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Abstract

Symplectic Geometry is a branch of Mathematics that developed from the Hamil-
tonian formulation of Classical Mechanics in Physics. Conservation principles, e.g.
conservation of energy, is generalized to the concept of a moment map µ : M Ñ g˚

on a manifold M .
In this thesis, we study the connections between affine subspaces in the image

of the moment map and certain lagrangian subsets of the complex toric manifold
pC2, ω0,Tn, µq. More precisely, we ask wether a lagrangian can be immersed or em-
bedded into the preimage of a given affine subspace in the moment image.

Here, we show the existence of embedded lagrangians for so-called Delzant affine
spaced and of immersed lagrangians for affine subspaces with rational slope. Further-
more, we formulate a conjecture that claims the existence of an embedded lagrangian
if and only if the corresponding affine subspace is Delzant. Our results demonstrate
how properties of Tn and their closed subgroups can be translated to lagrangians in
pC2, ω0q.

Complete knowledge about all lagrangians of a symplectic manifold is enough to
understand the manifold ifself. However, the set of lagrangians of a given manifold
is very complicated and does not admit a clear classification. The hope of our work
is to contribute to the goal of finding a subset of lagrangians on which one is also
allowed to know everything about the symplectic manifold itself.
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1
Introduction

This chapter is devoted to the basics of Symplectic Geometry and provides all needed
notions for later results proven in Chapter 3. Furthermore, we fix a notation. At the
end we included a notation index in order to specify what we mean by certain sym-
bols. Mainly, we follow the work of Ana Cannas da Silva as in [dS01] and [AdSL00],
part 2. As prerequisites we assume basic knowledge of Differential Topology, Dif-
ferential Geometry, Algebra and Representation Theory. For example [dC92] is a
good reference for Differential Topology and Geometry. For the algebraic part any
standard textbooks about algebra and Lie groups can be considered.

1.1 Symplectic vector spaces and manifolds
In short, the theory of symplectic manifolds starts on vector spaces and is then moved
to manifolds by requiring the same properties on every tangent space, which is indeed
a vector space.

Definition 1.1 - Let V be a vector space. A bilinear map ω : V ˆV Ñ R is called
a symplectic form if it is

(a) non-degenerate, that is, for every non-zero vector v P V z t0u there exists an-
other vector w P V such that ωpv, wq ‰ 0 and

(b) skew-symmetric, that is, for all vectors v, w P V it holds that ωpv, wq “
´ωpw, vq.

The pair pV, ωq is called a symplectic vector space.

1



Symplectic vector spaces and manifolds 2

Lemma 1.2 - Let pV, ωq be a symplectic vector space. Then, there exists a basis
e1, . . . , en, f1, . . . , fn of V such that for all i, j P t1, . . . , nu we have

ωpei, ejq “ ωpfi, fjq “ δij and ωpei, fjq “ 0.

This basis is called a symplectic basis of pM,ωq.

Proof - A proof can be found in [dS01] on page 4. �

Corollary 1.3 - Every symplectic vector space pV, ωq has an even dimension, i.e.
dim V “ 2n for some n P N.

Definition 1.4 - Let M be a differentiable manifold and ω P Ω2pMq a 2-form on
M . Then, the pair pM,ωq is called a sympletic manifold if ω is closed, that is,
dω “ 0 holds, and if for every p P M the restriction ωp P Ω2pTpMq is a symplectic
form on TpM . Also, ω is called a symplectic form on M .

Theorem 1.5 - Every symplectic manifold pM,ωq has an even dimension, i.e.
dimM “ 2n for some n P N.

Proof - This follows immediately from Corrollary 1.3 together with the fact that for
every point p PM we have dimM “ dimTpM “ 2n for some n P N. This completes
the proof. �

The above Lemma 1.2 also has its analogue on symplectic manifolds.

Theorem 1.6 (Darboux) - Let pM,ωq be a symplectic manifold of dimen-
sion 2n and p P M be a point. Then, there exists a coordinate chart
pU, x1, . . . , xn, y1, . . . , ynq centered at p such that on U we have

ω “
n
ÿ

i“1
dxi ^ dyi.

Such a chart is called a Darboux chart.

Proof - A proof can be found in [dS01], Chapter 8, page 46. �



Symplectic vector spaces and manifolds 3

Example 1.7 - In this thesis there is one main example of a symplectic manifold,
which is presented in greater detail. For an n P N consider the cartesian product of
n copies of the complex line C, i.e. Cn :“ Cˆ . . .ˆ C. Now, we define a symplectic
form on Cn and check its properties. For that purpose, we introduce coordinates
pz1, . . . , znq P Cn and define the 2-form

ω0 :“
n
ÿ

i“1
dzi ^ dzn P Ω2

pCn
q.

We check the properties of Definition 1.4:

(a) Clearly ω0 is closed, since ω0 is exact with respect to the 1-form
řn
i“1 zi dzi P

Ω1pCnq and every exact form is automatically closed.

Pick a point z “ pz1, . . . , znq P Cn and the associated basis B

Bz1
, . . . , B

Bzn
, B

Bz1
, . . . , B

Bzn
of TzCn. Then, it is sufficient to check non-degeneracy and skew-symmetry on this
basis by linearity.

(b) For the non-degeneracy let v “
řn
i“1 vi

B

Bzi
` v1i

B

Bzi
P TzCn be a non-zero tangent

vector at z, with vi, v1i P R for all i P t1, . . . , nu. By plugging into ω0 we get

ιvω0 “ ω0pv, ¨q “
n
ÿ

i“1
vidzn ´ v1idzi.

So by taking the tangent vector w :“
ř

ip´v
1
iq
B

Bzi
` vi

B

Bzi
we get

ω0pv, wq “

˜

n
ÿ

i“1
vidzi ´ v1idzi

¸

pwq “
n
ÿ

i“1
v2
i ` pv

1
iq

2
ą 0,

which proves the non-degeneracy of ω0.

(c) The skew-symmetry follows immediately form the properties of the wedge prod-
uct by the following computation. Let v, w P TzCn be two tangent vectors and
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compute

ω0pv, wq “
n
ÿ

i“1
dzi ^ dzipv, wq

“

n
ÿ

i“1
dzipvqdzipwq ´ dzipwqdzipvq

“ ´

n
ÿ

i“1
dzipwqdzipvq ´ dzipvqdzipwq

“ ´

n
ÿ

i“1
dzi ^ dzipw, vq

“ ´ω0pw, vq,

which indeed proofs the skew-symmetry.

The 2-form ω0 P Ω2pCnq is called the standard symplectic form of Cn and is of
central interest in this thesis.

Definition 1.8 - Let pM,ωq and pN,ω1q be two symplectic manifolds. A diffeo-
morphism ϕ P DiffpM,Nq is called a symplectomorphism if ϕ˚ω1 “ ω holds.
That is, for every p PM and for all tangent vectors u, v P TpM we have

ωpu, vq “ pϕ˚ω1qppu, vq “ ω1ϕppqpdϕppuq, dϕppvqq.

We denote by
SymppM,ωq :“ tϕ P C8pM,Mq |ϕ˚ω “ ωu

the set of all symplectomorphisms of pM,ωq onto itself.

Theorem 1.9 - Let pM,ωq be a symplectic manifold. The set of its symplectomor-
phisms SymppM,ωq forms together with the composition of functions a group.

Proof - A proof can be found in any basic textbook about Symplectic Geometry. �

1.2 Immersed vs. embedded lagrangians
The existence of a symplectic form ω on a manifold M equips it with a structure
that allows us to distinguish certain subspaces. Among all of these, the lagrangians
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play a central role in Symplectic Geometry. This statement is supplemented by Alan
Weinstein’s famous creed

everything is a lagrangian submanifold

in [Wei81]. We follow this approach and consider lagrangians as the central objects
of this thesis. Therefore, we give a detailed introduction into these spaces. As in the
previous section we begin at the level of vector spaces and then lift all the properties
to a manifold by consideration at every tangent space.

Definition 1.10 - Let pV, ωq be a symplectic vector space and W Ď V be a
subspace. The set

W ω :“
!

u P V
ˇ

ˇ

ˇ
@v P W : ωpu, vq “ 0

)

is called the symplectic orthogonal complement of W inside of pV, ωq.

Definition 1.11 - Let pV, ωq be a symplectic vector space. A subspace W Ď V is
called

(a) isotropic if ω
ˇ

ˇ

W
” 0 holds, that is, for all vectors u, v P W we have ωpu, vq “ 0,

i.e. if W Ă W ω,

(b) coisotropic if W ω is isotropic, i.e. W ω Ď W ,

(c) symplectic if pW,ω
ˇ

ˇ

W
q is itself a symplectic vector space,

(d) lagrangian if it is isotropic and coisotropic at the same time, i.e. if W “ W ω.

For the case of pCn, ω0q as in Example 1.7 we have the following lemma that helps
us to determine if a given subset is lagrangian or not.

Lemma 1.12 - Let pCn, ω0q be the standard complex symplectic manifold. A real
subspace L of Cn is lagrangian if and only if LK “ iL, where K is meant with
respect to standard euclidean product on Cn “ R2n.

Proof - Denote by h : Cn ˆ Cn Ñ C with hpz1, z2q “ z˚1z2 the standard hermitian
structure of Cn. By giving real coordinates one can show that

hpz1, z2q “ 〈z1, z2〉` iω0pz1, z2q (1.1)
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holds for all z1, z2 P Cn. From this we compute

ωpz1, z2q “ 0 ô Imhpz1, z2q “ 0
ô Rehpz1, i z2q “ 0
ô 〈z1, i z2〉 “ 0.

This completes the proof. �

Lemma 1.13 - Let pV, ωq be a symplectic vector space of dimension 2n and L Ă
pV, ωq a lagrangian subspace. Then dimL “ 1

2 dim V “ n.

Definition 1.14 - Let pM,ωq be a symplectic manifold of dimension 2n. A subset
L ĂM is called an immersed lagrangian if there exists an immersion i : LÑM
such that i˚ω “ 0 and dimL “ 1

2 dimM . Furthermore, if i also an embedding, we
call L an embedded lagrangian or a lagrangian submanifold.

1.3 Lie groups
As a preparation for the concept of moment maps and the later definition of toric
lagrangians we give a short introduction into Lie groups and its subgroups. We follow
the introduction given by Dietmar Salamon as in the first parts of [Sal13].

Definition 1.15 - A Lie group G is a finite-dimensional differentiable manifold,
which admits a group structure and the operations of multiplication and inversion
are smooth, i.e. the maps ¨ : GˆGÑ G, pg, hq ÞÑ g ¨ h and ´1 : GÑ G, g ÞÑ g´1

are smooth.

Definition 1.16 - Let G be a Lie group. A Lie subgroup H Ď G is a closed
subset such that H together with the inversion and multiplication of G is again a
Lie group.

Definition 1.17 - Let G be a Lie group and denote by e P G the identity element.
The tangent space TeG equipped with the standard Lie bracket of vector fields is
called the Lie algebra of G and is denoted by g :“ TeG.
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Since G carries a group structure we can perform left and right multiplication. For
a fixed element g P G we denote these maps by Lg : G Ñ G and Rg : G Ñ G,
respectively. Since these operations are smooth they also admits derivatives

pdLgqh : ThG ÝÑ TghG and pdRgqh : ThG ÝÑ ThgG

for g, h P G. In particular, if we choose h “ e and a tangent vector v P g we have
that pdLgqepvq, pdRgqepvq P TgG. So, for a fixed tangent vector v in the Lie algebra
of G, we can define two vector fields g ÞÑ pdLgqepvq and g ÞÑ pdRgqepvq, called left-
invariant and right-invariant vector fields generated by v, respectively. Note that
both vector fields agree on g “ e.

Since g is a tangent space it is also a vector space and hence we can define a
representation of G on g as follows.

Definition 1.18 - Let G be a Lie group with Lie algebra g. The adjoint repre-
sentation of G onto g is defined by

Adg :“ dpRg´1 ˝ Lgq : g ÝÑ g.

Let 〈¨, ¨〉 : g˚ˆ gÑ R be the natural pairing of g˚ and g. We define the coadjoint
representation Ad˚gpξq for an element ξ P g˚ via〈

Ad˚gpξq, X
〉
“

〈
ξ,Adg´1pXq

〉
for any X P g.

Proposition 1.19 - The map

Ad : G ÝÑ Autpgq
g ÞÝÑ Adg

is a group homomorphism and is called the adjoint action of G onto its Lie
algebra g. The map

Ad˚ : G ÝÑ Autpg˚q
g ÞÝÑ Ad˚g

is called the coadjoint action of G onto its dual Lie algebra g˚ and is also a
group homomorphism.
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Proof - A proof can be found in nearly any standard text book about Lie groups or
Symplectic Geometry. �

1.4 Moment maps
The following section provides the concepts that are crucial for the later discussion
as in Chapter 3. Here, we introduce a certain class of maps, so-called moment maps.
Later we study the properties of images of lagrangians with respect to these maps.
We follow mainly [AdSL00] for this introduction.

Definition 1.20 - Let G be a Lie group and M be a differentiable manifold. An
action ψ of G onto M is a group homomorphism

ψ : G ÝÑ DiffpMq
g ÞÝÑ ψg.

The action ψ is called smooth if the evaluation map

M ˆG ÝÑ M
pp, gq ÞÝÑ ψgppq

is smooth.

Remark 1.21 - Throughout this thesis we write an action as ψ : G Ñ DiffpMq or
as its evaluation map ψ : G ˆ M Ñ M via ψpg, pq “ ψgppq, depending on which
representation is more suitable.

Since the group of symplectomorphisms is a subgroup of the group of diffeomorphisms
it makes sense to introduce a further restriction of the definition of an action as
follows.

Definition 1.22 - Let pM,ωq be a sympletic manifold. An action ψ : GÑ DiffpMq
is called symplectic if the image of ψ is a subgroup of SymppM,ωq Ď DiffpMq,
i.e. if the map

ψ : G ÝÑ SymppM,ωq

is a group homomorphism.
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The case of the Lie group being the real line, i.e. G “ R, is of special interest because
G can be imagined as time. In particular, this defines a special case of symplectic
actions as follows.

Definition 1.23 - Let pM,ωq be a symplectic manifold, ψ : R Ñ SymppM,ωq be
a symplectic action and X the vector field generated by the flow of ψ. Then, ψ is
called a hamiltonian action if there exists a function H P C8pMq such that

dH “ ιXω

holds. The function H is called a hamiltonian function, X the hamiltonian
vector field of H and the triple pM,ω,Hq a hamiltonian system.

Remark 1.24 - From the computation

dHpXq “ ιXωpXq “ ωpX,Xq “ ´ωpX,Xq “ 0

we see thatH is constant along the flow lines ofX and this shows thatH could be seen
as the total energy in a mechanical system. For further details on the connections
of Symplectic Geometry and Physics consider the excellent works [AMRC80] and
[Arn89].

The notion of a hamiltonian can be generalized to other Lie groups as in the following
definition.
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Definition 1.25 - Let pM,ωq be a symplectic manifold, G a Lie group with Lie
algebra g and denote by g˚ the dual vector space of g. A symplectic action ψ is
called a hamiltonian action if there exists a map

µ : M ÝÑ g˚

satisfying the following properties:

(a) For every tangent vector X P g, define a map µX : M Ñ R via µXppq :“
〈µppq, X〉 and denote by X# the vector field on M that is generated by the
one-parameter subgroup texpptXq | t P Ru Ď G. Then, we have

dµX “ ιX#ω,

i.e. the function µX is a hamiltonian function for the vector field X#.

(b) The map µ is equivariant with respect to the action ψ and the coadjoint action
Ad˚ of G on g˚, that is, for all g P G we have

µ ˝ ψg “ Ad˚g ˝ µ.

The quadruple pM,ω,G, µq is called a hamiltonian G-space, µ a moment map
and µpMq Ă g˚ its moment image.

Later on we are interested in actions on subspaces that come from a Lie subgroup of
G. For this purpose the following proposition is useful.

Proposition 1.26 - Let G be a compact Lie group, H Ď G a Lie subgroup and
pM,ω,G, µq a hamiltonian G-space. Denote by g and h their corresponding Lie
algebras and by i˚ : g˚ Ñ h˚ the projection dual to the natural inclusion i : hÑ g.
Then, the restriction of the G-action on H is hamiltonian with moment map

i˚ ˝ µ : M Ñ h˚.

1.5 Symplectic reduction
As a final ingredient of this chapter we present the principle of symplectic reduc-
tion. In short, it is the mathematical formulation of the fact that the number of
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coordinates in phase space of a physical system can be reduced by 2k if there are k
conserved quantities.

Theorem 1.27 (Marsden-Weinstein-Meyer [MW74, Mey71]) - Let pM,ω,G, µq be
a hamiltonian G-space and G be compact. Write i : µ´1p0q ãÑM for the inclusion
map and also assume that G acts freely on µ´1p0q. Then,

(i) the quotient Mred :“ µ´1p0q {G is a manifold,

(ii) the map π : µ´1p0q ÑMred defines a principal G-bundle and

(iii) there exists a symplectic form ωred P Ω2pMredq with i˚ω “ π˚ωred.

The pair pMred, ωredq is called the reduced space of pM,ωq with respect to µ and
G. Furthermore, the dimensions of M , Mred and G are related via

dimM “ dimMred ` 2 dimG. (1.2)

Proof - A proof can be found in [MS17], Section 5.4 on page 224. �

Proposition 1.28 - Let pMred, ωredq be the reduced space of a hamiltonian G-
space pM,ω,G, µq with projection map π : M Ñ Mred and L Ă pMred, ωredq be
a lagrangian submainfold. Then, the pre-image π´1pLq Ă pM,ωq is a lagrangian
submanifold.

Proof - Let L Ă pMred, ωredq be a lagrangian submanifold and denote by j : L ãÑ

Mred the inclusion map. Furthermore, let k : π´1pLq ãÑ µ´1p0q be the inclu-
sion map of the pre-image of L. Since L is a lagrangian submanifold we know
that dimL “ 1

2 dimMred and j˚ωred “ 0. In the same way, we need to show
dim pπ´1pLqq “ 1

2 dimM and pi ˝ kq˚ω “ 0.

Let us start with the dimension. From property (ii) of Theorem 1.27 we know
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that π : µ´1p0q ÑMred defines a principal G-bundle. Therefore, we have

dim
`

π´1
pLq

˘

“ dimL` dimG

“
1
2 dimMred ` dimG

p1.2q
“

1
2 dimM ´ dimG` dimG

“
1
2 dimM.

For the coisotropy use the assumption of j˚ωred “ 0 and apply π˚ on both sides.
Thus, we compute

0 “ π˚p0q “ π˚pj˚ωredq “ pj ˝ πq
˚ωred

“ pπ ˝ kq˚ωred “ k˚pπ˚ωredq “ k˚pi˚ωq

“ pi ˝ kq˚ω,

where we have used the equation of property (iii) of Theorem 1.27 and the commu-
tativity (denoted by the ˝) in the first square of the following diagram.

π−1(L)

L

µ−1(0) M

Mred

k

j

π π

i

Therefore, π´1pLq Ă pM,ωq is lagrangian.
As a last step we show that π´1pLq is embedded. The submanifold L ĂMred has

dimension is dimpLq “ 1
2 dimMred ď dimMred. Then, there exist some adapted charts

pUα, ϕαqαPI of Mred such that pϕαqi “ 0 holds for all i ą dimL. Since π´1pLq Ñ L is
a principal bundle we have local triviality. Therefore, the charts ϕα can be extended
locally be the fiber dimensions. This again is then an adapted chart of L inside of M
and hence L is a submanifold. This completes the proof. �



2
Torus actions and symplectic toric manifolds

Building on the first chapter we are now able to create the setting in which the later
theorems of Chapter 3 are formulated. In short, if M has the dimension 2n, we
consider an action of the n-dimensional torus on M . We follow [AdSL00], part B,
section I.1.4.

2.1 Torus as a Lie group

Definition 2.1 - Consider the complex space Cn and define the subset

Tn :“
!

pei θ1 , . . . , ei θnq P Cn
ˇ

ˇ

ˇ
θ1, . . . , θn P r0, 2πq

)

Ă Cn, (2.1)

which is called an n-dimensional torus (embedded in Cn), or n-torus.

Remark 2.2 - In some parts we simply write pθ1, . . . , θnq for the coordinates of Tn
where θi P r0, 2πq for all i P t1, . . . , nu. However, the above embedding of Tn into
Cn is useful to define an action of Tn onto Cn and is also used.

13
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Lemma 2.3 - The n-torus Tn is diffeomorphic to a cartesian product of n circles,
i.e.

Tn » S1
ˆ . . .ˆ S1

loooooomoooooon

n-times

.

Furthermore, Tn is a Lie group and its coadjoint action is trivial. Therefore, the
corresponding Lie algebra g and its dual g˚ can be identified with Rn, i.e. g » g˚ »
Rn.

Proof - The claim of being diffeomorphic to the product of n circles and being a Lie
group follows immediately from Equation 2.1. The triviality of the coadjoint action
follows from the fact that Tn is an abelian Lie group. This completes the proof. �

Proposition 2.4 - Let H Ď Tn be a Lie subgroup of the n-dimensional torus.
Then, there exists two natural numbers r,m P t0, . . . , nu with r ` m ď n and
possibly some k1, . . . , kr P N such that

H » Zk1 ˆ . . .ˆ Zkr
loooooooomoooooooon

r-times

ˆS1 ˆ . . .ˆ S1
loooooomoooooon

m-times

.

Proof - A proof can be found in textbooks about compact connected abelian Lie
groups. �

Remark 2.5 - Note that the cases r “ 0 and m “ 0 are also valid and for example
r “ 0 means that H » Tm for some m ď n.

2.2 Torus actions and symplectic toric manifolds

Definition 2.6 - Let pM,ωq be a symplectic manifold and Tn the n-dimensional
torus. A symplectic action ψ : G Ñ SymppMq is called an n-torus action if G
diffeomorphic to the n-torus, i.e. G » Tn.

Actions of tori on symplecic manifolds are very common in Physics and are also
mathematically of general interest. See [AdSL00] for further details. One of their
main advantages is that the abelian structure makes the action easier to handle.
Furthermore, the following theorem yields a connection of their moment images (with
respect to a given moment map) and polytopes in Rn.
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Theorem 2.7 (Atiyah [Ati82], Guillemin-Sternberg [GS]) - Let pM,ωq be a com-
pact connected symplectic manifold. Suppose that ψ : Tn Ñ SymppM,ωq is a
hamiltonian torus action with moment map µ : M Ñ Rn. Then,

(i) the levelsets of µ are connected, that is, for every a P Rn the set µ´1paq is
connected,

(ii) the image of µ is convex, that is, µpMq Ă Rn is convex and

(iii) the image of µ is the convex hull of the images of the fixed points of the action
ψ.

The moment image µpMq in this case is called a moment polytope.

Proof - A proof can be found in [MS17], Section 5.5, page 237. �

Note that in the above definition we did not specify any requirements to the
dimension of M and no relation to the dimension of the torus. However, in the
following we work with the this definition.

Definition 2.8 - A symplectic toric manifold is a connected symplectic man-
ifold pM,ωq together with an effective n-torus action, where n “ 1

2 dimM and
with a corresponding moment map µ : M Ñ Rn, i.e. a hamiltonian Tn-space
pM2n, ω,Tn, µq.

Remark 2.9 - Note that we did not assume the manifold to be compact, which
is a common definition in the literature. Therefore, Theorem 2.7 is only true for
compact symplectic toric manifolds. However, it was shown that similar results can
be extended also to non-compact symplectic toric manifolds. For details consider
[KL09]. Here, we take this definition because we want to consider pCn, ω0,Tn, µq, as
in Example 1.7, as a symplectic toric manifold.
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Lemma 2.10 - Let pM,ω,Tn, µq be a symplectic toric manifold and for
a1, . . . , an P N consider the diagonal inclusion

S1 ÝÑ Tn
ei θ ÞÝÑ

`

ei a1θ, . . . , ei anθ
˘

.

Then, a corresponding moment map µ1 : M Ñ R is given via

µ1ppq “ a1µ1ppq ` . . .` anµnppq.

Proof - For the above inclusion the dual projection is given by the map i˚ : Rn Ñ

R with px1, . . . , xnq ÞÑ a1x1 ` . . . ` anxn. Then, the claim follows directly from
Proposition 1.26. This completes the proof. �

Definition 2.11 - Let pM1, ω1,Tn1 , µ1q and pM2, ω2,Tn2 , µ2q be two symplectic toric
manifolds. Then, they are called equivalent to each other if there exists an iso-
morphism λ : Tn1 Ñ Tn2 and a λ-equivariant symplectomorphism ϕ : M1 Ñ M2
such that µ1 “ µ2 ˝ ϕ.

2.3 Examples

2.3.1 The sphere as a compact symplectic toric manifold
As a first example of a symplectic toric manifold we consider the two-dimensional
sphere S2. To do so, we view the sphere as the set

S2
“

"

1
?

1` h2 pcosϕ, sinϕ, hq P R3
ˇ

ˇ

ˇ
ϕ P r0, 2πq, h P p´1, 1q

*

Y tN,Su ,

where N “ p0, 0, 1q is the north pole and S “ p0, 0,´1q the south pole. We define the
symplectic form ω0 “ dϕ^ dh on it. A hamiltonian action ψ : S1 Ñ SymppS2, ω0q of
the circle S1 on S2 is given via

ψ pθ, pϕ, hqq “ pϕ` θ, hq.

Note that the flowlines of ψ are given via the integral curves of B

Bϕ
. It is easy to verify

that the map µ : S2 Ñ R defined via µpϕ, hq “ h is a moment map for the above
action ψ. Hence, the quadruple pS2, ω0,S1, µq is indeed a compact symplectic toric
manifold. Furthermore, we want to give it as an illustration of Theorem 2.7.
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The fixed points of ψ are the north pole N and south pole S. Also, consider the
following image which represents the action and the moment image.

N

S

µ

µ(N)

µ(S)

S2

∂
∂ϕ

From there it can be seen that µpS2q “ rµpSq, µpNqs “ r´1, 1s Ă R is a convex subset
in R and the moment image is given by the convex combination of the images of the
fixed points.

2.3.2 The complex space as a symplectic toric manifold
Here, we build upon the description of the complex space pCn, ω0q as symplectic
manifold as in Example 1.7. An n-torus action ψ : Tn Ñ pCn, ω0q can be defined via

ψ
``

ei θ1 , . . . , ei θn
˘

, pz1, . . . , znq
˘

:“
`

ei θ1z1, . . . , ei θnzn
˘

,

i.e. by performing rotations of θi in the arguments of every zi. We show that a
compatible moment map is given by

µ : Cn ÝÑ Rn

pz1, . . . , znq ÞÝÑ ´1
2

`

|z1|
2 , . . . , |zn|

2˘

by checking the properties of Definition 1.25.
(i) Here we introduce polar coordinates pr1, ϕ1, . . . , rn, ϕnq for Cn. In these coor-

dinates we have ω0 “
řn
i“1 dzi ^ dzi “

řn
i“1 ridri ^ dϕi. Due to linearity it is

sufficient to check property (a) only basis vectors of Rn. For a tangent vector
Xi “

B

Bθi
P Rn of the torus we have X# “ B

Bϕi
P Cn. We compute

dµX “ d
ˆ

´
1
2r

2
i

˙

“ ´ridri.
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and
ιX#ω “ ι B

Bϕi

n
ÿ

i“1
ridri ^ dϕi “ ´ridri.

This shows the property (a).

(ii) Since Tn is a commutative Lie group we only have to check invariance of µ with
respect to ψ. For this, we compute

µpψ
``

ei θ1 , . . . , ei θn
˘

, pz1, . . . , znqq
˘

“ µ
`

ei θ1z1, . . . , ei θnzn
˘

“ ´
1
2

´

ˇ

ˇei θ1z1
ˇ

ˇ

2
, . . . ,

ˇ

ˇei θnzn
ˇ

ˇ

2
¯

“ ´
1
2
`

|z1|
2 , . . . , |zn|

2˘

“ µpz1, . . . , znq.

This indeed shows that pCn, ω0,Tn, µq is a symplectic toric manifold.

2.4 Action angle coordinates
Let pM,ω,Tn, µq be symplectic toric manifold of dimension 2n. The action of the
torus allows us to define a specific choice of coordinates on M that are adapted with
respect to the flow lines of the action. These are called action angle coordinates
and will be suitable for a lot of cases in further investigations. In order to show their
existence consider the following definitions and theorems. Here, we follow [AdSL00],
part B, section I.1.3.

Definition 2.12 - Let pM,ωq be symplectic manifold, f, g P C8pMq two functions
onM and denote byXf , Xg P ΓpTMq their corresponding hamiltonian vector fields.
The Poisson bracket of f and g is the function

tf, gu :“ ωpXf , Xgq.

Lemma/Definition 2.13 - Let pM,ω,Hq be a hamiltonian system and f P

C8pMq be a function. Then, tf,Hu “ 0 holds if and only if f is constant along in-
tegral curves of H. Such function f is called an integral of motion of pM,ω,Hq.
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Proof - We compute

tf,Hu “ 0 ô ωpXf , XHq “ 0
ô dfpXHq “ 0
ô f constant along XH .

This completes the proof. �

Remark 2.14 - Trivially,H is an integral of motion of a hamiltonian system pM,ω,Hq
by Remark 1.24.

Theorem 2.15 (Arnold-Louville) - Let pM,ω,Hq be a hamiltonian system of di-
mension 2n with n integrals of motions f1 “ H, f2, . . . , fn P C8pMq. Fur-
thermore, let c P Rn be a regular value of f :“ pf1, . . . , fnq. Then, the set
f´1pcq Ă pM,ωq is a lagrangian submanifold.

(i) If the flows of the corresponding vector fields Xf1 , . . . , Xfn P ΓpTMq starting
at p P f´1pcq are complete, then on the connected component of f´1pcq con-
taining p there exists an affine structure with coordinates ϕ1, . . . , ϕn in which
the flows of the vector fields Xf1 , . . . , Xfn are linear. These coordinates are
called angle coordinates.

(ii) Furthermore, there exist coordinates ψ1, . . . , ψn that are complementary to
the angle coordinates. That is, the set of coordinates ψ1, . . . , ψn, ϕ1, . . . , ϕn
forms a Darboux chart. These coordinates are called action coordinates.

Proof - A proof can be found in [Arn89]. �

Corollary 2.16 - Let pM,ω,Tn, µq be a symplectic toric manifold and let
θ1, . . . , θn be coordinates of Tn. Furthermore, let c be a regular level of µ. Then, for
every point p P f´1pcq there exists a neighbourhood U of p and a set of coordinates
ψ1, . . . , ψn on U such that

ω “
n
ÿ

i“1
dθi ^ dψi.

Proof - Here it is sufficient to observe that every component µi of the moment map
is an integral of motion. �
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Corollary 2.17 - For the complex standard toric mainfold pCn, ω0,Tnµq, as in
Example 1.7. Then, we have ψi ” µi “ ´

1
2r

2
i for all i P t1, . . . , nu.

2.5 Delzant theorem

Theorem 2.7 allows us to associate to every symplectic toric manifold a polytope
in Rn. Naturally, two questions arise. First, which kinds of polytopes occur when
taking the moment image and second, we can ask the inverse question of the first
statement. That is, can we associate to certain and allowed polytopes a (unique)
symplectic toric manifold? The answers to these questions where given by Delzant
and are presented on the following pages.

Definition 2.18 - A Delzant polytope ∆ Ă Rn is a polytope satisfying the
following conditions.

(a) at every vertex there are n edges,

(b) edges meeting at one vertex p are rational, that is, the i-th edge is of the form
p` t ¨ vi, where v P Zn and

(c) for every vertex the corresponding edge vectors v1, . . . , vn P Zn from above
form a Z-basis of Zn.

The following polytopes are examples of Delzant polytopes.

The following polytope is an example of a non-Delzant polytope.
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p1

p2

p3

v1(p2) = (1, 0)
v2(p2) = (−2, 1)

Property (c) of Definition 2.18 is not satisfied at the vertex p2. To see this observe
that the point p1, 0q P Z2 can not be realized by a1v1pp2q`a2v2pp2q for some a1, a2 P Z.

Theorem 2.19 (Delzant [Del]) - There exists a bijection between the set of all com-
pact sympletic toric manifolds up to equivalence and the set of Delzant polytopes,
which is given by the moment map via pM2n, ω,Tn, µq ÞÑ µpMq Ă Rn.

Proof - A proof can be found in [AdSL00]. �



3
Toric lagrangians in the complex space

In this section we formalize the central question of this thesis. In short, we are asking
for the existence of immersed and embedded lagrangians that will be mapped under
the moment map to specific affine subspaces of Rn.

3.1 Pre-images of the moment map
The central ingredients of this thesis are the moment map and pre-images of it. In
order to introduce the topic let us consider pC2, ω0,T2, µq and check how certain pre-
images of sets in the moment image behave. If we look at the following picture one
could ask what are the pre-images of the points p1, p2, p3, p4 P R2

ď0.

µ1

µ2

R2
≤0

p1p2

p3

p4

Let us start with p1 “ p0, 0q, where we introduce coordinates pµ1, µ2q for R2
ď0. From

22
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the definition of the moment map we can deduce

µ´1
pp1q “ µ´1

p0, 0q “
"

pz1, z2q P C2
ˇ

ˇ

ˇ
´

1
2
`

|z1|
2 , |z2|

2˘
“ p0, 0q

*

“ p0, 0q.

Thus, the pre-image in this case is just the origin of R2
ď0.

For p2 and p3 we have a similar situation because in both cases we have either
µ1 “ 0 or µ2 “ 0. Therefore, it is sufficient to consider p2. Here, we write p2 “ p´λ, 0q
for some λ P Rą0 and compute

µ´1
pp2q “ µ´1

pλ, 0q “
"

pz1, z2q P C2
ˇ

ˇ

ˇ
´

1
2
`

|z1|
2 , |z2|

2˘
“ p´λ, 0q

*

“

!

p2λ ei θ, 0q P C2
ˇ

ˇ

ˇ
θ P S1

)

» S1.

For p4 write p4 “ p´λ1,´λ2q for some λ1, λ2 P Rą0 and compute

µ´1
pp4q “

"

pz1, z2q P C2
| ´

1
2
`

|z1|
2 , |z2|

2˘
“ p´λ1,´λ2q

*

“
 `

2λ1 ei θ1 , 2λ2 ei θ2
˘

P C2
| θ1, θ2 P S1(

» T2.

Therefore, the pre-image is a 2-torus.
We don’t give a detailed prove but these statements can be extended to Cn right

away. Let p “ pp1, . . . , pnq P Rn
ď0 be a point in the moment image with r P t0, . . . , nu

non-vanishing coordinates. Then,

π´1
ppq » Tr.

We use the convention that pTrq0 is just a single point.

Definition 3.1 - Let V be a vector space. A subset W Ď V is called an affine
subspace of V if there exists a linear subspace W 1 Ď V and a vector w P V such
that W “ W 1 ` w. An affine subspace A Ď Rn is called rational if W 1 admits a
rational basis.

Remark 3.2 - The image of the moment map µ : Cn Ñ Rn is given by Rn
ď0 and is

clearly not a vector space. However, we define can extend the definition of an affine
subspace as follows.

Definition 3.3 - A subspace W Ă Rn
ď0 is called an affine subspace if its linear

completion W 1 in Rn is an affine space. Furthermore, it is called rational if W 1 is
rational.
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Remark 3.4 - In this thesis we are interested in rational affine subspaces of Rn
ď0.

If we pick coordinates pµ1, . . . , µnq of Rn
ď0 every affine subspace can be defined as a

set of r equations, each of the form a1
iµ1 ` . . . ` ani µn “ ki for i P t1, . . . , ru, where

aji , k P R. We can require ki ď 0 for all i and in order to have a non-empty space
we can deduce that at least one of the aji for a fixed i has to be greater than zero.
Furthermore, by multiplication we can arrange that aji P Z for all i P t1, . . . , ru
and j P t1, . . . , nu and such that

řn
j“1

ˇ

ˇaji
ˇ

ˇ is as small as possible for every i. This
is also known as the vector pa1, . . . , anq P R is primitive. This convention is used
throughout the whole thesis.

Definition 3.5 - An affine subspace N Ă Rn
ď0 of codimension 1 is called Delzant

if for every intersection point p P N with the i-th axes of Rn
ď0 there exists n ´ 1

tangent vectors v1, . . . , vn´1 P TpN , such that the set tei, v1, . . . , vn´1u forms a
Z-basis of Zn and every vector is rational, that is vi P Zn for all i P t1, . . . , n´ 1u.

Remark 3.6 - Every Delzant affine space is rational, since the intersection being
Delzant implies integer coefficients for the affine subspace.

Example 3.7 - The concept of an Delzant affine space has indeed a connection to
the above Definition 2.18 for Delzant polytopes.

To make this connection visible let us consider R2
ď0. The following figure shows

the Delzant affine subspace N for the equation µ1 ` µ2 “ ´1. Note that the triangle
with sides given by the axes and N forms a Delzant polytope.

N

µ1

µ2

−1

−1

However, our above definition allows affine spaces that not necessary enclose a
Delzant polytope. The next figure shows the Delzant affine subspace for the equation
µ1 ´ µ2 “ ´1.
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N

µ1

µ2

−1

Proposition 3.8 - Let pCn, ω0,Tn, µq be the standard complex toric manifold and
N Ď Rn

ď0 a rational affine subspace of codimension r. Then, there exists a subgroup
H Ď Rn which preserves the null foliation Ker

´

ω
ˇ

ˇ

µ´1pNq

¯

and which is diffeomor-
phic to a torus of dimension r, i.e. H » Tr.

Proof - Let µ1, . . . , µn be coordinates of the moment image Rn
ď0. From Linear

Algebra we know that every rational affine subspace N can be charaterized by a set
of r linear equations ta1

iµ1 ` . . .` a
n
i µn “ kiuiPt1, ... ,ru for some aji P Z and ki P Rď0,

by Remark 3.4, via

N :“
 

pµ1, . . . , µnq P Rn
ď0 | a

1
iµ1 ` . . .` a

n
i µn “ ki for all i P t1, . . . , ru

(

.

We show that for every of these equations there exists a periodic vector field under
which µ´1pNq is invariant. The flow of this vector fields gives then rise to the subgroup
H of Tn. Consider the i-th defining equation of N . By differentiating we obtain on
N

λi :“ a1
idµ1 ` . . .` a

n
i dµn “ 0.

From this expression we see that the tangent bundle of µ´1pNq is given by the union
of the kernels of each of the above 1-forms λi, i.e.

T
`

µ´1
pNq

˘

“

n
ď

i“1
Ker pλiq .

Let Xi be the vector field generated by B

Bθi
. From the definition of the moment maps,

as in Definition 1.25, we know that

dµi “ ιXiω

holds for all i P t1, . . . , nu.
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Define the vector fields Yi :“ a1
iX1 ` . . . a

n
iXn and we compute

`

a1
idµ1 ` . . .` a

n
i dµn

˘

pYiq “ a1
iωpX1, Yiq ` . . .` a

n
i ωpXn, Yiq

“ a1
i

n
ÿ

j“1
ajiωpX1, Xjq ` . . .` a

n
1

n
ÿ

j“1
ajiωpXn, Xjq

“

n
ÿ

k“1
akj

n
ÿ

j“1
ajiωpXk, Xjq

“

n
ÿ

j,k“1
aki a

j
iωpXk, Xjq

“
ÿ

jăk

ajia
k
i ωpXk, Xjq `

ÿ

kăj

ajia
k
i ωpXk, Xjq

“
ÿ

jăk

ajia
k
i ωpXk, Xjq `

ÿ

jăk

aki a
j
i ωpXj, Xkq
loooomoooon

“´ωpXk,Xjq

“ 0.

Here, we only use the anti-symmetry of ω and relabeling of a sum. Hence, we get that
µ´1pNq is invariant with respect to Yi. Each of the Xi vector fields is periodic and
hence their linear combination is also periodic since all the aji are integral numbers.
Since this is true for every Yi with i P t1, . . . , ru we conclude that µ´1pNq is invariant
with respect to Tr Ď Tn. This completes the proof. �

Proposition 3.9 - Let pCn, ω0,Tn, µq be the standard complex toric manifold and
N Ď Rn

ď0 be a rational affine subspace of codimension r. Assume there exists a
lagrangian submanifold L Ď pCn, ω0q with L Ă µ´1pNq. Then, the null foliation is
a subset of the tangent bundle of L, i.e. Ker

´

ω
ˇ

ˇ

µ´1pNq

¯

Ď TL.

Proof - Let us write ω in action angle coordinates as ω “
řn
i“1 dθi ^ dµi on the

restriction to Rn
ď0 to its interior. Since N is an rational affine subspace of codimension

r there exists r equations of the form a1
iµ1 ` . . .` ani dµn “ ki, where i P t1, . . . , ru,

aji P Z and ki P Rď0. Therefore, we can deduce that

TN “

r
ď

i“1
Ker

`

a1
idµ1 ` . . .` a

n
i dµn

˘

“: TΘ
loomoon

span
!

B
Bθ1

,..., B
Bθn

)

‘ M
loomoon

TNXspan
!

B
Bµ1

, ... , B
Bµn

)

.



Pre-images of the moment map 27

Define the vector fields Yj “ a1
j
B

Bµ1
` . . .` anj

B

Bµn
and from this we see that

Ker
´

ω
ˇ

ˇ

µ´1pNq

¯

“ span tY1, . . . , Yru . (3.1)

If L Ď N is a submanifold of N we get

TLX span
"

B

Bµ1
, . . . ,

B

Bµn

*

ĎM.

Asumme that L is lagrangian and we show that Y1, . . . , Yr P TL holds. We prove by
contradiction. Assume that Y1, . . . , Yr R TL and that L is lagrangian. Then, we get
that the space

TL‘ spanpY1, . . . , Yrq

is n ` r dimensional and coistropic by Equation 3.1. But this contradicts the la-
grangian property of L. Since every vector field Yj is periodic, we can conclude that
there exists a Lie subgroup H Ă Tn with Tr Ď H. This completes the proof. �

This result can be tightened even further by restricting the moment image of L as
follows.

Proposition 3.10 - Let pCn, ω0,Tn, µq be the standard complex toric manifold
and N Ď Rn

ď0 be a rational affine subspace of codimension r. Assume there exists
a lagrangian submanifold L Ď pCn, ω0q with µpLq “ N and such that µ

ˇ

ˇ

L
: LÑ N

is a submersion. Then, L is invariant with respect to the same torus Tr Ă Tn as
in Proposition 3.8.

Proof - The proof is essentially the same as in the case of Proposition 3.9. However,
since µ

ˇ

ˇ

L
is a submersion we get that

TLX span
"

B

Bµ1
, . . . ,

B

Bµn

*

“M

and hence we conclude TL “ span tX1, . . . , Xru, which implies immediately that L
is Tr invariant. This completes the proof. �
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3.2 Toric lagrangians

Lagrangian submanifolds with the property as in Proposition 3.10 are of central
interest for this thesis. Therefore, we take this notion and generalize it as follows.

Definition 3.11 - Let pM,ω,Tn, µq be a hamiltonian Tn-space with an action
ψ : TnˆM ÑM . An immersed lagrangian L Ă pM,ωq is called toric lagrangian
if there exits a proper Lie subgroup H Ĺ G such that L is invariant under ψ with
respect to H, that is, if ψph, Lq “ L holds for all h P H.

Remark 3.12 - So far, we only considered continuous cyclic Lie subgroups of the
form Tr Ď Tn. By Proposition 2.4 there are also subgroups that are made of cartesian
products of Zk for some k. However, the study of toric lagrangians with respect to
these subgroups is omitted in this thesis. See Section 4.3 about further research for
more details.

On the following pages we show the existence and also non-existence of toric la-
grangian submanifolds for certain affine subspaces for pC2, ωq. However, as a first
example we start with the simpler case of n “ 1.

3.3 Baby case pC, ω0q

Since pC, ω0q is a 2-dimensional manifold, ω0 P Ω2pCq is automatically a volume form
and hence every 1-dimensional submanifold of C is lagrangian. Since there is only
one affine subspace in Rď0, that is, Rď0 itself, we can take any linear subspace L Ă C,
i.e. a ray through the origin, which is then toric by Proposition 3.10.
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C

µ
L

0
R

µ(L) = N

3.4 Existence of toric lagrangians in the complex
plane

The complexity of the existence of toric lagrangians changes a lot for all the cases of
n ‰ 1. We focus here on the next simplest case of pC2, ω0q. Here, we formulate so-
called ray-theorems which show the existence of toric lagrangians for rational affine
subspaces of R2

ď0. This will be shown in the following.

3.4.1 Proving existence by symplectic reduction

For the cases of affine spaces that enclose a 45˝ or 90˝ degree angle with one of the
axes of R2

ď0 even an embedded toric lagrangian can be archived.

As a first example consider for a fixed k P Rz t0u the affine space

Nk :“
!

pµ1, µ2q P R2
ď0

ˇ

ˇ

ˇ
µ1 ´ µ2 “ k

)

(3.2)

which is drawn in the following picture.
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k

Nk

µ1

µ2

The pre-image with respect to the moment map of N is given via the equation

N 1
k :“ µ´1

pNkq

“

!

pr1 ei θ1 , r2 ei θ2q P C2
ˇ

ˇ

ˇ
r1, r2 P Rě0, r

2
1 ´ r

2
2 “ ´2k, θ1, θ2 P r0, 2πq

)

.

We use symplectic reduction in order to show that a lagrangian submanifold in N 1
k Ă

pC2, ω0q exists, which covers Nk.

Lemma 3.13 - Consider pC2, ω0q and N 1
k Ă C2 as above. Then, the map µ1 :

N 1
k Ñ Rď0 defined as µ1kpz1, z2q “ ´

1
2 |z1|

2
` 1

2 |z2|
2 is a moment map on N 1

k for the
anti-diagonal action given by ψ1pei θ, pz1, z2qq “

`

ei θz1, e´i θz2
˘

. Furthermore, this
action is free on N 1.

Proof - Since S1 Ă Tn is a Lie subgroup with inclusion map

i : S1 ÝÑ T2

ei θ ÞÝÑ pei θ, e´i θq

we can conclude by Proposition 1.26 that ψ1 defines indeed a hamiltonian action with
moment map µ1. What is left to show is that ψ1g is free. We compute in action angle
coordinates

ψ1θppq “
`

µ1ei pθ`θ1q, µ2ei p´θ`θ2q
˘ !
“
`

µ1ei θ1 , µ2ei θ2
˘

,

which implies immediately θ “ 0 for all µ1, µ2 P Rď0 and θ1, θ2 P S1. Hence the action
ψ1 is free. This completes the proof. �
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Proposition 3.14 - There exists a lagrangian submanifold Lk Ă pC2, ω0q such that
µpLkq “ Nk for all k P Rz t0u.

Proof - With Lemma 3.13 we have all the assumptions in order to apply Theorem 2.7
to perform symplectic reduction. We get that N 1

k {S1 » C. We are now looking for a
lagrangian Lred Ă C whose image by the residual moment map µred is everything for
the circle action. Take Lred “ R Ă C and define Lk :“ π´1pLredq. By Proposition 1.28
we conclude that Lk is an embedded lagrangian with µpLkq “ Nk. This completes
the proof. �

The case of k “ 0 in the above setting, that is, N0 is a ray starting at the origin in a
45˝ degree slope, can be treated separately. This example goes back to [ALP94]. But
here we construct a corresponding lagrangian submanifold in C2 explicitly as follows.

Lemma 3.15 - Let pC2, ω0,Tn, µq be the standard complex hamiltonian Tn-space.
The set

L0 :“
!

pz, zq P C2
ˇ

ˇ

ˇ
z P C

)

is a lagrangian submanifold of pC2, ω0q with moment image µpL0q “ N0.

Proof - We use Lemma 1.12 in order to show that L0 is lagrangian in pC2, ω0q. For
that purpose write L0 in real coordinates as

L0 “
!

px, y, x,´yq P R4
ˇ

ˇ

ˇ
x, y P R

)

and hence we get
iL0 “

!

p´y, x, y, xq P R4
ˇ

ˇ

ˇ
x, y P R

)

.

So if we take px1, y1, x1,´y1q P L0 and i px2, y2, x2,´y2q “ p´y2, x2, y2, x2q P iL0 we
compute

〈px1, y1, x1,´y1q, p´y2, x2, y2, x2q〉 “ ´x1y2 ` x2y1 ` x1y2 ´ y1x2 “ 0

and conclude that LK0 Ě iL0. For the other direction let px1, y1, x2, y2q P L
K
0 and for

every px, y, x,´yq P L0 we need to have

〈px1, y1, x2, y2q, px, y, x,´yq〉 “ x1x` y1y ` xx2 ´ y2y

“ x ¨ px1 ` x2q ` ypy1´ y2q

!
“ 0.



Existence of toric lagrangians in the complex plane 32

Since this equation has to hold for all x, y P R simultaneously we get that x1 “ ´x2
and y1 “ y2. This implies that p´x2, y2, x2, y2q P iL0 and yields LK0 Ď iL0. So in
total we get LK0 “ iL0, which implies that L0 is a lagrangian of pC2, ω0q.

To show that it is also embedded note that L0 can be given as the graph of the
map z ÞÑ z and this map is injective. Therefore, L0 is a lagrangian submanifold of
pC2, ω0q. This completes the proof. �

As another example we want to consider the following case. For a fixed k P Ră0
define the set

Nk “

!

pµ1, µ2q P R2
ď0

ˇ

ˇ

ˇ
µ1 ` µ2 “ k

)

(3.3)

which has the following picture. The story for this case is indeed very similar to the
first case.

k

Nk

µ1

µ2

k

Proposition 3.16 - There exists a lagrangian aubmanifold Lk Ă pC2, ω0q such
that µpLkq “ Nk for all k P Rz t0u and Nk, as in Equation 3.3, holds.

Proof - First of all note that µ´1pNkq is diffeomorphic to a 3-sphere as the following
expression shows:

µ´1
pNkq “

 

pz1, z2q P C2
| |z1|

2
` |z2|

2
“ 2 |k|

(

.

Here, we have a free diagonal action ψ1pei θ, pz1, z2qq “
`

ei θz1, ei θz2
˘

and for this action
the moment map is given by µ1 “ µ1 ` µ2, by Proposition 1.26. This map is nothing
else than the Hopf fibration and we therefore obtain S3

{S1 “ S2.



Existence of toric lagrangians in the complex plane 33

µ1

µ2

R0
≤0

Nk

k

S2

Since S2 is of dimension two any 1-dimensional subspace is lagrangian. Therefore,
if we pick any great circle Lred through the north and south-pole we get that Lk :“
µ´1pLredq is a lagrangian submanifold in pC2, ω0q with µpLkq “ Nk. This completes
the proof. �

Remark 3.17 - Note that all affine subspaces of the above cases are Delzant, e.g. in
the second case we have the edge vectors as in the following picture.

µ1

µ2(
1
0

)
(

1
−1

)
(
0
1

)
(−1

1

)

Remark 3.18 - The above cases only considered 45˝ degree angles to the axes. For
a 90˝ angle to one axis the situation is of a simple nature. This case can be seen as



Existence of toric lagrangians in the complex plane 34

neglecting one of the radius values of C2 and is therefore equivalent to the C case, as
in Section 3.3.

Remark 3.19 - These considerations show that for Dezlant affine subspaces we
can use symplectic reduction in order to produce a lagrangian submanifold. This
observation is one of two ingredients for the later central conjecture of this thesis.

3.4.2 Limitations of symplectic reduction
In the previous section we only considered angles of 0˝, 45˝ and 90˝ degree between
an affine space Nk and one the of the axes of R2

ď0. Therefore, the natural question
arises of how the story changes if we consider different angles. To show the existence
of a lagrangian with moment image Nk we used symplectic reduction via Theorem
2.7. Let us consider the following case, which is not Delzant as shown in following
picture.

µ1

µ2

Nk

k

k
2

For a fixed k P Ră0 we can write Nk as

Nk “

!

pµ1, µ2q P R2
ď0

ˇ

ˇ

ˇ
µ1 ` 2µ2 “ k

)

.

Also, by Proposition 1.26 we can argue that µ1 “ µ1 ` 2µ2 is a moment map for the
pseudo-diagonal action ψ1pθ, pz1, z2qq “

`

ei θz1, ei 2θz2
˘

.
As a last assumption we have to verify if the given action is free at every point.

However, this is wrong as we show in the following computation. For all pz1, z2q P Nk

we need to check
ψ1θpz1, z2q “

`

ei θz1, ei 2θz2
˘ !
“ pz1, z2q . (3.4)

only holds for θ “ 0. But for the element p0, z1q we have θ “ 0 and θ “ π fulfill
Equation (3.4) and hence the given action is not free. Therefore, we need other
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methods in order to show existence for affine space that has a slope different from
45˝ degrees.

3.5 Lagrangians in pC2, ω0q

3.5.1 Properties
Before moving on to the existence of lagrangians with certain moment images we
derive and sum up some obstructions to lagrangian submanifolds in pC2, ω0q.

Theorem 3.20 (Neighbourhood theorem) - LetM be a compact manifold, N ĎM
a compact manifold and ω0, ω1 P Ω2pMq two 2-forms which are equal and non-
degenerate on TM

ˇ

ˇ

N
. Then, there exist neighborhoods N0, N1 Ď M of N and a

diffeomorphism ψ : N0 Ñ N1, which is the identity on N , such that ψ˚ω1 “ ω0.

Proof - A proof can be found in [MS17]. �

Corollary 3.21 - A compact lagrangian submanifold L Ď pM,ωq has a neighbour-
hood, which is symplectomorphic to a neighbourhood of the zero-section in T ˚L.

Proof - A proof can be found in [MS17]. �

Lemma 3.22 - Let L Ă pM,ωq be a compact orientable lagrangian submanifold
and i : L Ñ M be the inclusion map. The self intersection i˚rLs ¨ i˚rLs is the
negative of the Euler characteristic of L.

Proof - By Corollary 3.21 this is precisely the number of zeros with sign of a generic
1-form, i.e. the Euler characteristic of T ˚L. Therefore we get

i˚rLs ¨ i˚rLs “ ´χpTLq “ ´χpLq.

This completes the proof. �

Corollary 3.23 - The only compact orientable lagrangian submanifolds of C2 are
tori.
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Proof - Since H2pC2;Zq “ 0 we have that i˚rLs “ 0 and hence χpLq “ 0. By stan-
dard topology, every orientable compact connected surface with Euler characteristic
zero is diffeomorphic to a 2-torus. This completes the proof. �

This corollary shows us that if we are capable of finding a compact connect ori-
entable lagrangian submanifold of pC2, ω0q that admits a certain affine space N as its
moment image, it must be a torus.

3.5.2 Ray theorems in pC2, ω0q

As already explained in Section 3.4.2 symplectic reduction can not be applied. How-
ever, we prove the existence of toric lagrangians also for other affine space and these
results will be called the Ray Theorems in pC2, ω0q.

Theorem 3.24 (First Ray Theorem) - Let k P Rą0, a, b P N and consider the
rational affine space

Nk :“
!

pµ1, µ2q P R2
ď0

ˇ

ˇ

ˇ
a µ1 ` b µ2 “ ´2k

)

.

Then, there exists an toric lagrangian Lk Ă pC2, ω0,Tn, µq such that µpLkq “ Nk.

In order to prove this theorem we give an explicit construction of a lagrangian Lk
with moment image Nk.

Proposition 3.25 - Let k P Rą0 and a, b P N be two natural numbers, the set

Lk :“
!

pr1ei a θ, r2ei b θ
q P C2

ˇ

ˇ

ˇ
r1, r2 P R, a r2

1 ` b r
2
2 “ k, θ P r0, 2πq

)

(3.5)

is an immersed lagrangian of pC2, ω0q with moment image µpLkq “ Nk as defined
in the First Ray Theorem 3.24.

This proof can be divided into the following steps.

Lemma 3.26 - The set Lk Ă C2 as defined in Proposition 3.25 is a differentiable
manifold for every k P Rą0.



Lagrangians in pC2, ω0q 37

Proof - Here we take a direct approach and give a set of parameterizations that
fulfill the requirements of a parameterization of a differentiable manifold. Since there
are various definitions of differentiable manifolds we attached the ones we chose in
Appendix A and we refer to Definition A.1. One can easily verify that the following
four maps cover Lk and all of them are injective. This shows property (a).

g1 :
´

0,
b

k
b

¯

ˆ p0, 2πq ÝÑ L

pr, θq ÞÝÑ

´
b

k
a
´ b

a
r2ei a θ, re´i b θ

¯

g2 :
´

0,
b

k
b

¯

ˆ p´π, πq ÝÑ L

pr, θq ÞÝÑ

´
b

k
a
´ b

a
r2ei a θ, re´i b θ

¯

h1 :
´

0,
b

k
a

¯

ˆ p0, 2πq ÝÑ L

pr, θq ÞÝÑ

´

re´i a θ,
b

k
b
´ a

b
r2ei b θ

¯

h2 :
´

0,
b

k
a

¯

ˆ p´π, πq ÝÑ L

pr, θq ÞÝÑ

´

re´i a θ,
b

k
b
´ a

b
r2ei b θ

¯

For property (b) note that the intersections of the images of all possible pairs are
open since every image is given open in L. So it is left to show that a change of
parametrization is differentiable. For that purpose we need to compute the inverse
maps. For i P t1, 2u we get

g´1
i pz1, z2q “

ˆ

|z2| ,´
Argpz2q

b

˙

and h´1
i pz1, z2q “

ˆ

|z1| ,´
Argpz1q

a

˙

.

Changes of parametrizations between any of the g’s or the h’s are the identity on
their intersection of domains. The only non-trivial reparameterizations are therefore
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between g’s and h’s. For all i, j P t1, 2u we compute
`

g´1
i ˝ hj

˘

pr, θq “ g´1
i

˜

rei a θ,

c

k

b
´
a

b
r2ei b θ

¸

“

˜

c

k

b
´
a

b
r2,´θ

¸

and

`

h´1
j ˝ gi

˘

pr, θq “ h´1
j

˜

c

k

a
´
b

a
r2ei a θ, r e´i b θ

¸

“

˜

c

k

a
´
b

a
r2,´θ

¸

,

for pr, θq P Dompgiq X Domphjq. The square root function is differentiable for every
value that is non-zero and positive. Since r P

´

0,min
!
b

k
b
,
b

k
a

)¯

we get that these
map is indeed differentiable, i.e.

g´1
i ˝ hj, h

´1
j ˝ gi P C

8

for all i, j P t1, 2u. This completes the proof. �

Lemma 3.27 - The manifold Lk Ă C2 as defined in Proposition 3.25 is immersed
in C2.

Proof - In order to be immersed we have to show that every parametrization has
an injective differential. For simplicity, we consider g1 and all to other maps can be
treated again in a similar fashion. The differential computes to

dg1pr, θq “

˜

´ b r
a

1?
k
b
´a
b
r2
ei a θ i a

b

k
b
´ a

b
r2ei a θ

e´i b θ i b re´i b θ

¸

and for the determinant we get

det pdg1pr, θqq “ ´i

¨

˝

b2

a
r

1
b

k
b
´ a

b
r2
` a

c

k

b
´
a

b
r2

˛

‚ei pa´bqθ

“ ´
i
a

1
b

k
a
´ b

a
r2

loooomoooon

ą0

˜

b2r2
loomoon

ą0

`a2
ˆ

k

a
´
b

a
r2
˙

looooomooooon

ą0

¸

ei pa´bqθ
‰ 0.
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This shows that the differential of dg1 is injective. This completes the proof. �

Lemma 3.28 - The manifold L Ă C2 as defined in Proposition 3.25 is coisotropic
in pC2, ω0q.

Proof - Write ω0 in polar coordinates as ω0 “ r1dr1 ^ dθ1 ` r2dr2 ^ dθ2 and denote
by i : L ãÑ C2 the inclusion map. Observe, that by definition, on Lk we have that
the arguments of z1 and z2 are not independent. They satisfy the relation

a θ2 “ b θ1 ` k ¨ 2π ô b θ1 ´ a θ2 ” 0 mod 2π.

Also by differentiation we get

a r1dr1 ` b r2dr2 “ 0 and b dθ1 “ a dθ2.

So if we compute the pullback of ω0 on L we get

i˚ω0 “ r1dr1 ^ dθ1 ` r2dr2 ^
b

a
dθ1

“ pa r1dr1 ` b r2dr2q
loooooooooomoooooooooon

“0

^
1
a
dθ1

“ 0.

Therefore, ω0 vanishes on Lk, which proves the Lemma. Alternatively one could
also use Lemma 1.12 by showing Lk is lagrangian and show that LKk “ iLk. This
completes the proof. �

Remark 3.29 - The above parameterizations were chosen such that the Jacobians of
each reparametrization have a positive determinant. Therefore, we have an immersion
of an orientable smooth manifold into C2.

Having these three lemmata we are now able to prove the First Ray Theorem.
Proof (Proof of First Ray Theorem 3.24) - By Lemma 3.26 and 3.27 we see that Lk
is an immersed manifold and since it is also coisotropic by Lemma 3.28 we only need
to check that the moment image of Lk is Nk. This follows directly from the definition
of Lk and the fact that ´1

2r
2
i “ µi for i P t1, 2u. This completes the proof. �

Theorem 3.30 - The lagrangian submanifold Lk defined as Equation 3.5 is an
immersed torus.
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Proof - For this we give an immersion as follows. Consider the map

ψ : S1 ˆ S1 “ T2 ÝÑ L
pr1, r2, θq ÞÝÑ pr1ei a θ, r2ei b θq,

where we use for the first S1 the coordinates pr1, r2q P R2 with a r2
1 ` b r

2
2 “ k and for

the second S1 that θ P r0, 2πq. This map is indeed an immersion as we show now.
For this, we need to compute its Jacobian and check if this map is injective.

pJψqpr1,r2,θq “

ˆ

ei a θ 0 i a r1ei a θ

0 ei b θ i b r2ei b θ

˙

Let v “ pv1, v2, v3q P Tpr1,r2,θqT2 be a tangent vector. For injectivity it is sufficient to
compute the kernel of pJψq via

pJψqpr1,r2,θqv “

ˆ

pv1 ` i a r1 v3qei a θ

pv2 ` i b r2 v3qei b θ

˙

!
“

ˆ

0
0

˙

(3.6)

This yields

i v1 “ a r1v3 and i v2 “ b r2v3, ô ´
v2

1
a v2

3
“ a r2

1 and ´
v2

2
b v2

3
“ b r2

2.

Adding these two equations we get

v2
1
a
`
v2

2
b
“ ´kv2

3.

Since a, b, k ą 0 this equation only holds if v1 “ v2 “ v3 “ 0 and hence ψ is a
surjective immersion. This completes the proof. �

The First Ray Theorem 3.24 only considered rational affine subspaces that intersect
both axes of R2

ď0. However, the same construction can be extended easily.

Theorem 3.31 (Second Ray Theorem) - Let k P R, a, b P N two natural numbers
and consider the rational affine space

Nk :“
!

pµ1, µ2q P R2
ď0

ˇ

ˇ

ˇ
a µ1 ´ b µ2 “ ´2k

)

.

Then, there exists a toric lagrangian Lk Ă pC2, ω0,Tn, µq such that µpLkq “ Nk.
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Proof - The computation is a straight forward generalization of the one in the proof
of the First Ray Theorem 3.24. Define

Lk “
 

pr1ei a θ, r2ei b θ
q P C2

| a r2
1 ´ br

2
2 “ k

(

.

Then, one can check again that this is indeed a immersed lagrangian in pC2, ω0q. This
completes the proof. �

The above results can be summarized as follows.

Corollary 3.32 (Ray Theorem) - Let N Ă R2
ď0 be an affine subspace with rational

slope. Then, there exists an immersed lagrangian L of pC2, ω,Tn, µq with µpLq “ N .

From the results about the Delzant affine spaces and the Ray Theorem we are able
to formulate the central conjecture of this thesis. Further details of why we think
this might be true are given in the concluding chapter.

Conjecture 3.33 - Let N Ă R2
ď0 an affine subspace. Then, there exists a la-

grangian submanifold L of pC2, ω,T2, µq with µpLq “ N if and only if N is Delzant.

Remark 3.34 - In the above considerations we were only interested in affine spaces
with rational slopes. However, one could ask if there are also toric lagrangians in the
pre-image of non-rational affine spaces. This question can be answered with a clear
no. The central reason is, that if such a subgroup H Ď T2 exists, it is no closed. For
example R Ă S1 is a dense subgroup, but in our definition we neglected these cases.
We are only interested in closed subgroups.



4
Summary

In order to close this thesis we give some further remarks on the presented material.
Also, we give a conclusion of our findings and point out the future research that could
be done to extend our findings.

4.1 Remarks
In Section 3.5.2 we have proven that the set Lk as in Proposition 3.25 is an immersed
lagrangian of pC2, ω0,Tn, µq with µpLkq “ Nk. Here, we give some remarks why it is
not easy, or even not possible at all to find an embedded lagrangian with the same
moment image property.

As we have seen in Section 3.4.2 the obtained action on µ´1pNkq is not free if a ‰ b,
which is a crucial. Namely, in this case, the quotient µ´1pNkq {S1 is in general not a
manifold. It is rather a so-called orbifold and therefore the procedure of quotiening
manifolds is not closed. See Appendix B for the exact definition and some properties
of orbifolds. However, Eugene Lermann and Susan Tolmann showed in 1977 [LT97]
that the whole concept of symplectic quotients and the Delzant Theorem 2.19 can
be generalized to symplectic orifolds and is in that category closed. Therefore, the
notion of a symplectic orbifolds seems to be the more natural definition. However,
a symplectic orbifold can have a very complicated shape due to the occurrences of
singularities. Also in physical fields like String Theory a lot of attention is drawn
towards symplectic orbifolds.

The study of singularies of quotient spaces is very old in its own. In particular,
singularities of C2 over some subgroup G Ď SLpn,Cq were studied and classified in

42
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1884 by Klein. In this case it is possible to resolve every singularity by changing
coordinates or "blowing" them up. For details consider Theorem B.14. If we apply
this to our setting one could achieve that µ´1pNkq can be deformed to a smooth
manifold. However, it is far from obvious how to prove the existence of a smooth
lagrangian in this manifold with corresponding moment image.

4.2 Conclusion
The aim of this thesis was to study the relationships between Lie subgroups of Tn,
affine subspaces of the moment image and lagrangian subspaces with corresponding
moment image of pCn, ω0q. Due to its complexity we studied the most simple cases
of C and C2. There, we gave explicit constructions of immersed and embedded la-
grangians with respect to given rational affine subspaces. We discovered that finding
an embedded lagrangian on a non-Delzant affine space is quite challenging due to
the nature of the occurring orbifold singularities. At most, we could only archive
immersed lagrangians, which are of interest in their own. This relationship we for-
mulated at the above Conjecture 3.33. By combining the Ray Theorem 3.32 with
the invariance Theorem 3.10 even more can be archived. With these it is possible to
draw a connection between the non-discrete Lie subgroups of T2 and rational affine
subspaces of Cn, i.e. for every non-discrete subgroup we have a principle of how to
pick an affine rational subspace which has a toric lagrangian in its pre-image with
invariance group is the given Lie subgroup. However, these statements are here only
explained and explored in C2, but we think that they can be extended generally to
Cn.

4.3 Future research
Further work on this could be done in four directions.

1. One could try to proceed further and try to extend the construction of immersed
lagrangians with given rational affine subspace moment image to C3 or generally
Cn. However, the difficulty may lie in proving the immersion property for this
general construction. Furthermore, a generlization of Definition 3.5 has to be
found. If this would work out one could adapt the framework such that Conjecture
3.33 could be formulated for the case of general pCn, ω0,Tn, µq instead of only for
n “ 2.
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2. The most interesting and challenging task would be to try to prove or disprove
the central Conjecture 3.33 for the case of C2 or even for Cn.

3. Conjecture 3.33 might also give a connection to the concepts of symplectic cutting
and symplectic blow-up which are not presented in this thesis. For further details
consider [AdSL00], part B, sections I.3.5 and I.3.6. There, a relation between
"cutting out" certain areas of a manifold are also related to affine subspaces in the
moment image that are Delzant. Maybe this would yield further insights into the
nature of pre-images of affine subspaces.

4. In the conclusion we mentioned a connection from non-discrete subgroups to ra-
tional affine subspaces and their lagrangians. By Theorem 1.26 there also exists
subgroups that include Zk for some k P N. Therefore, a further task would be to
check if we can find immersed lagrangians or even embedded lagrangians that are
invariant with respect to these groups.



A
Appendix - Differentiable Manifold

Here, we recall some of the basics definitions of embedded submanifolds from [dC92]
in order to fix the notation we are using the proof of the Ray Theorems in Chapter
3.

Definition A.1 - A set M is called a differentiable manifold of dimension n
if there exists a family, labeled by some index set I, of injective maps ϕα : Uα Ă
Rn ÑM , where Uα are open subsets of Rn, such that

(a) M is covered by ϕαpUαq, that is
Ť

αPI ϕαpUαq “M ,

(b) for any pair α, β P I with ϕαpUαq X ϕβpUβq “ W ‰ H the sets ϕ´1
α pW q and

ϕ´1
β pW q are open in Rn and the map ϕ´1

β ˝ ϕα is differentiable and

(c) the family tpϕα, UαquαPI is maximal relative to the conditions (a) and (b).

The family tpϕα, UαquαPI is called a parametrization of M .

Definition A.2 - Let M and N be two differentiable manifold. A smooth map
ϕ : M Ñ N is said to be an immersion if the differential map dϕp : TpM Ñ TϕppqN
is injective for all p P M . If furthermore ϕ is a homeomorphism onto its image
ϕpMq Ă N then it is called an embedding and M is called a submanifold.

45



B
Appendix - Orbifolds

In Chapter 3 we constructed lagrangian submanifolds Lk that are immersed into C2

but not embedded. The central reason for this is that the corresponding action is
not free and yields to a singularity after quotening. Instead of producing a manifold
the corresponding space is an orbifold, which is a generalization of the concept of
a manifold. Since the are only a few texts about orbifolds we sum up the most
important definitions and theorems about them. We follow the textbooks [ALR07]
and the excellent work [Thu02].

Definition B.1 - Let X be a topological space and n P N. A n-dimensional
orbifold chart on X is given by a connected open subset Ũ Ď Rn, a finite group
G Ď AutpŨq and a map ψ : Ũ Ñ X such that it is G-invariant and induces a
homeomorphism ψ : Ũ {G Ñ U onto an open subset U Ď X.

Definition B.2 - Let X be a topological space and ψ : Ũ Ñ X, ϕ : Ṽ Ñ X be two
n-dimensional orbifold charts. Then, a map λ : Ũ ãÑ Ṽ is called an embedding if
it is smooth and ψ ˝ λ “ ϕ.

Definition B.3 - An orbifold atlas on X is a family U “
 

pŨα, Gα, ψαq
(

qαPI of
orbifold charts that cover X and are locally compatible. That is, given two charts
pŨα, Gα, ψαq and pŨβ, Gβ, ψβq for α, β P I, a point x P Uα X Uβ, there exists an
open neighbourhood W Ď U X V and a chart pṼ, H, ϕq for W such that there are
embeddings pṼ, H, ϕq ãÑ pŨi, Gi, ψiq for i P tα, βu.
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Definition B.4 - An atlas U is said to refine on another atlas V if for every chart
in U there exists an embedding into some chart of V . Two orbifold atlases are said
to be equivalent if they have a common refinement.

Definition B.5 - An effective orbifold X of dimension n is a paracompact
Hausdorff spaceX equipped with an equivalence class rUs of n-dimensional orbifold
atlases.

Remark B.6 - The concept of an orbifold is closely related to the one of a manifold
as the following remarks will state.

• We assume that for each orbifold chart pŨ, G, ψq the group G is acting smoothly
and effectively.

• Since every smooth action is locally smooth, any orbifold has an atlas consiting
of linear charts, which are of the form pRn, G, ψq, where G acts on Rn via an
orthogonal representation, that is, G Ď Opn,Rq.

• If every finite group action on a orbifold chart is free the above definition is the
one of a manifold.

Definition B.7 - Let x P X and X “ pX,Uq be an orbifold. If pŨ, G, ψq is a local
chart around x “ ψpyq for some y P Ũ we define the local group at x as

Gx :“ tg P G | gy “ yu .

Note that this group is unique up to conjugacy in G.

Definition B.8 - For an orbifold X “ pX,Uq we define its singular set as

ΣpX q :“ tx P X |Gx ‰ teuu ,

i.e. the set of all points in X on which its local group is non-trivial.

The following part considers the most common case of orbifolds, that is, orbifolds
which are obtained by quotiening.



Definition B.9 - An effective quotient orbifold X “ pX,Uq is an orbifold
given as the quotient of an effective, smooth and almost free action of a compact
Lie group G on a smooth manifold M .

Remark B.10 - If G is a compact Lie group that acts smoothly, effectively and
almost freely on a manifold M , then for every x P M its local group is simply the
isotropy group on a local chart around x in M .

Definition B.11 - An orbifold X “ pX,Uq is called a complex orbifold if X is
a complex manifold.

Definition B.12 - Let X be a complex orbifold and f : Y Ñ X a holomorphic
map from a smooth complex manifold Y to X . Then, f is called a resolution if
f |X zΣpX q is biholomorphic and f´1pΣpX qq is an analytic subset of Y . A resolution
F is called crepant if f˚KX “ KY , where KX “

Źn
C T

˚X denotes the canonical
bundle over a orbifold X and n “ dim X .

Definition B.13 - A n-dimensional complex orbifold X is called Gorenstein if
all the local group Gx are subgroups of SLpn,Cq.

Theorem B.14 - For the complex case of C2 and G Ď SLp2,Cq every singularity
of C2

{G admits a unique crepant resolution pY, fq.

Proof - A proof of this can be found in [ALR07], Example 1.59. Furthermore this
result goes back to the first classification by Klein in 1884. �

Remark B.15 - Theorem B.14 is also true for the case of n “ 3. However, for
n ě 4 the possible resolutions of singularities in Cn are not well understood. See for
example [Ade02] for further details. Also these constructions are part of the so-called
McKay correspondence, see [Ade02] and [McK80].
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Notation index

δij “

#

1 , if i “ j

0 , if i ‰ j
Kronecker delta

Rą0 :“ tx P R |x ą 0u Set of positive real numbers
Ră0 :“ tx P R |x ă 0u Set of negative real numbers
Rě0 :“ tx P R |x ě 0u Set of non-negative real numbers
Rď0 :“ tx P R |x ď 0u Set of non-positive real numbers
Dompfq Ď X Domain of the map f : X Ñ Y
Imagpfq Ď Y Image of the map f : X Ñ Y
Kerpfq Ď X Kernel of the linear map f : X Ñ Y
V K-vector space
V ˚ Dual vector space to V
〈¨, ¨〉 : V ˚ ˆ V Ñ R Natural pairing of a vector space with its dual
〈¨, ¨〉 : Rn ˆ Rn Ñ R Euclidean inner product on Rn

M,N Standard symbols for differentiable manifolds
ΓpTMq Section of the tangent bundle TM , i.e. vector field on M
exp : TM ÑM Exponential map from tangent bundle to manifold
C8pM,Nq Group of differentiable maps from M to N
C8pMq :“ C8pM,Rq Group of differentiable real-valued functions on M
i : N ãÑM Inclusion map of N ĎM into M
χpMq Euler characteristic of M
ΩkpMq Space of differentiable k-forms on M
ιXω pk ´ 1-form obtained by inserting the vector field X in
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the first entry of the k-form ω
DiffpM,Nq Group of diffeomorphism of M to N
DiffpMq :“ DiffpM,Mq Group of diffeomorphisms of M onto itself
SymppM,ωq Group of symplectomorphisms of pM,ωq
G,H Standard symbols for Lie (sub)groups
g, h Standard symbols for Lie algebras of Lie groups G,H
Lg, Rg : GÑ G Left and right multiplication in G by g P G
AutpGq Group of Automorphisms of G
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Action, 8
Action angle coordinates, 18
Action coordinates, 19
Adjoint action, 7
Adjoint representation, 7
Affine subspace, 23
Angle coordinates, 19
Atlas refinement, 47

Coadjoint action, 7
Coadjoint representation, 7
Coisotropic subspace, 5
Complex orbifold, 48
Crepant resolution, 48

Darboux chart, 2
Darboux theorem, 2
Delzant affine subspace, 24
Delzant polytope, 20
Delzant theorem, 21
Differentiable manifold, 45

Embedded lagrangian, 6
Embedding, 45
Equivalent orbifold atlases, 47

Equivalent toric manifodls, 16

First ray theorem, 36

Gorenstein orbifold, 48
Group of symplectomorphisms, 4

Hamiltonian G-space, 10
Hamiltonian action, 9
Hamiltonian function, 9
Hamiltonian system, 9
Hamiltonian vector field, 9
Hopf fibration, 32

Immersed lagrangian, 6
Immersion, 45
Integral of motion, 18
Isotropic subspace, 5

Lagrangian submanifold, 6
Lagrangian subspace, 5
Left-invariant vector field, 7
Lie algebra, 6
Lie group, 6
Lie subgroup, 6
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Local group, 47

Moment image, 10
Moment map, 10
Moment polytope, 15

Null folitation, 25

Orbifold, 47
Orbifold atlas, 46
Orbifold chart, 46
Orbifold embedding, 46

Parametrization, 45
Poisson bracket, 18
Primitive vector, 24

Quotient orbifold, 48

Rational affine subspace, 23
Ray theorem, 41
Reduced space, 11
Resolution, 48
Right-invariant vector field, 7

Singular set, 47
Smooth action, 8
Standard symplectic form, 4
Symplectic action, 8
Symplectic basis, 2
Symplectic blow-up, 44
Symplectic cutting, 44
Symplectic differential form, 2
Symplectic form, 1
Symplectic manifold, 2
Symplectic orthogonal complement, 5
Symplectic reduction, 10
Symplectic subspace, 5
Symplectic vector space, 1
Symplectomorphism, 4

Toric lagrangian, 28
Toric manifold, 15
Torus, 13
Torus action, 14


