + cJ,2‖DJu‖s−1

≤
∑
|J |≤k

cJ,1 sup |aJ |‖u‖s+|J | + cJ,2‖u‖s+|J |−1

≤
∑
|J |=k

cJ,1M‖u‖s+k + c2‖u‖s+k−1

≤c1M‖u‖s+k + c2‖u‖s+k−1,
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2.3. Regularity for periodic elliptic operators

where we used Proposition 2.3.2 V. The general case now follows since by

‖Lu‖2s =
∑
ξ∈Zn

(1 + |ξ|2)s|(Lu)ξ)|2

=
∑
ξ∈Zn

(1 + |ξ|2)s
m∑
i=1

|((Lu)i)ξ)|2

=
m∑
i=1

‖(Lu)i‖2s

=

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

Lijuj

∥∥∥∥∥∥
2

s

≤
m∑
i=1

 m∑
j=1

‖Lijuj‖s

2

≤
m∑

i,j=1

m‖Lijuj‖2s,

we have, that

‖Lu‖s ≤
√
m

m∑
i,j=1

‖Lijuj‖s

≤
√
m

m∑
i,j=1

ci,j,1M‖u‖s+k + ci,j,2‖u‖s+k−1

≤c1M‖u‖s+k + ‖u‖s+k−1. �

Proposition 2.3.6 Let L be a periodic elliptic operator of order k. Then for
every s there exists a constant c > 0 such that

‖u‖s+k ≤ c(‖Lu‖s + ‖u‖s)

for every u ∈W s+k.

Proof Our proof will be partitioned into three steps. First we will show, that
the statement holds for periodic elliptic operators, that only consist of their
top order part with all its coefficients constant. In a second step we will show,
that the statement holds locally around every point and in the third and last
step, we deduce that it holds globally. Note that, due to P being dense in W s

for all s, it suffices to show the statement for u ∈ P.
Now for the first step, let L be a periodic elliptic operator of order k with
constant coefficients, that only consists of its order k part. Let σ(L)(x, ξ)
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2.3. Regularity for periodic elliptic operators

be the symbol of L. Note that (Lu)ξ = σ(L)(x, ξ)uξ. Since σ(L)(x, ξ) is a
invertible matrix, there exists c > 0, such that

|σ(L)(x, ξ)p| ≥ c

for all p ∈ Cn with |p| = 1 and |ξ| = 1. Thus we can compute

(‖Lu‖s + ‖u‖s)2 ≥‖Lu‖2s + ‖u‖2s
≥
∑
ξ∈Zn

(1 + |ξ|2)s|σ(L)(x, ξ)uξ|2 +
∑
ξ∈Zn

(1 + |ξ|2)s|uξ|2

≥
∑
ξ∈Zn

(1 + |ξ|2)s|uξ|2(c|ξ|2k + 1)

≥c′
∑
ξ∈Zn

(1 + |ξ|2)s+k|uξ|2

=c′‖u‖2s+k,

where c′ is such that
1 + c|ξ|2l ≥ c′(1 + |ξ|)k.

Such a c′ exists since the condition is equivalent to

1

c′
− 1 + |ξ|2k

( c
c′
− 1
)
≥

k−1∑
`=1

|ξ|2`,

which holds for c′ small enough. Now for the second step choose p ∈ Rn.
Let L be any periodic elliptic operator and let L0 be the constant coefficient
operator consisting of the top order part of L at p. Thus, for any ε > 0 there
exists a small open neighbourhood U of p, such that there exists a periodic
operator L̃ that agrees with L0−L on U and whose highest order coefficients
have absolute value smaller or equal ε on U . Note that since all operators
involved are periodic, this actually holds for all periodic translates of U . Let
u ∈ P be supported in the union of U with its periodic translates. Using the
first step and Lemma 2.3.5 we compute

‖u‖s+k ≤c0(‖L0u‖s + ‖u‖s)
≤c0(‖Lu‖s + ‖ (L0 − L)u︸ ︷︷ ︸

=L̃u

‖s + ‖u‖s)

≤c0(‖Lu‖s + c1ε‖u‖s+k + c2‖u‖s+k−1 + ‖u‖s)

≤c0(‖Lu‖s + c1ε‖u‖s+k +
1

2
‖u‖s+k + c2c3‖u‖s + ‖u‖s),

where c0 is the constant from the statement for step 1, c1 and c2 come from
Lemma 2.3.5 and c3 come from Proposition 2.3.2 III. The statements now
follows by choosing U , such that ε < 1

2c0c1
.
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2.3. Regularity for periodic elliptic operators

Now for the third and final step we again let L be any periodic elliptic operator.
From the second step we know that for every p ∈ Rn there is a open neigh-
bourhood Up, such that the statement holds for all u ∈ P, that are supported
in the union of U with its periodic translates. Denote Tn = Rn/2π Zn the
n-Torus, which is a compact manifold. Since, by the definition of the quotient
topology, these Up descend to an open cover of Tn, there are p1, . . . , pt ∈ Rn,
such that the unions of Up with their periodic translates cover all of Rn. The
idea now is to use a periodic partition of unity ρ1, . . . , ρt, such that ρi is sup-
ported to the union of Upi with their periodic translates, where by the second
step the statement holds, to deduce the statement globally. We compute

‖Lu‖s+` ≤
t∑
i=1

‖ρiu‖s+`

≤c1

t∑
i=1

(‖Lρiu‖s + ‖ρiu‖s)

≤c1c2t‖Lu‖s + c1

t∑
i=1

‖ (Lρi − ρiL)︸ ︷︷ ︸
:=Qi

u‖s + c1c3t‖u‖s

≤c1c2t‖Lu‖s + c1c4t‖u‖s+k−1 + c1c3t‖u‖s

≤c1c2t‖Lu‖s +
1

2
‖u‖s+k + c5‖u‖s + c1c3t‖u‖s

from which the statement follows. Here c1 is the maximum of all constant that
arise from applying the second step, c2 and c3 come from Proposition 2.3.2
V, where again c2 is the maximum of all occurring constants, c4 comes from
Lemma 2.3.5 and the fact that all the Qi are, due to that Leibniz rule, periodic
differential operators of order at most k − 1 and c5 comes from Proposition
2.3.2 III. �

We now turn our attention to difference quotients. Since for any a function
u ∈ P and any h ∈ Rn

(u(x+ h))ξ = ei〈h,ξ〉uξ,

we define for all u ∈ S
(Th(u))ξ = ei〈h,ξ〉uξ.

Note that ‖Th(u)‖s = ‖u‖s for all s ∈ Z. The difference quotient is now
defined as

(uh)ξ =

(
Th(u)− u
|h|

)
ξ

=

(
ei〈h,ξ〉 − 1

|h|

)
uξ.

The importance of these difference quotients stems from the following propo-
sition.

Proposition 2.3.7 Assume that u ∈ W s and that there is a constant c such
that ‖uh‖s ≤ c for all h ∈ Rn. Then u ∈W s+1.
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2.3. Regularity for periodic elliptic operators

Proof Let ei be the i-th standard basis vector of Rn, then

lim
t→∞

∣∣∣∣∣ei〈tei,ξ〉 − 1

t

∣∣∣∣∣
2

= |ξ|2.

By assumption, we have for any N > 0, that

c2 ≥ lim
t→∞

∑
|ξ|≤N

(1 + |ξ|2)s|(utei)ξ|2 =
∑
|ξ|≤N

(1 + |ξ|2)s|uξ|2|ξi|2.

Thus, ∑
|ξ|≤N

(1 + |ξ|2)s+1|uξ|2 ≤ ‖u‖2s + nc2.

Since this expression is independent of N we have that ‖u‖s+1 <∞. �

We are now ready to prove the regularity theorem.

Theorem 2.3.8 Let L be a periodic elliptic operator of order k and let Lu = v
for v ∈W s and some u ∈W−∞. Then u ∈W s+k.

Proof We only need to show that if u ∈W s and v ∈W s−k+1, then u ∈W s+1,
since the statement follows then by repeated application of the aforemen-
tioned. Fix h ∈ Rn and let Lh denote the operator where the coefficients of L
were replaced by their difference quotients. For any u ∈ P and hence for any
element in W−∞, we get that

L(uh) =
∑
|J |≤k

aJ(x)DJ(u(x+ h)− u(x))

|h|

=
∑
|J |≤k

aJ(x+ h)DJu(x+ h)− aJ(x)DJu(x)

|h|

−
∑
|J |≤k

(aJ(x+ h)− aJ(x))DJu(x+ h)

|h|

=(Lu)h − Lh(Thu).

It follows from Proposition 2.3.6, that there exists a constant c such that

‖uh‖s ≤c‖L(uh)‖s−k + c‖uh‖s−k
≤c‖L(uh)‖s−k + c‖Lh(Thu)‖s−k + c‖uh‖s−k
≤c‖Lu‖s−k+1 + c‖u‖s.

Since this expression is independent of h, Theorem 2.3.7 implies that u ∈
W s+1. �
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2.4. Hodge decomposition for differential forms

2.4 Hodge decomposition for differential forms

In this section, we deduce the Hodge decomposition theorem for differential
forms from the regularity theorem from the previous section. This section
again follows [War83, Chapter 6] very closely. Throughout this section we let
L denote either d, ∂ or ∂ and let Ep denote either Ωp(X) for d or Ωq,p(X)
for ∂ and ∂, where X is assumed to be a compact oriented manifold that is a
complex manifold in the case of ∂ and ∂.

Lemma 2.4.1 Let p ∈ Rn and P an elliptic differential operator of order 2.
Denote by ` a weak solution to Pu = v. Then there is a neighbourhood Wp of
p and up ∈ P, such that `(f) = 〈up, f〉 for all f ∈ C∞c (Wp,Cm).

Proof Let Q′ be a translate of the open 2π-cube Q such that p ∈ Q′ and
choose an open set V such that p ∈ V ⊆ V ⊆ Q′. Let ˜̀ be the restriciton of `
to C∞c (V,Cm), which is canonically embedded in P by extending the functions
periodically outside Q′. Since ˜̀ is bounded it extends uniquely to the Hilbert
space W 0. Thus, there exists a ũ ∈ W 0 such that ˜̀(f) = 〈ũ, f〉0 for all
t ∈W 0, as the completion of C∞c (V,Cm), with its ordinary inner product from
Proposition 2.3.2 I, is a subspace of W 0. We now choose open neighbourhoods
U and U0 of p such that U ⊆ U0 ⊆ U0 ⊆ V and such that there exists an
periodic elliptic operator P̃ that coincides with P on U0. We now inductively
choose a sequence of open neighbourhoods Uk of p such that U ⊆ Uk and
Uk ⊆ Uk−1 together with functions ρk : Rn → [0, 1] that are supported in
Uk−1 and identically 1 on Uk. We now set

v1 = ρ1ũ ∈W 0

and
M1 = P̃ ρ1 − ρ1P̃ ,

so that we can write
P̃ v1 = ρ1P̃ ũ+M1ũ.

We want to show that ũ is represented by a smooth function in P. Due to the
Sobolev lemma 2.3.3 is suffices to show that ũ ∈W s for all s. It holds that

ρ1P̃ ũ = ρ1v ∈ C∞c (U0) ⊆ P,

as

〈ρ1P̃ ũ, ϕ〉0 − 〈ρ1v, ϕ〉0 =〈ũ, P̃ ∗ρ1ϕ〉0 − 〈v, ρ1ϕ1〉0
=〈ũ, P ∗ρ1ϕ〉0 − 〈v, ρ1ϕ1〉0
=˜̀(P ∗ρ1ϕ)− ˜̀(P ∗ρ1ϕ)

=0
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for all ϕ ∈ P, where we used that ρ1ϕ ∈ C∞c (U0,Cm). Note that, by the
Leibniz rule, M1 is a differential operator of order 1, thus M1ũ ∈ W−1 and
therefore P̃ v1 ∈ W−1. By Proposition 2.3.7 v1 ∈ W 1. Iterating the same
argument with

vk = ρkũ

and
Mk = P̃ ρk − ρkP̃

we see that vk ∈ W k. We conclude by choosing any open neighbourhood Wp

of p and a function ρ : Rn → [0, 1] such that Wp ∈ U and such that ρ is
compactly supported in U and 1 on Wp. Since now ρρkũ = ρũ on U for all k
we see that ρũ ∈ W k for all k. Thus ρũ is represented by a smooth function
up ∈ P and thus, for f ∈ C∞c (Wp,Cm), we have that `(f) = 〈up, f〉. �

Theorem 2.4.2 Let α ∈ Ep and let ` be a weak solution to ∆Lω = α. Then
there exists ω ∈ Ep such that ` is given by (ω, ·).

Proof We begin by covering our manifold with finitely many open coordinate
patches of the form (B,ϕ) such that ϕ(B) = Rn. Sections that are compactly
supported in B now induce Cm-valued smooth functions on Rn for m the
fiber dimension of Ep. Denote by (·, ·)′ the inner product on C∞c (Rn,Cm)
induced by the inner product on Ep. Denote by ∆ the differential operator on
C∞c (Rn,Cm) induced by ∆L and let ∆∗ be its formal adjoint with respect to
the standard norm (·, ·) on C∞c (Rn,Cm). Note that the adjoint of ∆ for (·, ·)′
is by definition just ∆ itself again. For every x ∈ Rn there exists a hermitian
positive definite matrix A such that

〈ξ, η〉′x = 〈ξ, Aη〉x.

These matrices vary smoothly, allowing us to write (ξ, η)′ = (ξ, Aη). We can
now compute an expression of ∆∗ on C∞c (Rn,Cm), namely

(∆∗ξ, η) =(ξ,∆η)

=(ξ, A−1∆η)′

=(∆A−1ξ, η)′

=(A∆A−1ξ, η).

Thus we see that ∆∗ = A∆A−1. For a linear form `′ induced from a linear form
on Ep, we now define a new linear form ` on C∞c (Rn,Cm) by `(ξ) = `′(A−1ξ).
Lemma 2.4.1 implies that for each p ∈ Rn there is a neighbourhood Wp and
an element up ∈ P such that `(f) = (up, f) for all f ∈ C∞c (Wp,Cm). These
up now piece together to a function u ∈ C∞ which represents ` on all of Rn.
We get for each differential form, that is compactly supported in one of the
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coordinate patches, a form representing a weak solution for the restriction to
said coordinate patch, as

`′(ξ) = `(Aξ) = (u,Aξ) = (u, ξ)′.

Using a partition of unity on the manifold, these now piece together to a global
form representing `. �

Theorem 2.4.3 Let (αn)n≥0 be a sequence in Ep such that both ‖αn‖ and
‖∆Lαn‖ are bounded sequences. Then (αn)n≥0 has a Cauchy subsequence.

Proof We continue with the setups of the proofs of Lemma 2.4.1 and Theorem
2.4.2. Choosing a partition of unity and the fact that our manifold is assumed
to be compact, it suffices to show the theorem for the sequence (ϕαn)n≥0, for
ϕ : M → [0, 1] compactly supported in a small neighbourhood around a point
x. Consider again a chart around x to V with ϕ supported U0 and identify
each ϕαn with its corresponding function in C∞c (U0,Cm). The norm ‖ · ‖ is
equal to ‖ · ‖0 and by paracompactness of U0 equivalent to ‖ · ‖′. Thus by
Rellich’s lemma 2.3.4 it suffices to show that the sequence is bounded in the
‖ · ‖1 norm. Using the fact that the differential operator ∆, that is induced
by ∆L, is of order 2 and that there is a periodic operator that is equal to ∆
on C∞c (U0,Cm), we can, using Proposition 2.3.6, estimate

‖ϕαn‖1 ≤ c1(‖∆ϕαn‖−1 + ‖ϕαn‖−1)

≤ c1(‖ϕ∆αn‖−1 + ‖ϕαn‖−1 + ‖(∆ϕ− ϕ∆)αn‖−1)

for some c1 > 0. There also exist c2, c3 > 0 such that

‖ϕ∆αn‖−1 ≤ ‖ϕ∆αn‖ ≤ c2‖∆αn‖′

‖ϕαn‖−1 ≤ ‖ϕαn‖ ≤ c3‖αn‖′.

Now let ρ = Rn → [0, 1] be a function, that is compactly supported on V and
that is 1 on U0. We now compute

‖(∆ϕ− ϕ∆)αn‖−1 ≤‖(∆ϕ− ϕ∆)ραn‖−1

≤c4‖ραn‖
≤c5‖αn‖′,

for some c4, c5 > 0, where we used, that ∆ϕ − ϕ∆ is a differential operator
of order at most 1. Putting everything together we see that there is a c̃ > 0,
such that

‖ϕα‖1 ≤ c̃(‖∆αn‖′ + ‖αn‖′)

which is, by assumption, bounded. �

Proposition 2.4.4 There exists a constant c > 0 such that ‖α‖ ≤ c‖∆Lα‖
for all α ∈ (HpL)⊥.
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Proof Suppose by contradiction that there exists a sequence (αi)i≥0 in
(HpL)⊥, such that ‖αi‖ = 1 and ‖∆Lαi‖ → 0 as i → ∞. Then, by Theorem
2.4.3, there exists a Cauchy subsequence (αik)k≥0. We now define a bounded
linear form ` on Ep by

`(ϕ) = lim
k→∞

(αik , ϕ).

The linear form ` is a weak solution of ∆Lα = 0, since

`(∆Lϕ) = lim
k→∞

(αik ,∆Lϕ) = lim
k→∞

(∆Lαik , ϕ) = 0.

Theorem 2.4.2 now implies that there exists a α ∈ Ep, such that `(ϕ) = (α,ϕ),
thus we get αik → α. Therefore, ‖α‖ = 1 and α ∈ (HpL)⊥, since (HpL)⊥ is a
closed subspace. But, by definition, ∆Lα = 0 and thus α ∈ HpL, which gives
us the desired contradiction. �

Theorem 2.4.5 Ep has a decomposition

Ep = ∆L (Ep)⊕HpL = L
(
Ep−1

)
⊕ L∗

(
Ep+1

)
⊕HpL

where HpL is finite-dimensional.

Proof The second equality follows from the fact that the images of L and
L∗ are orthogonal as (Lα,L∗β) = (LLα, β) = 0 and the assertion that HpL
is finite dimensional follows from the fact that otherwise it would have an
infinite orthononal sequence which would contradict Theorem 2.4.3. To show
the theorem we now have show that (HpL)⊥ = ∆L(Ep). Note that ∆L(Ep) ⊆
(HpL)⊥ follows directly from the fact that

(∆Lω, α) = (ω,∆Lα) = 0

for all ω ∈ Ep and α ∈ HpL. Now for the other inclusion, let α ∈ (HpL)⊥ and
define a bounded linear functional ` on ∆LE

p by

`(∆Lϕ) = (α,ϕ).

` is well defined since for ∆Lϕ = ∆Lψ, we have that ϕ−ψ ∈ HpL. Let therefore
ψ = ϕ − πϕ, where π denotes the projection onto HpL. By Proposition 2.4.4,
` is bounded as

|`(∆Lψ)| ≤ |(α,ψ)| ≤ ‖α‖‖ψ‖ ≤ c‖α‖‖∆Lψ‖.

By the Hahn-Banach theorem we can extend ` to all of Ep which gives us a
weak solution to ∆Lω = α. Thus, by Theorem 2.4.2, there exists a ω ∈ Ep
such that ∆Lω = α and thus (HpL)⊥ ⊆ ∆L(Ep). �
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This means, explicitly written out, that for all Ωk
C(X) in the de Rham complex,

we have the decomposition

Ωk(X) = ∆d

(
Ωk
C(X)

)
⊕Hkd = d

(
Ωk−1
C (X)

)
⊕ d∗

(
Ωk+1
C (X)

)
⊕Hkd

and for all Ωp,q(X) in the Dolbeault complex, we have that

Ωp,q(X) = ∆∂ (Ωp,q(X))⊕Hp,q
∂

= ∂
(
Ωp,q−1(X)

)
⊕ ∂∗

(
Ωp,q+1(X)

)
⊕Hp,q

∂

and, similarly, for the ∂ operator, we have that

Ωp,q(X) = ∆∂ (Ωp,q(X))⊕Hp,q∂ = ∂
(
Ωp+1,q(X)

)
⊕ ∂∗

(
Ωp+1,q(X)

)
⊕Hp,q∂ ,

where the spaces Hkd, H
p,q
∂ and Hp,q

∂
are finite dimensional.

Corollary 2.4.6 For α ∈ Ep the equation ∆Lω = α has a solution if and
only if α is orthogonal to HpL.

Definition 2.4.7 We define the Green’s operator GL : Ep → Ep to be the
map sending α to the unique solution of ∆Lω = α − πα in (HpL)⊥, where π
denotes the projection onto HpL.

Proposition 2.4.8 L and GL commute.

Proof First note that L∆L = ∆LL. Also note that Lπ = πL = 0 as the
image of π is Hp+1 and (Lα, β) = (α,L∗β) = 0 for all β ∈ Hp+1

L . Notice that

this especially means that, for all α ∈ Ep, we have that Lα ∈ (Hp+1
L )⊥. GL

sends an element α ∈ Ep to its unique solution ω of ∆Lω = α− πα in (HpL)⊥

and it sends Lα to its unique solution ω′ of ∆Lω
′ = Lα − πLα = L(α − πα)

in (Hp+1)⊥. Since now L(α − πα) = L∆Lω = ∆LLω and Lω ∈ (Hp+1
L )⊥ as

seen above we get that ω′ = Lω and thus LGLα = Lω = ω′ = GLLα. �

Theorem 2.4.9 Each cohomology class of Ep has a unique harmonic repre-
sentative.

Proof We argue based on [Roe99, Theorem 6.2]. We show that the inclu-
sion of HpL into Ep is a chain homotopy equivalence and, therefore, induces
an isomorphism in cohomology. For more informations see [Bre93, Chapter
IV, Proposition 15.2]. Since L restricted to HpL is just the zero map, the
cohomology of the complex restricted to the HpL is just given by HpL itself.

· · · Hp−1
L HpL Hp+1

L · · ·

· · · Ep−1 Ep Ep+1 · · ·

0

ι ι

0

ι

L L
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2.4. Hodge decomposition for differential forms

We claim that π is a chain homotopy inverse for ι. Since πι = id, we only need
to show that there exists a map F : Ep → Ep−1, such that id−ιπ = LF +FL.
Remember that by the definition of the Green’s operator and Theorem 2.4.5,
we get a decomposition

α = LL∗GLα+ L∗LGLα+ πα

for every α ∈ Ep. Since, by Proposition 2.4.8, GL commutes with L this can
be rewritten as

α = L(L∗GL)α+ (L∗GL)Lα+ πα.

As (id−ιπ)α = α − πα, we see that F = L∗GL can be chosen as our chain
homotopy.

· · · Ep−1 Ep Ep+1 · · ·

· · · Ep−1 Ep Ep+1 · · ·

L

id−ιπ
L∗GL

id−ιπ

L

L∗GL

id−ιπ

L L

Thus the inclusion map ι induces an isomorphism in cohomology. �

Corollary 2.4.10 For every compact orientable manifold, all Betti numbers
are finite and for every compact complex manifold all Hodge numbers are finite.

Remark 2.4.11 Observe that since all the operators used for Theorem 2.4.5
are real, the Hodge decomposition theorem for differential forms also holds for
the real de Rham complex.
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Chapter 3

The Hodge decomposition theorem
and Hodge diamond

In this chapter we prove the Hodge decomposition theorem for complex de
Rham cohomology groups of a compact Kähler manifold. To that end, in Sec-
tion 3.1 we start by showing some commutator identities on compact Kähler
manifolds that lead us to the relation ∆∂ = ∆∂ = 2∆d. Together with the fact
that all de Rahm and Dolbeault cohomology classes have a unique harmonic
representative, we then obtain the decomposition theorem in Section 3.2. This
leads us then, in Section 3.3, to a structure called the Hodge diamond, whose
properties, namely its symmetries and the so called Lefschetz decomposition,
are discussed in the end of the chapter.

3.1 Kähler identities

The Kähler identities are a collection of commutator relations on Kähler man-
ifolds. In this section, we first prove some of them, that are needed to prove
∆∂ = ∆∂ = 2∆d, which is the main result of this section.

Definition 3.1.1 On a Kähler manifold (X,h) with fundamental form ω, we
define the Lefschetz operator as

L :
∧p,q

X →
∧p+1,q+1

X, α 7→ ω ∧ α

Lemma 3.1.2 The adjoint operator

L∗ =
∧p,q

X →
∧p−1,q−1

of L is given by L∗ = (−1)p+q ∗ L∗.
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3.1. Kähler identities

Proof We compute

(Lα, β) =

∫
X
Lα ∧ ∗β

=

∫
X
ω ∧ α ∧ ∗β

=

∫
X
α ∧ ω ∧ ∗β

=

∫
X
α ∧ L ∗ β

=

∫
X
α ∧ ∗(∗−1L∗)β

= (α, (−1)p+q ∗ L ∗ β). �

Let [·, ·] denote the commutator [A,B] = AB−BA of two operators A and B.
Using the Lefschetz operator and the fact that on a Kähler manifold dω = 0,
we now proceed to show some commutator relations on Kähler manifolds.

Proposition 3.1.3 On any Kähler manifold, we have that [L, ∂] = [L, ∂] =
[L, d] = 0.

Proof Using dω = 0 and thus ∂ ω = 0, we compute

[L, ∂]α = ω ∧ ∂ α− ∂(ω ∧ α) = ω ∧ ∂ α− ∂ ω ∧ α− ω ∧ ∂ α = 0.

The computation for [L, ∂] is similar. As d = ∂+ ∂ we get [L, d] = [L, ∂] +
[L, ∂] = 0. �

Corollary 3.1.4 Taking the adjoints of the above relations, we obtain that
on a Kähler manifold we have [L∗, ∂∗] = [L∗, ∂

∗
] = [L∗, d∗] = 0.

Proposition 3.1.5 On a Kähler manifold, we have that [L, ∂∗] = i ∂,
[L, ∂

∗
] = −i ∂, [L∗, ∂] = i ∂

∗
and [L∗, ∂] = −i ∂.

Proof We first proof the first equality [L, ∂
∗
] = −i ∂, where we follow [Dem12,

Example 3.12 of Chapter VI]. We use Proposition 1.4.15, which states that
there are coordinates that osculate up to order 2 with the standard metric
of Cn within a chart and use that all computations only involve at most first
order partial derivatives. Let x0 ∈ X and let (z1, . . . , zn) be the coordinate
system constructed in Proposition 1.4.15 around x0. For all differential forms
ξ, η that are compactly supported in a small enough neighbourhood of x0, the
inner product in these coordinates is given by

(ξ, η) =

∫
Cn

∑
I,J

ξI,JηI,J +O(|z|2)dµ.

45



3.1. Kähler identities

With that, we can directly compute an expression for ∂
∗

at x0. For two such
forms ξ and η we get

(∂
∗
ξ, η) =(ξ, ∂ η)

=

ξ,∑
I,J,k

∂ηI,J
∂zk

dzk ∧ dzI ∧ dzJ


=
∑
k

2ι ∂
∂ zk

ξ,
∑
I,J

∂ηI,J
∂zk

dzI ∧ dzJ


=2
∑
k

∫
Cn

∑
I,J

(ι ∂
∂ zk

ξ)I,J
∂ηI,J
∂zk

+O(|z|2)dµ

=− 2
∑
k

∫
Cn

∑
I,J

∂(ι ∂
∂ zk

ξ)I,J

∂ zk
ηI,J +O(|z|)dµ

=

−2
∑
I,J,k

∂ ξI,J
∂ zk

ι ∂
∂ zk

dzI ∧ dzJ +O(|z|), η

 ,

where we used that at x0, Lemma 2.2.12 gives us

(dzk∧)∗ = (dxk∧)∗ + (idyk∧)∗ = ι ∂
∂ xk
−i ∂

∂ yk

= 2ι ∂
∂ zk

.

Thus at x0, the adjoint of ∂ is given by

∂
∗
ξ = −2

∑
I,J,k

∂ξI,J
∂zk

ι ∂
∂ zk

dzI ∧ dzJ +O(|z|).

We now compute

[L, ∂
∗
]ξ =− 2

∑
I,J,k

∂ξI,J
∂zk

ω ∧ ι ∂
∂ zk

(dzI ∧ dzJ) +O(|z|)

+ 2
∑
I,J,k

∂ξI,J +O(|z|2)

∂zk
ι ∂
∂ zk

(ω ∧ dzI ∧ dzJ)

=2
∑
I,J,k

∂ξI,J
∂zk

(ι ∂
∂ zk

ω)︸ ︷︷ ︸
=− 1

2
idzk

∧dzI ∧ dzJ +O(|z|)

=− i ∂ ξ +O(|z|).

Thus, the statement holds for x0 and, since x0 was arbitrary, it holds for all
of X. The second equation now follows through complex conjugation and the
last two by taking adjoints. �
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3.1. Kähler identities

Proposition 3.1.6 On a riemannian manifold X with dimRX = n, we have
that ∗∆d = ∆d∗.

Proof For α ∈ Ωp
C(X) we compute

∆d∗ =dd∗ ∗+d∗d∗
=(−1)n(n−p+1)+1d ∗ d ∗ ∗+ (−1)n(n−p+2)+1

=(−1)n(p+1)+1 ∗ d ∗ d ∗+(−1)n(p+2)+1 ∗ ∗d ∗ d
= ∗ dd∗ + ∗d∗d
= ∗∆d. �

Proposition 3.1.7 On a Kähler manifold we have that [∆d, L] = [∆∂ , L] =
[∆∂ , L] = 0.

Proof Since the Laplacians are proportional to each other it suffices to show
[∆∂ , L] = 0. We compute

[∆∂ , L] = ∂∗ ∂ L+ ∂ ∂∗ L− L∂∗ ∂−L∂ ∂∗

= ∂∗ ∂ L+ ∂ ∂∗ L− ∂∗ ∂ L− i ∂ ∂− ∂ ∂∗ L− i ∂ ∂
=0. �

Lemma 3.1.8 On a Kähler manifold, we have that ∂ ∂
∗

+ ∂
∗
∂ = 0 and

∂ ∂∗+ ∂∗ ∂ = 0.

Proof

∂ ∂
∗

+ ∂
∗
∂ = −i(∂ i ∂∗+i ∂

∗
∂)

= −i(∂[L∗, ∂] + [L∗, ∂] ∂)

= −i(∂ L∗ ∂− ∂2 L∗ + L∗ ∂2− ∂ L∗ ∂)

= 0

The second equality now follows through complex conjugation. �

With these preparations, we are now able to prove the main result of this
section.

Proposition 3.1.9 On a Kähler manifold, we have the following relation be-
tween the Laplacians

∆d = 2∆∂ = 2∆∂ .
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3.2. The Hodge decomposition theorem

Proof Using Proposition 3.1.5, we first show that ∆∂ = ∆∂ .

∆∂ = ∂ ∂∗+ ∂∗ ∂

= i(∂[L∗, ∂] + [L∗, ∂] ∂)

= i(∂ L∗ ∂− ∂ ∂ L∗ + L∗ ∂ ∂− ∂ L∗ ∂)

= −i(∂ L∗ ∂− ∂ ∂ L∗ + L∗ ∂ ∂− ∂ L∗ ∂)

= −i(∂[L∗, ∂] + [L∗, ∂] ∂)

= ∂ ∂
∗

+ ∂
∗
∂

= ∆∂

And finally, using Lemma 3.1.8, we get

∆d = dd∗ + d∗d

= (∂+ ∂)(∂∗+ ∂
∗
) + (∂∗+ ∂

∗
)(∂+ ∂)

= ∂ ∂∗+ ∂ ∂
∗

+ ∂ ∂∗+ ∂ ∂
∗

+ ∂∗ ∂+ ∂∗ ∂+ ∂
∗
∂+ ∂

∗
∂

= ∆∂ + ∆∂ + (∂ ∂
∗

+ ∂
∗
∂)︸ ︷︷ ︸

=0

+ (∂ ∂∗+ ∂∗ ∂)︸ ︷︷ ︸
=0

= 2∆∂ . �

3.2 The Hodge decomposition theorem

In this section, we deduce the Hodge decomposition theorem for compact
Kähler manifolds and proof a useful statement for compact Kähler manifolds
called the ∂ ∂-lemma.

Theorem 3.2.1 Let X be a compact complex manifold of Kähler type. Then
there is a direct sum decomposition

Hk(X,C) =
⊕
p+q=k

Hp,q(X)

with Hp,q(X) = Hq,p(X).

Proof According to Theorem 2.4.5, we only need to show that

Hkd(X) =
⊕
p+q=k

Hp,q
∂

(X)

For p+ q = k let α ∈ Hkd and let αp,q be its components in Ωp,q(X). Since ∆∂

preserves the bidegree, we get that

∆dα =
∑
p+q=k

∆dα
p,q =

∑
p+q=k

2∆∂α
p,q = 0
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3.2. The Hodge decomposition theorem

Since the decomposition Ωk
C(X) =

⊕
p+q=k Ωp,q(X) is direct, we get that

∆∂α
p,q = 0 and conversely, that if all components αp,q are in Hp,q

∂
(X), then

α ∈ Hkd(X). Hp,q(X) = Hq,p(X) follows immediately from the fact that
Ωp,q(X) = Ωq,p(X). �

Although the harmonic representative of a class depends on the choice Kähler
metric, this decomposition does not.

Proposition 3.2.2 The Hodge decomposition is independent of the choice of
a Kähler metric.

Proof Let γ be any closed (p, q)-form that represents an element of Hp,q.
Choosing an arbitrary Kähler metric, we can uniquely write γ = α + ∆dβ =
α + dd∗β + d∗dβ where α and β must be of type (p, q). Since γ is closed,
both α and ∆dβ are closed and thus d∗dβ = 0 leaving γ = α+ dd∗β meaning
[γ] = [α]. Since the harmonic form α came from an arbitrary choice of Kähler
metric, the statement follows. �

Lemma 3.2.3 (∂ ∂-lemma) Let X be a compact Kähler manifold and let
α ∈ Ωp,q with dα = 0, then the following are equivalent:

I α = dβ for β ∈ Ωp+q−1.

II α = ∂ γ for γ ∈ Ωp−1,q.

III α = ∂ γ′ for γ′ ∈ Ωp,q−1.

IV α = ∂ ∂ δ for δ ∈ Ωp−1,q−1.

V α is orthogonal to Hp,q
∂

(X).

Proof Note that I to IV all imply V as the harmonic forms for all three
operators coincide. Also IV immediately implies II and III. To see that IV
implies I note that

d

(
∂
δ

2
− ∂ δ

2

)
= ∂ ∂ δ = α.

Thus, it remains to show that V implies IV. Suppose that α is orthogonal
to Hp,q∂ (X), then Theorem 2.4.5 implies that α ∈ ∂ Ωp−1,q(X)⊕ ∂∗Ωp,q+1(X).
Let η = ∂∗ γ be any element in the image of ∂∗, then

(α, η) = (α, ∂∗ γ) = (∂ α, γ) = 0,

as by assumption dα = 0 and therefore ∂ α = 0. Thus α = ∂ γ. Let γ =
γ0 + γ1 + γ2 be the decomposition of γ with respect to the ∂ operator, where
γ0 is harmonic, γ1 = ∂ β1 is in the image of ∂ and γ2 = ∂

∗
β2 is in the image

of ∂
∗
. Since γ0 is also harmonic for ∂ we would have ∂ γ0 = 0 and thus

∂(γ1 + γ2) = α. We can thus omit γ0. We now have α = ∂ ∂ β1 + ∂ ∂
∗
β2 and

since ∂ α = 0 we have

∂ ∂ ∂
∗
β2 = − ∂ ∂ ∂ β1 = ∂

2
∂ β1 = 0.
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3.3. The Hodge diamond

Using Lemma 3.1.8 we now get

‖ ∂ ∂∗ β2‖2 = (∂ ∂
∗
β2, ∂ ∂

∗
β2) = (β2, ∂ ∂

∗ ∂ ∂
∗
β2) = (β2,− ∂∗ ∂ ∂ ∂

∗
β2) = 0.

Thus, α = ∂ ∂ β1. �

3.3 The Hodge diamond

In this section, we present the Hodge diamond and some of its symmetries
that stem from duality theorems of the de Rham and Dolbeault groups and
the so called Lefschetz decomposition. The Hodge diamond is a way to present
the Hodge numbers in a diamond shape.

h0,0

h1,0 h0,1

...
...

. . .

hn,0 · · · · · · h0,n

. . .
...

...

hn,n−1 hn−1,n

hn,n

Although this way of writing down the Hodge numbers is certainly possible for
any complex manifold, where some entries might not be finite, this diamond
has some nice properties in the Kähler case. First of all, note that Hp,q(X) =
Hq,p(X) immediately implies that hp,q = hq,p. By the Hodge Decomposition
Theorem 3.2.1 the sum of the rows are equal to the Betti numbers. This
diamond also has some symmetry properties such as being mirror symmetric
around the middle column. Another symmetry is given by a half-turn rotation
around the middle which also reflects a symmetry of the Betti numbers given
by Poincaré duality as the following two theorems show.

Theorem 3.3.1 (Poincaré duality) Let (X, g) be a compact orientable rie-
mannian manifold with dimRX = n and riemannian metric g. Then
Hk(X,C) ∼= Hn−k(X,C)∗.

Proof Since the isomorphism ∗ : Ωr
C(X) → Ωn−r

C (X) commutes with ∆d it

sends Hkd(X) to Hn−kd (X). We now get a dual pairing Hkd(X)×Hn−kd (X)→ C

〈α, β〉 =

∫
X
α ∧ β.

which is indeed a sesquilinear map. This pairing is non-degenerate as 〈α, ∗α〉 =
‖α‖2 > 0 for any α 6= 0 in Hkd. This pairing now descendes to cohomology
and induces an isomorphism Hr(X) ∼= Hn−r(X)∗. �
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3.3. The Hodge diamond

Corollary 3.3.2 For any compact orientable manifold X with dimRX = n,
we immediately obtain that bk = bn−k which especially implies that for a com-
pact complex manifold X with dimCX = n, we have that bk = b2n−k.

In the case of a compact complex manifold we can even refine this theorem.

Theorem 3.3.3 (Serre duality) Let X be a compact complex manifold.
Then Hp,q(X) ∼= Hn−p,n−q(X)∗.

Proof Just as for Poincaré duality, ∗ : Ωp,q(X) → Ωn−p,n−q(X) commutes
with ∆∂ and thus sends Hp,q(X) isomophically onto Hn−p,n−q(X). We again

define a dual pairing Hp,q
∂

(X)×Hn−p,n−q
∂

(X)→ C

〈α, β〉 =

∫
X
α ∧ β.

This pairing is again non degenerate and therefore induces an isomorphism
Hp,q(X) ∼= Hn−p,n−q(X)∗. �

Corollary 3.3.4 For every compact Kähler manifold we have that hq,p =
hp,q = hn−p,n−q = hn−q,n−p.

We can also say something about the middle column of the Hodge diamond.

Proposition 3.3.5 For every compact Kähler manifold X of complex dimen-
sion n, the groups Hp,p(X) are non-trivial.

Proof We show that the closed (p, p)-form ωp is not exact. Assume by con-
tradiction that ωp = dα. Then∫

X
ωn =

∫
X
dα ∧ ωn−p =

∫
X
d(α ∧ ωn)−

∫
X
α ∧ dωp−n = 0,

contradicting the fact that ωn is a volume form. �

Corollary 3.3.6 On a compact Kähler manifold hp,p > 0 for 0 ≤ p ≤ n and
bk > 0 for all 0 ≤ k ≤ n even.

Notice that a form α in Ωp,0(X) is harmonic if and only if ∂ α = 0, meaning
α is a holomorphic form. From Proposition 1.1.4 we know that a 0-form α,
meaning a function on X, is holomorphic if and only if α is constant, thus
h0,0 = b0 = 1 and therefore also hn,n = b2n = 1. If generally, for any 0 ≤ k ≤ n,∧k T ∗C(X) is a trivial holomorphic bundle, then hk,0 =

(
n
k

)
as every constant

section defines a harmonic form. For the case of k = n we call
∧n T ∗C(X) its

canonical bundle and compact Kähler manifolds, whose canonical bundle is
a trivial holomorphic bundle, called Calabi-Yau manifolds, have hn,0 = 1.

Lemma 3.3.7 Let X be a hermitian manifold and let k ≤ n = dimC(X).
Then the operator

Ln−k : Ωk
C(X)→ Ω2n−k

C (X)

is an isomorphism.
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3.3. The Hodge diamond

Proof We base this proof on [BGG02, Proposition 1.1]. Since Ln−k is also a
bundle homomorphism between bundles of the same dimension, it suffices to
show injectivity. We argue by induction and begin with the base case k = 0.
In this case, since ωn is a volume form and f 7→ fωn is only zero if the function
f is. Now for the inductive step. Assume the statement holds up to k− 1 and
suppose there exists α ∈ Ωk

C(X) such that

ωn−k ∧ α = 0.

This implies that
ωn−k+1 ∧ α = 0

and thus for every vector field Y , we have that

0 = ιY (ωn−k+1 ∧ α) = (n− k + 1)(ιY ω) ∧ ωn−k ∧ α︸ ︷︷ ︸
=0

+ωn−k+1 ∧ (ιY α).

But since ιY α ∈ Ωk−1
C (X) our induction hypothesis implies that ιY α = 0 for

all vector fields Y , implying α = 0. �

Note that for p + q = k ≤ n, Ln−k maps Ωp,q(X) to Ωn−q,n−p. Therefore
Ln−p−q : Ωp,q(X)→ Ωn−p,n−q(X) is also an isomorphism. The important first
observation now is that for k < n, L up to Ln−k are injective.

Theorem 3.3.8 (Hard Lefschetz theorem) Let X be a compact Kähler
manifold. Then for k ≤ n the map Ln−k : Hk(X)→ H2n−k(X) is an isomor-
phism.

Proof Since by Proposition 3.1.7 L commutes with ∆d, for any harmonic
form α ∈ Hkd(X), ∆dL

mα = L∆dα = 0. Thus, Lm maps harmonic forms
to harmonic forms for all possible m. Therefore Ln−k : Hkd(X) → H2n−k

d (X)
is an injective homomorphism. Since these spaces have the same dimension,
which is finite, Ln−k is an isomorphism. �

Note that the same also holds for the Dolbeault groups as L is the bigraded.

Definition 3.3.9 For a compact Kähler manifold, we call a cohomology class
[α] ∈ Hp,q(x), for p+ q = k ≤ n, primitive if Ln−k+1[α] = 0. We denote the
space of primitive classes in Hp,q(X) as PHp,q(X), and similarly the space of
primitive classes in Hk(X) as PHk(X) and the spaces of representing primi-
tive harmonic forms are denoted by P Hp,q

∂
(X) and P Hkd(X) respectively.

Theorem 3.3.10 (Lefschetz decomposition) Let X be a compact Kähler
manifold, then the cohomology groups decompose into images of primitive
groups under iterations of L.

Proof The statement follows inductively if we show that for p + q = k ≤ n
we have that

Hp,q
∂

(X) = LHp−1,q−1

∂
(X)⊕ P Hp,q

∂
(X).
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3.3. The Hodge diamond

Since Ln−k is injective on LHp−1,q−1

∂
, LHp−1,q−1

∂
(X) and P Hp,q

∂
(X) =

kerLn−k have indeed trivial intersection. Now let α ∈ Hp,q
∂

(X) and assume

Ln−k+1α = β 6= 0. Since β ∈ Hn−q+1,n−p+1

∂
(X), the Hard Lefschetz Theo-

rem 3.3.8 implies that β = Ln−k+2γ for some γ ∈ Hp−1,q−1

∂
(X). Therefore

α− Lγ ∈ P Hp,q
∂

(X). Thus these two spaces do indeed span all of Hp,q
∂

(X).�

The Lefschetz decomposition basically says that the map L carries the coho-
mology classes, starting with the primitive ones, down along the columns down
where they get embedded into all groups between them and their eventual des-
tination, which is the group isomorphic under the hard Lefschetz theorem of
the space where they have a primitive component, where said component ends
its journey. The following diagram illustrates the middle column for a compact
Kähler manifold X with dimC(X) = n = 2p.

H0,0

∂
(X) = P H0,0

∂
(X)

H1,1

∂
(X) = LP H0,0

∂
(X)

⊕
P H1,1

∂
(X)

...
...

H1,1

∂
(X) = Lp P H0,0

∂
(X)

⊕
Lp−1 P H1,1

∂
(X)

⊕
· · ·
⊕
P Hp,p

∂
(X)

...
...

Hn−1,n−1

∂
(X) = Ln−1 P H0,0

∂
(X)

⊕
Ln−2 P H1,1

∂
(X)

Hn,n
∂

(X) = Ln P H0,0

∂
(X)

L

L L

L L

L L

L L

L

Corollary 3.3.11 On a compact Kähler manifold we have for p+ q = k ≤ n
that hp,q ≥ hp−1,q−1 and therefore bk ≥ bk−2.

Example 3.3.12 Let TnC = Cn/Λ where Λ is a lattice formed by 2n R-
linear independent vectors. For example, we can just take the lattice Λ =
spanZ{e1, ie1, . . . , en, ien}. The coordinates dz1, . . . , dzn, dz1, . . . , dzn on Cn
induce global coordinates on

∧p,q TnC for all p, q and the standard metric h =∑n
i,j=0 dzi ⊗ dzj on Cn descends to TnC giving it a Kähler structure.
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3.3. The Hodge diamond

We claim that the harmonic forms are of the form αI,JdzI ∧ dzJ for αI,J
constant. As such a form is indeed harmonic, it suffices to show that for
any harmonic α ∈ Ωp,q(TnC) has constant coefficients. Since being harmonic
is a local property, any harmonic form on TnC lifts to a harmonic form on
Cn ∼= R2n. We saw in Example 2.2.6 that the coefficients of such a form are
harmonic functions. Since these functions lift to periodic, and thus bounded,
harmonic functions on Cn, they must be constant by Liouville’s Theorem (see
[ABR01, Theorem 2.1.]).
We therefore see that the Hodge numbers hp,q are equal to the complex fiber
dimension of the vector bundles T ∗C(TnC)p,q. Namely, we need to count in how
many ways we can choose p holomorphic coordinates out of n and in how
many ways we can choose q anti-holomorphic coordinates out of n. Thus

hp,q = dimC Ωp,q =

(
n

p

)(
n

q

)
.

We see that we alawys have h0,0 = hn,n = 1 which holds for all Kähler man-
ifolds. The second row and the second to last row are always n and for the
left and right most entries we have hn,0 = h0,n = 1. For n = 1 we obtain the
Hodge diamond

1
2 2

1

and for n = 2 we obtain
1

2 2
1 2 1

2 2
1

The Hodge diamond of TnC for an arbitrary n is of the form

1
n n(

n
2

)(
n
0

) (
n
1

)(
n
1

) (
n
0

)(
n
2

)
...

...
. . .(

n
n

)(
n
0

)
· · · · · ·

(
n
0

)(
n
n

)
. . .

...
...(

n
n−2

)(
n
n

) (
n
n−1

)(
n
n−1

) (
n
n

)(
n
n−2

)
n n

1

Using Vandermonde’s identity we can now calculate the Betti numbers.

br =
r∑
p=0

hp,r−p =
r∑
p=0

(
n

p

)(
n

r − p

)
=

(
2n

r

)
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3.3. The Hodge diamond

Corollary 3.3.13 Since b1 = h1,0 + h0,1 = 2h1,0, we see that a Kähler mani-
fold must always have an even first Betti number and repeating the argument
for all odd rows we see that they even must have all odd Betti numbers be even.

We can use 3.2.1 also in the other direction to obtain some Hodge numbers
from Betti numbers.

Example 3.3.14 Every compact orientable surface is diffeomorphic to the
Riemann surface Σg for some g ≥ 0, called their genus, see [Lee11, Chapter
6] and [CM16, Chapter 1]. Using common methods from algebraic topology
one can see that Hk(Σg) ∼= C2g. Since Σg can be embedded within R3, they
carry an almost complex structure which must be integrable by 1.3.6. For
example Let ν(x) be a normal vector field, then for v ∈ Tx(Σg) we can define
an almost complex structure by

Jx(v) = ν(x)× v,

where × denotes the cross product in R3. Thus all these Σg are Kähler man-
ifolds and must necessarily have the Hodge diamond

1
g g

1

Example 3.3.15 It is a well known fact from algebraic topology (for example
using a cell decomposition) that the Betti numbers of CPn are bk = 1 for k
even and bk = 0 for k odd. Since we know that hp,p > 0 for all p by Proposition
3.3.5, we see that these are all non-zero Hodge numbers.

1
0 0

0 1 0
...

...
. . .

0 · · · · · · 0
. . .

...
...

0 1 0
0 0

1

Thus, the only non-zero primitive cohomology group is PH0,0(X) = H0,0(X),
which is generated by the class [1] and Hp,p is generated by [ωp]. Note that
this directly implies that CPn has no non-trivial holomorphic forms other
than constant function.
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