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Abstract

We review two theorems of Oba [Oba20], concerning the existence of a symplec-
tic Lefschetz-Bott �bration on a complex line bundle over a symplectic manifold
with a Donaldson hypersurface, and the application thereof to the link of the
Ak-type singularity, obtaining distinct strong symplectic �llings of the link. To
this end, we �rst provide the necessary background on symplectic �llings, Lef-
schetz and Lefschetz-Bott �brations, and open book decompositions.
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Chapter 0

Introduction

The various notions of symplectic �llings provide a tool to study the topology
of contact manifolds. Generally speaking, a contact manifold (M, ξ) is symplec-
tically �llable if it can be realized as the boundary of a symplectic manifold
(W,ω) in such a way that the symplectic form ω on W is compatible in a suit-
able sense with the contact structure ξ onM , and there are various increasingly
restrictive conditions one may impose on (W,ω) to give rise to di�erent �avours
of �llings.

It is known that not every contact manifold is symplectically �llable - indeed,
every symplectically �llable contact structure is necessarily tight [Eli91], which
presents an e�ective tool to prove tightness of contact structures aside from
holomorphic curve theory introduced by Gromov [Gro85].

Another fruitful tool in the study of the topology of a manifold is presented by
open books, decomposing the manifold of interest into codimension one pages,
revolving around a binding. The �rst use of open books was in a theorem of
Alexander [Ale23], establishing that any topological 3-manifold admits an open
book description. In the literature, the underlying structure of open books ap-
pears under various names in diverse contexts, such as relative mapping tori,
�bered links, or spinnable structures [Tam72], and Milnor's Fibration Theorem
treated what would in modern terminology be known as open book decomposi-
tions of spheres [Mil68].

It was in 1973 that Winkelnkemper [Win73] coined the term open book, and
in collaboration with with Thurston, they explained in [TW75] how to endow
any open book of a 3-manifold with a contact structure using Alexander's the-
orem.

Alexander's theorem was generalized to closed manifolds of odd dimension
greater or equal to 7 by Winkelnkemper, Tamura [Tam73], and Lawson [Law78]
between 1973 and 1978. Quinn [Qui79] further extended this result to closed
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manifolds of dimension at least 5 in 1979, establishing that any odd-dimensional
closed manifold admits an open book decomposition.

Giroux and Mohsen generalized Thurston and Winkelnkemper's construction
to arbitrary odd dimensions when the pages of the open book are Liouville
domains [GM]. Hence, open books give rise to contact manifolds, and it is
shown in [GM] that, in fact, any contact manifold admits a supporting open
book. In dimension three, Giroux discovered that the correspondence between
open books and contact structures up to isotopy on a given manifold is in fact
unique up to an equivalence relation called positive stabilization [Gir02].

The versatility of open books reveals itself in conjunction with symplectic Lef-
schetz �brations as a means to obtain Stein �llings of contact manifolds. A
complex analogue of Morse functions introduced by Donaldson [Don99] in the
context of symplectic geometry, restricting a symplectic Lefschetz �bration
π : (E,Ω) → D over the unit disk D ⊂ C to the boundary ∂E induces a
contact open book description of ∂E, producing a contact manifold.

By Eliashberg's characterization of Stein domains [Eli91], the total space E can
be seen to be a Stein �lling of this contact manifold, which makes it possible in
certain cases to read o� �llability of a contact manifold directly from a contact
open book description. In fact, a converse was given by Giroux and Pardon
[GP17], establishing that any Stein domain can be presented as the total space
of a symplectic Lefschetz �bration over the disk.

The technique of �lling by Lefschetz �brations has been applied by Özba§c� and
Stipsicz to construct 3-manifolds with in�nitely many Stein �llings [ÖS04a], and
Oba has generalized this result to higher dimensions [Oba18].

By allowing the critical locus of the �bration π to be a submanifold rather
than a discrete set of points, we generalize Lefschetz �brations to the notion
of Lefschetz-Bott �brations. Formally studied by Perutz in the construction of
Lagrangian matching invariants [Per07], restricting a symplectic Lefschetz-Bott
�bration to its boundary again produces a contact manifold for which its total
space serves as a strong symplectic �lling [Oba20], [LHW18]. Notably, �llings
induced by symplectic Lefschetz-Bott �brations need not be Stein in general
(see Remark 4.7.4).

The main purpose of this text is to examine how Oba in [Oba20] has established
the existence of symplectic Lefschetz-Bott �brations on line bundles over a class
of symplectic manifolds, and how they can be applied to obtain distinct strong
symplectic �llings of the link of the Ak-type singularity.

To this end, we organize this thesis as follows. Chapter 1 to Chapter 3 serve as
preparation for the main applications: in Chapter 1, we review the fundamentals
of symplectic and contact geometry before introducing the terminology of sym-
plectic �llings. Chapter 2 consists of a discussion of Lefschetz and Lefschetz-Bott
�brations, and Chapter 3 reviews the theory of open books before exploring how
to obtain a �lling of a contact manifold through Lefschetz and Lefschetz-Bott
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�brations.

Having established the necessary background, Chapter 4 is concerned with the
proof of [Oba20, Theorem 1.1], which guarantees the existence of a symplectic
Lefschetz-Bott �bration on a complex line bundle over a polarized symplectic
manifold. In Chapter 5, we explain how to obtain distinct symplectic �llings of
the link of the Ak-type singularity using symplectic Lefschetz-Bott �brations,
which amounts to the proof of [Oba20, Theorem 1.2].

We conclude in Chapter 6 by indicating leads as to how one might be able to
prove similar �lling results for other contact manifolds, and by exploring what
objects involved in the construction of the Lefschetz-Bott �bration from [Oba20,
Theorem 1.1] would need to be better understood in order to make them more
explicit in a simple case.
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Chapter 1

Symplectic Fillings

The setting throughout this thesis is that of symplectic geometry, so we start
this chapter by recalling the relevant de�nitions. Following up in Section 1.1.2,
we will introduce some notions of contact geometry, which can be considered
as the geometry occuring on hypersurfaces contained in a neighbourhood where
the symplectic form is exact.

Having set the stage, we will introduce symplectic �llings of contact manifolds,
one of the main points of interest in this thesis.

1.1 Setting the Stage

1.1.1 Symplectic Geometry

De�nition 1.1.1. A symplectic manifold is a pair (W,ω) where W is a
manifold equipped with a 2-form ω ∈ Ω2(W ) that is

� closed, i.e. , dω = 0, where d denotes the exterior derivative;

� nondegenerate, by which we mean that for any point x ∈ W and any
nonzero tangent vector u ∈ TxW , the map

TxW → T ∗xW

u 7→ ωx(u, v)

is an isomorphism.

A symplectic manifold (W,ω) is called exact if ω is exact.

Remark 1.1.2. The nondegeneracy condition on the symplectic form ω is
equivalent to ωn, the top exterior power of ω, being a volume form. This
implies that the dimension of W is even, since the top power of ω will always
have even degree as ω is a 2-form.
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Moreover, there are three distinguished classes of submanifolds of symplectic
manifolds we may occasionally reference.

De�nition 1.1.3. Let (W,ω) be a symplectic manifold and L ⊂W an embed-
ded submanifold. For any point x ∈ L, denote by

(TxL)ω := {v ∈ TxM | ωx(v, w) = 0∀w ∈ TxL}

the symplectic complement of TxL. The submanifold L is called

� isotropic, if (TxL) ⊂ (TxL)ω for all x ∈ L;

� coisotropic, if (TxL)ω ⊂ TxL for all x ∈ L;

� Lagrangian, if TxL = (TxL)ω for all x ∈ L.

Remark 1.1.4. Note that L being isotropic is equivalent to the symplectic
form ω vanishing when restricted to TL. Moreover, if dimW = 2n, it is easy
to prove that the dimension of an isotropic submanifold is at most n, whereas
coisotropic submanifolds are of dimension at most n. Consequently, Lagrangian
submanifolds have dimension n.

Some prototypical examples of symplectic manifolds which will appear through-
out the rest of this thesis are the following:

Examples 1.1.5.

1. Let W = R2n with linear coordinates x1, . . . , xn, y1, . . . , yn. Then the
standard symplectic structure on R2n is

ω0 =

n∑
i=1

dxi ∧ dyi.

One may easily check that ω0 is closed and nondegenerate.

2. Let W = Cn with complex linear coordinates z1, . . . , zn. Identify Cn ∼=
R2n via zj = xj + iyj , and de�ne the 1-forms dzj = dxj + idyj and
dzj = dxj − idyj , for j = 1, . . . , n.

The standard symplectic form on Cn is

ω0 =
i

2

n∑
j=1

dzj ∧ dzj .

Note that this is precisely the standard symplectic form on R2n under the
identi�cation zj = xj + iyj .

3. Complex projective space CPn carries a symplectic structure, which can
be characterized as follows.

Let p : S2n+1 → CPn be the Hopf �bration and i : S2n+1 ↪→ Cn+1 the
inclusion. Then the Fubini-Study form ωFS ∈ Ω2(CPn) is the unique
symplectic form satisfying i∗ω0 = p∗ωFS.

7



Recall that the standard atlas is made up of charts of the form (ϕj ,Uj),
where Uj = {[z0 : . . . : zn] ∈ CPn | zj 6= 0}, and

ϕj([z0 : . . . : zn]) =
1

zj
(z1, . . . , zj−1, zj+1, . . . , zn).

It can be shown that the map

Cn → R
z 7→ log(|z|2 + 1)

is i-convex, so that the 2-form ω̃FS := −ddC log(|z|2 + 1) de�nes a sym-
plectic form on Cn. The transition functions of the above atlas for CPn
preserve ω̃FS , so that one may pull ω̃FS back by the maps ϕi to obtain a
well-de�ned symplectic form on CPn. This symplectic form turns out to
coincide with ωFS . See Section 1.4.1 for de�nitions relating to i-convexity,
and [Can06, Chapter 16] for more details on the Fubini-Study form ωFS.

The notion of equivalence for symplectic manifolds is that of symplectomor-
phisms.

De�nition 1.1.6. A symplectomorphism ϕ between two symplectic man-
ifolds (W1, ω1) and (W2, ω2) is a di�eomorphism ϕ : W1 → W2 such that
ϕ∗ω2 = ω1.

One of the �rst statements one typically encounters in the study of symplectic
geometry is that symplectic manifolds �have no local invariants�: locally, ev-
ery symplectic manifold looks like R2n with the symplectic structure ω0 from
Examples 1.1.5. The formal statement is given by Darboux' theorem.

Theorem 1.1.7 (Darboux). Let (W 2n, ω) be a symplectic manifold of dimen-
sion 2n. Then for every point x ∈ W , there exists a neighbourhood U ⊂ W of
x, a neighbourhood V of 0 ∈ R2n, and a chart ϕ : U → V so that ϕ(x) = 0, and

(ϕ−1)∗ω = ω0 =

n∑
i=1

dxi ∧ dyi

is the standard symplectic structure on V ⊂ R2n.

For a proof, see [Can06, Theorem 8.7].

1.1.2 Contact Geometry

A contact structure on an odd-dimensional manifold M is a codimension one
distribution, subject to a non-integrability condition. Often referred to as the
odd-dimensional cousin of symplectic geometry, the two �elds are closely linked
and exhibit some similarities. The exposition of contact geometry in this thesis
follows that of Geiges [Gei08].
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To describe codimension one distributions, it is useful to consider them as the
kernel of 1-forms. This is always possible locally, and often enough, there is a
global 1-form α de�ning ξ:

Lemma 1.1.8 ([Gei08, Lemma 1.1.1]). Let ξ be a codimension one distribution
on a manifoldM . Then ξ can locally be written as the kernel of a 1-form α. It is
possible to write ξ = kerα for a global 1-form α if and only if ξ is coorientable,
which is to say that the quotient line bundle TM/ξ is trivial.

For the rest of this thesis, we shall assume all our hyperplane �elds to be coori-
entable unless otherwise speci�ed.

Recall that a distribution can be integrated to a foliation if the set of vector
�elds belonging to ξ form a subalgebra of the Lie algebra of vector �elds under
the Lie bracket. One can show that, in terms of the de�ning 1-form α, this is
equivalent to

α ∧ dα ≡ 0.

This particular result follows from [Tam76, The Frobenius Theorem 7.10]. The
maximal non-integrability criterion which makes a hyperplane distribution into
a contact structure reads as follows:

De�nition 1.1.9. Let M be a manifold of dimension 2n + 1. A contact
structure ξ on M is a codimension one distribution ξ = kerα such that

α ∧ (dα)n 6= 0.

The 1-form α is called a contact form, and the pair (M, ξ) is then called a
contact manifold.

Remark 1.1.10. As α ∧ (dα)n is a volume form, contact manifolds are in
particular orientable. Given an orientation of M , a contact form α is called
positive if the orientation induced by α∧ (dα)n agrees with the one prescribed,
and negative otherwise.

Remark 1.1.11. An equivalent characterisation of the contact condition for a
1-form α is that dα is symplectic on ξ.

To see this, let α be a contact form and choose any vectors u0, . . . , u2n so
that

α ∧ (dα)n(u0, . . . , u2n) 6= 0.

As M is (2n+ 1)-dimensional and kerα is 2n-dimensional, precisely one of the
vectors must not lie in kerα = ξ. Without loss of generality, let this vector be
u0. This implies (dα)n(u1, . . . , u2n) 6= 0, so (dα)n is a volume form on ξ.

If dα is nondegenerate on ξ, we may choose u1, . . . , u2n ∈ ξ so that

(dα)n(u1, . . . , u2n) 6= 0.
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Again by dimensional reasons, there must exist a vector u0 /∈ ξ so that (u0, u1, . . . , u2n)
is linearly independent, and also

α ∧ (dα)n(u0, u1, . . . , u2n) 6= 0.

To a contact form, we associate a unique vector �eld as follows:

De�nition 1.1.12 ([Gei08, Lemma 1.1.9]). Let α be a contact form de�ning a
contact structure ξ = kerα. Then there exists a unique vector �eld Rα, called
the Reeb vector �eld of α, satisfying

� ıRαdα = 0

� α(Rα) = 1.

Note that whileRα is unique, there is no well-de�ned Reeb vector �eld associated
to a contact structure, as there are many 1-forms having ξ as their kernel.

The following examples of contact structures will occasionally appear through-
out this text:

Example 1.1.13.

1. The standard contact structure ξ0 on R2n+1 with coordinates

(x1, y1, . . . , xn, yn, z)

is de�ned as the kernel of the 1-form

α0 := dz +

n∑
i=1

xidyi.

This is indeed a contact form as dα0 =
∑n
i=1 dxi ∧ dyi is the standard

symplectic form on R2n.

2. As we will soon see in De�nition 1.2.2, one way to obtain contact forms is
through so-called Liouville vector �elds on symplectic manifolds (W,ω).
These are vector �elds expanding the symplectic form in the sense that

LV ω = ω.

It turns out that if V is a Liouville vector �eld transverse to some hyper-
surface Σ ∈W , then ıV ω restricted to Σ is a contact form.

We use this notion to de�ne the standard contact structure ξcan on S2n+1.
Consider R2n+2 with its standard symplectic form ω0 =

∑
i dxi∧dyi. The

(slightly scaled) radial vector �eld

V (x,y) :=
1

2

n+1∑
i=1

xi
∂

∂xi
+ yi

∂

∂yi
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is Liouville for ω0: we have

λ0 := ıV ω0 =
1

2

n+1∑
i=1

(dxi(V )dyi − dyi(V )dxi) =
1

2

n+1∑
i=1

(xidyi − yidxi).

λ0 can easily be checked to be a primitive of ω0, so that LV ω0 = ω0.

Evidently, V is outward pointing on S2n+1, so that λ0 is a contact form
on S2n+1. Fix ξcan = kerλ0 as the standard contact structure on S2n+1.

Equivalence among contact manifolds is described by contactomorphisms.

De�nition 1.1.14. A contactomorphism between contact manifolds (M1, ξ2)
and (M2, ξ2) is a di�eomorphism ϕ : M1 →M2 such that Dϕ[ξ1] = ξ2.

Remark 1.1.15. The condition for ϕ to be a contactomorphism in terms of
contact forms is that ϕ∗α1 and α0 have the same kernels, which is the case if
and only if ϕ∗α1 = fα0 for some nowhere zero function f .

It is at this point that a �rst similarity to symplectic geometry arises in that
both geometries have no local invariants.

Theorem 1.1.16 (Pfa�). Let α be a contact form on the manifold M2n+1

and x ∈ M be a point. Then there exists a neighbourhood U ∈ M of x, a
neighbourhood V of 0 ∈ R2n+1, and a chart ϕ : U → V so that ϕ(x) = 0, and

(ϕ−1)∗α = α0 = dz +

n∑
i=1

xidyi.

See for example [Gei08, Theorem 2.5.1] for a proof.

Let us examine the Reeb vector �eld of λ0. Because general dimension (2n+ 1)
only increases notational complexity, in what follows we will consider the case
of S3.

Example 1.1.17. The Reeb vector �eld Rλ0
for the contact form

λ0 =
1

2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)

on S3 is

Rλ0
= 2

(
x1

∂

∂y1
− y1

∂

∂x1
+ x2

∂

∂y2
− y2

∂

∂x2

)
.

Moreover, the orbits of its �ow de�ne the �bers of the Hopf �bration

C2 ⊃ S3 → S2 = CP 1,

(z1, z2) 7→ [z1 : z2].

Proof. This proof is as in [Gei08, Lemma 1.4.9].
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We will denote the proposed candidate for Rλ0 by Z and show that Z = Rλ0 .
Then

ıZλ0 = x2
1 + y2

1 + x2
2 + y2

2 = 1,

and as dλ0 = ω0, we see that

ıZω0 = 2(−y1dy1 − x1dx1 − y2dy2 − x2dx2)

= −2rdr.

However, on the tangent bundle of S3, dr ≡ 0 since r ≡ 1. This proves Z = Rλ0
.

The �bers of the Hopf �bration containing the point

(z1, z2) = (x1,+iy1, x2 + iy2) ∈ S3 ⊂ C2

can be parametrised by

γ(t) = (eitz1, e
itz2), t ∈ [0, 2π) .

We claim this is an integral curve of Rλ0
. Evidently γ̇(t) = (ieitz1, ie

itz2), which
in real coordinates is

(x1 cos(t)− y1 sin(t))
∂

∂y1
− (y1 cos(t) + x1 sin(t))

∂

∂x1

+(x2 cos(t)− y2 sin(t))
∂

∂y2
− (y2 cos(t) + x2 sin(t))

∂

∂x2
.

This is easily checked to be 1
2Rα(γ(t)), which yields the claim. Note that in

particular, the orbits of Rλ0
are closed.

1.2 Symplectic Collar Neighbourhoods

As remarked before, contact geometry naturally arises on the boundary of sym-
plectic manifolds, under the assumption that there exists a transverse Liouville
vector �eld near the boundary. The goal of this subsection is to show that a
neighbourhood of the boundary of such symplectic manifolds can be symplec-
tized, and this neighbourhood will be referred to as a symplectic collar. Sym-
plectic collar neighbourhoods will be ubiquitous in local computations in the
chapters to follow.

De�nition 1.2.1. Given a contact manifold (Mn, ξ = kerα), the symplecti-
zation of (M, ξ) is the symplectic manifold

(R×M,d(etα)),

where we identify α with its pullback under the projection R×M →M .

This is indeed a symplectic form:

(d(etα))n = (et(dt ∧ α+ dα))n = nentdt ∧ α ∧ (dα)n−1 6= 0.

The assumption mentioned above was the existence of a Liouville vector �eld :
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De�nition 1.2.2. Let (W 2n, ω) be a symplectic manifold. A vector �eld V on
W is called Liouville if

LV ω = ω.

Remark 1.2.3. One should note the following consequences of this de�nition.

1. Wherever V is de�ned, ω is exact: we have ω = LV ω = dıV ω, so that
ω = dλ, where λ := ıV ω.

2. Conversely, if ω is exact, then any primitive λ induces a Liouville vector
�eld de�ned by λ = ıV ω, which exists by nondegeneracy of ω.

3. If Σ ⊂ W is any orientable hypersurface transverse to V , then λ|TΣ is a
contact form on Σ: as V is transverse to Σ, ıV (ωn) is a volume form on
Σ, so that

0 6= ıV (ωn) = nıvω ∧ ωn−1 = nλ ∧ (dλ)n−1.

Note that in the case Σ = ∂W , the contact structure induced by λ|T∂W is
positive or negative depending on whether V is inward or outward point-
ing, respectively.

Remark 1.2.4. A hypersurface which has a neighbourhood in which a Liouville
vector �eld is de�ned is thus often referred to as a hypersurface of contact type.
We will primarily consider Σ = ∂W .

Relating this to the symplectization of a contact manifold, we have the follow-
ing:

Proposition 1.2.5. The vector �eld ∂
∂t is a Liouville vector �eld on the sym-

plectization of the contact manifold (M, ξ = kerα).

Proof. We need to show L ∂
∂t
d(etα) = dı ∂

∂t
d(etα)

!
= d(etα). Therefore, it su�ces

to show that ı ∂
∂t
d(etα) = etα+ β for some closed 1-form β ∈ Ω1(R×M). Take

any Y ∈ X(R×M) and compute

ı ∂
∂t
d(etα)(Y ) = et(dt ∧ α+ dα)

(
∂

∂t
, Y

)
= et

(
α(Y ) + dα

(
∂

∂t
, Y

))
.

Recall that we are writing α for pr∗α by abuse of notation, where pr : R×M →
M is the projection. We shall write this explicitly to show that dα

(
∂
∂t , Y

)
vanishes. Write Y = f ∂

∂t +gi ∂
∂xi

for some smooth functions f, gi ∈ C∞(R×M)
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and local coordinates xi on M and compute

dpr∗α

(
∂

∂t
, Y

)
=

∂

∂t
(pr∗α(Y ))− Y

(
pr∗α

(
∂

∂t

))
− pr∗α

([
∂

∂t
, Y

])
(1)
=

∂

∂t

(
pr∗α

(
f
∂

∂t
+ gi

∂

∂xi

))
− pr∗α

(
∂f

∂t

∂

∂t
+
∂gi

∂t

∂

∂xi
+ gi

[
∂

∂t
,
∂

∂xi

])
(2)
=

∂

∂t

(
giα

(
∂

∂xi

))
− pr∗α

(
∂gi

∂t

∂

∂xi

)
(3)
=
∂gi

∂t
α

(
∂

∂xi

)
− ∂gi

∂t
α

(
∂

∂xi

)
= 0.

Here, we used in (1) that Dpr
[
∂
∂t

]
= 0 and the identity [W,hZ] = W (h) +

h[W,Z] for any two vector �elds W,Z and any smooth function h, as well as
antisymmetry of the Lie bracket; in (2), again the fact that Dpr

[
∂
∂t

]
= 0 and[

∂
∂t ,

∂
∂xi

]
= 0; and in (3) the fact that ∂

∂t

(
α
(

∂
∂xi

))
= 0.

In the construction of symplectic collar neighbourhoods, we will make use of
the following property of the �ow of Liouville vector �elds:

Lemma 1.2.6. Suppose V is a Liouville vector �eld on (W 2n, ω). Then its �ow
ϕt satis�es ϕ

∗
tω = etω.

Proof. Since V is Liouville, we have for any t ∈ R that

d

dt
ϕ∗tω = ϕ∗tLV ω

= ϕ∗tω.

Suppose x1, . . . , x2n are local coordinates on W . The above equation evaluated
at the coordinate vector �elds ∂

∂xi
and ∂

∂xj
, this becomes

d

dt
ϕ∗tωij = ϕ∗tωij ,

which is a di�erential equation for ordinary functions together with the initial
condition ϕ∗0ωij = ωij . Thus the solution is

ϕ∗tωij = etωij .

Since this holds for any component of ω, we obtain ϕ∗tω = etω.

We now have all the ingredients necessary to construct our symplectic collar
neighbourhoods.
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Construction 1.2.7. Let (W,ω) be a symplectic manifold and V be a Liouville
vector �eld de�ned in a neighbourhood of ∂W which is outward pointing along
∂W . Set λ := ıV ω. Then for some small ε > 0, there is a symplectic collar
neighbourhood embedding

c : (∂W × (−ε, 0] , d(etλ)) ↪→ (W,ω).

Proof. To construct collar neighbourhoods for the boundary of any manifoldW ,
one only needs to show the existence of a vector �eld transverse to the boundary
∂W , whereafter the collar is constructed using the �ow of this vector �eld. Thus
the fact that V is outward pointing yields a collar de�ned by

c : ∂W × (−ε, 0] ↪→W, c(p, t) := ϕt(p), c(p, 0) = p ∀p ∈ ∂W,

where ϕt is the �ow of V . Hence as ω = dıV ω, it remains to show that c pulls
back λ to etλ|∂W . In order to do this, consider a point (p, t0) ∈ ∂W×(−ε, 0] and
a tangent vector U at (p, t0), which can be represented by the tangent vector at
t = 0 of a curve

(η(t), t0 + tu)

for η a suitable curve in ∂W and u ∈ R. We want to compute

c∗ıV ω(p,t0)(U) = ıV ωϕt0 (p) (Dϕ(p, t0)[U ]) .

We �rst look at the derivative:

Dϕ(p, t0)[(η′(0), u)] =
d

dt

∣∣∣∣
t=0

ϕ(η(t), t0 + tu)

=
d

dt

∣∣∣∣
t=0

ϕ(p, t0 + tu) +
d

dt

∣∣∣∣
t=0

ϕ(η(t), t0)

= uV (ϕ(p, t0)) +Dϕt0(p)[u].

Thus we see that

ıV ωϕt0 (p)(Dϕ(p, t0)[U ]) = ıV ωϕt0 (p)(Dϕt0(p)[u]) = ϕ∗t0(ıV ω)(u).

In general for a di�eomorphism ϕ, we have

ϕ∗ıV ω = ıϕ∗V ϕ
∗ω,

where ϕ∗V (y) = Dϕ−1(ϕ(y))[V (ϕ(y))]. Hence we compute

ϕ∗tV (x) = Dϕ−1
t (ϕt(x))[ϕ′t(x)]

=
d

dt′

∣∣∣∣
t′=0

ϕ−1
t (ϕt+t′(x))

=
d

dt′

∣∣∣∣
t′=0

ϕt′(x)

= V (ϕ0(x))

= V (x).
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Thus ϕ∗tV = V , and by Lemma 1.2.6, we have ϕ∗tω = etω, so that

ϕ∗t0(ıV ω) = et0 ıV ω.

Restricting to ∂W proves the claim.

With minor modi�cations to this construction, one can construct symplectic
cylindrical neighbourhoods of hypersurfaces Σ ⊂ W near which there exists a
transverse Liouville vector �eld.

1.3 Flavours of Symplectic Fillings

Having seen how symplectic manifolds with Liouville vector �elds near their
boundary give rise to contact manifolds, we are interested in the converse;
namely, given a contact manifold, is there a symplectic manifold whose boundary
is the given contact manifold, and moreover in such a way that the symplectic
structure induces the contact structure?

We begin slightly more generally by discussing symplectic cobordisms.

De�nition 1.3.1. Let (M−, ξ−) and (M+, ξ+) be compact oriented contact
manifolds so that the contact structures ξ± are positive. Then, a cobordism W
between M− and M+ is called

� a weak symplectic cobordism ifW admits a symplectic form ω so that
ω|ξ− < 0 and ω|ξ+ > 0;

� a strong symplectic cobordism if there exists a Liouville vector �eld
V ∈ X(W ) for a symplectic form ω on a neighbourhood of ∂W = ∂M− t
M+ which is inward pointing on M−, and outward pointing on M+, so
that the induced contact structure on M± by V agrees with ξ±;

� an exact symplectic cobordism, or a Liouville cobordism, if it is a
strong symplectic cobordism for which V is globally de�ned;

� a Stein cobordism if W admits the structure of a Stein domain; that
is, a complex structure J and a J-convex Morse function φ : W → C
(see De�nition 1.4.6) that has M− and M+ as regular level sets. The
Stein structure should be such that the contact structures induced on the
boundary agrees with ξ±. See Section 1.4.2, also for Weinstein cobordisms.

� a Weinstein cobordism if W admits a Weinstein structure: an exact
symplectic form ω, together with a Liouville vector �eld which is gradient
like for an exhausting Morse function φ. The function φ should have M±
as regular level sets, and the induced contact structure on M± should
agree with ξ±.

We then call M− the concave boundary, and M+ the convex boundary of W .
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Remark 1.3.2. The notion of weak symplectic cobordism as stated in this
de�nition is limited to contact manifolds M± of dimension 3, as only then, the
contact hyperplanes ξ± are 2-dimensional so that ω can be evaluated on them.
It is not immediately obvious how to extend this notion to higher dimensions,
though Massot, Niederkrüger, and Wendl have proposed in [MNW13] the notion
of weak convexity.

Note that the notions of cobordisms above are increasingly restrictive. Strong
symplectic �llings satisfy the orientation requirements of weak symplectic �llings
by Remark 1.2.3. Stein cobordisms turn out to have a symplectic form −ddCφ
compatible with J , so that the gradient of φ with respect to the induced metric
is Liouville, and thus they are also Liouville cobordisms. Stein and Weinstein
cobordisms are in fact equivalent notions as evidenced by deep theorems by
Cieliebak and Eliashberg [CE10]. Some results along this line are discussed in
Section 1.4.3.

The primary �llings of interest in this thesis will be Stein and strong symplec-
tic �llings. Strong symplectic cobordisms are well-behaved in that they are
transitive, by which we mean the following:

Proposition 1.3.3 ([Gei08, Proposition 5.2.5]). Suppose we are given contact
manifolds (M−, ξ−), (M, ξ) and (M+, ξ+) in such a way that there are strong
symplectic cobordisms (W−, ω−) and (W+, ω+) from M− to M from M to M+,
respectively.

Then gluing W− to W+ along M gives a strong symplectic cobordism from
(M−, ξ−) to (M+, ξ+).

Proof. Let j± : M ↪→ W± be inclusions, V± be corresponding Liouville vector
�elds near M , and de�ne corresponding contact forms

α± := j∗±(ıV±ω±).

Since α− and α+ both induce the same contact structure ξ onM , one has to be
a multiple of the other by a nonvanishing function, so we can �nd f ∈ C∞(M)
such that

α+ = efα−. (1.1)

As M is compact, f attains its extrema, and thus scaling ω+ (and thereby α+)
with a large positive constant, we may assume that ef > 1, or, equivalently,
that f > 0.

Now take two symplectic collar neighbourhoods ofM in (W+, ω+) and (W−, ω−):

((−ε, 0]×M), d(etα−)) ↪→W−,

and
([0, ε)×M), d(et+fα−)) ↪→W+.
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Note that d(et+fα−) = d(etα+) by Equation (1.1). Set

W0 = {(t, x) ∈ R×M | 0 ≤ t ≤ f(x)}

and endow it with the symplectic form d(etα−). We can thus consider it as a
submanifold of W−. Identifying

W− 3 (0, x) ∼ (0, x) ∈W0

and
W0 3 (f(x), x) ∼ (0, x) ∈W+

produces a symplectic manifold

W− ∪M W0 ∪M W+

that serves as a cobordism, as desired. It is compact as we may view it as the
image of W− tW+ tW0 under the (continuous) quotient projection.

Let us now verify that the glued manifold inherits a global symplectic form. As
the collar embeddings are symplectic, we may check well-de�nedness directly
on the collar neighbourhoods. To check that the symplectic form is well-de�ned
under the identi�cations made between W0 and W+, it su�ces to check that

d(etα+)(0,x) = d(etα−)(f(x),x), ∀x ∈M.

This, however, is true since

d(etα+)(0,x) = d(et+fα−)(0,x) = d(efα−)x = d(etα−)(f(x),x).

The case is clear for identi�cations made between W0 and W− since there are
no nontrivial identi�cations and the symplectic form is the same.

The setting in the rest of this thesis will not be that of symplectic cobordisms,
rather that of symplectic �llings.

De�nition 1.3.4. A (weak/ strong/ exact/ Stein/ Weinstein) cobordism from
the empty set to a contact manifold (M, ξ) is called a (weak/ strong/ exact/
Stein/ Weinstein) symplectic �lling.

Example 1.3.5. Consider the unit ball

B2n+2 = {(x,y) ∈ Rn+1 × Rn+1 | ‖x‖2 + ‖y‖2 ≤ 1},

together with the restriction of the standard symplectic form

ω0 =

2n+2∑
i=1

dxi ∧ dyi.

We have seen that

V (x,y) =
1

2

n+1∑
i=1

xi
∂

∂xi
+ yi

∂

∂yi
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is a Liouville vector �eld for ω0, and it is evidently outward pointing on S2n+1 =
∂B2n+2. The kernel of the associated primitive was de�ned as the standard
contact structure on S2n+1, so (B2n+2, ω0) is an exact symplectic �lling of
(S2n+1, ξcan).

1.4 Stein and Weinstein Manifolds

Here, we would like to formally de�ne the aforementioned notions of Stein and
Weinstein �llability for contact manifolds and discuss their complex and sym-
plectic aspects. To this end, we follow [CE10], and begin by recalling some
de�nitions from complex geometry.

1.4.1 J-Convexity

De�nition 1.4.1. Let (W,J) be an almost complex manifold. The almost
complex structure J is called tame with respect to a symplectic form ω ∈ Ω2(W )
on W if

ω(v, Jv) > 0

for all nonzero tangent vectors v ∈ TW .

If, in addition, ω is J-invariant in the sense that

ω(Ju, Jv) = ω(u, v)

for all u, v ∈ TW , then we say that ω and J are compatible.

Remark 1.4.2. Recall that for ω ∈ Ω2(W ) a symplectic form compatible with
the almost complex structure J on W , one obtains a Riemannian metric on W
by setting

g(u, v) := ω(u, Jv).

De�nition 1.4.3. An almost complex structure J is called integrable if there
exists an atlas of J-holomorphic charts on Wn, that is, charts to Cn whose
transition functions are holomorphic.

A Stein manifold will be a manifold that is equipped with a J-convex function.
This section collects the relevant de�nitions.

De�nition 1.4.4. Let (W,J) be an almost complex manifold and φ ∈ C∞(W )
be a smooth function. We associate to φ the 2-form

ωφ := −ddCφ.

The operator dC is de�ned by

dCφ(X) := dφ(JX)

for X ∈ X(W ).
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Two natural questions present themselves at this point.

1. When is ωφ symplectic?

2. When is gφ = ωφ(·, J ·) a metric?

Starting with the second question, it turns out that in general, gφ need not even
be a symmetric tensor. It evidently is symmetric, however, if ωφ is J-invariant.
A su�cient condition for J-invariance is integrability.

Lemma 1.4.5. If (W 2n, J) is a complex manifold (i.e. J is integrable), then
ωφ is J-invariant.

Proof. On any complex manifold with complex coordinates zk = xk+iyk, de�ne
the 1-forms

dzk = dxk + idyk, dzk = xk − idyk.

Then any 1-form can be written as a C∞(W )-linear combination of these forms.

Further de�ne the complex valued (1, 1)-form

∂∂φ :=

n∑
j,k=1

∂2φ

∂zj∂zk
dzj ∧ dzk.

Note that
dzj ◦ i = idzj , dzj ◦ i = −idzj ,

and use this to compute

dCφ =

n∑
j=1

(
∂

∂zj
(φ)dzj ◦ i+

∂

∂zj
(φ)dzj ◦ i

)
=

n∑
j=0

(
i
∂

∂zj
(φ)dzj − i

∂

∂zj
dzj

)
,

and thus

−ddCφ = 2i

n∑
j,k=0

∂2φ

∂zj∂zk
dzk ∧ dzj = 2i∂∂φ.

Since ∂∂φ is i-invariant, so is ωφ.

Addressing the �rst question, J-convexity is the concept that handles nonde-
generacy of ωφ.

De�nition 1.4.6. A function φ : W → R on an almost complex manifold
(W,J) is called J-convex if ωφ tames J , that is, if

ωφ(v, Jv) > 0

for all nonzero tangent vectors v.

The function φ is called exhausting if it is proper and bounded from below.
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A J-convex function φ on an almost complex manifold thus gives rise to a sym-
plectic form ωφ, and moreover , if J is integrable, to a Riemannian metric gφ. We
also obtain that the gradient of φ with respect to this metric is Liouville:

Lemma 1.4.7. Let φ be a J-convex function on a complex manifold (W,J) and
set

ωφ := −ddCφ, λφ := −dCφ, Vφ := gradφ.

Then ωφ = dλφ is a symplectic form with Liouville vector �eld Vφ.

Proof. Recall that ωφ is symplectic by de�nition of J-convexity and the as-
sumption that J is integrable. By de�nition of the gradient, we have for any
Y ∈ X(W )

dCφ(Y ) = dφ(JY ) = gφ(gradφ, JY ) = −ωφ(gradφ, Y ) = −ıVφωφ(Y ).

Thus λφ = ıVφωφ, and LVφωφ = dλφ = ωφ.

1.4.2 Liouville, Stein, and Weinstein

In this section, we will talk about Stein and Weinstein manifolds. Before we do
so, we de�ne Liouville manifolds. The notion of Liouville domains in particular
is relevant later on, as their boundary is always of contact type and they always
admit symplectic collars.

De�nition 1.4.8. A Liouville manifold (W,ω = dλ, V ) is an exact symplectic
manifold (W,ω) together with a Liouville vector �eld V de�ned by λ = ıV ω such
that

� the Liouville vector �eld V is complete;

� W is convex in the sense that there exists an exhaustion of W by com-
pact subsets W k ⊂W with smooth boundaries along which V is outward
pointing, so that W 1 ⊂W 2 ⊂W 3 ⊂ . . . and W =

⋃∞
k=1W

k.

We will often suppress the Liouville vector �eld from the notation and denote
Liouville manifolds simply by (W,dλ).

Remark 1.4.9. If W is compact, then the second item implies that W = W k

for some large k, and thus the Liouville vector �eld is outward pointing along
∂W .

We are now ready to formally de�ne the cobordisms from De�nition 1.3.1.

De�nition 1.4.10. A Liouville cobordism (W,ω, V ) from M− to M+ is a
compact exact symplectic manifold (W,ω = dλ) with boundary ∂W = M−tM+

and a globally de�ned Liouville vector �eld V which points transversely inward
on M− and outward on M+.

A Liouville cobordism with M− = ∅ is called a Liouville domain.
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Remark 1.4.11. A Liouville domain can be considered as a compact Liou-
ville manifold. Note also that Liouville domains always admit symplectic collar
neighbourhoods as the symplectic form is globally exact and V is outward point-
ing.

De�nition 1.4.12. A Stein manifold (W,J, φ) is a complex manifold (W,J)
together with an exhausting J-convex Morse function φ. A Stein cobordism
(W,J, φ) from M− to M+ is a Stein manifold with ∂W = M− tM+ such that
M± are regular level sets of φ. A Stein cobordism with M− = ∅ is called a
Stein domain.

If the manifold W is �xed, we refer to a tuple (J, φ) making (W,J, φ) into a
Stein manifold as a Stein structure on W .

Remark 1.4.13. Stein manifolds are Liouville manifolds: the form ωφ is sym-
plectic as φ is J-convex, and as J is integrable, the induced metric gφ is indeed
a metric (see the discussion after De�nition 1.4.4). The gradient vector �eld
Vφ := gradφ with respect to gφ is Liouville by Lemma 1.4.7.

As for the convexity condition, the suggestively termed property of φ being
exhausting implies that the sets W k = φ−1([−∞, dk]) for dk →∞ an increasing
sequence of regular values provide a compact exhaustion of W . The vector �eld
Vφ is transverse to the level sets of φ, which are the boundaries of the W k, and
indeed outward pointing as dk is an increasing sequence.

De�nition 1.4.14. A Weinstein manifold (W,ω = dλ, V, φ) consists of an
exact symplectic manifold (W,ω = dλ) with a complete Liouville vector �eld V
which is gradient-like for an exhausting Morse function φ : W → R.

AWeinstein cobordism (W,ω, V, φ) fromM− toM+ is a Liouville cobordism
(W,ω, V ) such that V is gradient-like for the Morse function φ : W → R which
is constant on the boundary. A Weinstein cobordism with M− = ∅ is called a
Weinstein domain.

A triple (ω, V, φ) making (W,ω, V, φ) into a Weinstein manifold is called a We-
instein structure on W .

Remark 1.4.15. The gradient-like vector �eld V in a Weinstein manifold
(W,ω = dλ, V, φ), or the gradient Vφ in a Stein manifold (W,J, φ), is always
transverse to the level sets of φ. Thus the primitive λ of ω (or λφ of ωφ, respec-
tively) restricted to any level set induces a contact structure. In particular, the
boundary of Stein and Weinstein domains carries a contact structure induced
by the Stein or Weinstein structure.

De�nition 1.4.16. A Liouville/ Stein/ Weinstein �lling (W,ω) of a con-
tact manifold (M, ξ) is a Liouville/ Stein/ Weinstein domain with ∂W = M so
that the induced contact structure agrees with ξ.

It is immediate that Weinstein manifolds are Liouville manifolds from the prop-
erties of V . Let us give some examples of Weinstein manifolds as found in
[CE10, Example 11.12].
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Example 1.4.17.

1. The canonical Weinstein structure on Cn is de�ned by

ω0 =

n∑
k=1

dxk∧dyk, V0 =
1

2

n∑
k=1

(
xk

∂

∂xk
+ yk

∂

∂yk

)
, φ0 =

1

4

n∑
k=1

(x2
k+y2

k).

The corresponding primitive of ω0 is λ0 = 1
2

∑n
k=1(xkdyk − ykdxk). Note

that the function φ0 is Morse of index 0, and is bounded from below by 0.
Preimages of closed intervals are closed balls in Cn, so φ0 is proper and
thus exhausting. The vector �eld V0 is precisely gradφ0

.

2. The cotangent bundle T ∗Q of a closed manifold Qn carries a Weinstein
structure. Suppose q = (q1, . . . , qn) are local coordinates on Q, and denote
by (q, p) the induced coordinates on T ∗Q. Then the following data de�ne
a Weinstein structure:

ωcan = dλcan, V0 = p
∂

∂p
, φ0 =

1

2
|p|2.

Here, λcan = pdq denotes the canonical Liouville form on T ∗Q. The vector
�eld V0 is easily veri�ed to be Liouville, and moreover, it is precisely the
gradient of φ0: note that the Christo�el symbols of the metric dp⊗ dp on
T ∗Q vanish, and thus

∂

∂pi
|p|2 = 2g(∇ ∂

∂pi

(pj
∂

∂pj
), pj

∂

∂pj
) = 2pi.

Hence gradφ0
= p ∂

∂p = V0.

Note, however, that φ0 is not Morse, but rather Morse-Bott. One could
in fact relax the de�nition to allow for Morse-Bott functions, but we will
slightly perturb φ0 in order to obtain a Weinstein structure in the sense
of De�nition 1.4.14. To this end, consider any Riemannian metric on Q
and a Morse function f : Q → R. The Hamiltonian vector �eld XF of
F (q, p) := p(gradf (q)) coincides with gradf along the zero section of T ∗Q:
in coordinates,

F (q, p) = pi
∂

∂qi
(f), dF =

∂

∂qi
(f)dpi + pi

∂2f

∂qi∂qj
dqj .

Thus the Hamiltonian vector �eld is

XF = −pi
∂2f

∂qi∂qj

∂

∂pi
+
∂f

∂qi

∂

∂qi
,

where the last summand is recognized as gradf in local coordinates. Hence
V := p ∂

∂p + XF is Liouville and gradient-like for the Morse function

φ(q, p) := 1
2 |p|

2 + f(q) for f small enough.
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Remark 1.4.18. For Weinstein manifolds, one can describe a symplectic han-
dlebody decomposition of the underlying manifold in the following sense: attach-
ing a so-called Weinstein handle to a Weinstein manifold yields a new man-
ifold so that the symplectic form, Liouville vector �eld and exhausting Morse
function extend over the handle in such a way that the new manifold is still a
Weinstein manifold. The Morse function picks up precisely one critical point in
the handle, corresponding to a zero of the Liouville vector �eld. Moreover, the
manifold obtained this way is unique up to an appropriate notion of homotopy.
See [Wei91] for the original construction.

It turns out that Weinstein domains are subject to a strong topological con-
straint.

Lemma 1.4.19 ([CE10, Lemma 2.21]). Let (W 2n, ω, V, φ) be a Weinstein do-
main. Then the index of each critical point of φ is at most n.

Proof. Denote the �ow of V by ϕt and recall that since V is Liouville, we have
ϕ∗tω = etω, so we may write

ω = e−tϕ∗tω.

Suppose p is a critical point of φ and W s(p) is the stable manifold associated
to p. For any q ∈W s(p), we hence have ϕt(q)→ p for t→∞. As in particular
ωq = e−tϕ∗tωq for all t, we obtain

ωq = lim
t→∞

e−tϕ∗tωq = 0 · ωp = 0.

Thus ω vanishes onW s(p). This implies thatW s(p) is an isotropic submanifold
of W . Hence the dimension of W s(p), which equals to 2n − ind(φ) because V
is gradient-like for φ, is at most n, as desired.

Thus, any Weinstein domain W 2n admits a handlebody decomposition with
handles of index no greater than n.

1.4.3 From Stein toWeinstein and Back: A Brief Stopover

In their book with the same title [CE10], Cieliebak and Eliashberg explain how
Stein and Weinstein structures are equivalent up to deformation. We refer to
the reader to the book for the proof. In what follows, we will outline the main
results.

The Road from Stein to Weinstein

To a Stein cobordism (W,J, φ), we can always associate a Weinstein cobordism
structure. Denote this by the functor W:

W(J, φ) := (ωφ, Vφ, φ),

where ωφ = −ddCφ, and Vφ = gradφ with respect to the metric gφ induced by
ωφ. This is indeed a Weinstein manifold: ωφ is symplectic by J-convexity of φ
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and J-compatible as J is integrable. We have seen in Lemma 1.4.7 that Vφ is a
Liouville vector �eld. The gradient itself is evidently gradient-like for φ, and φ
is constant on ∂W already by the de�nition of a Stein cobordism.

Remark 1.4.20. The considerations regarding the indices of handle decompo-
sitions of a Weinstein domain hence carry over to Stein domains. Therefore, a
necessary condition for a manifold W 2n to admit a Stein structure is that there
is a handlebody decomposition of W where no handle has index ≥ n.

The Road from Weinstein to Stein

Given a Weinstein structure (ω, V, φ) on a manifold W , it is highly nontrivial to
construct a complex structure J on W making (W,J, φ) into a Stein manifold,
and in fact, this is one of the main results of [CE10].

Theorem 1.4.21 ([CE10, Theorem 1.1(a), Theorem 13.9]). Let (W,ω, V, φ) be
a Weinstein manifold. Then there exists a Stein structure (J, φ) on W so that
the Weinstein structures

(ω, V, φ) and W(J, φ)

are homotopic. Note that the function φ is �xed.

As a consequence of this theorem, the notions of Stein and Weinstein �llabil-
ity are seen to be equivalent. Indeed, given a Weinstein �lling (W,J, φ) of a
contact manifold, we may apply Theorem 1.4.21 to deform it into a Stein do-
main while keeping the contact structure induced by the contact form −dCφ
invariant.

Similarly, the fact that any Stein �lling is also a Weinstein �lling follows from
the observation that any Stein domain (W,J, φ) is a Weinstein domain with
Weinstein structure W(J, φ), where the J-convex function φ, and thereby the
contact structure on the boundary, remains unchanged.

Another important theorem for us concerns the existence of Stein (and hence,
Weinstein) structures.

Theorem 1.4.22 ([CE10, Theorem 8.15]). Let W 2n be an open smooth man-
ifold of dimension 2n 6= 4 which admits an almost complex structure J and
an exhausting Morse function φ with no critical points of index greater than n.
Then J is homotopic through almost complex structures to an integrable almost
complex structure J̃ such that φ can be reparametrized to be J̃-convex. That is,
W admits a Stein structure.

A topological analogue in dimension 4 is due to Gompf [Gom98]:

Theorem 1.4.23 ([Gom98], [CE10, Theorem 1.6]). Let V be an oriented open
topological 4-manifold which admits a (possibly in�nite) handlebody decomposi-
tion without handles of index greater than 2. Then V is homeomorphic to a
Stein surface.
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The signi�cance of these theorems is that they allow us to see that the total
space of a Lefschetz �bration, introduced in the following chapter, admits the
structure of a Stein domain.
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Chapter 2

Lefschetz and Lefschetz-Bott

Fibrations

Lefschetz �brations and their generalizations, Lefschetz-Bott �brations, will be
the main tool in this text to obtain symplectic �llings, although we will not see
this until Section 3.3.

Lefschetz �brations can be considered as a complex analogue of Morse functions,
and can be used to give a topological description of the total space in the same
fashion, as will be explained in Section 2.1. In the second part, we will review
Lefschetz �brations in the context of symplectic manifolds, before generalizing
to symplectic Lefschetz-Bott �brations in Section 2.3.

2.1 Topological Lefschetz Fibrations

De�nition 2.1.1. Let E2n be an even-dimensional manifold and S be a com-
pact surface. A proper map π : E → S is called a Lefschetz �bration if

� all its critical points Ecrit are contained in int(E);

� near each critical point in E and each critical value in S, there exist charts
(U, σ) and (V, τ), respectively, in which

τ ◦ π ◦ σ−1 : Cn → C
(z1, . . . , zn) 7→ z2

1 + . . .+ z2
n.

Let us call such coordinates Lefschetz charts.

One sometimes calls a Lefschetz �bration positive if the complex charts are
orientation preserving, which we shall assume henceforth.
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We will at times simply write (E, π) for Lefschetz �brations whose base is clear
from the context, and refer to Lefschetz �brations as topological Lefschetz
�brations in contrast to symplectic Lefschetz �brations introduced in De�ni-
tion 2.2.1

Remark 2.1.2. The second item in De�nition 2.1.1 implies that critical points
of Lefschetz �brations are isolated, i.e, Ecrit is a �nite set of points.

Let us start right away with an example.

Example 2.1.3. Consider the polynomial fk ∈ C[z1, . . . , zn+1] de�ned by

fk(z1, . . . , zn+1) = z2
1 + . . .+ z2

n + zk+1
n+1

for some integer k ≥ 1, and let

Vk(ε) = {z ∈ Cn+1 | fk(z) = ε}

for some ε > 0.

Claim 2.1.4. The projection map

π : Vk(ε)→ C
(z1, . . . , zn+1) 7→ zn+1

is a Lefschetz �bration.

Proof. Let us �rst �nd the critical points of π. Note that

zk+1
n+1 = ε− z2

1 − . . .− z2
n.

Di�erentiating this equation, it follows that

(k + 1)zkn+1dzn+1 = −2(z0dz0 + . . .+ zndzn).

Suppose now that z = (z1, . . . , zn+1) ∈ Vk(ε) is a critical point of π, which
means dπz = (dzn+1)z = 0.

Case I: zn+1 = 0

If zn+1 = 0, then also zi = 0 for i ≤ n, but 0 = (0, . . . , 0) /∈ Vk(ε). Therefore,
critical points have nonvanishing zn+1-coordinate.

Case II: zn+1 6= 0

If zn+1 6= 0, this implies that dzn+1 = dπ vanishes for all (0, . . . , 0, zn+1) ∈ Vk(ε).
Hence for µk+1 a (k + 1)-th root of unity, the points

λl := (0, . . . , 0, µlk+1), l = 0, . . . , k,

are the only critical points of π.
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It remains to �nd complex charts to bring π into the standard form. De�ne

ρz = |ε− z2
1 − . . .− z2

n|, ϕz = arg(ε− z2
1 − . . .− z2

n).

We can parametrise Vk(ε) near λl by

σl : Cn −→ Vk(ε)

(z1, . . . , zn) 7−→
(
z1, . . . zn, ρ

1
k+1
z exp

(
i
ϕz + 2πl

k + 1

))
,

which is a complex chart when restricted to a small enough neighbourhood of
0 ∈ Cn. Note that σl(0) = λl. Then

π ◦ σl(z) = ρ
1
k+1
z exp

(
i
ϕz + 2πl

k + 1

)
,

and π ◦ σl maps a neighbourhood of zero in Cn to a neighbourhood of µl ∈ C.
On a small neighbourhood of µl, the map

τ : C→ C
w 7→ 1− wk+1

is biholomorphic. Since

τ ◦ π ◦ σl(z) = z2
1 + . . .+ z2

n,

the maps σl and τ provide the desired chart description near each critical point
λl, and thus π is a Lefschetz �bration.

2.1.1 Vanishing Cycles

We now study the �bers of Lefschetz �brations. Recall the following fundamen-
tal lemma:

Lemma 2.1.5 (Ehresmann �bration lemma). Let π : X → Y be a proper
submersion between connected smooth manifolds. Then π is a �ber bundle, that
is, locally trivial. In particular, the �bers are all di�eomorphic.

Away from the critical points, a Lefschetz �bration π : E → S is, by de�nition,
a smooth submersion, and hence the �bers Ez for z ∈ S \π(Ecrit) are di�eomor-
phic. Such �bers are called regular, as opposed to critical or singular �bers
Ex0

for x0 ∈ π(Ecrit). We will denote the abstract regular �ber of a Lefschetz
�bration (E, π) by the letter F .

The critical �bers can be better understood through vanishing cycles.

De�nition 2.1.6. Let p ∈ Ecrit be a critical point and (U, σ), (V, τ) be Lef-
schetz charts near p and π(p), respectively. On U , the regular �bers are then
di�eomorphic to

(τ ◦ π ◦ σ−1)−1(z)
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for some z ∈ V \ {0}. Multiplying τ by some unit complex number, we may
assume that z = t > 0 lies in R, and by possibly scaling (U, σ), we may assume
σ to be a di�eomorphism between U and the closed unit disk D2n+2 ⊂ Cn+1.
The �ber near U will then be di�eomorphic to

Et ∩ U ∼= {z ∈ Cn | z2
1 + . . .+ z2

n = t} ∩ D2n+2

= {(x,y) ∈ Rn × Rn | ‖x‖2 − ‖y‖2 = t, 〈x,y〉 = 0, ‖x‖2 + ‖y‖2 ≤ 1},

where we identify z = x+iy. De�ne the vanishing cycle γ of the critical point
p to be the real part of this set, which is

γ = {(x,0) | ‖x‖2 = t} ∼= Sn−1.

Note that for n = 2, Et ∩ U is di�eomorphic to a one-sheeted hyperboloid; in
this case, the vanishing cycle corresponds to the closed curve around its �waist�.
From this de�nition, we see how to obtain the singular �bers from nearby regular
�bers:

Proposition 2.1.7 ([ÖS04b, Section 10.1]). Let π : E → S be a Lefschetz
�bration with regular �ber F . If p is a critical point of π, the singular �ber over
π(p) is obtained by considering nearby �bers Et for t > 0 and taking t → 0, or
equivalently, by collapsing the vanishing cycle γ ⊂ F of p.

Let us describe the �bers near p more generally. Scaling x by setting

x′ =
1√

t+ ‖y‖2
· x,

we obtain that

Ft ∩ U ∼=
{

(x′,y) | ‖x′‖ = 1, 〈x′,y〉 = 0, ‖y‖2 ≤ 1− t
2

}
= DrT

∗Sn−1,

for r = 1−t
2 . The vanishing cycle thus corresponds to the zero section of

T ∗Sn−1.

2.1.2 The Topology of the Total Space

This section explores the analogy of Lefschetz �brations to Morse functions by
using them to give a topological description of their total space.

For this purpose, suppose π : E2n → S is a Lefschetz �bration with regular �ber
F . Consider the function

πR = −Re(π).

On a Lefschetz chart near a critical point p, πR takes the form

πR(x,y) = −x2
1 − . . .− x2

n + y2
1 + . . .+ y2

n.
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Thus Lefschetz charts are Morse charts for πR, and each critical point of πR is
of index n.

If D ⊂ Σ is a disk containing no critical values, then π−1(D) ∼= F × D. It is
globally trivial since D is contractible. As we enlarge D′ to contain a single
critical value s = π(p) and apply an isotopy such that s lies on the real axis,
standard Morse theory tells us that π−1(D′) is di�eomorphic to π−1(D) with an
n-handle attached to the unstable manifold of p at a subcritical level s − t of
πR. More precisely, following the Morse charts from above, this means we glue
an n-handle to

Wu(p) ∩ π−1
R (s− t) ∼= {(x,0) ∈ Rn × Rn | ‖x‖2 = t}.

This, however, is precisely the vanishing cycle.

Remark 2.1.8. Attaching an n-handle requires two pieces of data in order to
be completely speci�ed: an (isotopy class of an) embedding s0 : Sn−1 ↪→ ∂M
corresponding to the attaching circle, and a framing of s0(Sn−1). The above
proposition has speci�ed only the isotopy class of the embedding circle as the
vanishing cycle. For more details regarding the framing, see [ÖS04b, Chapter
10].

Suppose now that π : E2n → D is a Lefschetz �bration over the disk with regular
�ber F and critical values (x1, . . . , xk) . The previous discussion proves

Proposition 2.1.9. The total space E2n admits a handlebody decomposition as

E = D× F ∪ (
⋃
i

Hi),

where each Hi is an n-handle glued to the vanishing cycle of the critical point
xi.

If E is compact, the function πR is automatically an exhausting Morse function.
When E has dimension 4, Theorem 1.4.23 yields the existence of a Stein struc-
ture on E. In order to use Theorem 1.4.22 in higher dimensions, E is required
to admit an almost complex structure J , which cannot be assumed in general.
We will return to this case in Section 3.3, see in particular Remark 3.3.3.

2.1.3 Monodromy

Monodromy is a fundamental notion describing the behaviour of a holomorphic
function near a critical value. The study of singularities of holomorphic func-
tions extends signi�cantly beyond the scope of what will be relevant for our
considerations, and we refer to [AGV88] for a more thorough treatment. The
following material is adapted from Chapter 1 of the same reference.

Suppose π : E → D is a Lefschetz �bration over the disk and choose an Ehres-
mann connection on E. Recall how parallel transport is de�ned.
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If γ : [a, b] → D is any path in the base, we may consider for any p ∈ Eγ(t)

the unique horizontal lift Xγ(p) ∈ TpE of the vector γ′(t) ∈ Tγ(t)D such that
Dπ(p)[Xγ(p)] = γ′(t). The vector �eld Xγ hence de�nes a horizontal vector
�eld on the total space of γ∗E, and its �ow ϕt de�nes the parallel transport
maps

ργ : Eγ(a) → Eγ(b)

ργ(p) = ϕb−a(p).

Note that if π is proper, then parallel transport exists for all time.

Now �x a regular value z0 ∈ D and let γ : [0, 1]→ D be a loop based at z0 whose
image is contained in D \ π(Ecrit).

Parallel transport hence yields a family of maps

Γt := ργ|[0,t] : Ez0 → Eγ(t).

De�nition 2.1.10. The map

µγ := ργ = Γ1 : Ez0 → Ez0

is called the monodromy of the �bration π.

The monodromy is well-de�ned up to isotopy under di�erent choices of repre-
sentatives of homotopy classes of γ, as well as connections. To see this, suppose
�rst that δ is a loop based at z0 homotopic to γ via H : [0, 1]× [0, 1]→ D. Then
(ρH(s,·))s∈[0,1] is an isotopy between ργ and ρδ.

As for the choice of connection, let ρ̃ be the parallel transport system arising
through the choice of another connection and set Kt := ρ̃γ|[0,t] . Evidently,

idEz0 = K0 = Γ0. Then K−1
s ◦ Γs is an isotopy from the identity to K−1

1 ◦ Γ1,
whence K1 is isotopic to Γ1.

Remark 2.1.11. The map Γ induces a trivialization of the pullback bundle
γ∗E → [0, 1] by

Γ : Ez0 × [0, 1]→ γ∗E

(p, t) 7→ Γt(p).

From this description, it is evident that if we consider the loop γ as having
domain S1, then the pullback bundle γ∗E → S1 is di�eomorphic to a mapping
torus whose gluing is the monodromy µγ :

γ∗E ∼= Ez0 × [0, 1]/(p, 1) ∼ (µγ(p), 0).

If γ bounds a disk embedded in D \ π(Ecrit), then γ is contractible, and hence
µγ is isotopic to the identity. However, if γ encircles a critical value in D, the
monodromy will in general not be trivial. In many cases, it will be given by
what is known as a Dehn twist, which we describe in the next section.
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2.1.4 Dehn Twists

Dehn twists describe the di�eomorphism obtained by cutting along an embedded
sphere Sn, twisting by one full rotation, and regluing. In the symplectic setting,
it is well known that Dehn twists generate the symplectic mapping class group
of surfaces [Waj99]. It was �rst noticed by Arnol'd in [Arn95] that Dehn twists
are symplectomorphisms with respect to the canonical symplectic structure on
T ∗Sn. Moreover, Seidel [Sei97] established that in certain cases, Dehn twists
present a nontrivial element of the symplectic mapping class group: symplectic
Dehn twists are smoothly isotopic to the identity, but not necessarily via an
isotopy of symplectomorphisms.

Here we follow [Oba18] in the de�nition of Dehn twists adapted to the symplectic
setting, starting by de�ning them on T ∗Sn.

We will use the identi�cation

T ∗Sn = {(q,p) ∈ Rn+1 × Rn+1 | ‖q‖ = 1, 〈q,p〉 = 0}.

In these coordinates, the canonical Liouville form on T ∗Sn may be written as
λ0 =

∑n
i=1 pidqi, and the zero section corresponds to

i0(Sn) = {(q, 0) ∈ T ∗Sn}.

Note that i0(Sn) is Lagrangian. We will now construct a Hamiltonian action on
T ∗Sn, through which we then de�ne the Dehn twist. De�ne the Hamiltonian
function

µ : T ∗Sn \ i0(Sn)→ R
(q,p) 7→ ‖p‖ .

The Hamiltonian vector �eld Xµ is then

Xµ := − 1

‖p‖

n+1∑
j=1

pj
∂

∂qj
− ‖p‖

n+1∑
j=1

qj
∂

∂pj
.

Claim 2.1.12. The Hamiltonian vector �eld Xµ has periodic orbits.

Proof. Letting pr : T ∗Sn → Sn denote the projection and ϕt(q, p) = (q(t), p(t))
be the �ow of Xµ, consider δ(t) = pr ◦ ϕt(q, p). We show this is a geodesic of
Sn.

Note �rst that

〈δ′(t), δ′(t)〉 = ‖Dpr((q(t),p(t)))[Xµ((q(t),p(t)))]‖2

=

∥∥∥∥∥∥‖p(t)‖−1
n+1∑
j=1

pj(t)
∂

∂qj

∥∥∥∥∥∥
2

≡ 1.
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Thus we have

0 =
d

dt
〈δ′(t), δ′(t)〉

= 2
〈
∇ ∂

∂t
(δ′)(t), δ′(t)

〉
,

which implies ∇ ∂
∂t

(δ′) = 0, so δ is a geodesic of Sn. The geodesics of Sn,
however, consist of 2π-periodic great circles.

Thus there is a Hamiltonian S1-action on T ∗Sn \ i0(Sn) given by eit · (q,p) =
ϕt(q,p). From the description of the geodesics of Sn as great circles, we obtain
that the action is explicitly given by

eit · (q,p) := (cos(t)q + ‖p‖−1
sin(t)p,−‖p‖ sin(t)q + cos(t)p).

Denote the action by

σ : S1 → Diff(T ∗Sn \ i0(Sn))

eit 7→ σt,

and note that σπ(q,p) = (−q,−p). This extends to all of T ∗Sn, restricting to
the antipodal map on i0(Sn), which we denote by A.

We now get to de�ning the prototype of a Dehn twist. Take a smooth function
η : R→ R such that

� η(t) = 0 for t > t0 for some t0,

� η(t) + η(−t) = 2π for all t.

Note that this implies η(0) = π. The model right-handed Dehn twist
τ : T ∗Sn → T ∗Sn is now de�ned by

τ(q,p) :=

{
ση(‖p‖)(q,p), p 6= 0,
A(q,p), p = 0.

Remark 2.1.13. The model right-handed Dehn twist has compact support by
de�nition, and is a symplectomorphism of (T ∗Sn, dλcan) by [Sei99, Section 6].

Visualising T ∗S1 as a cylinder, the action of a model Dehn twist is precisely
cutting along the zero section, fully twisting one end counterclockwise, and
regluing.

We proceed to de�ne Dehn twists along any Lagrangian sphere in a symplectic
manifold (W,ω), which we de�ne as a Lagrangian submanifold L of W together
with an associated framing, that is, a di�eomorphism

f : Sn → L

de�ned up to reparameterization by orthogonal transformations. Recall the
Weinstein tubular neighbourhood theorem, originally from [Wei71], as seen in
[Can06]:
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Theorem 2.1.14 ([Wei71], [Can06, Theorem 9.3]). Let (W 2n, ω) be a symplec-
tic manifold and i : L ↪→W be a Lagrangian embedding of an n-manifold L, that
is, an embedding such that i∗ω = 0. Denote the zero section by i0 : L → T ∗L.
Then there exists ε > 0 and a symplectic embedding j : DεT

∗L ↪→ W such that
the following diagram commutes:

DεT
∗L W

L

j

i0 i

By the Weinstein tubular neighbourhood theorem, given a Lagrangian sphere
and its framing f , there is a symplectic embedding j : DεT

∗L ↪→ W such that
j ◦ i0 = f . Now let η : R→ R be a function as above with t0 = ε/2, denote by
τ the corresponding model Dehn twist, and set

τL(x) :=

{
j ◦ τ ◦ j−1, x ∈ Im(j),
x, x /∈ Im(j).

The map τL : (W,ω) → (W,ω) is hence a compactly supported symplectomor-
phism and is called the right-handed Dehn twist along L.

With this in hand, one can prove the following for Lefschetz �brations whose
total space is 4-dimensional:

Theorem 2.1.15 ([ÖS04b, Proposition 10.1.5], [GS99, Section 8.2]). The mon-
odromy along a loop encircling a single critical value of a Lefschetz �bration is
given by a right-handed Dehn twist along its vanishing cycle.

See also the introduction of [AGV88] for a more explicit computation.

For Lefschetz �brations in higher dimensions, Theorem 2.1.15 holds verbatim if
one can make it into a symplectic Lefschetz �bration (see De�nition 2.2.1 and
Theorem 2.2.9). We note that the Lefschetz �bration π from Example 2.1.3
can be made symplectic with either the standard symplectic structure or a
symplectic structure induced by the Fubini-Study form (see [KK16] or [Oba20]),
so that by computing its vanishing cycles, we obtain the monodromy as the
composition of Dehn twists along the vanishing cycles.

Example 2.1.16. Recall that we set

Vk(ε) = {(z1, . . . , zn, zn+1) ∈ Cn+1 | z2
1 + . . .+ z2

n + zk+1
n+1 = ε},

and π(z1, . . . , zn+1) = zn+1. Fixing a critical point λl ∈ Vk(ε), the vanishing
cycles are σl(γt) for some t > 0 small enough, where

γt = {x ∈ Cn | Im(x) = 0, ‖x‖2 = t}.

For t < 1, we have ρx = 1− t2 > 0, and ϕz = 0, so that

σl(γt) = {(x, (1− t2)) ∈ Cn+1 | Im(x) = 0, ‖x‖2 = t} =: γ.

35



The vanishing cycle γ is evidently independent of l, and thus all critical points
λl have γ as their associated vanishing cycle. Consequently, by Theorem 2.2.9,
the monodromy of π along ∂D is isotopic to τk+1

γ , the composition of (k + 1)
right-handed Dehn twists along γ.

Note that so far, the total space of this Lefschetz �bration was not compact.
To tie this together with the setting in the rest of this thesis, restrict π to the
compact subdomain

Vk(ε) ∩ D2n+2
1+η .

For a regular �ber over some t > 0, we obtain

π−1(t) = {(z1, . . . , zn+1) ∈ Cn+1 | z2
1 + . . .+ z2

n + tk+1 = ε,

n∑
i=1

|zi|2 ≤ 1 + η − t2}

∼= {(x,y) ∈ Rn × Rn | ‖x‖2 − ‖y‖2 = ε− tk+1, ‖x‖2 + ‖y‖2 ≤ 1 + η − t2}
∼= {(x′,y) ∈ Rn × Rn | ‖x′‖ = 1, ‖y‖2 ≤ rt}
∼= DT ∗Sn−1,

where

x′ =
x√

ε− tk+1 + ‖y‖2
, and rt =

1 + η − t2 − ε+ tk+1

2
,

which is de�ned for t small enough. The vanishing cycle is hence

σl(γt) = σl({(x,0) ∈ Rn × Rn | ‖x‖2 = t})

= {((x1, . . . , xn, 1− t),0) ∈ Rn+1 × Rn+1 | ‖x‖2 = t},

which is just the zero section of DT ∗Sn−1. Thus in conclusion, the regular �bers
of π can be identi�ed with DT ∗Sn−1, and the monodromy of π consists of k+ 1
right-handed Dehn twists along the zero section.

We will return to the �ber π−1(t) later on in Section 5.5, where we construct
distinct �llings of the Ak-type singularity.

2.2 Symplectic Lefschetz Fibrations

Now that we are familiar with the topological properties of Lefschetz �brations,
we consider them in the context of symplectic geometry. It turns out that
some more subtlety is required in their de�nition. The theory of symplectic
Lefschetz �brations, which is also known as symplectic Picard-Lefschetz theory,
is essentially due to Seidel. The main theory was largely developed in [Sei03],
and a comprehensive overview is contained in [Sei08], which is the main reference
for this section.

De�nition 2.2.1. A symplectic Lefschetz �bration is a tuple (E, π,Ω, J, j)
consisting of
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� an even dimensional manifold E;

� a smooth proper map π : E → C whose critical points Ecrit lie in int(E);

� a closed 2-form Ω on E;

� an almost-complex structure J de�ned on a neighbourhood of the critical
points Ecrit = {q1, . . . , qk} of π;

� a complex structure j on a neighbourhood of the critical values in C com-
patible compatible with the standard orientation.

These are subject to the following conditions:

(i) π is (J, j)-holomorphic near Ecrit wherever J and j are de�ned;

(ii) Ω is nondegenerate on the vertical bundle T vE = kerDπ and J-Kähler
near each qi where J is de�ned;

(iii) The complex Hessian at any critical point is nondegenerate as a complex
quadratic form.

We will be speci�cally interested in symplectic Lefschetz �brations over the unit
disk D ⊂ C whose �bers have nonempty boundary. In this case, we require two
more conditions:

(iv) the boundary ∂E consists of the vertical boundary ∂vE and the hor-
izontal boundary ∂hE, which meet in a codimension two corner. The
two boundary components are de�ned as

∂vE := π−1(∂D), and ∂hE :=
⋃
y∈D

∂
(
π−1(y)

)
.

For all x ∈ ∂hE, we require (ker(Dπ(x)))Ω ⊂ Tx∂hE.

(v) π|∂vE maps ∂vE submersively onto ∂D, and π is horizontally trivial,
which we take to mean the existence of a tubular neighbourhood νE(∂hE)
of ∂hE and a trivialization φ so that

νE(∂hE) νE(∂Ez)× D

D

φ

π pr2

commutes, where Ez is a regular reference �ber of π. Furthermore, the
map φ should provide the following identi�cation of Ω:

(φ−1)∗Ω
!
= Ω|TEz +Kπ∗ωb,

for some K > 0 and ωb some symplectic form on D.

An exact symplectic Lefschetz �bration is a symplectic Lefschetz �bration
(E, π,Ω = dλ, J, j) so that the closed 2-form Ω ∈ Ω2(E) is exact.
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Seidel's monograph [Sei08] formulates the theory for exact Lefschetz �brations.
Since we are mainly concerned with strong symplectic �llings obtained through
Lefschetz �brations (recall that the symplectic form ω on a symplectic �lling
(W,ω) of some contact manifold must be exact near the boundary), we shall
do the same. The results also hold for non-exact symplectic Lefschetz �bra-
tions, however: the results from �bered Picard-Lefschetz theory discussed in
Section 2.3 are formulated in the non-exact setting, and specialise to the results
for the Lefschetz case discussed here.

Remark 2.2.2. By the complex Morse lemma [Arn+98], the condition that
there exist integrable complex structures J and j near the critical points and
values, respectively, in such a way that π is (J, j)-holomorphic wherever they
are de�ned implies the existence of Lefschetz charts (U,ϕ) and (V, ψ) near Ecrit,
so that

τ ◦ π ◦ σ−1 : (z1, . . . , zn) 7→ z2
1 + . . .+ z2

n, (2.1)

just as in De�nition 2.1.1. Conversely, complex charts as above give rise to
integrable almost complex structures near Ecrit.

Just as topological Lefschetz �brations are locally trivial �ber bundles away from
the critical points, symplectic Lefschetz �brations are symplectic �ber bundles
on E \ Ecrit:

De�nition 2.2.3. A symplectic �ber bundle (E, π,Ω) consists of a manifold
E equipped with a closed 2-form Ω ∈ Ω2(E) and a �ber bundle π : E → S over
a smooth surface S, such that Ω restricted to any �ber of π is nondegenerate.

Indeed, condition (ii) in De�nition 2.2.1 implies that symplectic Lefschetz �bra-
tions are symplectic �ber bundles away from Ecrit: let γ be a curve which lies
entirely in the smooth part of the �ber Ez, then π ◦ γ ≡ z, so that Dπ[γ′] = 0.
Hence TxEz ⊂ ker(Dπ(x)) for all x ∈ Ez, which means that Ω is nondegenerate
on all �bers.

2.2.1 Symplectic Parallel Transport

Recall that in order to de�ne the monodromy of a topological Lefschetz �bration
in Section 2.1.3, we resorted to a choice of Ehresmann connection on the �ber
bundle E\π(Ecrit) and set the monodromy along a loop γ to be parallel transport
along this loop. It turns out that symplectic �bre bundles come with a canonical
notion of symplectic parallel transport, which we use to de�ne the monodromy in
the same way, as well as the vanishing cycles of a symplectic Lefschetz �bration.
We follow [WW16] in doing so.

Proposition 2.2.4 ([WW16, p. 7]). Let (E, π,Ω) be a symplectic �ber bundle
over a surface S. The distribution HΩ of TE de�ned by

HΩ,x := (ker(Dπ(x)))Ω ⊂ TxE

is an Ehresmann connection.
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Proof. To prove that HΩ de�nes a connection, we need to show that Dπ(x)
maps HΩ,x isomorphically onto Tπ(x)S. So let v ∈ kerDπ(p)∩HΩ. The tangent
vector v being in the symplectic complement of the vertical bundle, we have

Ω(v, u) = 0, for all u ∈ T vxE.

However, v itself is in the vertical bundle, on which Ω was assumed to be nonde-
generate, so v = 0. As Ω is nondegenerate on the vertical bundle, the subspace
HΩ,x is two dimensional like Tπ(x)S, so Dπ(x)|HΩ,x

is an isomorphism.

We refer to this connection as a symplectic connection for reasons explained by
the next lemma.

Lemma 2.2.5 ([WW16, p. 7]). Let π : (E, π)→ S be a symplectic �ber bundle
and γ : [a, b] → S be a path in the base. Then the parallel transport maps
associated to the connection HΩ

ργ : (Eγ(a),Ω|TEγ(a)
)→ (Eγ(b),Ω|TEγ(b)

)

are symplectomorphisms.

Proof. This follows from an observation on horizontal vector �elds with respect
to the symplectic connection. If V ∈ X(E) is any horizontal vector �eld and Ez
is any �ber, then

LV Ω|TEz = (dıV Ω)|TEz = d(ıV Ω|TEz ) = 0,

since the tangent spaces TEz lie in ker(Dπ), so by de�nition ofHΩ, ıV Ω|TEz ≡ 0.

This implies that the �ow of V preserves the restriction of Ω to the �bers, and
as parallel transport is de�ned as the �ow of the horizontal vector �eld Xγ , this
�nishes the proof.

We now extend symplectic parallel transport to symplectic Lefschetz �brations
(E, π,Ω, J, j). On E \ Ecrit, π is an ordinary symplectic �bration, so parallel
transport is well-de�ned for any path with image in S \ π(Ecrit). We extend
parallel transport to singular �bers. Let γ : [0, 1]→ S be an embedded path so
that γ(1) = x0 ∈ π(Ecrit) and γ([0, 1)) ⊂ S \ π(Ecrit). Such a path is called a
vanishing path.

Then parallel transport extends to a continuous map

ργ : Eγ(0) → Eγ(1), x 7→ lim
t↗1

ργ|[0,t](x).

For more details on this construction, see [Sei03, Lemma 1.13].
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2.2.2 Symplectic Vanishing Cycles and Monodromy

For a topological Lefschetz �bration (E, π) with regular �ber F , we used the
local coordinate description near x0 ∈ Ecrit given by Lefschetz charts to de�ne
the vanishing cycle corresponding to x0. We concluded that the singular �ber
over π(x0) can be obtained from F by collapsing the vanishing cycle.

It is this property that motivates the de�nition of vanishing cycles in the sym-
plectic setting as those points in a given �ber that map to the critical point of
interest under symplectic parallel transport.

De�nition 2.2.6. Suppose (E2n+2, π,Ω) is an exact symplectic Lefschetz �-
bration over S. To any vanishing path γ, we associate its vanishing thimble
de�ned by

Tγ =

x ∈ ⋃
t∈[0,1)

Eγ(t) | lim
t0↗1

ργ|[t,t0]
(x) = x0

 ∪ {x0}.

The vanishing cycle associated to γ is de�ned to be

Cγ := ∂Tγ = Tγ ∩ Eγ(0).

In his extensive monograph on symplectic Lefschetz �brations [Sei08, (16b)],
Seidel explains that the vanishing thimble Tγ ⊂ E2n+2 is a Lagrangian subman-
ifold of the total space di�eomorphic to an (n+ 1)-ball, and the vanishing cycle
Cγ ⊂ E2n

γ(0) is a Lagrangian n-sphere in the �ber. Note in particular that the
Dehn twist τCγ ∈ Symp(Eγ(0)) is well-de�ned.

As for the monodromy of symplectic Lefschetz �brations, we �rst make the
following observation.

Proposition 2.2.7. The monodromy of a symplectic Lefschetz �bration is iso-
topic to a symplectomorphism.

Proof. Recall from Section 2.1.3 that to de�ne the monodromy µγ of any �-
bration along a loop γ in the disk D, one chooses an Ehresmann connection on
the smooth part of the total space and sets µγ = ργ . In the case of symplectic
Lefschetz �brations, the canonical symplectic connection yields a parallel trans-
port system consisting of symplectomorphisms by Lemma 2.2.5, which proves
the claim.

In fact, we have

Theorem 2.2.8 ([Sei03, Proposition 1.15], [Sei08, (16c)]). Let γ : [0, 1]→ S be
a vanishing path, and ` be a loop in S �doubling� γ as in Figure 2.1, winding
anticlockwise around γ(1). Then the monodromy of π along ` is symplectically
isotopic to the Dehn twist along the vanishing cycle Cγ :

[µ`] = [τCγ ] ∈ Symp(Eγ(0)).
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γ(0)

γ(1)

`

Figure 2.1: The loop ` obtained by doubling γ

Therefore, any critical point of an exact symplectic Lefschetz �bration gives rise
to an embedded Lagrangian sphere in the regular �ber F , and establishes the
Dehn twist as an element of its symplectic mapping class group.

Conversely, given any embedded Lagrangian sphere C in an exact symplectic
manifold (F, ω), one can construct an exact symplectic Lefschetz �bration over
the unit disk S = D whose regular �bers are symplectomorphic to (F, ω), and
which has C as its only vanishing cycle [Sei08, (16e)].

This result extends to multiple critical values:

Theorem 2.2.9 ([Sei08, (16c), (16e)]). For an exact symplectic Lefschetz �bra-
tion π : (E,Ω)→ D with multiple critical values and a corresponding collection
of vanishing paths (γ1, . . . , γk) intersecting only a common starting point ∗ ∈ F ,
the monodromy along ∂D is symplectically isotopic to

τCγ1
◦ · · · ◦ τCγk .

On the other hand, given a collection of embedded Lagrangian spheres (C1, . . . , Ck)
in an exact symplectic manifold (F, ω), there is an exact symplectic Lefschetz
�bration over the unit disk with regular �bers symplectomorphic to (F, ω) and
whose collection of vanishing cycles is given by (C1, . . . , Ck).

2.3 Symplectic Lefschetz-Bott Fibrations

We generalize the results of Section 2.2 to Lefschetz-Bott �brations, which can
be considered as Lefschetz �brations whose critical locus is a smooth submani-
fold of the total space instead of a discrete subset.
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The related theory is also known as �bered Picard-Lefschetz theory, and was
mostly known to Seidel circa 1998 (unpublished notes). A �rst comprehensive
reference was given by Perutz [Per07], which largely shares the structure of
Seidel's [Sei03].

For our purposes, it su�ces to consider Lefschetz-Bott �brations over C, al-
though one could de�ne them over any surface S as we did for Lefschetz �bra-
tions. We use the de�nition given in [Oba20, Section 3.2].

As mentioned, the main generalization in sympletic Lefschetz-Bott �brations
from symplectic Lefschetz �brations consists in allowing the critical locus Ecrit

to be a smooth submanifold, which requires a suitable modi�cation of the non-
degeneracy condition for the complex Hessian. To this end, we need a piece of
vocabulary:

De�nition 2.3.1. Let W 2n be a smooth manifold, equipped with an almost
complex structure J and a closed 2-form Ω. Let N be an almost complex
submanifold of (W,J). The form Ω is said to be normally Kähler near N if
there exists a tubular neighbourhood νM (N) of N in W which can be foliated
by normal slices {Dx}x∈N so that J |TDx is integrable and Ω|TDx is J�Kähler
for each x ∈ N .

According to [Per07], this is a technical convenience that could most likely be
shown to always be satis�ed after a perturbation of J and Ω. We now state the
de�nition of symplectic Lefschetz-Bott �brations in full for the convenience of
the reader, though one should note that only the conditions on Ecrit and the
Hessian di�er from De�nition 2.2.1.

De�nition 2.3.2. A symplectic Lefschetz-Bott �bration is a tuple (E, π,Ω, J, j)
consisting of

� an even dimensional manifold E;

� a smooth proper map π : E → C whose critical points Ecrit lie in int(E);

� a closed 2-form Ω on E;

� an almost-complex structure J de�ned on a neighbourhood of Ecrit ⊂ E;

� a complex structure j on a neighbourhood of the critical values in C com-
patible compatible with the standard orientation.

These are subject to the following conditions:

(i) π is (J, j)-holomorphic near Ecrit where J and j are de�ned;

(ii) Ecrit is a smooth submanifold of E with �nitely many connected compo-
nents;

(iii) Ω is nondegenerate on the vertical bundle T vE = kerDπ;

(iv) Near Ecrit where J is de�ned, Ω is nondegenerate, compatible with J , and
normally Kähler with respect to J ;

42



(v) The complex normal Hessian D2πx|TDx⊗TDx is nondegenerate for all x ∈
Ecrit, where Dx is a normal slice of a tubular neighbourhood of Ecrit.

Again, we are mainly interested in the case where the base is the unit disk D and
regular �bers have nonempty boundary. In this case, we additionally impose
items (iv) and (v) from De�nition 2.2.1.

The complex structures J and j will occasionally be suppressed from the nota-
tion, so that we refer to symplectic Lefschetz-Bott �brations by (E, π,Ω) or by
π : (E,Ω)→ C.

When we are interested only in topological properties of Lefschetz-Bott �bra-
tions, notably in section Section 5.6, where we distinguish a collection of sym-
plectic Lefschetz-Bott �brations, we use the notion of a topological Lefschetz-
Bott �bration. A topological Lefschetz-Bott �bration is a tuple (E, π,Ω, J, j)
for which E, π, J , and j satisfy the same conditions as a symplectic Lefschetz-
Bott �bration, but where Ω is only required to be a closed 2-form de�ned in
a neighbourhood of Ecrit. Item (iii) and horizontal triviality will no longer be
required. We explained in Section 2.2.1 how ker(Dπ(x))Ω de�nes a canonical
connection on E if Ω is global, so in the case of topological Lefschetz-Bott �-
brations, instead of item (iv) from De�nition 2.2.1, we require Hx ⊂ Tx∂hE for
all x ∈ ∂hE, where H is a chosen Ehresmann connection.

Remark 2.3.3. By the parametric version of the holomorphic Morse lemma
[Arn+98], for a topological Lefschetz �bration (E2n,Ω, π), there exist charts
(U, σ) on E near each critical point x0 ∈ Ecrit and (V, τ) near each critical value
on C in which we have

τ ◦ π ◦ σ−1(z1, . . . , zn) =

k∑
j=1

z2
j ,

where k is the corank of Dπ(x0) (or the codimension of Ecrit ⊂ E).

2.3.1 Vanishing Cycles

In our study of the singular �bers of Lefschetz �brations, vanishing cycles have
always consisted of a subset of the regular �ber; the singular �ber is then ob-
tained by simply collapsing the vanishing cycle in the topological case, or by
parallel transporting it along a vanishing path in the symplectic setting. For
Lefschetz-Bott �brations, the singular �bers are also obtained by contracting
the corresponding vanishing cycle, although the contraction will no longer be to
a single point.

Note that symplectic Lefschetz-Bott �brations are symplectic �ber bundles in
the sense of De�nition 2.2.3 away from Ecrit. The parallel transport maps ργ
along paths γ in C can be extended to parallel transport along a vanishing path
just as we did for Lefschetz �brations [Per07, Section 2.3.1].
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De�nition 2.3.4. Let π : (E,Ω)→ D be a symplectic Lefschetz-Bott �bration
over the unit disk and γ : [0, 1] → D be a vanishing path to a critical value of
π. To any connected component N of Ecrit ∩ Eγ(1), associate the vanishing
thimble

Tγ,N =

x ∈ ⋃
t∈[0,1)

Eγ(t) | lim
t0↗1

ργ|[t,t0]
(x) ∈ N

 ∪N.
De�ne the vanishing cycle associated to γ by

Cγ = ∂Tγ,N = Tγ,N ∩ Eγ(0).

The following lemma provides some intuition on the structure of the vanishing
cycles.

Lemma 2.3.5 ([Per07, Lemma 2.5]). Cγ is a smooth coisotropic submanifold
of Eγ(0), and the restriction

ργ : Cγ → N

is a smooth �ber bundle with spheres Sk as �bers, where k is the rank of Dπ.

The structure group of Cγ
ργ→ N can be reduced in a canonical way to O(k+ 1).

The vanishing cycle Cγ consists of those points in Eγ(0) for which the limit
parallel transport map ργ is de�ned and lands in N ⊂ Ecrit ∩ Eγ(1). The
singular �ber Eγ(1) can hence be seen to be obtained from a regular �ber Eγ(0) by
applying ργ , which may be thought of as a deformation retract of the vanishing
cycle Cγ to the submanifold N .

[Per07, p. 782] provides a discussion on how Lemma 2.3.5 gives Cγ the struc-
ture of a spherically �bered coisotropic submanifold of the regular �ber Eγ(0).
The signi�cance of this result is that a generalization of the Dehn twist, called
a �bered Dehn twist, reviewed in the next section, can be de�ned along any
spherically �bered coisotropic.

2.3.2 Fibered Dehn Twists as Monodromy Maps

Following [CDK14, Section 2], we describe a model situation of the �bered Dehn
twist. This time, the model is a contact manifold (P, α) whose Reeb orbits are
periodic, so that the �ow of the Reeb vector �eld Rα de�nes a right S1-action
on P . Note that in particular the Boothby-Wang bundles over integral sym-
plectic manifolds encountered in De�nition 4.1.1 satisfy this condition. Choose
a function

f : [0, 1]→ R

which is constantly equal to 2π in a neighbourhood of 0 and equal to 0 in a neigh-
bourhood of 1. Consider now (a part of) the symplectization of (P, α)

(P × [0, 1], d(etα)).
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On this domain, we construct a di�eomorphism equal to the identity near the
boundary by setting

ψ : (x, t) 7→ (x · f(t) mod 2π, t).

The fact that ψ = id near the boundary follows from the choice of f . This is in
fact a symplectomorphism: let ψt with a subscript denote the �ow of the Reeb
vector �eld Rα. Then

d

dt
ψ∗(etα) =

d

dt
ψ∗f(t)(e

tα) = ψ∗f(t)(Lf(t)Rα(etα) + etα).

The Lie derivative evaluates to

Lf(t)Rα = dıf(t)Rα(etα) + ıf(t)Rαd(etα)

= d(f(t)et) + ıf(t)α(etdt ∧ α+ dtdα)

= d(f(t)et)− f(t)etdt

= −d
(
−f(t)et +

∫ t

0

f(s)esds+A

)
,

where A is some integration constant. Thereby,

ψ∗(etα) = etα− d
(
−f(t)et +

∫ t

0

f(s)esds+A

)
,

which implies that ψ is a symplectomorphism.

De�nition 2.3.6. Suppose that (W,ω) is a symplectic manifold with convex
boundary such that ∂W admits a contact form whose Reeb orbits are periodic.
Then we may identify a collar neighbourhood with (P × [0, 1], d(etα)), where
(P = ∂W,α) is a contact manifold just as above. De�ne a symplectomorphism
ψ̃ ofW by setting it to be ψ on the collar neighbourhood and the identity on the
rest of W . The map ψ̃ is called a right-handed �bered Dehn twist along
∂W .

Remark 2.3.7. In fact, it is possible to de�ne a �bered Dehn twist along
any spherically �bered coisotropic submanifold C ⊂ W ([Per07], [WW16]). A
simple case of a spherically �bered coisotropic is that of a Lagrangian sphere L,
in which case a �bered Dehn twist along L reduces to a Dehn twist along L.

It is sometimes possible to establish relations between Dehn and �bered Dehn
twists. A particular result we will make use of in section Section 5.5, where
we construct distinct �llings of the Ak-type singularity, describes the �bered
Dehn twist along the boundary of a particular class of symplectic manifolds.
Set

Vd(δ) =

(z0, . . . , zn) ∈ Cn+1 |
n∑
j=0

zdj = 1

 ∩


n∑
j=0

|zj |2 ≤ δ2

 .
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Theorem 2.3.8 ([AA16, Theorem 1.1]). Let ω0 be the symplectic form on Vd(δ)
given by restricting the standard form on Cn+1. With respect to this symplectic
structure, a �bered Dehn twist along ∂Vd(δ) is symplectically isotopic to the
product of d(d− 1)n+1 right-handed Dehn twists.

Fibered Dehn twists can be realized as monodromy maps of symplectic Lefschetz-
Bott �brations:

Theorem 2.3.9 ([Per07, Monodromy Theorem 2.16]). Let π : (E,Ω) → D be
a symplectic Lefschetz-Bott �bration with a single critical value in int(D) and γ
a corresponding vanishing path. Then the monodromy along the loop obtained
by doubling γ based is symplectically isotopic to a �bered Dehn twist along Cγ ,
denoted by τCγ .

Moreover, an existence statement holds:

Proposition 2.3.10 ([WW16, Proposition 2.13]). Let (M,ω) be a symplec-
tic manifold and C ⊂ M a spherically �bered coisotropic submanifold of M .
Then there exists a symplectic Lefschetz-Bott �bration π : (E,Ω) → C with
a single critical value whose �bers are symplectomorphic to (M,ω) and whose
monodromy is symplectically isotopic to a �bered Dehn twist along C.

Note that by scaling C, we may assume this Lefschetz-Bott �bration takes values
in D.

Similar results hold for multiple critical values, just as in the case of Lefschetz
�brations [Sei08, (16e)].
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Chapter 3

Open Book Decompositions

To motivate this chapter, let us have a look at the boundary of the total space
of a Lefschetz-Bott �bration. Recall that a topological Lefschetz-Bott �bration
(E, π, J, j) with �ber F over D is assumed to admit a decomposition of its total
space as ∂E = ∂vE ∪ ∂hE, where

� ∂vE := π−1(∂D); since π|∂vE is a locally trivial S1-bundle with �ber F ,
it is a mapping torus whose gluing is ψ, the monodromy of the Lefschetz-
Bott �bration. Denote this mapping torus by ∂vE = F (ψ).

� ∂hE :=
⊔
z∈D ∂(π−1(z)); as π|∂hE has no critical values, it de�nes a �ber

bundle over D, which is contractible, and hence ∂hE ∼= ∂F × D is trivial.

Both boundary components meet in the codimension two corner given by

∂(∂vE) =
⊔
z∈∂D

∂(π−1(z)) = ∂(∂hE).

Abstractly, this corner is di�eomorphic to ∂F ×S1. Hence the boundary of the
total space can be written as

∂E = F (ψ) ∪∂F×S1 (∂F × D).

Starting from any manifold F and a di�eomorphism ψ ∈ Diff(F ) which is the
identity near ∂F , the same gluing procedure yields a new manifold OB(F ;ψ);
the pair (F,ψ) is known as an abstract open book.

In Section 3.1, we study general properties open books, before seeing when and
how OB(F ;ψ) can be endowed with a contact structure in Section 3.2. Finally,
in Section 3.3, we return to Lefschetz-Bott �brations to see how the total space
of a symplectic Lefschetz-Bott �bration with regular �ber F and monodromy
ψ can act as a strong (or Stein, in the Lefschetz case) symplectic �lling of the
contact manifold OB(F ;ψ).
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3.1 Abstract Open Books and Open Book De-

compositions

In this section, we �rst introduce the two �avours open books come in, and
then explain in Section 3.1.1 how to move between these notions. We �nish the
section by examining di�erent open book structures on S3. For an excellent and
thorough introduction to the subject, the author recommends [Etn05], although
we mainly follow [Gei08, Chapter 7] in this exposition.

Abstract Open Books

De�nition 3.1.1. An abstract open book is a pair (F,ψ), where

� F is an oriented compact manifold of dimension 2n with boundary, and

� ψ : F → F is a di�eomorphism which is equal to the identity near ∂F .

The di�eomorphism ψ is called the monodromy, and F is called the page of
the abstract open book.

Given an abstract open book with page F and monodromy ψ, we can construct
a (2n+ 1)-manifold OB(F ;ψ): �rst, de�ne the mapping torus

F (ψ) := F × [0, 2π]/((x, 2π) ∼ (ψ(x), 0)).

This is a manifold of dimension 2n+ 1 whose boundary is ∂F × S1. Note also
that there is a natural �bration over S1 given by

[x, ϕ] 7→ ϕ.

Next, consider ∂F×D. This is also a (2n+1)-manifold with boundary ∂F×S1, so
we can glue these manifolds together at their common boundary by the identity
map and set

OB(F ;ψ) := F (ψ) ∪∂F×S1 (∂F × D). (3.1)

Remark 3.1.2. Note that OB(F ;ψ) has no boundary. Moreover, gluing along
the boundary will not produce a smooth manifold in general. Therefore, one
should instead glue collar neighbourhoods of the boundary when the smooth
structure of OB(F ;ψ) is relevant in applications, as in Theorem 3.2.1 below,
where we will endow OB(F ;ψ) with a contact structure.

The manifold OB(F ;ψ) comes with a natural �ber bundle over S1: on F (ψ), we
can take the obvious �bration [x, ϕ] 7→ ϕ from before, but now we need to extend
this to ∂F ×D. Letting i : ∂F ×D ↪→ OB(F ;ψ) be the embedding obtained by
the inclusion into F (ψ)t(∂F×D) followed by the quotient projection, set

B := i(∂F × {0}).

Then we may de�ne the bundle

p : OB(F ;ψ) \B → S1
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de�ned for [x, ϕ] ∈ F (ψ) by
p([x, ϕ]) = ϕ,

and for [x, reiϕ] ∈ ∂F × D by

p([x, reiϕ]) = ϕ.

The �bers of p are seen to be

p−1(ϕ) = {[x, ϕ] | x ∈ F} ∪∂F×S1 {(y, reiϕ) | y ∈ ∂F, r ∈ (0, 1]} ∼= int(F ),

and they satisfy ∂p−1(ϕ) = i(∂F × {0}) = B.

Open Book Decompositions

Open book decompositions place more emphasis on the S1-bundle structure,
like the one just constructed.

De�nition 3.1.3. An open book decomposition of a manifold M is a pair
(B, p) consisting of

� a codimension two submanifold B with trivial normal bundle in M called
the binding of the decomposition, and

� a smooth �ber bundle p : M \B → S1.

We further require that B have a trivial tubular neighbourhood B×D on which
p is the projection to the angular coordinate of the D-factor. The �ber p−1(ϕ)
is called the page of the open book decomposition.

The pages p−1(ϕ) are codimension one submanifolds ofM \B without boundary,
and as on B × D, we have p(x, reiϕ) = ϕ, we see that

p−1(ϕ) ∩ (B × D) = {(x, reiϕ) | x ∈ B, r ∈ (0, 1)}.

The closure of the page inM is thus a codimension one submanifold with bound-
ary B.

Remark 3.1.4. The �bration p : OB(F ;ψ) \B → S1 constructed after Equa-
tion (3.1) de�nes an open book decomposition (B, p) on OB(F ;ψ).

Remark 3.1.5. In principle, one can de�ne both abstract open books (F,ψ)
and open book decompositions (B, p) on a manifold M without any constraints
on dim(M) or dim(F ). For the contact geometric setting of this text, only the
following cases are relevant:

� manifolds M or OB(F ;ψ) admitting open book decompositions are of
dimension 2n+ 1;

� the pages F of abstract open books and the pages p−1(ϕ) of open book
decompositions have dimension 2n;

� the binding B has dimension 2n− 1.
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3.1.1 From an Open Book to an Abstract Open Book

Given an abstract open book (F 2n, ψ), we have seen how the (2n+ 1)-manifold
OB(F ;ψ) de�ned in Equation (3.1) admits an open book decomposition with
binding B2n−1 = i(∂F × {0}) and �ber bundle p : OB(F ;ψ) \ B → S1. Con-
versely, given an open book decomposition, we may recover the abstract open
book as follows:

Construction 3.1.6 ([Gei08, p. 150]). Let (B, p) be an open book decom-
position of M . De�ne F as the intersection of any page, for example p−1(1),
with the complement of an open tubular neighbourhood B × Int(D2

1
2

). Choose

a Riemannian metric on M and a vector �eld on M we shall call ∂ϕ such that

� ∂ϕ is orthogonal to the pages;

� Dp[∂ϕ] = ∂
∂θ ∈ X(S1), where we denote the coordinate on S1 by θ;

� ∂ϕ vanishes on B.

Letting ψt be the �ow of ∂ϕ, set ψ := ψ2π. Then (F,ψ) is an abstract open
book such that OB(F ;ψ) is di�eomorphic to M .

Before verifying the consistency of this procedure, note that this allows us to
speak of open book decompositions and abstract open books more or less inter-
changeably; the two concepts are not quite equivalent, however, as abstract open
books are merely de�ned up to di�eomorphism, whereas we can consider open
book decompositions up to isotopy. Moreover, we have de�ned abstract open
books for compact pages F , so that also the manifold OB(F ;ψ) is compact,
whereas we did not require this for manifolds on which open book decomposi-
tions can be de�ned.

Claim 3.1.7. Such a vector �eld ∂ϕ ∈ X(M) exists.

Proof. We start by taking the coordinate vector �eld ∂ϕ on the tubular neigh-
bourhood B × (D \ {0}). Write D× for D \ {0}. ∂ϕ satis�es Dp[∂ϕ] = ∂

∂θ . Note
that ∂ϕ is transverse to the pages: suppose it were not, then at some point,
∂ϕ would be tangent to a page and there would be a path in the page to that
point whose velocity vector is ∂ϕ. But along this path, p is constant, and so
Dp[∂ϕ] = 0 at this point, which is a contradiction toDp[∂ϕ] = ∂

∂θ . Hence as ∂ϕ is
transverse to the pages, it de�nes a nonzero section of T (B×D×)/Tp−1(ϕ) ∼= R,
and we may choose a metric which identi�es this quotient with the orthogonal
complement of Tp−1(ϕ). We may extend this metric to all of M by a partition
of unity argument in such a way that TM/Tp−1(ϕ) ∼= Tp−1(ϕ)⊥.

Outside of the tubular neighbourhood B × D, extending ∂ϕ by any smooth
section of T (B × D×)/Tp−1(ϕ) ∼= R yields a vector �eld on M \ B orthogonal
to the pages.

To achieve that this extension satisfy Dp[∂ϕ] = ∂
∂θ , we construct an extension

as follows. Let U ⊂ S1 a domain for a bundle chart α : p−1(U) → F , where F
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denotes the abstract �ber. Recall that this means that (p, α) : p−1(U)→ U ×F
is a di�eomorphism. Fixing q ∈ F , de�ne

sqα : S1 →M \B, sqα(ϕ) := (p, α)−1(ϕ, q).

We have p◦sqα(θ) = θ, so the (sqα)q∈F form a smooth family of sections foliating
p−1(U); the fact that sqα is a section means that

∂

∂θ
= D(p ◦ sqα)(θ)[

∂

∂θ
] = Dp(sqα(θ))Dsqα(θ)[

∂

∂θ
].

In view of this, for any x ∈ p−1(U) there exists a unique q ∈ F and a unique
θ ∈ U ⊂ S1 such that x = sqα(θ), which leads us to de�ne ∂ϕ on the set p−1(U)
as

∂ϕ,U (x) := Dsqα(θ)[
∂

∂θ
], x ∈ p−1(U).

As Dp[∂ϕ,U ] = ∂
∂θ , we may conclude as for ∂ϕ on the tubular neighbourhood

that ∂ϕ,U is transverse to the pages, and, if necessary, adjust the Riemannian
metric on this coordinate patch to ensure it is orthogonal. Now let U be a
cover of S1 by bundle chart domains and let λU , U ∈ U , a partition of unity
subordinate to this cover. Set

∂ϕ :=
∑
U∈U

λU∂ϕ,U ,

which is still orthogonal to the pages and satis�es

Dp[∂ϕ] =
∑
U

λUDp[∂ϕ,U ] =
∑
U

λU
∂

∂θ
=

∂

∂θ
.

Lastly, smoothly extend ∂ϕ to B by setting ∂ϕ|B = 0.

Claim 3.1.8. The map ψ := ψ2π, where ψt is the �ow of ∂ϕ, is a di�eomor-
phism of F (recall that F is the intersection of p−1(ϕ) with the complement of
Int(D 1

2
)) which is the identity near the boundary.

Proof. Compute for x ∈ F

d

dt
p ◦ ψt(x) = Dp(ψt(x))[∂ϕ(ψt(x))]

=
∂

∂θ
(p(ψt(x))).

Hence p ◦ ψt(x) is an integral curve of ∂
∂θ , whence by uniqueness of integral

curves, p ◦ ψt(x) coincides with the integral curve of ∂
∂θ starting at p(x), which

can be seen to be t 7→ p(x) + t ∈ S1 = R/2πZ. This is 2π-periodic, and thus
p(x) = p(ψ2π(x)), so x and ψ2π(x) lie in the same �ber.
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On the tubular neighbourhood B × D, the �ow of ∂ϕ is just ψt(x, reiϕ) =
(x, rei(ϕ+t)), which shows that on F ∩B × Int(D), which is an open neighbour-
hood of ∂F in F , ψ is the identity. This also shows that ψ maps F to itself: we
already know ψ maps �bers to �bers, and that ψ is a di�eomorphism onto its
image, so now that we know that ψ is the identity in the tubular neighbourhood
of B, we conclude that no x ∈ F can be mapped into the part of the tubular
neighbourhood with radial coordinate less than 1

2 . This proves the claim.

This establishes that (F,ψ) is a valid abstract open book to consider.

Claim 3.1.9. Denote the �bration associated to OB(F ;ψ) by p′ and the binding
i(∂F × {0}) by B′. Then there is a �ber bundle isomorphism

OB(F ;ψ) \B′ M \B

S1 S1

p′ p

id

Moreover, OB(F ;ψ) and M are di�eomorphic.

Proof. It is clear by construction that F is di�eomorphic to the �bers of p,
so that OB(F ;ψ) \ B′ and M \ B are �berwise di�eomorphic. Denote this
di�eomorphism by ηϕ. Then sending (x, ϕ) ∈

⊔
ϕ∈S1 Fϕ ∼= OB(F ;ψ) \ B′ to

(ηϕ(x), ϕ) is the required �ber bundle isomorphism.

The fact thatM and OB(F ;ψ) are di�eomorphic now follows from the fact that
the boundaries of the pages in M and OB(F ;ψ) are B and B′, respectively,
which are di�eomorphic since B ∼= ∂(p−1(ϕ)) ∼= ∂F ∼= i(∂F × {0}) = B′.

Observe that this also proves independence (up to di�eomorphism) of all the
choices made in the construction of ∂ϕ: namely, any vector �eld with the re-
quired properties gives rise to an abstract open book (F,ψ) such thatOB(F ;ψ) ∼=
M .

3.1.2 Examples

Let us give some concrete examples. An easy but useful example of an open
book decomposition is what we will refer to as the standard open book on
C:

Example 3.1.10. On C, there is an open book decomposition with binding
B0 = {0} and p0 : C× → S1 given by p0(z) = z

|z| . Note that in polar coordinates,

p0(reiϕ) = ϕ. The pages

p−1
0 (ϕ) = {reiϕ | r > 0}

are rays emanating from the origin.
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This allows us to think of open books as induced by certain �brations:

Proposition 3.1.11 ([Tor09, De�nition 4]). Let f : M → C be a smooth func-
tion with regular value 0 such that f is transverse to the pages of the standard
open book on C. Then setting B := f−1(0) and p := p0 ◦ f = f

|f | de�nes an

open book decomposition of M .

Open Book Decompositions of S3

Example 3.1.12. Consider the 3-sphere

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}.

1. De�ne f : S3 → C by f(z1, z2) = z1. Using Proposition 3.1.11, there is an
open book decomposition of S3 induced by f with binding

B = {(0, z2) ∈ S3},

and the �bration is

p : S3 \B → S1 ⊂ C

(z1, z2) 7→ z1

|z1|
.

Note that in polar coordinates, p(r1e
iϕ1 , r2e

iϕ2) = ϕ1 ∈ S1 = R/2πZ. The
pages are given by

p−1(ϕ) = {(
√

1− |z2|2eiϕ, z2) ∈ S3},

which is di�eomorphic to an open unit 2-disk. An arbitrary tangent vector
to the pages is

γ′ = − r2ṙ2√
1− r2

2

∂r1 + ṙ2∂r2 + ϕ̇2∂ϕ2
.

With the �at metric g =
∑
i(dxi)

2, the coordinate vector �elds are or-
thogonal. In polar coordinates on C2, this is

g = dr⊗2
1 + r2

1dϕ
⊗2
1 + dr⊗2

2 + r2
2dϕ

⊗2
2 .

Hence one sees that g(∂ϕ1 , γ
′) = 0. Thus ∂ϕ1 is a vector �eld orthogonal

to the pages, and Dp[∂ϕ1 ] = ∂
∂θ . Let us compute its �ow. In polar

coordinates, requiring d
dtψt(z) = ∂ϕ1

(ψt(z)) translates to

d

dt
ψt(z) = − r2ṙ2√

1− r2
2

∂r1 + ϕ̇1∂ϕ1 + ṙ2∂r2 + ϕ̇2∂ϕ2

!
= ∂ϕ1 .

Hence we must have ψt(z) = (r1e
i(t+ϕ1), z2). The time-2π map, our mon-

odromy, is hence the identity. This shows that (B, p) is an open book
decomposition of S3 corresponding to the abstract open book (D2, id).
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2. Consider a map f ′ : S3 → C, given by f ′(z1, z2) = z1z2. By Proposi-
tion 3.1.11, we obtain an open book decomposition whose binding is

B′ = {(z1, z2) ∈ S3 | z1z2 = 0} = {(z1, 0) ∈ S3} ∪ {(0, z2) ∈ S3}.

The summands Ki = {(z1, z2) ∈ S3 | zi = 0} for i = 1, 2 are called Hopf
links. The �bration is

p′ : S3 \B → S1 ⊂ C

(z1, z2) 7→ z1z1

|z1z2|
,

which in polar coordinates reads

(r1e
iϕ1 , r2e

iϕ2) 7→ ϕ1 + ϕ2.

The pages are given by

(p′)−1(ϕ) =

{
(r1e

iϕ1 ,
√

1− r2
1e
i(ϕ−ϕ1))

}
for (r1, ϕ1) ∈ (0, 1)× S1, which is di�eomorphic to an annulus.

To �nd the monodromy of this open book, choose a smooth function δ :
[0, 1]→ [0, 1] such that δ(r) = 1 near r = 0 and δ(r) = 0 near r = 1. Then
de�ne the �ow

ψ′t :

{
ϕ1 7→ ϕ1 + δ(r1) · t,
ϕ2 7→ ϕ2 + (1− δ(r1)) · t.

Note that p′◦ψ′t(z) = p′(z)+t, implying that this �ow is always transverse
to the pages. It also evidently maps pages to pages. Note also that

ψ′t(z) = δ(r1)∂ϕ1 + (1− δ(r1))∂ϕ2 ,

so that φ′t = ∂ϕi near ri = 0. Hence we can take a suitable metric so that
this is always orthogonal to the pages, and consider ψ′2π the monodromy
of the open book, which is just a right-handed Dehn twist.

3.2 Contact Structures on Open Books

In this section, we will examine how we can endow the manifold OB(F ;ψ)
with a contact structure following [Gei08, Section 7.3]. Originally, these results
are due to Giroux [Gir02] (see also the translation by Acu [Gir]), partially in
collaboration with Mohsen [GM]. . To do so, we require the pages to be Liouville
domains (W,dλ), and the monodromy to be a symplectomorphism which is the
identity near ∂W . From now on, we will include the symplectic structure in the
notation for abstract open books, and denote them by (W,λ;ψ).
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Theorem 3.2.1 ([GM]). Let (W,λ;ψ) be an abstract open book whose pages are
Liouville domains (W,dλ). Then OB(W ;ψ) admits a contact form. We write
OB(W,λ;ψ) for the resulting contact manifold.

In the proof, it will be convenient to consider a manifold di�eomorphic to
OB(W ;ψ) obtained from a generalized version of the mapping torus. Sup-
pose η : W → R+ is a smooth function which is constant near ∂W . De�ne the
generalized mapping torus as

Wη(ψ) = {(x, ϕ) ∈W × R | ϕ ∈ [0, η(x)]}/ ∼,

where we identify (x, η(x)) with (ψ(x), 0).

The manifold analogous to OB(W ;ψ) obtained through the generalized map-
ping torus is

OB(W,λ;ψ) = Wη(ψ) t ∂W × D/ ∼,
glued along the boundary by the identity, which is the manifold we are going to
endow with a contact structure. Note that Wη(ψ) is di�eomorphic to the usual
mapping torus W (ψ) (see [Gei08, Section 7]), and hence the glued manifold
using the generalized mapping torus is di�eomorphic to OB(W ;ψ).

Before starting the proof, let us make this gluing more precise, and moreover
smooth. Suppose η takes the value c > 0 near all boundary components. Then
we may identify the boundary of ∂(Wη(ψ)) with

∂(Wη(ψ)) = ∂W × [0, c]/(x, c) ∼ (ψ(x), 0) ∼= ∂W × S1

for S1 = R/cZ.

This allows us to identify a collar neighbourhood of ∂(Wη(ψ)) with ∂W ×
[−ε, 0] × S1, for S1 = R/cZ. Denote the coordinates in this neighbourhood
by (x, s, ϕ).

Take in turn a collar neighbourhood of ∂(∂W × D(1 + ε)) (the slight extension
of the radius of the disk is negligible), which we may identify with

∂W × A(1, 1 + ε).

Here, A(1, 1+ε) := {z ∈ C | |z| ∈ [1, 1+ε]}. Denote coordinates by (x, re2πiθ).

De�ne the gluing map

Φ : ∂W × A(1, 1 + ε)︸ ︷︷ ︸
⊂∂W×D(1+ε)

−→ ∂W × [−ε, 0]× S1︸ ︷︷ ︸
⊂Wη(ψ)

(x, re2πiθ) 7−→ (x, 1− r, cθ),

so that as a smooth manifold,

OB(W,λ;ψ) = Wη(ψ) ∪Φ (∂W × D(1 + ε)).

With this preparation, we can now prove Theorem 3.2.1.
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Step 1: Construction of a contact form on the mapping torus

First, we may assume by [Gei08, Lemma 7.3.4] that ψ is an exact symplecto-
morphism. This means that

ψ∗λ− λ = dη

for some function η de�ned up to a constant. By compactness of W , we may
assume η only takes positive values. Set

α := λ+ dϕ ∈ Ω1(W × R).

Here, ϕ denotes the coordinate on R. As dλ is symplectic, α is contact. It is
also invariant under

φ : (x, ϕ) 7→ (ψ(x), ϕ− η(x)) :

We have φ∗α = ψ∗λ + φ∗dϕ = λ + dη + dϕ − dη = α, and thus α descends to
a contact form on the generalised mapping torus Wη(ψ). Note that ψ is the
identity near the boundary, so η is locally constant near the boundary, hence
the generalized mapping torus makes sense to de�ne.

As (W,dλ) is a Liouville domain, we may assume there is a symplectic collar of
∂W ,

∂W × [−ε, 0]→W, (x, s) 7→ ϑs(x),

where ϑ denotes the �ow of the Liouville vector �eld induced by λ. λ may
be expressed as esi∗λ, where i : ∂W ↪→ W denotes the inclusion. This collar
descends to the mapping torus:

j : ∂W × [−ε, 0]× S1 →Wη(ψ), (x, s, ϕ) 7→ [ϑs(x), ϕ].

Note that the S1-factor above is still considered as S1 = R/cZ.

On this collar, we may write α as j∗α = esi∗λ+ dϕ.

Step 2: Extending α to ∂W × D

To de�ne a contact form on ∂W × D, make the ansatz

δ = f(r)i∗λ+ g(r)dϕ ∈ Ω1(∂W × D),

where f, g : [0, 1 + ε] → R are smooth functions. We have to choose f and g
appropriately so that δ becomes contact and coincides with α under the identi-
�cations made by Φ.

Let us start with compatibility with α. We have that

Φ∗α = Φ∗(esi∗λ+ dϕ) = e1−si∗λ+ cdϕ.

Hence on the collar ∂W × A(1, 1 + ε), meaning for r ≥ 1, we can phrase the
compatibility constraints on f and g as follows:
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1. f(r) = e1−r and g(r) = c for r ≥ 1.

Near the centre of ∂W × D, we prescribe the following form for δ:

2. f(r) = C0 and g(r) = C1r
2 for r ≤ ε/2, where C0 > 1 and C1 > 0 are

constants.

To ensure that the contact condition is satis�ed, a straightforward computation
shows

δ ∧ (dδ)n = nfn−1(fg′ − f ′g)i∗λ ∧ (di∗λ)n−1 ∧ dr ∧ dϕ.

Hence for δ to be contact, we need that

3. (f(r), g(r)) is never parallel to its tangent vector (f ′(r), g′(r)) for r 6= 0.

For any such choice of functions f and g, we hence obtain a contact structure
on the glued manifold OB(W,λ;ψ), �nishing the proof.

A manifold admitting an open book decomposition might already be endowed
with a contact structure. The following de�nition provides a notion of com-
patibility between contact forms and open book decompositions. Before stat-
ing it, let us �x the orientation conventions we use for open book decomposi-
tions.

Let M be an odd-dimensional oriented manifold with an open book decompo-
sition (B, p), where B also carries an orientation. Orient the pages p−1(ϕ) by
requiring that the induced orientation on the boundary of the closure of the
pages coincide with the orientation of B. This is equivalent to saying that a
basis of the tangent space of the pages is positive if and only if the basis together
with ∂ϕ, the vector �eld orthogonal to the pages and vanishing on B, gives a
positive basis of M .

De�nition 3.2.2. A contact structure ξ onM is said to be supported by the
open book decomposition (B, p) if there is positive contact form α for ξ such
that

1. dα restricted to the tangent space of the pages induces a symplectic form
on each page such that the orientation induced by dα coincides with the
orientation of the page;

2. α induces a positive contact structure on B.

Such a 1-form is called a Giroux form.

Remark 3.2.3. A more concise way of phrasing conditions 1. and 2. in the
above de�nition would be to say that for each page Wϕ = p−1(ϕ), the manifold
(Wϕ, dα|TWϕ

) has to be a Liouville domain, respecting the orientation of Wϕ.

Lemma 3.2.4 ([Gei08, p. 348]). The contact structure constructed in Theo-
rem 3.2.1 is supported by the open book decomposition induced by (W,λ;ψ).

Proof. Recall that the form de�ned in the theorem is de�ned by α = λ+ dϕ on
Wη(ψ) and by fi∗λ+ gdϕ on ∂W ×D. By restricting to the tangent space of a

57



page, dϕ vanishes, and thus the pages are just (W,dλ), which were assumed to
be Liouville domains.

3.2.1 Uniqueness of OB(W,λ;ψ)

It is of course natural to ask if the above construction of the contact mani-
fold OB(W,λ;ψ) is well-de�ned. We address this question to establish well-
de�nedness up to contactomorphism, which also provides a strategy to prove
when two contact manifolds are contactomorphic. We will utilizes this technique
in the proof of Theorem 5.0.1. All these ideas are due to [Gir02].

Proposition 3.2.5. LetM2n+1 be a closed oriented manifold and ξi = kerαi be
two positive contact structures supported by the same open book decomposition
(B, p) of M . Then ξ0 and ξ1 are isotopic.

Proof. Let (W,λi) denote the abstract page of the open book decomposition,
where we set λi = αi|TW . Recall that ∂W = B and take a small tubular
neighbourhood B × Dε. Let h : [0, ε]→ R be a function with

� h(0) = 0, h′(r) ≥ 0 near r = 0;

� h ≡ 1 for r > ε/2.

Consider h as a function with domain B × Dε and set for any R > 0

αi,R := αi +Rh(r)dϕ.

A short computation shows that

αi,R∧(dαi,R)n = αi∧(dαi)
n+Rh(r)dϕ∧(dαi)

n+Rh′(r)αi∧(dαi)
n−1∧dr∧dϕ.

(3.2)
The �rst term is positive since the αi are contact forms. The second term is
nonnegative as dαi is symplectic on the pages inducing the given orientation,
which means by de�nition that any positive basis of the tangent space of a
page together with ∂ϕ is a positive basis of the tangent space of M . Hence,
dϕ ∧ (dαi)

n is a positive volume form.

For the third term, let ε be small enough so that the intersection of the tubular
neighbourhood B × Dε with any page is contained within a symplectic collar
of the pages. It does not matter whether we choose the Liouville vector �eld
associated to α1 or α2 for the construction of the symplectic collar, as long as
the �ow preserves the orientation (which is clear as LW (ω) = ω for any Liouville
vector �eld).

Suppose for concreteness that we evaluate αi ∧ (dαi)
n−1 ∧ dr ∧ dϕ at a point

x ∈ B × Dε ⊂M such that p(x) = ϕ0. By assumption on ε, we may identify

(B × Dε ∩Wϕ0 , dαi|TWϕ0
) ∼= (B × [−ε, 0], d(etλi)).

Recall that as the αi are Giroux forms, the λi are contact structures when
restricted to B. Assume that x = (p0, t0), which corresponds to φt0(x) if φ
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denotes the �ow of the Liouville vector �eld used to construct the symplectic
collar. Note that t ∈ [−ε, 0].

Now choose a positive basis (u1, . . . , u2n−1) of Tp0B and transport it to TxWϕ0

by setting
vj = Dφt0(p0)[uj ].

As ψt is an orientation-preserving di�eomorphism ofWϕ0 and by the orientation
conventions in De�nition 3.2.2, ( ∂∂t , v1, . . . , v2n−1) is a positive basis of TxWϕ0

( ∂∂t is outward-pointing on ∂W ). Note that under the identi�cation with the
symplectic collar, we may express

vj = uj + t0
∂

∂t
|t0 .

Our preliminary goal is to show that αi ∧ (dαi)
n−1 ∧ dr|TWϕ0

is a volume form
on Wϕ0 ∩B × Dε. On the symplectic collar, we have

αi ∧ (dαi)
n−1 = (etλi) ∧ (d(etλi))

n−1

= etλi ∧ (etdt ∧ λi + etdλi)
n−1

= etλi ∧
(
e(n−1)t(dλi)

n−1 + (n− 1)e(n−1)tdt ∧ λi ∧ (dλi)
n−2
)

= entλi ∧ (dλi)
n−1.

Evaluating αi∧(dαi)
n−1∧dr|TWϕ0

at the positive basis ( ∂∂t , v1, . . . , v2n−1) gives

−dr( ∂
∂t

) · ent0λi ∧ (dλi)
n−1(u1, . . . , u2n−1).

The second factor is positive as the λi are positive contact forms on B and the
uj are a positive basis. Also, dr( ∂∂t ) < 0 for ε small enough as r is decreasing
along �ow lines of the Liouville vector �eld in a neighbourhood of the binding,
which proves that αi ∧ (dαi)

n−1 ∧ dr > 0 in a neighbourhood of B (though not
on B itself, as there, dr is not de�ned).

Finally, dϕ(∂ϕ) > 0, so that

αi ∧ (dαi)
n−1 ∧ dr ∧ dϕ(v1, . . . , v2n−1,

∂

∂t
, ∂ϕ) > 0,

which establishes that also the third term is nonnegative. The last two terms
in Equation (3.2) may vanish due to being multiplied by h or h′, but the �rst
is always positive. As we have shown that all terms evaluate to something
nonnegative or positive on positively oriented bases, this establishes that both
αi,R are positive contact forms inducing the same contact structure as αi.

We now obtain an isotopy between ξ0 and ξ1 by the convex combination

αt = (1− t)α0,R + tα1,R,

which is contact for all t ∈ [0, 1] if R is large enough.
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As promised, we obtain that the contact structure on OB(W,λ;ψ) does not
depend on the choices made in the construction:

Corollary 3.2.6. The contact manifold OB(W,λ;ψ) is well-de�ned up to con-
tactomorphism.

Proof. The base manifold is always di�eomorphic to OB(W ;ψ), and if ξ0 and
ξ1 are two contact structures on OB(W ;ψ) arising through di�erent choices
regarding f and g in the construction in Theorem 3.2.1, then by Lemma 3.2.4,
both are supported by the open book decomposition induced by the abstract
open book (W,λ;ψ) on OB(W ;ψ). Thus we conclude immediately by the pre-
ceding proposition.

Perhaps more interestingly, this provides a technique to prove that two contact
manifolds are contactomorphic.

Corollary 3.2.7. If two contact manifolds (M0, ξ0) and (M1, ξ1) admit sup-
porting open book decompositions so that their respective abstract pages are
symplectomorphic to the Liouville domain (W,λ) and their monodromies are
symplectically isotopic to ψ, then (M0, ξ0) and (M1, ξ1) are contactomorphic.

Proof. From the assumptions and the uniqueness proposition, it follows imme-
diately that

(M0, ξ0) ∼= OB(W,λ;ψ) ∼= (M1, ξ1),

where ∼= denotes contactomorphism.

Remark 3.2.8. In dimension 3, the interplay between open book decompo-
sitions of contact manifolds and their contact structures can be made more
precise, which is the content of the celebrated Giroux Correspondence Theorem
[Gir02]:

Theorem 3.2.9 (Giroux). Let M be a closed oriented 3-manifold. Then there
is a one-to-one correspondence between

{oriented contact structures on M up to isotopy }

and
{open book decompositions of M up to positive stabilization}.

The equivalence relation of positive stabilization of open books is de�ned by
adding a 1-handle to the page and composing the monodromy with a right-
handed Dehn twist along a closed simple embedded curve going exactly once
around the handle.
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3.2.2 Examples

Returning to the examples of S3 we encountered earlier, we check if the standard
contact structure on S3 de�ned by

α = r2
1dϕ1 + r2

2dϕ2

is supported by the open book decompositions considered in Section 3.1.2.

Example 3.2.10.

1. We �rst treated B = {(0, z2) ∈ S3} together with p(z1, z2) = z1
|z1| and

found the corresponding abstract open book to be (D2, ψ = id).

On B, α restricts to dϕ2, which is the standard contact form on S1 again.
On the pages, dα = r1dr1 ∧ dϕ1 + r2dr2 ∧ dϕ2 restricts to r2dr2 ∧ dϕ2, as
ϕ1 is constant on the pages. This is a symplectic form, which shows that
the the standard contact structure kerα is supported by the open book
decomposition (B, p).

2. For the other binding

B′ = {(z1, 0) ∈ S3} ∪ {(0, z2) ∈ S3},

we see that on Ki ⊂ B, the standard contact form α restricts to dϕi, once
more the standard contact form on S1. Using the parametrisation of the
pages

(p′)−1(ϕ) =

{
(r1e

iϕ1 ,
√

1− r2
1e
i(ϕ−ϕ1))

}
for (r1, ϕ1) ∈ (0, 1)× S1, we get

dα = r1dr1 ∧ dϕ1 +
√

1− r2
1d(
√

1− r2
1) ∧ d(ϕ− ϕ1) = 2r1dr1 ∧ dϕ1.

This is symplectic and hence (p′, B′) also supports kerα.

3.3 Symplectic Fillings by Lefschetz-Bott Fibra-

tions

This section explains how to obtain symplectic �llings from Lefschetz-Bott �bra-
tions using open books. We use this technique in Section 5.5 to exhibit di�erent
symplectic �llings of the Ak-type singularity.

Recall from the beginning of this chapter that a topological Lefschetz-Bott �-
bration (E, π, J, j) with regular �ber F over D admits a topological description
of its total space as

∂E = F (ψ) ∪∂F×S1 (∂F × D).
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This suggests an identi�cation of ∂E with the abstract open book (F,ψ), though
one has to be careful about the fact E has a corner. On the other hand, the man-
ifold OB(F ;ψ) is constructed with a gluing as discussed after Theorem 3.2.1,
so that OB(F ;ψ) is closed.

Suppose the corner can be smoothed. We may then identify the resulting man-
ifold E′ with OB(F ;ψ) induced from the abstract open book (F,ψ). We have
seen in Theorem 3.2.1 that OB(F ;ψ) admits a contact structure if we further
endow the page F with a 1-form λ making (F, dλ) into a Liouville domain; recall
that we denoted the resulting contact manifold by OB(F, λ;ψ).

It is then natural to attempt to expand this to the symplectic setting and ask
if there is a notion of compatibility between the symplectic structure of the
Lefschetz-Bott �bration and the contact structure on the boundary. In particu-
lar, one may be interested in the possibility that (E,Ω) could, after smoothing
corners, serve as a strong symplectic �lling of a contact open book associated
to ∂E.

A strong symplectic �lling (W,ω = dλ) of a contact manifold (M,α) must
satisfy that ω is symplectic (evidently), and that ω is exact near the boundary
with outward pointing Liouville vector �eld V . For a symplectic Lefschetz-Bott
�bration (E, π,Ω) over D, let us hence require that

(1) Ω is symplectic on all of E, and

(2) Ω = dλ is exact near ∂E, and both λ|∂hE and λ|∂vE are positive contact
forms.

It turns out that one can �interpolate between� the Liouville vector �elds as-
sociated to λ|∂hE and λ|∂vE (which are outward pointing along ∂hE and ∂vE
as they are assumed to be positively contact) to obtain another Liouville vec-
tor �eld V which is transverse to the boundary of a manifold E′ obtained by
smoothing the corners of E (cf. [LHW18, Section 2.5]).

Thus if (1) and (2) hold, (E′,Ω) is a strong symplectic �lling of (∂E′, kerλ).

To obtain a contact open book description of ∂E′, we require that (F ;ψ) can
be made into a Liouville domain. This suggests that we should impose

(3) (π−1(z) \ Ecrit,Ω|π−1(z)) is a Liouville domain for all z ∈ D.

Denote a regular reference �ber by (F, dλ) = (π−1(1),Ω|π−1(1)). If (E, π,Ω) sat-
is�es (1)-(3), Theorem 3.2.1 together with Lemma 3.2.4 give that λ is a Giroux
form for the open book decomposition of the contact manifoldOB(F, λ;ψ).

Therefore, to establish that a symplectic Lefschetz-Bott �bration (E, π,Ω) as
above induces a strong symplectic �lling of the contact manifold OB(F, λ;ψ),
one needs to verify that

(E′, kerλ) is contactomorphic to OB(F, λ;ψ).
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This is shown in [Oba20, Proposition B.3], which also reviews the smoothing of
the corners of E.

Let us state this as a proposition.

Proposition 3.3.1 ([LHW18, Section 2.5], [Oba20, Proposition B.3]). Let
(E, π,Ω) be a symplectic Lefschetz-Bott �bration over D with monodromy ψ
and generic �ber the Liouville domain (F, dλ) = (π−1(z) \Ecrit,Ω|π−1(z)). Sup-
pose Ω is nondegenerate on E and exact near ∂E and on each regular �ber of
π.

Then Ω can be deformed and the corners of E can be smoothed so that (E,Ω)
is a strong symplectic �lling of the contact manifold OB(F, λ;ψ)

This proposition allows us in certain cases to read o� �llability of a contact
manifold.

Corollary 3.3.2 ([Oba20, Corollary B.4]). Suppose a contact manifold (M, ξ)
is supported by an open book decomposition with pages symplectomorphic to the
Liouville domain (V, ω = dλ) and monodromy ψ ∈ Symp(V, ω). Suppose that ψ
is symplectically isotopic to the composition of right-handed �bered Dehn twists

ψ ∼= τC1
◦ . . . ◦ τCk

for C1, . . . , Ck a collection of spherically �bered coisotropic submanifolds. Then
(M, ξ) is strongly �llable.

Remark 3.3.3. Recall that the total space of a Lefschetz �bration π : E2n → D
admits a handlebody decomposition with no handles of index greater than n.
If E satis�es (1), then in particular, there exists a global symplectic form Ω ∈
Ω2(E). Therefore, one can choose a compatible almost complex structure J on
E and we are in position to apply Theorem 1.4.22 to conclude that there exists
a Stein structure on E. In particular, any strong symplectic �lling induced by
a Lefschetz �bration is in fact a Stein �lling.

Remark 3.3.4. [LHW18] is an extensive reference for results of this type for
Lefschetz �brations on 4-manifolds, see in particular theorem 1.24. It is shown
that for topological Lefschetz �brations (E, π), the space of symplectic forms
Ω ∈ Ω2(E) making (E, π,Ω) into a symplectic Lefschetz �bration satisfying (1)-
(3) are nonempty and contractible, and that picking any such form, the corners
of E can be smoothed so that (E,Ω) is a strong symplectic �lling of a contact
manifold supported by the induced open book decomposition of the boundary.

If moreover the Lefschetz �bration is allowable, which means that none of its
vanishing cycles is homologically trivial in the �ber, then the same is true for
the following spaces:

� the space of symplectic forms on E giving π the structure of an exact
symplectic Lefschetz �bration, thereby inducing a Liouville �lling;
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� the space of almost Stein structures (J, φ), which consist of an almost
complex structure J and a J-convex function φ so that −ddCφ restricts to
a contact form on the faces of ∂E. It is explained how this gives rise to a
veritable Stein structure on E after smoothing corners, producing a Stein
�lling.

Conversely, Giroux and Pardon proved in [GP17] that every Stein domain W
admits a Lefschetz �bration (W ′, π) whose �bers are Stein domains and so
that W ′ can be deformed to W . This proves that any Stein domain admits a
Lefschetz �bration, and that the total space of any Lefschetz �bration can be
deformed to a Stein domain.

Remark 3.3.5. Note in particular that this result implies that any manifold
which arises as the boundary of the total space of a Lefschetz �bration (with
smoothed corners) admits a Stein �llable contact structure.
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Chapter 4

Lefschetz-Bott Fibrations on

Line Bundles

The aim of this chapter is to prove the following:

Theorem 4.0.1 ([Oba20, Theorem 1.1]). Let (M,ω) be a closed symplectic
manifold. Suppose that [ω/2π] ∈ H2(M ;R) has an integral lift Poincaré dual to
the homology class of a symplectic hypersurface H in (M,ω). Then there exists
a complex line bundle L over (M,ω) with �rst Chern class c1(L) = −[ω/2π]
which admits a symplectic Lefschetz-Bott �bration over C with �bers M \H and
critical set H.

Let us �rst recall the notion of Chern classes. Suppose π : L→M is a complex
vector bundle of rank k. Then the r-th Chern class cr(L) is a cohomology
class in H2r(M ;Z). Their signi�cance in the case of complex line bundles lies
in the fact that the �rst Chern class c1(L) ∈ H2(M ;Z) turns out to be a
complete invariant: complex line bundles over a manifoldM are classi�ed up to
isomorphism by c1(L) (see e.g. [Hus94, Theorem 3.4]).

We refer to the classical textbook [MS74] for the general theory of characteristic
classes, in particular to Chapter 14 for the theory on Chern classes, and to
Appendix C for their relation to Chern-Weil theory. For our purposes, we
content ourselves by giving a way to de�ne the �rst Chern class: suppose p :
L→M is a complex line bundle over a manifold M . Choose a connection form
α ∈ Ω1(L). The curvature form associated to α is a 2-form β ∈ Ω2(M) on the
base satisfying p∗β = dα. Then in our convention, the �rst Chern class of the
bundle L is

c1(L) = [−β/2π].

The assumptions on ω and H are motivated by an important result of Donald-
son:
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Theorem 4.0.2 ([Don96]). Let (M,ω) be an integral closed symplectic mani-
fold. Then there exists a su�ciently large integer k > 0 such that [kω/2π] is
Poincaré dual to the orientation class of a symplectic hypersurface H in M .

The hypersurface H is called a Donaldson hypersurface, and in the following
we normalize the symplectic form in order to assume k = 1.

Hypersurfaces of this type are also known as symplectic divisors, and a tuple
(M,ω,H) consisting of an integral symplectic manifold (M,ω) together with a
Donaldson hypersurface H is referred to as a polarized manifold. In [BC01],
Biran and Cieliebak studied properties of polarized manifolds and provided nu-
merous examples to which Theorem 4.0.1 could potentially be applied. One
easy consequence from the de�nition is that polarized manifolds are exact away
from the Donaldson hypersurface H.

Lemma 4.0.3. Let (M,ω,H) be a polarized symplectic manifold. Then ω is
exact away from H.

Proof. Set X = M \ H and denote the inclusion by i : H ↪→ M . We show
that [i∗ω/2π] = 0 ∈ H2(X;R) ∼= Hom(H2(X;Z);R), which by the de Rham
isomorphism amounts to showing that for any 2-cycle c ∈ C2(X;Z), we have∫

c

i∗ω/2π = 0.

Indeed, because [ω/2π] is Poincaré dual to [H], we have∫
c

i∗ω/2π =

∫
i(c)

ω/2π =

∫
i(c)

PD[H] = i ∗ [c] · [H] = 0

since c and H are disjoint.

The construction of the line bundle L and the Lefschetz-Bott �bration associ-
ated to a Donaldson hypersurface H ⊂ (M,ω) will proceed along the following
program:

Outline

1. Building a local model: construct an associated S1-bundle over H with a
symplectic form (Section 4.1).

2. Construct a neighbourhood ν(H) of H which can be symplectically iden-
ti�ed with the previous associated bundle, so that M = ν(H) ∪ V , where
V is the complement of ν(H) (Section 4.2).

3. De�ne complex line bundles over V and ν(H) as an associated bundle to
a suitable S1-action on C and endow their total spaces with symplectic
forms (Section 4.3); symplectically glue them to a line bundle L over M
(Section 4.4).
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4. De�ne a tentative Lefschetz-Bott �bration π : L → C whose critical sub-
manifold is the zero section of H (Section 4.5).

5. Deform the symplectic structure on L such that the �bers carry a standard
symplectic structure (Section 4.6).

6. Construct an almost complex structure J on L such that the symplectic
structure is normally Kähler near the zero section of H in L (Section 4.7).

7. Show that all the data constructed above de�ne a symplectic Lefschetz-
Bott �bration (also Section 4.7).

4.1 The Local Model

We will model a neighbourhood of the Donaldson hypersurface H ⊂ M on a
bundle associated to a special principal S1-bundle, which we now de�ne.

De�nition 4.1.1. Let (M,ω) be a closed symplectic manifold. The Boothby-
Wang bundle p : (P, α) → (M,ω) over (M,ω) is a principal S1-bundle with
connection 1-form α ∈ Ω1(P ; s1) such that dα = p∗ω, and such that α is a
contact form.

Remark 4.1.2. As s1 ∼= R, we view α as an ordinary 1-form on P with values
in R.

De�nition 4.1.3. Suppose ω is integral, then in our convention, [ω/2π] ∈
H2(M ;R) lies in the image of the map H2(M ;Z)→ H2(M ;R) induced by the
inclusion Z ↪→ R.

We call a preimage of [ω/2π] in H2(M ;Z) an integral lift of ω.

A symplectic manifold (M,ω) whose symplectic form ω is integral is referred to
as an integral symplectic manifold.

Fixing an integral lift of an integral symplectic form, the Boothby-Wang bundle
over (M,ω) exists and is unique up to isomorphism (see [BW58]).

Proposition 4.1.4 (Properties of the Boothby-Wang bundle). Let p : (P, α)→
(M,ω) be the Boothby-Wang bundle over (M,ω) and write

ξs(p) =
d

dt

∣∣∣∣
t=s

exp(ts) · p, p ∈ P,

for the in�nitesimal generator associated to the S1-action on P . Then ξ1 = Rα
is the Reeb vector �eld of α, and all its orbits are periodic.

Proof. Since α is a connection form, ıξsα = s for all s ∈ s1, so ıξ1α = 1. Note
that as the action is �ber-preserving, we have Dp(x)[ξs(p)] = 0 for any s ∈ s1

and x ∈ P , so that
ıξ1(dα) = ıξ1(p∗ω) = 0.
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The �ow of ξ1 is ϕt(x) = exp(t) · x, which is evidently 2π-periodic as exp(t) is
the element eit ∈ S1.

The relevant associated bundles are obtained from two actions of S1 on C.
Consider the group homomorphisms ρ, ρ : S1 → S1 given by

ρ(θ) = e2πiθ, ρ(θ) = e−2πiθ.

These de�ne S1-actions on C via θ · z := ρ(θ)z, and similarly for ρ. As S1 also
acts on P , consider the right action on the product P ×C given in the standard
way by

(p, z) · θ := (p · θ, θ−1 · z).
The associated bundle P ×ρ C is thus P × C divided by the action

(p, z) · θ = (p · θ, e−2πiθz),

and P ×ρ C is P × C divided by the action

(p, z) · θ = (p · θ, e2πiθz).

Lemma 4.1.5 ([Oba20, Section 2.1]). De�ne the forms ω′α, ω
′
α ∈ Ω2(P ×C) by

ω′α = p∗ω + d(r2dθ) + d(r2α) = d((1 + r2)(α+ dθ));

ω′α = p∗ω + d(r2dθ)− d(r2α) = d((1− r2)(α− dθ)).

The coordinates (r, θ) denote polar coordinates on C. Their kernels are given by

ker(ω′α)(p,z) = (Rα −
∂

∂θ
)(p,z)

ker(ω′α)(p,z) = (Rα +
∂

∂θ
)(p,z)

for all (p, z) ∈ P ×C, that is, it is spanned by the generator of the corresponding
S1-action. Hence ω′α and ω′α descend to symplectic forms

ωα ∈ Ω2(P ×ρ C), ωα ∈ Ω2(P ×ρ D̊).

Remark 4.1.6. We may de�ne a zero section not only for vector bundles, but
for any �ber bundle with groups as �bers by sending elements in the base to
the identity element in their �ber.

Remark 4.1.7. Away from the zero section, ωα is exact with primitive

λα = (1− r2)(α− dθ).

The local model for our neighbourhood of H in M will be the symplectic man-
ifold

(P ×ρ D̊, ωα),

where P is now the Boothby-Wang bundle over the Donaldson hypersurface
H.
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4.2 The Neighbourhood of H

Here we construct a neighbourhood of a symplectic hypersurface H modelled
on the associated bundle PH ×ρ D̊ constructed above. Let (M,ω) be an integral
symplectic manifold with a Donaldson hypersurface H ⊂ M , and denote by
i : H ↪→M the inclusion. Set ωH := i∗ω and denote by

p : (P, α)→ (H,ωH)

the Boothby-Wang bundle over (H,ωH). The construction in the previous sub-
section gives rise to a bundle

P ×ρ D̊→ H

whose total space carries a symplectic form ωα which is exact away from the
zero section i0(H) with primitive λα. The following proposition allows us to
think of a tubular neighbourhood of H as a convex neighbourhood of the zero
section in P×ρD̊. Recall from Lemma 4.0.3 that ω is exact away from H.

Proposition 4.2.1 ([DL19, Lemma 2.2]). Let H be a symplectic hypersurface of
an integral symplectic manifold (M,ω) with PD[H] = [ω/2π]. Then there exists
some δ ∈ (0, 1), a primitive λ ∈ Ω1(M \H) of ω, and a symplectic embedding ν
such that

(P ×ρ D(δ), ωα) (M,ω)

H

ν

i0 i

commutes, and moreover ν∗λ = λα.

The proof relies on the Weinstein tubular neighbourhood theorem combined
with [DL19, Lemma 2.2] by Diogo and Lisi.

The desired neighbourhood is now given by

νM (H) := ν(P ×ρ D(δ)).

Also set
V := M \ ν̊M (H),

so that M = νM (H) ∪M . Note that V ∩ νM (H) = ∂νM (H).

4.3 Line Bundles over the Decomposed Manifold

We build a complex line bundle over both V and νM (H) and endow their total
spaces with a symplectic form. Let us begin with the bundle over V .
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The Bundle over V

Denote by pV : V × S1 → V the projection to V and let S1 act on V × S1

by
(x, θ1) · θ := (x, θ1 + θ),

where θ1 is the coordinate on S1. We may regard pV as a principal S1-bundle.
Letting S1 act on C via ρ, consider the associated bundle

(V × S1)×ρ C→ V.

To construct a symplectic form on the total space, endow pV with a connection
form

αV = λ+ dθ1.

This is indeed a connection form: the in�nitesimal generator is given by ξs =
s ∂
∂θ1

, and thus αV (ξs) ≡ s for all s ∈ s1 ∼= R. Moreover, αV is evidently
invariant under the action.

Let (r2, θ2) denote coordinates on C and de�ne a form in Ω2((V × S1) × C)
by

p∗V (dλ) + d(r2
2dθ2) + d(r2

2αV ) = d((1 + r2
2)(λ+ dθ1 + dθ2)).

This is S1-invariant and hence descends to a symplectic form ωαV ∈ Ω2((V ×
S1)×ρ C).

In fact, this bundle is symplectomorphic to the trivial bundle ΠV : V ×C→ V
equipped with the symplectic form

ΩV = d
(
(1 + r2)(λ+ dθ)

)
,

which is the bundle over V we are interested in. The symplectomorphism is
given by

ΨV : (V × S1)×ρ C→ V × C
[x, θ1, (r2, θ2)] 7→ (x, (r2, θ1 + θ2)).

The Bundle over νM (H)

As for the bundle over νM (H) ∼= P ×ρ D(δ), consider the quotient projection
pν : P × D(δ)→ P ×ρ D(δ). This is a principal S1-bundle, and

αν = (1− r2
1)α+ r2

1dθ1

is well-de�ned and a connection form: the in�nitesimal generator is ξ′s + s ∂
∂θ1

for ξ′s the in�nitesimal generator of the S1-action on P , so that

αν(ξ′s − s
∂

∂θ1
) = (1− r2

1)s+ r2
1s = s.

Invariance under the action follows similarly from the fact that α and dθ are
connection forms on P and S1, respectively.

70



To obtain a bundle over νM (H), we compose with ν so that

ν ◦ pν : P × D(δ)→ νM (H)

is a principal S1-bundle with the same connection form. To make this into a
complex line bundle, set

Πν : (P × D(δ))×ρ C→ νM (H)

[(x, (r1, θ1), (r2, θ2))] 7→ ν([x, (r1, θ1)]).

The form on P × D(δ)× C de�ned by

dαν + d(r2
2dθ2) + d(r2

2αν) = d((1 + r2
2)(αν + dθ2))

descends to a symplectic form ωαν ∈ Ω2((P × D(δ))×ρ C).

4.4 Gluing to a Bundle over M

We now show that the bundles ΠV and Πν glue together symplectically to a
bundle over M = V ∪ νM (H). The �rst step is to slightly modify our de�nition
of νM (H) and V in such a way that they overlap in an open set on which
we can de�ne a collar neighbourhood. On this collar, we will de�ne a gluing
symplectomorphism.

The modi�cation of νM (H) consists in slightly shrinking δ and taking some
δ′ > δ such that the tubular neighbourhood

νM (H) = ν(P ×ρ D(δ))

is contained in ν(P ×ρ D(δ′)). Note that shrinking δ shrinks the tubular neigh-
bourhood νM (H) and thus enlarges its complement V . We may view the overlap
of ν(P ×ρ D(δ)) and ν(P ×ρ D(δ′)), which is

νV (∂V ) := ν(P ×ρ A(δ, δ′)) ↪→ (M,ω),

as a symplectically embedded annulus bundle, where A(δ, δ′) = {z ∈ C | |z| ∈
[δ, δ′]}. Note that the image does in fact lie in V , and that ν(P ×ρ S1(δ)) =
∂V ; hence we may view νV (∂V ) as our desired collar neighbourhood of ∂V in
V .

Lemma 4.4.1. The gluing map de�ned by

Φ : (P × A(δ, δ′))×ρ C→ νV (∂V )× C (4.1)

[x, (r1, θ1), (r2, θ2)] 7→ (ν([x, (r1, θ1)]), (r2, θ1 + θ2)). (4.2)

is a symplectomorphism.
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Proof. Recall that the symplectic form on νV (∂V )× C ⊂ V × C is

ΩV = d
(
(1 + r2)(λ+ dθ)

)
,

and that ωαν ∈ Ω2((P × D(δ′))×ρ C) is the reduction of

d
(
(1 + r2

2)(αν + dθ2)
)
∈ Ω2(P × D(δ′)× C),

where αν = (1− r2
1)α+ r2

1dθ1 and α is the connection-contact form on P .

Further recall from Proposition 4.2.1 that the embedding ν : P ×ρ D(δ′) ↪→
(M,ω) satis�es ν∗λ = (1− r2)(α− dθ). Combining this with

Φ∗r = r2, Φ∗θ = θ1 + θ2,

a direct computation shows that

Φ∗
(
(1 + r2)(λ+ dθ)

)
=
(
(1 + Φ∗r2)(Φ∗λ+ dΦ∗θ)

)
=
(
(1 + r2

2)((1− r2
1)(α− dθ1) + dθ1 + dθ2)

)
=
(
(1 + r2

2)((1− r2
1)α+ r2

1dθ1 − dθ1 + dθ1 + dθ2)
)

=
(
(1 + r2

2)(αν + dθ2)
)
.

As the domain of Φ does not contain (the zero section of) H, the symplectic
forms are exact on the entire domain and target, so this argument su�ces to
establish that Φ is a symplectomorphism

We may hence consider the glued bundle

Π : V × C ∪Φ (P × D(δ′))×ρ C→ V ∪ νM (H) = M,

de�ned by
Π(x, (r, θ)) = ΠV (x, (r, θ)) = x

on V × C, and by

Π([x, (r1, θ1), (r2, θ2)]) = Πν([x, (r1, θ1), (r2, θ2)]) = ν([x, (r1, θ1)])

on (P × D(δ′))×ρ C. Denote this bundle by Π : L→M .

Let us determine the Chern class c1(L). Note that due to the correspondence
of rank-k complex vector bundles and principal U(k)-bundles, the Chern class
of an associated bundle P ×ρ C is given by the Chern class of the associated
bundle P .

We will thus show that the curvature forms associated to the connection forms
chosen on the bundles over V and νM (H) are given by ω|V and ω|ν , respectively,
which implies that the Chern class is c1(L) = [−ω/2π].

Recall that the bundle over V was de�ned as (V ×S1)×ρC, where we endowed
V × S1 with the connection form αV = λ+ dθ1. Then we have

dαV = dλ = p∗V ω,
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so that ω|V is indeed the curvature form of the bundle over V .

As for the bundle over νM (H), the connection form on ν ◦ pν : P × D(δ′) →
νM (H) was chosen to be

αν = (1− r2
1)α+ r2

1dθ1.

Then dαν = d((1 − r2
1)(α − dθ1)), which coincides with p∗νωα. On the other

hand, we have
ν∗ω = ωα

by Proposition 4.2.1, so that (ν ◦ pν)∗ω = dαν, establishing that the curvature
form of αν is ω|νM (H).

4.5 A Fibration on the Line Bundle

Here we de�ne what will be a Lefschetz-Bott �bration on the space L we con-
structed above. Following the notation in [Oba20], abbreviate P (D(δ′),C) :=
(P × D(δ′)) ×ρ C. We de�ne the �bration separately over each piece of L =
V × C ∪Φ P (D(δ′),C) as follows:

πV : V × C→ C, (x, (r, θ)) 7→ (r, θ),

and

πν : P (D(δ′),C)→ C, [x, (r1, θ1), (r2, θ2)] 7→ (µ(r1)r2, θ1 + θ2).

Here, µ : R→ R is a smooth function with

� µ(r) = r for r ≤ ε, where 0 < ε < δ;

� µ(r) ≡ 1 for r ≥ δ;

� µ′(r) ≥ 0 for all r.

Lemma 4.5.1. The map π := πV ∪ πν : M → C de�ned by πV on V and πν
on νM (H) is well-de�ned.

Proof. We �rst show that the map πν is well-de�ned, and then that π respects
the gluing by Φ.

The map πν is well-de�ned since S1 acts on D(δ′) via ρ and on C via ρ:

πν([(x, (r1, θ1), (r2, θ2)) · θ]) = πν([x ·P θ, (r1, θ1) ·ρ θ−1, (r2, θ2) ·ρ θ−1])

= πν([x ·P θ, (r1, θ1 + θ), (r2, θ2 − θ)])
= (µ(r1)r2, θ1 + θ2)

= πν([x, (r1, θ1), (r2, θ2)]).
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To show that π := πV ∪ πν : L → C is well-de�ned, we need to verify that for
[(x, (r1, θ1), (r2, θ2))] ∈ (P × A(δ, δ′))×ρ C, we have

πν ([(x, (r1, θ1), (r2, θ2))])
!
= πV (Φ([(x, (r1, θ1), (r2, θ2))])) .

So we compute the right hand side, which is

πV (Φ([(x, (r1, θ1), (r2, θ2))])) = πV (ν(x, (r1, θ1)), (r2, θ1 + θ2))

= (r2, θ1 + θ2).

Since (r1, θ1) ∈ A(δ, δ′), we have µ(r1) = 1, which means π is well-de�ned.

Note that we may write π on P (D(δ′),C) as

π([x, z1, z2]) =
µ(|z1|)
|z1|

z1z2, (4.3)

and that near H0, speci�cally for |z1| ≤ ε, we have

π([x, z1, z2]) = z1z2.

Proposition 4.5.2 ([Oba20, Section 3.3]). The critical point set of π is

H0 = {[x, z1, z2] ∈ P (D(δ′),C) | z1 = z2 = 0}.

Proof. We have

dπ[x,z1,z2] = µ′(r1)r2dr1 + µ(r1)dr2 + dθ1 + dθ2

on P (D(δ′),C), which vanishes precisely for r1 = r2 = 0. On V × C, there are
no critical points.

Remark 4.5.3. The critical manifold H0 can be seen as the zero section of the
bundle

P (D(δ′),C)→ H;

Indeed, the zero section of P ×D(δ′)→ H is just {(1y, 0) ∈ P ×D(δ′) | y ∈ H},
where 1y denotes the neutral element of the �ber Py ∼= S1. By de�nition of
principal bundles, the �bers of P are precisely the orbits of the action by S1,
so that (1y, 0) and (x, 0) are in the same orbit for all x ∈ Py, which means that
when passing to the associated bundle, the zero section is H0, as claimed.

Note that π(H0) = 0 ∈ C, so that 0 is the only critical value of π.
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4.6 Deformation of the Symplectic Structure

Recall once more that the symplectic structure ωαν ∈ Ω2(P (D(δ),C)) is the
reduction of

dαν + d(r2
2dθ2) + d(r2

2αν) = d
(
(1 + r2

1)(αν + dθ2)
)
∈ Ω2(P × D(δ′)× C),

where αν = (1 − r2
1)α + r2

1dθ1. For ε as in the de�nition of the function µ we
used to de�ne the �bration π before Lemma 4.5.1, de�ne a neighbourhood of
the critical locus

νε(H0) := {[x, z1, z2] ∈ P (D(δ′),C) | |z1|2 + |z2|2 ≤ ε} ⊂ P (D(δ′),C).

Recall that for a symplectic Lefschetz-Bott �bration, we require the �bers to
be symplectic, and for a neighbourhood of the critical locus to be foliated by
slices on which there is a complex structure which is Kähler for the symplectic
structure. This is the neighbourhood on which we are going to exhibit such a
complex structure.

Considering the restricted bundle νε(H0) → H, the �bers may be regarded as
D(δ′)× D(ε), on which the standard symplectic structure is

ω0 = r1dr1 ∧ dθ1 + r2dr2 ∧ dθ2.

Observe, however, that ωαν restricted to the �bers lifts to a di�erent structure.
We now deform the symplectic structure near the critical locus to attain the
standard symplectic form on the �bers.

Lemma 4.6.1 ([Oba20, Lemma 3.5]). There exists a symplectic form Ων ∈
Ω2(P (D(δ′),C)) with the following properties:

� Ων coincides with ωαν outside of νη(H0) for some ε < η < 1;

� Ων restricts to twice the standard symplectic form on the �bers in νε(H0).

Moreover, there exists a symplectomorphism between (P (D(δ′),C),Ων) and (P (D(δ′),C), ωαν )
supported in νη(H0).

Proof. Construction of Ων

To construct Ων , pick a smooth function u : R → R and some 0 ≤ ε′, ε′′ with
ε < ε′ < ε′′ < 1 so that

� u(s) ≡ 0 for s ≤ ε′;

� u(s) ≡ 1 for s ≥ ε′′;

� u′(s) ≥ 0 for all s.

Now set f(r1, r2) = u(r2
1 + r2

2) for (r1, r2) ∈ [0, δ′)× [0,∞), and the 2-form

Ω̃ν = d((1 + r2
2)(dθ2 + α)) + d((1 + f(r1, r2)r2

2)r2
1(dθ1 − α)).
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The form is S1-invariant and hence descends to a 2-form Ων ∈ Ω2(P (D(δ′),C)).

Outside of νε′′(H0), we have f(r2
1 + r2

2) ≡ 1, so that in this region, we have

Ω̃ν = d((1 + r2
2)(dθ2 + α)) + d((1 + r2

1r
2
2)(dθ1 − α)).

A quick computation shows that this is agrees with ωαν .

Nondegeneracy of Ων

We now prove that Ων is a symplectic form and �nd a symplectomorphism

(P (D(δ′),C), ωαν )→ (P (D(δ0),C),Ων).

For nondegeneracy, note �rst that dim(M) = 2n, dim(H) = 2n− 2, and hence
dim(P ) = 2n− 1. Since of course dim(S1) = 1, this implies dim(P (D(δ′),C)) =
2n+ 2. One can now compute

Ω̃n+1
ν = C(r1, r2)dr2

1 ∧ (dθ1 − α) ∧ dr2
2 ∧ (dθ + α) ∧ (dα)n−1

for C(r1, r2) = n(n+1)(1−r2
1 +r2

2(1−fr2
1))n−1(r2

1r
2
2u
′+fr2

2 +1). This function
is strictly positive, and the wedge product of forms following it is a volume form
(recall that α is contact).

We will obtain a symplectomorphism by applying the Moser trick. We have
that

ωαν − Ων = d(r2
1r

2
2(dθ1 − α)(1− f(r1, r2))),

which is exact. Thus ωαν and Ων are cohomologous, as well as the convex
combinations ωt := (1 − t)ωαν + tΩν for t ∈ [0, 1]. Therefore, by Moser's
argument, there exists an isotopy ϕt of P (D(δ′),C) with ϕ∗tωt = ω0 = ωαν .

Let us repeat Moser's argument in this case to show that the symplectomorphism
is supported in νε′′(H0). Since the ωt are cohomologous, we may �nd a smoothly
varying family of 1-forms βt so that ω̇t = −dβt. Recall that the isotopy ϕt is
the �ow of the time-dependent vector �eld Vt de�ned by

ıVtωt = βt.

This �ow satis�es

d

dt
ϕ∗tωt = ϕ∗t (LVtωt + ω̇t) = ϕ∗t (dıVtωt − dβt) = 0,

which proves that ϕt is the desired isotopy.

Outside of νε′′(H0), we have remarked that ωαν − Ων = 0, so that also βt = 0.
Thus we have ıVtωt = 0, which by nondegeneracy implies Vt = 0 outside of
νε′′(H0). The �ow ϕt is hence the identity in this region, proving the claim.
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Restriction to the �bers

The last claim to verify is that Ων restricts to twice the standard symplectic
form on the �bers of the bundle νε(H0) → H. Let jx denote the inclusion of
the �ber over x ∈ H. As ε ≤ ε′, by choice of u, the restricted form is

j∗xΩν = d((1 + r2
2)dθ2) + d(r2

1dθ1)

= 2r2dr2 ∧ dθ2 + 2r1dr1 ∧ dθ1,

as claimed.

4.7 Construction of the Kähler Structure

Our setting is now that of a line bundle L given by

Π : V × C ∪Φ P (D(δ′),C)→M,

which is the trivial projection to V on V×C, and which maps [x, (r1, θ1), (r2, θ2)] ∈
P (D(δ′),C) to ν(x, (r1, θ1)) ∈ νM (H) ⊂ M . V × C carries the symplectic form
ΩV , and we endow P (D(δ′),C) with Ων constructed in Section 4.6. As Ων co-
incides with ωαν outside of νε(H0), the symplectic gluing via Φ goes through
without change so that L carries a global symplectic form Ω de�ned on the two
factors by

Ω|V×C = ΩV and Ω|P (D(δ′),C) = Ων .

Remark 4.7.1. The de�nition of a symplectic Lefschetz-Bott �bration only
requires the 2-form on the total space to be symplectic on the vertical subbbun-
dle, not globally. The 2-form Ω ∈ Ω2(L) constructed here is globally symplectic,
however.

We are now ready to construct the �nal piece of data constituting a Lefschetz-
Bott �bration.

Lemma 4.7.2 ([Oba20, Lemma 3.6]). There exists an almost complex struc-
ture J on P (D(δ′),C) compatible with Ων such that H0 is an almost complex
submanifold of (νε(H0), J), and Ων is normally Kähler near H0.

Proof. We �rst construct a Riemannian metric on each factor of P ×D(δ′)×C
which is invariant under the action of S1, so that it descends to P (D(δ′),C).

Further recall that α is a contact form on P , so that dα is a symplectic form on
kerα ⊂ TP . Choose an almost complex structure Jα which is compatible with
dα, which means dα(·, Jα·) is a Riemannian metric on kerα. To make this into
a Riemannian metric on all of TP , set

gα(u, v) := dα(u, Jαv) + α(u)α(v).

The forms α and dα are S1-invariant by virtue of α being a connection form, so
that also gα is invariant under the action of S1 on P . Endow D(δ′) and C with
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the standard Riemannian metrics g1 and g2, which are also S1-invariant, as the
action is just a rotation. Hence,

g := gα + g1 + g2

induces a Riemannian metric on the quotient P (D(δ),C). Thus the polar de-
composition of (P (D(δ′),C),Ων) with respect to g (see [Can06, Chapter 12])
provides a compatible almost complex structure J on P (D(δ′),C) (though the
induced metric need not necessarily coincide with g). Restricting to H0, J is
the almost complex structure arising from the polar decomposition of gα (on
the quotient P (D(δ′),C)), and thus H0 is an almost complex submanifold of
(P (D(δ′),C), J).

With respect to J , Ων is normally Kähler near H0: we can foliate the tubular
neighbourhood νM (H0) of the critical locus by normal slices Dx for [x, 0, 0]
ranging in H0, where

Dx = {[x, z1, z2] ∈ P (D(δ′),C) | |z1|2 + |z2|2 < ε}.

The almost complex structure J restricted to Dx is just the standard complex
structure on C2, and Ων |Dx = 2(r1dr1 ∧ dθ1 + r2dr2 ∧ dθ2) is twice the standard
symplectic structure. In particular, J |Dx is integrable and compatible with
Ων |Dx , which is closed, and hence Kähler.

With all this in place, it is now straightforward to prove

Theorem 4.7.3 ([Oba20, Section 3.3]). The tuple (L, π,Ω, J, j0), where j0 is
the standard complex structure on C, is a symplectic Lefschetz-Bott �bration.

Proof. The critical locus of π is H0, which is a smooth submanifold of L with
�nitely many connected components. Near H0, more precisely, on νε(H0), Ω is
normally J-Kähler by Lemma 4.7.2. Three points remain to be shown:

� The form Ω is nondegenerate on kerDπ: note that kerDπν = TP/S1 ∼=
TH, and that kerDπV = TV . Restricting ΩV to TV is dλ, which is the
symplectic form ω ∈ Ω2(M), whereas nondegeneracy of Ων restricted to
1TP/S1 follows by a computation.

� The �bration π is (J, j0)-holomorphic: on the normal slicesDx, µ(r1) = r1,
and thus π|Dx may be written as

π|Dx([x, z1, z2]) = z1z2.

As J is the standard complex structure on the D(δ′)- and C-factors, π|Dx
is clearly (J, j0)-holomorphic, and we see that J preserves TDx and its
orthogonal complement with respect to g, which consists of the tangent
vectors in TP . Since TP ⊂ ker(Dπ), we have for any u+v ∈ TDx⊕TD⊥x
that

Dπ[u+ v] = Dπ[u].
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Thus the fact that J preserves both TDx and TD⊥x yields immediately
that

Dπ[x,z1,z2][J(u+ v)] = Dπ[x,z1,z2][Ju] = j0Dπ[x,z1,z2][J(u+ v)],

so that π is holomorphic on all of νε(H).

� The complex normal Hessian is everywhere nondegenerate: the local ex-
pression for π on the normal slices Dx yields immediately that at any
[x, z1, z2] ∈ Dx, the holomorphic normal Hessian is(

0 1
1 0

)
.

This is nondegenerate and holds in particular for all [x, 0, 0] ∈ H0, which
concludes the proof.

Remark 4.7.4. Note that H2n(L;Z) ∼= H2n(M ;Z) ∼= Z since M is a closed
orientable 2n-dimensional manifold. This implies by cellular homology that any
handle decomposition of L contains a handle of index ≥ 2n > dim(L)/2 = n+1,
so that by Remark 1.4.20, L cannot carry a Stein structure, and thus by [GP17],
L does not admit a Lefschetz �bration.

Remark 4.7.5. From this construction, it follows that the regular �bers π−1(z)
for z 6= 0 can be identi�ed with M \ H. However, this identi�cation is never
symplectic, since the �bers of π have in�nite volume with respect to Ω (see
[Oba20, Remark 3.7]), whereas (M \ H,ω|M\H) has �nite volume due to M
being a closed symplectic manifold.
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Chapter 5

Distinct Strong Symplectic

Fillings of the Link of the

Ak-Type Singularity

In this chapter, we utilize the machinery of Lefschetz-Bott �brations through
the existence Theorem 4.0.1, together with the strong symplectic �lling they
induce by Proposition 3.3.1 when restricted to the disk, to exhibit mutually
non-homotopic strong symplectic �llings of the link of the Ak-type singularity.
The precise statement is the following:

Theorem 5.0.1 ([Oba20, Theorem 1.2]). Let Σk be the link of the Ak-type
singularity endowed with the canonical contact structure ξcan inherited from the
standard contact structure on the unit sphere S2n+3. Then if dim(Σk) ≥ 5,
there are at least dk/2e+ 1 distinct strong symplectic �llings up to homotopy.

5.1 Main Ingredients

Let us start by explaining some terminology and collecting the main tools in-
volved in the construction.

De�nition 5.1.1. For an integer k ≥ 1, consider the complex polynomial fk ∈
C[z0, . . . , zn+1] given by

f(z0, . . . , zn+1) = z2
0 + . . .+ z2

n + zk+1
n+1,

and denote its vanishing locus by Vk := {z ∈ Cn+2 | f(z) = 0}. This variety has
a unique singularity at the origin, which is called the Ak-type singularity.

Considering the unit sphere S2n+3 ⊂ Cn+2, set

Σk := Vk ∩ S2n+3,
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which is known as the link of the singularity. We endow Σk with the contact
structure ξcan inherited from the standard contact structure on the sphere, as
de�ned in Example 1.1.13.

The symplectic �llings of the link of the Ak-type singularity will be obtained
by exhibiting di�erent Lefschetz-Bott �brations from Vk ∩ D2n+4 to the disk
D by prescribing their collection of vanishing cycles. The total spaces of these
�brations provide the desired �llings. We may describe these total spaces topo-
logically as arising from a certain gluing construction involving the vanishing
cycles:

Construction 5.1.2. Suppose πi : Ei → D for i = 1, 2 are two topological
Lefschetz-Bott �brations over the disk whose regular �bers are di�eomorphic to
F . Fix base points zi ∈ ∂D and denote their �bers by Fi = π−1

i (zi). Now take
tubular neighbourhoods ν(Fi) of the �bers in their respective vertical bundle
∂vEi. The normal bundle of Fi in ∂vEi is trivial, and hence

ν(Fi) ∼= [−ε, ε]× F

for some small ε > 0. As both �bers Fi are di�eomorphic to F , we may choose
a �ber-preserving di�eomorphism

f : ν(F1)→ ν(F2)

to glue the total spaces Ei along ν(Fi), yielding a new manifold

E1#fE2 := (E1 ∪ E2)/(x ∼ f(x)), ∀x ∈ ν(F1).

This is called the �ber sum of E1 and E2, and the total space admits a topo-
logical Lefschetz-Bott �bration

π : E1#fE2 → D]D ∼= D,

where ] denotes gluing along πi(ν(Fi)), and where π is de�ned by π|Ei = πi.

To distinguish the total spaces of the �brations of interest, we will use the
following:

Lemma 5.1.3 ([Oba20, Lemma 4.1]). Let πi : Ei → D be topological Lefschetz-
Bott �brations over the disk, for i = 1, 2, both with regular �bers isomorphic to
F . Let Fi be a regular �ber of πi, and let f : F1 → F2 be a di�eomorphism.
Then

χ(E1#fE2) = χ(E1) + χ(E2)− χ(F ).

Proof. Let pi : Ei → E1#fE2 the inclusion Ei ↪→ E1 t E2 followed by the
quotient projection to E1#fE2. Then we have E1#fE2 = p1(E1) ∪ p2(E2),
where p1(E1) ∩ p2(E2) ∼= ν(F ). The claim then immediately follows from the
fact that χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B) for any two subspaces A,B of a
topological space so that the interiors of A and B still cover the union A∪B.
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Moreover, to describe the �brations constructed in the proof, it will be helpful
to consider a Lefschetz-Bott �bration over the disk obtained by appropriately
restricting the �bration on a complex line bundle over M constructed in Theo-
rem 4.0.1. We refer the reader to appendix A in [Oba20] for details.

Proposition 5.1.4 ([Oba20, Proposition A.2]). Let (L, π,Ω, J, j0) be the Lefschetz-
Bott �bration constructed in Theorem 4.0.1. Then there exist

� a compact submanifold with corners Ec ⊂ L which contains H0 such that
πc := π|Ec takes values in D2 ⊂ C, and

� a symplectic form Ωc ∈ Ω2(Ec) which agrees with Ω on the �bers of π

such that (Ec, πc,Ωc, J, j0) is a Lefschetz-Bott �bration over the closed unit disk
D whose �bers are canonically identi�ed with V = M \ ν̊M (H), and whose
critical point set is canonically identi�ed with H. Its monodromy along ∂D is
symplectically isotopic to a �bered Dehn twist along the boundary of a regular
�ber.

5.2 Construction of the Strong Symplectic Fill-

ings

With these preliminaries in hand, we are ready to prove Theorem 5.0.1.

Outline

Step 1:. We begin in Section 5.3 by considering the compacti�ed cotangent
bundle DT ∗Sn → Sn, which will act as the �ber of the symplectic Lefschetz-Bott
�bration inducing the desired �lling. The �rst step is to identify DT ∗Sn with a
suitable subset of CPn+1, endowed with the Fubini-Study from Examples 1.1.5,
to which we can apply Theorem 4.0.1. All symplectic structures that follow will
by induced by the Fubini-Study form.

Step 2:. Connecting this to the link Σk, we prove in Section 5.4 that
the contact manifold (Σk, ξcan) is contactomorphic to an open book with pages
DT ∗Sn and suitable monodromy, which arises through the open book decompo-
sition induced on the boundary of a Lefschetz �bration Vk ∩D2n+4 → D.

Step 3:. To construct various symplectic �llings of the link, we de�ne dif-
ferent symplectic Lefschetz-Bott �brations by specifying their �ber DT ∗Sn and
vanishing cycles in Section 5.5. The vanishing cycles we consider are ∂DT ∗Sn
and the zero section S0, and we will vary the number of times each manifold
occurs as a vanishing cycle to obtain di�erent Lefschetz-Bott �brations. The
fashion in which this is performed gives rise to the same monodromy map for all
�brations - the monodromy of the contact open book identi�ed with Σk.
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This implies that the open book induced on the boundary of their total spaces
is the same as that which was previously identi�ed with Σk, so that their total
space provides a strong symplectic �lling of Σk.

Step 4:. The �nal step is to distinguish these �llings, which is done by
comparing their Euler characteristic in Section 5.6. Let E1 and E2 be symplec-
tic Lefschetz-Bott �brations with vanishing cycle ∂DT ∗Sn or S0, respectively.
Note that topologically, the Lefschetz-Bott �brations constructed above are iso-
morphic to �ber sums of E1 and E2. This is where the identi�cation of DT ∗Sn
with a subset of CPn+1 from Step 1 becomes crucial, as Theorem 4.0.1 will allow
us to identify E1 with a better known Lefschetz-Bott �bration on CPn+1 whose
Euler characteristic is known. By previous work, we also know the Euler char-
acteristic of E2. Hence, we may conclude the proof by the repeated application
of Lemma 5.1.3.

5.3 Description of the �ber

We describe DT ∗Sn in terms of quadrics in CPn+1. More precisely, set

Qn := {[z0 : . . . : zn+1] ∈ CPn+1 | z2
0+. . .+z2

n+1 = 0}, Qn−1 := Qn∩{zn+1 = 0}.

Lemma 5.3.1. Qn \Qn−1 is di�eomorphic to T ∗Sn.

Proof. Letting zn+1 = 1, we may identify

Qn \Qn−1 ∼= {(w0, . . . , wn) ∈ Cn+1 | w2
0 + . . .+ w2

n + 1 = 0}.

In real coordinates (w0, . . . , wn) = w = u + iv, we can write this as

{(u,v) ∈ Rn+1 × Rn+1 | ‖u‖2 − ‖v‖2 = −1, 〈u,v〉 = 0}. (5.1)

Note that ‖v‖ ≥ 1. From this set, de�ne a di�eomorphism to T ∗Sn by

Φ : Qn \Qn−1 → T ∗Sn

w = u + iv 7→
(

v

‖v‖
,u ‖v‖

)
,

where we identify

T ∗Sn = {(x,y) ∈ Rn+1 × Rn+1 | ‖x‖ = 1, 〈x,y〉 = 0}.

The image Φ(w) is indeed an element of T ∗Sn since evidently the �rst compo-
nent of Φ(w) has unit norm and 〈u,v〉 = 0 by the description given in Equa-
tion (5.1).
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Let νQn(Qn−1) be an open tubular neighbourhood of Qn−1 inside Qn and con-
sider

Q := Qn \ νQn(Qn−1),

which can be identi�ed with DT ∗Sn. Equip the �ber with (Φ−1)∗(ωFS), where
ωFS denotes the restriction of the Fubini-Study form. Recall that it may be
written as

ωFS = −ddC log

 n∑
j=0

|zj |2 + 1


on the images of the standard charts. For later use, set

λ = −dC log

 n∑
j=0

|zj |2 + 1


and denote by S0 the zero section of DT ∗Sn, which corresponds to {u = 0} in
Q.

Also note that CPn embedded in CPn+1 as

CPn = {[z0 : . . . : zn : 0]} ⊂ CPn+1

is a symplectic hypersurface since restricting ωFS gives the Fubini-Study form
on CPn, and we have that PD[ωFS/2π] = [CPn]. It is hence a Donaldson
hypersurface in (CPn+1, ωFS). Returning to the projective hypersurfaces Qn

andQn−1, the restriction of ωFS toQn is symplectic. Since we may regard

Qn−1 = {[z0 : . . . : zn : 0] ∈ Qn},

we similarly obtain that Qn−1 is a Donaldson hypersurface in (Qn, ωFS), and
thus we may apply Theorem 4.0.1 for M = Qn and H = Qn−1 to obtain a line
bundle over Qn that admits a symplectic Lefschetz-Bott �bration.

5.4 Open Book Description of Σk

We considered in Example 2.1.3 a Lefschetz �bration Vk(ε) ∩ D2n+4 → C given
by the projection to zn+1. Recall that Vk(ε) is the ε-level set of the polynomial
fk = z2

0 + . . .+ z2
n + zk+1

n+1. We saw that this Lefschetz �bration has regular �ber
DT ∗Sn and monodromy τk+1

S0
, a product of k+1 right-handed Dehn twists along

the zero section.

In the case at hand, we consider Vk, the vanishing locus of the polynomial fk,
as the total space, and not its ε-level set Vk(ε). One can, however, slightly
perturb the polynomial de�ning Vk in such a way that the projection becomes a
Lefschetz �bration with just the same regular �ber and monodromy, and thereby
obtain an open book decomposition of the original Vk. This procedure is called
Morsi�cation, and is described in [KK16, Section 4].
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In fact, one can make π into a symplectic Lefschetz �bration by equipping the
total space with the 2-form given by

dλ = −ddC log

 n∑
j=0

|zj |2 + 1

∣∣∣∣∣∣
Vk∩D2n+4

∈ Ω2(Cn+1).

Note that this is the Fubini-Study form pulled back by a coordinate chart to
Cn+1, so it is in particular a symplectic form on the entire total space of this
Lefschetz �bration.

Hence, the Lefschetz �bration π induces a contact open book decomposition on
the boundary ∂(Vk ∩ D2n+4) = Σk as

OB(DT ∗Sn, λ; τk+1
S0

).

Thus (Σk, ker(λ|TΣk)) is contactomorphic to the above open book.

The contact structure ξcan we endow Σk with, however, is that induced by
restricting the contact structure on S2n+3, which may a priori be di�erent
from kerλ. However, a computation shows that pulling back λ to S2n+3 (by
the Hopf map p : S2n+3 → CPn+1) is just the standard Liouville form, so
that in fact, (Σk, ker(λ|TΣk)) is contactomorphic to (Σ, ξcan), and hence also to
OB(DT ∗Sn, λ; τk+1

S0
).

5.5 Exhibiting the Fillings

We specify symplectic Lefschetz-Bott �brations over D2 by prescribing their
�ber and their vanishing cycles. Denote them by π` : X` → D2. Let the �ber
be (DT ∗Sn, λ) for all �brations, and de�ne the collection of vanishing cycles of
π` to be

(∂DT ∗Sn, . . . , ∂DT ∗Sn︸ ︷︷ ︸
`

, S0, . . . , S0︸ ︷︷ ︸
k+1−2`

),

where ` ranges in 0, 1, . . . , dk/2e. The monodromy contribution of each ∂DT ∗Sn
is a �bered Dehn twist τ∂ along ∂DT ∗Sn according to Theorem 2.3.9. Note
that DT ∗Sn ∼= V2(1) via Φ, and so for the standard symplectic structure on
DT ∗Sn, the relation by Acu and Avdek stated as Theorem 2.3.8 gives that τ∂
is symplectically isotopic to τ2

S0
. In fact, this relation also holds for our choice

of symplectic structure; see [Oba20, Proposition 3.11]. The contribution to
the monodromy by vanishing cycles S0 is τS0 , a right-handed Dehn twist along
S0.

Hence the total monodromy is

τ2`+k+1−2`
S0

= τk+1
S0

.
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Therefore, each Lefschetz-Bott �bration de�ned this way induces an open book

∂X`
∼= OB(DT ∗Sn, λ; τk+1

S0
),

so that since the above open book is contactomorphic to (Σk, ξcan), each X` is
a strong symplectic �lling of (Σk, ξcan).

5.6 Distinguishing the Fillings

We will do this by computing the Euler characteristic of X`. We start by consid-
ering symplectic Lefschetz-Bott �brations πi : Ei → D, for i = 1, 2, whose �bers
are (DT ∗Sn, dλ), where the monodromy of π1 is τ∂ (the only vanishing cycle of
π1 is ∂DT ∗Sn), and that of π2 is τS0

(its only vanishing cycle is S0).

Consider the spaceQn. We can apply Theorem 4.0.1 forM = Qn andH = Qn−1

to obtain a Lefschetz-Bott �bration on a line bundle over Qn. Appropriately
restricting this �bration, Proposition 5.1.4 yields a Lefschetz-Bott �bration over
the disk whose �bers are Qn \ νQn(Qn−1) ∼= DT ∗Sn and whose monodromy is a
�bered Dehn twist along the boundary of the �ber. Hence, this Lefschetz-Bott
�bration is topologically equivalent to π1. For �ber bundles with compact base
M , �ber F , and total space E, we have χ(E) = χ(F )χ(M), so that

χ(E1) = χ(Qn) =
(−1)n − 1

2
+ n+ 2,

where the last equality is due to [Dim92, Exercise 5.3.7 (i)].

As for E2, it can be shown that E2 is di�eomorphic to a disk D2n+2 [Oba20, p.
23], so that χ(E2) = 0.

The total space X` may now be regarded as the �ber sum of ` copies of E1 and
k + 1− 2` copies of E2, so that by Lemma 5.1.3, we obtain

χ(X`) = `χ(E1) + (k + 1− 2`)χ(E2)− (k − `)χ(DT ∗Sn)

= `

(
(−1)n − 1

2
+ n+ 2

)
+ k + 1− 2`− (k − `) χ(Sn)︸ ︷︷ ︸

=1+(−1)n

= `

(
(−1)n − 1

2
+ n+ 1 + (−1)n

)
− k(−1)n + 1.

From a�ne linearity in ` of this expression, we see that the X` are pairwise
non-homotopic.
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Chapter 6

Outlook

Recall Oba's Proposition 3.3.1 and the associated procedure to obtain a strong
symplectic �lling of a contact manifold (M, ξ):

1. Find a contact open book description (M, ξ) ∼= OB(F, λ;ψ);

2. Find Dehn or �bered Dehn twists τCj ∈ Symp(F, dλ) whose composition
is a factorization of the monodromy ψ.

While conceptually simple, the higher-dimensional symplectic mapping class
groups are more complicated and not as well-understood, so that factoring the
monodromy into �bered Dehn twists is highly nontrivial. Such a factorization
may not even exist, of course, seeing that the existence of a Dehn twist in
the symplectic mapping class group of (F, dλ) presupposes the existence of a
Lagrangian sphere in F .

Oba's work, in particular Theorem 4.0.1, provides a potential simpli�cation if
one is able to identify the page F with the complement of (a neighbourhood
of) a symplectic divisor. In this case, one obtains a symplectic Lefschetz-Bott
�bration with regular �ber F whose closed 2-form is globally symplectic (Re-
mark 4.7.1), and appropriately restricting it yields a �bration with monodromy
as the �bered Dehn twist along ∂F satisfying the conditions of 3.3.1 to provide
a symplectic �lling.

One could expect a similar technique as that used for the link Σk of the Ak-type
singularity, where the page was identi�ed with F = DT ∗Sn = Qn \ ν(Qn−1),
to be applicable to other polarized manifolds. Some examples and ways to
construct polarized manifolds can be found in [BC01, Section 2.2], the simplest
of which is M = Qn and H = Qn−1. The next simplest example is given
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by

(M,ω) = (CPn×CPm, ωFS⊕ωFS), H =

{
(z, w) ∈ CPn × CPm |

n∑
i=0

ziwi = 0

}
.

(6.1)

Of course, one would still need to �nd a suitable description of M \ H along
with the knowledge of appropriate mapping class group relations.

Possible references to consult for descriptions of complements of symplectic divi-
sors are [Bir01], [DL19], and [Gir18]. Notably, the polarized symplectic manifold
from Equation (6.1) together with the generalized Lantern relations have been
studied by Torricelli [Tor20] to obtain strong symplectic �llings that are not
Stein �llings of the contact manifolds ST ∗CP 2 and ST ∗RP 3.

A Concrete Case

Let us give an outline so as to make the construction from Theorem 4.0.1 more
explicit in the simplest case, that is, for

M = Qn = {[z0 : . . . : zn+1] ∈ CPn+1 | z2
0 + . . .+ z2

n+1 = 0},

equipped with the restriction of the Fubini-Study form ωFS, and the hypersur-
face inside Qn given by

H = Qn−1 = Qn ∩ {zn+1 = 0}.

Theorem 4.0.1 guarantees the existence of a line bundle L with c1(L) = −[ωFS/2π]
and a Lefschetz-Bott �bration π : L→ C.

Recall that the bundle L is de�ned as

L = V × C ∪Φ (P × D(δ))×ρ C,

where

� P → H is the Boothby-Wang bundle;

� V is the complement of a tubular neighbourhood ν(Qn−1);

� Φ is the gluing map given by

Φ([x, (r1, θ1), (r2, θ2)]) = (ν([x, (r1, θ1)]), (r2, θ1 + θ2));

� the S1-actions ρ and ρ on C are de�ned by

ρ(θ)(z) = e2πiθ(z), ρ(θ)(z) = e−2πiθ(z).
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The Boothby-Wang Bundle P

The Boothby-Wang bundle (P, α) → (Qn−1, ωFS|TQn−1) turns out to admit a
simple description as the restriction of the Boothby-Wang bundle over CPn+1,
which we determine �rst. Recall the de�ning property of the Fubini-Study form.
Consider the Hopf map p and the inclusion i in the diagram below:

S2n+3 (Cn+2, ω0)

(CPn+1, ωFS)

i

p

Then the Fubini-Study form satis�es

p∗ωFS = i∗ω0,

suggesting that a primitive of the standard symplectic form ω0 could serve as
the connection-contact form of the Boothby-Wang bundle.

Take λ0 to be twice the primitive of ω0 inducing the standard contact structure
on S2n+3, which in linear coordinates x0, y0, . . . , xn+1, yn+1 on Cn+2 can be
written as

λ0 =

n+2∑
i=0

xidyi − yidxi.

Recall that the Reeb vector �eld Rλ0 is given by

Rλ0
=

n+1∑
i=0

xi
∂

∂yi
− yi

∂

∂xi
= 2

n+1∑
i=0

∂

∂ϕi
,

which corresponds to the in�nitesimal generator ξ1 of the S1-action on the total
space of the Boothby-Wang bundle. The action is hence given by the Reeb �ow
φt, which we compute to be

φt(z) = e2πitz,

where we consider S1 = R/2πZ. We conclude that S1 acts on S2n+3 by multipli-
cation in each component, and that the orbits are precisely the �bers of the Hopf
map. Hence the S1-action given by multiplying each entry with e2πiθ, θ ∈ S1,
makes p : (S2n+3, λ0)→ (CPn+1, ωFS) into a principal S1 bundle. The contact
form λ0 is easily checked to be S1-invariant, and it satis�es dλ0 = ω0 = p∗ωFS.
Hence the Boothby-Wang bundle over CPn+1 is given by p.

Therefore, pulling this bundle back to Qn−1 gives the Boothby-Wang bundle we
are interested in. Explicitly, it is given by

p : P = {(z0, . . . , zn, 0) ∈ S2n+3 | z2
0 + . . . z2

n = 0} −→ Qn−1.
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Completing the Construction

In principle, it is possible with this description of the Boothby-Wang bundle to
carry out the construction of L step by step to obtain an explicit bundle. For
example, the neighbourhood of H, denoted by νQn(H), is symplectomorphic to
P ×ρ D(δ). Given that S1 acts on P ⊂ S2n+3 by multiplication, which is just
the action de�ning CPn+1, one can obtain that

νQn(H) ∼= Qn−1 × D(δ)/([z], w) ∼ ([z], e2πiθw), θ ∈ S1.

One can continue along these lines to obtain expressions for the other spaces
involved, namely

� the bundle over νQn(H), given by (P × D(δ))×ρ C;

� the bundle over V , given as the trivial bundle V × C;

� the glued space L = V × C ∪Φ (P × D(δ))×ρ C;

� the Lefschetz-Bott �bration π : L → C, de�ned on V × C by the pro-
jection to the C-factor, and on the bundle over νQn(H) by multiplication
in the D(δ)- and C-factors, interpolating with a smooth function µ as in
Section 4.5 so as to make it smooth.

However, writing out the de�nitions of these spaces does not immediately lead
to a deeper understanding of the constructed Lefschetz-Bott �bration. The
complement V still warrants a more rigorous description, as well as the spaces
involved after all identi�cations have been made.

In the end, a dream result would be a tractable identi�cation of the bundle L
with the tautological line bundle O(−1), to which it is isomorphic due to them
having the same �rst Chern class.
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