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Abstract

Symplectic toric manifolds are classified by the image of their moment map which
is a unimodular polytope. In this master’s thesis, we present recursive aspects of
this correspondence. In the first part, we show how a given unimodular polytope
gives rise to new unimodular polytopes. In the second part, we present con-
structions for symplectic toric manifolds and show how they correspond to the
constructions on unimodular polytopes. The main result is the correspondence
between faces of the moment polytope and symplectic toric submanifolds.
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Introduction

An action of a torus on a symplectic manifold is symplectic if it preserves the
symplectic structure. It is called Hamiltonian if there is an invariant map to the
dual of the Lie algebra of the torus whose components are Hamiltonian functions
of the fundamental vector fields. Such a map is called a moment map. For
compact and connected symplectic manifolds, the image of the moment map is the
convex hull of a finite number of points, which are images of fixed points. Convex
sets of this form are called polytopes. They can equivalently be characterised as
bounded polyhedra, that is, a finite intersection of half-spaces which is bounded.

If the action is effective, then the dimension of the torus can be at most half
of the dimension of the manifold. We speak of a symplectic toric manifold if
this threshold is saturated, thus the manifold has as many circle symmetries as
possible. In this case, the image of the moment map is unimodular. In fact, as
shown by Delzant in 1988 [7], these unimodular polytopes completely characterise
the symplectic toric manifold and one can construct a symplectic toric manifold
from any unimodular polytope. This is the classification of symplectic toric
manifolds by unimodular polytopes.

If a symplectic submanifold is compact, connected and invariant under the
action, it is a symplectic toric manifold in its own right. Such a submanifold is
then called symplectic toric submanifold and is also specified by a unimodular
polytope. This unimodular polytope is a face of the moment polytope of the
ambient manifold. On the other hand, all the faces of a unimodular polytope are
again unimodular polytopes. One of the main results of this master’s thesis is
putting the folklore classification of symplectic toric submanifolds by the faces of
the moment polytope on a sound footing.

Our approach to symplectic toric manifolds allows for noneffective actions
whose kernel is controlled. This is the natural framework to treat symplectic toric
submanifolds since one can take the same Lie group acting on the submanifold
as the one acting on the ambient manifold.

A different result concerns the product of two symplectic toric manifolds.
Equipped with the product action, this is again a symplectic toric manifold. The
corresponding construction for the moment polytopes may be viewed as a special
case of the Minkowski sum. Finally, also the constructions of symplectic cutting
and symplectic reduction are addressed. In this part, the focus is on the polytope
side and the possible ways that a unimodular polytope can be cut to produce a
new unimodular polytope.
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Overview

This master’s thesis is divided in two parts. Part I is a thorough introduction
to unimodular polytopes and their recursive aspects. Part II first introduces
Hamiltonian spaces with a focus on recursive aspects. We then first specialise
to actions by tori and eventually to symplectic toric manifolds, establishing the
connection to Part I.

Chapter 1 introduces the basic formalism of polyhedra. We define faces first
for general convex sets and then specialise to polyhedra. We see examples of
vertices, edges and facets. The tangent space and the local cones are defined and
their basic properties are shown. We also introduce the annihilator space and
the support cone.

In Chapter 2, we give a brief introduction to lattices, define a lattice basis
and show that every lattice admits such a basis. We also establish when a sub-
space and the corresponding quotient space inherit a lattice. Finally, we define
rationality with respect to a given lattice for polyhedra.

Chapter 3 begins by establishing that polytopes are exactly bounded polyhe-
dra. Then simplicity and unimodularity are first defined for polyhedral cones and
this definition is then extended to polytopes. We also show that the condition
on the normal vectors is equivalent to the condition on the edges.

Chapter 4 contains the main results about recursive aspects of polytopes.
It starts by discussing which vector space is the natural choice to describe the
faces as polyhedra in their own right. It is argued why this space inherits a
lattice and that the faces are rational with respect to this new lattice. Then we
show that faces of simple or unimodular polyhedral cones are again simple or
unimodular polyhedral cones. This result is then extended to polytopes. Next,
we introduce the direct Minkowski sum, which is the special case of the Minkowski
sum mentioned above. Finally, we introduce the notion of cutting polytopes and
discuss in what cases such a cut yields unimodular polytopes.

Part II begins with Chapter 5 and the definition of symplectic actions. We
introduce the (symplectic) isotropy representations and discuss how the fixed
point set gives rise to symplectic submanifolds. This is followed by the definition
of Hamiltonian spaces and their moment maps. The chapter is concluded by an
extensive presentation of recursive aspects of Hamiltonian spaces, containing in
particular short overviews of symplectic reduction and symplectic cutting.

In Chapter 6 we specialise to Hamiltonian actions by tori. We first intro-
duce the basic formalism for tori. Then we use the classification of symplectic
torus representations to get to the toric Darboux theorem, giving a local form
around a fixed point of a Hamiltonian torus action. From this we deduce that
the components of moment maps are Morse-Bott functions. We then state the
convexity theorem and show how the effectiveness of the torus action gives rise
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to the dimension threshold.

Chapter 7 contains the main results of this master’s thesis. It begins with
the local picture, which is given by symplectic toric representations. The image
of the corresponding moment maps are unimodular polyhedral cones and we
prove that symplectic toric subrepresentations correspond to the faces of these
cones. We then formally introduce symplectic toric manifolds and the Delzant
correspondence. The main part of the text is then concluded by the discussion
of the recursive aspects, in particular the product of symplectic toric manifolds
and the classification of symplectic toric submanifolds by the faces of the moment
polytope.
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Part I

Unimodular Polytopes
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Foreword We will develop the theory for unimodular polytopes living in the
dual V ∗ of a finite-dimensional vector space V . The advantage of doing this is
mainly twofold:

1. We will be largely concerned with hyperplanes and affine halfspaces. These
are comfortably described by their annihilating vectors (their normal vec-
tors if we would use the identification provided by an inner product) which
in turn live in the dual of V ∗. Using the canonical identification (V ∗)∗ ∼= V ,
these annihilating vectors can be seen as elements of the vector space V .

2. The goal is to characterise the polytopes which arise as images of the mo-
ment maps of symplectic toric manifolds. But the codomain of a moment
map is the dual of the Lie algebra of the acting torus. Even though for tori,
both the Lie algebra and its dual can be identified with Rn, we argue that
it is conceptually more coherent to work with polytopes living in the dual
space V ∗. However, whenever examples are presented, the identification
V ∼= Rn ∼= V ∗ will be assumed.

We will approach the subject of polytopes in stages. Polytopes are bounded
polyhedra and many useful properties for polytopes can be shown for general
polyhedra. Moreover, certain unbounded polyhedra, called polyhedral cones, are
central for the definition of unimodular polytopes. This is motivation enough
to study the case of general polyhedra with a focus on polyhedral cones before
specifying to polytopes.

One of the main goals of this work is to understand the faces of the polytopes
arising from symplectic toric manifolds. This is why extra care is given to the
notion of a face of a polytope. The notion of a face is defined for any convex set.
This is why the latter are a natural starting point for this Master’s thesis.



Chapter 1

Preliminaries on Convexity and
Polyhedra

The goal of this chapter is to present the basic formalism of polyhedra and the
associated objects such as the tangent space and the local cone. Many of the
definitions, results and proofs presented in this chapter are taken directly from
the works [3] and [4] of Alexander Barvinok. For some constructions, we took
the liberty of using a different name, motivated by the comparison with symplec-
tic toric manifolds. The main example for this is the renaming of the cone of
feasible directions as local cone. For some other constructions, we are not aware
of any prior formal definition. The main examples for this are the splitting of a
convex subset or the tangent space, the annihilator space or the support cone to
a polyhedron at a given point.

Convention. For the entire part I, we will assume V to be a finite dimensional
real vector space.

1.1 Convex Sets

A convex subset of a vector space is a subset such that the straight line connecting
any two points in the subset is entirely contained in the subset. Adapting from the
start the convention of working in the dual of the vector space, this corresponds
to the following formal definition:

Definition. Let φ, η ∈ V ∗. The interval with endpoints φ and η is the set

[φ, η] = {tφ+ (1− t)η | t ∈ [0, 1]}.

A subset A ⊂ V ∗ is convex if for every two points φ, η ∈ A, one has [φ, η] ⊂ A.

A particularly simple example of convex subsets are vector subspaces. Since
the property of being convex is invariant under translation, also the translates of
subspaces are convex.

1



1. Preliminaries on Convexity and Polyhedra 2

Definition. Let W ∗ ⊂ V ∗ be a subspace. The translation by any non-zero
covector φ ∈ V ∗\{0}

A =W ∗ + φ = {η ∈ V ∗ | η = ψ + φ for some ψ ∈W ∗}

is called an affine subspace of V ∗. The dimension of A is the dimension of W ∗

and we say that A is parallel to W ∗.

Examples. There are some special cases of particular importance for the present
work:

1. An affine subspace A of dimension 1 is called a line and is of the form

A = {φ+ tη | t ∈ R}

where η, φ ∈ V ∗ with η ̸= 0.

2. Let v ∈ V \{0} and c ∈ R. The affine subspace defined by

H = {φ ∈ V ∗ | ⟨φ, v⟩ = c}

is called an affine hyperplane and has dimension dimV −1, i.e. codimension
1.

3. Let H ⊂ V ∗ be an affine hyperplane given by v ∈ V \{0} and c ∈ R. The
complement of H in V is the union of two convex sets, called open affine
halfspaces:

V \H = H> ∪H<

with

H> = {φ ∈ V ∗ | ⟨φ, v⟩ > c} and H< = {φ ∈ V ∗ | ⟨φ, v⟩ < c}.

The sets H≥ = H ∪ H> and H≤ = H ∪ H< are again convex subsets and
are called closed affine halfspaces:

H≥ = {φ ∈ V ∗ | ⟨φ, v⟩ ≥ c} and H≤ = {φ ∈ V ∗ | ⟨φ, v⟩ ≤ c}.

Notation. We will extensively work with affine hyperplanes and closed affine
halfspaces, so we adapt a shorthand notation for it. For v ∈ V \{0} and c ∈ R
we denote

H(v,c) = {φ ∈ V ∗ | ⟨φ, v⟩ ≤ c}
H(v,c) = ∂H(v,c) = {φ ∈ V ∗ | ⟨φ, v⟩ = c}.

Convention. We can extend the definition to also allow for the zero normal
0 ∈ V if we interpret the halfspaces as defined by the inequality. However, in this
case we do not get a halfspace but either all of V ∗ or the empty set depending
on the sign of c ∈ R:

H(0,c) = {φ ∈ V ∗ | ⟨φ, 0⟩ ≤ c} =

{
V ∗ if c ≥ 0

∅ if c < 0
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Faces of Convex Sets

Informally, a face of a convex set is obtained by laying a hyperplane from the
outside onto the boundary of the convex set and then taking the intersection.
The first step towards the rigorous definition is to formalise the notion of "from
the outside":

Definition. Let A ⊂ V ∗ be a convex subset and H(v,c) ⊂ V ∗ be an affine
hyperplane. H(v,c) is said to (strictly) isolate A if A is contained in one of the
closed (open) affine halfspaces defined by H(v,c) i.e. if

⟨φ, v⟩ ≤ c for all φ ∈ A

with a strict inequality for strict isolation.

Theorem 1.1.1 (Isolation Theorem). Let A ⊂ V ∗ be an open convex set and let
φ /∈ A be a point. Then there exists an affine hyperplane H which contains φ and
strictly isolates A.

Proof. ([3], Theorem 1.6) We proceed by induction on n = dim (V ) and assume
without loss of generality, that φ = 0. The case n = 1 is trivial since in that case
a hyperplane is just a point and we may choose 0 (i.e. φ itself) to be H.

Assume now that the statement is true for all dimensions smaller than n. Let
H ⊂ V ∗ be the maximal (meaning of largest possible dimension) subspace such
that 0 ∈ H and H ∩A = ∅.
Claim. H is a hyperplane.
Proof of Claim. Consider the quotient V ∗/H with the associated projection
π : V ∗ → V ∗/H. If H is not a hyperplane, then dim (V ∗/H) ≥ 2. By lin-
earity of the projection, π(A) is an open convex subset in V ∗/H. By the in-
duction hypothesis, there is a hyperplane H ′ ⊂ V ∗/H such that 0 ∈ H ′ and
H ′ ∩ π(A) = ∅. But then the preimage π−1(H ′) is a subset of V ∗ such that
0 ∈ π−1(H ′) and A ∩ π−1(H ′) = ∅. But π−1(H ′) is strictly larger than H be-
cause dim (H ′) = dim (V ∗/H) − 1 ≥ 1 while dim (π(H)) = 0. This contradicts
maximality of H and proves the claim. ■

Corollary 1.1.2. Let A ⊂ V ∗ be a convex set with a non-empty interior and let
φ ∈ ∂A be a boundary point. Then there exists an affine hyperplane H such that
φ ∈ H and H isolates A.

Proof. ([3], Theorem 2.7) int(A) is a non-empty convex open set such that
φ /∈ int(A). Then by the isolation theorem, there exists an affine hyperplane
H containing φ and isolating int(A). Finally, it follows by continuity of linear
maps that H also isolates A. ■
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Figure 1.1: Tangent lines to the circle are support hyperplanes.

This last result is the formalisation of "laying a hyperplane onto the bound-
ary":

Definition. Let A ⊂ V ∗ be a convex set and φ ∈ ∂A be a boundary point. A
support hyperplane to A at φ is an affine hyperplane H ⊂ V ∗ such that φ ∈ H
and H isolates A.

Example. The tangent space to the closed ball A ⊂ Rn is a support hyperplane.
See figure 1.1 for the example of n = 2.

A face of a convex set is now the intersection of the convex set with a support
hyperplane. However, it is convenient to also consider the empty set and the
whole convex set to be faces. To include the first it is sufficient to allow for
hyperplanes which do not intersect the convex set i.e. strictly isolate it, but the
second has to be added manually:

Definition. Let A ⊂ V ∗ be convex. A face F of A is either all of A or a (possibly
empty) set of the form

F = A ∩H

where H is an affine hyperplane which isolates A. The face F is called a proper
face if it is neither empty nor all of A.

Example. Consider the triangle T with corners A,B and C shown in figure 1.2.
The corners e.g. C = T ∩H1 and the edges e.g. [A,B] = T ∩H2 are faces of the
triangle.

Notation. Building upon the convention for the notation of hyperplanes, we
write

F(v,c)(A) = A ∩H(v,c) = {φ ∈ A | ⟨φ, v⟩ = c}.

Faces of convex sets are a special case of a more general class of subsets with
interesting properties:
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Figure 1.2: The point C and the interval [A,B] are faces of the triangle with
cornerpoints A,B and C.

Definition. Let A ⊂ V ∗ be a convex subset. A subset E ⊂ A is called an
extreme set of A if for any φ ∈ E such that φ = (η1 + η2)/2 for some η1, η2 ∈ A,
we must have η1, η2 ∈ E.

Proposition 1.1.3. A face of a convex set is an extreme set.

Proof. Let F ⊂ A ⊂ V ∗ be a face, that is, there exist v ∈ V \{0} and c ∈ R such
that

A ⊂ H(v,c) and F = A ∩ ∂H(v,c).

Take then φ ∈ F such that φ = (η1+η2)/2 for some η1, η2 ∈ A. Since A ⊂ H(v,c),
we have ⟨η1, v⟩ , ⟨η2, v⟩ ≤ c. But then we observe that

c = ⟨φ, v⟩

=

〈
η1 + η2

2
, v

〉
=

⟨η1, v⟩+ ⟨η2, v⟩
2

≤ c

with equality if and only if ⟨η1, v⟩ = c = ⟨η2, v⟩. But this means that
η1, η2 ∈ ∂H(v,c) ∩A and hence F is an extreme set of A. ■

1.1.1 Convex Cones

We will now turn our attention to a special class of convex sets which will play
a crucial role in the upcoming chapters: cones. The guiding principle to keep
in mind is that cones will be used to characterise the local properties of more
general convex sets.
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Definition. A point φ ∈ V ∗ is called the conic combination of points φ1, ..., φn ∈ V
if

φ =
n∑
i=1

λiφi for some λi ∈ R≥0.

The set of all conic combinations of points from a given set A ⊂ V is called the
conic hull of A and denoted by co(A).

Example. The conic hull co(φ) of a single, non-zero point φ ∈ V ∗ is called the
ray spanned by φ.

Definition. A convex set C ⊂ V ∗ is called a convex cone if 0 ∈ C and the ray
spanned by any non-zero element φ ∈ C\{0} is entirely contained in C:

λφ ∈ C for every λ ∈ R≥0, φ ∈ C.

The study of convex cones is considerably easier than the study of arbitrary
convex sets. This is due to the fact that any support hyperplane is a hyperplane
in the strict sense, that is, it contains the origin and is a vector subspace.

Lemma 1.1.4. Let C ⊂ V ∗ be a cone and let H ⊂ V ∗ be an affine hyperplane
isolating and intersecting C i.e. C ∩H ̸= ∅. Then 0 ∈ H.

Proof. ([3], Lemma 8.2) Write H = H(v,c) = ∂H(v,c) for some v ∈ V \{0} and
c ∈ R such that C ⊂ H(v,c). Since 0 ∈ C, we must have ⟨0, v⟩ = 0 ≤ c. Assume
that c > 0. Since H(v,c) is a support hyperplane, there is a φ ∈ C such that
⟨φ, v⟩ = c > 0. But then for λ > 1, we have ⟨λφ, v⟩ = λ ⟨φ, v⟩ = λc > c, so
that λφ /∈ H(v,c). But as C is a cone, we have λφ ∈ C which then contradicts
C ⊂ H(v,c). ■

1.2 Polyhedra

The first goal of part I is to properly define what unimodular polytopes are.
Polytopes are special cases of convex sets which belong to a larger class of convex
sets, namely polyhedra: In section 3.1 we will see that convex polytopes can be
seen as exactly those polyhedrons which are bounded. This will allow us to treat
polytopes with the same formalism as polyhedra. This is the motivation for this
extensive presentation of the formalism of polyhedra which we begin with the
formal definition.

Definition. A polyhedron P ⊂ V ∗ is the intersection of finitely many closed
affine halfspaces:

P =
⋂
i∈I

H(vi,ci) = {φ ∈ V ∗ | ⟨φ, vi⟩ ≤ ci for all i ∈ I}

where I is some finite set. By convention, if I is the empty set, P corresponds
to all of V ∗.
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Figure 1.3: Polyhedron with outward pointing normal vectors v1, v2 and v3.

Remark. 1. Since the intersection of convex sets is again convex, polyhedra
are convex.

2. The intersection of two polyhedra is again a polyhedron. This is obvious
as the intersection of two finite intersection is again a finite intersection.

Examples. 1. Taking |I| = 1, we see that affine halfspaces are polyhedra.

2. For |I| = 2 and choosing the two distinct closed halfspaces defined by a
single hyperplane, we get that hyperplanes are polyhedra as well.

3. For |I| = 3, the polyhedron

P =
3⋂
i=1

H(vi,ci)

with

v1 =

(
0
−1

)
, v2 =

(
−1
0

)
and v3 =

(
0
1

)
as well as c1 = c2 = 0 and c3 = 1 is shown in figure 1.3. This polyhedron
is clearly not bounded.

As can be seen already from the first two examples, one must be careful
when talking about the dimension of a polyhedron. The key to a sensible notion
is the observation that for any polyhedron which does not contain an interior
point, there is a proper affine subspace containing the whole polyhedron. More
formally, we have the following result:

Lemma 1.2.1. Any non-empty polyhedron either contains an interior point or
lies in a proper affine subspace.
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Proof. ([4], Theorem 4.15). Consider an arbitrary polyhedron P =
⋂
i∈I H(vi,ci)

and assume first that for every i ∈ I there is a point φi ∈ P such that ⟨φi, vi⟩ < ci.
Then for the average

φ =
1

|I|
∑
i∈I

φi

we have
⟨φ, vi⟩ < ci for all i ∈ I

and φ lies in the interior of P . If on the other hand, for some i ∈ I we have
⟨φ, vi⟩ = ci for every φ ∈ P , then P lies in the affine hyperplane ∂H(vi,ci). ■

Definition. Let P ⊂ V ∗ be a polyhedron.

1. The dimension of P is the dimension of the smallest affine subspace that
contains P . By convention, the dimension of the empty set is -1.

2. The relative interior int(P ) is the interior of P with respect to the smallest
affine subspace containing P . For brevity, we will often just refer to the
relative interior as the interior.

Since polyhedra are convex sets, they inherit the notion of a face established
in section 1.1: A face F of a polyhedron P is either all of P or a (possibly empty)
set of the form

F = P ∩H(v,c) = {φ ∈ P | ⟨φ, v⟩ = c}

whereH(v,c) is an affine hyperplane which isolates P . Moreover, since hyperplanes
are examples of polyhedra and intersections of polyhedra are again polyhedra, the
faces of a polyhedron are again polyhedra. In particular, we can thus speak of the
dimension of a face and classify faces according to their dimension. Of particular
importance are faces of small dimension or codimension which therefore get their
own name:

Definition. Let P ⊂ V ∗ be a polyhedron and F ⊂ P a face of P .

1. If dim (F ) = 0, F is called a vertex. We denote the set of vertices of P by
Vert (P ).

2. If dim (F ) = 1, F is called an edge.

3. If codim (F ) = 1, F is called a facet .

Example. For the standard cube [0, 1]3 ⊂ R3 the notions of a vertex, and edge
and a facet are exactly what one would expect. See figure 1.4 for a particularly
colourful example.

Remark. Note that being a vertex, that is a face of dimension zero, is equivalent
to being an extreme point.
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Figure 1.4: Colourful example of a cube in R3 with a vertex V , an edge E and a
facet F .

This equivalence can for instance be used to show that any vertex of a face
is also a vertex of the polyhedron.

Lemma 1.2.2. Let F ⊂ P be a face of a polyhedron P and let φ be a vertex of
F . Then φ is also a vertex of P .

Proof. ([4], Lemma 4.6) Suppose that φ is a vertex of F , or equivalently that
it is an extreme point. Write then φ = (φ1 + φ2)/2 for φ1, φ2 ∈ P . Since F
is an extreme set by Proposition 1.1.3, it follows that φ1, φ2 ∈ F . But then
φ1 = φ = φ2 since φ is an extreme point in F . Thus φ is an extreme point of P ,
hence a vertex of P . ■

It is clear from the definition of a polyhedron that the description in terms
of halfspaces is not unique. For instance, one can use a certain halfspace twice
and still get the same subset of V ∗. More generally, there might be halfspaces
involved in the intersection which are not needed to describe the subset:

Definition. Let P =
⋂
i∈I H(vi,ci) be a polyhedron. An index j ∈ I such that

P =
⋂
i∈I

H(vi,ci) =
⋂

i∈I\{j}

H(vi,ci)

is called redundant. The index set I of a polyhedron is called irredundant or
minimal if no index i ∈ I is redundant, that is, if for every j ∈ I we have

P =
⋂
i∈I

H(vi,ci) ̸=
⋂

i∈I\{j}

H(vi,ci).

Remark. 1. From every index set of a polyhedron we can obtain a minimal
one by just omitting any redundant index. In the following, we will hence
assume without loss of generality the index sets to be minimal.
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2. Any index j ∈ I such that H(vj ,cj) is a hyperplane isolating
⋂
i∈I\{j}H(vi,ci)

is redundant. Hence we might assume that if I is minimal, all the indices
i ∈ I actually give rise to support hyperplanes H(vi,ci) such that

H(vj ,cj) ∩ int

 ⋂
i∈I\{j}

H(vi,ci)

 ̸= ∅.

But this implies that for P =
⋂
i∈I H(vi,ci) (with I minimal) the face

F(vi,ci)(P ) = P ∩H(vi,ci)

has codimension 1, and is hence a facet. Hence for any index i ∈ I of a
minimal index set, there is a well-determined facet of the polyhedron.

Recall that a polyhedron is not required to be bounded and may therefore
contain directions which extend to infinity. The existence of a direction which
extends to infinity in both directions can be linked to the polytope containing a
vertex.

Lemma 1.2.3. 1. A polyhedron is bounded if and only if it does not contain
a ray.

2. A non-empty polyhedron contains a vertex if and only if it does not contain
a line.

Proof. ([4], Theorem 4.8 and Lemma 4.2.)

1. If a polyhedron contains a ray, it is clearly unbounded.

Reversely, let P =
⋂
i∈I H(vi,ci) be an unbounded polyhedron. Choose

an inner product on V and note that since P is unbounded, there exists a
sequence un ∈ P with u1 = 0 (if 0 ̸= u1, just translate the whole polyhedron
and sequence by −u1) and ∥un∥ → ∞. Consider then the normalised
sequence wn = un/∥un∥. Note that each point wn lies on the interval with
endpoints 0 and un i.e. wn ∈ [u1, un] = [0, un] and hence by convexity
wn ∈ P . Since P is closed it follows that any limit point w of wn is
contained in P as well. It follows that the ray spanned by w = limn→∞wn
will lie in P .

2. Let P =
⋂
i∈I H(vi,ci) be a polyhedron. Suppose first that P contains a line

{φ+ tη | t ∈ R} for some η ̸= 0 through φ ∈ P . By linearity, we must have

⟨η, vi⟩ = 0 for all i ∈ I.

since otherwise there would be a t ∈ R large enough such that

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩ > ci
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meaning that the line is not contained in P . But then we can write

φ =
φ1 + φ2

2
with φ1 = φ+ η, φ2 = φ− η ∈ P.

This shows that no point can be an extreme point and hence also that no
point can be a vertex.

Reversely, assume that P does not contain a line and proceed by induction
over n = dim (V ). The case n = 0 is clear. Assume now the that the
statement holds for n − 1 and choose an arbitrary φ ∈ P . We distinguish
two cases:

(a) Suppose first that φ is part of some proper face. This face lies in a
proper affine subspace and hence contains a vertex by the induction
hypothesis.

(b) Suppose now that φ is not contained in any face F . Consider then
a line in V ∗ through φ. Since P does not contain any lines, the
intersection of this line with P is either a ray emanating from a certain
point η in a proper face or an interval with endpoints η1, η2 in proper
faces. In both cases, we apply the induction hypothesis as above to
the appropriate face of P to see that this face contains a vertex.

In both cases we conclude since any vertex of a face is also a vertex of P
by Lemma 1.2.2. ■

1.2.1 Polyhedral Cones

Polyhedral cones are a special class of polyhedra. They are a useful tool to
understand the local behaviour of a point in a more general polyhedron as we will
see in section 1.3. Just as for convex cones, polyhedral cones are considerably
simpler to study than general polyhedra because the halfspaces characterising
them arise from proper hyperplanes, not affine ones.

Definition. A polyhedron C ⊂ V ∗ is called a polyhedral cone if 0 ∈ C and for
every φ ∈ C and every λ ∈ R≥0 we have λφ ∈ C.

Remark. 1. It follows directly from Lemma 1.1.4, that a polyhedral cone is
the finite intersection of halfspaces that is affine halfspaces with 0 on their
boundary. This condition is equivalent to all the coefficients ci ∈ R being
zero. For brevity, when talking about cones we will thus omit them from
the notation and write

C =
⋂
i∈I

Hvi with Hvi = {φ ∈ V ∗ | ⟨φ, vi⟩ ≤ 0}
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2. For polyhedral cones, only the origin can possibly be a vertex. A cone
where the origin is indeed a vertex, is called pointed . By Lemma 1.2.3, a
polyhedral cone is pointed if and only if it does not contain a line.

3. The conic hull of a finite set of points is necessarily a polyhedral cone.
Reversely, a pointed polyhedral cone can be written as the conic hull of a
finite set of points.

1.3 Tangent Spaces and Local Cones

In the preceding sections we have exhibited several global properties of polyhedra
and introduced polyhedral cones. This was motivated by saying that these objects
can be used to characterise local properties of points in the polyhedron. In this
section we will introduce the constructions which establish this link.

Consider first a boundary point of a polyhedron. As such it is surely contained
in all the closed affine halfspaces which define the polyhedron. However, since it
is a boundary point, for some of those halfspaces, the point lies on the boundary,
that is, in the defining hyperplane. These are the affine halfspaces that determine
the local properties of the point. Since we will use them extensively, we introduce
some useful terminology and notation for them.

Definition. Take a polyhedron P =
⋂
i∈I H(vi,ci) and let φ ∈ P be a point. The

indices
Iφ = {i ∈ I | φ ∈ ∂H(vi,ci)} = {i ∈ I | ⟨φ, vi⟩ = ci}

are called active on φ.

Notation. We will denote by @@Iφ the complement of Iφ in I, that is

@@Iφ = {i ∈ I | φ /∈ ∂H(vi,ci)} = {i ∈ I | ⟨φ, vi⟩ < ci}.

Tangent Spaces and Annihilator Spaces

We start with the definition of a tangent space to a polyhedron at a given point.
This definition is inspired by the definition of the tangent space in differential
geometry: Instead of taking smooth curves and considering its velocity vectors,
for polyhedra we take straight lines.

Definition. Let P be a polyhedron and φ ∈ P a point.

1. The tangent space Lφ(P ) to P at φ is the set

Lφ(P ) = {η ∈ V ∗ | φ+ tη ∈ P for t ∈ [−ϵ, ϵ] for some ϵ > 0} .
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2. The annihilator space Wφ(P ) at φ is the annihilator in (V ∗)∗ of the tangent
space to P at φ:

Wφ(P ) = (Lφ(P ))
0.

Remark. Since V is assumed to be finite-dimensional, there is a canonical iden-
tification V ∼= (V ∗)∗. Under this identification, for any subspace W ⊂ V it holds
that (W 0)0 = W . Hence the annihilator space Wφ(P ) can be interpreted as the
subspace of V such that

(Wφ(P ))
0 = Lφ(P ).

While the definition of the tangent space above exhibits very well its local
character, it is not very useful for explicit computations. The concept of active
indices provides a rather natural expression for the tangent space in terms of the
defining hyperplanes:

Lemma 1.3.1. Let P =
⋂
i∈I H(vi,ci) be a polyhedron and φ ∈ P a point. Write

dφ for the dimension of the smallest face containing φ. Then

1. the tangent space is given explicitly by

Lφ(P ) =
⋂
i∈Iφ

∂Hvi

and has dimension dφ and

2. the annihilator space is given explicitly by

Wφ(P ) = SpanR
(
{vi}i∈Iφ

)
and has codimension dφ.

Proof. 1. Suppose η ∈ Lφ(P ). Then there is an ϵ > 0 such that for any
t ∈ [−ϵ, ϵ], φ+ tη ∈ P . It follows that for i ∈ Iφ

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩
= ci + t ⟨η, vi⟩
≤ ci.

Therefore t ⟨η, vi⟩ ≤ 0 for all t ∈ [−ϵ, ϵ] which implies that ⟨η, vi⟩ = 0, and
hence η ∈ ∂Hvi . Since i ∈ Iφ and η ∈ Lφ(P ) were arbitrary, this shows
that Lφ(P ) ⊂

⋂
i∈Iφ ∂Hvi .

Conversely, take η ∈
⋂
i∈Iφ ∂Hvi . Then for i ∈ Iφ we have

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩ = ci + 0
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while for i ∈ @@Iφ we have ci − ⟨φ, vi⟩ > 0. Choose ϵ > 0 sufficiently small
such that

ϵ|⟨η, vi⟩| < ci − ⟨φ, vi⟩ .

Then for all t ∈ [−ϵ, ϵ] we have

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩
≤ ⟨φ, vi⟩+ t|⟨η, vi⟩|
≤ ⟨φ, vi⟩+ ϵ|⟨η, vi⟩|
< ⟨φ, vi⟩+ ci − ⟨φ, vi⟩
= ci

Repeating the same argument for the other indices i ∈@@Iφ and choosing the
minimal ϵ implies that η ∈ Lφ(P ).

dim (Lφ(P )) = dφ follows immediately from the definition of Lφ(P ).

2. codim (Wφ(P )) = dφ is a consequence of dim(Lφ(P )) = dφ. The explicit
expression for Lφ(P ) implies that the codimension of Lφ(P ) corresponds
to the dimension of SpanR

(
{vi}i∈Iφ

)
. Hence we have

dim (Wφ(P )) = dim
(
SpanR

(
{vi}i∈Iφ

))
and it suffices to show one inclusion. Take v ∈ SpanR

(
{vi}i∈Iφ

)
and write it

as v =
∑

i∈Iφ λivi for some real coefficients λi ∈ R. Then for all η ∈ Lφ(P )

⟨η, v⟩ =
∑
i∈Iφ

λi ⟨η, vi⟩ = 0

where we used that η ∈ ∂Hvi for all i ∈ Iφ. Hence SpanR
(
{vi}i∈Iφ

)
⊂Wφ(P )

and we conclude by equality of the dimensions. ■

For interior points, no index is active and hence the tangent space is all of V ∗.
For a boundary point φ on the other hand, it follows by Corollary 1.1.2 that it
is contained in some face F and by minimality of the index set, Iφ is non empty.
Thus the tangent space Lφ(P ) is a proper subspace of V ∗ and the annihilator
space Wφ(P ) is non-trivial. On the other hand, at a vertex the tangent space
is trivial. This observation allows to see that the set of vertices Vert(P ) of a
polyhedron P is always finite:

Corollary 1.3.2. Let P =
⋂
i∈I H(vi,ci) be a polyhedron and let φ ∈ P be a point.

φ is a vertex of P if and only if {vi}i∈Iφ span V i.e. Wφ(P ) = V . In particular,
the set of vertices of a polyhedron is always finite, possibly empty.

Proof. The first statement is just Lemma 1.3.1 with dφ = 0.



1. Preliminaries on Convexity and Polyhedra 15

Figure 1.5: Schematic picture of a polyhedron and the tangent space to two
points η and φ.

For the second, note that for every vertex φ ∈ P , we have |Iφ| ≥ dim (V )
and that Iφ uniquely determines the vertex. Hence, the number of vertices of P
does not exceed (

|I|
dim (V )

)
=

|I|!
(|I| − dim(V ))! dim(V )!

and is therefore finite. ■

Example. Consider again the same polyhedron P as in figure 1.3. See now
figure 1.5 for the example of two tangent spaces to this polyhedron at two different
points. η is a vertex and hence its tangent space is trivial. One might also see
that η is contained in the two hyperplanes associated to v2 and v3, so Iη = {2, 3}.
Then it follows from the explicit expression in Lemma 1.3.1 that Lη(P ) = 0.

The point φ on the other is only contained in the hyperplane associated to
v3 so Iφ = {3}. The tangent space is thus one-dimensional by Lemma 1.3.1 and
given as

Lφ(P ) = ∂Hv3

= {φ ∈ V ∗ | ⟨φ, v3⟩ = 0}
= SpanR ((1, 0))
∼= R.

Local Cones and Support Cones

While the tangent space (and thus also the annihilator space) carry some infor-
mation of the local properties, they do not characterise them sufficiently well for
our purposes. This is evident for vertices whose tangent spaces are trivial. This
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fact can actually in some sense be seen as a local version of the second point of
Lemma 1.2.3. Looking at this result also hints at what might be a solution to the
problem: Instead of looking at short lines whose midpoint is the chosen point,
one might look at short rays emanating from this point.

Definition. 1. The local cone Cφ(P ) to P at φ is the set

Cφ(P ) = {η ∈ V ∗ | φ+ tη ∈ P for t ∈ [0, ϵ] for some ϵ > 0} .

2. The support cone Sφ(P ) to P at φ is the set

Sφ(P ) = {v ∈ V | ⟨η, v⟩ ≤ 0 for all η ∈ Cφ(P )} .

Just as for the tangent space, it is useful to first establish an explicit expres-
sion.

Lemma 1.3.3. Let P =
⋂
i∈I H(vi,ci) be a polyhedron and φ ∈ P be a point.

Then

1. the local cone to P at φ is given explicitly by

Cφ(P ) =
⋂
i∈Iφ

Hvi

2. and the support cone to P at φ is given explicitly by

Sφ(P ) = co({vi}i∈Iφ)

Proof. 1. Suppose first that η ∈ Cφ(P ). Then note that for i ∈ Iφ, there is
an ϵ > 0 such that for all t ∈ [0, ϵ] we have φ+ tη ∈ P . Therefore

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩
= ci + t ⟨η, vi⟩
≤ ci.

It follows that t ⟨η, vi⟩ ≤ 0 and since t ≥ 0 this implies

⟨η, vi⟩ ≤ 0 for all i ∈ Iφ

so that Cφ(P ) ⊂
⋂
i∈Iφ Hvi .

Reversely, take η ∈
⋂
i∈Iφ Hvi and treat separately the cases i ∈ Iφ and

i ∈@@Iφ. If i ∈ Iφ, then as before

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩
= ci + t ⟨η, vi⟩
≤ ci
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since ⟨η, vi⟩ ≤ 0 and t ≥ 0. If i ∈@@Iφ, then we have ci − ⟨φ, vi⟩ > 0 and can
hence choose an ϵ > 0 sufficiently small such that ϵ|⟨η, vi⟩| < ci − ⟨φ, vi⟩.
For this choice we get

⟨φ+ tη, vi⟩ = ⟨φ, vi⟩+ t ⟨η, vi⟩
< ⟨φ, vi⟩+ ci − ⟨φ, vi⟩
= ci.

so that we can conclude that φ+ tη ∈ P for t ∈ [0, ϵ]. Thus η ∈ Cφ(P ) and⋂
i∈Iφ Hvi ⊂ Cφ(P ).

2. Suppose first that v ∈ co({vi}i∈Iφ), that is, there exist positive real coeffi-
cients λi such that v =

∑
i∈Iφ λivi. Then for η ∈ Cφ(P ) we have

⟨η, v⟩ =
∑
i∈Iφ

λi ⟨η, vi⟩ ≤ 0

since ⟨η, vi⟩ ≤ 0 as η ∈ Cφ(P ) =
⋂
i∈Iφ Hvi . Hence v ∈ Sφ(P ) and since

v ∈ co({vi}i∈Iφ was arbitrary, co({vi}i∈Iφ ⊂ Sφ(P ).

Conversely, suppose v /∈ co({vi}i∈Iφ). Since co({vi}i∈Iφ) is a polyhedral
cone in V (not in V ∗ as usual), there exist {ηj}j∈J such that

co({vi}i∈Iφ) =
⋂
j∈J

Hηj .

We then observe that for all i ∈ Iφ we have vi ∈ co({vi}i∈Iφ), so that

⟨ηj , vi⟩ ≤ 0 for all j ∈ J

so that ηj ∈ Cφ(P ) for all j ∈ J . On the other hand, since v is supposed to
lie outside of co({vi}i∈Iφ), there must exist a j ∈ J such that ⟨ηj , v⟩ > 0.
As ηj ∈ Cφ(P ), this implies v /∈ Sφ(P ) and concludes the proof. ■

Example. Consider the polyhedron P shown in figure 1.6. For the vertex η, one
sees that Iη = {1, 2} and so

Cη(P ) = Hv1 ∩Hv2

as is shown in the figure. For φ on the other hand, we have Iφ = {2, 3} and so

Cφ(P ) = Hv2 ∩Hv3 .
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Figure 1.6: The local cones at two vertices φ and η of a polyhedron P .

The name ’support cone’ for Sφ(P ) is no accident: For a given point φ ∈ P
in a polyhedron P and v ∈ V \{0}, the hyperplane ∂H(v,c) with c := ⟨φ, v⟩
is a support hyperplane if and only if v is in the support cone. Another way of
formulating this may be that there is a 1-1 correspondence between rays in Sφ(P )
and support hyperplanes at φ. That is because two elements v, w ∈ Sφ(P ) define
the same support hyperplane if and only if there exists a λ ∈ R\{0} such that
v = λw.

Lemma 1.3.4. Let P =
⋂
i∈I H(vi,ci) be a polyhedron and φ ∈ ∂P be a boundary

point. Let v ∈ V \{0} with c := ⟨φ, v⟩ define an affine hyperplane ∂H(v,c) con-
taining φ. Then ∂H(v,c) is a support hyperplane at φ if and only if v ∈ Sφ(P ).

Proof. Take first v ∈ Sφ(P ), that is

v =
∑
i∈Iφ

λivi with λi ∈ R≥0.

Then we note that c =
∑

i∈Iφ λici since

c = ⟨φ, v⟩

=
∑
i∈Iφ

λi ⟨φ, vi⟩

=
∑
i∈Iφ

λici.
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To check that P ⊂ H(v,c) is almost the same computation: Take η ∈ P , then

⟨η, v⟩ =
∑
i∈Iφ

λi ⟨η, vi⟩

≤
∑
i∈Iφ

λici

= c

where we used that the λi are all non-negative.

Reversely, suppose that ∂H(v,c) is a support hyperplane at φ. We show that
v ∈ Sφ(P ) = co({vi}i∈Iφ). This is a polyhedral cone and we can write

Sφ(P ) =
⋂
j∈J

Hηj .

For all i ∈ Iφ we have vi ∈ co({vi}i∈Iφ), so

⟨ηj , vi⟩ ≤ 0 for all j ∈ J .

If we had v /∈ Sφ(P ), then there would be a j ∈ J such that

⟨ηj , v⟩ > 0.

But we can take ϵ > 0 sufficiently small so that φ+ ϵηj ∈ P (since

⟨φ+ ϵηj , vi⟩ = ⟨φ, vi⟩+ ϵ ⟨ηj , vi⟩ ≤ ⟨φ, vi⟩ = ci for all i ∈ Iφ

while for all i ∈@@Iφ we use the same argument as in the second part of the proof
of Lemma 1.3.1). But at the same time we have

⟨φ+ ϵηj , v⟩ = ⟨φ, v⟩+ ϵ ⟨ηj , v⟩ = c+ ϵ ⟨ηj , v⟩ > c

which contradicts P ⊂ H(v,c). ■

Faces of Polyhedra

The final aim of this chapter is to give explicit expressions for the faces of a
polyhedron similarly to the ones of the tangent space and the local cone.

Lemma 1.3.5. Let P =
⋂
i∈I H(vi,ci) be a polyhedron with non-empty interior.

1. Let φ ∈ ∂P be a boundary point. Then

F(vφ,cφ)(P ) = {η ∈ P | ⟨η, vφ⟩ = cφ} with vφ =
∑
i∈Iφ

vi and cφ =
∑
i∈Iφ

ci

is a face of P containing φ in its relative interior. In particular, every
boundary point lies in the interior of some face.
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2. Every proper face F of P can be written as F = F(vφ,cφ)(P ) for any
φ ∈ int (F ).

Proof. ([4], Theorem 4.15.)

1. By Lemma 1.3.4, ∂H(vφ,cφ) is a support hyperplane to φ. Hence

F(vφ,cφ)(P ) = P ∩ ∂H(vφ,cφ)

is a face of P containing φ. The smallest affine subspace containing F(vφ,cφ)

is a translate of the tangent space:
⋂
i∈Iφ ∂H(vi,ci). It is clear that φ itself is

contained in this subspace and that every small neighbourhood of v within
this subspace is contained in P and hence also in F(vφ,cφ).

2. F is a face of P and hence there exist v ∈ V \{0} and c ∈ R such that
F = F(v,c)(P ). Since ∂H(v,c) is by assumption a support hyperplane at φ,
by Lemma 1.3.4 we can write

v =
∑
i∈Iφ

λivi with λi ∈ R≥0.

Feeding this to φ we get that c =
∑

i∈Iφ λici. On the other hand, F is
by assumption a non-empty polyhedron and hence its relative interior is
non-empty by lemma 1.2.1. For any point φ ∈ int (F ) we then have that
F(vφ,cφ)(P ) is a face of P containing φ in its interior.

Suppose now that η ∈ F(vφ,cφ)(P ), which implies that ⟨η, vi⟩ = ci for all
i ∈ Iφ. Then we see that

⟨η, v⟩ =
∑
i∈Iφ

λi ⟨η, vi⟩

=
∑
i∈Iφ

λici

= c

and hence η ∈ F , giving that F(vφ,cφ)(P ) ⊂ F .

If there existed an η ∈ F\F(vφ,cφ), then we could find an i ∈ Iφ such that
⟨η, vi⟩ < ci. But this would imply that

F̃ = {ψ ∈ F | ⟨ψ, vi⟩ = ci}

is a proper face of F . But then φ ∈ F̃ would imply φ ̸∈ int (F ) which is a
contradiction. ■
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Take now F any non-empty face of a polyhedron P . By the first point of
the Lemma 1.3.5, F has an interior point φ ∈ int (F ). By the second point of
Lemma 1.3.5, we have F = F(vφ,cφ)(P ). However, it is clear that this does not
depend upon the interior point we choose. In particular, IF := Iφ is well-defined
by the choice of the face. Finally, because

⟨η, vφ⟩ =
∑
i∈Iφ

⟨η, vi⟩ =
∑
i∈Iφ

ci

while ⟨η, vi⟩ ≤ ci for all i ∈ Iφ, the equality for the sum can only hold if equality
holds for each summand. In conclusion we have arrived at the following explicit
expression for an arbitrary proper face:

Corollary 1.3.6. Let P =
⋂
i∈I H(vi,ci) be a polyhedron. Every proper face

F ⊂ P is of the form

F = {φ ∈ V ∗ | ⟨φ, vi⟩ = ci, i ∈ IF and ⟨φ, vi⟩ ≤ ci, i ∈ I}

=
⋂
i∈ZZIF

H(vi,ci) ∩
⋂
i∈IF

∂H(vi,ci)

where IF ⊂ I is given as IF = Iφ for any interior point φ ∈ int (F ). ■

Notation. Together with the Lemmas 1.3.1 and 1.3.3 this shows that the con-
structions of the tangent space and thereby also the annihilator space as well
as the local cone and by consequence also the support cone are well-defined for
faces. Instead of indicating individual points, we may henceforth write

LF (P ), WF (P ), CF (P ) or SF (P )

to designate these objects.

Examples. Let P =
⋂
i∈I H(vi,ci) be a polyhedron.

• For the polyhedron P itself (which we recall is considered as a face of full
dimension), the tangent space LP (P ) and the local cone CP (P ) are all of
V ∗. It follows that the annihilator space WP (P ) and the support cone
SP (P ) are trivial.

• For any facet F the tangent space LF (P ) has codimension 1 and hence the
annihilator space WF (P ) has dimension 1 and is spanned by a single vector
vi, where i ∈ I. Note however that for general polyhedra other vectors vj
such that j ∈ I, j ̸= i might be collinear to vi and hence also be contained
in the annihilator space WF (P ) = SpanR (vi). Moreover, for a facet the
support cone is a ray and hence the support hyperplane defining the face
is unique.
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• For any edge e on the other hand, the tangent space Le(P ) is one-dimensional
and spanned by a single element. The annihilator space We(P ) has there-
fore codimension 1 and in general there might be many ways to find a basis
for We(P ). We will see later that this does not happen in the special case
of simple or even unimodular polytopes.

• Finally, for any vertex φ of P , the tangent space Lφ(P ) is trivial and hence
the annihilator space Wφ(P ) agrees with V . This is just the result seen
in the first point of Lemma 1.3.2. However, it is crucial to note that the
local cone Cφ(P ) is not trivial. The local cones at vertices of polytopes are
actually what we will use to characterise simple and unimodular polytopes.



Chapter 2

Rational Polyhedra

Later we will specialise from the general vector space V to the Lie algebra of
a torus. This Lie algebra comes with an additive subgroup called the integer
lattice, which will be introduced in detail in Part II, Chapter 6. For the moment,
this provides the motivation for studying the interaction of a polyhedron with a
lattice in the ambient vector space. We start by establishing some elementary
notions for lattices.

2.1 Lattices

There are several definitions of a lattice that can be found in the literature. The
following is the one that we deem most fit to the topic of this work.

Definition. A subset Λ ⊂ V is called a lattice if

1. Λ is an additive subgroup of V i.e. for all v, w ∈ Λ, we have v − w ∈ Λ,

2. Λ is discrete i.e for every bounded set B ⊂ V , the intersection B ∩ Λ is
finite and

3. Λ spans V .

Remark. 1. The second condition can also be formulated as the condition
that there is a neighbourhood of the origin that does not contain any point
of Λ apart from the origin.

2. Let W ⊂ V be a subspace of V . Then W ∩ Λ need not be a lattice in
W . While it is clearly an additive subgroup and discrete, it may fail the
third condition, namely that Λ ∩W spans W . However, if W is spanned
by lattice points, also this condition holds and ΛW = Λ ∩W is a lattice in
W .

Since lattices are additive subgroups, for any lattice point u ∈ Λ, all integer
multiples ku ∈ Λ are again lattice points. Those lattice points which are not the
multiple of a lattice point closer to the origin are called primitive:

23
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Figure 2.1: Example of a primitive vector u ∈ Z2 and a lattice vector v ∈ Z2

whcih is not primitive in the lattice Z2 ⊂ R2.

Definition. A lattice vector v ∈ Λ is called primitive if there is no integer k ∈ Z
and no other lattice vector u ∈ Λ such that |k| > 1 and v = ku.

Example. Consider the standard lattice Z2 ⊂ R2 and the two lattice vectors
shown in figure 2.1.

Primitive vectors are what can be used to build a basis of a lattice. However,
the requirement for a set of vectors is stronger that being a basis of the vector
space and primitive. Instead we call a set of vectors a basis of the lattice if any
lattice point can uniquely be written as integer linear combination in terms of
these vectors.

Definition. Let Λ ∈ V be a lattice. A set of linearly independent vectors
u1, ..., ud ∈ Λ is called a basis of Λ if every v ∈ Λ can be written as an inte-
ger linear combination of the u1, ..., ud:

v =
d∑
i=1

niui with ni ∈ Z.

It is clear from the third condition in the definition of a lattice above that
d = dim (V ).

Clearly, any basis of a lattice is a basis of the underlying vector space and
consists of primitive vectors but this is only a necessary condition, not a sufficient
one. We emphasise this here because the distinction is crucial for the unimodular
polytopes, the objects that we are aiming to define in the next chapter.

Example. For instance the basis of R2 given by v1 = (1, 0) and v2 = (1, 2)
consists of two vectors which are primitive in Z2 but the element u = (1, 1) ∈ Z2
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can not be written as an integer linear combination of v1 and v2. Instead,

u =
1

2
v1 +

1

2
v2

and since v1 and v2 form a basis of R2, the coefficients are unique.

We now aim at proving the existence of such a basis for any lattice. For
this, we need some notion of distance between elements of the vector space V .
However, the precise definition does not matter and so we assume that V is
equipped with an arbitrary inner product · : V × V → R. Then there is an
induced norm ∥·∥ : V → R and an induced distance dist : V × V → R:

∥v∥ =
√
v · v and dist(v, w) = ∥v − w∥.

For any subset A ⊂ V , we set

dist(v,A) = inf
w∈A

dist(v, w).

The key to showing the existence of a basis is then the following technical
lemma.

Lemma 2.1.1. Let Λ ⊂ V be a lattice and let W ⊂ V be a subspace spanned
by lattice points, i.e. there exist v1, ..., vk ∈ Λ such that W = SpanR (v1, .., vk).
Then among all the lattice points not contained in W , there is a point which is
closest to W . That is, there exists

v ∈ Λ\W such that dist(v,W ) ≤ dist(w,W ) ∀w ∈ Λ\W

Notation. For α ∈ R, we write ⌊α⌋ for the largest integer smaller or equal than
α. We write {α} = α− ⌊α⌋ for the fractional part, so that

α = ⌊α⌋+ {α} with ⌊α⌋ ∈ Z and 0 ≤ {α} < 1.

Proof. ([4], Lemma 10.2) Without loss of generality we may assume v1, ..., vk to
be linearly independent so that they form a basis of W . Let then

Π =

{
k∑
i=1

λivi | 0 ≤ λi ≤ 1 for i = 1, ..., k

}
⊂W

denote the parallelepiped spanned by v1, ..., vk.
Claim. There is a v ∈ Λ\W which is closest to Π.
Proof of Claim. Choose a ρ > 0 sufficiently large so that the ρ-neighbourhood

Πρ = {u ∈ V | dist(u,Π) ≤ ρ}

of Π contains a lattice point outside of W . As Λ is discrete, Λ∩Πρ is finite and we
can choose a point v of minimal distance in the finite non-empty set (Λ\W )∩Πρ.
This will then clearly satisfy the conditions

dist(v,Π) ≤ dist(w,Π) for all w ∈ Λ\W.
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Claim. For v as in the previous claim we have

dist(v,W ) ≤ dist(w,W ) for all w ∈ Λ\W.

Proof of Claim. Suppose by contradiction that there was some u ∈ Λ\W such
that dist(u,W ) < dist(v,W ). Take then a point x ∈ W which realises this
minimal distance dist(u, x) = dist(u,W ) and write it as

x =

k∑
i=1

αivi =

k∑
i=1

⌊αi⌋vi︸ ︷︷ ︸
:=y∈Λ∩W

+

k∑
i=1

{αi}vi︸ ︷︷ ︸
:=z∈Π

.

But this leads to a contradiction with the first claim since u− y ∈ Λ\W and

dist(u− y,Π) ≤ dist(u− y, z)

= dist(u− y, x− y)

= dist(u, x)

= dist(u,W )

< dist(v,W )

≤ dist(v,Π)

and hence proves the claim and thereby the lemma. ■

Theorem 2.1.2. Any lattice admits a basis. More precisely, let Λ ⊂ V be a
lattice and W ⊂ V be a subspace spanned by lattice points. Then any basis of the
lattice ΛW = Λ ∩W can be appended to a basis of Λ.

Proof. ([4], Theorem 10.4.) We proceed by induction on d = dim (V ).

For d = 1, we can identify V ∼= R and there is a smallest positive number
a ∈ Λ. If there was an element b ∈ Λ such that b ̸= ma for all m ∈ Z, then there
existed an n ∈ Z such that b− na ∈ R were smaller than a.

For d > 1, choose d − 1 linearly independent lattice points and set W to be
their span. Hence ΛW = Λ ∩W is a lattice of dimension d− 1 in W and by the
induction hypothesis there is a basis u1, ..., ud−1 of ΛW . On the other hand, by
Lemma 2.1.1 there is an element ud ∈ Λ\W closest to W i.e. such that

dist(ud,W ) ≤ dist(u,W ) for all u ∈ Λ\W.

Claim. u1, ..., ud is a basis of Λ.
Proof of Claim. It is clear that u1, ..., ud is a basis of V , so we are just left to
check that the coefficients of lattice points are integers. Take thus u ∈ Λ. Then
there exists a unique decomposition

u =

d∑
i=1

αiui for some αi ∈ R.
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Suppose by contradiction that αd /∈ Z, i.e. {αd} ≠ 0. Then

v = u− ⌊αd⌋ud = {αd}ud +
d−1∑
i=1

αiui

is a lattice point outside W . But this point v ∈ Λ\W is closer to W than ud as

dist(v,W ) = dist({αd}ud,W )

= {αd}dist(ud,W )

< dist(ud,W )

contradicting minimality of ud. Hence αd ∈ Z. But then

w − αdud =
d−1∑
i=1

αiui

is in ΛW and it follows that the α1, .., αd−1 are integers. ■

Another consequence of Lemma 2.1.1 is the following result:

Corollary 2.1.3. Let Λ ⊂ V be a lattice and let W ⊂ V be a subspace spanned
by lattice points. Consider the canonical projection πW : V → V/W with kernel
W . Then ΛV/W := πW (Λ) is a lattice in V/W .

Proof. (Variation of [4], Corollary 10.3) By linearity πW (Λ) is an additive sub-
group. Its elements span V/W as a vector space since πW is surjective. By
Lemma 2.1.1 there is a point in Λ\W at minimal distance to W . It follows that
there is a non-zero point in πW (Λ) at minimal distance of the origin in V/W .
Hence πW (Λ) is discrete and therefore a lattice. ■

So if W is a subspace which is spanned by lattice points, we get a lattice
ΛW = Λ ∩W in W and a lattice ΛV/W = πW (Λ) in the quotient V/W . These
lattices will play a major role in Chapter 4.

The Dual Lattice

Any lattice in V defines a lattice in the dual V ∗ by considering all the functionals
which take integer values on the lattice. Because we will later work with tori, it
is useful to introduce a factor 2π from the start and to work with the following
definition:

Definition. Let Λ ⊂ V be a lattice. The dual lattice Λ∗ ⊂ V ∗ of Λ is

Λ∗ := Hom(Λ, 2πZ) = {φ ∈ V ∗ | φ(v) ∈ 2πZ for all v ∈ Λ}.
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Let now v1, ..., vn ∈ Λ be a basis of the lattice Λ ⊂ V . In particular, v1, ..., vn
is thus a basis of V and we get a dual basis of V ∗. However, the elements of this
dual basis are not contained in Λ∗ unless we rescale. Let us thus define the dual
lattice basis φ1, ..., φn by

⟨φi, vj⟩ = 2πδij .

These elements are now by construction in Λ∗ and form a basis of V ∗. To justify
calling it the dual lattice basis, we show that they form indeed a basis of Λ∗.
Take an arbitrary η ∈ Λ∗ ⊂ V ∗ and write it in terms of the V ∗-basis φ1, ..., φn

η =
n∑
i=1

αiφi.

Take then j ∈ {1, ..., n} also arbitrary and note that

⟨η, vj⟩ =
n∑
i=1

αi ⟨φi, vj⟩ = 2παj .

Since η ∈ Λ∗ and vj ∈ Λ, it follows that

2παj ∈ 2πZ that is, αj ∈ Z.

We conclude that {φ1, ..., φn} is indeed a basis of the dual lattice.

The operation of taking the dual of a lattice is inclusion reversing. Moreover,
doing it twice yields a lattice in the bidual which can be canonically identified
with the lattice itself. More formally, we have the following lemma:

Lemma 2.1.4. Let Γ ⊂ Λ be lattices in V . Then

1. Λ∗ ⊂ Γ∗,

2. (Λ∗)∗ ∼= Λ and

3. Γ = Λ if and only if Λ∗ = Γ∗.

Proof. 1. Assume that φ ∈ Λ∗. Then for any w ∈ Γ ⊂ Λ we must have

φ(w) ∈ 2πZ

so that φ ∈ Γ∗. This proves the first point.

2. We use the usual identification of V with (V ∗)∗:

(Λ∗)∗ = {f ∈ (V ∗)∗ | f(φ) ∈ 2πZ for all φ ∈ Λ∗}
∼= {v ∈ V | φ(v) ∈ 2πZ for all φ ∈ Λ∗} .
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Assume first that v ∈ Λ. By definition of Λ∗, we have

φ(v) ∈ 2πZ for all φ ∈ Λ∗,

hence v ∈ (Λ∗)∗ so that Λ ⊂ (Λ∗)∗.

Assume then reversely that w ∈ (Λ∗)∗ ⊂ V and write it in terms of a basis
u1, ..., ud ∈ Λ of Λ ⊂ V :

w =
d∑
i=1

αiui with ui ∈ R.

Consider then the dual lattice basis η1, ..., ηd ∈ Λ∗ of u1, ..., ud and compute

ηi(w) = αiηi(ui) = 2παi.

Since ηi ∈ Λ∗, this must be in 2πZ and hence αi must be an integer. Thus
w ∈ Λ which gives the inverse inclusion (Λ∗)∗ ⊂ Λ.

3. Follows directly from the first two statements. ■

2.2 Rational Polyhedra

Let now P ⊂ V ∗ be a polyhedron. If V contains a lattice Λ, we can make sense
of rational normal vectors and use this to define rational polyhedra.

Definition. Let Λ ⊂ V be a lattice.

1. A vector v ∈ V is called Λ-rational or just rational if mv ∈ Λ for some
positive integer m.

2. A subspace W ⊂ V is called Λ-rational if Λ ∩W is a lattice in W , that is,
if Λ ∩W spans W .

Remark. 1. To any rational vector v ∈ V we can associate a unique primitive
lattice vector u ∈ Λ which is parallel to v.

To see this, note that SpanR (v) has by assumption non-trivial intersection
with Λ. Λ∩SpanR (v) is a lattice in SpanR (v) and there is a unique smallest
element λ ∈ R>0 such that u = λv ∈ Λ.

2. A subspace is rational if and only if it is spanned by rational vectors.

Definition. Let Λ ⊂ V be a lattice. A polyhedron P ⊂ V ∗ is called Λ-rational
if it is of the form

P =
⋂
i∈I

H(vi,ci)

with all vi Λ-rational.



Chapter 3

Polytopes

In this short chapter, we will introduce the main object of study in part I: uni-
modular polytopes. For this we first prove the Weyl-Minkowski theorem that
allows us to see polytopes as a special case of polyhedra. This makes it possible
to use the formalism for polyhedra established over the previous two chapters.
This is important since we will define unimodularity by a condition on the local
cones at the vertices.

3.1 Weyl-Minkowski Theorem

We start with the definition of a convex polytope.

Definition. A point v ∈ V is called a convex combination of v1, ..., vm ∈ V if

v =

m∑
i=1

λivi with λi ≥ 0 and
m∑
i=1

λi = 1.

The set of all convex combinations of points from a given set A ⊂ V is called the
convex hull of A and is denoted by conv(A).

Definition. A convex polytope is the convex hull of a finite set of points.

The result known as the Weyl-Minkowski Theorem states that polytopes can
be equivalently be characterised as bounded polyhedra. We are primarily inter-
ested in seeing polytopes as bounded polyhedra but for the sake of completeness,
we also prove the reverse direction. The precise statement is the following:

Theorem 3.1.1 (Weyl-Minkowski). 1. Let ∆ be a polytope. Then ∆ is a
bounded polyhedron.

2. Let P be a bounded polyhedron. Then P is the convex hull of the set of its
vertices. In particular, P is a polytope.

30
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Proof. 1. ([4], Theorem 4.4.) Let ∆ = conv(v1, ..., vm) be the convex hull of
m points v1, ..., vm ∈ V . To show that this is a polyhedron we exhibit it as
the image of a polyhedron under a linear map. The standard simplex

∆simplex =

{
(λ1, ..., λm) : λi ≥ 0 for i = 1, ...,m and

m∑
i=1

λi = 1

}
is a bounded polyhedron in Rn and under the linear map

T : Rm → V

(λ1, ..., λm) 7→
m∑
i=1

λivi

its image is precisely conv(v1, ..., vm) = ∆. That ∆ is bounded is clear since
∆simplex is compact and T is continuous.

2. ([4], Theorem 4.7.) Consider a non-empty bounded polyhedron P ⊂ V and
proceed by induction on n = dim (V ). If n = dim (V ) = 0 the result is
clear.
Suppose then n = dim (V ) > 0 and the result true in all smaller dimensions.
Write

P =
⋂
i∈I

H(vi,ci)

and consider Vert(P), the set of vertices of P . By convexity of P it is clear
that

conv(Vert(P )) ⊂ P.

We are left to prove the opposite inclusion. For this we take an arbitrary
point φ ∈ P and distinguish two cases:

• φ ∈ ∂P is a boundary point: By part one of Lemma 1.3.5 φ lies in the
interior of some face F . In particular, it lies in a proper affine subspace
of V and thus by the induction hypothesis it is a convex combination
of the vertices of F . But by the second part of Lemma 1.3.2 the
vertices of F are also vertices of P . Hence φ is a convex combination
of vertices of P .

• φ ∈ int(P ) is an interior point: Consider a line through φ. Since P
is bounded, by Lemma 1.2.3 the rays emanating from φ in both direc-
tions have to intersect the boundary of P . We denote these points by
η1 and η2 and note that by the previous case, η1, η2 ∈ conv(Vert(P )).
By convexity, we conclude that φ ∈ conv(Vert(P )). ■

In the last part of the proof we have seen a variant of the following fact:

Corollary 3.1.2. Any edge of a polytope contains exactly two vertices. In par-
ticular, any edge of a polytope can be written as the interval with endpoints the
two vertices it contains. ■
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3.2 Simple Polytopes

For a vertex φ of a polytope ∆, {vi}i∈Iφ is a spanning set of V . In particular
this means that |Iφ| ≥ dim (V ). We will now specialise to the case where we
have equality and where {vi}i∈Iφ is thus a basis of V . If this is the case for any
vertex, we call a polytope simple. In order to find a good formalisation, it is best
to start from the local picture which is given by polyhedral cones.

Definition. Let C be a polyhedral cone. C is called simple if it is of the form

C =
⋂
i∈I

Hvi

such that {vi}i∈I is a basis of V .

Remark. Note that since the {vi}i∈I span V , it follows immediately that 0 ∈ C
is a vertex and hence that simple cones are pointed. In fact, a polyhedral C cone
is simple if and only if it is pointed and has dim(C) facets.

There is a natural reformulation of the simplicity condition in terms of the
edges instead of the normals. The key to this is the following observation:

Lemma 3.2.1. Let {vi}i∈I be a basis of V and let {φi}i∈I be the dual basis of
V ∗. Then for any subset J ⊆ I we have

co({φj}j∈J ) =
⋂
j∈J

H−vj ∩ U

where U = SpanR ({φj}j∈J ) =
⋂
i∈I\J ∂Hvi .

Proof. Assume η ∈
⋂
j∈J H−vj ∩ U and write it as

η =
∑
j∈J

αjφj

for some (unique) αj ∈ R. Since η ∈
⋂
j∈J H−vj ∩ U , we have for all i ∈ J

0 ≤ ⟨η, vi⟩

=
∑
j∈J

αj ⟨φj , vi⟩

= αi

and hence η ∈ co({φj}j∈J ).
Reversely, assume η ∈ co({φj}j∈J ) i.e.

η =
∑
j∈J

αjφj with αj ≥ 0.
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But then we have for all i ∈ J

⟨η,−vi⟩ = −
∑
j∈J

αj ⟨φj , vi⟩

= −αi
≤ 0

and since clearly ⟨η, vi⟩ = 0 for i ∈ I\J we have η ∈
⋂
j∈J H−vj ∩ U . ■

In the case where J = I, this immediately gives the following result:

Corollary 3.2.2. A polyhedral cone C is simple if and only if it is of the form

C = co({φi}i∈I)

where the {φi}i∈I form a basis of V ∗.

Remark. A polyhedral cone C is thus simple if and only if it is pointed and has
exactly dim(C) edges.

The definition is then naturally extended to polytopes by requiring the local
cone at every vertex of the polytope to be simple.

Definition. A polytope ∆ is called simple if the local cone

Cφ(∆) =
⋂
i∈Iφ

Hvi

at every vertex φ ∈ ∆ is simple.

Example. Consider the simplex ∆ in R3:

∆ =
{
(λ1, λ2, λ3) ∈ R3 : λ1, λ2, λ3 ≥ 0 and λ1 + λ2 + λ3 ≤ 1

}
.

By the Weyl-Minkowski Theorem 3.1.1, this can be seen as a bounded polyhedron.
Indeed,

∆ =
⋂
i∈I

H(vi,ci)

with

v1 =

−1
0
0

 , v2 =

 0
−1
0

 , v3 =

 0
0
−1

 and v4 =

1
1
1


as well as c1 = c2 = c3 = 0 and c4 = 1. See also figure 3.1 for a picture.
This polytope is simple because at any vertex there are 3 edges meeting. We
check the condition for one vertex explicitely, namely the vertex φ specified by
Iφ = {2, 3, 4}. At this point the local cone is

Cφ(∆) = Hv2 ∩Hv3 ∩Hv4

and since {v2, v3, v4} is clearly a basis of R3, this cone is simple.
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Figure 3.1: The simplex is an example of a simple polytope.

3.3 Unimodular Polytopes

Assume now that Λ ⊂ V is a lattice. Instead of requiring the normals to be
merely a basis of the vector space, we can now require them to be a basis of the
lattice. As we saw in section 2.1 this is a stronger requirement than just being a
basis of V consisting of primitive lattice vector.

Definition. Let Λ ⊂ V be a lattice. A polyhedral cone C ⊂ V is called Λ-
unimodular if it is of the form

C =
⋂
i∈I

Hvi

and {vi}i∈I forms a basis of Λ.

Remark. Note that a cone being Λ-unimodular implies that the cone is Λ-
rational. Clearly, unimodularity implies that the cone is also simple. However, a
Λ-rational simple cone might not be Λ-unimodular.

Just like for simple cones, the condition of unimodularity can be rephrased
in terms of the edges instead of the normals.

Corollary 3.3.1. A pointed polyhedral cone C is Λ-unimodular if and only if it
is of the form

C = co({φi}i∈I)
where {φi}i∈I form a basis of the dual lattice Λ∗.

Proof. Consider the dual lattice basis instead of the dual basis and note that since
this is just a rescaling with positive factors, Lemma 3.2.1 still goes through. ■

Definition. A polytope ∆ is called Λ-unimodular if the local cone Cφ(∆) at
every vertex φ ∈ ∆ is Λ-unimodular.

Example. The simplex ∆ in figure 3.1 is not only simple, but Z3-unimodular.
Indeed, reusing the notation from above, for instance {v2, v3, v4} is a lattice basis
of Z3.



Chapter 4

Recursive Aspects

We have already seen that the faces of polyhedra are again polyhedra. However,
by construction any proper face F is contained in a proper affine subspace which
can be identified with a translate of the tangent space LF (P ) ⊂ V ∗. As we are
only interested in polyhedra up to translation, we might as well assume that F
is contained in LF (P ) itself.

In this chapter, we want to investigate the properties of the face F as a poly-
tope in this affine subspace. The goal is to show that if the original polyhedron
was rational, simple or unimodular, then F , considered as a polytope in LF (P ),
has the same property.

4.1 Recursive Aspects of Polyhedra

Let P ⊂ V ∗ be a polyhedron and consider a proper face F ⊂ P . By Lemma 1.3.5,
F contains an interior point φ. By translating P by −φ we get a copy P ′ of the
polyhedron P such that the copy F ′ of the face F contains the origin. This has the
advantage that F ′ can be seen as a subset of its tangent space LF ′(P ′) instead of
a translate of it. At the same time, translating does not affect the normal vectors
{vi} to the defining hyperplanes but only the real coefficients {ci}. In particular,
the properties of rationality, simplicity and unimodularity are thus not affected
by this translation.

Because of this, we will henceforth assume without loss of generality that the
polyhedron P =

⋂
i∈I H(vi,ci) is such that the face F under consideration contains

the origin. In particular, this means that for all i ∈ IF , we must have ci = 0 and
hence the expression for F from Corollary 1.3.6 simplifies to

F =
⋂
i∈ZZIF

H(vi,ci) ∩
⋂
i∈IF

∂Hvi =
⋂
i∈ZZIF

H(vi,ci) ∩ LF (P )

emphasising again that F is naturally a subset of its tangent space.

However, this is not yet a satisfactory answer to the question with what space
we have to work. The formalism established in the previous chapters relies heavily

35
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on the use of normals to hyperplanes and if a polyhedron P is in V ∗, then these
normals are elements of V . The question remaining is thus to find a vector space
U such that its dual U∗ is precisely the tangent space LF (P ). The main idea for
this is to use that LF (P ) ⊂ V ∗ is the annihilator subspace of WF (P ) ⊂ V and
the following result:

Lemma 4.1.1. Let W ⊂ V be a linear subspace. There is a canonical identifi-
cation

W 0 ∼=
(
V
/
W

)∗
.

Proof. Consider the short exact sequence

0 W V V
/
W

0i pr

where i :W → V is the inclusion and pr : V → V/W is the canonical projection.
Taking the dual we get a second short exact sequence

0
(
V
/
W

)∗
V ∗ W ∗ 0

pr∗ i∗

It follows that pr∗ : (V/W )∗ → V ∗ is injective and thus (V/W )∗ is isomorphic to
its image under this map. But by exactness we observe that

Im (pr∗) = ker(i∗)

= {φ ∈ V ∗ | i∗(φ) = 0}
= {φ ∈ V ∗ | φ ◦ i = 0}
= {φ ∈ V ∗ | φ|W = 0}
=W 0

which concludes the proof. ■

Using this and the above mentioned fact we conclude that

LF (P ) = (WF (P ))
0 ∼=

(
V
/
WF (P )

)∗
.

This now answers the question raised previously since U = V/WF (P ) is a canon-
ical choice. This motivates the following definition:

Definition. Let F ⊂ P ⊂ V ∗ be a face of a polyhedron P and WF (P ) be its
annihilator space. Then the quotient space

V
/
WF (P )

is called the effective space of F .
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Remark. By construction (and as seen in the proof of Lemma 4.1.1 just above),
the annihilator space and the effective space fit naturally in a short exact sequence

0 WF (P ) V V
/
WF (P )

0i pr

where again i : WF (P ) → V is the inclusion and pr : V → V/WF (P ) is the
canonical projection. Taking the dual we get another short exact sequence

0

(
V
/
WF (P )

)∗
V ∗ (WF (P ))

∗ 0
pr∗ i∗

showing that (V/WF (P ))
∗ can be naturally interpreted as a subspace of V ∗. This

is of course no surprise since (V/WF (P ))
∗ is canonically identified with LF (P ).

Before, we argued that the face F is contained in the tangent space. We
now canonically identified this with the dual of the effective space and the prob-
lem is now to understand F as a polyhedron in (V/WF (P ))

∗ by its halfspaces
defined with normals that are elements of the effective space. The projection
pr : V → V/WF (P ) gives a natural way of producing a set of vectors in V/WF (P )
from the normals {vi}i∈I in V . However, this map has a nontrivial kernel, given
by WF (P ), so the case vi ∈WF (P ) must be addressed.

By assumption, F and therefore also P contain the origin. Hence for any
i ∈ I we must have 0 ∈ H(vi,ci) from where it follows immediately that

0 = ⟨0, vi⟩ ≤ ci.

But if ci ≥ 0, then the linear inequality defining the halfspace H(0,ci) is trivially
satisfied and so, by convention, H(0,ci) equals the entire vector space. In other
words, the normals vi ∈WF (P ) will give rise to empty conditions. In particular,
{vi}i∈IF are contained in the kernel WF (P ) = SpanR ({vi}i∈IF ) of the projection
and are hence mapped to zero. A natural polyhedron in V/WF (P )

∗ that we
might consider is thus

F̃ =
⋂
i∈ZZIF

H(pr(vi),ci) ⊂ V/WF (P )
∗,

where all the indices i ∈ZZIF such that vi ∈WF (P ) give rise to empty conditions.
Indeed, the inclusion of F̃ into V ∗ by pr∗ is precisely the face F :

Lemma 4.1.2. Let F ⊂ P ⊂ V ∗ be a proper face and let pr : V → V/WF (P ) be
the corresponding projection. Then

F̃ =
⋂
i∈ZZIF

H(pr(vi),ci)

is the unique polyhedron in (V/WF (P ))
∗ such that pr∗(F̃ ) = F .
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Proof. Assume first that φ ∈ pr∗(F̃ ), that is, there is a φ̃ ∈ F̃ such that
φ = pr∗(φ̃). We can then rewrite for any i ∈ I

⟨φ, vi⟩ = ⟨pr∗(φ̃), vi⟩ = ⟨φ̃, pr(vi)⟩

and distinguish two cases:

1. If i ∈ZZIF , we conclude that

⟨φ, vi⟩ = ⟨φ̃, pr(vi)⟩ ≤ ci

since φ̃ ∈ F̃ . Hence φ ∈ H(vi,ci) for all i ∈ZZIF .

2. If i ∈ IF , then vi ∈WF (P ) is in the kernel of pr and so

⟨φ, vi⟩ = ⟨φ̃, pr(vi)⟩ = 0.

Thus φ ∈ ∂Hvi for all i ∈ IF .

Hence
φ ∈ F =

⋂
i∈ZZIF

H(vi,ci) ∩
⋂
i∈IF

∂Hvi

and since φ ∈ pr∗(φ̃) was arbitrary we conclude that pr∗(F̃ ) ⊂ F .

Reversely, assume that φ ∈ F . For any i ∈ IF , we denote by wi the unique
element of WF (P ) such that i(wi) = vi. But since φ ∈ F , we have for any i ∈ IF

⟨i∗(φ), wi⟩ = ⟨φ, i(wi)⟩
= ⟨φ, vi⟩
= 0

But by Lemma 1.3.1, {wi}i∈IF spanWF (P ) and so i∗(φ) = 0, that is, φ ∈ ker(i∗).
By exactness of the sequence above, ker(i∗) = Im (pr∗) and therefore there is a
φ̃ ∈ (V/WF (P ))

∗ such that pr∗(φ̃) = φ. This φ̃ is in F̃ since φ is in F : for every
i ∈ZZIF we compute

⟨φ̃, pr(vi)⟩ = ⟨pr∗(φ̃), vi⟩
= ⟨φ, vi⟩
≤ ci.

We conclude that φ ∈ pr∗(F̃ ) and since φ ∈ F was arbitrary, F ⊂ pr∗(F̃ ). ■
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4.1.1 Recursive Aspects of Rational Polyhedra

Let now Λ ⊂ V be a lattice. If a polyhedron is Λ-rational, the annihilator spaces
WF (P ) = SpanR ({vi}i∈IF ) are rational subspaces. This means that Λ∩WF (P ) is
a lattice in the annihilator space WF (P ). From Corollary 2.1.3 it further follows
that pr(Λ) is a lattice in the effective space V/WF (P ).

Definition. Let P be a Λ-rational polyhedron, F ⊂ P a face, WF (P ) its anni-
hilator space and V/WF (P ) its effective space. The annihilator lattice Λ of the
face F is the lattice in the annihilator space WF (P ) given by

Λ0 = Λ ∩WF (P ).

The effective lattice ΛF is the lattice in the effective space V/WF (P ) given by

ΛF = pr(Λ).

The following result is now an immediate consequence of Lemma 4.1.2:

Proposition 4.1.3. Let Λ ⊂ V be a lattice, P ⊂ V ∗ a Λ-rational polyhedron
and F ⊂ P a proper face. Let pr : V → V/WF (P ) denote the projection on
the effective space. Then the unique polyhedron F̃ ⊂ (V/WF (P ))

∗ such that
pr∗(F̃ ) = F is ΛF -rational. ■

4.2 Recursive Aspects of Polyhedral Cones

The next goal is to establish similar results to the one for the rationality of faces
of polyhedra for simplicity and unimodularity of the faces of a polytope. These
properties were defined by requiring the local cone at every vertex to be simple
or unimodular, so it is natural to first consider the case of polyhedral cones.
We begin by showing that faces of simple polyhedral cones are again simple
polyhedral cones:

Proposition 4.2.1. Let C ⊂ V ∗ be a simple polyhedral cone and F ⊂ C a proper
face. Let pr : V → V/WF (C) denote the projection on the effective space. Then
the unique polyhedral cone C̃ ⊂ (V/WF (C))

∗ such that pr∗(C̃) = F is simple.

Proof. Since C is simple, it is of the form

C =
⋂
i∈I

Hvi

with {vi}i∈I a basis of V . It follows from Lemma 4.1.2 that

C̃ =
⋂
i∈ZZIF

Hpr(vi)
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and we’re left to see that {pr(vi)}i∈IF is a basis of V/WF (C).

By linear independence of {vi}i∈I and Lemma 1.3.1 it is clear that dim (V ) = |I|
and dim (WF (C)) = |IF |. Hence

dim
(
W
/
WF (P )

)
= |I| − |IF | = |ZZIF |

and it is enough to show that {pr(vi)}i∈ZZIF is a spanning set. But this fol-
lows directly from surjectivity of the projection pr : V → V/WF (C): Any
[v] ∈ V/WF (C) can be written as [v] = pr(v) for some v ∈ V . This v ∈ V
can be written in terms of the basis {vi}i∈I as v =

∑
i∈I αivi where αi ∈ R.

Recalling that WF (C) = SpanR ({vi}i∈IF ) is the kernel of pr yields

[v] = pr(v)

= pr

(∑
i∈I

αivi

)
=
∑
i∈ZZIF

αipr(vi).

Since [v] ∈ V/WF (C) was arbitrary, this shows that {pr(vi)}i∈ZZIF is indeed a
spanning set and thereby concludes the proof. ■

The extension to unimodularity is now almost immediate:

Proposition 4.2.2. Let Λ ⊂ V be a lattice, C ⊂ V ∗ be a Λ-unimodular polyhedral
cone and F ⊂ C a proper face. Let pr : V → V/WF (C) denote the projection
on the effective space and ΛF be the effective lattice. Then the unique polyhedral
cone C̃ ⊂ (V/WF (C))

∗ such that pr∗(C̃) = F is ΛF -unimodular.

Proof. From Proposition 4.2.1 it is clear that

C̃ =
⋂
i∈ZZIF

Hpr(vi)

and that {pr(vi)}i∈ZZIF is a basis of V/WF (C). It is thus enough to show that if
{vi}i∈I is a basis of Λ, then the coefficients of the elements in ΛF in terms of
{pr(vi)}i∈ZZIF are integers. But by definition, ΛF = pr(Λ) and so to any element
[u] ∈ ΛF there is an element u ∈ Λ such that [u] = pr(u). Since {vi}i∈I are a
basis of Λ, there exist integer coefficients ni ∈ Z such that u =

∑
i∈I nivi. Hence

[u] = pr(u)

= pr

(∑
i∈I

nivi

)
=
∑
i∈ZZIF

nipr(vi)

which concludes the proof. ■
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Figure 4.1: Illustration of the idea of Lemma 4.3.1.

4.3 Recursive Aspects of Polytopes

The goal of this section is to show that the faces of simple or unimodular poly-
topes are again simple or unimodular. Since the conditions of simplicity and
unimodularity were formulated in terms of local cones, it should not come as a
surprise that we can reduce the problem to the case of polyhedral cones. The key
idea (illustrated in figure 4.1) is the follwing: Consider a vertex φ of a polytope
∆ and a face F of ∆ which contains φ. On one hand, we can first consider F̃ , the
unique polyhedron in the effective space mapped onto F . One can then consider
the local cone at the point φ̃ corresponding to φ. On the other hand, one can
first look at the local cone Cφ(∆) at φ and then look at the face CF of this cone
corresponding to F . This face CF has the same effective space as F and one
can then consider C̃F , the unique polyhedral cone mapped onto CF . The crucial
observation is that these two constructions actually yield the same cone, that is
C̃F = Cφ̃(F̃ ).

Let F ⊂ ∆ ⊂ V ∗ be a face of a polytope ∆ and consider a vertex φ in F .
Since φ ∈ F , we have IF ⊂ Iφ. Hence, if we consider the local cone,

Cφ(∆) =
⋂
i∈Iφ

Hvi ,

then for v =
∑

i∈IF vi we get a face CF of Cφ(∆) by putting

CF = Cφ(∆) ∩Hv =
⋂

i∈ZZIF∩Iφ

Hvi ∩
⋂
i∈IF

∂Hvi .

We call this the face of the local cone corresponding to the face of the polytope.
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In particular, we note that since

WF (∆) = SpanR ({vi}i∈IF ) =WCF (Cφ(∆)),

F and CF have the same effective space. If pr : V → V/WF (∆) is the projection,
then by Lemma 4.1.2 the unique polyhedral cone C̃F ⊂ (V/WF (∆))∗ such that
pr∗(C̃F ) = CF is

C̃F =
⋂

i∈Iφ∩ZZIF

Hpr(vi).

At the same time, again by Lemma 4.1.2 the unique polytope F̃ ⊂ (V/Wφ(∆))∗

such that pr∗(F̃ ) = F is
F̃ =

⋂
i∈ZZIF

H(pr(vi),ci).

Let φ̃ be the unique point in F̃ which is mapped onto φ by pr∗. Hence we can
look at the local cone to F̃ at φ̃ and find

Cφ̃(F̃ ) =
⋂

i∈(ZZIF )φ̃

Hpr(vi)

with

(ZZIF )φ̃ = {i ∈ZZIF | ⟨φ̃ | pr(vi)⟩ = ci}
= {i ∈ZZIF | ⟨pr∗(φ̃), vi⟩ = ci}
= {i ∈ZZIF | ⟨φ, vi⟩ = ci}
= Iφ ∩ZZIF .

A comparison of the explicit expressions thus gives

Cφ̃(F̃ ) =
⋂

i∈Iφ∩ZZIF

Hpr(vi) = C̃F .

To formulate it differently, the operations of taking the local cone and passing to
the effective space commute. We summarise this result in a technical lemma:

Lemma 4.3.1. Let ∆ be a polytope, F ⊂ ∆ be a proper face and φ ∈ F a vertex.
Let pr : V → V/WF (∆) denote the projection on the effective space.

1. Let F̃ ⊂ (V/WF (∆))∗ be the unique polytope such that pr∗(F̃ ) = F and let
φ̃ ∈ V/WF (∆) be the unique point such that pr∗(φ̃) = φ.

2. Let Cφ(∆) =
⋂
i∈Iφ Hvi be the local cone to ∆ at φ and let CF be the face of

Cφ(∆) corresponding to F . Let C̃F ⊂ (V/WF (∆))∗ be the unique polyhedral
cone such that pr∗(C̃F ) = CF .
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Then
C̃F = Cφ̃(F̃ ).

Now the work is done and we just have to assemble the pieces:

Theorem 4.3.2. Let ∆ ⊂ V ∗ be a simple polyope and F ⊂ ∆ a proper face. Let
pr : V → V/WF (P ) denote the projection on the effective space. Then the unique
polytope F̃ ⊂ (V/WF (∆))∗ such that pr∗(F̃ ) = F is simple.

Proof. Let φ̃ ∈ F̃ be a vertex. Then φ := pr∗(φ̃) is a vertex of F . By Lemma 1.3.2
φ is also a vertex of the polytope ∆. Thus by assumption, the local cone Cφ(∆)
is simple. By Lemma 4.3.1, the local cone Cφ̃(F̃ ) is mapped by pr∗ onto a face
CF of Cφ(∆) and is thus simple by Proposition 4.2.1. ■

Theorem 4.3.3. Let Λ ⊂ V be a lattice, ∆ ⊂ V ∗ a Λ-unimodular polyope
and F ⊂ ∆ a proper face. Let pr : V → V/WF (P ) denote the projection on
the effective space and ΛF be the effective lattice. Then the unique polytope
F̃ ⊂ (V/WF (∆))∗ such that pr∗(F̃ ) = F is ΛF -unimodular.

Proof. This is the same proof as for Theorem 4.3.2 except that one has to use
Proposition 4.2.2 instead of Proposition 4.2.1. ■

4.4 The Direct Minkowski-Sum

For any two convex subsets A,B ⊂ V ∗, the Minkowski sum is defined as

A+B = {φ+ η | φ ∈ A, η ∈ B}.

Even though this definition looks easy, already in the case of polyhedra it is very
involved. We will not consider it in full generality but only the special case that is
of primary concern for symplectic toric manifolds. This is the case where V is the
direct sum of two subspaces V1 and V2 and each of the polytopes is contiained
in one of the summands. The motivation for this is that the Lie algebra of a
product of Lie groups is the direct sum of the individual Lie algebras. Before we
move on to the concrete results, a word of warning: The main difficulty in this
section is the notation.

Assume thus that V is the direct sum of two other vector spaces, say V1 and
V2. Then there is a split short exact sequence

0 V1 V1 ⊕ V2 V2 0
i1 pr2

pr1 i2
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Figure 4.2: Illustration of the direct Minkowski sum of two polytopes ∆1 and
∆2.

where i1,2 : V1,2 → V1 ⊕ V2 are the natural inclusions and pr1,2 : V1 ⊕ V2 → V1,2
are the natural projections. Taking the dual, we get another split short exact
sequence, namely

0 V ∗
2 V ∗

2 ⊕ V ∗
1 V ∗

1 0
pr∗2 i∗1

i∗2 pr∗1

Suppose that ∆1 ⊂ V ∗
1 and ∆2 ⊂ V ∗

2 are two polytopes in the respective
vector spaces V ∗

1 and V ∗
2 . We can interpret them as (degenerate) polytopes

pr∗1(∆1) and pr∗2(∆2) in the direct sum V ∗ = V ∗
1 ⊕ V ∗

2 via the inclusions. Then
we can consider the Minkowski sum of these polytopes:

pr∗1(∆1) + pr∗2(∆2) = {φ+ η | φ ∈ pr∗1(∆), η ∈ pr∗2(∆2)}.

Notation. We will adapt the notation ∆1 ⊕∆2 = pr∗1(∆1) + pr∗2(∆2).

Example. See figure 4.2 for a graphical example of the construction.

This construction is considerably simpler than the general Minkowski sum,
primarily because there is a rather explicit expression for it:

Proposition 4.4.1. Let ∆1 =
⋂
i∈I H(vi,ci) ⊂ V ∗

1 and ∆2 =
⋂
j∈J H(wj ,cj) ⊂ V ∗

2

be two polyhedra. Then the direct Minkowski sum of ∆1 and ∆2 is given by the
explicit expression

∆1 ⊕∆2 =
⋂
i∈I

H(i1(vi),ci) ∩
⋂
j∈J

H(i2(wj),cj).

and is a polytope in V ∗
1 ⊕ V ∗

2 .
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Proof. We show
∆1 ⊕∆2 = P1 ∩ P2

where

1. P1 =
⋂
i∈I H(i1(vi),ci) is the extension of ∆1 to V ∗

1 ⊕ V ∗
2 and

2. P2 =
⋂
j∈J H(i2(wj),cj) is the extension of ∆2 to V ∗

1 ⊕ V ∗
2 .

Take φ ∈ ∆1 and η ∈ ∆2. The corresponding point in ∆1⊕∆2 is pr∗1(φ)+pr∗2(η).
This point lies in P1 since for any i ∈ I we have

⟨pr∗1(φ) + pr∗2(η), i1(vi)⟩ = ⟨pr∗1(φ), i1(vi)⟩+ ⟨pr∗2(η), i1(vi)⟩

=

〈
φ, pr1 ◦ i1︸ ︷︷ ︸

=IdV1

(vi)

〉
+

〈
η, pr2 ◦ i1︸ ︷︷ ︸

=0

(vi)

〉

= ⟨φ, vi⟩
≤ ci

as φ ∈ ∆1. An analogous computation shows that pr∗1(φ)+pr∗2(η) ∈ P2 and hence
we conclude that ∆1 ⊕∆2 ⊂ P1 ∩ P2.

Reversely, take an arbitrary point ψ ∈ P1∩P2 and decompose it as ψ = pr∗1(φ)+pr
∗
2(η) ∈ V ∗

1 ⊕V ∗
2

where φ := i∗1(ψ) ∈ V ∗
1 and η := i∗2(ψ) ∈ V ∗

2 . Clearly, φ ∈ ∆1 as

⟨φ, vi⟩ = ⟨i∗1(ψ), vi⟩
= ⟨ψ, i1(vi)⟩
≤ ci

as ψ ∈ P1. Analogously, we see that η ∈ ∆2 which concludes the proof. ■

One of the simplifications of the direct Minkowski sum with regard to the
usual Minkowski sum is that the faces of the sum can be understood completely
in terms of the faces of the summands while for the general Minkowski sum this
only works in one direction.

Corollary 4.4.2. Let ∆1 =
⋂
i∈I H(vi,ci) ⊂ V ∗

1 and ∆2 =
⋂
j∈J H(wj ,cj) ⊂ V ∗

2 be
two polyhedra. Let F1 ⊂ ∆1 and F2 ⊂ ∆2 be two faces of ∆1 and ∆2 respectively.
Then their direct Minkowski sum F1 ⊕ F2 is a face of ∆1 ⊕∆2.

Proof. This is immediate from Proposition 4.4.1 if we write the hyperplanes as
the intersection of the two corresponding two halfspaces. ■

Lemma 4.4.3. Let ∆1 ⊂ V ∗
1 and ∆2 ⊂ V ∗

2 be two polyhedra and let F be a face
of ∆1 ⊕∆2. Then i∗1(F ) is a face of ∆1 and i∗2(F ) is a face of ∆2. Moreover, F
corresponds to the direct Minkowski sum of i∗1(F ) and i∗2(F ):

F = i∗1(F )⊕ i∗2(F ).
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Proof. If ∆1 =
⋂
i∈I H(vi,ci) and ∆2 =

⋂
j∈J H(wj ,cj), then by Proposition 4.4.1

∆1 ⊕∆2 =
⋂
i∈I

H(i1(vi),ci) ∩
⋂
j∈J

H(i2(wj),cj).

The face F is characterised by a set (IF ∪ JF ) ⊂ (I ∪ J ) of indices which are
active on F :

F =
⋂
i∈I

H(i1(vi),ci) ∩
⋂
i∈IF

∂H(i1(vi),ci) ∩
⋂
j∈J

H(i2(wj),cj) ∩
⋂
j∈JF

∂H(i2(wj),cj).

We show that i∗1(F ) and i∗2(F ) are the faces characterised by IF and JF respec-
tively:

i∗1(F ) =
⋂
i∈I

H(vi,ci) ∩
⋂
i∈IF

∂H(vi,ci)

i∗2(F ) =
⋂
j∈J

H(wj ,cj) ∩
⋂
j∈JF

∂H(wj ,cj).

Assume first that ψ ∈ F and note that for all i ∈ I

⟨i∗1(ψ), vi⟩ = ⟨ψ, i1(vi)⟩ ≤ ci

with equality if and only if i ∈ IF ⊂ I. Hence

i∗1(F ) ⊂

⋂
i∈I

H(vi,ci) ∩
⋂
i∈IF

∂H(vi,ci)

 .

To get the reverse inclusion, take φ ∈
⋂
i∈I H(vi,ci) ∩

⋂
i∈IF ∂H(vi,ci). Then,

choose any point α ∈ F and put η = i∗2(α) and ψ := pr∗1(φ) + pr∗2(η). By
construction

i∗1(ψ) = i∗1(pr
∗
1(φ) + pr∗2(η))

= (pr1 ◦ i1)∗(φ) + (pr2 ◦ i1)∗(η)
= φ

and we are left to show that ψ ∈ F . But on one hand we have for all i ∈ I

⟨ψ, i1(vi)⟩ = ⟨pr∗1(φ), i1(vi)⟩+ ⟨pr∗2(η), i1(vi)⟩
= ⟨φ, pr1 ◦ i1(vi)⟩+ ⟨η, pr2 ◦ i1(vi)⟩
= ⟨φ, vi⟩
≤ ci
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with equality if and only if i ∈ IF . On the other hand, for any j ∈ J we have

⟨ψ, i2(wj)⟩ = ⟨pr∗1(φ), i2(wj)⟩+ ⟨pr∗2(η), i2(ωj)⟩
= ⟨φ, pr1 ◦ i2(wj)⟩+ ⟨η, pr2 ◦ i2(wj)⟩
= ⟨η, wj⟩
= ⟨i∗2(α), wj⟩
= ⟨α, i2(wj)⟩
≤ cj

with equality if j ∈ JF since α ∈ F . Hence we found ψ ∈ F such that i∗1(ψ).
Repeating the same argument for i∗2(F ) concludes the proof of the first part. The
second part, i∗1(F )⊕ i∗2(F ) = F follows again directly from the explicit expression
in Proposition 4.4.1. ■

Putting the last two results together, we conclude this section by the following
result:

Proposition 4.4.4. Let ∆1 and ∆2 be two polyhedra. Then there is a one-one
correspondence between faces of their direct Minkowski sum ∆1 ⊕∆2 and direct
Minkowski sums of faces of ∆1 and ∆2.

4.5 Cutting Polytopes

Now we turn our attention to hyperplanes which go through a polytope instead
of being laid on the surface. What we mean by "going through" can already be
defined for general convex sets:

Definition. Let A be a convex set. A hyperplane H(v,c) is said to split A if both
open halfspaces determined by H(v,c) contain points of A i.e. there exist φ, η ∈ A
such that ⟨φ, v⟩ > c and ⟨η, v⟩ < c.

The goal is to understand the "cutting" of a polytope, that means the inter-
section of a polytope with an affine halfspace such that the boundary hyperplane
splits the polytope. More precisely, let ∆ =

⋂
i∈I H(vi,ci) be a polytope and H(v,c)

be a hyperplane splitting ∆, that is, there exist φ1, φ2 ∈ ∆ such that

⟨φ1, v⟩ > 0 and ⟨φ2, v⟩ < 0.

We then investigate the properties of the polytope

∆cut = ∆ ∩H(v,c) =
⋂
i∈I

H(vi,ci) ∩H(v,c)
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under the familiar assumptions that ∆ is rational, simple or unimodular. The
goal is to establish criteria on H(v,c) such that ∆cut is again rational, simple or
unimodular. These properties can then immediately be extended to

∆slice = ∆ ∩ ∂H(v,c).

This is clear since ∆slice = ∆cut ∩ ∂H(v,c) is a face of ∆cut and so we can apply
Proposition 4.1.3, Theorem 4.3.2 or Theorem 4.3.3.

We will treat these problems in order of increasing complexity, starting with
the almost trivial case of rationality. First however, let us set some useful nota-
tion:

Notation. We will denote by J the index set of ∆cut, that is, the one obtained
from

I ∪ {j} with vj = v and cj = c.

by omitting the redundant indices. Note that since ∂H(v,c) ∩ int (∆) ̸= ∅, the
index j is not redundant.

Let us start now with the easiest case:

Proposition 4.5.1. Let Λ ⊂ V be a lattice, ∆ ⊂ V ∗ a Λ-rational polytope and
H(v,c) be a Λ-rational hyperplane which splits ∆. Then the polytope

∆cut = ∆ ∩H(v,c)

is again Λ-rational.

Proof. This is clear since
∆cut =

⋂
i∈J

H(vi,ci)

and all the {vi}i∈J (including vj = v) are Λ-rational by assumption. ■

Next, we turn our attention to simple polytopes. Let thus ∆ =
⋂
i∈I H(vi,ci)

be a simple polytope and consider

∆cut =
⋂
i∈I

H(vi,ci) ∩H(v,c) =
⋂
i∈J

H(vi,ci)

where ∂H(v,c) is an affine hyperplane splitting ∆. Let η be a vertex of ∆cut

which lies in ∂H(v,c). Note that since η is a vertex, |Jη| ≥ n = dim (V ) and the
local cone Cη(∆cut) is simple exactly if |Jη| = n. There are two main cases to
distinguish:
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1. If η was not a vertex of ∆, we must have |Iη| = n − 1. It follows that
|Jη| = |Iη ∪ {j}| = n and hence the local cone

Cη(∆cut) =
⋂
i∈Jη

Hvi

is simple for any v.

2. If however, η is already a vertex of ∆, then we have by simplicity of ∆
that |Iη| = n. Recalling that J is the index set obtained from I ∪ {j} by
omitting the redundant indices, it follows that Cη(∆cut) is simple exactly
if precisely one index in Iη becomes redundant for ∆cut.

An index k ∈ Iη is redundant for ∆cut if and only if ∂H(vk,ck) is a hyperplane
isolating

⋂
i∈I\{k}H(vi,ci) ∩H(v,c). But the hyperplane ∂H(vk,ck) contains η

and hence k ∈ I is redundant for ∆cut if and only if ∂H(vk,ck) is a support
hyperplane to

⋂
i∈I\{k}H(vi,ci) ∩H(v,c) at η. This in turn is the case if and

only if vk is in the support cone Sη(
⋂
i∈I\{k}H(vi,ci)∩H(v,c)) by Lemma 1.3.4.

By Lemma 1.3.3 this support cone can explicitly be written as

Sη(∆cut) = co({vi}i∈Iη\{k} ∪ {v}).

This means that vk is contained in the support cone if and only if there
exist positive real numbers λi, λ ≥ 0 such that

vk =
∑

i∈Iη\{k}

λivi + λv.

By linear independence of {vi}i∈Iη it is clear that λ ̸= 0 and hence

v =
1

λ
vj −

∑
i∈Iη\{k}

λi
λ
vi.

The conclusion is thus that Cη(∆cut) is simple if and only if the expression
of v in terms of the basis {vi}i∈Iη of V is of the form v =

∑
i∈Iη αivi with

exactly one αi strictly positive.

Putting this second, more involved case aside, we conclude: A sufficient, but
not necessary condition for

∆cut = ∆ ∩H(v,c)

to be simple is that Vert (∆) ∩H(v,c) = ∅, where we recall that Vert (∆) denotes
the set of vertices of ∆. For the remainder of these notes, we will restrict our
attention to this case:

Definition. Let ∆ be a polytope and H(v,c) be a hyperplane which splits ∆.
H(v,c) is said to cut ∆ if no vertex of ∆ lies in H(v,c) i.e.

Vert (∆) ∩H(v,c) = ∅.
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Proposition 4.5.2. Let ∆ be a simple polytope and H(v,c) a hyperplane which
cuts ∆. Then the polytopes

∆cut = ∆ ∩H(v,c)

is again simple. ■

Consider then a unimodular polytope ∆ and a hyperplane H(v,c) which cuts
an edge e in a point η which is not a vertex of ∆. The question that we need to
address is then whether the unimodularity condition at the point η satisfied?

Unimodular polytopes are in particular simple and for simple polytopes the
local cone at η is

Cη(∆cut) =
⋂
i∈Jη

Hvi

where Jη = Iη ∪ {j}. But now by assumption, {vi}i∈Iη are part of a lattice
basis. Indeed the edge e contains contains two vertices of ∆, say φ1 and φ2 so
that Ie ⊂ Iφ1 , Iφ2 and {vi}i∈Iφ1 , {vi}i∈Iφ2 are by assumption lattice bases. The
question therefore reduces to understanding in what ways one element of a lattice
basis can be replaced by another.

In the unimodular case both {vi}i∈Iφ1 and {vi}i∈Iφ2 form a basis of a lattice
Λ. Let i1 be the unique index in Iφ1 not in Ie and similarly, let i2 be the unique
index in Iφ2 not in Ie. The corresponding vectors can be written in terms of the
other basis as

vi1 =
∑
i∈Iφ2

mivi and vi2 =
∑
i∈Iφ1

nivi

for some integer coefficients mi, ni ∈ Z. By invariance under translation, we
might assume that φ1 is the origin. It follows that ci = 0 for all i ∈ Iφ1 , so in
particular ci = 0 if i ∈ Ie. Also 0 ∈ ∆ implies that 0 = ⟨0, vi2⟩ < ci2 , where
the inequality is strict because 0 /∈ ∂H(vi2 ,ci2 )

. Using these simplifications we can
compute

⟨φ2, vi1⟩ =
∑
i∈Iφ2

mi ⟨φ2, vi⟩

=
∑
i∈Iφ2

mici

= mi2ci2
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and from there we compute that

ci2 = ⟨φ2, vi2⟩

=
∑
i∈Iφ1

ni ⟨φ2, vi⟩

= ni1 ⟨φ2, vi1⟩
= ni1mi2ci2 .

Note first that because φ2 ∈ ∆, we have

mi2ci2 = ⟨φ2, vi1⟩ ≤ ci1 = 0

and since ci2 > 0, this implies mi2 ≤ 0. On the other hand, also since ci2 > 0 we
have that

ci2 = ni1mi2ci2

implies
ni1mi2 = 1.

Finally we use that ni1 and mi2 are integers so that the above equation only
allows for the solutions ni1 = ±1 = mi2 . But since we already established that
mi2 ≤ 0, the case with +1 is not possible so that finally we get

mi2 = −1 = ni1 .

In order to interpret this result properly, we need to zoom out again. We have
just shown that the coefficients of vi1 and vi2 in the expression of the relative
other basis is −1, for instance

vi2 = −vi1 +
∑
i∈Ie

nivi.

But {vi}i∈Ie forms a basis of the annihilator lattice Λ0 = Λ ∩We(∆) and hence
the above expression in the form

vi2 + vi1 =
∑
i∈Ie

nivi

means nothing but that the sum of vi1 and vi2 is contained in the annihilator
lattice Λ0. We summarise this again in a Lemma:

Lemma 4.5.3. Let Λ ⊂ V ∗ be a lattice, ∆ be a Λ-unimodular polytope, e an edge
in ∆ and φ0, φ1 the two vertices contained in the edge e. Then

1. there exist unique indices i1 ∈ Iφ1 and i2 ∈ Iφ2 such that

Iφ1\{i1} = Ie = Iφ2\{i2},

and
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2. the sum of the corresponding vectors vi1 and vi2 is in the annihilator lattice
Λ0 = Λ ∩We(∆) of the edge:

vi1 + vi2 ∈ Λ0.

The natural follow up question is now whether this last condition is also a
sufficient condition in the following sense: Suppose that e is an edge containing
the vertices φ1 and η of ∆cut. We adapt the notation from the Lemma but with
i2 = j and vi2 = v and assume that {vi}i∈Iφ1 is a basis of Λ. Is the condition
that vi1 + v ∈ Λ0 enough to assure that {vi}i∈Jη is a basis of Λ as well?

The answer is yes: Since {vi}i∈Iφ1 is a basis of Λ, any lattice point u ∈ Λ can
be written as linear combination with integer coefficients

u =
∑
i∈Iφ1

nivi with ni ∈ Z.

But if vi1 + v ∈ Λ0, then we can write

vi1 = −v +
∑
i∈Ie

mivi with mi ∈ Z

and substitute this in the above:

u =
∑
i∈Ie

nivi + ni1

(
−v +

∑
i∈Ie

mivi

)
=
∑
i∈Ie

(ni + ni1mi)vi − ni1v

where clearly ni + ni1mi ∈ Z and −ni1 ∈ Z. This shows that any lattice point
u ∈ Λ is an integer linear combination of elements in {vi}i∈Iη and thereby that
{vi}i∈Iη is a basis of Λ. We have shown the following result:

Lemma 4.5.4. Let Λ ⊂ V be a lattice, ∆ ⊂ V ∗ a simple polytope, e an edge in
∆ and φ1, η the two vertices contained in e. Suppose that {vi}i∈Iφ1 is a lattice
basis of Λ and write i1 for the unique index in Iφ1\Ie and j for the unique
index in Iη\Ie. Then {vi}i∈Iη is a basis of Λ if and only if vi1 + v ∈ Λ0 where
Λ0 = Λ ∩We(∆) is the annihilator lattice of the edge e.

Definition. Let Λ ⊂ V be a lattice and ∆ ⊂ V ∗ a Λ-unimodular polytope.

1. Let H(v,c) be a Λ-rational hyperplane cutting an edge e. Let φ be the vertex
contained in e such that φ ∈ H(v,c) and j the unique index in Iφ\Ie. The
hyperplane is called compatible with the edge e if vj + v is contained in the
annihilator lattice of the edge e.
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Figure 4.3: Example of a polytope ∆ cut by a hyperplane H(v,c). This hyperplane
is a reduction level for ∆.

2. A hyperplane H(v,c) is called a reduction level for ∆ if it cuts ∆ and is
compatible with all edges that it cuts.

This definition is precisely what we need for the next theorem to hold:

Theorem 4.5.5. Let ∆ be a Λ-unimodular polytope and H(v,c) a hyperplane which
cuts ∆. Then

∆cut = ∆ ∩H(v,c)

is again Λ-unimodular if and only if H(v,c) is a reduction level for ∆. ■

Remark. Consider a Λ-unimodular polytope ∆ and take an edge e of ∆. Let
φ1 and φ2 be the two vertices contained in e, write i1 for the unique index in
Iφ1\Ie and i2 for the unique index in Iφ2\Ie. By unimodularity of ∆ we have
vi1 + vi2 ∈ Λ0 = Λ ∩We(∆). Then the trivial observation

Λ0 ∋ vi1 + vi2 = (vi1 + v) + (vi2 − v)

shows that vi1 + v ∈ Λ0 if and only if (vi2 − v) ∈ Λ0.

What this means is that if a hyperplane is a reduction level for ∆, then
both sides of the hyperplane will be unimodular polytopes. This is because the
halfspace on the other side of the hyperplane is precisely H(−v,−c), in particular
it is described by the annihilating vector −v.

Example. Consider the polytope ∆ ⊂ R2 shown in figure 4.3. We see that
Iφ = {1, 2} and that the hyperplane H(v,c) cuts the two edges e1 and e2. Clearly,
Ie1 = {1} so that i1 = {2} is the unique index in Iφ\Ie1 . The annihilator space
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of e1 is We1(∆) = SpanR (v1) and the annihilator lattice is Λ0 = SpanZ (v1). The
hyperplane H(v,c) is compatible with e1 if vi1 + v = v2 + v ∈ Λ0. Taking the
explicit expressions

v1 =

(
−1
0

)
, v2 =

(
0
−1

)
and v =

(
1
1

)
we get

v2 + v =

(
1
0

)
= −v1 ∈ Λ0.

Repeating this argument for e2 shows that H(v,c) is a reduction level.
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Chapter 5

Hamiltonian Actions

In this chapter we introduce Hamiltonian actions on symplectic manifolds. In
the Appendix, Chapter A, the reader can find the most important definitions
and properties of general Lie group actions on smooth manifolds. This is why
we will focus here only on the symplectic and Hamiltonian aspects of it. After
a short exhibition of the basic definitions, a more detailed account of recursive
aspects is given.

5.1 Symplectic Actions

A smooth action of a Lie group G on a smooth manifold M is a Lie group homo-
morphism ψ : G → Diff (M). If M is equipped with a symplectic form ω, then
the diffeomorphisms of M which preserve ω, the so-called symplectomorphisms,
form a subgroup Sympl(M,ω). The action of a group G is symplectic if every
group element preserves the symplectic structure.

Definition. Let ψ : G → Diff (M) be a smooth action of a Lie group on a
symplectic manifold (M,ω). ψ is called a symplectic action if it acts by symplec-
tomorphisms i.e.

ψ : G→ Sympl(M) ⊂ Diff (M) .

If G is a Lie group which acts on a smooth manifold M via ψ : G→ Diff(M),
the fundamental vector field X♯ ∈ X (M) associated to an element X ∈ g of the
Lie algebra g of G is defined pointwise by

X♯
p =

d

dt

∣∣∣∣
t=0

ψexp(tX)(p).

For a more complete introduction of the fundamental vector field and some of its
basic properties, we refer the reader to the appendix, section A.2.

If ψ : G→ Diff (M) is a symplectic action, then the fundamental vector fields
are symplectic, that is, dιX♯ω = 0 for any X ∈ g. This follows from closedness

56
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of the symplectic form and Cartan’s magic formula:

dιX♯ω = dιX♯ω + ιX♯dω

= LX♯ω

=
d

dt

∣∣∣∣
t=0

ψ∗
exp(−tX)ω

=
d

dt

∣∣∣∣
t=0

ω

= 0

where we used that ψ∗
exp(−tX)ω = ω since ψexp(−tX) is by assumption a symplec-

tomorphism.

If the Lie group G is compact, and p ∈ M is a fixed point of the action,
then a neighbourhood of p is characterised by the isotropy representation: If
ψ : G→ Diff (M) denotes the action of G on M , then the isotropy representation
is given by

ρ : G→ GL(TpM)

g 7→ d(ψg)p .

If now again the action is symplectic, then also the isotropy representation is
symplectic.

Proposition 5.1.1. Let ψ : G → Diff (M) be a smooth symplectic action of a
Lie group on a symplectic manifold M and let p ∈ M be a fixed point. Then the
isotropy representation

ρ : G→ GL(TpM)

g 7→ d(ψg)p

is a symplectic representation i.e. for any g ∈ G we have ρg ∈ Sp(TpM,ωp). ■

In section A.4 in the appendix, it is deduced from the slice theorem that
the connected components of the set of points which are fixed by a group action
ψ : G→ Diff (M) are smooth submanifolds of M . Morally, this follows from the
fact that a neighbourhood of a fixed point looks like the isotropy representation
and the elements which are fixed by a given representation form a vector subspace.
But if the action ψ is symplectic, then the isotropy representation is symplectic
as well and its set of fixed points actually forms a symplectic subspace:

Lemma 5.1.2. Let ρ : G→ Sp(V, ω) be a symplectic representation of a compact
Lie group G on a symplectic vector space (V, ω). Then

V G = {v ∈ V | ρg(v) = v for all g ∈ G}

is a symplectic subspace of (V, ω).
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Proof. Since G is compact, we can choose an ω-compatible almost complex struc-
ture J on V which is G-invariant. V G is an almost complex subspace and there-
fore also a symplectic subspace. ■

This then immediately translates to the connected components of the fixed
point set being symplectic submanifolds. It is useful to consider the extension of
this result to the fixed point set under the action of a subgroup.

Proposition 5.1.3. Let (M,ω) be a symplectic manifold and equipped with a
symplectic action of Lie group G. If H ⊂ G is a compact Lie subgroup, then the
connected components of the set MH of points which are fixed by H are symplectic
submanifolds of M .

Proof. We only show that the submanifolds are symplectic. This follows from
the identification Tp(M

H) = (TpM)H if p ∈ MH and that by Lemma 5.1.2 the
subspace (TpM)H is a symplectic subspace.

If X ∈ Tp(M
H), then there exists a smooth curve γ : R → MH so that

γ(0) = p and γ̇(0) = X. But then for any h ∈ H

d(ψh)p [X] = d(ψh)p ◦ dγ0
[
∂

∂t

∣∣∣∣
0

]
= d(ψh ◦ γ)0

[
∂

∂t

∣∣∣∣
0

]
= d(γ)0

[
∂

∂t

∣∣∣∣
0

]
= X

and hence X ∈ (TpM)H giving Tp(MH) ⊂ (TpM)H .

To see the reverse inclusion, choose an H-invariant Riemannian metric on M ,
which is possible since H is compact and hence can be averaged over. For any
h ∈ H, there is a commutative diagram for the Riemannian exponential map

TpM M

TpM M

expp

d(ψh)p ψh

expp

Hence for Y ∈ (TpM)H , the curve δ(t) = expp(tY ) lies in MH as

ψh(expp(tY )) = expp(d(ψh)p [tY ])

= exp
(
td(ψh)p [Y ]

)
= expp(tY )

and is such that δ(0) = p and δ̇(0) = Y . Hence Y ∈ Tp(M
H) which implies

(TpM)H ⊂ Tp(M
H) and concludes the proof. ■
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5.2 Hamiltonian Actions

In the previous section we established that the fundamental vector fields induced
by a symplectic action are symplectic vector fields, meaning that ιX♯ω is closed.
The core idea in the definition of a Hamiltonian action is now to require the
fundamental vector fields to be Hamiltonian, meaning that ιX♯ω is exact. To
this end, we will introduce a generalisation of Hamiltonian functions called the
moment map. Since we will require this moment map to be equivariant, we first
have to recall the definition of the coadjoint representation.

Recall. 1. Let cg : G → G be conjugation with the element g ∈ G. The
derivative at the identity is a linear map

d(cg)e : TeG→ Tcg(e)G = TeG

that is, identifying TeG with the Lie algebra g of G, we get a map
Ad : G→ GL(g) which is a homomorphism by the chain rule. This is called
the adjoint representation of G on g:

Ad : G→ GL(g)

g 7→ Adg := d(cg)e .

2. The coadjoint representation of G on the dual g∗ is defined as the dual map
of Adg−1 i.e.

Ad∗ : G→ GL(g∗)

g 7→ Ad∗g := (Adg−1)∗

that is, for all X ∈ g and φ ∈ g∗ we have〈
Ad∗g[φ], X

〉
=
〈
φ,Adg−1 [X]

〉
.

3. Let G1, G2 be Lie groups which act on smooth manifolds M1,M2 via
ψ : G1 → Diff (M1) and σ : G2 → Diff (M2) respectively. Let further
α : G1 → G2 be a Lie group homomorphism and φ : M1 → M2 a smooth
map. We say that φ is (ψ, σ)-equivariant with respect to α if the following
diagram commutes for all g ∈ G1:

M1 M2

M1 M2

φ

ψg σα(g)

φ

Definition. Let ψ : G → Diff (M) be a smooth action of a Lie group on a
symplectic manifold (M,ω). ψ is called a Hamiltonian action if there exists a
map

µ :M → g∗

satisfying the following two conditions:
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• For each element X ∈ g, the component of µ along X given by

µX :M → R
p 7→ µX(p) := ⟨µ(p), X⟩

is a Hamiltonian function for the fundamental vector field X♯:

dµX = −ιX♯ω.

• µ is (ψ,Ad∗)-equivariant i.e. the following diagram commutes for all g ∈ G:

M g∗

M g∗

µ

ψg Ad∗g

µ

(M,ω,G, µ) is called a Hamiltonian G-space and µ is called a moment map.

Example. Let G be a Lie group and (V, ω) a symplectic vector space. Recall
that a symplectic representation is a group homomorphism ρ : G → Sp(V, ω).
This induces a Lie algebra representation

ρ̂ : g → sp(V, ω)

X 7→ d

dt

∣∣∣∣
t=0

ρexp(tX)

so that for any X ∈ g and any v ∈ V we have

ρ̂X(v) =
d

dt

∣∣∣∣
t=0

ρexp(tX)(v) = X♯
v

where we identify TvV ∼= V . We put

µ : V → g∗

v 7→
(
µ(v) : X 7→ 1

2
ω(ρ̂X(v), v)

)
.

and verify that this is a moment map:

1. First, we check (ρ,Ad∗)-equivariance by using Lemma A.2.3 in the ap-
pendix. Also, we identify TvV ∼= V and linear maps with their differentials.
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Then for any X ∈ g and any v ∈ V we have

⟨µ(ρg(v)), X⟩ = 1

2
ω(ρ̂X(ρg(v)), ρg(v))

=
1

2
ω(X♯

ρg(v)
, ρg(v))

=
1

2
ω([Adg(Adg−1(X))]♯ρg(v), ρg(v))

=
1

2
ω(d(ρg)v [Adg−1(X)]♯v,d(ρg)v (v))

=
1

2
ω([Adg−1(X)]♯v, v)

=
1

2
ω(ρ̂Adg−1 (X)(v), v)

=
〈
µ(v), Adg−1(X)

〉
=
〈
Ad∗g ◦ µ(v), X

〉
.

2. Secondly, we check that µX is the Hamiltonian function for the vector field
X♯. For any u, v ∈ V we compute

d
(
µX
)
v
[u] =

1

2

d

dt

∣∣∣∣
t=0

ω(ρ̂X(v + tu), v + tu)

=
1

2

(
ω

(
d

dt

∣∣∣∣
t=0

ρ̂X(v + tu), v

)
+ ω

(
ρ̂X(v),

d

dt

∣∣∣∣
t=0

(v + tu)

))
=

1

2
(ω(ρ̂X(u), v) + ω(ρ̂X(v), u))

= −ω(ρ̂X(v), u)
= −ω(X♯

v, u)

= −ι
X♯
v
ω(u)

where we used that since ρ̂ is a symplectic Lie algebra representation, it
holds that

ω(ρ̂X(u), v) + ω(u, ρ̂X(v)) = 0.

This proves that µ is indeed a moment map.

Just as for Hamiltonians, level sets of moment maps are of particular interest.
By the implicit function theorem, the level sets of regular values are manifolds in
their own right. In order to find which points are regular, one has to investigate
the differential of the moment map.

Recall. 1. If ψ : G → Diff (M) is a smooth action of a Lie group G on a
smooth manifold M and p ∈M a point, the elements in G fixing p form a
Lie subgroup of G called the stabiliser subgroup

Gp = {g ∈ G | ψg(p) = p}.
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The Lie algebra of Gp is called the stabiliser algebra and is the following
subspace of g (see Proposition A.3.3 in the appendix):

gp =
{
X ∈ g | X♯

p = 0
}
.

If the stabiliser subgroup Gp is trivial for a all points p ∈M , the action ψ
is called free. If the stabiliser algebra gp is trivial for all points p ∈M , then
the action is called locally free. By a slight abuse of language we say that G
acts freely/locally freely at a point p ∈M , if the stabiliser subroup/algebra
is trivial at p.

The orbit of p under G is the set of points in M that p can be mapped onto
by an element of G:

Op = {ψg(p) | g ∈ G} .

The action ψ : G → Diff (M) is called transitive if M consists of a single
orbit.

2. If (V, ω) is a symplectic vector space and W ⊂ V is a linear subspace, then
its symplectic orthocomplement is the vector supspace

Uω = {v ∈ V | ω(v, u) = 0 for all u ∈ U}

and has dimension dim (V )− dim (U).

Lemma 5.2.1. Let (M,ω,G, µ) be a hamiltonian G-space. Then for every p ∈M
we have

ker(dµp) = (Tp(Op))
ω and im(dµp) = (gp)

0.

Proof. By the first condition in the definition of a moment map we have

⟨dµp[v], X⟩ = ωp(v,X
♯
p) for all X ∈ g, v ∈ TpM.

Claim. It holds that

dµp[v] = 0 ⇐⇒ ωp(v,X
♯
p) = 0, ∀X ∈ g.

Proof of Claim. If dµp[v] = 0, then for all X ∈ g

ωp(v,X
♯
p) = ⟨dµp[v], X⟩ = 0.

Reversely, assume that ωp(v,X
♯
p) = 0 for all X ∈ g. Then this holds in particular

for the elements of any basis for g. If dµp[v] vanishes on all basis elements, it is
identically zero.
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Using this claim and that Tp(Op) is spanned by the fundamental vector fields
(see second point of Proposition A.3.5 in the appendix) we conclude

ker(dµp) =
{
v ∈ TpM | ωp(v,X♯

p) = 0 ∀X ∈ g
}
= (Tp(Op))

ωp .

Next, we observe that

dim (ker(dµp)) = dim ((TpO)ωp)

= dim (TpM)− dim (TpO)

= dim (M)− dim (O)

= dim (M)− (dim (G)− dim (Gp))

so that

dim (im(dµp)) = dim (TpM)− dim (ker(dµp))

= dim (G)− dim (Gp)

= dim (g)− dim (gp)

= dim
(
(gp)

0
)
.

Hence to prove the second result it suffices to show one inclusion. But it is clear
that im(dµp) ⊂ (gp)

0 since for v ∈ TpM and any X ∈ gp we observe

⟨dµp[v], X⟩ = ωp(v,X
♯
p) = ωp(v, 0) = 0

as gp = {X ∈ g | X♯
p = 0}. ■

Corollary 5.2.2. Let (M,ω,G, µ) be a hamiltonian G-space and let p ∈M be a
point. Then

1. p is a regular point of µ if and only if G acts locally freely at p and

2. the orbit Op through p is open if and only if dµp is injective.

Proof. 1. Using Lemma 5.2.1 we get

gp = 0 ⇐⇒ (gp)
0 = g∗

⇐⇒ dµp surjective.
⇐⇒ p regular point of µ

2. Similarly, by non-degeneracy of ωp

dµp injective ⇐⇒ (Tp(Op))
ωp = 0

⇐⇒ Tp(Op) = TpM

⇐⇒ dim (Op) = dim (M)

⇐⇒ Op open. ■
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An element φ ∈ g∗ is a regular value of the moment map µ if µ−1(φ) only
contains regular points. By the Corollary 5.2.2, this is the case if and only if
G acts locally freely on µ−1(φ). It then follows by the implicit function that
µ−1(φ) is an embedded submanifold of dimension dim (M)− dim (G). However,
this submanifold must not be invariant under the action. Indeed, by equivariance
of the moment map, we see that for any p ∈ µ−1(φ) and any g ∈ G, we have

µ ◦ ψg(p) = Ad∗g ◦ µ(p) = Ad∗g(φ)

so that ψg(p) is in µ−1(φ) if and only if Ad∗g(φ) = φ. Hence the submanifold
µ−1(φ) is invariant if and only if φ is a fixed point of the coadjoint representation.
There are two important cases where this is guaranteed: The first is that φ = 0
and the second that G is Abelian, implying that the coadjoint representation is
trivial.

5.3 Recursive Aspects of Hamiltonian Spaces

If a submanifold N of a Hamiltonian G-space (M,ω,G, µ), such as for instance
µ−1(0) explained above, is invariant under the G-action, the latter can restricted
to this submanifold. In this section, we show that N naturally inherits the
structure of a HamiltonianG-space and a moment map. Similarly, we will see that
M can also be seen as a HamiltonianH-space for any Lie subgroupH < G and we
will investigate product constructions. At the end, the constructions of symplectic
reduction and symplectic cutting are briefly presented and the question whether
the resulting manifolds inherit Hamiltonian actions will be addressed in detail.

Before delving into the first case, we establish some technicalities that will be
of use for several of these recursive aspects.

Lemma 5.3.1. Let α : G→ H be a Lie group homomorphism and let AdG : G→ GL(g)
and AdH : H → GL(h) be the two associated adjoint representations, (AdG)∗ : G→ GL(g∗)
and (AdH)∗ : H → GL(h∗) be the two associated coadjoint representations. Then
the following two diagrams commute for all g ∈ G:

g h h∗ g∗

g h h∗ g∗

AdGg

dαe

AdH
α(g)

(AdH)∗
α(g)

dα∗
e

(AdG)∗g

dαe dα∗
e

Proof. Denote the two conjugations by cGg : G→ G and cHh : H → H respectively.
Observe that for any g̃ ∈ G we have

α ◦ cGg (g̃) = α(gg̃g−1)

= α(g)α(g̃)α(g)−1

= cHα(g) ◦ α(g̃).
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Taking the differential at e ∈ G we obtain the first commutative diagram and
taking the dual yields the second. ■

Recall. 1. Let φ : M → N be a smooth map between smooth manifolds,
X ∈ X (M) and Y ∈ X (N) be vector fields. Then we say that X and Y
are φ-related if

dφp[Xp] = Yφ(p) ∀p ∈M.

2. Let ψ : G → Diff (M) be an action of a Lie group on a smooth manifold
M . An alternative description of the fundamental vector is via the orbit
map of a given point p ∈M

ψp : G→M

g 7→ ψg(p)

as
X♯
p = d(ψp)e [X].

Lemma 5.3.2. Let G1, G2 be Lie groups which act on smooth manifolds M1,M2

via ψ : G1 → Diff (M1) and σ : G2 → Diff (M2) respectively. Let further
α : G1 → G2 be a Lie group homomorphism and φ : M1 → M2 a smooth map
which is (ψ, σ)-equivariant with respect to α. Then for every X ∈ g1, X♯ ∈ X (M1)
and (dαe[X])♯ ∈ X (M2) are φ-related i.e. for all p ∈M1 we have

dφp[X
♯
p] = (dαe[X])♯φ(p).

Proof. First we observe that for every p ∈M1 and g ∈ G1 we have

φ ◦ ψp(g) = φ ◦ ψg(p)
= σα(g) ◦ φ(p)

= σφ(p) ◦ α(g)

so that φ ◦ ψp = σφ(p) ◦ α for any p ∈M1. Using this we get

dφp[X
♯
p] = dφψp(e) ◦ d(ψp)e [X]

= d(φ ◦ ψp)e [X]

= d
(
σφ(p) ◦ α

)
e
[X]

= d
(
σφ(p)

)
e
◦ dαe[X]

= (dαe[X])♯φ(p)

for any p ∈M1 which concludes the proof. ■
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Lemma 5.3.3. Let M,N be smooth manifolds and f :M → N be a smooth map.
If X ∈ X(M) and Y ∈ X (N) are f -related, then for all α ∈ Ω(N) we have

f∗ (ιY α) = ιXf
∗α

Proof. This is a straightforward computation: Take p ∈ M and ξ1, ..., ξn ∈ TpM
and note that

[f∗(ιY α)]p(ξ1, ..., ξn) = (ιY α)f(p) (dfp[ξ1], ....,dfp[ξn])

= αf(p)
(
Yf(p), dfp[ξ1], ...,dfp[ξn]

)
= αf(p) (dfp[Xp],dfp[ξ1], ...,dfp[ξn])

= (f∗α)p (Yp, ξ1, ..., ξn)

= (ιY (f
∗α)p)(ξ1, ..., ξn).

We conclude since p and ξ1, ..., ξn ∈ TpM were arbitrary. ■

5.3.1 Subgroup

Let now (M,ω,G, µ) be a Hamiltonian G-space and denote the action by
ψ : G→ Diff (M). If H < G is a Lie subgroup, then the composition of the
inclusion i : H ↪→ G with ψ is an action of H on M . Differently put, there exists
a unique action ψ̄ : H → Diff (M) such that the following diagram commutes for
all h ∈ H:

M M

M M

IdM

ψ̄h ψi(h)

IdM

or in words, the identity IdM is (ψ̄, ψ)-equivariant with respect to the inclusion
i : H ↪→ G.

Proposition 5.3.4. Let (M,ω,G, µ) be a Hamiltonian G-space. Let H be a Lie
subgroup, i : H ↪→ G denote the inclusion and die : g → h the inclusion of the
respective Lie algebras and di∗e : g∗ → h∗ the map dual to its differential. Then
(M,ω,H, di∗e ◦ µ) is a Hamiltonian H-space.

Proof. It follows by Lemma 5.3.2 and equivariance of the identity that
X♯ = (die[X])♯. On the other hand, we note that (di∗e ◦ µ)X = µdie[X] for all
X ∈ h since for any p ∈M

(di∗e ◦ µ)X(p) = ⟨di∗e ◦ µ(p), X⟩
= ⟨µ(p),die[X]⟩
= µdie[X](p)
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Combining those two facts we get

d(di∗e ◦ µ)
X = dµdie[X]

= −ι(die[X])♯ω

= −ιX♯ω.

Using Lemma 5.3.1 and equivariance of µ we compute

(di∗e ◦ µ) ◦ ψ̄h = di∗e ◦ µ ◦ ψi(h)
= di∗e ◦Ad∗i(h) ◦ µ

= Ad∗h ◦ (di∗e ◦ µ)

which shows (ψ̄, Ad∗)-equivariance and thereby concludes the proof. ■

Considering the special case of the Lie subgroup defined as the connected
component containing the identity, we can formalise the intuitive fact that the
moment map only sees the identity component of G:

Corollary 5.3.5. Let (M,ω,G, µ) be a hamiltonian G-space. Then the image of
the moment map µ is completely determined by the action of the identity compo-
nent G0.

Proof. The identity component G0 is a closed normal subgroup of G and so
we can apply the Proposition 5.3.4: If i : G0 ↪→ G is the inclusion, then
(M,ω,G0, di∗e ◦ µ) is a hamiltonian G0-space. However, since G0 is the iden-
tity component, die : g → g is the identity. Hence also di∗e is the identity and the
result follows. ■

5.3.2 Submanifold

If a submanifold N ⊂ M is G-invariant i.e. ψg(p) ∈ N for all p ∈ N and all
g ∈ G, the restriction ψg|N is a smooth action of G on N . Another way of
putting this is that there exists a unique action ψ̄ : G→ Diff (N) of G on N such
that the following diagram commutes for all g ∈ G

N M

N M

i

ψ̄g ψg

i

where i : N ↪→M is the inclusion. In words, the inclusion is (ψ̄, ψ)-equivariant.

Proposition 5.3.6. Let (M,ω,G, µ) be a hamiltonian G-space and let N be a
G-invariant symplectic submanifold of M . Denote i : N ↪→M the inclusion map.
Then (N, i∗ω,G, i∗µ) is a hamiltonian G-space.
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Proof. We check that i∗µ = µ ◦ i : N → g∗ is a moment map for ψ̄:

1. i∗µ is (ψ̄, Ad∗)-equivariant since the inclusion is (ψ̄, ψ)-equivariant and µ is
(ψ,Ad∗)-equivariant: for all g ∈ G we have

i∗µ ◦ ψ̄g = µ ◦ i ◦ ψ̄g
= µ ◦ ψg ◦ i
= Ad∗g ◦ µ ◦ i
= Ad∗g ◦ i∗µ.

2. For the second condition of a moment map, for any X ∈ g first observe
that (i∗µ)X = i∗µX as

(i∗µ)X(p) : = ⟨i∗µ(p), X⟩
= ⟨µ(i(p)), X⟩
= (µX)(i(p))

= i∗µX(p).

Then, using again Lemmas 5.3.3 and 5.3.2 one finds

d(i∗µ)X = di∗µX

= i∗dµX

= −i∗ιX♯ω

= −ιX♯i∗ω

which is exactly what is needed since i∗ω is the symplectic form on N . ■

5.3.3 Products

Recall. Let (M1, ω1) and (M2, ω2) be two symplectic manifolds. Consider the
product M1 ×M2 together with the two projections

pr1 :M1 ×M2 →M1

(p, q) 7→ p

and

pr2 :M1 ×M2 →M2

(p, q) 7→ q.

Then for any λ1, λ2 ∈ R\{0}, (M1×M2, λ1pr
∗
1ω1+λ2pr

∗
2ω2) is again a symplectic

manifold.
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Indeed, closedness is clear since exterior derivation is linear and commutes
with the pullbacks and nondegeneracy can be seen from the following computa-
tion (where we write m1 = dim (M1) and m2 = dim (M2)):

(λ1pr
∗
1ω1 + λ2pr

∗
2ω2)

m1+m2 = λm1
1 λm2

2

(
m1 +m2

m1

)
((pr∗1ω1)

m1 ∧ (pr∗2ω2)
m2) ̸= 0.

The first case that one might consider is if one group G acts on both M1 and
M2. Suppose thus that ψ : G→ Diff (M1) and σ : G→ Diff (M2) are two actions
of a single Lie group G on M1 and M2 respectively. Then there is an induced
action of G on the product M1 ×M2 as

τ : G→ Diff (M1 ×M2)

g 7→ (τg : (p1, p2) 7→ (ψg(p1), σg(p2)).

For each g ∈ G the diagrams

M1 ×M2 M1 M1 ×M2 M2

M1 ×M2 M1 M1 ×M2 M2

τg

pr1

ψg τg

pr2

σg

pr1 pr2

commute and it follows that if ψ and σ are symplectic actions, then τ is a sym-
plectic action as well:

τ∗g (λ1pr
∗
1ω1 + λ2pr

∗
2ω2) = λ1τ

∗
g (pr

∗
1ω1) + λ2τ

∗
g (pr

∗
2ω2)

= λ1(pr1 ◦ τg)∗ω1 + λ2(pr2 ◦ τg)∗ω2

= λ1(ψg ◦ pr1)∗ω1 + λ2(σg ◦ pr2)∗ω2

= λ1pr
∗
1(ψ

∗
gω1) + λ2pr

∗
2(σ

∗
gω2)

= λ1pr
∗
1ω1 + λ2pr

∗
2ω2.

Lemma 5.3.7. Let (M1, ω1, G, µ1) and (M2, ω2, G, µ2) be two hamiltonian G-
spaces. Then

(M1 ×M2, pr
∗
1ω1 + pr∗2ω2, G, µ1 ◦ pr1 + µ2 ◦ pr2)

is also a Hamiltonian G-space.

Proof. We check that µ := µ1 ◦ pr1 + µ2 ◦ pr2 is indeed a moment map:

1. (Ad∗, τ)-equivariance is straightforward by equivariance of µ1 and µ2 as
well as the two commutative diagrams for τg above: For any g ∈ G one has

µ ◦ τg = µ1 ◦ pr1 ◦ τg + µ2 ◦ pr2 ◦ τg
= µ1 ◦ ψg ◦ pr1 + µ2 ◦ σg ◦ pr2
= Ad∗g ◦ µ1 ◦ pr1 +Ad∗g ◦ µ2 ◦ pr2
= Ad∗g ◦ µ.
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2. First, we observe that for any X ∈ g it holds that µX = µX1 ◦pr1+µX2 ◦pr2
since

µX(p1, p2) = ⟨µ(p1, p2), X⟩
= ⟨µ1(p1) + µ2(p2), X⟩
= ⟨µ1(p1), X⟩+ ⟨µ2(p2), X⟩
= µX1 (p1) + µX2 (p2)

= (µX1 ◦ pr1 + µX2 ◦ pr2)(p1, p2)

for any (p1, p2) ∈ M1 × M2. Now the result follows by the chain rule,
Lemma 5.3.2 and Lemma 5.3.3:

dµX = d
(
µX1 ◦ pr1 + µX2 ◦ pr2

)
= dµX1 ◦ dpr1 + dµX2 ◦ dpr2
= −ιX♯ω1 ◦ dpr1 − ιX♯ω2 ◦ dpr2
= −pr∗1(ιX♯ω1)− pr∗2(ιX♯ω2)

= −ιX♯(pr∗1ω1)− ιX♯(pr∗2ω2)

= −ιX♯(pr∗1ω1 + pr∗2ω2). ■

Consider now the reverse situation and suppose that for a given smooth
manifold, two different Lie groups G and H act via ψ : G → Diff (M) and
σ : H → Diff (M). If the two actions commute, that is, for all g ∈ G and all
h ∈ H the diagram

M M

M M

ψg

σh σh

ψg

commutes, then the product group G×H acts naturally on M by

τ : G×H → Diff (M)

(g, h) 7→ ψg ◦ σh.

This is a well-defined action as

τ(g̃,h̃) ◦ τ(g,h) = ψg̃ ◦ σh̃ ◦ ψg ◦ σh
= ψg̃ ◦ ψg ◦ σh̃ ◦ σh
= ψg̃g ◦ σh̃h
= τ(g̃g,h̃h)

= τ(g̃,h̃)·(g,h).
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Again, if (M,ω) is a symplectic manifold and ψ and σ are symplectic actions, so
is τ . This is clear since

τ∗(g,h)ω = (ψg ◦ σh)∗ω

= σ∗h ◦ ψ∗
gω

= σ∗hω

= ω.

Assuming that both ψ and σ are hamiltonian, with moment maps µG and µH
respectively, is τ as defined above hamiltonian as well? The natural candidate
for the moment map is

µ :M → g∗ ⊕ h∗

p 7→ d(prG)
∗
(e,e) ◦ µG(p) + d(prH)

∗
(e,e) ◦ µH(p)

where prG,H : G × H → G,H are the projections so that d(prG,H)
∗
(e,e) just

correspond to the inclusions g∗, h∗ ↪→ g∗ ⊕ h∗. We start by noticing that for all
p ∈M and all X ∈ g⊕ h we have

µX(p) = (d(prG)
∗
(e,e) ◦ µG + d(prH)

∗
(e,e) ◦ µH)

X(p)

=
〈
d(prG)

∗
(e,e) ◦ µG(p) + d(prH)

∗
(e,e) ◦ µH(p), X

〉
=
〈
µG(p), d(prG)(e,e) [X]

〉
+
〈
µH(p),d(prH)(e,e) [X]

〉
=

(
µ
d(prG)(e,e)[X]

G + µ
d(prH)(e,e)[X]

H

)
(p)

so that

dµX = dµ
d(prG)(e,e)[X]

G + dµ
d(prH)(e,e)[X]

H

= −ι(d(prG)(e,e)[X])♯ω − ι(d(prH)(e,e)[X])♯ω

= −ι(d(prG)(e,e)[X])♯+(d(prH)(e,e)[X])♯ω.

On the other hand, we see that the fundamental vector field of the product action
at a point p ∈M is

X♯
p = d(τp)(e,e) [X]

= d1(τ
p)(e,e)[X] + d2(τ

p)(e,e)[X]

where d1 denotes the derivative with regard to the first entry while leaving the
second fixed at e and similarly for d2. By the definition of the product action τ ,
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for any g ∈ G1 it holds that

τp(g, e) = τ(g,e)(p)

= ψg ◦ σe(p)
= ψg(p)

= ψp(g)

= ψp ◦ prG(g, e)

and analogously for the second entry. It follows that the fundamental vector field
of the product action can be written as the sum of the fundamental vector fields
of the two factors:

X♯
p = d1(ψ

p ◦ prG)(e,e)[X] + d2(σ
p ◦ prH)(e,e)[X]

= d(ψp)e ◦ d(prG)(e,e) [X] + d(σp)e ◦ d(prH)(e,e) [X]

= (d(prG)(e,e) [X])♯p + (d(prH)(e,e) [X])♯p.

Combining this with the above gives

dµX = −ιX♯ω.

In order to get (τ,Ad∗)-equivariance, an additional hypothesis is needed.
Namely, we have to require that µG is σ-invariant and that reversely
µH is ψ-invariant. Assuming this and using Lemma 5.3.1 we can compute that

µ ◦ τ(g,h) = (d(prG)
∗
(e,e) ◦ µG + d(prH)

∗
(e,e) ◦ µH) ◦ ψg ◦ σh

= d(prG)
∗
(e,e) ◦ µG ◦ ψg + d(prH)

∗
(e,e) ◦ µH ◦ σh

= d(prG)
∗
(e,e) ◦ (Ad

G
g )

∗ ◦ µG + d(prH)
∗
(e,e) ◦ (Ad

H
h )

∗ ◦ µH
= (AdG×H

(g,h) )
∗ ◦ µ

showing that these additional assumptions are indeed sufficient. We have thus
shown the following

Lemma 5.3.8. Let G and H be two Lie groups which act in a Hamiltonian way
on a symplectic manifold (M,ω) such that the actions commute and the moment
maps µG : M → g∗ and µH : M → h∗ are invariant under the respective other
action. If prG,H : G×H → G,H denote the projections on the factors, then

(M,ω,G×H,d(prG)
∗
(e,e) ◦ µG + d(prH)

∗
(e,e) ◦ µH)

is a Hamiltonian G×H-space. ■

Putting the two last results together one gets the following consequence:
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Proposition 5.3.9. Let (M1, ω1, G, µ1) be a Hamiltonian G-space,
(M2, ω2, H, µ2) a Hamiltonian H-space and let pr1,2 : M1 × M2 → M1,2 and
prG,H : G×H → G,H denote the projections on the factors. Then

(M1 ×M2, pr
∗
1ω1 + pr∗2ω2, G×H,d(prG)

∗
(e,e) ◦ µ1 ◦ pr1 + d(prH)

∗
(e,e) ◦ µ2 ◦ pr2)

is a Hamiltonian G×H-space.

Proof. G acts on M2 by the trivial action in a Hamiltonian way and the corre-
sponding moment map is zero. The two actions on M2 hence clearly satisfy the
hypotheses of Lemma 5.3.8 and we get a Hamiltonian action of G × H on M2

whose moment map is
µ̃2 = d(prH)

∗
(e,e) ◦ µ2.

Similarly, G×H acts in a Hamiltonian way on M1 and the moment map is given
by

µ̃1 = d(prG)
∗
(e,e) ◦ µ1.

The result now follows directly from Lemma 5.3.7. ■

Remark. Note that for making the notation not heavier than it already is, we
stuck to the case λ1 = λ2 = 1. By linearity of all the constructions involved,
the same arguments also go through for all other choices of λ1, λ2 ∈ R\{0}. In
particular, one could use the twisted product form that is obtained by choosing
λ1 = 1 and λ2 = −1 so that we get another Hamiltonian G×H-space

(M1 ×M2, pr
∗
1ω1 − pr∗2ω2, G×H,d(prG)

∗
(e,e) ◦ µ1 ◦ pr1 − d(prH)

∗
(e,e) ◦ µ2 ◦ pr2).

5.3.4 Symplectic Reduction

Let us now come back to the level sets of the moment map. In section 5.2 it
was established that µ−1(φ) was a smooth submanifold if the action restricted to
µ−1(φ) was locally free. Moreover, it was argued that µ−1(φ) is invariant under
the action if the acting group G is Abelian or if φ = 0. One might be tempted
to deduce from Proposition 5.3.6 that the restriction of the action to µ−1(φ) is
also a Hamiltonian action, but this is in general not possible since µ−1(φ) does
not have to be a symplectic submanifold. Indeed, the tangent space to a point
p ∈ µ−1(φ) can be identified as

Tp(µ
−1(φ)) = ker(dµp) = (Tp(Op))

ωp

using Lemma 5.2.1. But if φ = 0 or if G is Abelian, then equivariance becomes
invariance on µ−1(φ), meaning in particular that µ is constant on the orbits.
It follows that dµp : TpM → g∗ maps Tp(Op) to zero i.e.
Tp(Op) ⊂ ker(dµp) = (Tp(Op))

ωp . Hence Tp(Op) ⊂ TpM is an isotropic sub-
space. The key to defining a symplectic structure is then following lemma from
symplectic linear algebra:
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Lemma 5.3.10. Let (V, ω) be a symplectic vector space and suppose that U ⊂ V
is an isotropic subspace i.e. U ⊂ Uω or equivalently ω|U×U = 0. Then ω induces
a canonical symplectic form ω̄ on Uω/U .

Proof. ([5], Lemma 23.3.) Let v, w ∈ Uω and write [v], [w] ∈ Uω/U for their
equivalence classes. Define then a 2-form on the quotient as

ω̄ : Uω/U × Uω/U → R
([v], [w]) 7→ ω(v, w)

and check that this is

1. well-defined since for any u, u′ ∈ U

ω(v + u,w + u′) = ω(v, w) + ω(v, u′)︸ ︷︷ ︸
=0

+ω(u,w)︸ ︷︷ ︸
=0

+ω(u, u′)︸ ︷︷ ︸
=0

= ω(v, w)

by definition of the symplectic orthocomplement and

2. non-degenerate: If v ∈ Uω is such that ω(v, w) = 0 for all w ∈ Uω, then
v ∈ (Uω)ω = U so that [v] = 0 in the quotient. ■

The idea is thus to get the quotient of Tp(µ−1(φ)) = (Tp(Op))
ωp by Tp(Op)

as tangent space. It would therefore be natural to consider the orbit space
µ−1(φ)/G. However, for this to be a manifold, we need a stronger hypothesis: If
we assume that the action restricted to µ−1(φ) is free, not only locally free, the
quotient µ−1(φ)/G is actually a manifold. Assembling all those arguments, one
can then prove the following theorem:

Theorem 5.3.11 (Marsden-Weinstein, Meyer). Let (M,ω,G, µ) be a hamilto-
nian G-space for a compact Lie group G and take φ ∈ µ(M). Assume that φ = 0
or that G is Abelian. Let i : µ−1(φ) ↪→M denote the inclusion map and assume
further that G acts freely on µ−1(φ). Then

1. the orbit space Mred = µ−1(φ)/G is a manifold,

2. Π : µ−1(φ) →Mred is a principal G-bundle and

3. there is a symplectic form ωred on Mred satisfying i∗ω = Π∗ωred. ■.

Definition. The pair (Mred, ωred) is called the symplectic reduction or the sym-
plectic quotient of (M,ω) by G and µ.
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Residual Symmetries

Assume now that we are in this situation and that (M,ω,H, µH) is a hamil-
tonian H-space and that (Mred, ωred) is its symplectic quotient by H and µH .
Suppose then further that there is another Lie group G that acts on M via
ψ : G→ Diff (M). Under what conditions does the action ψ descend to the sym-
plectic quotient Mred?

The first thing one needs to check is that µ−1
H (φ) is G-invariant. The natural

condition to ensure this, is requiring the moment map µH to be ψ-invariant i.e.
for all g ∈ G:

µH ◦ ψg = µH .

If this holds, one can restrict ψg to µ−1
H (φ) and gets a commutative diagram

µ−1
H (φ) M

µ−1
H (φ) M

i

ψ̃g ψg

i

Next, one has to check whether the action ψ restricted to µ−1
H (φ) descends

to the quotient µ−1
H (φ)/H. Again there is a natural hypothesis to ensure this,

namely that the actions of H and G on M commute: for any g ∈ G and any
h ∈ H we require that

ψg ◦ σh = σh ◦ ψg.

Using this, we can define the action

ψ̄ : G→ Diff (Mred)

g 7→
(
ψ̄g : Op 7→ Oψg(p)

)
.

Indeed, this is well defined: If q = σh(p) is another representative of the orbit
Op, then

ψg(q) = ψg(σh(p)) = σh(ψg(p))

shows that Oψg(p) = Oψg(q). Note also that this is the unique action such that
the bundle map Π : µ−1

H (φ) →Mred is (ψ, ψ̄)-equivariant.

There is another convenient way of writing this action ψ̄ which also makes
explicit that it is smooth. Consider for this a point Op ∈Mred and an open neigh-
bourhood UOp ⊂ Mred of it together with any smooth local section
s : UOp → µ−1

H (φ) of the principal bundle Π : µ−1
H (φ) → Mred. Then we can

define locally
ψ̄g = Π ◦ ψ̃g ◦ s.

This does not depend on the choice of section since H acts transitively on the
fibres of Π: The images of two different sections are mapped onto each other by
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σh for some h ∈ H. Hence these local definitions can be glued together to define
ψ̄g on all of Mred in this way.

Claim. If ψ : G→ Diff (M) is symplectic, then so is ψ̄ : G→ Diff (Mred).

Proof of Claim. Using the local section s, we see that for any g ∈ G

ψ̄∗
gωred = (Π ◦ ψ̃g ◦ s)∗ωred

= s∗ ◦ (ψ̃g)∗ ◦Π∗ωred

= s∗ ◦ (ψ̃g)∗ ◦ i∗ω
= s∗ ◦ (i ◦ ψ̃g)∗ω
= s∗(ψg ◦ i)∗ω
= s∗ ◦ i∗ ◦ ψ∗

gω

= s∗ ◦ i∗ω
= s∗ ◦Π∗ωred

= (Π ◦ s)∗ωred
= ωred

and hence that ψ̄ is a symplectic action on (Mred, ωred).

Claim. If ψ : G → Diff (M) is Hamiltonian with a H-invariant moment map
µG : M → g∗ i.e. µG ◦ σh = µG for all h ∈ H, then ψ̄ : G → Diff (Mred) is
Hamiltonian with a moment map µ̄G : Mred → g∗ satisfying µ̄G ◦ Π = µG ◦ i.
Moreover, this condition completely determines the moment map µ̄G.

Proof of Claim. By H-invariance µG descends to a map

µ̄G :Mred → g∗

Op → µG(i(p))

or again, using a local section s we can write µ̄G = µG ◦ i ◦ s. It is clear that this
satisfies µ̄G ◦ Π = µG ◦ i. Since Π is surjective, this property completely charac-
terises the moment map. We can then verify that this is indeed a Hamiltonian
moment map:

1. (ψ̄, Ad∗)-equivariance holds since µG is (ψ,Ad∗)-equivariant: For any g ∈ G
we observe

µ̄G ◦ ψ̄g = µ̄G ◦Π ◦ ψ̃g ◦ s
= µG ◦ i ◦ ψ̃g ◦ s
= µG ◦ ψg ◦ i ◦ s
= Ad∗g ◦ µG ◦ i ◦ s
= Ad∗g ◦ µ̄G ◦Π ◦ s
= Ad∗g ◦ µ̄G.
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2. To check the Hamiltonian property, we need to verify that〈
d(µ̄G)Op [v], X

〉
= (ωred)Op(v,X

♯
Op)

for any X ∈ g and any v ∈ TOp(Mred). Since Π is submersion, for any
v ∈ TOp(Mred) there is a w ∈ Tp(µ

−1
H (φ)) such that dΠp[w] = v. Using this

we can compute〈
d(µ̄G)Op [v], X

〉
=
〈
d(µ̄G)Op ◦ dΠp[w], X

〉
=
〈
d(µ̄G ◦Π)p [w], X

〉
=
〈
d(µG ◦ i)p [w], X

〉
=
〈
d(µG)i(p) ◦ dip[w], X

〉
= ωi(p)(dip[w], X

♯
i(p))

= ωi(p)(dip[w], dip[X
♯
i(p)])

= (i∗ω)p(w,X
♯
p)

= (Π∗ωred)p(w,X
♯
p)

= (ωred)Π(p)(dΠp[w], dΠp[X
♯
p])

= (ωred)Op(v,X
♯
Op)

where we used repeatedly the chain rule and Lemma 5.3.2 as well as the
symplectic reduction theorem 5.3.11.

We summarise this discussion:

Proposition 5.3.12. Let (M,ω,H, µH) be a Hamiltonian H-space where the
group action is denoted as σ : H → Diff (M). Assume that there is another
Hamiltonian group action ψ : G → Diff (M) by a second Lie group G which
commutes with σ and such that µH is G-invariant and µG is H-invariant. Then
the symplectic quotient (Mred, ωred, G, µ̄G) with Mred = µ−1

H (φ)/H, ωred and µ̄G
defined by satisfying µ̄G ◦Π = µG ◦ i, is a Hamiltonian G-space. ■

5.3.5 Symplectic Cutting

This presentation of the basic construction of symplectic cutting follows [8].

Convention. For this section we will identify the dual s∗ of the Lie algebra s
of S1 with R in the following way: Let v ∈ s\{0} be a fixed non-zero vector.
Each element φ ∈ s∗ gives a unique real number c by evaluation at v, that is,
⟨φ, v⟩ = c ∈ R. Reversely, since s is one-dimenstional and {v} is hence a basis,
any value c ∈ R defines an element φ ∈ s∗ by setting ⟨φ, v⟩ = c and extending
linearly.
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Let (M,ω, S1, µS1) be a Hamiltonian S1-space. Parametrise S1 by θ ∈ [0, 2π[
and let σ : S1 → Diff (M) denote the action. S1 also acts on the complex plane
C with the standard symplectic structure ω0 =

i
2dz ∧ dz̄ by multiplication

τ : S1 → Diff (C)
θ 7→ τθ : z 7→ e−iθz.

This action is Hamiltonian and the corresponding moment map is

µC : C → R ∼= s∗

z 7→ 1

2
|z|2.

By Lemma 5.3.7, the product M × C is again a Hamiltonian S1-space:

(M × C, pr∗Mω + pr∗Cω0, S
1, µS1 ◦ prM + µC ◦ prC)

where the moment map is given explicitly as

µ :M × C → R

(p, z) 7→ µS1(p) +
1

2
|z|2.

For an arbitrary c ∈ R, the level set is

µ−1(c) =
(
µ−1
S1 (c)× {0}

)
⊔
⊔
r>0

(
µ−1
S1 (c− r)×

{
1

2
|z|2 = r

})
.

In other words, for each c ∈ R, the preimage µ−1(c) is a disjoint union of two
S1-invariant (S1 is Abelian) subsets where the first can be identified with

µ−1
S1 (c)× {0} ∼= µ−1

S1 (c) = {p ∈M | µS1(p) = c}

and the second with⊔
r>0

(
µ−1
S1 (c− r)×

{
1

2
|z|2 = r

})
∼= {p ∈M | µS1(p) < c} × S1

where we identify {1
2 |z|

2 = r} = {
√
2reiφ | φ ∈ [0, 2π[} ∼= S1.

If S1 acts freely on µ−1
S1 (c), then it also acts freely on µ−1(c). Indeed, it

also acts freely on the second part since the S1 action on C is free except at
the origin. It follows that one can find a symplectic quotient by S1 and µ as in
Theorem 5.3.11 at such a value c ∈ R.

Definition. We will denote the resulting space by (M≤c, ω≤c) and call it the
symplectic cut of M below c with respect to µS1 .
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Because the decomposition of µ−1(c) into two disjoint components above was
S1-invariant, also M≤c is the union of two disjoint components: The first one can
be identified with the symplectic quotient of M at c ∈ R

µ−1
S1 (c)

/
S1 :=Mc

and the second with

{p ∈M | µS1(p) > c} × S1/
S1

∼= {p ∈M | µS1(p) > c} :=M<c.

This identification is given explicitly by

α : M<c × S1/
S1 →M<c

O(p,φ) 7→ σφ(p)

where σ : S1 → Diff (M) still denotes the S1-action and where O(p,φ) denotes the
S1-orbit of (p, φ) ∈ M<c × S1. Note that this is well-defined since any θ ∈ S1

acts on (p, φ) ∈M × S1 by mapping it onto (σθ(p), φ− θ) and that

α(O(σθ(p),φ−θ)) = σφ−θ(σθ(p)) = σφ(p).

The inverse is given explicitly by

β :M<c → M<c × S1/
S1

p 7→ O(p,0)

and where we recall that S1 is still parametrised by the angle so that the 0 in this
equation does not correspond to the origin of the complex plane but the identity
element in S1. Indeed one can check that β and α are reciprocally inverse as

β ◦ α(O(p,φ)) = β(σφ(p))

= O(σφ(p),0)

= O(p,φ)

where the last step uses that acting with −φ maps (σφ(p), 0) onto
(σ−φ ◦ σφ(p), φ) = (p, φ). Similarly,

α ◦ β(p) = α(O(p,0))

= σ0(p)

= p.

In conclusion we constructed a new symplectic manifold M≤c which is made
up of the two disjoint components:

M≤c =Mc ⊔M<c.
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Remark. A similar construction but with the twisted product symplectic mani-
fold (M1 ×C, pr∗Mω− pr∗Cω0) and the the corresponding moment map yields the
symplectic cut M≥c =Mc⊔M>c of M above c with respect to µS1 . These two cut
spaces can be glued together along the submanifolds Mc to recover the original
symplectic manifold (M,ω).

Residual Symmetries

Take now (M,ω,G, µG) a Hamiltonian G-space, where G is a compact Abelian
Lie group and denote the action as ψ : G → Diff (M). Assume then that H
is some S1-subgroup of G and note that by Proposition 5.3.4 it also acts in a
Hamiltonian way on M : This action is given by σ := ψ ◦ j with moment map
µH := dj∗e ◦ µG where j : H ↪→ G denotes the inclusion. We then carry out the
above construction with regard to the subgroup H ∼= S1 and investigate whether
the symplectic cut manifold M≤c inherits a G-action:

1. Extend the action of G to the product space M×C by letting it act trivially
on the second component. We denote this action by

ψ × 1 : G→ Diff (M × C)
g 7→ (ψ × 1)g = ψg × IdC.

By Lemma 5.3.7 this action is Hamiltonian and its moment map corre-
sponds to µG ◦ prM .

2. Let H ∼= S1 act on the product space M × C by

σ × τ : H → Diff (M × C)
H 7→ (σ × τ)h = σh × τh.

i.e. by the action σ induced by G on the first factor and by the multipli-
cation τ described above on the second factor. By Lemma 5.3.7 also this
action is Hamiltonian with moment map µS1 := dj∗e ◦ µG ◦ prM + µC ◦ prC.

3. These two actions commute since the group G is Abelian:

(ψ × 1)g ◦ (σ × τ)h = (ψg ◦ σh)× (1g ◦ τh)
= (ψg ◦ ψj(h))× (τh ◦ 1g)
= (ψgj(h))× (τh ◦ 1g)
= (ψj(h)g)× (τh ◦ 1g)
= (ψj(h) ◦ ψg)× (τh ◦ 1g)
= (σh ◦ ψg)× (τh ◦ 1g)
= (σ × τ)h ◦ (ψ × 1)g.
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For the same reason the two moment maps are invariant under the respec-
tive other action:

(µG ◦ prM ) ◦ (σ × τ)h = µG ◦ σh ◦ prM
= µG ◦ ψj(h) ◦ prM
= µG ◦ prM

and

µS1 ◦ (ψ × 1)g = (dj∗e ◦ µG ◦ prM + µC ◦ prC) ◦ (ψ × 1)g

= dj∗e ◦ µG ◦ ψg ◦ prM + µC ◦ 1g ◦ prC
= dj∗e ◦ µG ◦ prM + µC ◦ prC
= µS1 .

4. Hence we conclude by Proposition 5.3.12 that M≤c := µ−1
S1 (c)/H inherits a

Hamiltonian G-action. Explicitly, if O(p,z) is the H-orbit of (p, z) ∈ µ−1
S1 (c),

then this action is given by

ψ̄ : G→ Diff (M≤c)

g 7→ ψ̄g : O(p,z) 7→ O(ψg(p),z).

Similarly, the moment map is given by

µ̄G :M≤c → g∗

O(p,z) 7→ (µG ◦ prM ) ◦ i(p, z) = µG(p)

where i : µ−1
S1 (c) ↪→M × C is the inclusion.

5. Untangling the definitions, one sees that the action ψ̄ of G on M<c is just
given by the restriction of the G-action on M . Indeed, using the explicit
identifications α and β from above, for any p ∈M<c and any g ∈ G we see
that the action corresponds to

ψ̄g(p) = α ◦ ψ̄g ◦ β(p)
= α ◦ ψ̄g(O(p,0))

= α(O(ψg ,0))

= σ0 ◦ ψg(p)
= ψg(p),

It follows in the same way that the moment map of this action just corre-
sponds to the restriction of the moment map µG to M<c.
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6. Similarly, by the trivial identification

Mc = µ−1
H (c)/H ∼= (µ−1

H (c)× {0})/H

we observe that G acts on µ−1
H (c) just by restriction and that the mo-

ment map is thus once again just the restriction of µG. As G is Abelian,
the moment map µG is constant on the whole G-orbits, so in particular
it is constant on the H-orbits and descends to a moment map µ̄G on
Mc = µ−1

H (c)/H i.e. if Op is theH-orbit of p ∈ µ−1
H (c), then µ̄G(Op) = µG(p).

In conclusion, if symplectic cutting is carried out with regard to an
S1-subgroup H of a compact Abelian Lie group G, then the resulting cut space
M≤c inherits a Hamiltonian G action: On M<c = {p ∈ M | µH(p) < c} this
action is just the restriction and also the moment map can be identified with the
restriction. Because G is Abelian, the G-action also descends to an action on
Mc

∼=Mred = µ−1
H (c)/H and so does the moment map.

We will now conclude this chapter by studying how the construction of sym-
plectic cutting affects the image of the moment map. This serves both as an
introduction to the final two chapters of this work and as a motivation for the
name symplectic cut. We will proceed in three steps:

1. Since H is an S1-subgroup of G, its Lie algebra is generated by a single
vector v ∈ g. We will write ṽ for the vector v but as an element of h, that
is, ṽ ∈ h is the unique element in the Lie algebra of H such that dje[ṽ] = v.
We then choose this vector to identify h∗ with R, that is, to the value c ∈ R,
we associate

φ : s → R
ṽ 7→ c.

2. We start by Mc and as we argued above, µ̄G : Mc → g∗ is induced by the
restriction of µG to µ−1

H (c) so that

µ̄G(Mc) = µG(µ
−1
H (c)).

But as µH = dj∗e ◦ µG it holds that

µ−1
H (c) = µ−1

G

(
(dj∗e )

−1(c)
)
.

However, with the identification c ∼ φ : ṽ 7→ c from above, we quickly see
that for η ∈ g∗,

η ∈ (dj∗e )
−1(φ) ⇐⇒ dj∗e [η] = φ

⇐⇒ ⟨dj∗e [η], ṽ⟩ = ⟨φ, ṽ⟩
⇐⇒ ⟨η,dje[ṽ]⟩ = c

⇐⇒ ⟨η, v⟩ = c

⇐⇒ η ∈ ∂H(v,c).
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We conclude that
µ̄G(Mc) = µG(M) ∩ ∂H(v,c).

3. Also for M<c, the moment map just corresponds to the restriction so that
we see

µ̄G(M<c) = µG ({p ∈M | µH(p) < c})

But with the same arguments as above (still identifying φ ∼ c),

µH(p) < φ ⇐⇒ dj∗e ◦ µG(p) < φ

⇐⇒ ⟨dj∗e ◦ µG(p), ṽ⟩ < ⟨φ, ṽ⟩
⇐⇒ ⟨µG(p),dj∗e [ṽ]⟩ < c

⇐⇒ ⟨µG(p), v⟩ < c

⇐⇒ µG(p) ∈ int
(
H(v,c)

)
so that we can conclude

µ̄G(M<c) = µG(M) ∩ int
(
H(v,c)

)
.

Finally, combining the results of step 2 and step 3, we see that

µ̄G(M≤c) = µG(M) ∩H(v,c)

which in view of section 4.5 motivates the name symplectic cut.



Chapter 6

Hamiltonian Torus Actions

In the last part of the previous chapter, it was established that for compact
Abelian Lie groups the cutting construction can be carried out with regard to
a subgroup so that the resulting space inherits an action. For this result both
compactness and commutativity were crucial. In this chapter, we will address
the question of what additional properties a moment map has, if one requires
the acting Lie group to be compact Abelian. Since the image of the moment
map is entirely characterised by the action of the identity component, we will
further reduce to considering connected compact Abelian Lie groups. We start
this chapter by investigating the relation between abstract connected compact
Abelian Lie groups and tori.

6.1 Toric Framework

The first part of this section is inspired by [9].

For connected compact Abelian Lie groups, the exponential map allows to
interpret the Lie group as a quotient of its Lie algebra by a lattice. The first step
towards this result is the following observation:

Proposition 6.1.1. Let G be a connected Lie group. The exponential map
exp : g → G is a homomorphism if and only if G is Abelian.

Proof. Assume first that exp : g → G is a group homomorphism. As a Lie group,
G is in particular a connected topological group and therefore generated by any
neighbourhood of the identity. Since exp : g → G is a diffeomorphism on a
neighbourhood of the identity, it follows that any g ∈ G can be written as a
product of elements in the image of exp i.e.

g =
∏
i

exp(Xi) for some Xi ∈ g

Doing the same for h ∈ G we can write h =
∏
j exp(Zj) for some Zj ∈ g. Finally,

84
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using that exp is assumed to be a homomorphism we get

gh =
∏
i

exp(Xi)
∏
j

exp(Zj)

= exp

∑
i

Xi +
∑
j

Zj


= exp

∑
j

Zj +
∑
i

Xi


=
∏
j

exp(Zj)
∏
i

exp(Xi)

= hg

showing that indeed, G is Abelian.

Conversely, if G is Abelian, then the multiplication m : G × G → G is a
homomorphism since

m((g1, h1) · (g2, h2)) = m(g1g2, h1h2)

= g1g2h1h2

= g1h1g2h2

= m(g1, h1)m(g2, h2),

where for readability we used · to denote multiplication in G × G. The state-
ment now follows from the naturality of the exponential map since the following
diagram commutes:

g⊕ g g

G×G G

dm(e.e)

expG× expG expG

m

For particular elements X,Z ∈ g this becomes

(X,Z) X + Z

(expG(X), expG(Z)) expG(X) expG(Z) = expG(X + Z)

dm(e.e)

expG× expG expG

m

where we used that the differential of the multiplication at the identity is

dm(e,e) : g⊕ g → g

(X,Z) 7→ X + Z. ■
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Actually, the argument in the beginning of this proof also tells us that the
exponential map of a connected Lie group is surjective if it is a homomorphism.
Since this is the case if the Lie group is Abelian, the following result holds:

Corollary 6.1.2. For connected Abelian Lie Groups the exponential map is a
surjective homomorphism. ■

If the exponential map is a surjective homomorphism, one can apply the first
isomorphism theorem and interpret the group as the quotient of its Lie algebra
by the kernel of the exponential map. This kernel is a discrete subgroup of the
Lie algebra as the exponential map is a local diffeomorphism.

Proposition 6.1.3. If G is a connected Abelian Lie group, then

G ∼= g
/
gZ

with gZ = ker(exp) a discrete subgroup of g.

Definition. The discrete subgroup gZ = ker(exp) of g is called the integral lattice.

Note however that this might not be a lattice as defined in section 2.1: While
it is a discrete additive subgroup, it may not span the Lie algebra g. However, if
gZ does not span g, then it is contained in a proper subspace. This reasoning can
be repeated until a smallest subspace is found and in this subspace gZ is indeed
a lattice as defined in section 2.1. This motivates the name integral lattice and
together with Theorem 2.1.2, which allows to choose a basis for gZ, gives the
following result:

Proposition 6.1.4. gZ is generated over Z by linearly independent vectors
v1, ..., vk ∈ g i.e.

gZ = Zv1 ⊕ · · · ⊕ Zvk.

■

Putting the different ingredients together gives a classification of connected
Abelian Lie groups, in particular establishing the link between the standard torus
Tk = Rk/Zk and connected compact Abelian Lie groups:

Theorem 6.1.5. Any connected Abelian Lie group G is isomorphic to a product
of the standard torus Tk and Rs: G ∼= Tk × Rs. In particular,

• any simply connected Abelian Lie group G is isomorphic to Rs: G ∼= Rs
and

• any compact connected Abelian Lie group G is isomorphic to the standard
torus Tk: G ∼= Tk.
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Proof. By the above we already have

1. exp : g → G is a surjective homomorphism,

2. ker(exp) is a discrete subgroup of g and hence

3. gZ is generated by linearly independent vectors v1, ..., vk ∈ g.

We can then find vk+1, ..., vn ∈ g (where n = dim (G)) so that v1, ..., vn form a
basis of g. This determines an isomorphism g ∼= Rn such that

gZ ∼= Zk × {0} ⊴ Rk × Rn−k = Rn.

This immediately gives

G ∼= g
/
gZ

∼= Rn
/
Zk × {0}

= Rk
/
Zk

× Rn−k

= Tk × Rn−k.

The other two statements follow immediately. ■

Therefore, for the remainder of this text we will adapt the following definition
of a torus:

Definition. A torus is a compact connected Abelian Lie group.

Notation. We will often denote elements of the torus by their equivalence classes
in the quotient of the Lie algebra by the integral lattice e.g. [θ] ∈ G ∼= g/gZ is
the equivalence class of θ ∈ g in g/gZ.

6.1.1 Subtori

Let G be a torus. Consider a Lie subgroup S < G which is itself a torus. Indeed
as any Lie subgroup is closed, compactness is inherited from G. Moreover, as a
subgroup of an Abelian group, S is also automatically Abelian so that it actually
suffices to require S to be connected in order to be a torus in its own right:

Definition. Let G be a torus. A subtorus of G is a connected Lie subgroup
S < G.
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Let then i : S ↪→ G be the inclusion of a subtorus S in a torus G. By
naturality of the exponential map this gives a commutative diagram:

s g

S G

expS

die

expG

i

where die : s ↪→ g is just the inclusion of the Lie algebras. Denote sZ = ker(expS)
the integral lattice of S and consider an arbitrary element v ∈ sZ. Then it follows
from the diagram that die[v] (which is v interpreted as an element of g) is an
element of the integral lattice gZ = ker(expG) of G:

expG ◦ die[v] = i ◦ expS(v) = eG.

Reversely, assume that v ∈ s is such that die[v] ∈ gZ. Then again by commuta-
tivity it follows that

eG = expG ◦die[v] = i ◦ expS(v).

Since i is injective, this implies that expS(v) = eS and therefore that
v ∈ sZ = ker(expS). The conclusion is thus that

die[sZ] = die[s] ∩ gZ

Moreover, as sZ ⊂ s is a lattice, so is die[sZ] ⊂ die[s] and therefore die[s] is a
gZ-rational subspace of g.

Reversely, assume that s is a gZ-rational subspace of g. By this we formally
mean that, if die : s ↪→ g denotes the inclusion, then die[s] ∩ gZ is a lattice in
die[s]. It is then clear that

sZ := di−1
e (die[s] ∩ gZ)

is a lattice in s. It follows that S := s/sZ is a torus and for (hopefully) obvious
reasons we will denote the projection as expS : s → s/sZ = S. By construction,
sZ ⊂ ker(expG ◦die) and therefore this map factors through S = s/sZ. This
means that there exists a homomorphism i : S → G such that the diagram

s g

S G

expS

die

expG

i

commutes. Assume then that [v] ∈ ker(i). By surjectivity of expS there is a v ∈ s
such that [v] = expS(v) and therefore

eG = i([v])

= i ◦ expS(v)
= expG ◦ die[v]
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so that die[v] ∈ gZ. Hence v ∈ sZ and thus [v] = 0 so that i : S ↪→ G is injective.
This shows that S can actually be interpreted as a subtorus of G via the injective
homomorphism i : S ↪→ G.

6.1.2 Quotient Tori

Let now G be a torus and S be a subtorus. Let i : S ↪→ G be the inclusion and
die : s ↪→ g be its differential. This induces a short exact sequence

0 s g g
/
s

0
die dπe

where dπe : g → g/s is just the projection. For better readability, we set t := g/s.
If gZ is the integral lattice of G, then it follows by Corollary 2.1.3 that also
tZ := dπe[gZ] ⊂ t is a lattice. It follows that T = t/tZ is another torus and we
will denote the projection as expT : t → t/tZ = T .

Consider then the map expT ◦ dπe : g → T and note that since
ker(expT ) = tZ = dπe[gZ], the integral lattice gZ is mapped to zero. There-
fore this map factors through g/gZ ∼= G and hence there exists a homomorphism
π : G→ T such that the following diagram commutes:

g t

G T

expG

dπe

expT

π

Let then [v] ∈ t/tZ = T be an arbitrary element. Since expT is surjective, there
exists v ∈ t such that expT (v) = [v]. Since also dπe is surjective, there exists
w ∈ g such that dπe[w] = v. But then

π ◦ expG(w) = expT ◦ dπe[w]
= expT (v)

= [v]

and as [v] ∈ T was arbitrary, this shows that π is surjective. Together with
the commutative diagram for the subtorus S we have thus found a commutative
diagram

0 s g t 0

1 S G T 1

die

expS expG

dπe

expT

i π

where the top row is exact. We verify that also the bottom row is exact by a
diagram chase:
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1. Injectivity of i : S ↪→ G and surjectivity π : G → T has already been
shown.

2. Assume [v] ∈ i(S) i.e. there is a [w] ∈ S such that [v] = i([w]). Since expS
is surjective, there is a w ∈ s mapped onto [w] by the exponential map.
Then by commutativity of the diagram

π([v]) = π ◦ i([w])
= π ◦ i ◦ expS(w)
= expT ◦ dπe ◦ die(w)
= 0

where the last step is by exactness of the first row. Hence Im (i) ⊂ ker(π).

3. Take now [v] ∈ ker(π). By surjectivity of expG there is a v ∈ g such that
[v] = expG(v). Then

e = π([v])

= π ◦ expG(v)
= expT ◦ dπe[v]

implies that dπe[v] ∈ ker(expT ) = tZ = dπe[gZ]. That means that there
exists a u ∈ gZ such that dπe[v] = dπe[u] or differently put v−u ∈ ker(dπe).
Since u ∈ gZ = ker(expG), we have expG(v − u) = expG(v) = [v] and by
exactness of the top row there is a w ∈ s such that die[w] = v − u. This
gives

[v] = expG(v − u)

= expG ◦die[w]
= i ◦ expS(w)

showing that [v] ∈ Im (i). Since [v] ∈ ker(π) was arbitrary, it follows that
ker(π) ⊂ Im (i).

This establishes exactness of the bottom row and we identify T as the quotient
torus by the first isomorphism theorem

T ∼= G
/
S
.

Note that the construction above gives that the integral lattice of the quotient
torus T is given by dπe[gZ].

Remark. Before going back into the symplectic world, we invite the reader to
compare this section to section 4.1.1. There should be an evident parallel between
Λ and gZ, the annihilator lattice Λ0 and sZ as well as the effective lattice ΛF and
tZ. This is of course not at all a coincidence and will soon be important.
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6.2 Local Forms

In the beginning of Chapter 5 we argued repeatedly that the neighbourhood of
a fixed point is characterised by the isotropy representation. The goal of this
section is to make this statement rigorous for Hamiltonian actions of tori. Our
starting point is the Darboux-Weinstein theorem, which will only be used in the
special case where N = {p} is a single point.

Theorem 6.2.1 (Darboux-Weinstein Theorem). Let M be a smooth manifold,
N ⊂ M a submanifold and i : N ↪→ M be the inclusion. Assume that ω0 and
ω1 are two symplectic forms on M which agree on N i.e. (ω0)p = (ω1)p for all
p ∈ N . Then there exist neighbourhoods U0 and U1 of N in M together with a
symplectomorphism φ : (U0, ω0|U0) → (U1, ω1|U1).

Remark. The proof is an application of the Moser trick and the tubular neigh-
bourhood theorem B.5.1. We skip the detailed derivation of this result and refer
the interested reader to Chapter 7 of [5] for a sound derivation.

Although this is the classical version, we will need a slightly stronger result:
In order to use this to study the local form of an action, the diffeomorphism has
to respect the group action. This can indeed be achieved if the acting group G
is compact. Compactness is needed so that one can render the objects involved
in the proof G-equivariant by averaging them over the group G.

Theorem 6.2.2 (Equivariant Darboux-Weinstein Theorem). Let M be a smooth
manifold and N ⊂ M a submanifold. Assume that ω0 and ω1 are two sym-
plectic forms on M which agree on N i.e. (ω0)p = (ω1)p for all p ∈ N . Let
ψ : G → Diff (M) be a smooth action of a compact Lie group G which is
symplectic with regard to ω0 and ω1. Then there exist G-invariant neighbour-
hoods U0 and U1 of N in M together with a G-equivariant symplectomorphism
φ : (U0, ω0|U0) → (U1, ω1|U1).

Let now (M,ω, T , µ) a Hamiltonian T -space with T a torus. We will apply
this in the special case where N = {p} is a single point which is fixed by the
T -action. One of the two symplectic forms will just be the symplectic form ω
of M . For the second, one considers the isotropy representation on the tangent
space TpM and chooses a basis which is well-adapted to this symplectic repre-
sentation together with a symplectic form. Choosing a Riemannian metric and
consequently a Riemannian exponential map this can be used to define the sec-
ond symplectic form on a neighbourhood of p. First, we make precise what is
meant with a basis that is well-adapted.

Definition. Let T be a torus, t its Lie algebra and tZ its integral lattice. The
dual lattice of the integral lattice is called the weight lattice and denoted as
t∗Z ⊂ t∗.
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Lemma 6.2.3. There is a bijective correspondence between isomorphism classes
of 2n-dimensional symplectic representations of a torus T and unordered n-tuples
of elements (possibly with repetition) of the weight lattice t∗Z ⊂ t∗ of T .

Let (V, ω) be a 2n-dimensional symplectic vector space. Let ρ : T → Sp(V, ω)
be a symplectic representation with weights λ(1), ..., λ(n) ∈ t∗Z. There exists a
decomposition

(V, ω) =

n⊕
i=1

(Vi, ωi)

into invariant mutually perpendicular two-dimensional symplectic subspaces which
can each be identified with C, equipped with the standard symplectic form
ω0 =

i
2dz ∧ dz̄. T acts on the factor Vi by

ρi : T → Sp(C, ω0)

[θ] 7→ (ρi)[θ] : z 7→ ei⟨λ(i),θ⟩z

and the moment map is

µ : V =
n⊕
i=1

Vi → t∗

(z1, ..., zn) 7→
1

2

n∑
i=1

|zi|2λ(i)

Proof. See [10], Appendix A. ■

We can now state and sketch the proof of the main result of this section:

Theorem 6.2.4 (Toric Darboux Theorem). Let (M,ω, T , µ) be a hamiltonian
T -space, where T is a 2n-dimensional torus. Let p ∈ MT be a fixed point and
denote by λ(1), ..., λ(n) ∈ t∗Z the weights of the isotropy representation. Then there
exists a T -invariant neighbourhood U of p in M together with coordinate functions
(z1, ..., zn) centered at p such that

a) the symplectic form is in Darboux-form

ω|U =
i

2

n∑
i=1

dzi ∧ dz̄i,

b) the T -action is given by the weights of the isotropy representation

ei[θ] · (z1, ..., zn) = (ei⟨λ(1),θ⟩z1, ..., ei⟨λ
(n),θ⟩zn)

ei[θ] · (z̄1, ..., z̄n) = (e−i⟨λ(1),θ⟩z̄1, ..., e−i⟨λ
(n),θ⟩z̄n)

where [θ] ∈ t/tZ ∼= T and
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c) the moment map becomes

µ|U = µ(p) +
1

2

n∑
i=1

|zi|2λ(i).

Sketch of Proof. ([6], Theorem 1.6.6.) Choose a basis (e1, ..., en, f1, ..., fn) of TpM
such that the isotropy representation ρ has the form described in Lemma 6.2.3.
Choose a T -invariant Riemannian metric on M and consider the corresponding
exponential map expp : TpM → U ′ for some neighbourhood U ′ of p. Using this
we can find coordinates (z′1, ..., z

′
n, z̄

′
1, ..., z̄

′
n) on U ′ centered at p and such that

∂

∂z′i

∣∣∣∣
p

= ei and
∂

∂z̄′i

∣∣∣∣
p

= fi.

By construction, the symplectic form ω has Darboux form at p

ωp =
i

2

n∑
i=1

dz′ip ∧ dz̄′ip .

The exponential map is (ρ, ψ)-equivariant as the metric is T -invariant. Therefore
T acts on (z′1, ..., z

′
n, z̄

′
1, ..., z̄

′
n) as described in the statement.

We then put

ω1 =
i

2

n∑
i=1

dz′i ∧ dz̄′i

and note that this coincides with ω at p. Furthermore this is T -invariant as can
be seen from the explicit description of the action. By the equivariant Darboux-
Weinstein Theorem, there are hence T -invariant neighbourhoods U0 and U1 of p
in U ′ together with a T -equivariant symplectomorphism φ : (U0, ω

∣∣
U0
) → (U1, ω1

∣∣
U1
)

fixing p. We then set U = U0 and zi = z′i◦φ as well as z̄i = z̄′i◦φ. Note that T acts
on (z1, ..., zn, z̄1, ..., z̄n) as it did on (z′1, ..., z

′
n, z̄

′
1, ..., z̄

′
n) since φ is an equivariant

symplectomorphism. The same reasoning applies to the moment map. ■

6.2.1 Morse-Bott Functions from Moment Maps

The toric Darboux Theorem can be used to prove that component of moment
maps are Morse-Bott functions. Since this is a property that will be used in the
proof of the main result in the next chapter, we briefly recall the essential notions
and prove the exact statement.

Definition. Let M be a smooth manifold and f ∈ C∞(M) a smooth function.
A point p ∈ M is called a critical point of f if dfp = 0. A point x ∈ R is called
a critical value of f if it is the image under f of a critical point. We denote
the subset of M given by all points p ∈ M , which are critical points of f by
Crit (f) ⊂M .
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Remark. If c is a critical value, not all points in f−1(c) must be critical points.
It suffices that f−1(c) contains a single critical point.

Remark. A smooth function f ∈ C∞(M) defines a section of the cotangent
bundle via

sf :M → T ∗M

p 7→ (p,dfp).

On other hand, T ∗M contains M as an embedded submanifold, that is, the image
of the zero-section

s0 :M → T ∗M

p 7→ (p, 0).

Writing M := Im (s0) and Γf := Im (sf ) we then have by definition that

Crit (f) =M ∩ Γf .

Definition. Let M be a smooth manifold and f ∈ C∞(M) a smooth function.
The Hessian Hessp(f) of f at a critical point p ∈ M is the symmetric bilinear
form given by

[Hessp(f)](X,Y ) = (LXLY (f))(p) = Xp(Y (f))

for any X,Y ∈ X (M).

Remark. Note that this is symmetric since p ∈M is a critical point:

Xp(Y (f))− Yp(X(f)) = [X,Y ]p(f) = dfp([X,Y ]) = 0.

Definition. Let M be a smooth manifold and f ∈ C∞(M) be a smooth function.
A critical point p ∈ Crit (f) is called nondegenerate if Hessp(f) : TpM×TpM → R
is nondegenerate or equivalently if sf intersects s0 transversally at (p, 0).

Definition. Let M be a smooth manifold. A smooth function f ∈ C∞(M) is
called a Morse function if all its critical points are nondegenerate or equivalently
if sf intersects s0 transversally.

Definition. Let M be a smooth manifold and N ⊂ M a compact connected
submanifold. N is called a nondegenerate critical submanifold of f ∈ C∞(M) if

1. N ⊂ Crit (f) and

2. the Hessian Hessp(f)|νpN restricted to the normal bundle (see section B.5)
is nondegenerate for each point p ∈ N .

If Crit (f) consists of nondegenerate critical submanifolds, then f is called a
Morse-Bott function.
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Theorem 6.2.5. Let G be a compact Lie group and let (M,ω,G, µ) a hamiltonian
G-space. For any X ∈ g, the component of µ along X given by

µX :M → R
p 7→ µX(p) = ⟨µ(p), X⟩

is a Morse-Bott function and the critical manifolds are symplectic submanifolds.

Proof. (Inspired by [11], Theorem 2.2)X ∈ g generates a one-parameter subgroup
of G. Its closure is connected, compact since G is and Abelian. Thus it is a torus
T < G of some dimension. By definition of the moment map, dµX = −ιX♯ω so
that

d
(
µX
)
p
= 0 ⇐⇒ −ι

X♯
p
ωp = 0

However, by nondegeneracy of ωp, this is the case exactly if X♯
p = 0. But the

fundamental vector fields span Tp(Op) and therefore the orbit of p is discrete.
Since T is connected this implies that p is a fixed point and it follows that

Crit
(
µX
)
=MT .

We conclude by Proposition 5.1.3 that the connected components are symplectic
submanifolds.

To see the non-degeneracy, we look at the moment map µ in a neighbourhood
of a point p ∈MT in its local form of the Toric Darboux Theorem 6.2.4

µ = µ(p) +
1

2

n∑
i=1

|zi|2λ(i).

At the same time, just as in the proof of Proposition 5.1.3 we have the identifi-
cation Tp(MT ) = (TpM)T . It follows from the explicit expression in Lemma 6.2.3
that (TpM)T corresponds to the zero weight space. Thus on
νp(M

T ) = TpM/Tp(M
T ) = TpM/(TpM)T the map

µX = ⟨µ(p), X⟩+ 1

2

n∑
i=1

|zi|2
〈
λ(i), X

〉
is non-degenerate. This shows that µX :M → R is a Morse-Bott function. ■

6.3 The Convexity Theorem and Moment Polytopes

That the components of moment maps are Morse-Bott functions is also used
in the proof of the convexity theorem. This is the first result providing a link
between the two parts of this work by stating for a Hamiltonian torus action,
the image of the moment map is actually a polytope given that the manifold is
compact and connected.
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Theorem 6.3.1 (Atiyah, Guillemin-Sternberg). Let (M,ω, T , µ) be a compact
connected Hamiltonian T -space for a torus T . Then:

1. the levels of µ are connected;

2. the image of µ is convex;

3. the image of µ is the convex hull of a finite number of points, that are
images of the fixed points of the action.

Proof. See e.g. the paper by Atiyah [1]. ■

Definition. In this case, the image µ(M) of the moment map is called the
moment polytope.

Consider a compact connected Hamiltonian T -space (M,ω, T , µ) for a torus
T and let µ(M) be its moment polytope. Let p ∈M be a fixed point and apply
the toric Darboux theorem. This yields that on some neighbourhood U of p, the
moment map is given by

µ|U = µ(p) +
1

2

n∑
i=1

|zi|2λ(i).

As |zi|2 ≥ 0, µU (U) is the translation by µ(p) of a neighbourhood of the origin of
the polyhedral cone co({λ(i)}i=1,...,n). By construction, this cone corresponds is
the local cone Cµ(p)(µ(M)) of the moment polytope µ(M) at the point µ(p). In
particular, this means that µ(p) is a vertex of the moment polytope if and only
if the cone co({λ(i)}i=1,...,n) is pointed.

6.3.1 Effective Hamiltonian Torus Actions

We start with the following observation:

Proposition 6.3.2. Let ψ : T → Diff (M) be a smooth effective action of a torus
T on a connected smooth manifold M . Let p ∈M be a fixed point of this action.
Then the isotropy representation ρ : T → GL(TpM) at p is faithful.

Sketch of proof. This is a special case of Lemma A.4.7 in the appendix. We
sketch the idea for fixed points.

Since T is compact, one can choose a T -invariant metric and a corresponding
(ρ, ψ)-equivariant exponential map expp : TpM →M . This is a local diffeormor-
phism such that expp(0) = p, that is, there is an open neighbourhood V of the
origin in TpM and an open neigbourhood U of p in M such that expp |V : V → U
is a diffeomorphism.
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We assume by contradiction that ρ is not faithful and that there exists a non
trivial element [θ] ∈ ker(ρ). Consider then any q ∈ U and note that there is a
unique v ∈ V such that q = expp(v). By (ρ, ψ)-equivariance we have

ψ[θ](q) = ψ[θ] ◦ expp(v)
= expp ◦ρ[θ](v)
= expp(v)

= q.

Hence [θ] fixes the whole open neighbourhood U . It follows that the set of points
fixed by [θ] is open. But by continuity of ψ, it is also closed. SinceM is connected,
it follows that [θ] fixes all of M which contradicts ψ being effective. ■

The question is then how this translates to the local cones at those points.
This is the content of the next, representation theoretic result:

Proposition 6.3.3. Let ρ : T → Sp(V, ω) be a 2n-dimensional representation of
an m-dimensional torus T . Then the weights λ(1), ..., λ(n) ∈ t∗Z Z-span the weight
lattice t∗Z if and only if ρ is faithful.

Proof. We first argue that if the weights do not span t∗ over R, then ρ cannot be
faithful. Assume thus that

W = SpanR

(
{λ(i)}i∈I

)
has dimension k < m. Then its annihilator space

W 0 = {f ∈ (t∗)∗ | f(φ) = 0 for all φ ∈W}
∼= {X ∈ t | φ(X) = 0 for all φ ∈W}
= {X ∈ t | λ(i)(X) = 0 for i ∈ I}.

has strictly positive dimension m − k. Hence we can choose a nonzero element
X ∈ t\tZ such that λ(i)(X) = 0 for all i ∈ I. However, the corresponding
nontrivial element of T would then act trivially on V showing that ρ can not be
faithful.

Therefore, if ρ is faithful, the weights must R-span t∗ and
Λ∗ := SpanZ

(
{λ(i)}i=1,...,n

)
is a sublattice of the weight lattice. Taking the

dual we get (t∗Z)
∗ ⊆ (Λ∗)∗ or (by Lemma 2.1.4) equivalently tZ ⊆ Λ with

Λ ∼= (Λ∗)∗

= {f ∈ (t∗)∗ | f(φ) ∈ 2πZ for all φ ∈ Λ∗}
∼= {X ∈ t | φ(X) ∈ 2πZ for all φ ∈ Λ∗}
= {X ∈ t | λ(i)(X) ∈ 2πZ for all i = 1, ..., n}.
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The weights determine a map λ = λ(1) × · · · × λ(n) : t → Rn. Composing this
with the projection π : Rn → Rn/(2πZ)n, we get a map whose kernel contains
exactly those elements of t that act trivially

λ̄ := π ◦ λ : t → Rn/(2πZ)n

v 7→ π(λ(1)(v), ..., λ(n)(v)).

Clearly, this kernel contains the integral lattice. On the other hand, from the
explicit expression we get that

ker(λ̄) = {X ∈ t | π ◦ λ(X) = 0}
= {X ∈ t | λ(X) ∈ ker(π) = (2πZ)n}
= {X ∈ t | λ(i)(X) ∈ 2πZ for all i = 1, ..., n}
= Λ.

We can now conclude since

ρ faithful ⇐⇒ ker(λ̄) = tZ

⇐⇒ Λ = tZ

⇐⇒ Λ∗ = t∗Z

⇐⇒ SpanZ

(
{λ(i)}i=1,...,n

)
= t∗Z. ■

Therefore, for a faithful symplectic representation of a torus, the weights span
the weight lattice. The number of weights must thus be equal or bigger than the
dimension of the vector space. In the case of equality, the weights not only span
the weight lattice over Z but they are also linearly independent. This means that
they form a basis of the weight lattice.

Corollary 6.3.4. Suppose that ρ : T → Sp(V, ω) is a symplectic representation
of a torus T on a symplectic vector space (V, ω). If ρ is faithful, then

dim (T ) ≤ 1

2
dim (V ) .

If equality holds, the set of weights for ρ forms a basis of the weight lattice. ■

Since the dimension of the isotropy representations at fixed points coincides
with the dimension of the manifold, this immediately carries over. In the case of
equality, the weights of the isotropy representations form a basis for each fixed
point and therefore by Lemma 3.3.1 the local cones at every fixed point are tZ-
unimodular. Since any vertex is the image under a fixed point, the local cone at
every vertex is tZ-unimodular and hence the moment polytope is tZ-unimodular.
Moreover, since the local cones at fixed points are tZ-unimodular, they are pointed
and µ(p) is a vertex for any fixed point p of the T -action.
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Corollary 6.3.5. Suppose that (M,ω, T , µ) is a compact connected Hamiltonian
T -space for a torus T . If the T -action is faithful, then

dim (T ) ≤ 1

2
dim (M) .

If equality holds, then the image µ(p) of any point p ∈ M which is fixed by the
T -action is a vertex of the tZ-unimodular moment polytope µ(M). ■



Chapter 7

Symplectic Toric Manifolds

In the last chapter, the focus is now on symplectic manifolds which are equipped
with an effective torus action such that the dimension boundary established at
the end of the previous chapter is saturated. Such manifolds are referred to as
symplectic toric manifolds and the image of their moment maps are unimodular
polytopes. It is a result by Delzant that symplectic toric manifolds are classified
by unimodular polytopes that are their moment polytopes. The goal of this last
chapter is to investigate recursive aspects of this correspondence. On the polytope
side, this has already been done in Chapter 4. Now, we will investigate the
corresponding properties on the side of symplectic toric manifolds. Our starting
point will be the local picture given by symplectic toric representations.

7.1 Symplectic Toric Representations

Definition. A symplectic toric T -representation is a symplectic representation
ρ : T → Sp(V, ω) of a torus T on a symplectic vector space (V, ω) such that for
Teff = T / ker(ρ) we have

dim (Teff) =
1

2
dim (V ) .

Assume that ρ is a faithful representation and hence that Corollary 6.3.4
applies. Since by assumption we are in the case of equality, we conclude that the
weights {λ(i)}i∈I of the representation form a basis of the weight lattice t∗Z and
by Lemma 6.2.3 that the image of the moment map is

µ(V ) = co({λ(i)}i∈I).

By Corollary 3.3.1 this is a t∗Z-unimodular polyhedral cone.

Reversely, given a pointed tZ-unimodular cone, we get a basis {vi}i∈I of the
integral lattice tZ. Taking the dual lattice basis of the weight lattice t∗Z then
determines a faithful representation as described in Lemma 6.2.3.

100
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It is clear that these two constructions are reciprocally inverse to each other
and we can conclude that faithful symplectic toric representations are classified
by tZ-unimodular polyhedral cones in t∗. This can be seen as the local version of
the Delzant correspondence.

Remark. Note that this also covers the more general notion of a symplectic toric
representation above. The representation ρ of T induces a faithful representation
ρeff of Teff and then the classification applies to ρeff.

What is the preimage of a given point φ in the moment cone of a faithful
symplectic toric representation ρ : T → Sp(V, ω)? To answer this question, we
first set the notation and write

µ(V ) = co({λ(i)}i∈I) =
⋂
i∈I

H−vi

where {λ(i)}i∈I and {vi}i∈I are dual bases of the weight lattice t∗Z and the integral
lattice tZ respectively. From the explicit expression in Lemma 6.2.3 we see that
we can write

φ =
∑
i∈I

αiλ
(i) =

1

2

∑
i∈I

|zi|2λ(i)

and by linear independence of the {λ(i)}i∈I we get for all i ∈ I

αi =
1

2
|zi|2 ⇐⇒ |zi| =

√
2αi.

Thus we get that

µ−1(φ) =

{
(S√2α1

, ..., S√2αn
) ∈ V =

n⊕
i=1

Vi

}

where, using again the identification of Vi with C from Lemma 6.2.3, we see that

S√2αi
= {z ∈ C | |z| =

√
2αi}

= {
√
2αie

2πit | t ∈ [0, 2π[}

= {
√
2αie

i⟨λ(i),θ⟩ | [θ] ∈ T }

In other words, S√2αi
is the orbit of

√
2αi under the S1-subgroup generated by vi

in the subrepresentation Vi. Combining the different orbits, one sees that µ−1(φ)
is the T -orbit of (

√
2α1, ...,

√
2αn) ∈

⊕n
i=1 Vi under the representation ρ.

We then notice that for any j ∈ I

⟨φ, vj⟩ =
∑
i∈I

αj

〈
λ(i), vj

〉
= 2παj
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so that
Iφ = {i ∈ I | αi = 0}.

Thus for all i ∈ Iφ, the circle reduces to a point and the dimension of the orbit
µ−1(φ) is thus

dim
(
µ−1(φ)

)
= |I| − |Iφ| = dim (Lφ(µ(V ))) .

Reversely, an element [θ] ∈ t/tZ ∼= T will act trivially on µ−1(φ) precisely if
only the components corresponding to the S1-subgroups generated by {vi}i∈Iφ
are non-vanishing. Hence the stabiliser of µ−1(φ) is the image of the annihilator
space Wφ(µ(V )) under the projection t → t/tZ, or in other words, it is the
subtorus whose Lie algebra is Wφ(µ(V )).

We summarise this discussion in the following proposition:

Proposition 7.1.1. For ρ : T → Sp(V, ω) a symplectic toric representation, the
moment cone C = µ(V ) is the orbit space and the moment map is the point-orbit
map. In particular, for any φ ∈ µ(V ) we have that

1. µ−1(φ) is a single T -orbit;

2. the dimension of this orbit is equal to the dimension of the tangent space to
C at φ i.e.

dim
(
µ−1(φ)

)
= dim (Lφ(C))

and

3. the stabiliser of µ−1(φ) is the subtorus whose Lie algebra is the annihilator
space to C at φ i.e

tµ−1(φ) =Wφ(C).

■

Remark. This is again a local version of a result by Delzant ([7], Lemma 2.2 or
Theorem 7.3.4 in this master’s thesis).

7.2 Recursive Aspects of Symplectic Toric Represen-
tations

Mirroring the approach of Chapter 4, we now investigate recursive aspects of
symplectic toric representations. The natural object to investigate are symplectic
subrepresentations:

Definition. A symplectic toric subrepresentation of a symplectic toric represen-
tation (V, ω) is a T -invariant symplectic subspace W ⊂ V .
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While it is clear that these are symplectic representations in their own right,
one must show that the dimension requirement is met.

Proposition 7.2.1. A symplectic toric subrepresentation is itself a symplectic
toric representation.

Proof. Let ρ : T → Sp(V, ω) denote the representation and ρ̄ : T → Sp(W,ω|ω)
be the induced representation on W ⊂ V . Let further TW = ker ρ̄ and TV = ker ρ
be the subtori of T acting trivially on W and V respectively and note that
TV < TW . Clearly, the representation of T /TW on W induced by ρ̄ is faithful
and therefore by Corollary 6.3.4

dim
(

T
/
TW

)
≤ 1

2
dim (W ) .

Since W is a symplectic subspace of V , it holds that V = W ⊕Wω. The
representation of TW /TV on V is by construction faithful and acts trivially on
W . Hence it must act faithfully on the subrepresentation Wω giving again by
Corollary 6.3.4

dim
(

TW
/
TV

)
≤ 1

2
dim (Wω) =

1

2
(dim (V )− dim (W )).

Hence

dim
(

T
/
TW

)
= dim

(
T /TV

/
TW /TV

)
= dim

(
T
/
TV

)
︸ ︷︷ ︸

= 1
2
dim(V )

− dim
(

TW
/
TV

)
︸ ︷︷ ︸
≤ 1

2
(dim(V )−dim(W ))

≥ 1

2
dim (V )− 1

2
(dim (V )− dim (W ))

=
1

2
dim (W )

so that indeed
dim

(
T
/
TW

)
=

1

2
dim (W )

and we conclude that W is symplectic toric representation. ■

Proposition 7.2.2. Symplectic toric subrepresentations are in one-one corre-
spondence with the faces of the moment cone.

Proof. Let ρ : T → (V, ω) be a symplectic toric representation and let

C = co({λ(i)}i∈I) =
⋂
i∈I

H−vi
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be its moment cone, where {λ(i)}i∈I and {vi}i∈I are dual lattice bases of t∗Z and
tZ respectively. We use the notation from Lemma 6.2.3.
Claim. Symplectic toric subrepresentations are in one-one correspondence with
subsets J ⊂ I of the index set.
Proof of Claim. Assume v ∈ Vi is in a subrepresentation W . Then the whole
of Vi is contained in W since any point of Vi can be reached via scaling and
rotating. Hence there is a subset J ⊂ I such that W =

⊕
j∈J Vj . Reversely,

for any subset J ⊂ I, we get a symplectic toric subrepresentation by putting
W =

⊕
j∈J Vj . This shows the claim.

But then we note that if i :W ↪→ V is the inclusion, then

i∗µ(W ) = µ(i(W ))

= µ(i(
⊕
j∈J

Vj))

= co({λ(j)}j∈J )

=
⋂
j∈J

H−vj ∩ SpanR

(
λ(j)}j∈J

)
=
⋂
j∈J

H−vj ∩
⋂

i∈I\J

∂H−vi

using Lemma 3.2.1. This shows that i∗µ(W ) is the face of C associated to
IF = I\J .

Reversely, from any face F we get an index set J = I\IF and therefore a
symplectic toric subrepresentationW =

⊕
j∈J Vj whose image under the moment

map is exactly F . ■

7.3 Symplectic Toric Manifolds

Finally, we introduce the main object of interest, symplectic toric manifolds.
Note however, that we give a slightly different definition than what is currently
standard in the literature. While the definition given here also includes the
standard one as a special case, we would argue that the following definition is
better suited for the investigation of recursive aspects:

Definition. A symplectic toric T -manifold is a compact connected symplectic
manifold (M,ω) equipped with

• a Hamiltonian action ψ : T → Sympl(M) such that for Teff = T / ker(ψ)
we have

dim (Teff) =
1

2
dim (M) ,
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• and a choice of a moment map µ :M → t∗.

Around a fixed point, a symplectic toric manifold looks like a symplectic toric
representation:

Proposition 7.3.1. Let (M,ω, T , µ) be a symplectic toric manifold. Then the
isotropy representation at a fixed point p ∈M is a symplectic toric representation.

Proof. Consider the induced effective action ψ : Teff → Diff (M). By Lemma 5.1.1,
the isotropy representation is symplectic. By Proposition 6.3.2 it is faithful and
so the result follows. ■

The next goal is to state Delzant’s classification theorem. For this, one must
first decide when two symplectic toric manifolds are to be considered the same.

Definition. Let M1 be a symplectic toric T1-manifold and M2 be a symplectic
toric T2-manifold. Denote the actions by ψ : T1 → Diff (M1) and σ : T2 → Diff (M2)
respectively. M1 andM2 are called isomorphic or equivalent if there exists a group
homomorphism α : T1 → T2 and a symplectomorphism φ : M1 → M2 which is
(ψ, σ)-equivariant with respect to α, that is, the following diagram commutes for
all t ∈ T1

M1 M2

M1 M2

φ

ψt σα(t)

φ

Proposition 7.3.2. Let M1 and M2 be isomorphic symplectic toric manifolds.
Then, using the notation from the definition above,

µ1 = (dαe)
∗ ◦ µ2 ◦ φ+ ξ

where ξ ∈ t1 is a constant.

Proof. Let X ∈ t1 be an arbitrary element of the Lie algebra of T1. Then consider
the map

µX1 :M1 → R
p 7→ ⟨µ1(p), X⟩

and compute its differential:

dµX1 = −ιX♯ω1

= −ιX♯φ∗ω2

= −φ∗(ι(dαe[X])♯ω2)

= φ∗(dµ
dαe[X]
2 )

= d
(
φ∗µ

dαe[X]
2

)
.
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But observing that for any p ∈M1 we have

φ∗µ
dαe[X]
2 (p) = µ

dαe[X]
2 (φ(p))

= ⟨µ2(φ(p)),dαe[X]⟩
= ⟨dα∗

e ◦ µ2 ◦ φ(p), X⟩
= (dα∗

e ◦ µ2 ◦ φ)X(p)

and as X ∈ t1 was arbitrary, the differentials on both sides of the equation in the
statement coincide. This concludes the proof since M1 is connected. ■

Remark. Consider the composition of α : T1 → T2 with the projection
π2 : T2 → T2/ ker(σ). By equivariance it follows that if t ∈ ker(ψ), then
α(t) ∈ ker(σ) and hence ker(ψ) ⊂ ker(α ◦ π2). It follows that α ◦ π2 descends to
the quotient and we get a Lie group homomorphism ᾱ : T1/ ker(ψ) → T2/ ker(σ).
Moreover, if ψ̄ : T1/ ker(ψ) → Diff (M1) and σ̄ : T2/ ker(σ) → Diff (M2) are the
induced effective actions, then φ is (ψ̄, σ̄)-equivariant with respect to ᾱ i.e. the
following diagram commutes for all t ∈ T1/ ker(ψ):

M1 M2

M1 M2

φ

ψ̄t σ̄ᾱ(t)

φ

By effectiveness of the two actions in this diagram, ᾱ has to be injective. Indeed,
if t ∈ ker(ᾱ), then σ̄ᾱ(t) acts trivially and therefore so does ψ̄t. Since ψ̄ is
effective, this implies that t = e and thereby that ᾱ is injective. Because ᾱ as a
Lie group homomorphism has constant rank, it follows that dᾱe : (t1)eff → (t2)eff
is injective. By equality of dimensions, dᾱe is an isomorphism.

Using this, the interpretation of the above Proposition 7.3.2 is that the mo-
ment polytopes, when considered as polytopes in (t1)eff and (t2)eff, are translates
of each other.

This was the last ingredient needed to state Delzant’s Theorem. We will
assume for this that the actions are directly effective and that the polytopes are
not contained in any affine subspace.

Theorem 7.3.3 (Delzant). Symplectic toric manifolds are classified up to equiv-
alence by unimodular polytopes up to translation. More specifically, the bijective
correspondence between these two sets is given by the moment map:

{symplectic toric manifolds}
/

equiv.
1−1→ {unimodular polytopes}

/
transl.

(M,ω, T , µ) 7→ µ(M)

Proof. See the original paper [7] or Chapter 29 of [5] for an English version. ■
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The arguments made prior to Proposition 7.1.1 can be adapted to Delzants
construction. This yields the following result:

Theorem 7.3.4 (Delzant). For a symplectic toric manifold (M,ω, T , µ), the
moment polytope ∆ = µ(M) is the orbit space and the moment map is the point-
orbit map. In particular, for any φ ∈ µ(M) we have that:

1. µ−1(φ) is a single T -orbit;

2. the dimension of this orbit is equal to the dimension of the tangent space to
∆ at φ i.e.

dim
(
µ−1(φ)

)
= dim (Lφ(∆))

and

3. the stabiliser of µ−1 is the subtorus whose Lie algebra is the annihilator
space to ∆ at φ i.e.

tµ−1(φ) =Wφ(∆).

Proof. See [7], Lemma 2.2. or [6], Theorem 2.4.5. ■

Corollary 7.3.5. Let (M,ω, T , µ) be a symplectic toric manifold. Then the fixed
points in M are in one-to-one correspondence with the vertices of the moment
polytope µ(M).

Proof. Consider a vertex φ ∈ µ(M) of the moment polytope. It follows by the
first two points of Theorem 7.3.4 that µ−1(φ) is a zero-dimensional T -orbit. Since
T is a connected Lie group which acts smoothly on M , this implies that µ−1(φ)
consists of a single point which is hence a fixed point of the action.

Reversely, suppose that p is a fixed point and look at φ = µ(p). Assume the
contraposition i.e. that φ is not a vertex and deduce from Theorem 7.3.4 that
then µ−1(φ) would be a single orbit of strictly positive dimension. But this gives
a contradiction since by construction p ∈ µ−1(φ) and the orbit of p has dimension
zero since p is assumed to be a fixed point. ■

7.4 Recursive Aspects of Symplectic Toric Manifolds

7.4.1 Symplectic Toric Submanifolds

The next goal is to define the global version of a symplectic toric subrepresenta-
tion. The goal to have in mind is that this should be a symplectic toric manifold
in its own right. Hence it should surely be invariant under the action, so the lat-
ter can be restricted to it. Moreover, it should be a closed connected symplectic
manifold in its own right. This suggests the following definition:
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Definition. A symplectic toric submanifold N of a a symplectic toric T -manifold
M is a T -invariant closed connected symplectic submanifold N .

Just as for symplectic toric subrepresentations, one has to check the dimen-
sion requirement. However, this can be reduced to the case of symplectic toric
representations.

Proposition 7.4.1. A symplectic toric submanifold N of M is itself a symplectic
toric T -manifold.

Proof. Let i : N ↪→ M be the inclusion. By Lemma 5.3.6 it is clear that
(N, i∗ω, T , i∗µ) is a hamiltonian T -space.
Claim. There exists a fixed point p ∈ N .
Proof of Claim. Since N is closed and M is compact, N is itself compact. By
assumption it is also connected and so it satisfies the hypotheses of the convexity
theorem 6.3.1. Since N is non-empty, so is its moment polytope which hence
contains a vertex. Again by Theorem 6.3.1 this vertex is the image of a fixed
point p ∈ N . Since the action of T on N is just the restriction of the action on
M , this shows the claim.

Consider the isotropy representation ρ : T → Sp(TpM,ωp) at p ∈ N , which
by Lemma 7.3.1 is a symplectic toric representation. Since N is a symplectic sub-
manifold TpN is a symplectic subspace of TpM . Since N is T -invariant, TpN is a
symplectic subrepresentation. Hence TpN is a symplectic toric subrepresentation
and the statement follows by Proposition 7.2.1. ■

Theorem 7.4.2. Symplectic toric submanifolds are in one-one correspondence
with the faces of the moment polytope.

Proof. Let (M,ω, T , µ) be a symplectic toric manifold and ∆ = µ(M) be its
moment polytope. We first show that the image of a symplectic toric submanifold
N is a face of

µ(M) = ∆ =
⋂
i∈I

H(vi,ci).

Denoting j : N ↪→M the inclusion, proposition 7.4.1 gives that (N, j∗ω, T , j∗µ)
is again a symplectic toric manifold. Hence, by Corollary 7.3.5 j∗µ(N) = µ(j(N))
is the convex hull of the images of the fixed points of the action ψ : T → Diff (M)
contained in N . Using Corollary 1.2.2 this shows that µ(j(N)) is the convex hull
of a subset of vertices of µ(M).

Consider then an arbitrary fixed point p ∈ N . By Proposition 7.3.1, the
isotropy representation at this point is a symplectic toric representation. The
image under its moment map is the local cone

Cφ(∆) =
⋂
i∈Iφ

Hvi
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at φ := µ(p). Since N is a symplectic toric submanifold, TpN is a symplectic toric
subrepresentation. By Proposition 7.2.1, TpN corresponds to a face, meaning
that the image under its moment map, given by the local cone Cφ(µ(j(N))), is
a face of Cφ(∆). Hence there exists a subset IF ⊂ Iφ and a non-zero vector
v =

∑
i∈IF vi such that

Cφ(µ(j(N))) = Cφ(∆) ∩ ∂Hv.

Claim. For c := ⟨φ, v⟩, we have

µ(j(N)) = µ(M) ∩ ∂H(v,c) := F.

Proof of Claim. Take any point q ∈ N and consider η = µ(j(q)), its image under
µ. By convexity, the entire interval [φ, η] connecting φ and η is contained in
µ(j(N)). Hence, η − φ ∈ Cφ(µ(j(N))) which yields that

⟨η, v⟩ = ⟨φ, v⟩ = c.

Hence η ∈ F . Since q ∈ N was arbitrary, this shows µ(j(N)) ⊂ F .

To show the reverse inclusion, it is enough to show that any vertex of the
face F is contained in µ(j(N)). To see this we start by noticing that both F and
µ(j(N)) are unimodular polytopes of dimension dim (N) /2. In particular, at any
vertex there are dim (N) /2 edges meeting. If not all vertices of F were contained
in µ(j(N)), then there existed an edge e ⊂ F connecting a vertex φ ∈ µ(j(N))
and a vertex η ∈ F\µ(j(N)). But the existence of such an edge would imply
that in µ(j(N)) there is another edge e′ ⊂ µ(j(N)), not collinear to e, ending
at φ. By linear independence of the edges of µ(M) meeting at φ, this implies
that Cφ(µ(j(N))) can not be a face of Cφ(µ(M)). This is a contradiction with
N being a symplectic toric submanifold and therefore the claim is proven.

Reversely, let F be a face of

µ(M) = ∆ =
⋂
i∈I

H(vi,ci)

and consider N := µ−1(F ). Since µ is continuous and F is closed, N is closed.
Furthermore, µ−1(F ) is made up of the orbits corresponding to the points in F
so it is clearly T -invariant.

Consider then a point φ in the interior of F and note that

F = ∆ ∩H(v,c) where v =
∑
i∈Iφ

vi and c =
∑
i∈Iφ

ci

In particular, since all the vi are tZ-rational, v is also tZ-rational. It follows
that v determines an S1-subgroup of T which by Proposition 5.3.4 acts in a
Hamiltonian way on M : If i : S1 ↪→ T is the inclusion, the moment map is given
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by di∗e ◦µ :M → s∗ where s denotes the Lie algebra of the S1-subgroup. Note in
particular that by construction v ∈ s and die : s ↪→ t is just the inclusion. Also,
since s is one-dimensional and v ̸= 0, we note that v is a basis of s. Hence for
any p ∈M , di∗e ◦ µ(p) is completely determined by its action on v. Identifying s
with its image under die we get

⟨di∗e ◦ µ(p), v⟩ = ⟨µ(p),die[v]⟩ = ⟨µ(p), v⟩ .

But µ(p) ∈ ∆ so that

⟨µ(p), v⟩ = c ⇐⇒ µ(p) ∈ F ⇐⇒ p ∈ N

which shows that N is a level set of di∗e ◦ µ. Therefore, by the convexity Theo-
rem 6.3.1 N is connected.

By Theorem 6.2.5 we know that (di∗e ◦ µ)v is a Morse-Bott function and
the connected components of Crit ((di∗e ◦ µ)v) are thus symplectic submanifolds.
However, by constructionN is such a critical submanifold of (di∗e◦µ)v. This shows
that it is a symplectic submanifold of M and hence concludes the proof. ■

7.4.2 Products of Symplectic Toric Manifolds

We saw in Proposition 5.3.9 that the product of two Hamiltonian spaces is again
Hamiltonian. We now want to see whether we get a symplectic toric manifold if
we start out with two symplectic toric manifolds.

We thus suppose that (M1, ω1, G, µ1, τ1) and (M2, ω2, H, µ2, τ2) are two sym-
plectic toric manifolds. By Proposition 5.3.9 (we also recover the notation from
this result) the product manifold

(M1 ×M2, pr
∗
1ω1 + pr∗2ω2, G×H,d(prG)

∗
(e,e) ◦ µ1 ◦ pr1 + d(prH)

∗
(e,e) ◦ µ2 ◦ pr2)

is a hamiltonian G×H-space. The action is given by

φ : G×H → Diff (M1 ×M2)

(g, h) 7→ ψg × σh.

and so we see that ker(φ) = ker(ψ) × ker(σ). It follows that the dimension
requirement is met as

dim
(
G×H

/
ker(φ)

)
= dim

(
G×H

/
ker(ψ)× ker(σ)

)
= dim

(
G
/
ker(ψ)

× H
/
ker(σ)

)
=

1

2
dim (M1) +

1

2
dim (M2)

=
1

2
dim (M1 ×M2) .

In conclusion, we have thus shown the following proposition:
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Proposition 7.4.3. Let (M1, ω1, G, µ1, τ1) and (M2, ω2, H, µ2, τ2) be two sym-
plectic toric manifolds. Let pr1,2 :M1 ×M2 →M1,2 and prG,H : G×H → G,H
denote the projections. Then (M1 ×M2, ω,G×H,µ, τ) with

• symplectic form ω = pr∗1ω1 + pr∗2ω2 and

• moment map µ = d(prG)
∗
(e,e) ◦ µ1 ◦ pr1 + d(prH)

∗
(e,e) ◦ µ2 ◦ pr2

is a symplectic toric manifold. ■

This moment map is easier than it looks. To see why, first observe that
it has image in (g ⊕ h)∗ ∼= g∗ ⊕ h∗ and that d(prG)

∗
(e,e) : g∗ ↪→ g∗ ⊕ h∗ and

d(prH)
∗
(e,e,) : h

∗ ↪→ g∗ ⊕ h∗ just correspond to the obvious inclusions. Omitting
them from the notation we could thus just write

µ(p, q) = µ1(p) + µ2(q).

It follows that the moment polytope of M1 × M2 corresponds to the direct
Minkowski sum of the moment polytopes of M1 and M2:

µ(M1 ×M2) = µ1(M1)⊕ µ2(M2).

This observation allows to transfer all the results about the Minkowski sum to
the product of symplectic toric manifolds. Consider for instance Proposition 4.4.4
in combination with Theorem 7.4.2:

Corollary 7.4.4. Let (M1, ω1, G, µ1, τ1) and (M2, ω2, H, µ2, τ2) be two symplectic
toric manifolds. Then the symplectic toric submanifolds of (M1×M2, ω,G×H,µ, τ)
are in one-one correspondence with products of symplectic toric submanifolds of
M1 and M2 respectively.

Example. Consider M1×M2 as a symplectic toric manifold as described above.
Take q ∈M2 and consider the injective map

iq :M1 ↪→M1 ×M2

p 7→ (p, q).

The goal is to interpretM1 as a symplectic toric submanifold ofM1×M2 using this
injection. It is clear that iq(M1) is a connected closed symplectic submanifold.
However, it is only G×H-invariant if q ∈M2 is a fixed point under the H-action.
Hence for any fixed point q ∈M2, there is a symplectic toric submanifold iq(M1)
which is equivalent to M1.

On the level of the moment polytopes, the corresponding picture is that the
direct Minkowski sum of µ1(M1) with a vertex φ of µ2(M2) is equivalent to
µ(M1):

µ1(M1)⊕ {φ} ∼= µ1(M1).
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7.4.3 Symplectic Cutting and Symplectic Reduction

We close this master’s thesis with a few words about the symplectic cutting of
symplectic toric manifolds. At the end of chapter 5, it has been shown that

µ(Mc) = µ(M) ∩H(v,c).

In the case of a symplectic toric manifolds, µ(M) is unimodular polytope. If
∂H(v,c) is a reduction level of µ(M), then also µ(Mc) is a unimodular polytope.
However, one has to be careful here. On the side of the symplectic toric manifolds,
one has to require that the S1 subgroup of the torus acts freely on µ−1(c). If
this is the case, then Mc will be another symplectic toric manifold and µ(Mc)
the corresponding unimodular polytope.

The converse is not yet entirely understood. If ∂H(v,c) is a reduction level
for µ(M), it is clear by the Delzant classification that µ(Mc) defines another
symplectic toric manifold. But in order to show that it is indeed obtained by
cutting M , the requirement that the S1-subgroup acts freely on µ−1(c) has to be
checked. In the conclusion below, we sketch a possible answer to this issue.



Conclusion

In Part I, we have introduced unimodular polytopes and studied their recursive
properties. We have seen that the faces are again unimodular polytopes, how
the direct Minkowski-sum makes a new unimodular polytope of two old ones and
saw how one can cut a polytope preserving unimodularity.

In Part II, we have presented Hamiltonian spaces with a focus on recursive
aspects. We have then specialised to Hamiltonian torus actions and their moment
polytopes. We defined symplectic toric manifolds and argued why their moment
polytopes are unimodular. It was shown that the product of symplectic toric
manifolds corresponds to a special case of the Minkowski-sum which we called
the direct Minkowski-sum. The main result was that the symplectic toric sub-
manifolds of a symplectic toric manifold are classified by the faces of its moment
polytope.

We have also approached the subject of symplectic cutting. For the cor-
responding operation on the unimodular polytopes, we found a necessary and
sufficient criterion for a cut to yield unimodular polytopes. On the side of the
symplectic toric manifolds however, we are left with the assumption that the ac-
tion on the level set has to be free. This issue could be accounted for by passing
through orbifolds. In order to obtain an orbifold, it would be sufficient that the
action on the level set is locally free. This in turn is always the case for the
cuts considered. However, instead of unimodular polytopes, orbifolds give rise
to simple rational polytopes with labels. The advantage of this process would
be that one could establish criteria for this to be unimodular based only on the
cutting hyperplane. It would then follow that the cut symplectic toric orbifold is
in fact a symplectic toric manifold.

Another direction that could be investigated is the splitting of unimodular
polytopes with a hyperplane containing a vertex. In some specific cases, this
yields again a unimodular polytope on one side. However, the usual construction
of symplectic cutting can not be carried out as usual since the level set contains
a fixed point and hence the quotient might have singularities that even can not
be addressed with the orbifold formalism.

Finally, there are situations, not covered by the special case seen in this
work, where the Minkowski sum of two unimodular polytopes yields another
unimodular polytope. It could prove interesting to understand this in more detail
and investigate to what operations this corresponds on the level of the symplectic
toric manifolds.
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Appendix A

Lie Group Actions

This content of this chapter is taken from [12], [13] and [2].

A.1 Basic Definitions

Definition. An smooth action of a Lie group G on a smooth manifold M is a
group homomorphism

ψ : G→ Diff (M)

g 7→ ψg

such that the associated evaluation map

evψ : G×M →M

(g, p) 7→ ψg(p)

is smooth.

Example. Let G be a Lie group. G acts canonically on itself in three different
ways which will be used later in this work:

1. left translation is given by

L : G→ Diff (G)

g 7→ (Lg : h 7→ gh),

2. right translation is given by

R : G→ Diff (G)

g 7→ (Rg : h 7→ hg−1)

A-1
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3. and conjugation is the map

c : G→ Diff (G)

g 7→ (cg : h 7→ ghg−1)

which is nothing but the composition of the two translations:

cg = Lg ◦Rg = Rg ◦ Lg for all g ∈ G.

Definition. Let G1, G2 be Lie groups which act on smooth manifolds M1,M2 via
ψ : G1 → Diff (M1) and σ : G2 → Diff (M2) respectively. Let further α : G1 → G2

be a Lie group homomorphism and φ :M1 →M2 a smooth map. We say that φ
is (ψ, σ)-equivariant with respect to α if the following diagram commutes for all
g ∈ G1:

M1 M2

M1 M2

φ

ψg σα(g)

φ

Remark. Let ψ : G → Diff (M) be a smooth action of a Lie group G on a
smooth manifold M .

1. If a submanifold N ⊂ M is G-invariant i.e. ψg(p) ∈ N for all p ∈ N and
all g ∈ G, the restriction ψg|N is a smooth action on N . Another way of
putting this is that there exists a unique action ψ̄ : G → Diff (N) of G on
N such that the following diagram commutes for all g ∈ G

N M

N M

i

ψ̄g ψg

i

where i : N ↪→ M is the inclusion. In words, the inclusion is (ψ̄, ψ)-
equivariant.

2. IfH < G is a Lie subgroup, then the composition of the inclusion i : H ↪→ G
with ψ is an action of H on M . More generally, if α : H → G is a Lie group
homomorphism, then the composition with ψ yields an action of H on M
such that the following diagram commutes for all h ∈ H:

M M

M M

IdM

ψ̄h ψα(h)

IdM

Again, this just means that the identity IdM is (ψ̄, ψ)-equivariant with
respect to α.
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A.2 Fundamental Vector Fields

Definition. Let G be a Lie group which acts on a smooth manifold M via
ψ : G → Diff(M). The fundamental vector field X♯ associated to X ∈ g is
defined pointwise by

X♯
p =

d

dt

∣∣∣∣
t=0

ψexp(tX)(p).

Remark. An alternative description is obtained using the orbit map of a given
point p ∈M

ψp : G→M

g 7→ ψg(p)

as
X♯
p = d(ψp)e [X].

Indeed, writing

γ : R → G

t 7→ exp(tX)

and observing that that γ(0) = e and γ̇(0) = X we compute

d(ψp)e (X) = d(ψp)γ(0) [γ̇(0)]

= d(ψp)γ(0) ◦ dγ0
[
∂

∂t

∣∣∣∣
0

]
= d(ψp ◦ γ)0

[
∂

∂t

∣∣∣∣
0

]
=

d

dt

∣∣∣∣
t=0

ψp(γ(t))

=
d

dt

∣∣∣∣
t=0

ψγ(t)(p)

=
d

dt

∣∣∣∣
t=0

ψexp(tX)(p)

= X♯
p

Recall. Let f :M → N be a smooth map between smooth manifolds, X ∈ X (M)
and Y ∈ X (N) be vector fields. Then we say that X and Y are f -related if

dfp[Xp] = Yf(p) ∀p ∈M.

Lemma A.2.1. Let G1, G2 be Lie groups which act on smooth manifolds M1,M2

via ψ : G1 → Diff (M1) and σ : G2 → Diff (M2) respectively. Let further
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α : G1 → G2 be a Lie group homomorphism and φ : M1 → M2 a smooth
map which is (ψ, σ)-equivariant with respect to α. Then for every X ∈ g1,
X♯ ∈ X (M1) and (dαe[X])♯ ∈ X (M2) are φ-related i.e. for all p ∈ M1 we
have

dφp[X
♯
p] = (dαe[X])♯φ(p).

Proof. First we observe that for every p ∈M1 and g ∈ G1 we have

φ ◦ ψp(g) = φ ◦ ψg(p) = σα(g) ◦ φ(p) = σφ(p) ◦ α(g)

so that φ ◦ ψp = σφ(p) ◦ α for any p ∈M1. Using this we get

dφp[X
♯
p] = dφψp(e) ◦ d(ψp)e [X]

= d(φ ◦ ψp)e [X]

= d
(
σφ(p) ◦ α

)
e
[X]

= d
(
σφ(p)

)
e
◦ dαe[X]

= (dαe[X])♯φ(p)

for any p ∈M1 which concludes the proof. ■

Proposition A.2.2. Let ψ : G→ Diff (M) be a smooth action of a Lie group G
on a smooth manifold M . The map

ψ♯ : g → X (M)

X 7→ X♯

is a Lie algebra homomorphism i.e.

[X,Y ]♯ = [X♯, Y ♯] for all X,Y ∈ g.

Proof. We start by considering the map

F : G×M →M

(g, p) 7→ ψg−1(p)

which is clearly surjective. G acts on the product G×M via ρ := R× IdM and
on M via ψ. As for any g ∈ G we have

F ◦ ρg(h, p) = F (hg−1, p)

= ψ(hg−1)−1(p)

= ψgh−1(p)

= ψg ◦ ψh−1(p)

= ψg ◦ F (h, p)
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the map F is (ρ, ψ)-equivariant. Using Lemma 5.3.2 with α = IdG we obtain
that the fundamental vector fields on G×M and those on M are F -related i.e.
for all X ∈ g we have

dF(h,p)[X
♯
(h,p)] = X♯

F (h,p).

Recall then that Lie brackets of pairs of F -related vector fields are again F -
related, that is, dF is a Lie algebra homomorphism on the set of F -related vector
fields. Since F is surjective, it is thus enough to show that ρ♯ is a Lie algebra
homomorphism. But since ρ = R× IdM is just the identity on the second factor,
it even suffices to check that R♯ is a Lie algebra homomorphism.

For this case, we observer first that Lg◦Rh(k) = Lg◦Rk(h) = Rk◦Lg(h) = RLg(h)(k)
for any g, h, k ∈ G and thus

d(Lg)h [X
♯
h] = d(Lg)h ◦ d

(
Rh
)
e
[X]

= d
(
Lg ◦Rh

)
e
[X]

= d
(
RLg(h)

)
e
[X]

= X♯
Lg(h)

or put in words, the fundamental vector fields are left-invariant. Since also

X♯
e = d(Re)e [X] = d(IdG)e [X] = X

the fundamental vector fields generated by R are actually equal to the unique
left-invariant vector fields. The result now follows by the definition of the Lie
bracket. ■

Recall. Let cg : G → G be conjugation with the element g ∈ G. The derivative
at the identity of this map is a linear map

d(cg)e : TeG→ Tcg(e)G = TeG

that is, identifying TeG with the Lie algebra g ofG, we get a map Ad : G→ GL(g)
which is a homomorphism by the chain rule. This is called the adjoint represen-
tation of G on g:

Ad : G→ GL(g)

g 7→ Adg := d(cg)e .

Lemma A.2.3. Let ψ : G → Diff (M) be a smooth action of a Lie group on a
smooth manifold M . For every X ∈ g, g ∈ G and p ∈M we have

d(ψg)p [X
♯
p] = [Adg(X)]♯ψg(p).
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Proof. We start with a preliminary computation: Take h ∈ G arbitrary and note

ψg ◦ ψp(h) = ψg ◦ ψh(p)
= ψgh(p)

= ψghg−1g(p)

= ψghg−1(ψg(p))

= ψψg(p)(ghg−1)

= ψψg(p) ◦ cg(h)

so that ψg ◦ ψp = ψψg ◦ cg where cg : G→ G again denotes conjugation with the
element g. Using this we can now compute

d(ψg)p [X
♯
p] = d(ψg)p ◦ d(ψ

p)e [X]

= d(ψg ◦ ψp)e [X]

= d
(
ψψg(p) ◦ cg

)
e
[X]

= d
(
ψψg(p)

)
e
◦ d(cg)e [X]

= d
(
ψψg(p)

)
e
[Adg(X)]

= [Adg(X)]♯ψg(p)

which concludes the proof. ■

Remark. There are two interesting special cases for this result, both of them
will be of importance later on:

• If the Lie group G is Abelian, then conjugation cg and hence also the adjoint
representation Adg are the identity and we get

d(ψg)p [X
♯
p] = X♯

ψg(p)
.

• If g fixes the point p ∈ M , then d(ψg)p : TpM → Tψg(p)M = TpM is an
element of GL(TpM). In particular, the lemma gives

d(ψg)p [X
♯
p] = [Adg(X)]♯p

and hence that the set of fundamental vector fields is preserved by the
isotropy representation. This will become important in a moment since we
can interpret this set as the tangent space to an orbit.

Finally, note that if both cases apply, i.e. g ∈ Gp and G is Abelian, then d(ψg)e
sends fundamental vector fields onto themselves:

d(ψg)e [X
♯
p] = X♯

p.
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A.3 Basic Properties of Lie Group Actions

Definition. Let ψ : G → Diff (M) be a smooth action of a Lie group G on a
smooth manifold M .

1. Let p ∈M be a point. The orbit Op through p is the set

Op = {ψg(p) | g ∈ G} .

Sometimes, if the point p is either clear from the context or not relevant,
we will omit it and just write O instead of Op.

2. The stabiliser subgroup Gp of p is

Gp = {g ∈ G | ψg(p) = p} .

3. ψ is called free if all stabiliser subgroups are trivial i.e. Gp = {e} for all
p ∈M .

4. ψ is called locally free if all stabiliser subgroups are discrete i.e. Gp is
discrete for all p ∈M .

5. ψ is called effective if every non-trivial group element moves at least one
point i.e. ker(ψ) = {e}.

6. ψ is called transitive if Op =M for all p ∈M .

Lemma A.3.1. Let ψ : G→ Diff (M) be a smooth action of a Lie group G on a
smooth manifold M . For any g ∈ G, the stabiliser subgroups of p and ψg(p) are
related by conjugation with g i.e.

Gψg(p) = g Gp g
−1.

Proof. Assume first that h ∈ Gp and compute

ψghg−1(ψg(p)) = ψgh(p)

= ψg(ψh(p))

= ψg(p).

It follows that ghg−1 ∈ Gψg(p) and hence that g Gp g−1 ⊂ Gψg(p).

Reversely, assume that h ∈ Gψg(p) and note that hence

ψh(ψg(p)) = ψg(p)

so that
ψg−1hg(p) = p.

Hence g−1hg ∈ Gp and thus h ∈ g Gpg
−1 which gives Gψg(p) ⊂ g Gp g

−1. ■
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Remark. 1. To each orbit O we can hence associate a conjugation class of
subgroups of G which we call the type of the orbit. More precisely, we
introduce an equivalence relation on the set of subgroups of G by

H ∼ H ′ if ∃g ∈ G : gHg−1 = H ′

and Lemma A.3.1 shows that all stabiliser subgroups of points in a given
orbit are equivalent to one another. In particular, the type of the orbit
through a given point p ∈ M is given by (Gp) where (Gp) denotes the
equivalence class of Gp in G.

In the case of primary interest for this paper, the groups will be Abelian and
hence conjugation is trivial. It follows that (H) = {H} for each subgroup
H < G.

2. Suppose a Lie group G acts on two smooth manifolds M and N via ψ and
σ respectively. If φ : M → N is a (ψ, σ)-equivariant map then we observe
for p ∈M and g ∈ Gp that

σg(φ(p)) = φ(ψg(p)) = φ(p).

Hence g ∈ Gφ(p) and hence Gp < Gφ(p).

Definition. Let ψ : G → Diff (M) be a smooth action of a Lie group G on a
smooth manifold M . For any Le subgroup H < G we define

MH = {p ∈M | H < Gp}
M (H) = {p ∈M | (H) < (Gp)}
MH = {p ∈M | H = Gp}
M(H) = {p ∈M | (H) = (Gp)}

where (H) < (Gp) means that H is equivalent to a subgroup of Gp. The set MH

is the fixed point set of H and M(H) is the set of points of orbit type (H).

Remark. 1. Again, the definition here is given in all generality but in the
present work we will only be concerned with Abelian groups in which case
MH =M (H) and MH =M(H).

2. Note that in the extreme case H = G, all the above sets coincide and
correspond to the set of points which are fixed under the action of the
whole group via ψ.

3. Suppose a Lie group G acts on two smooth manifolds M and N via ψ and
σ respectively. If φ : M → N is a (ψ, σ)-equivariant map, then by the
previous remark, we have Gp < Gφ(p) and hence for any subgroup H < G
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it follows that

φ(NH) = {φ(p) ∈M | H < Gp}
⊂ {q ∈M | H < Gq}
=MH ,

that is, if p is fixed by H, then φ(p) is fixed by H as well.

Proposition A.3.2. Let ψ : G→ Diff (M) be a smooth action of a Lie group on
a smooth manifold M . Then the subgroup

N = ker (ψ) =
⋂
p∈M

Gp

is closed and normal in G. Moreover, ψ induces an effective action of the quotient
group G/N on M .

Proof. N is the intersection of closed subgroups, hence it is itself a closed sub-
group. N is normal since it is the kernel of a group homomorphism. Finally, we
get an induced action by

ψ̄ : G/N → Diff (M)

gN 7→ ψg

which is well-defined since N = ker(ψ) and effective by construction. ■

Proposition A.3.3. Let ψ : G→ Diff (M) be a smooth action of a Lie group G
on a smooth manifold M and p ∈ M be a point. Then the Lie algebra gp (called
the stabiliser algebra) of the stabiliser subgroup Gp is given by

gp =
{
X ∈ g | X♯

p = 0
}
.

Proof. Assume X ∈ gp. Then for all t ∈ R we have exp(tX) ∈ Gp and hence
ψexp(tX)(p) = p. Taking the derivative at t = 0 we get

0 =
d

dt

∣∣∣∣
t=0

ψexp(tX)(p) = X♯
p.

Reversely, assume that X ∈ g is such that X♯
p = 0. Note then that the flow of

X♯ is given by ψexp(tX) and that hence ψexp(tX)(p) = p since X♯
p = 0. It follows

that exp(tX) ∈ Gp and thus X ∈ gp. ■

Theorem A.3.4. Let ψ : G → Diff (M) be a smooth action of a Lie group G
on a smooth manifold M . Let p ∈ M be a point and Gp its stabiliser subgroup.
Then the orbit map ψp : G→M descends to an injective immersion

ψ̄p : G/Gp →M

gGp 7→ ψg(p).
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Proof. First we check that this is indeed injective. Take g, g′ ∈ G such that

ψ̄p(gGp) = ψ̄p(g′Gp)

and note that this means by definition that

ψg(p) = ψg′(p).

It follows that
ψg′−1g(p) = p

and hence that g′−1g ∈ Gp giving g′Gp = gGp and showing injectivity.

To check that this is a smooth immersion we look at the differential of the
orbit map

d(ψp)g : TgG→ Tψg(p)M.

By invariance the rank is constant and it is thus sufficient to look at the case
g = e. But in this case Proposition A.3.3 gives that the kernel is given by gp
which gives the result. ■

Proposition A.3.5. Let ψ : G → M be a smooth action of a Lie group on a
smooth manifold M . Then

1. ψ is locally free if and only if all the stabiliser algebras are trivial i.e. if
gp = {0} for all p ∈M ,

2. if ψ is transitive, then the map

d(ψp)e : g → TpM

X 7→ X♯
p

is surjective for every p ∈M and

3. if ψ is effective, then the kernel of the map

ψ♯ : g → X (M)

X 7→ X♯

is trivial.

Proof. 1. This follows directly from Proposition A.3.3.

2. Assume first that ψ is transitive. Take ξ ∈ TpM and a curve γ : R → M
such that γ(0) = p and γ̇(0) = ξ. Since ψ is transitive and smooth, we can
find a smooth curve g : R → G such that g(0) = e and

ψg(t)(p) = γ(t).
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Consider then X := ġ(0) ∈ g and compute

X♯
p = d(ψp)e [X]

= d(ψp)g(0) [ġ(0)]

= d(ψp)g(0) ◦ dg0
[
∂

∂t

∣∣∣∣
0

]
= d(ψp ◦ g)0

[
∂

∂t

∣∣∣∣
0

]
=

d

dt

∣∣∣∣
t=0

(ψp ◦ g)(t)

=
d

dt t=0
ψg(t)(p)

= γ̇(0)

= ξ

showing that d(ψp)e is indeed surjective. We conclude since p ∈ M was
arbitrary.

3. Assume X ∈ g is such that X♯ = 0. Hence

d

dt

∣∣∣∣
t=0

ψexp(tX)(p) = X♯
p = 0 for all p ∈M

and therefore ψexp(tX)(p) is constant with value p around zero (since the
value at t = 0 is p). Because this holds for any p ∈ M and ψ is effective,
we must have exp(tX) = Id. Since exp is a local diffeomorphism it then
follows that X = 0. ■

Definition. Let ψ : G→ Diff (M) be a smooth action of a Lie group on a smooth
manifold M . ψ is called proper if the map

G×M →M ×M

(g, p) 7→ (p, ψg(p))

is proper i.e. if pre-images of compact sets are compact.

Remark. This case is of interest for the present work since actions of compact
groups are always proper.

Corollary A.3.6. Let ψ : G→ Diff (M) be a proper smooth action of a Lie group
G on a smooth manifold M . Then the orbits O are embedded, closed submanifolds
with

Tp(O) = {X♯
p | X ∈ g}.
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Proof. That the orbits are embedded submanifolds follows from Theorem A.3.4
since proper injective immersions are embeddings. The explicit description for
the tangent space is then obvious from point 2 of Proposition A.3.5 and the trivial
observation that G acts transitively on the orbits. ■

Corollary A.3.7. Let ψ : G → M be a proper smooth action of a Lie group on
a connected smooth manifold M . Then ψ is transitive if and only if the map

d(ψp)e : g → TpM

X 7→ X♯
p

is surjective for every p ∈M .

Proof. One direction has already been proved in Proposition A.3.5. For the
reverse direction, note that if d(ψp)e is surjective, the orbit Op through p is
open. Since it is also closed by Corollary A.3.6 and M is connected, it is either
empty or all of M . Since p ∈ Op only the latter is possible and hence ψ is
transitive. ■

A.4 The Slice Theorem and its Applications

Corollary A.4.1. Let ψ : G → Diff (M) be a smooth proper action of a Lie
group G on a smooth manifold M . Let p ∈M be a point, Op the G-orbit through
p and Gp the stabiliser subgroup of p. Then the isotropy representation given by

ρ : Gp → GL(TpM)

g 7→ d(ψg)p

preserves the tangent space Tp(Op) to the orbit at p. Moreover, if G is Abelian,
ρ is the identity on Tp(Op).

Proof. This is just the combination of Corollary A.3.6 and the special cases of
Lemma A.2.3. ■

Hence the isotropy representation descends to a representation on the quotient
νpO := TpM/(TpO) which is called the normal space to O at p:

ρ̄ : Gp → GL(νpO)

g 7→ d(ψg)p .

Definition. ρ̄ : Gp → GL(νpO) is called the slice representation at p.

Consider then πνpO : G ×Gp νpO → G/Gp which is the associated bundle
obtained from the homogeneous bundle Gp → G

π→ G/Gp and the representation
described above. Then we might
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1. interpret G/Gp as a submanifold of G×Gp νpO by the zero section or

2. interpret G/Gp as the G-orbit of p in M by the map ψ̄p : G/Gp →M from
Theorem A.3.4 which is an embedded submanifold if we assume G to be
compact.

Theorem A.4.2 (The Slice Theorem). Let G be a compact connected Lie group
acting on a manifold M and let p ∈ M be a point. There exists an invari-
ant open neighbourhood UOp ⊂ M of Op and an invariant open neighbourhood
U0 ⊂ G ×Gp νp(Op) of the zero section G/Gp together with a G-equivariant dif-
feomorphism fp : U0 → UOp which sends the zero section G/Gp onto the orbit Op

by ψ̄p, that is, such that the following diagram commutes:

G/Gp U0 ⊂ G×Gp νp(Op)

Op UOp ⊂M.

ψ̄p fp

Remark. Recalling that the G-action on G × νp(Op) commutes with the Gp
action, we observe that

G×Gp νp(Op)
/
G

= (G× νp(Op))/Gp
/
G

= (G× νp(Op))/G
/
Gp

= νp(Op)
/
Gp
.

The slice theorem now gives that near p ∈ M the quotient manifold M/G looks
(only locally of course) like the quotient (G×Gpνp(Op))/G = νp(Op)/Gp. In other
words, quotients of manifolds by actions of compact Lie groups are modeled on
quotients of the normal spaces by the slice representation.

Corollary A.4.3. Let G be be a compact connected Lie group acting on a smooth
manifold M and let p ∈ M be a point. Then there exists a neighbourhood UOp
of the G-orbit Op through p such that the stabiliser subgroup Gq of any point
q ∈ UOp is conjugate to a subgroup of Gp.

Proof. By the slice theorem, we can identify a neighbourhood UOp with a neigh-
bourhood U0 of the zero section in G×Gp νp(Op). The action of g̃ ∈ G on a point
[g, ξ] ∈ U0 is given by

g̃ · [g, ξ] = [g̃g, ξ].

By the definition of the associated bundle, we have [g̃g, ξ] = [g, ξ] exactly if there
exists an h ∈ Gp such that

(g̃g, ξ) = (gh−1, ρ̄h(ξ)).

But this means that h ∈ (Gp)ξ, where (Gp)ξ < Gp is the stabiliser subgroup of ξ
in Gp, and g̃ = gh−1g−1. Hence

G[g,ξ] = g (Gp)ξ g
−1

which proves the statement. ■
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Let’s continue the line of reasoning of this proof and note thatG[g,ξ] = g Gp g
−1

if and only if (Gp)ξ = Gp, that is, if ξ is fixed by Gp meaning that ξ ∈ νp(Op)
Gp .

Hence [g, ξ] ∈ (G×Gp νp(Op))(Gp) if and only if ξ ∈ (νp(Op))
Gp which shows that

(G×Gp νp(Op))(Gp) = G×Gp (νp(Op))
Gp .

As (νp(Op))
Gp is by construction a Gp-invariant subspace of νp(Op), this is a

smooth vector subbundle of G×Gp νp(Op). Actually, noting that by construction
Gp acts trivially on (νp(Op))

Gp , we have

G×Gp (νp(Op))
Gp = G× (νp(Op))

Gp
/
Gp

= G/Gp × (νp(Op))
Gp .

Proposition A.4.4. Let G be a compact connected Lie group acting on a smooth
manifold M . Let H < G be a closed subgroup of G. Then the connected compo-
nents of M(H) are smooth submanifolds of M .

Proof. Let p ∈ M(H) be a point and note that as p ∈ M(H), there exists g ∈ G
such that g Gp g−1 = H. Hence the point ψg(p) ∈ Op ⊂ M(H) has the stabiliser
subgroup

Gψg(p) = g Gp g
−1 = gg−1Hgg−1 = H.

It follows by the above that we can find a neighbourhood UOp of the orbit Op

such that
(UOp)(H)

∼= (G×H (νp(Op))
H) = G/H × (νp(Op))

H .

This shows the statement since, again by the above, this is a smooth vector
subbundle, so in particular a smooth submanifold. ■

Corollary A.4.5. Let ψ : G → Diff (M) be a smooth action of a Lie group G
on a smooth manifold M . Then the connected components of the set MG of fixed
points under this action are smooth submanifolds of M .

Proof. This follows directly from Proposition A.4.4 by noting that MG =M(G).
■

Corollary A.4.6. Let ψ : G → Diff (M) be a smooth action of a Lie group G
on a smooth manifold M and let H < G be a Lie subgroup. Then the connected
components of the fixed point set MH of H are smooth submanifolds of M .

Proof. Consider the action of H on M which is induced by ψ and apply Corol-
lary A.4.5. ■

Lemma A.4.7. Suppose that G is a compact Abelian group acting effectively on
a connected manifold M . Then every slice representation is faithful.
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Proof. By the slice theorem A.4.2 we may assume that an open neighbourhood
UOp of Op is in the homogeneous bundle G ×Gp Vp and denote it again by U0.
Assume then that the slice representation ρ of Gp on Vp is not faithful i.e. there
exists a non-trivial h ∈ Gp such that ρh(v) = v for all v ∈ Vp. But then for any
[g, v] ∈ U0 we get (remember that G is Abelian)

h · [g, v] = [hg, v]

= [gh, v]

= [g, ρh−1(v)]

= [g, v]

and conclude that h fixes the whole neighbourhood U0
∼= UOp . Differently put,

if h fixes a point p, then it also fixes an open neighbourhood of p and hence the
set of elements of M fixed by h is open. But it is also closed and hence since M
is connected, it is equal to M . Hence h is non-trivial but fixes all of M which
contradicts the fact that G acts effectively on M . ■



Appendix B

Bundle Theory

This content of this chapter is taken from [13] and [5].

B.1 Fibre Bundles

Definition. Let E,M and F be smooth manifolds and suppose that π : E →M
is a smooth surjective map. We say that π : E → M is a fibre bundle over M
with fibre F if for every point p ∈M there exists a neighbourhood U of p together
with a smooth map ϵ : π−1(U) → F such that

ϵ̂ := (π, ϵ) : π−1(U) → U × F

is a diffeomorphism. We call

• (U, ϵ) a bundle chart for E,

• ϵ̂ a local trivialisation of E,

• E the total space of the bundle,

• M the base space of the bundle and

• F the fibre.

A bundle atlas on E is an open cover {Ua}a∈A of M together with corresponding
bundle charts ϵa : π−1(Ua) → F .

Notation. We write F → E
π→M to denote a fibre bundle E over M with fibre

F .

Definition. Let F → E
π→ M be a fibre bundle. The fibre over p ∈ M is

Ep := π−1(p).

Lemma B.1.1. Let F → E
π→ M be a fibre bundle. Then π is a surjective

submersion and each fibre Ep is an embedded submanifold of E which is diffeo-
morphic to the fibre F .

B-1
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Definition. Let F1,2 → E1,2
π1,2→ M1,2 be two fibre bundles. A fibre bundle

morphism along a smooth map φ :M1 →M2 is a smooth map Φ : E1 → E2 such
that the following diagram commutes:

E1 E2

M1 M2

Φ

π1 π2

φ

If (U, ϵ) is a bundle chart on E, then for p ∈ U the bundle chart map restricts
to a diffeomorphism

ϵp := ϵ|Ep : Ep → F.

Definition. Let F → E
π→M be a fibre bundle and {(Ua, ϵa) | a ∈ A} a bundle

atlas. If Ua ∩ Ub ̸= ∅, then there is a well-defined map

ϵab : Ua ∩ Ub → Diff (F )

p 7→ ϵa|Ep ◦ (ϵb|Ep)−1

called the transition function from the bundle chart (Ua, ϵa) to the bundle chart
(Ub, ϵb).

Recall. σ : G→ Diff (F ) is an effective action if σ is injective. If this is the case
we may regard G as a subgroup of Diff (F ).

Definition. Suppose that L→ E
π→M is a fibre bundle and that ψ : G→ Diff (F )

is an effective action of a Lie groupG on the fibre F . A bundle atlas {(Ua, ϵa) | a ∈ A}
is said to be a (G, σ)-bundle atlas if all its transition functions take values in
σ(G). If such an atrals exists, we say that E is a (G, σ)-fibre bundle and call G
the structure group of the bundle.

B.2 Vector Bundles

Definition. LetM be a smooth manifold. A vector bundle overM is a (GL(V ), ρcan)-
fibre bundle V → E

π→ M , where V is a vector space and ρcan is the canonical
action of GL(V ) on V .

Proposition B.2.1. Let V → E
π→M be a fibre bundle with fibre a vector space

V . Then E is a vector bundle if and only if it is possible to endow each fibre Ep
with a vector space structure and find a bundle atlas {(Ua, ϵa) | a ∈ A} such that
for any p ∈ Ua the map ϵa|Ep : Ep → V is an isomorphism.

Definition. Let V1,2 → E1,2
π1,2→ M1,2 be two vector bundles. A vector bun-

dle morphism along a smooth map φ : M1 → M2 is a fibre bundle morphism
Φ : E1 → E2 along φ which restricts to linear maps on the fibres i.e. for each
p ∈M , the map Φ|Ep : Ep → Fφ(p) is linear.
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B.3 Principal Bundles

Definition. Let M be a smooth manifold and G a Lie group. A G-principal
bundle over M is a G-fibre bundle G → P

π→ M where G acts on itself via left
translation

L : G→ Diff (G)

g 7→ (Lg : h 7→ gh)

Proposition B.3.1. Let G → P
π→ M be a fibre bundle with fibre a Lie group

G. Then the following are equivalent:

1. P is a G-principal bundle;

2. There exists a smooth free action τ : G→ Diff (P ) which is fibre preserving
together with a bundle atlas {(Ua, ϵa) | a ∈ A} such that the bundle chart
maps ϵa are (τ, L)-equivariant. In other words, for each a ∈ A and every
g ∈ G the following diagrams commute

π−1(Ua) π−1(Ua) P P

G G M

τg

ϵa ϵa

τg

π
π

Lg

3. There exists a smooth free action τ : G → Diff (P ) which is fibre pre-
serving i.e. π ◦ τg = π for any g ∈ G and transitive on the fibres i.e
Ou = Pπ(u) = π−1(π(u)) for any u ∈ P .

Corollary B.3.2. Let τ : G → Diff (P ) be a proper free action of a Lie group
G on a smooth manifold P . Then π : P → P/G is a G-principal bundle. In
particular, a homogeneous space G/H can be seen as the base space of of an
H-principal bundle H → G

π→ G/H.

Definition. Let G1,2 → P1,2
π1,2→ M1,2 be two principal G1,2-bundles and let

ψ : G1 → G2 be a Lie group homomorphism. A principal bundle morphism along
a smooth map φ : M1 → M2 with respect to ψ is a smooth map Φ : P1 → P2

which is (τ1, τ
ψ
2 )-equivariant i.e. for any g ∈ G1, the following diagram commutes:

P1 P2

P1 P2

Φ

(τ1)g (τ2)ψ(g)

Φ

In particular, if G1 = G2 = G we say that Φ : P1 → P2 is a principal G-bundle
morphism if it is a principal bundle morphism with respect to IdG.
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B.4 Associated Bundles

Definition. Let G → P
π→ M be a principal G-bundle and let σ be a smooth

action of G on another smooth manifold F . Define then an action of G on P ×G
by

P × F → P × F

(u, q) 7→ (τg(u), σg(q))

and put
P ×G F := P × F

/
G
.

Writing [u, q] ∈ P ×G F for the equivalence class of (u, q) ∈ P × F we define a
map

πF : P ×G F →M

[u, q] 7→ π(u)

and call πF : P ×G F →M an associated bundle of P .

Theorem B.4.1 (The Associated Bundle Theorem). Let G → P
π→ M be a

principal G-bundle and let σ be a smooth action of G on another smooth manifold
F .

1. The associated bundle πF : P ×G F →M is a (G, σ)-fibre bundle with fibre
F .

2. The quotient map

p : P × F → P ×G F

(u, q) 7→ [u, q]

is a principal G-bundle.

3. The first projection

pr1 : P × F → P

(u, q) 7→ u

is a principal G-bundle morphism along πF , in particular, the following
diagram commutes

P × F P

P ×G F M

pr1

p π

πF
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4. For each u ∈ P , the map

ψu : F → P ×G F

q 7→ [u, q]

is a diffeomorphism from F to the fibre (P ×G F )π(u) := π−1
F (π(u)) in the

associated bundle over π(u).

Corollary B.4.2. Let G→ P
π→M be a principal G-bundle and suppose that ρ

is a representation of G on a vector space V . Then the associated bundle P ×G V
is a vector bundle and the map

ψu : V → P ×G V

v 7→ [u, q]

from the associated bundle theorem is a linear isomorphism.

Example. We will spell this out for the case of the principal bundleH → G
π→ G/H

whereG is a Lie group andH a closed subgroup. First, we note that π : G→ G/H
is just the usual projection g 7→ gH where gH is the coset. The closed subgroup
H acts on G by

τ : H → Diff (G)

h 7→ (Rh−1 : g 7→ gh−1)

which is fibre preserving since

π ◦ τh(g) = π(gh−1)

= gh−1H

= gH

= π(g)

and transitive on the fibres as

Og = {τh(g) | h ∈ H}
= {gh−1 | h ∈ H}
= {gh | h ∈ H}
= π−1(gH).

Now suppose that V is a vector space and that

ρ : H → GL(V )

h 7→ ρh
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is a representation of H on V . Then the action of h ∈ H on G × V from the
definition of the associated bundle is simply

(g, v) 7→ (τh(g), ρh(v)) = (gh−1, ρh(v)).

The associated bundle is then the orbit space

G×H V := G× V
/
H

and let

p : G× V → G×H V

(g, v) 7→ [g, v]

where [g, v] denotes the equivalence class/the orbit of (g, v) be the projection
map. The bundle map is given by

πV : G×H V → G/H

[g, v] 7→ gH.

Then Corollary B.4.2 gives that πV : G×H V → G/H is indeed a vector bundle.
Moreover, we get a commutative diagram

G× V G

G×H V G/H

pr1

p π

πV

where pr1 : G×V → G is just the projection on the first factor. Finally, for each
g ∈ G, the map

ψg : V → G×H V

v 7→ [g, v]

is a linear isomorphism from V to (G×H V )gH .

However, in this special case we can even go a bit further than the associated
bundle theorem: Also g̃ ∈ G acts naturally on G× V by

(g, v) 7→ (g̃g, v).

This action clearly commutes with the action of H on G×V and hence descends
to an action on G×H V :

σ : G→ Diff (G×H V )

g̃ 7→ (σg̃ : [g, v] 7→ [g̃g, v]).
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But G also acts transitively on G/H (g̃ ∈ G sends gH ∈ G/H onto g̃gH) an we
observe that

πV ◦ σg̃([g, v]) = πV ([g̃g, v])

= g̃gH

= g̃ · gH
= g̃ · π(g)
= g̃ · πV ([g, v])

that is, for each g̃ ∈ G the following diagram commutes:

G×H V G/H

G×H V G/H

πV

σg̃ g̃·
πV

Finally, as for any vector bundle, we can interpret G/H as a submanifold of
G×H V using the zero section:

G/H ∼= {[g, 0] | g ∈ G} ⊂ G×H V.

B.5 Normal Bundles

Recall. Let M be a smooth manifold and N be an embedded submanifold with
i : N ↪→M the inclusion. For each p ∈M , the differential dip : TpN → Ti(p)M is
injective and allows to interpret TpN as a subspace of TpM where we also write
p = i(p).

Definition. Let M be a smooth manifold and N an embedded submanifold. The
quotient

νpN = TpM
/
TpN

is an (dim (M) − dim (N))-dimensional vector space called the normal space to
N at p ∈ N . The set

νN =
⊔
p∈N

νpN

together with the natural projection πν : νN → N is called the normal bundle of
N and has the structure of a vector bundle over N of rank (dim (M)−dim (N)).

Remark. 1. Note that the normal bundle fits perfectly in a short exact se-
quence of vector bundles:

0 −→ TN −→ TM |N −→ νN −→ 0.
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2. As a manifold νN has dimension dim (N)+(dim (M)−dim (N)) = dim (M).

Recall. 1. The zero section of νN given as

i0 : N ↪→ νN

p 7→ 0p

embeds N as a closed submanifold in νN .

2. A neighbourhood U0 of the zero section N in νN is called convex if the
intersection with all fibres is convex i.e. if U0 ∩ νpN is convex for each
p ∈ N .

Theorem B.5.1 (The Tubular Neighbourhood Theorem). Let M be a smooth
manifold and N and embedded submanifold. There exists a convex neighbourhood
U0 of N in νN , a neighbourhood U of N in M and a diffeormorphism φ : U0 → U
such that N ⊂ νN is sent to N ⊂ M i.e. such that the following diagram
commutes:

νN ⊃ U0 U ⊂M

M2

φ

i0

i
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