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Abstract

In this thesis, platonic solids and their classification are studied. We
give a rigorous proof that there are exactly five platonic solids, which
are uniquely determined by their Schläfli symbol. The three milestones
in this proof are Euclid’s foundational contributions in ”Elements”, Eu-
ler’s formula linking the number of faces, edges and vertices, and
Cauchy’s rigidity theorem. A particular approach in this thesis is
to associate a unique planar graph to platonic solids with the same
Schläfli symbol. The thesis concludes with a complete list of the five
platonic solids, their fundamental properties and provides explicit con-
structions.
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Chapter 1

Introduction

The study of platonic solids has its roots in the time of Euclid more than
two thousand three hundred years ago, and still fascinates after all this time.
Starting with Euclid’s work, there are three milestones leading to the com-
plete classification of platonic solids.

In his work Elements Euclid assembled the work of his predecessors. The
main topics are geometry, proportion and number theory. Euclid arranged
these known results in a logical manner, so as to demonstrate (admittedly,
not always with the rigour demanded by modern mathematics) that they
necessarily follow from five simple axioms. He is credited with devising a
number of particularly ingenious proofs of previously discovered theorems.
The Elements consists of thirteen books and only in the last one, Book 13,
he investigates the platonic solids. With his work Euclid created a book
that soon became the standard for geometry and which even today is in the
syllabus of a typical geometry course in school.

The second milestone was in the eighteenth century when Euler presented
his formula that connected the numbers of polygonal faces, edges and ver-
tices of convex polyhedra. The third milestone that contributed to a com-
plete classification of the five platonic solids is Cauchy’s rigidity theorem,
Cauchy’s first mathematical accomplishment.

In this thesis, we aim to give the complete classification of platonic solids
using Euler’s formula and Cauchy’s rigidity theorem. We start by giving
the definition for platonic solids together with some basic geometrical defi-
nitions and useful properties.

In the second chapter, we introduce Euler’s formula and give its proof. We
outline the different important steps to complete the classification of platonic
solids. We also give the definitions of the Schläfli symbol, named after the
Swiss mathematician Ludwig Schläfli, and the corresponding Eulerian triple.
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1. Introduction

We demonstrate their connection to platonic solids by showing that for those
exactly five Schläfli symbols are possible.

In the third chapter, we show that one can associate an essentially unique
planar graph to a platonic solid, which is solely characterized by its Schläfli
symbol. This is a personal approach which connects platonic solids with the
same Schläfli symbol to the hypothesis in Cauchy’s rigidity theorem.

In the fourth chapter, we prove Cauchy’s rigidity theorem using a result
by Steinitz. Steinitz found a gap in the original proof and could repair it
one hundred years later. Cauchy’s rigidity theorem will then be used to
complete the classification of platonic solids.

In the last chapter, we list all five platonic solids and state some of their basic
properties, e.g., all vertices of a platonic solid lie on a sphere. Furthermore,
a construction of each of the five figures will be given.

This thesis is aimed at undergraduate students with interest in exploring
geometry in a rigorous manner. It closely follows the book Geometry: Euclid
and Beyond by Hartshorne [4]. Additional material stems from the classical
references Proofs from THE BOOK by Aigner and Ziegler [1] and Regular
Polytopes by Coxeter [2]. Coxeter’s book and particularly Chapter 8 in [4]
are recommended for further reading. The historically inclined reader will
appreciate Euclid’s work Elements and its translation in Euclid’s Elements of
Geometry by Fitzpatrick [3].
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Chapter 2

Definition of Platonic Solids

The goal of this chapter is to give a formal definition of a platonic solid and
to provide several illustrative examples. First, we need to introduce some
basic and general definitions of figures in two- and three-dimensional space.

2.1 Basic Definitions and Properties

Definition 2.1 A regular polygon in the plane is an equilateral and equiangular
polygon, i.e., a polygon where every side has the same length and all angles between
two sides are equal.

Definition 2.2 Two sets of points are congruent if there exists a combination of
translations, rotations and reflections that maps one set onto the other.

The sets of points are said to be congruent up to a scaling factor if they are
congruent after first scaling them, thus, not taking their specific size into
account. The first proposition is a general statement about regular polygons
and their properties.

Proposition 2.3 In the plane, for any n ≥ 3, there exists a regular polygon
of n sides having a given segment as a side. Any two regular n-polygons are
congruent up to a scale factor. The vertices of a regular n-polygon lie on a
circle.

Proof Existence: Consider a circle and place n evenly spaced points on its
circumference. These points will create angles of 2π

n at the circle’s center.
By adjusting the scale factor, you can match the side length to any specified
segment.
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2. Definition of Platonic Solids

Congruence, lying on a circle: Take a regular n-polygon with a side labeled
AB. Split the equal angles between the two edges meeting at A and between
the two edges meeting at B in half and let these angle bisectors intersect at
point O. This ensures that point O is equidistant from both A and B. By
repeating this method for all other vertices, it becomes clear that O is at an
equal distance from all of them. As a result, all these vertices lie on a circle
centered at O. Therefore, any two regular n-polygons sharing a side will be
congruent. Thus any two regular n-polygons are congruent up to a scale
factor. �

Definition 2.4 A polyhedron is the surface of a solid figure in three-dimensional
space bounded by plane polygons. When two polygons meet in more than one point,
they must have an entire edge in common. These plane polygons are called the
faces of the polyhedron, their edges are called the edges of the polyhedron and their
vertices are called the vertices of the polyhedron.

alignment of two faces
which is not allowed

a general polyhedron

Thus for any polyhedron P we define the three sets

F (P) := {F1, . . . , Ff }, the set of faces of P,

E(P) := {E1, . . . , Ee}, the set of edges of P,
V(P) := {V1, . . . , Vv}, the set of vertices of P.

The cardinality of these sets yields the triple ( f , e, v) defined as:

f = |F (P)| = number of faces of P,
e = |E(P)| = number of edges of P,
v = |V(P)| = number of vertices of P.

Definition 2.5 A polyhedron P is convex if for any two points on P, the line
segment between them is entirely contained in the solid figure bounded by the poly-
hedron.

Now, we are in the position to give a definition of a platonic solid.
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2.2. Two Examples of Platonic Solids

Definition 2.6 A platonic solid is a convex polyhedron whose faces are all
equal regular polygons and having the same number of faces meeting at each
vertex.

If the polyhedron satisfies all properties of a platonic solid except for con-
vexity, then it is called a regular polyhedron.
The next definition introduces a further notion for polyhedra which is par-
ticularly important when stating properties of platonic solids.

Definition 2.7 A dihedral angle ϑ of two faces of a polyhedron is the angle be-
tween the two faces that meet in one edge.

ϑ

ϑ

ϑ

the dihedral angle ϑ of two faces
in elevation and plane view

2.2 Two Examples of Platonic Solids

The first example of a platonic solid is the cube, a figure that the reader will
have most likely already seen. The cube is composed of six equal squares
and every vertex connects three squares. The second example is the tetra-
hedron, a triangular pyramid formed of four regular triangles and where
every vertex connects three triangles. By symmetry of the figure, the dihe-

Tetrahedron and Cube

dral angle of the tetrahedron is equal for any two faces. For the cube the
dihedral angle is the same as well and because any two faces sharing an
edge are perpendicular the dihedral angle is ninety degrees.
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Chapter 3

Euler’s Formula

In this chapter, we introduce Euler’s formula and give a complete proof.
We outline the important steps in the proof of the classification of platonic
solids.

3.1 Euler’s Formula

Euler’s formula is an important, yet simple equation, which relates the num-
ber of faces, edges and vertices of a convex polyhedron.

Euler’s formula

Theorem 3.1 (Euler’s formula.) Let P be a convex polyhedron with the
number of faces, edges and vertices denoted as f , e and v respectively. Then
the following equation holds

f − e + v = 2. (3.1)

Proof Let P be a convex polyhedron. We will prove this theorem in three
steps, following closely Hartshorne’s proof in [4].

Step 1. The first step is to project P onto the plane. Because the polyhedron
is convex it is possible to look through the center of one face and see all
the other faces with no overlap. Taking a step back from the polyhedron
one can also see the edges of the face one is looking through. This image
can be projected onto the plane to obtain a plane figure with vertices and
edges. The projection does not preserve the angles and distances, but the
edges remain straight and no edges intersect. The faces of P correspond to
the plane polygons restricted by the edges in the plane except for the one
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3. Euler’s Formula

face one is looking through. This specific face corresponds to the area on
the plane outside the plane figure.

Step 2. As a next step, we define two operations on the plane figure.

(i) removing edges: One takes any edge that separates two faces, or that sep-
arates one face from the area outside the figure and removes that edge. This
decreases the number of edges by one but it also decreases the number
of faces by one since the operation joins the two faces, which were sep-
arated by the removed edge. Thus the value of the expression f − e+ v
stays the same.

(ii) removing vertices: If at some point, (i) results in a vertex having only
one edge connected to it, one removes the vertex as well as the edge. This
decreases the number of edges by one and this time it decreases the
number of vertices by one too. The removed vertex was contained
in exactly one face of the plane figure, since the vertex was only con-
nected to one edge. Thus, the number of faces does not change. So
again the value of the expression f − e + v stays unchanged.

Step 3. As a last step, we apply these operations on the plane figure. We
repeat operation (i) until it is no longer possible. This means that there are
no loops in the remaining figure and thus there must be at least one vertex
with only one edge connected to it. Use operation (ii) until there are only
vertices and no edges left in the remaining figure. Note that the original
figure is connected and it stays connected by performing step (i) or (ii), so
it is just one vertex left in the plane. Hence

f = 1, e = 0, v = 1
=⇒ f − e + v = 2

Since the value of the expression f − e + v is unchanged by applying the
operations multiple times, the original expression f − e + v is equal to 2 and
thereby the proof is complete. �

Clearly, platonic solids have this characteristic triple ( f , e, v), which satisfies
Euler’s formula. However, there is another pair of numbers that character-
izes platonic solids. The pair of numbers follows directly from the definition
of platonic solids and is defined as follows:

Definition 3.2 Let P be a platonic solid. Then let n ∈ N be the number
of vertices of one face of P and c ∈ N be the number of faces that meet at a
vertex. The pair (n, c) is a special case of the Schläfli symbol (see [2]).

This pair of numbers is well-defined since by definition all the faces of a
platonic solid are equal regular n-polygons and at every vertex the same
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3.2. Strategy for the Proof of the Classification of Platonic Solids

number c of faces are meeting. Furthermore, the number of edges meeting
at each vertex is also c because any two neighbouring faces meeting in more
than one point have one edge in common.

3.2 Strategy for the Proof of
the Classification of Platonic Solids

In this section, we outline the proof that exactly five platonic solids exist by
dividing it into four steps. We will prove the first two steps, whereas the
other two steps will be proven independently in the next chapters. We will
postpone the ultimate proof to Chapter 5. The outline of the important steps
is as follows

1. We show that the definition of a platonic solid restricts the possible
pairs of (n, c) ∈N×N.

2. For any platonic solid we connect the two sets of numbers (n, c) and
( f , e, v) using the definition of two polyhedra being similarly arranged.

3. We introduce Cauchy’s Rigidity Theorem.

4. Finally, we apply Cauchy’s Rigidity Theorem to the special case of
platonic solids.

Lemma 3.3 For a platonic solid there are only five possible pairs (n, c) given
by

A := {(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}

Proof Let P be a convex regular polyhedron with associated pair (n, c) ∈
N×N and triple ( f , e, v) ∈ N×N×N. Any regular polygon has at least
three vertices and each vertex of a polyhedron must connect at least three
edges to build a three dimensional figure. Hence the following inequalities
hold:

n ≥ 3 and c ≥ 3. (3.2)

The next step is to take a closer look at counting the edges of the polyhedron
P: Each edge appears in exactly two faces of P and every face is bounded
by n edges. Also, each edge is connected to exactly two vertices and every
vertex connects c edges. Thus the following two equations hold:

f n = 2e = vc. (3.3)

Now, consider Euler’s formula stating that f − e + v = 2 and substitute f
and v to get an equation depending only on n, c and e:

2 = f − e + v =
2e
n
− e +

2e
c

=

(
2
n
− 1 +

2
c

)
e. (3.4)
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3. Euler’s Formula

As the number of edges e is always positive, it follows that the term in the
brackets on the right hand side must also be positive. This leads to the
following inequalities:

2
c
− 1 +

2
n
> 0⇐⇒ 1

c
+

1
n
>

1
2

⇐⇒ 1
c
>

1
2
− 1

n
(3.5)

Using (3.5) and n ≥ 3, it follows that c < 6. Similarly, using c ≥ 3 it holds
that n < 6. Together with the conditions (3.2), this results in

n ∈ {3, 4, 5}, c ∈ {3, 4, 5}.

By inserting all possible values for n into the equation (3.5), we obtain the
following five pairs (n, c).

n = 3 : 1
c > 1

2 −
1
3 = 1

6 =⇒ c ∈ {3, 4, 5}

n = 4 : 1
c > 1

2 −
1
4 = 1

4 =⇒ c = 3

n = 5 : 1
c > 1

2 −
1
5 = 3

10 =⇒ c = 3


{(3, 3), (3, 4), (3, 5), (4, 3), (5, 3)}

These pairs determine the five possible pairs (n, c) of a platonic solid, thus
the elements of A. This concludes the proof of the first lemma. �

Lemma 3.4 For any platonic solid there exists a map from the pair (n, c)
onto the corresponding triplet ( f , e, v) given by

e =
2

( 2
c − 1 + 2

n )

f =
2e
n

v =
2e
c

Proof Let P be a convex regular polyhedron. We use Equations (3.4) and
(3.3) in the proof of Lemma 3.3 to find an explicit formula for e depending
only on n and c. This formula then yields an explicit formula for f and v.

(3.4)
=⇒ e =

2
( 2

c − 1 + 2
n )

(3.6)

(3.3)
=⇒ f =

2e
n

, v =
2e
c

(3.7)
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3.2. Strategy for the Proof of the Classification of Platonic Solids

These formulas are well-defined since n, c 6= 0 and 2
c − 1 + 2

n 6= 0 for all
(n, c) ∈ A, where A is denoting the set of all possible pairs (n, c) for a
platonic solid, as in Lemma 3.3. To verify that f , e, v ∈ N, we insert the
value for every (n, c) ∈ A into the Formulas (3.6) and (3.7). For example for
(n, c) = (3, 3), we obtain

e =
2

( 2
c − 1 + 2

n )
=

2
( 2

3 − 1 + 2
3 )

= 6

f =
2e
n

=
12
3

= 4

v =
2e
c

=
12
3

= 4

which shows that f , e, v ∈N for (n, c) = (3, 3). The verification for the other
four pairs (n, c) is left to the reader. This concludes the proof of Lemma
3.4. �

The next definition is needed to address Step 2 above, namely to describe
the relation between two convex polyhedra with the same number of faces.

Definition 3.5 Let P, P be two polyhedra. If a bijection

ϕ : F (P)→ F (P)

exists, such that each face Fk ∈ F (P) is congruent to the face ϕ(Fk) ∈ F (P)
and such that ϕ extends to a bijection of vertices and edges preserving all
incidence relations, then P and P are called similarly arranged.

If two platonic solids satisfy the hypothesis from above except for having
congruent faces, then the term combinatorially equivalent is used (e.g.,
page 75 in [1]). We work with the term similarly arranged since it is used
in the main reference of this thesis [4]. The notion of combinatorially equiv-
alent is much weaker than the notion of congruence of two polyhedra. For
instance two pyramids with triangular base and different heights are combi-
natorially equivalent but not congruent, as illustrated in Figure 3.1 below.

Figure 3.1: Example of two combinatorially equivalent polyhedra
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3. Euler’s Formula

A crucial result, mentioned in Step 3 above, is Cauchy’s rigidity theorem. It
will be proven independently in Chapter 5 below.

Theorem 3.6 (Cauchy’s rigidity Theorem (CRT).) Let P, P be two con-
vex polyhedra made of congruent faces. Suppose that P and P are similarly
arranged. Then P and P are congruent.

To apply the CRT, as stated in Step 4 above, one needs a last lemma, which
connects the assumption in CRT to the pair (n, c) of a platonic solid.

Lemma 3.7 If two platonic solids have the same pair (n, c), then they are
similarly arranged.

We postpone the proof of the lemma into the next chapter, where we will
give an explicit labeling of the faces of a platonic solid which will then be
used to prove this lemma.
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Chapter 4

Labeling Faces of a Platonic Solid

In this chapter, we construct an essentially unique labeling of the faces of a
platonic solid. This unique labeling is used to prove that two platonic solids
with the same Schläfli symbol are similarly arranged, as stated in Lemma
3.7.

4.1 Establishing Some Notions

Let P be a platonic solid with its Schläfli symbol (n, c) ∈ A. Recall that the
number n is determined by the number of vertices of each regular polygon,
the faces of the platonic solid, and the number c is the number of faces
that contain a vertex V ∈ V(P). By Lemma 3.4, this determines the triple
( f , e, v), which denotes the cardinalities of the sets F (P), E(P) and V(P)
respectively. The elements of F (P) will be considered as sets of points in
three-dimensional space, Fi ⊆ R3. The edges Ek ∈ E(P) and vertices Vk ∈
V(P) can be defined as subsets in R3 by

Ek = Fi(k) ∩ Fj(k) (4.1)

Vk = Fj1(k) ∩ · · · ∩ Fjc(k) (4.2)

Note that every edge is the intersection of two uniquely determined distinct
faces Fi(k) and Fj(k) in F (P). Furthermore, every vertex is the intersection of
c uniquely determined distinct faces as per definition of a platonic solid.

For each platonic solid we will show that one can construct a labeling of the
faces such that the edges and vertices are determined by the labeling via
(4.1) and (4.2). More specifically, for each platonic solid, characterized by
its Schläfli symbol (n, c) and the corresponding triple ( f , e, v), referred to as
Eulerian triple, we will associate a unique plane graph with f faces, e edges
and v vertices and which preserves all incidence relations of the platonic
solid.
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4. Labeling Faces of a Platonic Solid

To construct such a labeling of a platonic solid P, we first choose an arbi-
trary face F1 and an arbitrary vertex V1 of F1 as starting data. The selection
of any other starting data, say F′1 and V ′1 on F′1, is equivalent up to isometry,
because all faces of P are congruent and thus, there is a congruence that
maps F1 onto F′1 and in addition also V1 into V ′1. By convexity of the platonic
solid P, one can also require that this congruence maps the normal vector
of face F1 pointing outwards of P onto the normal vector of face F′1 pointing
outwards of P.

In the following sections, we will give such an essentially unique labeling
for all faces in F (P). We will use this labeling to prove Lemma 3.7:

Given two platonic solids P and P with the same Schläfli symbol (n, c), we
assume that all faces in F (P) and F (P) have been labeled by such a labeling.
Then we can define the following map:

ϕ : F (P)→ F (P)

Fi 7→ Fi

Since the incidence relations among the faces are determined by the labeling,
the domain of ϕ can be extended from the set of faces onto the sets of edges
and vertices of the platonic solids. Equations (4.1) and (4.2) are used to give
the following definition for the extension of ϕ:

ϕ(Ek) = ϕ(Fi(k) ∩ Fj(k)) := ϕ(Fi(k)) ∩ ϕ(Fj(k))

ϕ(Vk) = ϕ(Fj1(k) ∩ · · · ∩ Fjc(k)) := ϕ(Fj1(k)) ∩ · · · ∩ ϕ(Fjc(k))

It follows from the extended definition of ϕ and the essentially unique la-
beling of F (P) that the incidence relations are preserved and thus the proof
of Lemma 3.7 is complete. Lemma 3.7 can be stated again in more detail as
follows

Proposition 4.1 Let P and P be two platonic solids with the same Schläfli
symbol (n, c) ∈ A. Assume all faces in F (P) and F (P) have been labeled
with the same labeling which leads to the same plane graph. Then, the map
ϕ : F (P)→ F (P), Fi 7→ Fi can be extended to the set of edges and vertices
of P and P respectively, i.e., P and P are similarly arranged.

4.2 The First Partial Labeling

Given a platonic solid P with Schläfli symbol (n, c) and starting face F1 and
starting vertex V1 in F1, we will determine an essentially unique labeling of

16



4.2. The First Partial Labeling

the first n + 1 faces of P. To guarantee uniqueness, we choose the positive
orientation of the face F1 determined by the normal vector of F1 pointing
outwards of P. This allows us to make the following partial labeling of faces
and their incidence relations unique.

• Starting from V1, label all vertices of F1, which form a regular n poly-
gon in consecutive order counterclockwise with respect to the normal
vector of F1 such that (Vi, Vi+1)i=1,...,n−1 and (Vn, V1) are edges of F1.

• For k = 2, . . . , n denote by Fk the unmarked face which shares the edge
(Vk−1, Vk) with face F1.

• Finally, let Fn+1 denote the face, which has the common edge (Vn, V1)
with face F1.

This is a labeling of n + 1 faces of P. Note that consecutive faces Fk−1 and Fk
do not necessarily share an edge.

F1
V1

V2

V3

F2

F3

F4

Figure 4.1: Illustration of first partial labeling
for a platonic solid with Schläfli symbol (3, c)

Lemma 4.2 Let P be a platonic solid with Schläfli symbol (n, c). Suppose
that the first n + 1 faces in F (P) are labeled according to the partial labeling
above. Then the following three statements hold:

1. F1 ∩ Fi is an edge for i = 2, . . . , n + 1.

2. For every vertex Vi, three faces containing Vi have been labeled for
i = 1, . . . , n.

3. If c = 3, then Fn+1 ∩ F2 and Fi ∩ Fi+1 are edges in E(P) for i =
2, . . . , n.

4. If c ≥ 4, then Fn+1 ∩ F2 and Fi ∩ Fi+1 contain no edges of E(P) for
i = 2, . . . , n.

Proof
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4. Labeling Faces of a Platonic Solid

1. It follows from the first partial labeling of the first n + 1 faces that
F1 ∩ Fi is an edge for i = 2, . . . , n + 1.

2. Since c ≥ 3 for platonic solids, there are at least three faces which
contain Vi, i = 2, . . . , n. By construction, Fi has edge (Vi−1, Vi) and Fi+1
has edge (Vi, Vi+1). Thus F1, Fi and Fi+1 contain Vi. The faces F1, F2 and
Fn contain Vn.

3. As seen in proof of (2.), F1, Fi and Fi+1 contain Vi. If we assume that
for some i, Fi ∩ Fi+1 is not an edge, then (1.) implies that there exists
at least one more face containing Vi. This contradicts c = 3, and thus
Fi ∩ Fi+1 is an edge in E(P). A similar argument shows that Fn+1 ∩ F2
is an edge in E(P).

4. Again, we use that F1, Fi and Fi+1 contain Vi for i = 2, . . . , n. If we
assume that for some i, Fi ∩ Fi+1 is an edge, then (1.) implies that these
three faces are the only ones containing Vi. This contradicts c > 3. A
similar argument shows that Fn+1 ∩ F2 is not an edge in E(P). �

We will apply this first partial labeling of platonic solids to each of the five
possible Schläfli symbols. In some cases the labeling is complete whereas in
other cases more work is still needed to extend the labeling to all faces.

4.3 The First Two Cases

Schläfli Symbol (3,3)

The labeling of the platonic solid with Schläfli symbol (3, 3) is complete with
the first partial labeling in Section 4.2. To check this, consider the Eulerian
triple ( f , e, v) = (4, 6, 4) which belongs to the Schläfli symbol (n, c) = (3, 3).
By construction, all n+ 1 = 4 = f faces of the polyhedron have been labeled.
Since the first partial labeling is unique, the labeling of this platonic solid is
unique and this case is complete.

To determine the corresponding planar graph of this labeling, we consider
the set of vertices. By Lemma 4.2 the three vertices V1, V2, V3 are contained
in three faces, namely,

V1 = F1 ∩ F2 ∩ F4,
V2 = F1 ∩ F2 ∩ F3,
V3 = F1 ∩ F3 ∩ F4.

There is a fourth vertex V4 = F2 ∩ F3 ∩ F4. The resulting plane graph has
f = 4 faces, e = 6 edges and v = 4 vertices, as illustrated in Figure 4.2.
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4.3. The First Two Cases

V1

V2

V3

V4

F1

F2

F3 F4

Figure 4.2: Planar graph resulting from the unique labeling
for the case of a platonic solid with Schläfli symbol (3, 3)

Schläfli Symbol (4,3)

A platonic solid P with Schläfli symbol (4, 3) and corresponding Eulerian
triple (6, 12, 8) has six faces. The first partial labeling of Section 4.2 enumer-
ates n+ 1 = 5 = f − 1 faces. The labeling is uniquely extended since there is
no choice other than to label the only unmarked face of P by F6. The label of
the sixth face is uniquely determined and the first five faces are labeled by
the first partial labeling, thus the labeling of a platonic solid P with Schläfli
symbol (4, 3) is unique and this case is complete.

To determine the corresponding graph of the labeling of a platonic solid with
Schläfli symbol (4, 3), we consider the set of edges. By Lemma 4.2, there are
four edges incident with F1, four edges are of the form (Fk ∩ Fk+1)k=2,3,4 and
(F5 ∩ F2). Furthermore, there are four edges incident with F6. This and the
labeling of the first n vertices results in the corresponding unique graph
which has f = 6 faces, e = 12 edges and v = 8 vertices as can be read off
from Figure 4.3.

V1
V2

V3
V4

V5
V6

V7 V8

F1

F2

F3

F4

F5

F6

Figure 4.3: Illustration of the unique plane graph
of a platonic solid with Schläfli symbol (4, 3)
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4. Labeling Faces of a Platonic Solid

4.4 The Second Partial Labeling

The next partial labeling of faces of a platonic solid P is for the cases where
the number of faces c is larger than three. Let W ⊆ V(P) denote the set
of vertices, for which every vertex in W is contained in exactly three faces,
which have already been labeled. In this next partial labeling we want to
label the remaining unlabeled faces containing vertices Vi ∈ W .
It follows from Lemma 4.2 that for each vertex Vi ∈ {V1, . . . , Vn}, there exist
exactly three labeled faces containing Vi and thus W = {V1, . . . , Vn}. This
implies that the number of unlabeled faces containing Vi is equal to (c− 3).
Thus the total number of unlabeled faces containing the vertices of W is at
most n(c− 3).

We construct the second partial labeling as follows: For i = 1, . . . , n, we la-
bel the remaining unlabeled (c− 3) faces containing Vi in consecutive order
counterclockwise with respect to the normal vector of F1 pointing outwards
of P.
Case c = 4. The n newly labeled faces Fn+2, . . . , F2n+1 must satisfy the inci-
dence relations

V1 = F1 ∩ F2 ∩ Fn+1 ∩ Fn+2,
Vi = F1 ∩ Fi ∩ Fi+1 ∩ F(n+1)+i, i = 2, . . . , n

F1

F2

F3

F4

F5

F6

F7

V1

V2

V3

Figure 4.4: Case c = 4

Case c = 5. The 2n newly labeled faces Fn+2, . . . , F3n+1 must satisfy the inci-
dence relations

V1 = F1 ∩ F2 ∩ Fn+1 ∩ Fn+2 ∩ Fn+3,
Vi = F1 ∩ Fi ∩ Fi+1 ∩ F(n+1)+(2i−1) ∩ F(n+1)+(2i), i = 2, . . . , n

Our next step is to show case by case that this labeling process did not label
any face twice. The first partial labeling yields that F1, . . . , Fn+1 are distinct.

20



4.5. The Other Cases

It is known from Chapter 3 that (n, 4) = (3, 4) and (n, 5) = (3, 5) are the
only possible Schläfli symbols. For these two cases, the second partial label-
ing is illustrated by Figure 4.4 and Figure 4.5.

Case c = 4. It holds that all faces containing the same vertex are distinct.
Otherwise, we would get c < 4, a contradiction. This implies that F5 /∈
{F1, F2, F4}, F6 /∈ {F1, F2, F3} and F7 /∈ {F1, F3, F4}. Furthermore, F5 contains
V1 but F3, F6 and F7 do not and hence F5 /∈ {F3, F6, F7}. F6 contains V2 but
F4, F5 and F7 do not, therefore, it holds It follows that F6 /∈ {F4, F5, F7}. F7 con-
tains V3 but F2, F5 and F6 do not, and thus we conclude that F5 /∈ {F2, F5, F6}.
This implies that all faces F1, . . . , F7 are distinct.

Case c = 5. Again it holds that all faces containing the same vertex are dis-
tinct. Otherwise, we would get c < 5, a contradiction. This implies that
F5 /∈ {F1, F2, F4, F6}. Furthermore, F5 contains V1 but F3, F7, F8, F9 and F10
do not and thus F5 /∈ {F3, F7, F8, F9, F10}. Similarly, we can show that each
face F6, . . . , F10 is distinct from all other faces. This implies that all faces
F1, . . . , F10 are distinct. By construction of the second labeling, the labeling
of all faces F1, F2 . . . , F(n+1)+n(c−3) is unique and the incidence relations are
determined by the unique planar graphs of Figure 4.4 and Figure 4.5.

F1

F2

F3

F4

V1

V2

V3
F5

F6

F7

F8

F9

F10

Figure 4.5: Case c = 5

4.5 The Other Cases

Before we look at the next case of the Schläfli symbols, we state the following
lemma where f − 1 faces of a platonic solid P have been labeled by a unique
labeling, yielding a unique labeling for all faces of P.

Lemma 4.3 Let P be a platonic solid with Schläfli symbol (n, c). Assume that
f − 1 faces have already been labeled by a unique labeling. Then the labeling of all
f faces in F (P) is unique.
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4. Labeling Faces of a Platonic Solid

Proof The last unlabeled face is uniquely determined and can be denoted
by Ff . This last step of labeling the faces of P is unique. Since the labeling
of the other f − 1 faces is unique too, the statement follows. �

Schläfli Symbol (3,4)

For a platonic solid P with Schläfli symbol (3, 4) and Eulerian triple (8, 12, 6),
we see that n + 1 = 4 = 1

2 f faces are enumerated in the first partial labeling.

It follows from Lemma 4.2 that for every vertex V1, . . . , Vn, three faces con-
taining these vertices are already labeled. Thus we can apply the second
partial labeling as described in Section 4.4. This labels n additional faces
and thus we will have labeled 2n + 1 = 7 = f − 1 faces in total. Using
Lemma 4.3, the last face F8 can be labeled uniquely and the labeling is com-
plete.

The associated plane graph has f = 8 faces, e = 12 edges and v = 6 vertices.
The vertices are each uniquely determined by the four faces containing it.

F1
V1

V2

V3

F2

F3

F4

F5

F6

F7

F8

Figure 4.6: Illustration of the unique planar graph
associated to a platonic solid with Schläfli symbol (3, 4)

Schläfli Symbol (5,3)

As in case (3, 4), the first partial labeling labeled exactly half of the faces of
a platonic solid P with Eulerian triple ( f , e, v) = (12, 30, 20). It follows from
Lemma 4.2 that all faces containing V1, . . . , Vn have already been labeled
since c = 3. As c = 3, the second partial labeling cannot be applied and
another construction is needed.

The first partial labeling determines the faces F1, . . . , F6 and vertices V1, . . . , V5
as illustrated in Figure 4.7. By Lemma 4.2, each of the faces F2, . . . , F6 con-
tains exactly two of the vertices V1, . . . , V5 whereas another three vertices
have not been labeled yet. The next step is to label these vertices.
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4.5. The Other Cases

Denote the four vertices contained in two labeled faces, Fi and Fi+1, i =
2, . . . , n, by Vn+i and let V2n be the vertex contained in F2 and Fn+1. Denote
the vertices contained in only one labeled face Fi, i = 2, . . . , n + 1, by Vi+9.
Per definition, the vertices V6, . . . , V10 are contained in two labeled faces, and
since c = 3 for all vertices Vi ∈ {V6, . . . , V10}, there is exactly one unlabeled
face that contains Vi. Denote this uniquely determined face by Fi+1, i =
6, . . . , 10.

Per construction of the first labeling, we know that the faces F1, . . . , F6 are
distinct. It remains to show that the faces F7, . . . , F10 are distinct. First, for
i = 6, . . . , 10, the face Fi contains the vertex Vi−1 but the other four faces do
not. Second, the three faces containing Vi, i = 6, . . . , 10, must be distinct
too since otherwise c < 3. This means that all faces F1, . . . , F11 are distinct.
At this point, we have uniquely labeled 11 = f − 1 faces of P. Lemma 4.3
implies that there exists a unique labeling of the last face F12 and this case is
complete. The corresponding unique plane graph of the platonic solid with
f = 12 faces, e = 30 edges and v = 20 vertices is shown in Figure 4.7.

V1

V2V3

V4 V5

V6

V7

V8

V9

V10

V11

V12

V13

V14

V15

V16

V17

V18

V19

V20

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

Figure 4.7: Illustration of the unique plane graph
of a platonic solid with Schläfli symbol (5, 3)

Schläfli Symbol (3,5)

Once more, we start with the first partial labeling which labels n + 1 faces
of a platonic solid P with Schläfli symbol (3, 5). By Lemma 4.2, every vertex
V1, V2, V3 is contained in three labeled faces. Since n = 3 and c = 5, we can
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4. Labeling Faces of a Platonic Solid

enumerate the next (c − 3)n = 6 faces with the second partial labeling as
described in detail in Section 4.4. As a result, ten faces F1, . . . , F10 of P have
been labeled as illustrated in Figure 4.8.

F1
V1

V2

V3

F2

F3

F4

F1

F2

F3

F4

V1

V2

V3
F5

F6

F7

F8

F9

F10

Figure 4.8: Planar graph of the labeled faces of P with Schläfli symbol (3, 5):
From the labeled faces of the first partial labeling
to the labeled faces of the second partial labeling

By construction of the first partial labeling, each face of F2, . . . , Fn+1 contains
two labeled vertices and one vertex of each triangular face F2, . . . , Fn+1 has
not been labeled up to this point. If we assume that it is the same vertex for
all n faces, we would get a platonic solid with Schläfli symbol (3, 3) which
is a contradiction. If we assume that there are only two vertices, the number
c of each vertex would not be the same for all which is a contradiction to
the definition of a platonic solid. Thus, we can label the remaining three
unlabeled vertices contained in one of the faces Fi by Vi+2, i = 2, . . . , n + 1,
as shown in Figure 4.9.

These newly labeled vertices V4, V5, V6 are each contained in three labeled
faces and thus the vertices satisfy the assumptions of the second partial la-
beling. By applying the process of the second partial labeling on the set of
vertices {V4, V5, V6}, six more faces F11, . . . , F16 are obtained. The next step is
to show that the newly labeled faces F11, . . . , F16 are distinct from each other
and also from the other ten faces F1, . . . , F10.
First, the five faces containing the vertex Vi, i = 4, 5, 6, are distinct because
otherwise c < 5. It follows that F11 and F12 are not equal to the faces F2, F6, F7,
as well as F11 6= F12. The same holds for the faces containing V5 and V6:
F13, F14 /∈ {F3, F8, F9}, F13 6= F14, also F15 and F16 are not in the set of faces
{F4, F5, F10}, and F15 is not equal to F16. Second, F11 and F12 contain V4 but
all faces in the set {F1, F3, F4, F5, F8, F9, F10, F13, . . . , F16} do not. Hence F11 and
F12 cannot be in this set. Together with the first reasoning above, it follows
that F11, F12 /∈ {F1, . . . , F10, F13, . . . , F16}. Similarly, we can show that the pair
of faces F13, F14 and F15, F16 are distinct from all the other labeled faces. Thus,
we have uniquely labeled the sixteen faces F1, . . . , F16.

24
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F1
V1

V2

V3

F2

F3

F4

V4

V5

V6

F5

F6

F7

F8

F9

F10

F1
V1

V2

V3

F2

F3

F4

V4

V5

V6

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

Figure 4.9: Labeling three new vertices V4, V5, V6

and applying the second partial labeling again

The next step is to label all vertices that are contained by four labeled faces
each. As illustrated by the right graph in Figure 4.9, there are three such
vertices. We will denote the vertex contained in the labeled faces F5, F6, F11
and F16 by V7. Going counterclockwise, the next vertex contained in four
labeled faces, namely F7, F8, F12 and F13, is denoted by V8. The last vertex
contained in F9, F10, F14 and F15 is denoted by V9. The three newly labeled
vertices V7, V8, V9 are illustrated in the upper graph in Figure 4.10.
By construction, each of the newly labeled vertices has exactly one unlabeled
face. We denote this face containing Vi by Fi+10, i = 7, 8, 9, as illustrated in
the lower graph in Figure 4.10.
To show that F17 /∈ {F1, . . . , F16, F18, F19}, we argue similarly as in the previ-
ous step, namely, we consider the four other faces F5, F6, F11, F16 containing
V7, and the fourteen faces not containing V7. A similar argument applies
to the faces F18 and F19. Hence, we can conclude that all 19 = f − 1 faces
F1, . . . , F19 are distinct. By applying Lemma 4.3, there is a unique labeling for
the remaining face F20 and this last case is complete. The resulting planar
graph has f = 20 faces, e = 30 edges and v = 12 vertices.
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4. Labeling Faces of a Platonic Solid
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Figure 4.10: Labeling three vertices V7, V8, V9

and three faces F17, F18, F19
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Figure 4.11: Unique planar graph associated to a platonic solid
with Schläfli symbols (3, 5)
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Chapter 5

Euclid’s Classification
of Platonic Solids

5.1 Auxiliary Results

This chapter accounts for the most recent efforts to come up with a rig-
orous proof of Euclid’s classification of platonic solids which was finally
achieved in the nineteenth and twentieth century. It covers important re-
sults of Steinitz and Cauchy.

Definition 5.1 Let V be a vertex of a given polyhedron P. Intersecting the faces in
F (P) containing V with a small sphere centered on the vertex results in a spherical
polygon, called vertex figure at the vertex V.

Note that the interior angles of the vertex figure match the dihedral angles
of the initial polyhedron.

V

(a) Small sphere with center at
vertex V intersecting the polyhe-
dron

V

(b) Resulting spherical polygon
at vertex V

Visualization of a vertex figure of a cube
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5. Euclid’s Classification of Platonic Solids

Lemma 5.2 (Steinitz.) Let p = V1 · · ·Vn and q = W1 · · ·Wn be two poly-
gons in the plane, where Vi and Wi denote the vertices of the corresponding
polygons, i = 1, . . . , n. Suppose that all sides in both polygons are equal
except the last, i.e

l(ViVi+1) = l(WiWi+1), i = 1, . . . n− 1

where l(ViVi+1) denotes the length of the edge in p connecting Vi and Vi+1
and analogously for the length of edges in q. Suppose also that the angles of
the first polygon are less than or equal to the angles of the second one, i.e.,

∠Vi ≤ ∠Wi, i = 2, . . . , n− 1,

with at least one strict inequality. We denote the angle between two edges
meeting at a vertex V with ∠V. Then

l(VnV1) < l(WnW1).

Proof We prove this lemma by induction over n. Let p and q be two convex
polygons with the same number of vertices n.

Case I: n = 3 This is Proposition 24 in Euclid’s First Book.
Assume that two sides of the two triangles p and q are equal but one of the
included angle is greater than the other one. This implies that the base of p
is also greater than the base of q.

Case II: n ≥ 4;∃i : ∠Vi = ∠Wi
The two triangles Vi−1ViVi+1 and Wi−1WiWi+1 are congruent. Because l(Vi−1Vi) =
l(Wi−1Wi) as well as l(ViVi+1) = l(WiWi+1), it follows that

l(Vi−1Vi+1) = l(Wi−1Wi+1).

Look at the polygons omitting the vertices Vi and Wi:

Vi Wi

Illustration of two polygons where ∠Vi = ∠Wi
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5.1. Auxiliary Results

These new polygons have n − 1 edges and satisfy the assumptions of this
lemma, so we apply the induction hypothesis and the result follows.

Case III: n ≥ 4;∀i : ∠Vi < ∠Wi
The idea of this case is to construct a new point V ′1 such that

l(V ′1V2) = l(V1V2)

∠V ′1V2V3 = ∠W2

where ∠V ′1V2V3 is the angle at V2 between the new edge V ′1V2 and V2V3.

V2

V ′1

V1

V3

Vn

α W2

W1

W3

α

Illustration of the construction of V ′1

First, we compare the polygon V1 · · ·Vn to V ′1V2 · · ·Vn. It holds that

∠V3 = ∠V3
Case II
=⇒ l(VnV1) < l(VnV ′1).

Second, we compare the polygon V ′1V2 · · ·Vn to W1 · · ·Wn. It holds that

∠V ′1V2V3 = ∠W2
Case II
=⇒ l(VnV1) < l(VnV ′1).

Case III only holds if the new polygon V ′1V2 · · ·Vn is convex since otherwise
the cases before cannot be applied to this new polygon. Thus, we need to
consider the following last case.

Case IV: V′1V2 · · ·Vn is not convex.
We choose a new point V∗1 which lies between V1 and V ′1 such that V ′1, Vn
and Vn−1 are collinear and such that

l(V∗1 V2) = l(V1V2).

Such a point exists since the polygon V ′1V2 · · ·Vn is not convex. Since V ′1, Vn
and Vn−1 are collinear, it holds that

l(V∗1 Vn) = l(V∗1 Vn−1)− l(Vn−1Vn). (5.1)
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5. Euclid’s Classification of Platonic Solids

V2

V1

V∗1

V ′1

Vn
Vn−1

Illustration of the construction of V∗1 where V ′1V2 · · ·Vn is not convex

First, we compare V1 · · ·Vn to V∗1 V2 · · ·Vn. We see that V∗1 changes the value
of at most three angles. Since n ≥ 4, there exist one pair of corresponding
vertices in each polygon where the angles are the same. Thus, Case II can be
applied again and we get

l(VnV1) < l(VnV∗1 ). (5.2)

Second, we compare V∗1 V2 · · ·Vn−1 to W1 · · ·Wn−1 and by the induction hy-
pothesis it follows that

l(Vn−1V∗1 ) < l(Wn−1W1). (5.3)

Finally,

l(V1Vn)
(5.2)
< l(V∗1 Vn)

(5.1)
= l(V∗1 Vn−1)− l(Vn−1Vn)

(5.3)
< l(W1Wn−1)− l(Wn−1Wn)

≤ l(W1Wn)

where the last inequality is the triangle inequality. �

The following result is the analogy of Steinitz’ result for polygons on the
surface of a sphere. We are going to prove it only for polygons in the plane.
The proof for spherical polygons uses results from the first part of Euclid’s
Book I [3].

32



5.1. Auxiliary Results

Lemma 5.3 Let p, p be two convex polygons in the plane or on the sphere
with corresponding sides being equal. Mark each vertex in p as follows

+ if ∠V < ∠V
− if ∠V > ∠V
= if ∠V = ∠V

Then, either all vertices are marked with = or, as we make a circuit across
all vertices, ignoring the ones marked with =, the sign must change at least
four times.

Thus, there is an implicit one-to-one map ϕ that maps each vertex of p onto
a vertex of p.

Proof The number of changes of sign must be even since it is a closed circuit
of vertices. We assume there are exactly two changes of sign. We start by
taking the diagonal ViVj of the polygon p such that p is cut into two convex
polygons. One of these new smaller polygons contains only the + vertices,
denoted by p+ and the other contains only the − vertices, denoted by p−.

+

Vi
Vj

+

+

+

−−

Illustration of a polygon cut into two smaller convex polygons

Applying Steinitz’s Lemma 5.2 on both p+, p− yields:

Lemma 5.2 for p+ : ViVj < WiWj

Lemma 5.2 for p− : ViVj > WiWj

This is a contradiction. �

The marking system of vertices in the plane used in Lemma 5.3 yields a sim-
ilar marking system for two polyhedra. Instead of marking a vertex, mark
each edge of a polyhedron according to the relation of its dihedral angle to
the corresponding edge and its dihedral angle of the other polyhedron. This
leads to a new bounded connected surface, called a net:

Definition 5.4 Mark each edge of a polyhedron P with +,− or = according as
its dihedral angle is less than, greater than or equal to the corresponding dihedral
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5. Euclid’s Classification of Platonic Solids

angle of another polyhedron P. Consider only edges marked with + and − and the
vertices that belong to those edges. Together they build a so-called net.
Also, any maximal union of faces of the polyhedron that are not separated by edges
of the net is called a net-face.

Notice, that a net-face is no longer a plane polygon, instead, it is a connected
surface bounded by net-edges.

5.2 Cauchy’s Rigidity Theorem

In this section we will state and prove Cauchy’s Rigidity Theorem.

Theorem 5.5 (Cauchy’s rigidity theorem.) Let P, P be two convex poly-
hedra made of congruent faces. Suppose that P and P are similarly arranged
with a bijection ϕ. Then P and P are congruent.

Proof This proof is divided in three steps.

Step 1: Marking edges and vertices.
Mark each edge of P with +,− or = according to its dihedral angle being
less than, greater than or equal to the corresponding dihedral angle of P.
Also, for every vertex of P look at its vertex figure. The spherical polygon is
convex since it results from a convex solid. Its vertices inherit the markings
from the edges, which by construction correspond to the increase or de-
crease of this polygon angle as compared to the vertex figure of the second
polygon (see [4]).

Step 2: Applying Steinitz.
By applying Steinitz on the surface of a sphere (Lemma 5.3), we deduce that
by going step by step through the edges which intersect at that vertex, either
they are all marked with a = or there are at least four changes of sign.

Step 3: Counting the total number of changes of signs.

• Case 1: First assume that all dihedral angles are changing, i.e all edges
are marked with either + or −. Again by Lemma 5.3, it holds that

t := ∑
all vertices

number of changes of sign of edges at one vertex ≥ 4v,

where v is the number of vertices. To get the other inequality for t,
look at the change of sign of a single face. On a triangular face, at least
two adjacent edges must have the same sign. Hence, that face can
contribute at most two changes of sign to its three vertices. It follows

34



5.2. Cauchy’s Rigidity Theorem

that a face of n sides can contribute to at most n changes of sign if n is
even, or n− 1 if n is odd. This leads to the second inequality

2 f3 + ∑
n≥4

n fn ≥ t,

where fn denotes the number of faces of n sides. Putting the two
inequalities together, we get

2 f3 +n ∑
n≥4

fn ≥ 4v
(3.1)
= 4(e− f + 2)

(3.3)
= 2n f − 4 f + 8 = (2n− 4)∑ fn + 8

For the second equality, we use Euler’s formula (3.1). For the third
equality, we need Equation (3.3) from the proof of Lemma 3.3. Also, it
holds that f = ∑ fn. Thus, it follows that

0 ≥ ∑
n≥4

(n− 4) fn + 8,

which is impossible, since all terms in the sum are non-negative.

• Case 2: Second, assume that there exist some edges marked with =
and some marked with + and −. If there were no edges marked with
+ or −, the two polyhedra would be congruent, and the proof would
be complete. We will apply the same idea as in the proof of Case 1
but using only the + and − marked edges and corresponding vertices,
hence the net (Definition 5.4) of the polyhedron. The argumentation
works as in Case 1 with the exception that we cannot apply Euler’s
formula directly since a net is not necessarily a polyhedron. Instead,
we apply the proof of Euler’s formula (Theorem 3.1) to the net. We
cannot assume that the plane figure, the projection of the net onto the
plane, is connected anymore. The assumption of a connected plane
figure is only used in the last step of the proof. Hence, with a net, there
could be more than one vertex left after applying the two operations
(i) and (ii) to the net as in the proof of Euler’s formula. This means
that we get the inequality

f − e + v ≥ 2.

The argument of Case 1 still works with this inequality and we thus
get a contradiction.

The only possible case left is that all dihedral angles of the two poly-
hedra are equal. This implies that it is possible to build the two poly-
hedra step by step into congruent figures, which completes the proof.
�
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5.3 Complete Classification of Platonic Solids

Euler’s classification

Theorem 5.6 (Euclid’s classification.) Up to congruence (and a scale fac-
tor), there are exactly five platonic solids, which are uniquely determined by
the five possible pairs (n, c) ∈ A.

Proof By Lemma 3.3, there are only five possible pairs (n, c) for a platonic
solid. The explicit construction of a platonic solid with one of the five
Schläfli symbols stated in Lemma 3.3 will be given in Chapter 6.
Assume there exist two platonic solids possibly not congruent with the same
pair (n, c). Then Lemma 3.7 implies that these two polyhedra are similarly
arranged. Finally, we conclude with Cauchy’s rigidity Theorem 3.6 that the
two polyhedra must be congruent. �
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Chapter 6

The Five Platonic Solids

In the previous chapters, we stated a precise definition of a platonic solid
and we proved that up to congruence exactly five platonic solids exist. In
this chapter, we give explicit illustrations of these five platonic solids to-
gether with their characteristic attributes. Furthermore, we state some basic
properties of the platonic solids.

6.1 Complete List of All Platonic Solids

This section will focus on giving a complete table of all platonic solids and
their characteristic parameters such as the Schläfli symbol (n, c) and the Eu-
lerian triple ( f , e, v). Recall that f , e and v denote the number of faces, edges
and vertices, respectively. Furthermore, the Schläfli symbol (n, c) specifies
that the corresponding polyhedron has regular n-polygons as faces, where c
of them are meeting in each vertex.

Schläfli symbol Eulerian triple dihedral angle 1

(n, c) ( f , e, v) ϑ
Tetrahedron

(3,3) (4,6,4) 70.52◦

Octahedron

(3,4) (8,12,6) 109.48◦
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6. The Five Platonic Solids

Schläfli symbol Eulerian triple dihedral angle 1

(n, c) ( f , e, v) ϑ
Icosahedron

(3,5) (20,30,12) 138.18◦

Cube

(4,3) (6,12,8) 90◦

Dodecahedron

(5,3) (12,30,20) 116.56◦

6.2 The Origin of the Concept of Platonic Solids

We give some historical background on Euclid’s work on Platonic Solids. In
contrast to the approach of this thesis where we have not relied on specific
three-dimensional models of platonic solids, Euclid had another approach.

He starts by giving explicit three-dimensional models inscribed in a sphere
for the tetrahedron, cube, octahedron, icosahedron, and dodecahedron by
characterizing them by the number and type of faces they have. A pyra-
mid is a solid figure formed by joining a point to each of the vertices of a
polygon in a plane not containing the point. Euclid does not use the word

1See Table I, (i) in [2]. The dihedral angle, denoted by ϑ, can be calculated using the
following formula, see Chapter 4 in [5]:

sin
(

ϑ

2

)
=

cos(π
c )

sin(π
n )

where n, c are the known numbers of the Schläfli symbol.
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6.2. The Origin of the Concept of Platonic Solids

tetrahedron, as we did, defining it to be a triangular pyramid formed of four
equilateral triangles. Euclid defines a cube as a solid figure contained by six
equal squares, the octahedron and icosahedron as solid figures bounded by
8 (resp. 20) equilateral triangles, and a dodecahedron as a figure bounded
by 12 regular pentagons. Euclid then states in his work Elements, translated
by Fitzpatrick [3]: So, I say that, beside the five aforementioned figures, no other
(solid) figure can be constructed (which is) contained by equilateral and equiangular
(planes), equal to one another. Euclid argues as follows: If we use equilateral
triangles, then we can put together three, four, or five of them at one vertex,
but six triangles would lie flat. If we use squares, we can put three at one
vertex, but no more. If we use regular pentagons, we can again put three
at a vertex. If we try to use hexagons, three of them would lie flat, so for a
stronger reason, we cannot use regular polygons of more sides. These five
cases, he says, correspond to the tetrahedron, octahedron, icosahedron, cube,
and dodecahedron, respectively; hence, there are no others.

Unfortunately, Euclid’s conclusion is not correct because of some missing
hypotheses, nor is his proof of the corrected result complete. The next two
subsections will examine the importance of the missing hypotheses in more
detail.

6.2.1 Convexity of the Platonic Solids

One important requirement for the five platonic solids to be unique (up to
congruence) is that they have to be convex. Without this additional require-
ment there is a figure such as the punched-in icosahedron. Consider one vertex
A of an icosahedron, and let BCDEF be the pentagon formed by the five ad-
jacent vertices. Take off the pentagonal pyramid made by ABCDEF, and
replace it by the pentagonal pyramid A′BCDEF, where A′ is the reflection
of the point A in the plane of BCDEF. The point A′ is then inside the origi-
nal icosahedron, so that the new figure is like an icosahedron elsewhere, but
has a concavity at A′. This is a figure bounded by 20 equal equilateral trian-
gles, but it is not congruent to the icosahedron or any other of the platonic
solids listed above.

B

A′

C
E FD

Illustration of the punched-in icosahedron
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6. The Five Platonic Solids

6.2.2 The Number of Faces Containing One Vertex

Another requirement for platonic solids is that the number c in the Schläfli
symbol has to be the same at each vertex of the platonic solid. Otherwise,
a triangular dipyramid could be considered as another platonic solid. If we
think of two equal tetrahedra, glued together along one face, we get a convex
polyhedron whose faces are 6 equilateral triangles, which is not contained
in the list above of the five platonic solids. The inconsistency is that we have
three faces meeting at the top and bottom vertices, but four faces meeting at
each of the vertices along the glued face.

Illustration of a triangular dipyramid

6.3 Basic Properties of Platonic Solids

In this section we state three properties on the geometrical nature of platonic
solids.

Theorem 6.1

1. In each platonic solid, all dihedral angles are equal.

2. All vertices of a platonic solid lie on a sphere.

3. For any two vertices of a platonic solid, there is a rigid motion of the
figures taking one vertex to the other.

Proof We prove these properties for each platonic solid individually and
present a corresponding construction simultaneously.

Tetrahedron

• Construction: We start with an equilateral triangle with side length
one. We denote the line starting at the center of the triangle and going
upwards while being perpendicular to the plane the triangle lies in by
h. Then there exists a point H on h such that H has distance one to
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6.3. Basic Properties of Platonic Solids

some vertex of the triangle. By symmetry of the construction, H will
have distance one to the other two vertices as well. We connect H to
the vertices of the triangle and get the tetrahedron with side length
one.

H

h

Illustration of the construction of the tetrahedron

• Equal dihedral angles: By the symmetry of the figure, all dihedral an-
gles must be equal.

• Being inscribed in a sphere: We denote the intersection point of all
four axes going through one vertex and through the center of the op-
posite face by O. It follows from the symmetry of the figure that the
vertices of the tetrahedron are all equidistant to the center O and thus
lie on a sphere with center O.

• Existence of a rigid motion: A rotation about an axis passing through
one vertex and through the center of the opposite face will map any
vertex onto another one.

Octahedron

• Construction: We start with the sphere of radius one and draw three
mutually perpendicular lines going all through the center of the sphere
denoted by O. The vertices of the octahedron are the six intersection
points of these lines with the sphere. Connecting these points results
in the figure of an octahedron.

O

Illustration of the construction of the octahedron
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6. The Five Platonic Solids

• Being inscribed in a sphere: The fact that the octahedron is inscribed
in a sphere follows directly from its construction.

• Existence of a rigid motion: Any two adjacent vertices can be mapped
onto any other two by repeatedly rotating around the three axes of the
sphere.

• Equal dihedral angles: Two adjacent vertices are connected by an edge,
which is the intersection of two faces. These two faces have a dihedral
angle according to Definition 2.7. It is possible to map two adjacent
vertices onto any other adjacent pair. This implies that the dihedral an-
gle must be preserved by the rigid motion. It follows that all dihedral
angles must be equal.

Icosahedron

• Construction: We begin with a regular pentagon of unit length in a
plane, denoted by BCDEF. Proposition 2.3 states that the pentagon
lies on a circle. Similarly to the construction of a tetrahedron, we take
the perpendicular line to the plane of BCDEF through the center of the
circle and find a point on the line, denoted by A, with distance one to
B. By the symmetry of construction, A will have distance one to all the
points of the pentagon BCDEF. We connect A to these points and get
a pentagonal pyramid with five equilateral triangles as its upper faces.
By symmetry, the dihedral angle between any two adjacent triangles
has to be equal. This finishes the first step.
We repeat this step to construct the first half of the icosahedron. We
make another such congruent pentagonal pyramid with a regular pen-
tagon B′A′D′GH and a top vertex, denoted by C′. The dihedral angles
in the new pyramid are the same as in the first pentagon. Hence, if we
glue the triangle A′B′C′ onto the triangle ABC, the points D and D′

will coincide. This gives us a convex figure made of eight equilateral
triangles. We repeat this once more to get a convex figure made of ten
equilateral triangles where all dihedral angles are equal.

A

B

C

DD′

E

F

G

H

K

Illustration of the construction of the first half of the icosahedron
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As we go around the six edges that form the outer bound of this figure,
the angle between any two consecutively edges is equal to the interior
angle of a regular pentagon.
After making another figure of ten equilateral triangles, we glue the
two congruent figures together and get the icosahedron with all di-
hedral angles being the same. The boundary of the two figures fit
together since all edge angles and all dihedral angles are the same.

• Equal dihedral angles: The dihedral angles are all the same as argued
in the construction of the icosahedron.

• Being inscribed in a sphere: We take the two perpendicular lines of
two adjacent faces through their center and denote the intersection
point by O. Since all dihedral angles are equal, the intersection point
O will be the same for any two adjacent faces. By construction, all
four points of the two adjacent points are equidistant to O, thus all
vertices of the solid are equidistant to O. Therefore, the icosahedron is
inscribed in a sphere with center O.

• Existence of a rigid motion: The described construction is symmetric
under a rotation of the initial triangle ABC onto itself. Since all the di-
hedral angles are the same, the initial triangle can be chosen arbitrarily.
It follows that under one rotation, any vertex can be mapped onto an
adjacent vertex. Thus, using different rotations consecutively will map
any vertex onto any other vertex.

Cube

• Construction: We start with a sphere of radius one. As in the construc-
tion of the octahedron, we take three mutually perpendicular lines
x, y, z going through the center of the sphere, denoted by O. There are
six intersection points of the axes x, y, z with the sphere. We denote
them by F1, . . . , F6. We take a square of side two and put its center
on one of the six intersection points F1, . . . , F6 such that the square lies
tangent to the sphere. This square is one of the six faces of the cube.
Repeating this step for each intersection point completes the construc-
tion of the cube.

• Equal dihedral angles: By construction, every face of the cube is per-
pendicular to one of the axes x, y, z and any two faces sharing an edge
cannot be perpendicular to the same axis. Thus, any two faces sharing
an edge are perpendicular to each other since the axes are perpendicu-
lar to one another. It follows that all dihedral angles are equal.

• Being inscribed in a sphere: By construction, the center of each face is
equidistant to the center O. By symmetry of the face, it follows that
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6. The Five Platonic Solids

every vertex of one face is also equidistant to O and by the symmetry
of the cube all vertices are equidistant to O. Thus, all vertices of the
cube lie on a sphere with center O.

• Existence of a rigid motion: Similar to the octahedron, every vertex
can be mapped onto any other by rotating about the three axes of
the small sphere used in the construction.

Dodecahedron

• Construction: To construct a dodecahedron, we use the knowledge
of how to construct an icosahedron. We take an icosahedron and for
each five triangles meeting at the same vertex V, we make a regular
plane pentagon by joining the five midpoints of the triangles contain-
ing V. This pentagon is the first face of the dodecahedron. We do this
for each of the twelve vertices of the icosahedron. The result is the
dodecahedron inscribed in the original icosahedron. By construction,
the icosahedron and dodecahedron are dual to each other. By apply-
ing a similar construction to the dodecahedron, one obtains a (scaled)
icosahedron again.

V

Illustration of the construction of the first face of the dodecahedron

• Equal dihedral angles: All relations between two faces of the dodeca-
hedron are the same since the icosahedron is symmetric and thus all
the dihedral angles are equal.

• Being inscribed in a sphere: We know that the faces of the icosahedron
are equidistant to their center O. Because the vertices of the dodecahe-
dron are in the center of these faces, they are also equidistant to O. So,
the dodecahedron is inscribed in a sphere with center O.

• Existence of a rigid motion: A triangle of the icosahedron is sent to
an adjacent triangle through a rotation about an axis passing through
two opposite vertices. This means that a vertex of the dodecahedron
is mapped onto an adjacent vertex. Therefore, applying consecutive
rotations will send any vertex to any other. �
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