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Abstract

This thesis approaches the art of paper folding from a mathematical
perspective. The focus lies on flat vertex folds, i.e. folded papers
whose crease pattern has only one vertex and which end up in a two-
dimensional state after folding. One goal of this thesis is to count the
number of possible ways to fold a given flat vertex fold. Theorems
about necessary and sufficient conditions for flatfoldability are given
after introducing the setup and notation. Finally, these theorems are
used to count the number of ways to fold a given single-vertex fold
flat.
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Preface

Origami is the art of paper folding. Apart from being a beautiful handicraft,
origami can be used as a mathematical tool, similar to a straightedge and
compass. For example, to divide a segment into equal parts ([4], p. 13).
Interestingly, we can trisect an angle using origami techniques ([4], p. 16),
whereas this is not possible using only a straightedge and compass ([5]).
Origami techniques can also be found in mechanical engineering. For exam-
ple, the astrophysicist Koryo Miura invented the Miura map fold to send
large solar panels into space ([4], pp. 2, 3).1

Apart from geometric constructions, origami can be used in many other ar-
eas of mathematics. In algebra, for example, there are methods of solving
equations by folding paper. This is based on the idea that the paper can be
seen as a coordinate system and the crease lines represent linear equations.
For second degree equations, the main idea is based on the following obser-
vation. When folding a point on a line, the resulting crease line is a tangent
to the parabola that has the point as its focus and the line as its directrix
([4], p. 31). We can convince ourselves of this by taking a piece of paper
and folding a point onto a line and unfolding it again. If the same point is
folded repeatedly at different points on the line, after a few folds the shape
of the parabola can be seen. Figure 1 provides an example, with the image
of the point/focus from each fold marked on the directrix.

So far, we have seen examples of origami being used as a tool to solve
mathematical problems. On the other hand, paper folding also raises many
combinatorial questions about the number of certain foldable origamis. In
particular, we could ask for the number of possible ways to fold a given
crease pattern flat. In this bachelor thesis, we will pave the way to answering
this question for a basic setup of a single-vertex crease pattern. Interestingly,

1The crease pattern in Figure 2.3 and Figure 3.1 is a local subset of this Miura map
fold ([2], p. 4).
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Preface

Figure 1: Folding a parabola

not all the results we will see for this single-vertex setup will extend to
multiple-vertex cases, making the multiple-vertex case quite complex ([4], p.
107).

We proceed as follows.
Chapter 1 introduces a mathematical setup for paper folding. After provid-
ing general definitions, the focus of this thesis will be on flat origami.
Chapter 2 generalises the setup to cones, still restricted to flat origami. The-
orems on necessary and sufficient conditions for a given crease pattern to be
flatfoldable will be encountered.
Chapter 3 explains how to count the number of possible ways to fold a given
crease pattern, if the latter is of a basic type.
Chapter 4 sums up what has been covered in this thesis and gives a glimpse
of what lies ahead.

The thesis targets individuals with a mathematical background who possess
the ability to comprehend proofs and enjoy applying intuition to mathe-
matical problems. The statements presented in the thesis are often directly
applicable by taking a piece of paper and folding it.

Unless another reference is given, this bachelor thesis follows Chapter 5 of
[4]. I do not claim to be the founder of any ideas mentioned, except for
minor modifications and extensions. During the research, I also consulted
the book [1].
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Chapter 1

Introduction

In this chapter, we provide the setup for the rest of the thesis. We will follow
the main reference [4].

1.1 Origami

In this thesis, unless otherwise noted, we will use the following notations
and assumptions.
Let R denote a region in R2 with the properties that it is bounded, simply
connected and has a non-empty interior. This we can imagine as a piece of
paper. To be consistent throughout, we will refer to R simply as paper and
we assume it to have the following properties. In particular, the paper is not
stretchable, not self-intersecting and has a thickness of zero. Furthermore, R
inherits an orientation from R2, which we may think of as distinguishing the
two sides of the paper differently, say side A and side B. Unless otherwise
noted, we are always looking at the same side of the paper.
When the paper is folded, crease lines are created. We will also refer to them
as edges. We assume that the creases are straight lines or segments and have
no width.

With these assumptions in mind, we state some definitions.

Definition 1.1 Given a piece of paper R ⊂ R2, a crease pattern on R is a plane
graph G = (V, E), where V denotes the set of (discrete) vertices in R and E denotes
the set of edges. Further, each edge e ∈ E is in the interior of R, except possibly
its endpoints. Vertices on the boundary of R are called boundary vertices, and
vertices in the interior of R are called interior vertices.
The faces of the crease pattern G are the connected components of R \ (V ∪ E)1. In
Figure 1.1, an example is given.

1For simplicity, we use this abuse of notation. The correct version is R \ (V ∪ (∪e∈Ee)),
as E is a set of subsets of R2, but E ⊈ R2
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1. Introduction

Figure 1.1: Crease pattern

Definition 1.2 Given a crease pattern G = (V, E) on R, an origami on G is a
continuous, one-to-one mapping σ : R → R3 such that σ is smooth (differentiable,
say C∞ for purposes of simplicity) everywhere except along the creases E.

Definition 1.3 Let f1, f2 be two adjacent faces in the crease pattern G and let σ be
an origami on G such that σ| f1 , σ| f2 are isometries. The folding angle of the crease
e between these faces is the signed angle of displacement from a flat plane exhibited
by f1 or f2 under σ.
If the folding angle is positive, we say the crease between f1 and f2 is a valley
crease, and if the folding angle is negative, we say the crease is a mountain crease.
See Figure 1.2 for an illustration.

Figure 1.2: Folding angle

1.2 Flat Origami

In this thesis, we will focus on a limit case of origami that are two-dimensional
after folding, i.e. lie flat in the plane. A formal definition of flat origami is
given as follows.

Definition 1.4 Given a crease pattern G = (V, E) on R, a flat origami on G is
an infinite sequence of origami {σn}∞

n=1 on G such that

2



1.2. Flat Origami

• for each face f of G, the images {σn( f )}∞
n=1 uniformly converge to a planar

polygon congruent to f and

• for each crease ℓ ∈ E, the folding angles of the images {σn(ℓ)}∞
n=1 converge

to either π or −π.

If there exists a flat origami on a given crease pattern G, then we say that G is
flatfoldable and that G folds flat.

One difficulty with this definition is that in Definition 1.2 we defined origami
as a one-to-one mapping, but a flat origami, as defined above, is not necessar-
ily injective. Therefore, we will not use the formal definition of flat origami,
but we will settle for the informal idea of flat origami: after folding, we can
press it into a book without adding new creases.

Definition 1.5 A mountain-valley assignment (or MV assignment) for a crease
pattern G = (V, E) is a function µ : E → {−1, 1} that assigns folding angles of
µ(c)π to each crease c ∈ E. (So, -1 indicates a mountain and 1 a valley.)
We let M denote the number of mountains and V the number of valleys of an MV
assignment.
An MV assignment is called valid if it can be realized by a flat origami on the
crease pattern.

Observation 1.6 We observe that by the orientation of our paper R (as introduced
in Section 1.1) each MV assignment has a symmetric other MV assignment in the
following sense. A mountain on side A of R is a valley on side B of R and vice versa.
We can think of this symmetry by multiplying the MV assignment at each crease
by −1.

We now extend our intuitive idea of flatfoldability. For this purpose, we
introduce the following notation. Let v be an interior vertex in the crease
pattern G of a (flat) origami. Let Rε be a circle of radius ε centred at v,
where ε is taken small enough so that the only creases of G that intersect the
boundary of Rε are those adjacent to v. We denote by G′ the subset of the
crease pattern G intersecting Rε. In Figure 1.3, an example is given. With
this notation, we introduce the following definition.

Definition 1.7 We call a crease pattern G globally flatfoldable, if there is a valid
MV assignment. If there exists a valid MV assignment for the subset G′ of the crease
pattern G on Rε, then we call G locally flatfoldable at v.

We observe that there are MV assignments that locally fold flat but do not
fold flat globally ([2], p.3). Further, note that for a crease pattern having only
one interior vertex, the local and global properties coincide.

Definition 1.8 We call a crease pattern G = (V, E) with only one interior vertex
a single-vertex fold. Moreover, if G folds flat, we call it a flat vertex fold.

3



1. Introduction

Figure 1.3: Example of a local analysis

The following notation, illustrated in Figure 1.4, will be used for single-
vertex folds. We denote the edges by ℓ0, ℓ1, . . . in counterclockwise order
around the vertex and by αi the angle between the creases ℓi and ℓi+1.

Figure 1.4: Notation for single-vertex folds

Given an MV assignment, it is not easy to see if it is valid. Of course, we
can take a piece of paper and try to fold the given crease pattern flat. But
how can we be sure that a given MV assignment is not valid, if we can’t
find a way to fold it? We may also wonder whether more than one MV
assignment is valid for a given crease pattern, and if so, how many? In
Chapter 2 we will encounter theorems about when a given single-vertex
fold is flatfoldable, and in Chapter 3 we will see a way to count the number
of valid MV assignments for some flat vertex folds.

4



1.3. Two-colourability of flat origami

1.3 Two-colourability of flat origami

We end this chapter with a theorem to show that origami can be a nice tool
for some constructive proofs.
In graph theory, colouring vertices, edges or faces is a common problem,
where one goal is to colour the vertices, edges or faces in k colours in such
a way that no two adjacent ones are coloured in the same colour. From
Definition 1.1 we know that the crease pattern of origami is a plane graph,
so we can apply this problem to origami.

Theorem 1.9 The faces of a flat origami crease pattern are two-colourable.

Proof When looking at the crease pattern, fix the side of the paper facing,
say side A. Then fold the paper flat according to a valid MV assignment, lay
it flat in front of you such that there is an up/down orientation and keep
track of the faces of side A. Colour the faces of side A in colour 1 if they
are facing up and in colour 2 if they are facing down. Any two adjacent
faces are separated by one crease, along which will be folded. Thus, these
faces point in different directions, and therefore we have indeed a proper
two-colouring of the faces. □

In Figure 1.5, we see an example of a two-colouring obtained by the method
described in the proof.

Figure 1.5: Example two-colouring

For the following corollary of Theorem 1.9, we need the definition of the
degree of a vertex.

Definition 1.10 An edge is incident to a vertex, if the vertex is an endpoint of the
edge. The degree of a vertex is the number of edges incident to that vertex.

Corollary 1.11 The degree of the interior vertex in a flat vertex fold is even.

Proof Let v be the interior vertex and f1, . . . , fk the faces in clockwise or-
der around v (as illustrated in Figure 1.6a). The only possibility for a two-
colouring is to colour the faces with even indices in one colour and the faces
with odd indices in a second colour. But this gives a proper two-colouring
of the faces if and only if k is even. By Theorem 1.9, such a two-colouring
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1. Introduction

exists. Thus, we conclude that there must be an even number of faces, which,
in the case of a single vertex, corresponds to the degree of v. □

(a) Single-vertex fold

(b) Flatfoldability

Figure 1.6: Vertex degree of flat vertex fold

We observe that the crease pattern in Figure 1.6a is indeed a flat vertex fold,
as in Definition 1.8. Since it has exactly one interior vertex and, as can be
seen in Figure 1.6b, the crease pattern folds flat. One important thing to
note in this specific example is that the angles of faces f1 and f5 are the
same. Similarly, the angles of f2 and f4 as well as f3 and f6 are the same.
This ensures that after folding along the dashed crease line, the dotted edge
is mapped to the other dotted edge and the remaining two edges also have
the same image after mapping.
Instead of doing a proof by picture, we could apply Kawasaki’s Theorem
2.7, which will be introduced later, to see that this crease pattern is indeed
flatfoldable.

So far we have learned some basic concepts and have seen a very hands-on
proof using origami. In the next chapter, we will restrict ourselves to flat
vertex folds. The theorems we will encounter will lead us into the area of
combinatorics.
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Chapter 2

Flat Vertex Folds

In this chapter, theorems on necessary and sufficient conditions for a given
crease pattern to be flatfoldable will be encountered.

2.1 Cone

For now, we focus on single-vertex folds and we use the following notation,
also illustrated in Figure 1.4. Given a flat vertex fold G = (V, E), let
E = {ℓ0, ℓ1, . . . , ℓ2n−1} be the edges meeting at the vertex, and let αi be the
angle between the edges ℓi and ℓi+1 (and α2n−1 is between ℓ2n−1 and ℓ0).
Recall from Corollary 1.11 that the number of edges in a flat vertex fold is
indeed even. To generalise things later, we need the following definition. In
Figure 2.1, an illustration is given for the paper R being in a round shape.

Definition 2.1 A single-vertex crease pattern on a cone is a single-vertex crease
pattern G on a closed bounded region R on the surface of a cone that includes the
apex and where the interior vertex of G is placed at the apex of the cone. The cone
angle of the cone is the sum of the angles around the apex of the cone. If the cone
angle equals 2π, then we are folding flat paper. If the cone angle is greater than 2π,
then we are folding hyperbolic paper.

Unless otherwise noted, we will focus on flat paper.

2.2 Mountain-Valley Parity: Maekawa’s Theorem

In the last chapter, the question of the number of valid MV assignments for
a given crease pattern arose. The following theorem, also called Maekawa’s
Theorem, turns out to be a useful tool to get closer to an answer to this
question. This theorem is said to be a foundational result for flat vertex
folds.

7



2. Flat Vertex Folds

Figure 2.1: Flat paper vs. Cone

Theorem 2.2 The difference between the number of mountain and valley creases in
a flat vertex fold on a cone with cone angle ≤ 2π is 2. In other words, if µ is a valid
MV assignment for a flat vertex fold on a cone with creases ℓ0, . . . , ℓ2n−1 and cone
angle ≤ 2π, then ∑2n−1

i=0 µ(ℓi) = ±2.

We will refer to ∑2n−1
i=0 µ(ℓi) = ±2 as Maekawa’s Condition.

Observation 2.3 We observe that Maekawa’s Theorem does not hold for general
multiple-vertex crease patterns. A counterexample can be found in Figure 1.5, where
we have a valid MV assignment with eight valleys and four mountains.

As we saw in the introductory chapter, some proofs can be done in a very
practical way. All we have to do is fold paper, look at it, and find an argu-
ment to generalise it to any fold of that kind. The following proof will be of
this type.
Recall from Definition 1.5 that M denotes the number of mountains and V
the number of valleys.

Figure 2.2: Proof of Maekawa’s Theorem 2.2

Proof Let G be the crease pattern for a given flat vertex fold. We fold G flat
and cut off the apex/vertex. See Figure 2.2 for an illustration. We imagine
that we are walking clockwise along this created cut edge, starting at any

8



2.3. Flatfoldability: Kawasaki’s Theorem

point on it. Whenever we encounter a crease, we change direction accord-
ingly. If the fold is a mountain, we rotate by π, and if it is a valley, we rotate
by −π. When we are back at the starting point, we have made a turn of 2π.
This gives us the equation πM-πV = 2π. We divide by π and find that the
difference between the number of mountain and valley creases is two. By
the symmetry argument of Observation 1.6 we also get the value -2. □

Maekawa’s Theorem works only in one direction. There are MV assignments
such that the difference between M and V is two, but the assignment is not
valid. In Figure 2.3, two MV assignments are given. Both satisfy Maekawa’s
Condition, but are not flatfoldable. Later we will encounter Hull’s Theorem
2.10 which allows us to show that they are indeed not flatfoldable.

Figure 2.3: Maekawa’s Theorem is not sufficient

Remark 2.4 The sign of the total sum in Maekawa’s Condition is determined by
the orientation of the paper R. To demonstrate this, we will first examine an example
involving two creases. In Figure 2.4, the negative side of the paper, say side A, has a
tiling to distinguish it from the positive side B. The two edges in this crease pattern
are either both valleys, then the total sum in Maekawa’s Condition is 2 and the
positive side of the paper is inside. Or both edges are mountains, then the sum is
negative and the negative side of the paper is inside. According to the Jordan Curve
Theorem, there is always an inside and an outside.
In general, flat vertex folds on a cone exhibit the following property.

2n−1

∑
i=0

µ(ℓi) =

{
+2, if the positive side is inside
−2, if the negative side is inside

2.3 Flatfoldability: Kawasaki’s Theorem

In the last section, we have learned about Maekawa’s Theorem and how
it is only a necessary condition for flatfoldability. In this section, we will
encounter a theorem that is necessary and sufficient for flatfoldability. In
order to get there, we need the following definition and lemma.

9



2. Flat Vertex Folds

Figure 2.4: Sign determined by paper orientation

Definition 2.5 For a finite sequence of positive real numbers (α0, . . . , α2n−1), we
define the partial alternating sum as

S(i, j) = αi − αi+1 + αi+2 − · · · ± αj

for 0 ≤ i, j ≤ 2n − 1 and we take indices mod 2n.

Lemma 2.6 Let (α0, . . . , α2n−1) be a sequence of 2n positive real numbers such that
S(0, 2n − 1) = 0. Then there exists a k with 0 ≤ k ≤ 2n − 1 such that S(k, i) ≥ 0
for every 0 ≤ i ≤ 2n − 1.

Proof If S(0, i) ≥ 0 ∀i, we let k = 0 and we’re done.
Suppose ∃i s.t. S(0, i) < 0 and we let k − 1 be an index such that

S(0, k − 1) = min
0≤i≤2n−1

{S(0, i)}.

Note that S(0, 0) = α0 > 0 and S(0, i) > S(0, i − 1) for i even, by definition
of the partial alternating sum and the fact that the α’s are positive. So k − 1
must be odd, otherwise the alternating sum wouldn’t be minimal.
By the choice of k − 1 we have the following inequality for all 0 ≤ i ≤ 2n − 1.

k−1

∑
t=0

(−1)tαt = S(0, k − 1) ≤ S(0, i) =
i

∑
t=0

(−1)tαt (2.1)

We distinguish the following three cases for i.

• When i ≥ k, we subtract ∑k−1
t=0 (−1)tαt on both sides of the inequality

(2.1) to get that

0 ≤
i

∑
t=k

(−1)tαt.

Since k − 1 is odd, we have that k is even. Thus, the alternating sum
above starts with a positive term and is therefore equal to S(k, i). We
conclude for this case that

S(k, i) ≥ 0.

10



2.3. Flatfoldability: Kawasaki’s Theorem

• For i ≤ k − 2, the following inequality is obtained by subtracting ∑i
t=0(−1)tαt

from both sides of (2.1).

k−1

∑
t=i+1

(−1)tαt ≤ 0 (2.2)

To use the inequality (2.2), we first split S(0, 2n − 1) as follows.

S(0, 2n − 1) =
2n−1

∑
t=0

(−1)tαt =
i

∑
t=0

(−1)tαt +
k−1

∑
t=i+1

(−1)tαt +
2n−1

∑
t=k

(−1)tαt

If we take the indices mod 2n and use that S(0, 2n− 1) = 0, the above
reduces to

0 =
k−1

∑
t=i+1

(−1)tαt +
i

∑
t=k

(−1)tαt.

Which is equivalent to

i

∑
t=k

(−1)tαt = −
k−1

∑
t=i+1

(−1)tαt.

Now we use the fact that k is even and thus ∑i
t=k(−1)tαt = S(k, i).

Together with Equation (2.2) we get that S(k, i) ≥ 0.

• When i = k − 1, we rearrange S(0, 2n − 1) as follows, using the fact
that k is even and that the indices are taken mod 2n.

S(0, 2n − 1) =
2n−1

∑
t=0

(−1)tαt =
k−1

∑
t=k

(−1)tαt = S(k, k − 1)

With the assumption S(0, 2n − 1) = 0 we get that S(k, k − 1) = 0.

In each of the above cases we get S(k, i) ≥ 0. □

Now, we are ready for Kawasaki’s Theorem.

Theorem 2.7 Let G be a single-vertex crease pattern on a cone with cone angle
A ≤ 2π and with consecutive angles between the creases α0, . . . , α2n−1. Then G is
flatfoldable if and only if S(0, 2n − 1) = 0.

The condition S(0, 2n− 1) = 0 is also referred to as the Kawasaki Condition.
As we will see, this proof of Theorem 2.7 is constructive.

Proof ⇒ Let G be a flat vertex fold with consecutive angles α0, . . . , α2n−1
and suppose that G is embedded on a piece of paper R that is either a
circle or cone of radius 1 with the interior vertex at the circle’s centre
(or cone’s apex). Then the angles αi in radian measure are equal to

11



2. Flat Vertex Folds

Figure 2.5: First direction of Kawasaki’s Theorem

the arc-lengths. Let γ be the oriented curve on the boundary of R, and
assume that γ starts at the crease between angles α2n−1 and α0. Further,
assume that γ travels on the arcs in the direction of the increasing
indices of the angles. We fold G flat and consider the image of γ
under this folding. It will follow an arc of length α0 in one direction,
then an arc of length α1 in the opposite direction, and so on until it
returns to the starting point. See Figure 2.5 for an illustration. The
(oriented) distance travelled can thus be expressed as

0 = α0 − α1 + α2 − · · · − α2n−1 = S(0, 2n − 1).

⇐ Assume, we are given a single-vertex fold G satisfying S(0, 2n− 1) = 0.
By Lemma 2.6, there is a k such that S(k, i) ≥ 0 for every 0 ≤ i ≤ 2n− 1.
As in the lemma, we will take the indices mod 2n. Let ℓi denote the
crease between the angles αi−1 and αi in G, as in the first part of Figure
2.6. We define the following MV assignment for G.

µ(ℓk+i) =


−1 for i odd

1 for i even, i ̸= 0
−1 for i = 0

By showing that this assignment is valid, we prove flatfoldability of
G. In order to do this, we imagine that we cut along the crease ℓk and
fold the other creases according to the MV assignment defined above.
This results in a zigzag shape, as can be seen in the second part of
Figure 2.6. Firstly, we observe that this zigzag shape folds flat. Second,
it has no self-intersections and since S(k, i) ≥ 0 for all 0 ≤ i ≤ 2n − 1
there are no layers between the two ends of the cut ℓk. Finally, since
S(k, k − 1) = S(0, 2n − 1) = 0, both ends of the cut end at the same
location. The third part of the figure illustrates this. So in this zigzag
shape, the cut can be glued back together, making ℓk a mountain crease
and proving that the MV assignment is valid. □

12



2.3. Flatfoldability: Kawasaki’s Theorem

Figure 2.6: Other direction of Kawasaki’s Theorem

We recall from Section 2.1 that the cone angle A is defined as A = ∑2n−1
i=0 αi.

This is used in the following corollary to Kawasaki’s Theorem.

Corollary 2.8 Let G be a single-vertex crease pattern on a cone with cone angle
A ≤ 2π and with consecutive angles between the creases α0, . . . , α2n−1. Then G is
flatfoldable if and only if α1 + α3 + · · ·+ α2n−1 = α0 + α2 + · · ·+ α2n−2 = A

2 .

Proof We recall the Kawasaki Condition S(0, 2n − 1) = 0. Adding the cone
angle A to both side of this equation leads to

n−1

∑
i=0

2α2i = A.

Dividing by two results in the second part of the corollary.
If we first multiply the Kawasaki Condition by −1 and then add the cone
angle A, we get that

n

∑
i=1

2α2i−1 = A.

Again, dividing by two completes the proof. □

13



2. Flat Vertex Folds

2.4 Big-Little-Big Lemma

So far we have seen two important theorems: Maekawa’s Theorem, a state-
ment on the mountain-valley assignment, and Kawasaki’s Theorem, a state-
ment on the angle sequence. In this section, we come across a lemma that
proves certain MV assignments to be invalid by looking at the angle se-
quence. The lemma is called the big-little-big lemma, where the name
refers to the (relative) size of consecutive angles.

Lemma 2.9 Let G be a flat vertex fold with angle sequence (α0, . . . , α2n−1) and a
valid MV assignment µ. If αi−1 > αi < αi+1 for some i, then µ(ℓi) ̸= µ(ℓi+1).
(That is, µ(ℓi) + µ(ℓi+1) = 0.)

We illustrate this lemma in Figure 2.7, where we have α0 > α1 < α2. If we
assign µ(ℓ1) = µ(ℓ2) then, two angles try to cover a smaller angle on the
same side of the paper, which cannot be folded flat without creating a new
crease or forcing self-intersection of the paper.

Figure 2.7: Big-Little-Big

As the name of the big-little-big lemma suggests, it is about one (little) angle
between two bigger angles. The next section is about the case where we have
more than one little angle, but all equal, enclosed by bigger angles as illus-
trated in Figure 2.8. It will turn out that the Big-Little-Big Lemma is a special
case of the more general theorem stated in the next section. Therefore, we
do not prove Lemma 2.9 separately.

2.5 Generalisation: Hull’s Theorem

In this section, we consider crease patterns as in Figure 2.8. We follow the
theorem and the proof from [3], but with a variation of the indices.

Theorem 2.10 Let G be a flat vertex fold with angle sequence (α0, . . . , α2n−1), and
suppose that we have α1 = α2 = · · · = αk < α0, αk+1 (where the indices are
taken mod 2n). Then an MV assignment µ for G will be valid among the creases
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2.5. Generalisation: Hull’s Theorem

Figure 2.8: α0 > α1 = · · · = αk < αk+1

ℓ1, . . . , ℓk+1 if and only if

k+1

∑
j=1

µ(ℓj) =

{
0, if k is odd.
±1, if k is even.

Observation 2.11 For k = 1, Theorem 2.10 reduces to the Big-Little-Big Lemma
2.9 from the last section.

Proof ⇒ To prove the first direction, we assume that µ is a valid MV
assignment among the creases ℓ1, . . . , ℓk+1. In the flatfolded state we
consider the part corresponding to the angles α0, . . . , αk+1 and we add
a section of paper Pβ with angle β so that it is still flatfolded. We use
the notation µ(Pβ) to denote the sum of the MV values of the creases
on the added paper section Pβ. Now, we apply Maekawa’s Theorem
2.2 to get

k+1

∑
i=1

µ(ℓi) + µ(Pβ) = ±2. (2.3)

We consider the two cases separately and recall from Remark 2.4 that
the sign of the sum depends on the side of the paper that lies inside.

If k is even, the extra section Pβ has exactly one crease. See Figure
2.9 for an example. If the positive side of the paper is on the inside,
then Pβ is adding a valley. Together with Remark 2.4, Equation (2.3)
reduces to the following.

k+1

∑
i=1

µ(ℓi) + 1 = +2 ⇒
k+1

∑
i=1

µ(ℓi) = +1

15



2. Flat Vertex Folds

Figure 2.9: Case k even

Similarly, if the negative side is inside, a mountain crease is added.

k+1

∑
i=1

µ(ℓi)− 1 = −2 ⇒
k+1

∑
i=1

µ(ℓi) = −1

For k odd, there are always two alternative ways to add the extra
section Pβ. In one case, the negative side is inside, in the other case,
the positive side is inside. The extra section Pβ is adding two creases
of the same MV parity, as illustrated in Figure 2.10. If the positive side
is inside, then Pβ is adding two valleys. Together with Remark 2.4,
Equation (2.3) reduces to the following.

k+1

∑
i=1

µ(ℓi) + 2 = 2

Similarly, if the negative side is inside, two mountains are added, giv-
ing the following equation.

k+1

∑
i=1

µ(ℓi)− 2 = −2

In both cases we get
k+1

∑
i=1

µ(ℓi) = 0.

Figure 2.10: Case k odd
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2.5. Generalisation: Hull’s Theorem

Figure 2.11: Induction base k=1

⇐ We prove the other direction by induction on k. For k = 1 we have
∑2

j=1 µ(ℓj) = 0. Hence, the two neighbouring creases to the little angle
have opposite MV parity. As it can be seen in Figure 2.11 this is flat-
foldable and thus the MV assignment is valid among the creases ℓ1, ℓ2.
In the case k = 2, we have ∑3

j=1 µ(ℓj) = ±1. So we have either two
mountains and one valley or one mountain and two valleys among
ℓ1, ℓ2, ℓ3. We show that all three possible assignments of two mountains
and one valley among these creases are valid. This can be checked by
folding the creases ℓ1, ℓ2, ℓ3 accordingly and making sure they end up
flat. See Figure 2.12 for an illustration. The other three cases follow by
the symmetry property of Observation 1.6.

Figure 2.12: Induction base k=2

For an arbitrary k, there always exist two neighbouring creases of op-
posite MV parity, say ℓi, ℓi+1 with 1 ≤ i ≤ k. We fold these two creases
and imagine that the sections of angles αi and αi+1 have been fused
to the other layers. See Figure 2.13 for an illustration. This results
in a fold with angle sequence (α0, . . . , αi−1, αi+2, . . . , α2n−1). Since the
creases ℓi and ℓi+1 have been of opposite MV parity, the sum takes the
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2. Flat Vertex Folds

same value as before.

k+1

∑
j=1,j ̸=i,i+1

µ(ℓj) =
k+1

∑
j=1

µ(ℓj)

We apply the induction hypothesis to get that the MV assignment is
valid among the creases ℓ1, . . . , ℓk+1. □

Figure 2.13: Fusion of layers
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Chapter 3

Counting valid MV assignments

In the last chapter, we have learned tools to find out whether a given MV
assignment is valid or not. In this chapter, we want to count the number of
valid MV assignments. Recall from Definition 1.5 that an MV assignment is
valid, if it can be realized by a flat origami. We begin this chapter with an
example.

3.1 Example

We consider the crease pattern in Figure 3.1 and note that we have already
seen it in Section 2.2. Now, we want to count the number of valid MV
assignments for this crease pattern.

Figure 3.1: α1 = α2 < α0, α3

First, we apply Maekawa’s Theorem 2.2 to this four-edge crease pattern.
Therefore, we must have either three mountains and one valley or three val-
leys and one mountain crease. There are in total 2 · (4

1) = 8 possibilities for
this. Hence, we have an upper bound on the number of valid MV assign-
ments.
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3. Counting valid MV assignments

Observe that we have α1 = α2 < α0, α3. We use Theorem 2.10 for k even
to get ∑3

j=1 µ(ℓj) = ±1. In particular, the two assignments where the edges
ℓ1, ℓ2, ℓ3 have the same MV parity (see Figure 2.3) are invalid.

For the remaining six MV assignments, we can check that they are valid by
folding them and seeing that they end in a flat state. Figure 3.2 shows three
results of the different MV assignments. The other three are the symmetrical
cases where the mountains and valleys are reversed.

Figure 3.2: Valid MV assignments

3.2 Bounds

As already seen in the example before, we can use Maekawa’s Theorem for
an upper bound on the number of valid MV assignments for a given crease
pattern. Before we generalise this in a theorem, we introduce the following
notation. The settings are single-vertex folds of the form G = (V, E) with
E = {ℓ0, ℓ1, . . . , ℓ2n−1} and αi the angle between ℓi and ℓi+1. We denote by
C(α0, . . . , α2n−1) the number of valid MV assignments for G.
The following lemma treats a special case where all angles are equal.

Lemma 3.1 Any MV assignment, that satisfies Maekawa’s Condition 1 for a single-
vertex fold on a cone with cone angle A ≤ 2π with all angles equal, is valid.

Proof We prove this lemma by induction on the number of edges.
For 2n = 2, there are exactly two possibilities for an MV assignment that
satisfies Maekawa’s condition; either both edges are mountains or both are
valleys. They are clearly flatfoldable, so the two MV assignments are valid.
Now, suppose the claim holds for 2n ≥ 2 and consider a crease pattern
with 2n + 2 edges and all angles being equal. Consider an MV assign-
ment that satisfies Maekawa’s Theorem. Then, there exists an angle αk with
µ(ℓk) ̸= µ(ℓk+1). Folding these two edges according to µ gives a new single-
vertex crease pattern on 2n edges with angles (α0, . . . , αk−1, αk+2, . . . , α2n−1)
on a cone with cone angle A − 2αk. See Figure 3.3 for an illustration.
Since µ(ℓk) ̸= µ(ℓk+1) is equivalent to µ(ℓk) + µ(ℓk+1) = 0, the creases
ℓ0, . . . , ℓk−1, ℓk+2, . . . , ℓ2n−1 of the new crease pattern still satisfy Maekawa’s
condition. Finally, we use induction to show that the MV assignment is
valid. □

1∑2n−1
j=0 µ(ℓj) = ±2
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3.2. Bounds

Figure 3.3: Induction on number of edges

In the following theorem, we give bounds on the number of valid MV as-
signments for G.

Theorem 3.2 Let G be a flat vertex fold with angle sequence (α0, . . . , α2n−1). Then
2n ≤ C(α0, . . . , α2n−1) ≤ 2 · ( 2n

n−1) are sharp bounds.

Proof We start by proving the upper bound. Recall from Maekawa’s Theo-
rem 2.2 that for flat vertex folds we have ∑2n−1

j=0 µ(ℓj) = ±2. In other words,
n − 1 out of the 2n edges have equal MV parity and the remaining n + 1
edges have the opposite MV parity. This gives us the upper bound on the
number of valid MV assignments C(α0, . . . , α2n−1) ≤ 2 · ( 2n

n−1).
From Lemma 3.1 we know that if all the angles are equal, any MV assign-
ment satisfying Maekawa’s condition is valid. Therefore, we get that this
upper bound is sharp.

We prove the lower bound by induction on the number of edges. The proof
follows a similar idea to the one illustrated in Figure 3.3. The induction
basis is given by 2n = 2, where the lower bound holds with equality. Now
for 2n > 2, we consider a 2n-edge flat vertex fold on a cone with cone
angle A. Among all angles, we choose a smallest αi. If αi < αi−1, αi+1, then
from Lemma 2.9 we immediately have that µ(ℓi) ̸= µ(ℓi+1). If αi has a
neighbour of the same size, we apply Theorem 2.10 to get that not all the
edges that are incident to these smallest angles can have the same MV parity.
So we can assume without loss of generality that µ(ℓi) ̸= µ(ℓi+1) (else we
would rename the edges). Note that we have two possibilities for this, either
µ(ℓi) = 1 or µ(ℓi) = −1 and µ(ℓi+1) is determined by µ(ℓi) .
We fold the edges ℓi, ℓi+1 according to one of these MV assignments. We
obtain a new cone with cone angle A − 2αi and angle sequence
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3. Counting valid MV assignments

(α0, . . . , αi−2, αi−1 − αi + αi+1, αi+2, . . . , α2n−1). Note that by the choice of αi,
we have αi−1 − αi + αi+1 > 0. We use the induction hypothesis on this new
flat vertex fold with 2n − 2 edges, which gives us 2n−1 as a lower bound.
Finally, the lower bound of 2n is obtained by multiplying 2n−1 by the number
of possible values of µ(ℓi), which is two as discussed above. □

Although Theorem 3.2 gives us sharp bounds on the number of valid MV
assignments, it does not tell us how to compute the exact number, if not all
angles are equal.

3.3 Recursion

The following theorem gives a recursion to count the number of valid MV
assignments for crease patterns of the form shown in Figure 2.8.

Theorem 3.3 Let G be a flat vertex fold with angle sequence (α0, . . . , α2n−1), and
suppose that we have α1 = α2 = · · · = αk < α0, αk+1 for some k. Then

C(α0, . . . , α2n−1) =



(
k + 1

k+1
2

)
· C(α0 − α1 + αk+1, αk+2, . . . , α2n−1), if k is odd.(

k + 1
k
2

)
· C(α0, αk+1, αk+2, . . . , α2n−1), if k is even.

Before proving this theorem, let us first consider examples of how we apply
this recursion to a given flat vertex fold.

Example 3.4 Let us repeat the example from Section 3.1, now using Theorem 3.3.
We have the angle sequence (127◦, 53◦, 53◦, 127◦) (see Figure 3.1). We use the
recursion for k = 2 to get

C(127◦, 53◦, 53◦, 127◦) = 3 · C(127◦, 127◦).

From Lemma 3.1 we have that all MV assignments satisfying Maekawa’s Condition
are valid for the crease pattern with angle sequence (127◦, 127◦). There are two
such MV assignments, namely either both edges are mountains or both are valleys.
Therefore, we have

C(127◦, 127◦) = 2.

As we already know from Section 3.1 the number of valid MV assignments for G is
indeed

C(127◦, 53◦, 53◦, 127◦) = 3 · C(127◦, 127◦) = 3 · 2 = 6.

In the next example, we also look at what happens geometrically in each
recursion step. This will give us the intuition we need to prove the theorem.

22



3.3. Recursion

Figure 3.4: Example 3.5, Recursion

Example 3.5 Consider the angle sequence

(α0, α1, . . . , α2n−1) = (20, 10, 40, 50, 60, 60, 60, 60),

that is also illustrated in Figure 3.4. (The angles are measured in degrees, for
simplicity we omit the ◦ sign.) Since we have eight angles, 2n − 1 = 7 yields n = 4.
We use Theorem 3.3 to compute the number of valid MV assignments.
In the first step, we have k = 1 and

α0 = 20 > 10 = α1 = αk < 40 = α2.

Applying the theorem, we get that(
k + 1

k+1
2

)
· C(α0 − α1 + αk+1, αk+2, . . . ) =

(
2
1

)
· C(50, 50, 60, 60, 60, 60).

In the second part of Figure 3.4, we can see geometrically how, in the case of k
odd, the angles α0, . . . , αk+1 are replaced by a new angle of measure α0 − α1 + αk+1,
where the part consisting of the equal angles is folded flat and fused to one of the two
larger angles α0 or αk+1. If we had k > 1 and k odd, then the equal angles would be
layers upon each other, like the cross-section in Figure 2.10.
We continue to count the number of valid MV assignments for the new sequence.
Since the angle sequence is cyclic, we can reorder the new sequence to

(α0, α1, . . . , α5) = (60, 50, 50, 60, 60, 60).

We apply the theorem again, now for k = 2 and

α0 = 60 > 50 = α1 = α2 < 60 = α3,

to get that

C(60, 50, 50, 60, 60, 60) =
(

k + 1
k
2

)
· C(α0, αk+1, . . . ) =

(
3
1

)
· C(60, 60, 60, 60).

In the last part of Figure 3.4 we see what happens geometrically when k is even.
The part consisting of the equal angles is folded flat and fused to one of the two larger
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3. Counting valid MV assignments

angles α0 or αk+1. This larger angle completely covers all smaller angles. Hence,
the smaller angles are ignored in this recursion step.
For the last computation, we use Lemma 3.1 because all the angles are equal. To-
gether with the upper bound from Theorem 3.2 we get C(60, 60, 60, 60) = 2 · (4

1).
In the following, we add up all the calculation steps.

C(20, 10, 40, 50, 60, 60, 60, 60) =
(

2
1

)
· C(40, 50, 60, 60, 60, 60)

=

(
2
1

)
·
(

3
1

)
· C(60, 60, 60, 60)

=

(
2
1

)
·
(

3
1

)
· 2 ·

(
4
1

)
= 48

With a first intuition from the above examples, we are ready to prove Theo-
rem 3.3.

Proof We prove both cases separately.
If k is odd, then Theorem 2.10 gives us ∑k+1

j=1 µ(ℓj) = 0. Since all the angles

α1, . . . , αk are equal, any k+1
2 of among the k + 1 creases ℓ1, . . . , ℓk+1 can be

valleys, and the others are mountains. We fix one of these possibilities and
then fold the creases ℓ1, . . . , ℓk+1 accordingly. When we fuse the layers of
paper around these angles, the angles α0, . . . , αk+1 are replaced by an angle
with the measure α0 − α1 + αk+1. This gives us the stated recursion. See the
first and second image of Figure 3.4 for an illustration.
If k is even, we have by Theorem 2.10 that ∑k+1

j=1 µ(ℓj) = ±1.

If ∑k+1
j=1 µ(ℓj) = 1, we have k

2 + 1 valleys and k
2 mountains.

Similarly, if ∑k+1
j=1 µ(ℓj) = −1, we have k

2 valleys and k
2 + 1 mountains.

In both cases, there are (k+1
k
2
) possible ways to choose which of the creases

ℓ1, . . . , ℓk+1 are valleys and which are mountains. This gives the factor in the
recursion.
Now we consider such an MV assignment for the creases ℓ1, . . . , ℓk+1 and
we fold them accordingly. Then the angles α0 or αk+1 will absorb the folded
layers. Hence, we can omit the angles α1, . . . , αk in the sequence for the next
recursion step. The third image of Figure 3.4 gives an illustration. □
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Chapter 4

Conclusion

A main goal of this thesis was to count the number of valid MV assignments
for flat vertex folds. We ended up with a recursion formula to compute the
number of valid MV assignments, specifically designed for flat vertex folds
of certain types, where larger angles enclose one or more smaller angles
(Theorem 3.3). Additionally, using Lemma 3.1 and Theorem 3.2, we are able
to calculate the number of valid MV assignments for flat vertex folds having
uniformly equal angles.

Throughout this thesis, we encountered various theorems. Kawasaki’s The-
orem 2.7, for instance, serves as a certificate for flatfoldability, while Hull’s
Theorem 2.10 aids in identifying situations where MV assignments, despite
satisfying Maekawa’s Condition, are invalid.

A central theorem in this thesis is Maekawa’s Theorem 2.2. As can be seen in
the proof of Theorem 3.2, Maekawa’s Theorem establishes an upper bound
on the number of valid MV assignments for flat vertex folds. Further, in
this thesis, we used Maekawa’s Theorem to prove several other statements.
However, Observation 2.3 highlights its limitation in the context of multiple-
vertex folds.

Looking ahead, a possible extension of this work involves addressing the
enumeration of multiple-vertex flat folds, a subject treated in the Chapters 6
and 7 of [4].
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