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Abstract

Symplectic Geometry is a branch of Mathematics that developed from the Hamil-
tonian formulation of Classical Mechanics in Physics. Conservation principles, e.g.
conservation of energy, is generalized to the concept of a moment map pu: M — g*
on a manifold M.

In this thesis, we study the connections between affine subspaces in the image
of the moment map and certain lagrangian subsets of the complex toric manifold
(C% wp, T, 1). More precisely, we ask wether a lagrangian can be immersed or em-
bedded into the preimage of a given affine subspace in the moment image.

Here, we show the existence of embedded lagrangians for so-called Delzant affine
spaced and of immersed lagrangians for affine subspaces with rational slope. Further-
more, we formulate a conjecture that claims the existence of an embedded lagrangian
if and only if the corresponding affine subspace is Delzant. Our results demonstrate
how properties of T™ and their closed subgroups can be translated to lagrangians in
((Cz, WO) .

Complete knowledge about all lagrangians of a symplectic manifold is enough to
understand the manifold ifself. However, the set of lagrangians of a given manifold
is very complicated and does not admit a clear classification. The hope of our work
is to contribute to the goal of finding a subset of lagrangians on which one is also
allowed to know everything about the symplectic manifold itself.
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Introduction

This chapter is devoted to the basics of Symplectic Geometry and provides all needed
notions for later results proven in Chapter 3. Furthermore, we fix a notation. At the
end we included a notation index in order to specify what we mean by certain sym-

bols. Mainly, we follow the work of Ana Cannas da Silva as in | ] and [ ],
part 2. As prerequisites we assume basic knowledge of Differential Topology, Dif-
ferential Geometry, Algebra and Representation Theory. For example | | is a

good reference for Differential Topology and Geometry. For the algebraic part any
standard textbooks about algebra and Lie groups can be considered.

1.1 Symplectic vector spaces and manifolds

In short, the theory of symplectic manifolds starts on vector spaces and is then moved
to manifolds by requiring the same properties on every tangent space, which is indeed
a vector space.

Definition 1.1 - Let V' be a vector space. A bilinear map w : V x V' — R is called
a symplectic form if it is

(a) non-degenerate, that is, for every non-zero vector v € V\ {0} there exists an-
other vector w € V' such that w(v, w) # 0 and

(b) skew-symmetric, that is, for all vectors v,w € V it holds that w(v,w) =
—w(w,v).

The pair (V,w) is called a symplectic vector space.
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Lemma 1.2 - Let (V,w) be a symplectic vector space. Then, there exists a basis
€1y sl f1, - ooy fr of V such that for all i,j € {1, ... n} we have

w(ei,ej) = W(fi,fj) = 6@']’ and W(ei,f]’) = O

This basis is called a symplectic basis of (M,w).

Proof - A proof can be found in | ] on page 4. |

Corollary 1.3 - Every symplectic vector space (V,w) has an even dimension, i.e.
dim V' = 2n for some n € N.

Definition 1.4 - Let M be a differentiable manifold and w € Q?(M) a 2-form on
M. Then, the pair (M,w) is called a sympletic manifold if w is closed, that is,
dw = 0 holds, and if for every p € M the restriction w, € Q*(T,M) is a symplectic
form on T, M. Also, w is called a symplectic form on M.

Theorem 1.5 - Every symplectic manifold (M,w) has an even dimension, i.e.
dim M = 2n for some n € N.

Proof - This follows immediately from Corrollary 1.3 together with the fact that for
every point p e M we have dim M = dim 7, M = 2n for some n € N. This completes
the proof. [ |

The above Lemma 1.2 also has its analogue on symplectic manifolds.

Theorem 1.6 (Darboux) - Let (M,w) be a symplectic manifold of dimen-
sion 2n and p € M be a point. Then, there exists a coordinate chart
(U, 21, ... ,Tny Y1, - ,Yn) centered at p such that on U we have

w = dz; A dy;.

n
i=1

Such a chart is called a Darboux chart.

Proof - A proof can be found in | ], Chapter 8, page 46. [
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Example 1.7 - In this thesis there is one main example of a symplectic manifold,
which is presented in greater detail. For an n € N consider the cartesian product of
n copies of the complex line C, 7.e. C" := C x ... x C. Now, we define a symplectic
form on C™ and check its properties. For that purpose, we introduce coordinates
(21, ... ,2,) € C" and define the 2-form

wo i= Y dz; A dz, € Q*(C").

i=1

We check the properties of Definition 1.4:

a) Clearly wy is closed, since wy is exact with respect to the 1-form > . z;dz; €
y p =1
QY(C") and every exact form is automatically closed.

Pick a point z = (z1, ... , z,) € C" and the associated basis a—‘;, e ,%, a—gl, e ,%
of T,C". Then, it is sufficient to check non-degeneracy and skew-symmetry on this

basis by linearity.

b) For the non-degeneracy let v = 3" v;-> + v/-Z € T,C™ be a non-zero tangent
=1 0z;

10z;

vector at z, with v;, v € R for all i € {1, ... ,n}. By plugging into wy we get

n

Lowo = wo(v, ) = Z v;dz, — vidz;.

i=1

So by taking the tangent vector w := ZZ(—v;)a% + “ia% we get

wo(v,w) = (Z v;dz; — v;dzi> (w) = Z v + (v))? >0,
i=1 i=1
which proves the non-degeneracy of wy.

(¢) The skew-symmetry follows immediately form the properties of the wedge prod-
uct by the following computation. Let v,w € T,C" be two tangent vectors and
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compute

wo Z zi A dzZi(v,w)

d J(0)dz (w) — dzi(w)dz(v)

I
1 M: u

- Z dz;(w)dz;(v) — dz;(v)dz;(w)

= —Zdzi A dzi(w, v)

i=1
= _WO(w7 U)a

which indeed proofs the skew-symmetry.

The 2-form wy € 2%(C") is called the standard symplectic form of C" and is of
central interest in this thesis.

Definition 1.8 - Let (M,w) and (N,w’) be two symplectic manifolds. A diffeo-
morphism ¢ € Diff(M, N) is called a symplectomorphism if p*w’ = w holds.
That is, for every p € M and for all tangent vectors u,v € T, M we have

w(u,v) = ("W )p(u, v) = Wiy (dep(u), dpy(v)).

We denote by
Symp(M, w) := {p € C*(M, M) [ w = w}

the set of all symplectomorphisms of (M,w) onto itself.

Theorem 1.9 - Let (M, w) be a symplectic manifold. The set of its symplectomor-
phisms Symp(M,w) forms together with the composition of functions a group.

Proof - A proof can be found in any basic textbook about Symplectic Geometry. B

1.2 Immersed vs. embedded lagrangians

The existence of a symplectic form w on a manifold M equips it with a structure
that allows us to distinguish certain subspaces. Among all of these, the lagrangians
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play a central role in Symplectic Geometry. This statement is supplemented by Alan
Weinstein’s famous creed

everything is a lagrangian submanifold

in [ ]. We follow this approach and consider lagrangians as the central objects
of this thesis. Therefore, we give a detailed introduction into these spaces. As in the
previous section we begin at the level of vector spaces and then lift all the properties
to a manifold by consideration at every tangent space.

Definition 1.10 - Let (V,w) be a symplectic vector space and W < V be a
subspace. The set

W< .= {UEV’VUEW: w(u,v)=0}

is called the symplectic orthogonal complement of W inside of (V,w).

Definition 1.11 - Let (V,w) be a symplectic vector space. A subspace W < V is
called

(a) isotropic ifw‘w = ( holds, that is, for all vectors u, v € W we have w(u, v) = 0,
re. it W < W,

(b) coisotropic if W is isotropic, i.e. W < W,
(c) symplectic if (W, w‘W) is itself a symplectic vector space,

(d) lagrangian if it is isotropic and coisotropic at the same time, i.e. if W = W,

For the case of (C",wp) as in Example 1.7 we have the following lemma that helps
us to determine if a given subset is lagrangian or not.

Lemma 1.12 - Let (C",wy) be the standard complex symplectic manifold. A real
subspace L of C" is lagrangian if and only if L* = iL, where L is meant with
respect to standard euclidean product on C* = R?",

Proof - Denote by h : C* x C* — C with h(z1,22) = 252 the standard hermitian
structure of C". By giving real coordinates one can show that

h(Zl,ZQ) = <21,ZQ> +in(21,ZQ) (11)
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holds for all zq, z5 € C". From this we compute

w(z1,29) = 0< Imh(z1,29) =0
< Reh(z1,iz) =0

< (21,i29) = 0.

This completes the proof. [ |

Lemma 1.13 - Let (V,w) be a symplectic vector space of dimension 2n and L <
(V,w) a lagrangian subspace. Then dim L = § dimV = n.

Definition 1.14 - Let (M,w) be a symplectic manifold of dimension 2n. A subset
L c M is called an immersed lagrangian if there exists an immersion ¢ : L — M
such that ¢*w = 0 and dim L = %dim M. Furthermore, if ¢ also an embedding, we
call L an embedded lagrangian or a lagrangian submanifold.

1.3 Lie groups

As a preparation for the concept of moment maps and the later definition of toric
lagrangians we give a short introduction into Lie groups and its subgroups. We follow
the introduction given by Dietmar Salamon as in the first parts of | -

Definition 1.15 - A Lie group G is a finite-dimensional differentiable manifold,
which admits a group structure and the operations of multiplication and inversion
are smooth, i.e. the maps - : G x G — G, (¢g,h) —»g-hand ' : G > G, g— g !
are smooth.

Definition 1.16 - Let G be a Lie group. A Lie subgroup H < G is a closed
subset such that H together with the inversion and multiplication of G is again a
Lie group.

Definition 1.17 - Let GG be a Lie group and denote by e € GG the identity element.
The tangent space T.G equipped with the standard Lie bracket of vector fields is
called the Lie algebra of G and is denoted by g := T.G.
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Since G carries a group structure we can perform left and right multiplication. For
a fixed element g € G we denote these maps by L, : G — G and R, : G — G,
respectively. Since these operations are smooth they also admits derivatives

(dLg)h . ThG — TghG and (ng)h . ThG e Tth

for g,h € G. In particular, if we choose h = e and a tangent vector v € g we have
that (dLy)c(v), (AdRy)e(v) € T,G. So, for a fixed tangent vector v in the Lie algebra
of G, we can define two vector fields g — (dL,).(v) and g — (dR,).(v), called left-
invariant and right-invariant vector fields generated by v, respectively. Note that
both vector fields agree on g = e.

Since g is a tangent space it is also a vector space and hence we can define a
representation of G on g as follows.

Definition 1.18 - Let GG be a Lie group with Lie algebra g. The adjoint repre-
sentation of G onto g is defined by

Ad, :==d(R;~10Ly) : g —g.

Let (-,-) : g* x g — R be the natural pairing of g* and g. We define the coadjoint
representation Adj () for an element § € g* via

<Ad;<€)7x> = <€7Adg—1(X)>

for any X € g.

Proposition 1.19 - The map

Ad: G — Aut(g)
g Ad,

is a group homomorphism and is called the adjoint action of G onto its Lie
algebra g. The map

Ad*: G — Aut(gh)

g +— Ad;<

is called the coadjoint action of G onto its dual Lie algebra g* and is also a
group homomorphism.
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Proof - A proof can be found in nearly any standard text book about Lie groups or
Symplectic Geometry. [

1.4 Moment maps

The following section provides the concepts that are crucial for the later discussion
as in Chapter 3. Here, we introduce a certain class of maps, so-called moment maps.
Later we study the properties of images of lagrangians with respect to these maps.
We follow mainly [ | for this introduction.

Definition 1.20 - Let G be a Lie group and M be a differentiable manifold. An
action ¥ of G onto M is a group homomorphism

v: G — Diff(M)
g +— %-
The action v is called smooth if the evaluation map

MxG — M
(p,9)  +— Yy(p)

is smooth.

Remark 1.21 - Throughout this thesis we write an action as ¢ : G — Diff(M) or
as its evaluation map ¢ : G x M — M via ¢(g,p) = ¢4(p), depending on which
representation is more suitable.

Since the group of symplectomorphisms is a subgroup of the group of diffeomorphisms
it makes sense to introduce a further restriction of the definition of an action as
follows.

Definition 1.22 - Let (M, w) be a sympletic manifold. An action ¢ : G — Diff(M)
is called symplectic if the image of ¢ is a subgroup of Symp(M,w) < Diff(M),
i.e. if the map

Y : G — Symp(M, w)

is a group homomorphism.
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The case of the Lie group being the real line, i.e. G = R, is of special interest because
G can be imagined as time. In particular, this defines a special case of symplectic
actions as follows.

Definition 1.23 - Let (M,w) be a symplectic manifold, ¢ : R — Symp(M,w) be
a symplectic action and X the vector field generated by the flow of ¥). Then, 9 is
called a hamiltonian action if there exists a function H € C*(M) such that

dH = 1xw

holds. The function H is called a hamiltonian function, X the hamiltonian
vector field of H and the triple (M,w, H) a hamiltonian system.

Remark 1.24 - From the computation

dH(X) = ixw(X) =w(X,X) = —w(X,X) =0

we see that H is constant along the flow lines of X and this shows that H could be seen
as the total energy in a mechanical system. For further details on the connections
of Symplectic Geometry and Physics consider the excellent works | ] and

[ J

The notion of a hamiltonian can be generalized to other Lie groups as in the following
definition.
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Definition 1.25 - Let (M,w) be a symplectic manifold, G a Lie group with Lie
algebra g and denote by g* the dual vector space of g. A symplectic action 1 is
called a hamiltonian action if there exists a map

poM— g*
satisfying the following properties:

(a) For every tangent vector X € g, define a map pu* : M — R via p*(p) :=
(u(p), X) and denote by X# the vector field on M that is generated by the
one-parameter subgroup {exp(tX)|t € R} < G. Then, we have

dp” = ixsw,
i.e. the function % is a hamiltonian function for the vector field X#.

(b) The map p is equivariant with respect to the action ¢ and the coadjoint action
Ad* of G on g*, that is, for all g € G we have

poy = Adg o p.

The quadruple (M,w, G, p1) is called a hamiltonian G-space, 1 a moment map
and p(M)  g* its moment image.

Later on we are interested in actions on subspaces that come from a Lie subgroup of
G. For this purpose the following proposition is useful.

Proposition 1.26 - Let G be a compact Lie group, H € G a Lie subgroup and
(M,w,G, 1) a hamiltonian G-space. Denote by g and b their corresponding Lie
algebras and by v* : g* — b* the projection dual to the natural inclusion v : h — g.
Then, the restriction of the G-action on H is hamiltonian with moment map

i*ou: M — b

1.5 Symplectic reduction

As a final ingredient of this chapter we present the principle of symplectic reduc-
tion. In short, it is the mathematical formulation of the fact that the number of
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coordinates in phase space of a physical system can be reduced by 2k if there are k
conserved quantities.

Theorem 1.27 (Marsden-Weinstein-Meyer | , ) - Let (M,w,G, 1) be
a hamiltonian G-space and G be compact. Write i : u=*(0) < M for the inclusion
map and also assume that G acts freely on p='(0). Then,

(i) the quotient Myeq = 1=1(0) /G is a manifold,
(ii) the map 7 : u=1(0) — Myeq defines a principal G-bundle and
(iii) there exists a symplectic form wieq € Q*(Mpeq) Wwith i*w = T*Wyeq.

The pair (Med, wrea) 5 called the reduced space of (M,w) with respect to u and
G. Furthermore, the dimensions of M, M,.q and G are related via

dim M = dim M,.q + 2dim G. (1.2)

Proof - A proof can be found in | |, Section 5.4 on page 224. [

Proposition 1.28 - Let (Meq,wrea) be the reduced space of a hamiltonian G-
space (M,w, G, u) with projection map © : M — Meq and L < (Meq, wrea) be
a lagrangian submainfold. Then, the pre-image 7~ *(L) < (M,w) is a lagrangian
submanifold.

Proof - Let L © (Med,wrea) be a lagrangian submanifold and denote by j : L —
M,eq the inclusion map. Furthermore, let k¥ : 7= (L) — p~'(0) be the inclu-
sion map of the pre-image of L. Since L is a lagrangian submanifold we know

that dim L = %dim Mieq and j*wreq = 0. In the same way, we need to show
dim (77*(L)) = L dim M and (i o k)*w = 0.

Let us start with the dimension. From property (i7) of Theorem 1.27 we know
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that 7 : p=1(0) — M,eq defines a principal G-bundle. Therefore, we have
dim (77'(L)) = dim L + dim G
1
= 5 dim Mred +dim G

1
(L2) §dimM—dimG+dimG

1
= —dim M.
2

For the coisotropy use the assumption of j*w,.q = 0 and apply 7* on both sides.
Thus, we compute

0= W*([)) = 7T*<j*wred) = (.7 o 77)*wred
= (T o k)*wrea = k* (T wreq) = k¥ (i*w)

= (iok)*w,

where we have used the equation of property (%ii) of Theorem 1.27 and the commu-
tativity (denoted by the o) in the first square of the following diagram.

PNL) e T (0) e M

J
L —> Myeq

Therefore, 77 (L) = (M, w) is lagrangian.

As a last step we show that 77'(L) is embedded. The submanifold L = M,.q has
dimension is dim(L) = % dim Meq < dim M,eq. Then, there exist some adapted charts
(Uw Pa)acr of Myeq such that (¢,); = 0 holds for all i > dim L. Since 7~ (L) — L is
a principal bundle we have local triviality. Therefore, the charts ¢, can be extended
locally be the fiber dimensions. This again is then an adapted chart of L inside of M

and hence L is a submanifold. This completes the proof. |



Torus actions and symplectic toric manifolds

Building on the first chapter we are now able to create the setting in which the later
theorems of Chapter 3 are formulated. In short, if M has the dimension 2n, we
consider an action of the n-dimensional torus on M. We follow [ |, part B,
section I.1.4.

2.1 Torus as a Lie group

Definition 2.1 - Consider the complex space C™ and define the subset
T .= {(ewl, ety e |6y, ... 0, € [0,27'(')} c C, (2.1)

which is called an n-dimensional torus (embedded in C"), or n-torus.

Remark 2.2 - In some parts we simply write (64, ... ,6,) for the coordinates of T"
where 6; € [0,27) for all i € {1, ... ,n}. However, the above embedding of T" into
C™ is useful to define an action of T™ onto C™ and is also used.

13
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Lemma 2.3 - The n-torus T" is diffeomorphic to a cartesian product of n circles,
i.e.
T ~ St x ... x St.
n-times
Furthermore, T" is a Lie group and its coadjoint action is trivial. Therefore, the
corresponding Lie algebra g and its dual g* can be identified with R™, i.e. g ~ g* ~
R™.

Proof - The claim of being diffeomorphic to the product of n circles and being a Lie
group follows immediately from Equation 2.1. The triviality of the coadjoint action
follows from the fact that T™ is an abelian Lie group. This completes the proof. W

Proposition 2.4 - Let H < T" be a Lie subgroup of the n-dimensional torus.
Then, there exists two natural numbers r,m € {0, ... ,n} with r + m < n and
possibly some kq, ..., k. € N such that

H~7 % ... XL, XS x...xSy.
—_— Y4/

r-times m-times

Proof - A proof can be found in textbooks about compact connected abelian Lie
groups. [ |

Remark 2.5 - Note that the cases r = 0 and m = 0 are also valid and for example
r = 0 means that H ~ T™ for some m < n.

2.2 Torus actions and symplectic toric manifolds

Definition 2.6 - Let (M, w) be a symplectic manifold and T" the n-dimensional
torus. A symplectic action ¥ : G — Symp(M) is called an n-torus action if G
diffeomorphic to the n-torus, i.e. G ~ T".

Actions of tori on symplecic manifolds are very common in Physics and are also
mathematically of general interest. See | ] for further details. One of their
main advantages is that the abelian structure makes the action easier to handle.
Furthermore, the following theorem yields a connection of their moment images (with
respect to a given moment map) and polytopes in R™.
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Theorem 2.7 (Atiyah | ], Guillemin-Sternberg [:5]) - Let (M,w) be a com-
pact connected symplectic manifold. Suppose that 1p : T" — Symp(M,w) is a
hamiltonian torus action with moment map p: M — R™. Then,

(i) the levelsets of ju are connected, that is, for every a € R™ the set u~'(a) is
connected,

(7i) the image of u is convex, that is, (M) < R" is conver and

(iii) the image of u is the convex hull of the images of the fized points of the action
.

The moment image (M) in this case is called a moment polytope.

Proof - A proof can be found in | |, Section 5.5, page 237. |

Note that in the above definition we did not specify any requirements to the
dimension of M and no relation to the dimension of the torus. However, in the
following we work with the this definition.

Definition 2.8 - A symplectic toric manifold is a connected symplectic man-
ifold (M,w) together with an effective n-torus action, where n = % dim M and
with a corresponding moment map p : M — R"  4.e. a hamiltonian T"-space
(M2 w, T, p).

Remark 2.9 - Note that we did not assume the manifold to be compact, which
is a common definition in the literature. Therefore, Theorem 2.7 is only true for
compact symplectic toric manifolds. However, it was shown that similar results can
be extended also to non-compact symplectic toric manifolds. For details consider
[ ]. Here, we take this definition because we want to consider (C", wq, T™, 1), as
in Example 1.7, as a symplectic toric manifold.
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Lemma 2.10 - Let (M,w,T" u) be a symplectic toric manifold and for

ai, ... ,a, € N consider the diagonal inclusion
S T
ei& (eia197 o 7eian0) )

Then, a corresponding moment map ' : M — R is given via
' (p) = avn(p) + - - - + anptn(p)-

Proof - For the above inclusion the dual projection is given by the map i* : R" —
R with (2, ... ,x,) — a1 + ... + a,x,. Then, the claim follows directly from
Proposition 1.26. This completes the proof. [

Definition 2.11 - Let (M, wy, TY, 1) and (Ma, ws, Th, o) be two symplectic toric
manifolds. Then, they are called equivalent to each other if there exists an iso-
morphism A : T} — T4 and a A-equivariant symplectomorphism ¢ : M; — Mo
such that p; = ps 0 .

2.3 Examples

2.3.1 The sphere as a compact symplectic toric manifold

As a first example of a symplectic toric manifold we consider the two-dimensional
sphere S%. To do so, we view the sphere as the set

1
S? = {m (cosp,sinp, h) e R* | p e [0,27), he (1,1)} u {N, S},

where N = (0,0, 1) is the north pole and S = (0,0, —1) the south pole. We define the
symplectic form wy = dg A dh on it. A hamiltonian action ¢ : S* — Symp(S?, wp) of
the circle S! on S? is given via

(0 (‘9’ (gp, h)) = (QD + 97h)

Note that the flowlines of ¢ are given via the integral curves of %. It is easy to verify
that the map p : S* — R defined via u(p,h) = h is a moment map for the above
action 1. Hence, the quadruple (S? wp,S!, i) is indeed a compact symplectic toric
manifold. Furthermore, we want to give it as an illustration of Theorem 2.7.



EXAMPLES 17

The fixed points of ¢ are the north pole N and south pole S. Also, consider the
following image which represents the action and the moment image.

1(S)

From there it can be seen that u(S?) = [u(S), u(N)] = [-1,1] < R is a convex subset
in R and the moment image is given by the convex combination of the images of the
fixed points.

2.3.2 The complex space as a symplectic toric manifold

Here, we build upon the description of the complex space (C",wy) as symplectic
manifold as in Example 1.7. An n-torus action ¢ : T" — (C",wy) can be defined via

V(M ) (21, z) = (€0, e,
i.e. by performing rotations of 6; in the arguments of every z;. We show that a
compatible moment map is given by
e cr — R"
(71, -y 20) — —3 (|zl|2, o |zn|2)
by checking the properties of Definition 1.25.

(i) Here we introduce polar coordinates (11,1, ... ,Tn, ¢©n) for C". In these coor-
dinates we have wy = >\, dz; A dz; = X" ridr; A dg;. Due to linearity it is
sufficient to check property (a) only basis vectors of R™. For a tangent vector
X; = % e R” of the torus we have X% = £ e C". We compute

00;
X L,
du” =d <—2ri> = —r,dr;.
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and
Lx#W =12 ZTZ-dm A dp; = —ridr;.
)
This shows the property (a).

(ii) Since T™ is a commutative Lie group we only have to check invariance of p with
respect to ¢. For this, we compute

(e ((eiel, ,eien) (2, ,zn))) = M(eielzh 7eienzn)

This indeed shows that (C",wy, T", ) is a symplectic toric manifold.

2.4 Action angle coordinates

Let (M,w,T™, u) be symplectic toric manifold of dimension 2n. The action of the
torus allows us to define a specific choice of coordinates on M that are adapted with
respect to the flow lines of the action. These are called action angle coordinates
and will be suitable for a lot of cases in further investigations. In order to show their
existence consider the following definitions and theorems. Here, we follow | ],
part B, section 1.1.3.

Definition 2.12 - Let (M, w) be symplectic manifold, f,g € C* (M) two functions
on M and denote by Xy, X, € ['(T'M) their corresponding hamiltonian vector fields.
The Poisson bracket of f and g is the function

{f,q} = w(Xs, X,).

Lemma /Definition 2.13 - Let (M,w, H) be a hamiltonian system and f €
C*(M) be a function. Then, {f, H} = 0 holds if and only if f is constant along in-
tegral curves of H. Such function f is called an integral of motion of (M,w, H).
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Proof - We compute

{f.H} =0 < w(X;, Xg) =0
< df(Xu) =0

< f constant along Xp.

This completes the proof. [ |

Remark 2.14 - Trivially, H is an integral of motion of a hamiltonian system (M, w, H)
by Remark 1.24.

Theorem 2.15 (Arnold-Louville) - Let (M,w, H) be a hamiltonian system of di-
mension 2n with n integrals of motions fi = H, fo, ..., fn € C®(M). Fur-
thermore, let ¢ € R™ be a regqular value of f := (fi, ..., fn). Then, the set
fYc) = (M,w) is a lagrangian submanifold.

(1) If the flows of the corresponding vector fields Xy,, ... , Xy, € I'(T'M) starting
at p e f~Y(c) are complete, then on the connected component of f~1(c) con-
taining p there exists an affine structure with coordinates @1, ... , @, in which
the flows of the vector fields Xy, ... , Xy, are linear. These coordinates are
called angle coordinates.

(ii) Furthermore, there exist coordinates 11, ... 1, that are complementary to
the angle coordinates. That is, the set of coordinates 1, ... ,Yn, 01, -, ©n
forms a Darbouz chart. These coordinates are called action coordinates.

Proof - A proof can be found in | ]- |

Corollary 2.16 - Let (M,w,T" u) be a symplectic toric manifold and let
01, ... ,0, be coordinates of T". Furthermore, let ¢ be a regular level of . Then, for

every point p € f~1(c) there exists a neighbourhood U of p and a set of coordinates
Y1, ..., ¢, on U such that

i=1

Proof - Here it is sufficient to observe that every component pu; of the moment map
is an integral of motion. [ |
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Corollary 2.17 - For the complex standard toric mainfold (C",wy, T"u), as in
Ezample 1.7. Then, we have 1; = p; = —3r2 for all i€ {1, ... ,n}.

2.5 Delzant theorem

Theorem 2.7 allows us to associate to every symplectic toric manifold a polytope
in R™. Naturally, two questions arise. First, which kinds of polytopes occur when
taking the moment image and second, we can ask the inverse question of the first
statement. That is, can we associate to certain and allowed polytopes a (unique)
symplectic toric manifold? The answers to these questions where given by Delzant
and are presented on the following pages.

Definition 2.18 - A Delzant polytope A c R”" is a polytope satisfying the
following conditions.

(a) at every vertex there are n edges,

(b) edges meeting at one vertex p are rational, that is, the i-th edge is of the form
p+t-v;, where v e Z™ and

(c) for every vertex the corresponding edge vectors vy, ... ,v, € Z" from above
form a Z-basis of Z".

The following polytopes are examples of Delzant polytopes.

The following polytope is an example of a non-Delzant polytope.
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ps D1

v1(p2) = (1,0)

v2(p2) = (=2,1)
b2

Property (c) of Definition 2.18 is not satisfied at the vertex p,. To see this observe
that the point (1,0) € Z? can not be realized by a;v;(p2)+azve(p2) for some ay, ay € Z.

Theorem 2.19 (Delzant [Del]) - There exists a bijection between the set of all com-
pact sympletic toric manifolds up to equivalence and the set of Delzant polytopes,
which is given by the moment map via (M*",w, T", u) — u(M) < R™.

Proof - A proof can be found in | ] |



Toric lagrangians in the complex space

In this section we formalize the central question of this thesis. In short, we are asking
for the existence of immersed and embedded lagrangians that will be mapped under
the moment map to specific affine subspaces of R".

3.1 Pre-images of the moment map

The central ingredients of this thesis are the moment map and pre-images of it. In
order to introduce the topic let us consider (C?,wg, T?, 1) and check how certain pre-
images of sets in the moment image behave. If we look at the following picture one
could ask what are the pre-images of the points pi,ps, p3, ps € R,

M2 )
A Rgo
- (L1

b2 p1

b3

D4

Let us start with p; = (0,0), where we introduce coordinates (u1, p2) for RZ. From

22
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the definition of the moment map we can deduce

W) = 10,0 = {z) €| = 5 () = 0.0/f - ©.0)

Thus, the pre-image in this case is just the origin of RZ,.

For p, and p3 we have a similar situation because in both cases we have either
w1 = 0or pus = 0. Therefore, it is sufficient to consider p,. Here, we write py = (=X, 0)
for some A € R.g and compute

p (p2) = (X, 0) = {(21722) € CQ’ - ; (\2’1|2 ) 122’2) = (—)\70)}
- {(er”,O) 662(9681} ~ St

For py write py = (—A1, —A2) for some Ay, Ay € Ry and compute

1
,U_l(p4> = {(2172’2) € Cz| - 9 (|Zl|27‘2’2|2) = (—A1,—>\2)}
= {(2)\1 6191,2)\2 8192> € CQ ‘ 91,92 € Sl} ~ Tz.

Therefore, the pre-image is a 2-torus.

We don’t give a detailed prove but these statements can be extended to C™ right
away. Let p = (p1, ... ,pn) € RZ be a point in the moment image with r € {0, ... ,n}
non-vanishing coordinates. Then,

7 p) ~T".
We use the convention that (T")" is just a single point.

Definition 3.1 - Let V be a vector space. A subset W < V is called an affine
subspace of V if there exists a linear subspace W' < V and a vector w € V' such
that W = W’ 4+ w. An affine subspace A < R" is called rational if W' admits a
rational basis.

Remark 3.2 - The image of the moment map p : C* — R" is given by RZ and is
clearly not a vector space. However, we define can extend the definition of an affine
subspace as follows.

Definition 3.3 - A subspace W < R is called an affine subspace if its linear
completion W’ in R™ is an affine space. Furthermore, it is called rational if W’ is
rational.
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Remark 3.4 - In this thesis we are interested in rational affine subspaces of RZ.
If we pick coordinates (p1, ... ,in) of RZ, every affine subspace can be defined as a
set of r equations, each of the form ajp; + ...+ al'p, = k; for i € {1, ..., r}, where
ag, k € R. We can require k; < 0 for all 7 and in order to have a non-empty space
we can deduce that at least one of the a] for a fixed i has to be greater than zero.

Furthermore, by multiplication we can arrange that a{ € Z for all i € {1,...,r}
and j € {1, ... ,n} and such that Z?:I ’aﬂ is as small as possible for every ¢. This
is also known as the vector (ai, ... ,a,) € R is primitive. This convention is used

throughout the whole thesis.

Definition 3.5 - An affine subspace N < R% of codimension 1 is called Delzant
if for every intersection point p € N with the i-th axes of RZ, there exists n — 1
tangent vectors vy, ... ,v,—1 € T,N, such that the set {e;,v1, ... ,v,-1} forms a
Z-basis of Z" and every vector is rational, that is v; € Z" for alli e {1, ... ,n — 1}.

Remark 3.6 - Every Delzant affine space is rational, since the intersection being
Delzant implies integer coefficients for the affine subspace.

Example 3.7 - The concept of an Delzant affine space has indeed a connection to
the above Definition 2.18 for Delzant polytopes.

To make this connection visible let us consider RZ,. The following figure shows
the Delzant affine subspace N for the equation p; + e = —1. Note that the triangle
with sides given by the axes and N forms a Delzant polytope.

However, our above definition allows affine spaces that not necessary enclose a
Delzant polytope. The next figure shows the Delzant affine subspace for the equation

p — pp = —1.
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| > 1

Proposition 3.8 - Let (C", wq, T, p) be the standard complex toric manifold and
N < RZ, a rational affine subspace of codimension r. Then, there exists a subgroup
H < R™ which preserves the null foliation Ker (M,rl(N)) and which is diffeomor-

phic to a torus of dimension r, i.e. H ~T".

Proof - Let p, ..., pu, be coordinates of the moment image RZ,. From Linear
Algebra we know that every rational affine subspace N can be charaterized by a set
of r linear equations {alpu + ...+ au, = ki}i6{17...7r} for some af € Z and k; € Ry,
by Remark 3.4, via

N = {(:ula-"7“n)eRZO|az‘1M1+--‘+a?#n:kiforauiE{l,...,’f’}}.

We show that for every of these equations there exists a periodic vector field under
which p~1(N) is invariant. The flow of this vector fields gives then rise to the subgroup
H of T™. Consider the i-th defining equation of N. By differentiating we obtain on
N

A= a}dul + ...+ a;du, = 0.

From this expression we see that the tangent bundle of ;1 ~!(V) is given by the union
of the kernels of each of the above 1-forms J\;, i.e.

T (p'(N)) = Ker (\).
i=1
Let X; be the vector field generated by a%. From the definition of the moment maps,
as in Definition 1.25, we know that
dp; = tx,w

k3

holds for all i € {1, ... ,n}.
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Define the vector fields Y, := aile +...a’X,, and we compute

(ajdps + ...+ aldp,) (7)) = ajw(X1,Y5) + ... + afw(X,,, )

7=1 Jj=1
= Z a? Z alw(Xy, X;)
k=1  j=1
= Z a?agw(XbX])
k=1
= Z ai Xk’v + Z a Xk7 )
i<k k<j
=Y aladfw(Xy, X;) + (X, X}
i<k i<k (Xe,X5)

Here, we only use the anti-symmetry of w and relabeling of a sum. Hence, we get that
p~t(N) is invariant with respect to Y;. Each of the X; vector fields is periodic and
hence their linear combination is also periodic since all the a! are integral numbers.
Since this is true for every Y; with i € {1, ... ,r} we conclude that x~!(V) is invariant
with respect to T" < T". This completes the proof. [ |

Proposition 3.9 - Let (C", wq, T, p) be the standard complex toric manifold and
N < RZ, be a rational affine subspace of codimension r. Assume there exists a
lagrangian submanifold L = (C™, wq) with L < u~'(N). Then, the null foliation is

a subset of the tangent bundle of L, i.e. Ker (W‘;rl(N)) cTL.

Proof - Let us write w in action angle coordinates as w = >, df; A dy,; on the
restriction to RZ, to its interior. Since N is an rational affine subspace of codimension
7 there exists r equations of the form ajpuy + ... + al'dp, = k;, where i € {1, ... ,r},
af € Z and k; € R¢y. Therefore, we can deduce that

TN = U Ker (ajdps + ... + aldp,) =: 7O S) M

o o o o
span{ﬁ,...,#ﬂ} TNmSpan{ﬁ,...,auﬁ}
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Define the vector fields Y; = a}ai + ...+ a"-% and from this we see that
%51 J Opn

Ker (w‘u_l(N)> =span{Yy, ... Y, }. (3.1)

If L € N is a submanifold of N we get

TLmspan{a, 7(7} c M.

aul aljln

Asumme that L is lagrangian and we show that Y7, ... ,Y, € TL holds. We prove by
contradiction. Assume that Y7, ... Y, ¢ T'L and that L is lagrangian. Then, we get

that the space
TL®span(Yy, ... ,Y,)

is n + r dimensional and coistropic by Equation 3.1. But this contradicts the la-
grangian property of L. Since every vector field Y} is periodic, we can conclude that
there exists a Lie subgroup H < T" with T" € H. This completes the proof. [ |

This result can be tightened even further by restricting the moment image of L as
follows.

Proposition 3.10 - Let (C" wq, T, ) be the standard complex toric manifold
and N < RZ, be a rational affine subspace of codimension r. Assume there exists
a lagrangian submanifold L < (C",wy) with u(L) = N and such that M‘L :L—> N
is a submersion. Then, L is invariant with respect to the same torus T" < T" as
in Proposition 5.8.

Proof - The proof is essentially the same as in the case of Proposition 3.9. However,
since ,u] ; 1s a submersion we get that

TLmspan{a, ’(3} =M
a:ul a,un
and hence we conclude TL = span {X7, ..., X,}, which implies immediately that L

is T invariant. This completes the proof. [ |
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3.2 Toric lagrangians

Lagrangian submanifolds with the property as in Proposition 3.10 are of central
interest for this thesis. Therefore, we take this notion and generalize it as follows.

Definition 3.11 - Let (M,w,T", 1) be a hamiltonian T"-space with an action
¢ T" x M — M. An immersed lagrangian L < (M,w) is called toric lagrangian
if there exits a proper Lie subgroup H < G such that L is invariant under v with
respect to H, that is, if ¢)(h, L) = L holds for all h € H.

Remark 3.12 - So far, we only considered continuous cyclic Lie subgroups of the
form T" < T™. By Proposition 2.4 there are also subgroups that are made of cartesian
products of Z; for some k. However, the study of toric lagrangians with respect to
these subgroups is omitted in this thesis. See Section 4.3 about further research for
more details.

On the following pages we show the existence and also non-existence of toric la-
grangian submanifolds for certain affine subspaces for (C? w). However, as a first
example we start with the simpler case of n = 1.

3.3 Baby case (C,wy)

Since (C,wp) is a 2-dimensional manifold, wy € Q%(C) is automatically a volume form
and hence every 1-dimensional submanifold of C is lagrangian. Since there is only
one affine subspace in R¢g, that is, R itself, we can take any linear subspace L < C,
i.e. a ray through the origin, which is then toric by Proposition 3.10.
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3.4 Existence of toric lagrangians in the complex
plane

The complexity of the existence of toric lagrangians changes a lot for all the cases of
n # 1. We focus here on the next simplest case of (C?,wy). Here, we formulate so-
called ray-theorems which show the existence of toric lagrangians for rational affine
subspaces of RZ . This will be shown in the following.

3.4.1 Proving existence by symplectic reduction

For the cases of affine spaces that enclose a 45° or 90° degree angle with one of the
axes of RZ even an embedded toric lagrangian can be archived.

As a first example consider for a fixed k € R\ {0} the affine space

Nei= { (1, 12) € R | = iz = I} (3.2)

which is drawn in the following picture.
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| » 1

Ny,

The pre-image with respect to the moment map of N is given via the equation

Ny ==~ (Ny)
= {(7’1 ei(’l,m ei02> € C2 1,79 € R;o, T% — Tg = —2]{?, 01,92 € [0,27’(’)} .

We use symplectic reduction in order to show that a lagrangian submanifold in N},
(C?% wp) exists, which covers Nj.

Lemma 3.13 - Consider (C?,wy) and N; = C? as above. Then, the map u' :
N| — Req defined as ), (z1, 22) = ,_% 21| + : | 20| is a moment map on Ny for the
anti-diagonal action given by ¢/(e'?, (21, 20)) = (e'%21,e7%25). Furthermore, this
action is free on N'.

Proof - Since S* = T" is a Lie subgroup with inclusion map

i: St — T?

el s (elf ei0)
we can conclude by Proposition 1.26 that )" defines indeed a hamiltonian action with
moment map . What is left to show is that 1 is free. We compute in action angle
coordinates

Up(p) = (e O, pipe! COH0)) L (11t prpel®) |

which implies immediately 6 = 0 for all j1, po € R and 61, 65 € S*. Hence the action
1" is free. This completes the proof. [ |
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Proposition 3.14 - There exists a lagrangian submanifold L;, = (C?,wy) such that
(L) = Ny for all k € R\ {0}.

Proof - With Lemma 3.13 we have all the assumptions in order to apply Theorem 2.7
to perform symplectic reduction. We get that V, l/g /St ~ C. We are now looking for a
lagrangian L,.q € C whose image by the residual moment map pi,eq is everything for
the circle action. Take L.,q = R < C and define Ly, := 7 !(Lycq). By Proposition 1.28
we conclude that Ly is an embedded lagrangian with pu(Lg) = Ni. This completes
the proof. [ |

The case of k = 0 in the above setting, that is, Ny is a ray starting at the origin in a
45° degree slope, can be treated separately. This example goes back to | |. But
here we construct a corresponding lagrangian submanifold in C? explicitly as follows.

Lemma 3.15 - Let (C?,wp, T", i) be the standard complex hamiltonian T"-space.
The set
Lo := {(z,f) € CQ‘Z € (C}

is a lagrangian submanifold of (C% wy) with moment image pu(Ly) = No.

Proof - We use Lemma 1.12 in order to show that Ly is lagrangian in (C? wy). For
that purpose write L in real coordinates as

LO = {(Iay;% _y) GR4‘%ZJER}
and hence we get
iLg= {(—y,x,y,x) €R4‘x,yeR}.
So if we take (x1,y1, 21, —y1) € Lo and i(x2, Yo, T2, —y2) = (—Yo, T2, Yo, T2) € i Ly we
compute
(@1, 91, 21, —v1), (—Y2, T2, Y2, T2)) = —T1Y2 + Toy1 + T1Y2 — Y122 = 0
and conclude that LOL D iLgy. For the other direction let (x1,y1,za,ys2) € LOl and for
every (z,y,,—y) € Ly we need to have
(1,91, 72, 92), (2,9, 7, —Y)) = 212 + Y1y + TT2 — Yoy

=z (214 22) + y(yl — y2)

1

= 0.
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Since this equation has to hold for all z,y € R simultaneously we get that xy = —x9
and y; = y». This implies that (—zy,ys, T2, 1) € i Lo and yields Ly < iLy. So in
total we get Ly = i Lo, which implies that Ly is a lagrangian of (C2,wy).

To show that it is also embedded note that Ly can be given as the graph of the
map 2z — z and this map is injective. Therefore, L is a lagrangian submanifold of
(C% wp). This completes the proof. [ |

As another example we want to consider the following case. For a fixed k € R_g
define the set

Ny = {(Ml»ﬂz) e RZy [ + o = k} (3.3)

which has the following picture. The story for this case is indeed very similar to the
first case.

H2
k A
| » L1

Proposition 3.16 - There exists a lagrangian aubmanifold L, < (C? wg) such
that p(Lg) = Ny, for all k € R\ {0} and Ny, as in Equation 3.3, holds.

Proof - First of all note that u~*(N;) is diffeomorphic to a 3-sphere as the following
expression shows:

u (N = {(21,20) € C | |* + |22f* = 2K}
Here, we have a free diagonal action ¢/(e'’, (21, 22)) = (€'%21,€"2) and for this action
the moment map is given by ' = uq + o, by Proposition 1.26. This map is nothing
else than the Hopf fibration and we therefore obtain S? /st = S2.
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H2
k A RO,
— » 1

Since S? is of dimension two any 1-dimensional subspace is lagrangian. Therefore,
if we pick any great circle L,oq through the north and south-pole we get that Lj :=
p 1 (Lyeq) is a lagrangian submanifold in (C? wy) with p(Lg) = Nj. This completes
the proof. [ |

Remark 3.17 - Note that all affine subspaces of the above cases are Delzant, e.g. in
the second case we have the edge vectors as in the following picture.

B
,\— » 1

(%)

Remark 3.18 - The above cases only considered 45° degree angles to the axes. For
a 90° angle to one axis the situation is of a simple nature. This case can be seen as
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neglecting one of the radius values of C? and is therefore equivalent to the C case, as
in Section 3.3.

Remark 3.19 - These considerations show that for Dezlant affine subspaces we
can use symplectic reduction in order to produce a lagrangian submanifold. This
observation is one of two ingredients for the later central conjecture of this thesis.

3.4.2 Limitations of symplectic reduction

In the previous section we only considered angles of 0°,45° and 90° degree between
an affine space N, and one the of the axes of RZ,. Therefore, the natural question
arises of how the story changes if we consider different angles. To show the existence
of a lagrangian with moment image N, we used symplectic reduction via Theorem
2.7. Let us consider the following case, which is not Delzant as shown in following
picture.

M2

| » 1

z
|

For a fixed k € Ry we can write N, as

Ny = {(m,uz) eRiO‘m +2pp = k}

Also, by Proposition 1.26 we can argue that ' = p; + 22 is a moment map for the
pseudo-diagonal action ¢'(6, (21, 22)) = (e'%21,€'%2,).

As a last assumption we have to verify if the given action is free at every point.
However, this is wrong as we show in the following computation. For all (z1, 25) € Ny
we need to check

Py(21,22) = (ewzl,eizezg) < (21,22) - (3.4)

only holds for # = 0. But for the element (0,2;) we have § = 0 and § = = fulfill
Equation (3.4) and hence the given action is not free. Therefore, we need other
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methods in order to show existence for affine space that has a slope different from
45° degrees.

3.5 Lagrangians in (C?, wy)

3.5.1 Properties

Before moving on to the existence of lagrangians with certain moment images we
derive and sum up some obstructions to lagrangian submanifolds in (C?, wy).

Theorem 3.20 (Neighbourhood theorem) - Let M be a compact manifold, N < M
a compact manifold and wy,w; € Q*(M) two 2-forms which are equal and non-
degenerate on TM’N. Then, there exist neighborhoods No, Ny < M of N and a
diffeomorphism v : Ny — Ny, which is the identity on N, such that ¥*w; = wy.

Proof - A proof can be found in | ] |

Corollary 3.21 - A compact lagrangian submanifold L < (M,w) has a neighbour-
hood, which is symplectomorphic to a neighbourhood of the zero-section in T L.

Proof - A proof can be found in | ]. [

Lemma 3.22 - Let L < (M,w) be a compact orientable lagrangian submanifold
and i : L — M be the inclusion map. The self intersection i,[L] - i4[L] is the
negative of the Euler characteristic of L.

Proof - By Corollary 3.21 this is precisely the number of zeros with sign of a generic
1-form, i.e. the FEuler characteristic of T* L. Therefore we get

ix[L] - i[L] = —x(T'L) = —x(L).

This completes the proof. |

Corollary 3.23 - The only compact orientable lagrangian submanifolds of C* are
tori.
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Proof - Since Hy(C?* Z) = 0 we have that i,[L] = 0 and hence x(L) = 0. By stan-
dard topology, every orientable compact connected surface with Euler characteristic
zero is diffeomorphic to a 2-torus. This completes the proof. [ |

This corollary shows us that if we are capable of finding a compact connect ori-
entable lagrangian submanifold of (C?, wy) that admits a certain affine space N as its
moment image, it must be a torus.

3.5.2 Ray theorems in (C? wy)

As already explained in Section 3.4.2 symplectic reduction can not be applied. How-
ever, we prove the existence of toric lagrangians also for other affine space and these
results will be called the Ray Theorems in (C?, wy).

Theorem 3.24 (First Ray Theorem) - Let k € R.y, a,b € N and consider the
rational affine space

Nk = {(/Jq,/}@) S Rio ap + b/JJQ = —Qk} o

Then, there exists an toric lagrangian Ly < (C? wy, T", u) such that u(Ly) = Ny.

In order to prove this theorem we give an explicit construction of a lagrangian Ly
with moment image Nj.

Proposition 3.25 - Let k€ Rog and a,b € N be two natural numbers, the set
Ly = {(rlei‘w,rgeib@) eC?|\r,rae R, arf +br; =k,0 €0, 277)} (3.5)

is an immersed lagrangian of (C?,wy) with moment image (L) = Ny as defined
in the First Ray Theorem 3.2/.

This proof can be divided into the following steps.

Lemma 3.26 - The set L, = C? as defined in Proposition 3.25 is a differentiable
manifold for every k € Rog.
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Proof - Here we take a direct approach and give a set of parameterizations that
fulfill the requirements of a parameterization of a differentiable manifold. Since there
are various definitions of differentiable manifolds we attached the ones we chose in
Appendix A and we refer to Definition A.1. One can easily verify that the following
four maps cover Ly and all of them are injective. This shows property (a).

g1 (O, \/%> x (0,27) —> L

(7’, 9) — ( g — 27’2€ia0, re_ib9>
i (04/5) x(~mm) — L
(r,0) — ( E_ §r2ei“0,re*ib9>

For property (b) note that the intersections of the images of all possible pairs are
open since every image is given open in L. So it is left to show that a change of
parametrization is differentiable. For that purpose we need to compute the inverse
maps. For i e {1,2} we get

g (21, 2) = <|Z2|»—Arg(22)> and  h; (21, 22) = (|21’a—Arg(21)> :

b

Changes of parametrizations between any of the g’s or the h’s are the identity on
their intersection of domains. The only non-trivial reparameterizations are therefore



LAGRANGIANS IN (C? wy) 38

between ¢’s and h’s. For all 7,5 € {1,2} we compute

(gi_l © hj) (r,0) = gi_l (Teiw, v brzeiw)

k
= ( 3 —ZrQ,—G) and
E b, -
(h;tog) (r,0) =h;! <q [~ ar2e1“9,re1b9>

:< k_bﬂ,_e),
a a

for (r,0) € Dom(g;) n Dom(h;). The square root function is differentiable for every

value that is non-zero and positive. Since r € (O, min {\/% , \/g }) we get that these
map is indeed differentiable, i.e.

Yoh:,,h;tog eC”

i ARG
for all ¢, j € {1,2}. This completes the proof. [ |

Lemma 3.27 - The manifold L, = C? as defined in Proposition 5.25 is immersed

in C2.

Proof - In order to be immersed we have to show that every parametrization has
an injective differential. For simplicity, we consider ¢g; and all to other maps can be
treated again in a similar fashion. The differential computes to

br 1 iaf k‘ iaf
E_a \/
dgl(r7 9) = ( ¢ b br2 b b >

e—ib@ ibre —ibo

and for the determinant we get

det (dgy(r,0)) = —i k 37«2 (a=b)0
\/z %
_ _177 ( b2 2 +Cl (k b7"2)> i(a—b)o £ 0.
a [k _ b2 Rr—‘ a a
a a >0 —
N——— >0

>0
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This shows that the differential of dg; is injective. This completes the proof. |

Lemma 3.28 - The manifold L = C? as defined in Proposition 3.25 is coisotropic
in (C% wp).

Proof - Write wy in polar coordinates as wg = r1dry A df; + rodrs A dfy and denote
by i : L < C2 the inclusion map. Observe, that by definition, on L; we have that
the arguments of z; and zy are not independent. They satisfy the relation

aby =060, +k-2n < bO; —aby =0 mod 27.
Also by differentiation we get
ariydr; +bredra =0 and bdf; = adbs.

So if we compute the pullback of wy on L we get
b
i*wo = TldTl A dgl + TQdTQ AN *d@l
a

1

= (CL Tld’f’l + bT’QdTQ) /\*del

N ~ _ a
=0

= 0.

Therefore, wy vanishes on L;, which proves the Lemma. Alternatively one could
also use Lemma 1.12 by showing L; is lagrangian and show that L{ = iL;. This
completes the proof. [ |

Remark 3.29 - The above parameterizations were chosen such that the Jacobians of
each reparametrization have a positive determinant. Therefore, we have an immersion
of an orientable smooth manifold into C2.

Having these three lemmata we are now able to prove the First Ray Theorem.

Proof (Proof of First Ray Theorem 3.24) - By Lemma 3.26 and 3.27 we see that L
is an immersed manifold and since it is also coisotropic by Lemma 3.28 we only need
to check that the moment image of Ly is N,. This follows directly from the definition
of Ly, and the fact that —3r? = p; for i € {1,2}. This completes the proof. [

Theorem 3.30 - The lagrangian submanifold L, defined as Equation 3.5 is an
immersed torus.
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Proof - For this we give an immersion as follows. Consider the map

Y. S'xSI=T? — L

(7”1,7‘2,&) [— (rleiae,rgeibe),

where we use for the first S! the coordinates (1, ) € R? with ar? 4+ br2 = k and for
the second S* that 6 € [0,27). This map is indeed an immersion as we show now.
For this, we need to compute its Jacobian and check if this map is injective.

ia6 : iaf
e 0 iare
(J,’vz))(hﬂ‘z,@) = ( 0 eib6 ibTQeibe)

Let v = (v1,v2,03) € T(yy 00T be a tangent vector. For injectivity it is sufficient to
compute the kernel of (Jy) via

(v +iarv)e®® 1 (0
oo = (o om0 ) £ (3 3.6
This yields
i 2 v3 2
ivy =aryvy and ivy =bryus, < —a—vgzarl and —b—U%:er.

Adding these two equations we get

2 2
v v
L+ 2= kvl
a b

Since a, b,k > 0 this equation only holds if v; = vy = v3 = 0 and hence 9 is a
surjective immersion. This completes the proof. [

The First Ray Theorem 3.24 only considered rational affine subspaces that intersect
both axes of RZ,. However, the same construction can be extended easily.

Theorem 3.31 (Second Ray Theorem) - Let k € R, a,b e N two natural numbers
and consider the rational affine space

Nk = {(ﬂl,ﬂQ) € RQSO a by — bﬂg = —Qk} o

Then, there exists a toric lagrangian Lj, = (C% wy, T, 1) such that pu(Ly) = Np.
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Proof - The computation is a straight forward generalization of the one in the proof
of the First Ray Theorem 3.24. Define

Ly = {(r1e"*? rye'®®) e C* |ar] — brj = k}.

Then, one can check again that this is indeed a immersed lagrangian in (C?,wy). This
completes the proof. [ |

The above results can be summarized as follows.

Corollary 3.32 (Ray Theorem) - Let N < RZ be an affine subspace with rational
slope. Then, there exists an immersed lagrangian L of (C?,w, T", u) with u(L) = N.

From the results about the Delzant affine spaces and the Ray Theorem we are able
to formulate the central conjecture of this thesis. Further details of why we think
this might be true are given in the concluding chapter.

Conjecture 3.33 - Let N < ]Rio an affine subspace. Then, there exists a la-
grangian submanifold L of (C?,w, T?, u) with u(L) = N if and only if N is Delzant.

Remark 3.34 - In the above considerations we were only interested in affine spaces
with rational slopes. However, one could ask if there are also toric lagrangians in the
pre-image of non-rational affine spaces. This question can be answered with a clear
no. The central reason is, that if such a subgroup H < T? exists, it is no closed. For
example R — S! is a dense subgroup, but in our definition we neglected these cases.
We are only interested in closed subgroups.



Summary

In order to close this thesis we give some further remarks on the presented material.
Also, we give a conclusion of our findings and point out the future research that could
be done to extend our findings.

4.1 Remarks

In Section 3.5.2 we have proven that the set Ly as in Proposition 3.25 is an immersed
lagrangian of (C?,wy, T", i) with u(Ly) = Nj. Here, we give some remarks why it is
not easy, or even not possible at all to find an embedded lagrangian with the same
moment image property.

As we have seen in Section 3.4.2 the obtained action on u~!(Ny) is not free if a # b,
which is a crucial. Namely, in this case, the quotient #~ (Ni) /St is in general not a
manifold. It is rather a so-called orbifold and therefore the procedure of quotiening
manifolds is not closed. See Appendix B for the exact definition and some properties
of orbifolds. However, Eugene Lermann and Susan Tolmann showed in 1977 | ]
that the whole concept of symplectic quotients and the Delzant Theorem 2.19 can
be generalized to symplectic orifolds and is in that category closed. Therefore, the
notion of a symplectic orbifolds seems to be the more natural definition. However,
a symplectic orbifold can have a very complicated shape due to the occurrences of
singularities. Also in physical fields like String Theory a lot of attention is drawn
towards symplectic orbifolds.

The study of singularies of quotient spaces is very old in its own. In particular,
singularities of C? over some subgroup G < SL(n, C) were studied and classified in
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1884 by Klein. In this case it is possible to resolve every singularity by changing
coordinates or "blowing" them up. For details consider Theorem B.14. If we apply
this to our setting one could achieve that p~!(Nj) can be deformed to a smooth
manifold. However, it is far from obvious how to prove the existence of a smooth
lagrangian in this manifold with corresponding moment image.

4.2 Conclusion

The aim of this thesis was to study the relationships between Lie subgroups of T",
affine subspaces of the moment image and lagrangian subspaces with corresponding
moment image of (C",wp). Due to its complexity we studied the most simple cases
of C and C2. There, we gave explicit constructions of immersed and embedded la-
grangians with respect to given rational affine subspaces. We discovered that finding
an embedded lagrangian on a non-Delzant affine space is quite challenging due to
the nature of the occurring orbifold singularities. At most, we could only archive
immersed lagrangians, which are of interest in their own. This relationship we for-
mulated at the above Conjecture 3.33. By combining the Ray Theorem 3.32 with
the invariance Theorem 3.10 even more can be archived. With these it is possible to
draw a connection between the non-discrete Lie subgroups of T? and rational affine
subspaces of C", i.e. for every non-discrete subgroup we have a principle of how to
pick an affine rational subspace which has a toric lagrangian in its pre-image with
invariance group is the given Lie subgroup. However, these statements are here only
explained and explored in C2, but we think that they can be extended generally to
Cc™.

4.3 Future research

Further work on this could be done in four directions.

1. One could try to proceed further and try to extend the construction of immersed
lagrangians with given rational affine subspace moment image to C? or generally
C". However, the difficulty may lie in proving the immersion property for this
general construction. Furthermore, a generlization of Definition 3.5 has to be
found. If this would work out one could adapt the framework such that Conjecture
3.33 could be formulated for the case of general (C", wq, T", 1) instead of only for
n=2.
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2. The most interesting and challenging task would be to try to prove or disprove
the central Conjecture 3.33 for the case of C? or even for C".

3. Conjecture 3.33 might also give a connection to the concepts of symplectic cutting
and symplectic blow-up which are not presented in this thesis. For further details
consider | ], part B, sections 1.3.5 and 1.3.6. There, a relation between
"cutting out" certain areas of a manifold are also related to affine subspaces in the
moment image that are Delzant. Maybe this would yield further insights into the
nature of pre-images of affine subspaces.

4. In the conclusion we mentioned a connection from non-discrete subgroups to ra-
tional affine subspaces and their lagrangians. By Theorem 1.26 there also exists
subgroups that include Z;, for some k € N. Therefore, a further task would be to
check if we can find immersed lagrangians or even embedded lagrangians that are
invariant with respect to these groups.



Appendix - Differentiable Manifold

Here, we recall some of the basics definitions of embedded submanifolds from |

]

in order to fix the notation we are using the proof of the Ray Theorems in Chapter

3.

Definition A.1 - A set M is called a differentiable manifold of dimension n
if there exists a family, labeled by some index set I, of injective maps ¢, : U, <
R™ — M, where U, are open subsets of R", such that

(a) M is covered by ¢, (Uy,), that is | J,o; ¢a(Us) = M,

(b) for any pair «, 8 € I with p,(U,) N ps(Us) = W # & the sets o }(W) and
@El(W) are open in R™ and the map go/gl o (p, is differentiable and

(c) the family {(¢a,Ua)},e; is maximal relative to the conditions (a) and (b).

The family {(¢a, Us)},; is called a parametrization of M.

Definition A.2 - Let M and N be two differentiable manifold. A smooth map
¢ : M — N is said to be an immersion if the differential map dey, : T,M — T,y N
is injective for all p € M. If furthermore ¢ is a homeomorphism onto its image
@(M) < N then it is called an embedding and M is called a submanifold.
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Appendix - Orbifolds

In Chapter 3 we constructed lagrangian submanifolds L that are immersed into C?
but not embedded. The central reason for this is that the corresponding action is
not free and yields to a singularity after quotening. Instead of producing a manifold
the corresponding space is an orbifold, which is a generalization of the concept of
a manifold. Since the are only a few texts about orbifolds we sum up the most
important definitions and theorems about them. We follow the textbooks | ]
and the excellent work | .

Definition B.1 - Let X be a topological space and n € N. A n-dimensional
orbifold chart on X is given by a connected open subset U = R", a finite group

G < Aut(U) and a map ¢ : U — X such that it is G-invariant and induces a
homeomorphism 1 : U /i — U onto an open subset U < X.

Definition B.2 - Let X be a topological space and ¢ : U—X,¢p:V — X betwo
n-dimensional orbifold charts. Then, a map A : U <— V is called an embedding if
it is smooth and ¥ o A = .

Definition B.3 - An orbifold atlas on X is a family &/ = {(Ua, Ga, wa)})ael of
orbifold charts that cover X and are locally compatible. That is, given two charts
(Ua, Gy o) and (Us, G, 1b5) for a, 3 € I, a point o € U, n Uy, there exists an
open neighbourhood W <€ U n'V and a chart (f/, H, ) for W such that there are
embeddings (V, H, ) — (U;, G;, ;) for i € {a, 5}
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Definition B.4 - An atlas U is said to refine on another atlas V if for every chart
in U there exists an embedding into some chart of V. Two orbifold atlases are said
to be equivalent if they have a common refinement.

Definition B.5 - An effective orbifold X of dimension n is a paracompact
Hausdorff space X equipped with an equivalence class [U] of n-dimensional orbifold
atlases.

Remark B.6 - The concept of an orbifold is closely related to the one of a manifold
as the following remarks will state.

« We assume that for each orbifold chart (U, G, 1) the group G is acting smoothly
and effectively.

» Since every smooth action is locally smooth, any orbifold has an atlas consiting
of linear charts, which are of the form (R", G, ), where G acts on R" via an
orthogonal representation, that is, G < O(n,R).

o If every finite group action on a orbifold chart is free the above definition is the
one of a manifold.

Definition B.7 - Let z € X and X = (X,U) be an orbifold. If (U, G, ) is a local
chart around x = v (y) for some y € U we define the local group at x as

G, ={9eCG|gy=y}.

Note that this group is unique up to conjugacy in G.

Definition B.8 - For an orbifold X = (X,U) we define its singular set as
Y(X):={xe X|G, # {e}},

i.e. the set of all points in X on which its local group is non-trivial.

The following part considers the most common case of orbifolds, that is, orbifolds
which are obtained by quotiening.



Definition B.9 - An effective quotient orbifold X = (X,U) is an orbifold
given as the quotient of an effective, smooth and almost free action of a compact
Lie group G on a smooth manifold M.

Remark B.10 - If G is a compact Lie group that acts smoothly, effectively and
almost freely on a manifold M, then for every x € M its local group is simply the
isotropy group on a local chart around x in M.

Definition B.11 - An orbifold X = (X, ) is called a complex orbifold if X is
a complex manifold.

Definition B.12 - Let X be a complex orbifold and f : ¥ — & a holomorphic
map from a smooth complex manifold Y to X. Then, f is called a resolution if
fla\s(x) is biholomorphic and f~!(X(X)) is an analytic subset of Y. A resolution
F is called crepant if f*Ky = Ky, where Kx = A{T*X denotes the canonical
bundle over a orbifold X and n = dim X.

Definition B.13 - A n-dimensional complex orbifold X is called Gorenstein if
all the local group G, are subgroups of SL(n, C).

Theorem B.14 - For the complex case of C* and G < SL(2,C) every singularity
of c? /G admits a unique crepant resolution (Y, f).

Proof - A proof of this can be found in | ], Example 1.59. Furthermore this
result goes back to the first classification by Klein in 1884. |

Remark B.15 - Theorem B.14 is also true for the case of n = 3. However, for
n = 4 the possible resolutions of singularities in C™ are not well understood. See for
example [ | for further details. Also these constructions are part of the so-called
McKay correspondence, see | | and | .
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1 ifi=j
Yoo i
Rog:={reR|z > 0}
Rog:={reR|z <0}
Rso:={reR|z > 0}
Reo:={xeR|z <0}

() VPV >R
() :R*xR" > R
M,N

Notation index

Kronecker delta

Set of positive real numbers

Set of negative real numbers

Set of non-negative real numbers

Set of non-positive real numbers

Domain of the map f: X - Y

Image of the map f: X - Y

Kernel of the linear map f: X - Y
K-vector space

Dual vector space to V

Natural pairing of a vector space with its dual
Euclidean inner product on R"

Standard symbols for differentiable manifolds

I'(TM) Section of the tangent bundle T'M, i.e. vector field on M
exp:TM — M Exponential map from tangent bundle to manifold
C*(M,N) Group of differentiable maps from M to N

C*(M) = C*®(M,R)  Group of differentiable real-valued functions on M
1:N—>M Inclusion map of N € M into M

X(M) Euler characteristic of M

QF(M) Space of differentiable k-forms on M

Lxw (k — 1-form obtained by inserting the vector field X in

o1
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Diff(M, N)

Diff(M) := Diff(M, M)
Symp(M,w)

G H

g,b

Ly Ry:G— G

Aut(G)

the first entry of the k-form w

Group of diffeomorphism of M to N

Group of diffeomorphisms of M onto itself

Group of symplectomorphisms of (M, w)

Standard symbols for Lie (sub)groups

Standard symbols for Lie algebras of Lie groups G, H
Left and right multiplication in G by g € G

Group of Automorphisms of G



Action, 8

Action angle coordinates, 18
Action coordinates, 19
Adjoint action, 7

Adjoint representation, 7
Affine subspace, 23

Angle coordinates, 19

Atlas refinement, 47

Coadjoint action, 7
Coadjoint representation, 7
Coisotropic subspace, 5
Complex orbifold, 48
Crepant resolution, 48

Darboux chart, 2

Darboux theorem, 2
Delzant affine subspace, 24
Delzant polytope, 20
Delzant theorem, 21
Differentiable manifold, 45

Embedded lagrangian, 6
Embedding, 45

Equivalent orbifold atlases, 47

Index

Equivalent toric manifodls, 16
First ray theorem, 36

Gorenstein orbifold, 48
Group of symplectomorphisms, 4

Hamiltonian G-space, 10
Hamiltonian action, 9
Hamiltonian function, 9
Hamiltonian system, 9
Hamiltonian vector field, 9
Hopf fibration, 32

Immersed lagrangian, 6
Immersion, 45

Integral of motion, 18
Isotropic subspace, 5

Lagrangian submanifold, 6
Lagrangian subspace, 5
Left-invariant vector field, 7
Lie algebra, 6

Lie group, 6

Lie subgroup, 6
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Local group, 47 Toric lagrangian, 28
Toric manifold, 15
Moment image, 10 Torus. 13

Moment map, 10

Torus action, 14
Moment polytope, 15

Null folitation, 25

Orbifold, 47

Orbifold atlas, 46
Orbifold chart, 46
Orbifold embedding, 46

Parametrization, 45
Poisson bracket, 18
Primitive vector, 24

Quotient orbifold, 48

Rational affine subspace, 23
Ray theorem, 41

Reduced space, 11
Resolution, 48
Right-invariant vector field, 7

Singular set, 47

Smooth action, 8

Standard symplectic form, 4
Symplectic action, 8
Symplectic basis, 2
Symplectic blow-up, 44
Symplectic cutting, 44
Symplectic differential form, 2
Symplectic form, 1
Symplectic manifold, 2
Symplectic orthogonal complement, 5
Symplectic reduction, 10
Symplectic subspace, 5
Symplectic vector space, 1
Symplectomorphism, 4



