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Abstract

In this master thesis, we describe the classification of compact connected
contact toric manifolds that is due to Lerman [19] building on previous
partial classifications. Compact connected contact toric manifolds are
classified according to the image of the moment map and whether the
action of the torus is free.

i



Contents

Contents ii

Introduction 1

1 Group Actions on Contact and Symplectic Manifolds 3
1.1 Contact and Symplectic Manifolds . . . . . . . . . . . . . . . . 3

1.1.1 Contact and Reeb Vector Fields . . . . . . . . . . . . . . 9
1.1.2 Symplectic and Hamiltonian Vector Fields . . . . . . . 10

1.2 Symplectic Cones and Symplectization . . . . . . . . . . . . . 11
1.3 Hamiltonian and Contact Actions . . . . . . . . . . . . . . . . 13

1.3.1 Hamiltonian Actions and Symplectic Moment Map . . 14
1.3.2 Lifted Actions and the Contact Moment Map . . . . . 15

1.4 Contact and Symplectic Reduction . . . . . . . . . . . . . . . . 17
1.5 Contact Toric Manifolds . . . . . . . . . . . . . . . . . . . . . . 19

2 Contact Toric Manifolds 23
2.1 Local Structure of Contact Toric Manifolds . . . . . . . . . . . 23
2.2 Properties of Contact Moment Maps . . . . . . . . . . . . . . . 30
2.3 Cohomology Classification of Local Isomorphisms . . . . . . 35

3 Classification of Compact Connected Contact Toric Manifolds 39
3.1 Statement of the Classification Theorem . . . . . . . . . . . . . 39
3.2 Proof of the Classification Theorem . . . . . . . . . . . . . . . 41

3.2.1 Free Actions in Dimension 3 . . . . . . . . . . . . . . . 41
3.2.2 Non-free Actions in Dimension 3 . . . . . . . . . . . . 42
3.2.3 Free Actions in Higher Dimensions . . . . . . . . . . . 45
3.2.4 Non-free Actions in Higher Dimensions . . . . . . . . 47

3.3 Applications of the Classification . . . . . . . . . . . . . . . . . 53
3.4 Submanifolds of Contact Toric Manifolds . . . . . . . . . . . . 54

Bibliography 56

ii



Introduction

Contact manifolds are odd-dimensional manifolds equipped with a contact
structure, that is, a maximally nonintegrable hyperplane field. They can be
viewed as odd-dimensional analogues of symplectic manifolds. This relation
can be made precise using the notion of symplectization.

A Lie group action on a contact manifold that preserves the contact structure
naturally induces a Hamiltonian action on the symplectization of the contact
manifold. This allows us to define a contact moment map for the action and
investigate the group action using the properties of this moment map.

Analogously to symplectic toric manifolds, if we have an effective action of a
torus of dimension n + 1 on a contact manifold of dimension 2n + 1, we call
this contact manifold a contact toric manifold.

In this thesis, we are concerned with examples, properties, and classification
of contact toric manifolds.

It is a well-known theorem of Delzant [11] that compact connected symplectic
toric manifolds are classified by the image of their moment map. This image
is a rational polytope with certain properties.

For compact connected contact toric manifolds, the situation is similar. Ler-
man completed the classification of compact connected toric manifolds [19].
According to Lerman’s work, compact connected contact toric manifolds are
classified by the image of the contact moment map with exceptional cases
occurring in dimensions 3 and 5 depending on whether the action is free.

The main outline of the thesis is as follows. More details about the content of
each chapter are given at the beginning of the respective chapter.

Chapter 1 introduces the basic notions about contact and symplectic man-
ifolds. We set the notation and conventions that are used throughout the
thesis. We emphasize group actions and the relationship between contact
and symplectic manifolds.
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Contents

In Chapter 2, we describe the local properties of contact toric manifolds and
contact moment maps. Then we explain how to deduce global statements
from these results.

Finally, in Chapter 3, we state and prove the main classification theorem. We
conclude with a discussion about the applications of the classification.
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Chapter 1

Group Actions on Contact and
Symplectic Manifolds

In this chapter, we introduce contact and symplectic manifolds and important
types of group actions on them.

In Section 1, we define contact and symplectic manifolds. Then, we introduce
vector fields that satisfy special conditions which will allow us to define
certain properties later on.

Next, in Section 2, we introduce symplectic cones and symplectizations which
give us a way to relate symplectic and contact manifolds. These notions allow
us to use techniques of symplectic topology to investigate contact manifolds.

In Section 3, we introduce our main objects of consideration, which are group
actions and moment maps. Moment maps are first defined for Hamiltonian
actions on symplectic manifolds. Then, we define the contact moment map
using the lift of contact actions to the symplectization of a contact manifold.

In Section 4, we review symplectic and contact reduction. These construc-
tions will be used in the following chapters to construct certain contact and
symplectic manifolds.

Lastly, in Section 5, we define and give examples of contact toric manifolds.

1.1 Contact and Symplectic Manifolds

We start with the definition of contact manifolds:

Definition 1.1 Let M be a smooth manifold of dimension (2n+1), for n ≥ 0. A
contact structure on M is a maximally nonintegrable hyperplane field ξ ⊆ TM.
That is, locally ξ = ker α for a 1-form α ∈ Ω1(M), with α ∧ (dα)n ̸= 0.

Such a 1-form α on M is called a contact 1-form. The pair (M, ξ) is called a
contact manifold.
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1.1. Contact and Symplectic Manifolds

Observe that, if α is a contact 1-form on M, then gα, where g : M → R − {0}
is a nonvanishing smooth function, is also a contact form defining the same
contact structure.

For a contact manifold (M, ξ), let ξ0 ⊂ T∗M be the annihilator of the contact
distribution in the cotangent bundle. By definition of a contact manifold,
ξ0 is a line bundle. The contact structure ξ is called coorientable, if the
line bundle ξ0 ∼= TM/ξ is orientable, that is if it has a nonvanishing global
section. The contact structure ξ on a contact manifold M is called cooriented
if one global section of ξ0 − 0 is chosen, where 0 denotes the zero section. In
this case, we denote the union of components of ξ0 − 0 in which the image
of the chosen global section lies by ξ0

+ and call it the coorientation.

Hence, a contact structure can be defined by a global one form if and only if
it is coorientable. For any function f : M → R and a contact form α on M,
the form e f α defines the same cooriented contact structure. Conversely, if α
and α′ define the same cooriented contact structure on M, then α′ = e f α for
some function f : M → R. That is, defining a co-oriented contact structure is
the equivalent to giving a conformal class [e f α] of contact forms on M.

Not all contact structures are coorientable. For an example of a contact
structure that is not coorientable on Rn+1 × RPn+1, see [13, Lemma 1.1.1 and
Example 2.1.11].

Unless otherwise stated, we will assume the contact structures ξ are coori-
ented with coorientation ξ0

+ and a global contact 1-form α, such that ξ = ker α
and α(M) ⊂ ξ0

+ as a section of the cotangent bundle. We will often write
(M, α) or (M, ξ = ker α) for a (cooriented) contact manifold with the coorien-
tation ξ0

+ understood.

Closely related to contact manifolds are symplectic manifolds:

Definition 1.2 A 2-form ω on a smooth manifold X is a symplectic form if

1. ω is closed (that is, dω = 0) and,

2. ω is nondegenerate for all p ∈ X (that is, at every point p ∈ X, for any
nonzero tangent vector v ∈ TpX, there is w ∈ TpX such that ωp(v, w) ̸= 0).

The pair (X, ω) is called a symplectic manifold.

See [21], [9] for more general and detailed discussions about symplectic
manifolds.

By the nondegeneracy condition, a symplectic manifold is necessarily of even
dimension. If (X, ω) is a symplectic 2n-manifold, we can reformulate the
nondegeneracy condition for ω as ωn ̸= 0. Thus, a symplectic form defines
an orientation on X.

For a contact manifold (M, ξ = ker α) of dimension 2n + 1, we can also
restate the nonintegrability condition α ∧ (dα)n ̸= 0 as dα|ξ is nondegenerate.
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1.1. Contact and Symplectic Manifolds

By the contact condition, if α is a contact form, α ∧ (dα)n is a volume form,
then a contact manifold M is necessarily orientable.

Here are some examples of contact manifolds:

Example 1.3 We will define several contact structures on R2n+1 with coordinates
{(x1, y1, . . . , xn, yn, z)} for n ≥ 1:

First, consider the 1-form

α1 = dz +
n

∑
i=1

xidyi

We have,

α1 ∧ (dα1)
n = (dz +

n

∑
i=1

xidyi) ∧ (
n

∑
i=1

dxi ∧ dyi)
n

= n!dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

The form dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is a volume form on R2n+1, thus

α ∧ dαn ̸= 0

Therefore, α1 is a global contact 1-form on R2n+1 that defines a contact structure

ξ1 = ker α1 = span{ ∂

∂x1
, . . . ,

∂

∂xn
, x1

∂

∂z
− ∂

∂y1
, . . . , xn

∂

∂z
− ∂

∂yn
}

and we get the contact manifold (R2n+1, ξ1 = ker α1). For the case 2n + 1 = 3,
Figure 1.1 describes this contact structure.

Figure 1.1: The contact structure ξ1 = ker(dz + ∑n
i=1 xidyi), [12].

Similarly, the 1-form

α2 = dz −
n

∑
i=1

yidxi
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1.1. Contact and Symplectic Manifolds

defines a contact manifold (R2n+1, ξ2 = ker α2).

Lastly, consider the 1-form

α3 = dz +
n

∑
i=1

xidyi − yidxi = dz +
n

∑
i=1

r2
i dφi

where (ri, φi) are the polar coordinates on respective (xi, yi) planes. Then,

α3 ∧ (dα3)
n = 2nn!dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn ̸= 0

Thus, α3 defines a contact structure

ξ3 = span{x1
∂

∂z
− ∂

∂y1
, . . . , xn

∂

∂z
− ∂

∂yn
, y1

∂

∂z
+

∂

∂x1
, . . . , yn

∂

∂z
+

∂

∂xn
}

and we get a contact manifold (R2n+1, ξ3 = ker α3).

Example 1.4 Consider the unit sphere S2n+1 ⊂ R2n+2, and the 1-form

αS2n+1 =
n+1

∑
i=1

xidyi − yidxi

where we use the coordinates {(x1, y1, . . . , xn, yn, xn+1, yn+1)} for R2n+2.

Considering r2 = ∑n+1
i=1 x2

i + y2
i where r is the radial coordinate on R2n+2, we get

rdr ∧ αS2n+1 ∧ (dαS2n+1)n ̸= 0 for r ̸= 0. Thus, since S2n+1 ⊂ R2n+2 is the level
set r = 1, the 1-form αS2n+1 ∧ (dαS2n+1)n is nonzero when restricted to the sphere.
The contact structure ξS2n+1 = ker αS2n+1 on S2n+1 is called the standard contact
structure on S2n+1

Here is an other description of this contact structure on S2n+1: Consider the smooth
map f : Rn → R given by

f (x1, y1, . . . , xn, yn, xn+1, yn+1) =
n+1

∑
i=1

x2
i + y2

i

Then, S2n+1 = f−1(1) and

TpS2n+1 = kerd fp

= ker(2x1dx1 + 2y1dy1 + · · ·+ 2xn+1dxn+1 + 2yn+1dyn+1)

for p = (x1, y1, . . . , xn, yn, xn+1, yn+1) ∈ S2n+1. We identify R2n+2 with Cn+1 to
get a complex structure J on each tangent space, that is a linear map such that
J ∂

∂xi
= ∂

∂yi
and J ∂

∂yi
= − ∂

∂xi
for all i = 1, . . . , n + 1.

One can then check that the contact form is αS2n+1 = − 1
2 d f ◦ J|S2n+1 and the contact

structure is (ξS2n+1)p = TpS2n+1 ∩ J(TpS2n+1) at each point p ∈ S2n+1.
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1.1. Contact and Symplectic Manifolds

Example 1.5 Consider the 3-torus T3 = S1 ×T2 with coordinates (t, θ1, θ2). Then
for each positive integer n, the 1-form

αn = sin(nt)dθ1 + cos(nt)dθ2

induces a contact structure on T3. Contact structure is given by

ξn = span{ ∂

∂t
, cos(nt)

∂

∂θ1
− sin(nt)

∂

∂θ2
}

The circle θ1 = θ2 = constant is tangent to ξ and on this circle ξ makes n full
twists. See Figure 1.2.

Figure 1.2: The contact structure on 3-torus

See [13], [12] for more examples mostly at dimension 3, and discussions
about which manifolds can admit contact structures.

Here are some examples of symplectic manifolds:

Example 1.6 Consider R2n+2 with coordinates (x1, y1, . . . , xn+1, yn+1) and the
symplectic structure

ωst =
n+1

∑
i=1

dxi ∧ dyi

Identifying Cn+1 = R2n+2 and zi = xi + iyi we get the symplectic structure:

ωst =
i
2

n+1

∑
i=1

dzi ∧ dzi

The next example is especially important for our discussions:
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1.1. Contact and Symplectic Manifolds

Example 1.7 (Cotangent Bundle of a Manifold) There is a canonical symplec-
tic structure on the cotangent bundle M2n = T∗X of a smooth manifold Xn.

The tautological 1-form λ is defined pointwise for p = (x, ξ) ∈ M as

λp = (dπp)
∗ξ

where (dπp)∗ is the dual map of the derivative of the projection π : M → X.
Equivalently, if v ∈ Tp M = Tp(T∗X), then

λp(v) = ξ(dπp(v))

The canonical symplectic 2-form ω on M = T∗X is then defined as

ω = dλ

If (U, xi) is a local coordinate chart on X and (T∗U, xi, ξi) is the corresponding
cotangent coordinates on M, then locally we have

λ = ∑ ξidxi and ω = ∑ dξi ∧ dxi

Now we define the diffeomorphisms between contact manifolds that respect
the contact structures:

Definition 1.8 Two contact manifolds (M1, ξ1) and (M2, ξ2) are called contacto-
morphic if there is a diffeomorphism f : M1 → M2 such that d f : TM1 → TM2
maps ξ1 to ξ2, that is d f (ξ1) = ξ2. Such an f is called a contactomorphism.
Equivalently, there exists a nowhere zero function λ : M1 → R − {0} such that
f ∗(α2) = λα1 where αi is a contact form defining ξi for i = 1, 2.

Example 1.9 The three contact structures on R2n+1 described in Example 1.3 are
all contactomorphic. The contact structures ξ1 and ξ2 are related by a rotation about
the z-axis, and the structures ξ1 and ξ3 are related by the map

(R2n+1, ξ1) → (R2n+1, ξ3)

defined as

(x1, y1, . . . , xn, yn, z) 7→

(
(x1 + y1)

2
,
(y1 − x1)

2
, . . . ,

(xn + yn)

2
,
(yn − xn)

2
, z + ∑ xiyi

2
)

Any of these structures is called the standard contact structure ξst on R2n+1

Example 1.10 The contact manifold (S2n+1 − {p}, ξS2n+1 |S2n+1−{p}) described in
Example 1.4 is contactomorphic to R2n+1 with its standard contact structure (see
[13] for constructions of contactomorphisms based on stereographic projection or
maps of complex domains). This contactomorphism justifies calling both of these
contact structures ”standard”. Accordingly, we sometimes also use ξst to denote the
standard contact structure on S2n+1.

8



1.1. Contact and Symplectic Manifolds

Similarly we can define the diffeomorphisms between symplectic manifolds
that respect the symplectic structures:

Definition 1.11 Two symplectic manifolds (M1, ω1) and (M2, ω2) are called sym-
plectomorphic if there is a diffeomorphism f : M1 → M2 such that f ∗ω2 = ω1.
Such an f is called a symplectomorphism.

1.1.1 Contact and Reeb Vector Fields

Now, we will define some vector fields defined on contact manifolds that
will be of special importance in the following discussions.

Let (M, ξ = ker α) be a contact manifold of dimension 2n + 1. Since dα is
nondegenerate on ξ by the nonintegrability condition, its kernel defines a
unique line field, that is a unique vector field R on M up to scaling which
satisfies α(R) ̸= 0. If we normalize R by the condition α(R) = 1, we get a
unique vector field associated to a contact form α:

Definition 1.12 Let (M, ξ = ker α) be a contact manifold. The Reeb vector field
Rα is the unique vector field defined by the equations:

1. iRdα = dα(Rα,−) ≡ 0

2. α(Rα) = 1

We also have the notion of vector fields on (M, ξ = ker α) that preserve the
contact structure:

Definition 1.13 Let (M, ξ = ker α) be a contact manifold. A vector field v on M
is a contact vector field if its flow φt is a contactomorphism, that is (φt)∗ξ = ξ,
for all t. Equivalently, a vector field v is a contact vector field if Lvα = gα for some
function g : M → R.

We have LRα = iRα dα + d(α(Rα)) = 0. So the Reeb vector field associated to
a contact form is, in particular, a contact vector field.

Remark 1.14 While contact vector fields are associated to contact structures, Reeb
vector fields are associated to contact forms. In general, Reeb vector fields that are
associated to contact forms that define the same contact structure might be distinct.

Here are some examples of the Reeb vector fields on the contact manifolds
we defined in previous examples:

Example 1.15 For the standard contact structure α1 described in Example 1.3, the
Reeb vector field is ∂

∂z . Indeed,

α1(
∂

∂z
) = (dz +

n

∑
i=1

xidyi)(
∂

∂z
) = 1

9



1.1. Contact and Symplectic Manifolds

and

dα1(
∂

∂z
,−) = (

n

∑
i=1

dxi ∧ dyi)(
∂

∂z
,−) = 0

The flow of this vector field is translation along z-coordinate, which preserves the
contact structure.

Example 1.16 For the standard contact structure αS2n+1 on the unit sphere described
in Example 1.4, the Reeb vector field is

n+1

∑
i=1

(xi
∂

∂yi
− yi

∂

∂xi
)

Given a contact vector field v on M, we can define a function f : M → R by
f (p) = αp(vp).

On the other hand, given any function f : M → R, we can define a contact
vector field v f by

v f = f Rα + (dα|ξ)−1(d f |ξ)

where (dα|ξ)−1(d f |ξ) is the unique vector field u such that iu(dα|ξ) = d f |ξ
and Rα is the Reeb vector field.

This gives a one-to-one correspondence between functions on a contact
manifold and contact vector fields, see [13] for more details. In particular,
if we take f ≡ 1, the contact vector field we get is the Reeb vector field Rα

corresponding to α.

1.1.2 Symplectic and Hamiltonian Vector Fields

There is also the corresponding notion of vector fields that preserve the
symplectic structure:

Definition 1.17 Let (X, ω) be a symplectic manifold. A vector field v on M is a
symplectic vector field if its flow φt is a symplectomorphism, that is (φt)∗ω = ω,
for all t. Equivalently, a vector field v is a symplectic vector field if Lvω = 0.

Let (X, ω) be a symplectic manifold and let H : M → R be a smooth function.
Its differential dH is a 1-form. By nondegeneracy of ω, there is a unique
vector field XH on M such that iXH ω = −dH

Definition 1.18 A vector field XH as above is called the Hamiltonian vector field
with Hamiltonian function H.

By these definitions and Cartan’s formula, we see that a vector field v on a
symplectic manifold (X, ω) is:

• symplectic if and only if ivω is closed,
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1.2. Symplectic Cones and Symplectization

• Hamiltonian if and only if ivω is exact.

In particular every Hamiltonian vector field is symplectic.

1.2 Symplectic Cones and Symplectization

To define symplectic cones, we need to define Liouville vector fields on
symplectic manifolds.

Definition 1.19 Let (X, ω) be a symplectic manifold. A vector field v on X is a
Liouville vector field if Lvω = ω.

Liouville vector fields allow us to relate symplectic manifolds to contact
manifolds:

Lemma 1.20 Let (X, ω) be a symplectic manifold of dimension 2n + 2 and let v
be a Liouville vector field on X. Then, α = ivω = ω(v,−) is a contact form when
restricted to any hypersurface M2n+1 transverse to v.

Proof By Cartan’s formula for the Lie derivative, we have

ω = Lvω = ivdω + d(ω(v,−)) = d(ω(v,−))

because dω = 0. Therefore,

α ∧ dαn = ivω ∧ d(ω(v,−))n

= ivω ∧ ωn

= (n + 1)−1iv(ω
n+1)

Thus, by nondegenerecy of ω, if M is transverse to v, then α ∧ dαn ̸= 0. □

Such a hypersurface M is called of contact type in (X, ω).

For the next definition, recall that a topological group action

ψ : G → Homeo(X)

where we denote the action of g ∈ G on x ∈ X by g · x or ψg(x), is called
proper if the map G × X → X × X defined by (g, x) 7−→ (x, g · x) is a proper
map.

Definition 1.21 A symplectic cone is a triple (X, ω, v) where X is a manifold, ω
is a symplectic form on X, and v is a Liouville vector field on (X, ω) generating a
smooth proper free action of R.

Given a cooriented contact manifold (M, ξ = ker α), we can define a sym-
plectic cone as follows:

11



1.2. Symplectic Cones and Symplectization

Definition 1.22 Let (M, ξ = kerα) be a contact manifold of dimension 2n-1 for
n ≥ 1. Define X = R × M and ω = d(etα) where t is the R coordinate.

The pair (X, ω) is a symplectic manifold, called the symplectization of M. The
”vertical” vector field ∂

∂t is a Liouville vector field.

Remark 1.23 In this definition, observe the slight abuse of notation. We denote the
pullback of α by projection to X again by α. Also, we denote the projection (t, x) 7→ t
by just t.

Conversely, given a symplectic cone (X, ω, v), we can define a cooriented
contact manifold

(X/R, ξ = ker(s∗(ivω)) = π∗(ker ivω))

where π : X → X/R is the projection to the orbits of the action generated by
v and s is a section of this projection.

This gives a one to one correspondence between symplectic cones and a
cooriented contact manifolds.

Up to a symplectomorphism, the symplectization of a contact manifold
only depends on the contact structure and its coorientation, and not to a
contact form. In fact, the symplectization of a cooeriented contact manifold
(M, ξ = ker α) can be defined intrinsically, without reference to a chosen
contact form:

By the contact condition, the coorientation ξ0
+ of (M, ξ = ker α) is a sym-

plectic submanifold1 of the cotangent bundle (T∗M, ω = dλ) as defined in
Example 1.7. Therefore, (ξ0

+, ω|ξ0
+
) is a symplectic manifold with dimension

1 greater than the dimension of (M, ξ = ker α).

Moreover, the diffeomorphism

h : R × M → ξ0
+

defined by h(t, x) = etαx gives a symplectomorphism between two spaces:

We have, for v ∈ T(t,x)(R × M):

(h∗λ)(t,x)(v) = λetαx(dh(t,x)(v))

= etαx(dπetαx ◦ dh(t,x)(v))

= etαx(d(π ◦ h)(t,x)(v))

where we used the definition of the tautological 1-form. The map π ◦ h is the
projection (t, x) 7→ x. Hence, we have (h∗λ)(t,x) = etαx (see Remark 1.23).

1That is, ω|ξ0
+

is a symplectic form on ξ0
+.
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1.3. Hamiltonian and Contact Actions

Therefore, we have
h∗ω = d(etα)

Hence, we call both (R × M, d(etα)) and (ξ0
+, ω|ξ0

+
) the symplectization of M.

1.3 Hamiltonian and Contact Actions

From now on we will consider smooth actions

ψ : G → Diff(M)

of Lie groups G on smooth manifolds M. We denote the action of g ∈ G on
x ∈ X by

ψg(x) or g · x

Denote the Lie algebra of G by g. For each element X ∈ g, we call

X#
x :=

d
dt
|t=0ψexp tX(x)

the vector field generated by X.

Let G be a group acting on a manifold through the action

ψ : G → Diff(M)

If M is symplectic or contact manifold, we might require the action to preserve
the respective structure.

Definition 1.24 Let G be a group acting on a symplectic manifold (M, ω) through
the action ψ : G → Diff(M). The action ψ is called a symplectic action if
ψg = ψ(g) is a symplectomorphism for every g ∈ G.

Similarly, we have:

Definition 1.25 Let G be a group acting on a contact manifold (M, ξ = ker α)
through the action ψ : G → Diff(M). The action ψ is called a contact action if
ψg = ψ(g) preserves the contact structure and its coorientation for every g ∈ G.
That is, ψ(g)∗α = e f α for a function f : M → R for every g ∈ G.

By the following lemma, we may assume the contact forms are invariant
under a proper contact action:

Lemma 1.26 Suppose a Lie group G acts on a contact manifold (M, ξ = ker α) by
a proper contact action. Then there is a G-invariant contact form α′ defining the
same cooriented contact structure on M.

A proof of this fact can be found in [19, Lemma 2.6]. For a compact group G
it can be directly proved by averaging α over G. For noncompact G, the proof
uses existence of slices. From now on, we will assume that when a Lie group
G acts on a contact manifold (M, ξ = ker α) by a proper contact action, α is
G-invariant.
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1.3. Hamiltonian and Contact Actions

1.3.1 Hamiltonian Actions and Symplectic Moment Map

One can see that vector fields generated by symplectic actions are complete
symplectic vector fields. Roughly, we want to define Hamiltonian actions
analogously as actions that generate Hamiltonian vector fields. To make
this notion precise we define the symplectic moment map and Hamiltanion
actions as follows:

Definition 1.27 Let G be a group acting on a symplectic manifold (M, ω) through
the action ψ : G → Diff(M)

The action ψ is called a Hamiltonian action if there exists a map µ : M → g such
that:

• The component µX : M → R of µ along X given by µX(p) = ⟨µ(p), X⟩ is a
Hamiltonian function for the vector field X#:

iX# ω = −dµX

• µ is equivariant with respect to the given action ψ of G on M and the coadjoint
action Ad∗ of G on g∗:

µ ◦ ψg = Ad∗g ◦ µ

for all g ∈ G

(M, ω, G, µ) is called a Hamiltonian G-space and µ is called a moment map.

The following example of a Hamiltonian action of a Torus Tn on (Cn, ωst =
i
2 ∑N

i=1 dzi ∧ dz̄i) will be important for our discussion in the following sections:

Example 1.28 Consider the action of Tn on (Cn, ωst =
i
2 ∑N

i=1 dzi ∧ dz̄i) by

[a1, . . . , an] · (z1, . . . , zn) = (e2πia1 z1, . . . , e2πian zn)

This action is Hamiltonian with the moment map µ : Cn → g ∼= (Rn)∗ given by

µ(z1, . . . , zn) = π
n

∑
i=1

|zi|2e∗i

Example 1.29 Consider a symplectic vector space (V, ω), that is a vector space
V equipped with a nondegenerate skew symmetric bilinear map ω, and consider the
action of the symplectic linear group Sp(V, ω) by linear transformations 2.

We may view (V, ω) as a symplectic manifold and canonically identify tangent
spaces at any point again with (V, ω).

2See [21] for a detailed discussion about symplectic linear group.
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1.3. Hamiltonian and Contact Actions

The action of Sp(V, ω) on (V, ω) is Hamiltonian with the moment map

µ : V → sp(V)∗

given by

v 7−→ [A 7→ 1
2

ω(Av, v)]

where sp(V) is the symplectic linear algebra.

Hence, a symplectic representation, that is a homomorphism ρ : G → Sp(V, ω),
also induces a Hamiltonian action with the moment map

µρ : V → g∗

which is the composition with dual of the the induced Lie algebra representation.

1.3.2 Lifted Actions and the Contact Moment Map

Not all group actions defined on a symplectic manifold are hamiltonian, see
[9], [21] for conditions for a symplectic action to be a Hamiltonian action in
terms of Lie algebra cohomology.

However, if a Lie group acts on a smooth manifold, the action always induces
a Hamiltonian action on the cotangent bundle with its canonical symplectic
structure:

Let G be a group acting on a manifold M through the action

ψ : G → Diff(M)

Let T∗M be the cotangent bundle of M with its canonical symplectic structure.
The action of G on M lifts to an action on the cotangent bundle:

Ψ : G → Diff(T∗M)

where the action is given by

Ψg(m, β) = (ψg(m), (ψ−1
g )∗β)

Let X# and X̃# be the vector fields generated by X ∈ g on M and T∗M,
respectively. The vector field X̃# is a lift of X#. That is, if π : T∗M → M is
the natural projection, then dπ(X̃#) = X#.

The lifted actions preserve the tautological one form λ on T∗M, see [9,
Proposition 2.1]. Thus, we have

0 = LX̃# λ = d(iX̃# λ) + iX̃# dλ

15



1.3. Hamiltonian and Contact Actions

so iX̃# ω = iX̃# dλ = −d(iX̃# λ). That is, the function H = iX̃# λ is a Hamiltonian
function for the vector field X̃#. On the other hand, if we use the definition
of the tautological one form, we get:

H(m, β) = iX̃#
(m,β)

λ(m,β)

= λ(m,β)(X̃#
(m,β))

= ⟨β, X#
m⟩

With this previous discussion, we claim that the lifted action is a Hamiltonian
action with the moment map µ : T∗M → g∗ given by

⟨µ(m, β), X⟩ = ⟨β, X#
m⟩

Indeed, it can also be checked that the map µ is equivariant with respect to
the coadjoint action of G, using the definition of Ad and the naturality of the
exponential map:

⟨µ(ψg(m), (ψ−1
g )∗β), X⟩ = ⟨(ψg−1)∗β, X#

ψg(m)⟩

= ⟨β, (ψg−1)∗X#
ψg(m)⟩

= ⟨β,
d
dt
|t=0ψg−1 exp tXg(m)⟩

= ⟨β, (Adg−1 X)#
m⟩

= ⟨µ(m, β), Adg−1 X⟩
= ⟨Ad∗g ◦ µ(m, β), X⟩

Therefore, for an action ψ : G → Diff(M), we see that T∗M is a Hamiltonian
G-space (T∗M, ω = dλ, G, µ) with the lifted action and the moment map
defined as above.

Now consider a contact manifold (M, ξ = ker α) with a proper contact action
of a Lie group G. We may assume α is G-invariant. Then we can consider the
restriction of the moment map µ : T∗M → g∗ to the submanifold ξ0

+ to get
the contact moment map:

µ : ξ0
+ → g∗

The above discussion can also be described in terms of symplectization: We
can lift a proper contact action on (M, ξ = ker α) to a Hamiltonian action on
the symplectization ξ0

+. The contact moment map is the symplectic moment
map for the lifted action.

Given the coorientation of the contact structure, the contact moment map is
independent of the contact form. For a fixed G-invariant contact form α, we
get the α-moment map

µα : M → g∗

16



1.4. Contact and Symplectic Reduction

of the action by µα = µ ◦ α, that is the map defined by

⟨µα(m), X⟩ = ⟨αm, X#
m⟩

By the G-invariance of α the map µα is again equivariant with respect to the
coadjoint action.

In the following discussion we will call both µα and µ ”moment map” for a
contact action where it will not cause confusion.

1.4 Contact and Symplectic Reduction

Reduction gives us a way to get a new contact or symplectic manifold using
the moment mapping. By the equivariance condition of Hamiltonian actions,
the zero level set µ−1(0) of the moment map is invariant under the action.
The following theorems describe the structures on the orbit space µ−1(0)/G.

We start by symplectic reduction:

Theorem 1.30 (Marsden, Weinstein, Meyer, [20], [22]) Let (M, ω, G, µ) be a
Hamiltonian G-space for a compact Lie group G. Let i : µ−1(0) → M be the
inclusion map.

Assume G acts freely on µ−1(0). Then

• the orbit space Mred = µ−1(0)/G is a manifold,

• π : µ−1(0) → Mred is a principal G-bundle, and

• there is a symplectic form ωred on Mred satisfying i∗ω = π∗ωred.

The pair (Mred, ωred) is called the reduction of (M, ω, G, µ) with respect to G, µ.

Remark 1.31 If another Lie group H with Lie algeba h acts through a Hamiltonian
action on (M, ω, G, µ) with the moment map Ψ : M → h∗ and the actions of H and
G commute, we get an induced Hamiltonian action of H on (Mred, ωred) with the
moment map Ψred : Mred → h∗ such that

Ψ ◦ i = Ψred ◦ π

In Chapter 3, we will be using symplectic reduction to construct contact
manifolds with a given image of the contact moment map.

We also have the analogous result of contact reduction for contact manifolds:

Theorem 1.32 (Albert, [3], Geiges, [13]) Suppose a Lie group G acts on a contact
manifold (M, ξ = ker α) preserving the contact form α. Let µα : M → g∗ denote
the corresponding α-moment map.

17



1.4. Contact and Symplectic Reduction

Assume µ−1
α (0) is a manifold and assume that G acts freely and properly on µ−1

α (0).
Then α descends to a contact form α0 on M0 := µ−1

α (0)/G such that

α|µ−1
α (0) = π∗α0

where π is the projection to the orbit space.

The contact structure on M0 defined by α0 depends only on the contact structure
defined by α and not on the form α itself.

We will be using contact reduction to prove Lemma 2.7 which describes a
contact action of a torus locally.

In fact, in certain cases, symplectic reduction can be done at levels other
than 0. However, at nonzero level sets, a contact form does not descend to a
contact form in the reduced space.

Remark 1.33 Symplectization and reduction of contact manifolds commute in the
following sense:

Suppose a Lie group G acts on a contact manifold (M, α) preserving the contact
form α and satisfying the assumptions of contact reduction. Let

µα : M → g∗

denote the corresponding α-moment map.

Then, we have the reduced contact manifold (µ−1
α (0)/G, α0) with i∗α = π∗α0 where

i : µ−1
α (0) → M is the inclusion.

The symplectization of the reduced contact manifold is (R × (µ−1
α (0)/G), d(etα0)).

On the other hand, consider the symplectization (R × M, d(etα))) of (M, α). The
action of G lifts to the action defined by g · (t, x) = (t, g · x) for all g ∈ G and
(t, x) ∈ R × M.

This action is Hamiltonian with the moment map µ : R × M → g∗ given by
µ(t, x) = etµα(x). In fact, this is the moment map of the action given by the action
lifted to ξ0

+
∼= R × M where identification is by the map h as defined before.

We have that µ−1(0) = R × µ−1
α (0) and G acts freely on µ−1(0). Therefore, we get

the reduced space µ−1(0)/G = (R × µ−1
α (0))/G ∼= R × (µ−1

α (0)/G) where the
identification follows from the definition of the action on the symplectization.

Moreover, we have

i∗d(etα) = d(eti∗α)

= d(etπ∗α0)

= π∗d(etα0)
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1.5. Contact Toric Manifolds

where i is the inclusion of the respective 0-levels, π is the respective projections to
the reduced spaces, and α0 is as above.

Therefore, the symplectic form on the reduced space is ωred = d(etα0) and the
reduction of the symplectization of (M, α) is again (R × (µ−1

α (0)/G), d(etα0)).

In particular, as in Remark 1.31, if the action of H commutes with G, it induces a
contact action and a contact moment map on the reduced space.

1.5 Contact Toric Manifolds

Recall that an action of the group G on a manifold M is called effective if
the only element that fixes all the points of M is the identity id ∈ G.

Definition 1.34 A contact toric G-manifold is a co-oriented contact manifold
(M, ξ = ker α) with an effective action of a torus G preserving the contact structure
and its co-orientation (i.e. an effective contact action of a torus G), such that
2 dim G = dim M + 1.

Remark 1.35 When we consider a contact toric G-manifold, we will consider it as
a triple (M, ξ = ker α, µ : ξ◦+ → g∗) or (M, ξ = ker α, µα : M → g∗).

We will first state a lemma concerning the image of the moment map of a
contact toric G-manifold:

Lemma 1.36 Suppose (M, ξ = ker α, µ : ξ0
+ → g∗) is a contact toric G-manifold.

Then zero is not in the image of the contact moment map µ : ξ0
+ → g∗.

The proof of this lemma uses a representation theoretic argument based on
the dimension and can be found in [19, Lemma 2.12].

We may fix an inner product on g and hence on g∗. Then there exists a
unique G-invariant contact form preserving ξ and its co-orientation such
that ∥µα(x)∥ = 1 for all x ∈ M. This can be done by taking any G-invariant
contact form α′ defining ξ and setting αx = 1

∥µ′
α(x)∥α′

x which is possible by the
previous lemma.

To describe the action of the torus on a contact toric manifold, we will
consider the image of the moment map. To this end we have the following
definition:

Definition 1.37 Let (M, ξ = ker α) be a co-oriented contact manifold with a
contact action of a Lie group G and let µ : ξ◦+ → g∗ denote the moment map.

The set
C(µ) := µ(ξ◦+) ∪ {0}.

is called the moment cone.
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1.5. Contact Toric Manifolds

Note that if the contact form α is G-invariant, we have

C(µ) = {tη : η ∈ µα(M), t ∈ [0, ∞)}

We have the following notion of equivalence of contact toric manifolds:

Definition 1.38 Two contact toric G-manifolds (M, α, µα) and (M0, α0, µα0) are
isomorphic if there exists a G-equivariant coorientation preserving contactomor-
phism φ : M → M0. The map φ is called an isomorphism. We denote the group of
isomorphisms of (M, α, µα) by Iso(M, α, µα) or Iso(M)

Here are some examples of contact toric G-manifolds and their moment
cones:

Example 1.39 Let S3 = {(x0, y0, x1, y1) ∈ R4 : (x2
0 + y2

0) + (x2
1 + y2

1) = 1} be
the standard 3-sphere with the contact form

α = (x0dy0 − y0dx0) + (x1dy1 − y1dx1)

The 2-torus T2 = S1 × S1, where we denote points with coordinates {(θ0, θ1)} ∈ T2,
acts on S3 by rotation of (x0, y0)- and (x1, y1)-planes by θ0 and θ1, respectively.
That is, T2 action on S3 is generated by the vector fields Hi = (xi

∂
∂yi

− yi
∂

∂xi
) for

i = 0, 1 on S3. This action preserves the contact structure. In addition, fixing all
points in S3 implies the action of a point (θ0, θ1) ∈ T2 does not rotate the points
on (x0, y0)- and (x1, y1)-planes, which is only the case for the identity element in
this action by T2. Thus, the action is also effective. Therefore, S3 is a contact toric
T2-manifold.

Now consider the α-moment map µα : S3 → g∗, where we identify the lie algebra of
the torus as g∗ ∼= (R2)∗ = span{e∗0 , e∗1} with ei ∈ g generating Hi. We have:

µα(x0, y0, x1, y1)(ei) = α(x0,y0,x1,y1)((ei)
#((x0, y0, x1, y1))

= α(x0,y0,x1,y1)((xi
∂

∂yi
− yi

∂

∂xi
))

= (x2
i + y2

i )

From this, we have µα(x0, y0, x1, y1) = (x2
0 + y2

0)e
∗
0 + (x2

1 + y2
1)e

∗
1 . As

(x2
0 + y2

0) + (x2
1 + y2

1) = 1

this shows that the image of the α-moment map is

µα(S3) = {t0e∗0 + t1e∗1 : t0 + t1 = 1, ti ≥ 0}

That is, µα(S3) is the standard 1-simplex in g∗. Then, the moment cone is

C(µ) = {s0e∗0 + s1e∗1 : si ≥ 0}

That is, the first quadrant (R2)∗≥0 in g∗ ∼= (R2)∗ ∼= R2.
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1.5. Contact Toric Manifolds

Example 1.40 We may extend the above example to higher dimensions immediately.
The torus Tn+1 acts on the sphere S2n+1, through the rotations generated by the
vector fields Hi = (xi

∂
∂yi

− yi
∂

∂xi
) for i = 0, 1, . . . , n on S2n+1. With this action,

S2n+1 is a contact toric Tn+1-manifold.

By a similar argument as above, the image of the α-moment map is

µα(S2n+1) = {
n

∑
i=0

tie∗i :
n

∑
i=0

ti = 1, ti ≥ 0}

That is, µα(S2n+1) is the standard n-simplex in g∗ ∼= (Rn)∗. Then, the moment
cone is C(µ) = (Rn+1)∗≥0

Example 1.41 Consider the manifold M = S1 × T2 with coordinates {(t, θ1, θ2)}
with the contact form

α = cos tdθ1 + sin tdθ2

The 2-torus T2 with coordinates {(φ0, φ1)} acts on points (t, θ1, θ2) ∈ Y = S1 ×T2

by termwise addition on the second factor. This action is free and preserves the contact
structure. Therefore, S1 × T2 is a contact toric T2-manifold.

Now consider the α-moment map µα : S1 × T2 → g∗ ∼= span{dφ0|0, dφ1|0}. For
∂

∂φ0
|0 ∈ g = span{ ∂

∂φ0
|0, ∂

∂φ1
|0}, we have exp(t ∂

∂φ0
|0) = (t, 0) ∈ T2. Therefore:

µα(t, θ1, θ2)(
∂

∂φ0
|0) = α(t,θ1,θ2)((

∂

∂φ0
|0)#(t, θ1, θ2))

= α(t,θ1,θ2)(
d
ds

|t=0 exp(t
∂

∂φ0
|0) · (t, θ1, θ2))

= α(t,θ1,θ2)(
d
ds

|t=0(t, θ1 + t, θ2))

= α(t,θ1,θ2)(
∂

∂θ1
|(t,θ1,θ2))

= cos t

By a similar calculation, µα(t, θ1, θ2)(
∂

∂φ1
|0) = sin t. Therefore, we have

µα(t, θ1, θ2) = cos tdφ0|0 + sin tdφ1|0
This shows that the image of the α-moment map is

µα(S1 × T2) = {cos tdφ0|0 + sin tdφ1|0 : t ∈ S1}

From this, we see that the moment cone is

C(µ) = {s cos tdφ0|0 + s sin tdφ1|0 : t ∈ S1, s ≥ 0}
= {s0dφ0|0 + s1dφ1|0 : s0, s1 ∈ R}
= g∗ ∼= (R2)∗ ∼= R2
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1.5. Contact Toric Manifolds

We can generalize this argument to the same manifold M = S1 ×T2 with coordinates
{(t, θ1, θ2)} with the contact form

αn = cos(nt)dθ1 + sin(nt)dθ2

with n a positive integer. The moment cone is again C(µ) = g∗ ∼= R2.

We will see later that the contact toric manifolds described in Example 1.41
are the only compact connected 3-dimensional contact toric manifolds with a
free torus action.
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Chapter 2

Contact Toric Manifolds

In this chapter, we describe the properties of contact toric manifolds. We
closely follow the descriptions and results of Lerman [19].

In Sections 1 and 2, we describe the local structure of contact toric manifolds.
We give local forms for moment maps of contact toric manifolds and describe
the images and fibers of moment maps.

In Section 3, we use sheaf cohomology to obtain information about the
isomorphism classes of contact toric manifolds from the local considerations
of the previous sections.

For a torus G ∼= Tn with Lie algebra g ∼= Rn, we denote the integral lattice

ker{exp : g → G}

by ZG and identify it with Zn.

For the sake of brevity, we will abbreviate compact connected contact toric
G-manifolds as c.c.c.t G-manifolds.

2.1 Local Structure of Contact Toric Manifolds

We will consider embedded submanifolds as subsets of a manifold. Thus,
if i : N → M is an embedding, we identify N with the image i(N) and the
tangent space TnN with din(TnN).

For the discussion of this section, we need the following definition:

Definition 2.1 A symplectic vector bundle over a manifold M is a pair (E, ω)
consisting of a real vector bundle π : E → M and a family of nondegenerate skew-
symmetric bilinear ωq : Eq × Eq → R on the fibers Eq = π−1(q) of the vector
bundle that vary smoothly with q ∈ M. That is, q 7→ ωq is a smooth section of the
vector bundle

∧2 E∗.
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2.1. Local Structure of Contact Toric Manifolds

Two symplectic vector bundles (E1, ω1) and (E2, ω2) are called isomorphic if there
exists a vector bundle isomorphism F : E1 → E2 such that F∗ω2 = ω1. We denote
isomorphic symplectic vector bundles as (E1, ω1) ∼= (E2, ω2).

A conformal symplectic vector bundle over a manifold M is a pair (E, [ω]) where
(E, ω) is a symplectic vector bundle and [ω] is the conformal class of ω, that is the
collection {e f ω : f : M → R+} of symplectic forms.

Note that, for any contact manifold (M, ξ = ker α), the pair (ξ, ω = dα|ξ) is
a symplectic vector bundle over M by the contact condition.

Definition 2.2 Let (M, ξ = ker α) be a cooriented contact manifold. An embedded
submanifold N ⊆ M is preisotropic if

1. N is transverse to ξ, and

2. the distribution ζ = TN ∩ ξ is isotropic in the symplectic vector bundle
(ξ, ω = dα|ξ)1.

The inclusion i : N → M is called a preisotropic embedding.

For a preisotropic embedding i : N → M, we define the distribution

ζ = TN ∩ ξ = ker i∗α

to be the characteristic distribution of i.

We define the conformal symplectic normal bundle (E, [ωE]) of the embedding i
by E = ζω/ζ where ζω is the symplectic orthogonal to ζ in the symplectic vector
bundle (ξ, dα|ξ) and [ωE] is the conformal class of symplectic structure induced on
the vector bundle E by [dα|ξ ].

A pre-isotropic embedding is uniquely determined by its characteristic distri-
bution and its conformal symplectic normal bundle:

Theorem 2.3 (Uniqueness of Preisotropic Embeddings) Let (Mj, ξ j = ker αj),
for j = 1, 2, be two contact manifolds and suppose ij : N → Mj, for j = 1, 2 are two
preisotropic embeddings such that

i∗1α1 = e f i∗2α2

and
(E1, ω1) ∼= (E2, ω2)

as symplectic vector bundles, where f , h ∈ C∞(N) are two functions and (E1, [ω1])
and (E2, [ω2]) are the conformal symplectic normal bundles of the embeddings.

Then there exist neighborhoods Uj of ij(N) ⊆ Mj and a diffeomorphism

φ : U1 → U2

1That is, ω|ζ ≡ 0.
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2.1. Local Structure of Contact Toric Manifolds

such that i2 = φ ◦ i1 and φ∗α2 = egα1 for some function g ∈ C∞(U1).

Moreover, if a Lie group G acts properly on N, M1, M2 making the embeddings
ij G-equivariant and if the action on Mj are contact, then we may choose the
neighborhoods U1, U2 to be G-invariant and the map φ to be G-equivariant.

The proof of Theorem 2.3 can be found in [19, Theorem 3.5, Theorem 3.6].
The proof is done by choosing a compatible almost complex structure on
(ξ, dα|ξ) and uses the equivariant version of the Darboux Theorem for contact
manifolds.

Lemma 2.4 Let µα : M → g∗ be the α-moment map for a contact action of a torus
G on a contact manifold (M, ξ = ker α). Suppose for some point x ∈ M we have
µα(x) ̸= 0. Then the orbit G · x is preisotropic in (M, ξ = ker α).

Proof Suppose µα(x) ̸= 0 for some point x ∈ M. Then,

⟨µα(x), X⟩ = ⟨αx, X#
x⟩ ̸= 0

for some X ∈ g. That is, X#
x /∈ ξx

On the other hand, by definition, X#
x = d

dt |t=0 exp tX · x. Therefore X#
x ∈

Tx(G · x).

Since ξ is a codimension 1 distribution, this shows G · x is transverse to ξ at
the point x. By G invariance, this proves that G · x is transverse to ξ.

Next, consider a fiber ζx of the characteristic distribution ζ at a point x:

ζx = Tx(G · x) ∩ ξx = {X#
x ∈ Tx(G · x) : ⟨αx, X#

x⟩ = 0}

Consider the set k = {X ∈ g : ⟨αx, X#
x⟩ = 0} ⊆ g. The set k is closed under

the Lie bracket as g is abelian. Hence, the distribution ζ ⊆ ξ is closed under
the Lie bracket. Then, for vector fields X, Y ∈ ζ we have

dα(X, Y) = X(α(Y))− Y(α(X))− α([X, Y]) = 0

That is, ζ is isotropic in (ξ, dα|ξ). Therefore, G · x is preisotropic in M. □

Note that, by Lemmas 1.36 and 2.4 the orbits in a contact toric manifold are
preisotropic.

Definition 2.5 Let µα : M → g∗ be the α-moment map for a contact action

ψ : G → Diff(M)

of a torus G on a contact manifold (M, ξ = ker α). Suppose for some point x ∈ M
we have µα(x) ̸= 0. Let ζx denote the fiber at x of the characteristic distribution
of the preisotropic embedding G · x → (M, ξ) and let ζω

x denote its symplectic
perpendicular in (ξ, ω = dα|ξ).
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2.1. Local Structure of Contact Toric Manifolds

We define the symplectic slice at x for the action of G on (M, ξ) to be the symplectic
vector space V = ζω

x /ζx with the symplectic structure ωV induced by ω.

We refer to the symplectic representation of the isotropy group Gx on (V, ωV)
induced by

ψg 7→ d(ψg)x

as the symplectic slice representation. We denote the moment map induced by
this representation by

ΦV : V → g∗

See Example 1.29 to recall how this moment map is defined.

We define the characteristic subalgebra of the preisotropic embedding

G · x → (M, ξ)

to be
k := (Rµα(x))0 ∼= {X ∈ g : ⟨αx, X#

x⟩ = 0}

where the identification is the canonical identification with the double dual.

Note that gx ⊆ k, where gx is the Lie algebra of Gx, since for X ∈ gx generate
X#

x = 0. Moreover, ζx ∼= k/gx by definition of ζ and k. Also, notice that k is
co-oriented.

Lemma 2.6 Let (Mj, ξ j = ker αj), for j = 1, 2, be two contact manifolds with
actions ψj of the torus G preserving the contact forms αj with the corresponding
moment maps µαj : Mj → g.

Suppose xj ∈ Mj, j = 1, 2 are two points such that

1. 0 ̸= µα1(x1) = λµα2(x2) for some λ > 0: that is, the characteristic subalge-
bras agree as co-oriented subspaces of g;

2. the isotropy groups are equal : Gx1 = Gx2 ;

3. the symplectic slice representations at x1 and x2 are isomorphic as symplectic
representation up to a conformal factor: that is, there exists an isomorphism
L : V1 → V2 such that for every v ∈ V1

L(d(ψ1
g)x1(v)) = Cd(ψ2

g)x2(L(v))

for some C > 0, where Vj the symplectic slice at xj for the action of G on
(Mj, ξ j = ker αj) .

Then there exist G-invariant neighborhoods Uj of G · xj in Mj, j = 1, 2, and a G-
equivariant diffeomorphism φ : U1 → U2 such that φ∗α2 = e f α1 for some function
f : M1 → R.
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2.1. Local Structure of Contact Toric Manifolds

Proof By (1), we have the characteristic subalgebras are

k = (Rµα1(x1))
0 = (Rµα2(x2))

0

Then, we have the characteristic distributions and conformal symplectic
normal bundles of the preisotropic embeddings ii : G · xj → Mj as

ζ j
∼= G ×Gxj

k/gxj and Ej
∼= G ×Gxj

Vj

By the assumptions, the maps ij satisfy the requirements for Theorem 2.3
and we get the desired diffeomorphism. □

Lemma 2.7 Let (M, ξ = ker α) be a contact manifold with an action of a torus G
preserving the contact form α. Suppose x ∈ M is such that µα(x) ̸= 0.

Let k = (Rµα(x))0 be the characteristic subalgebra and Gx → Sp(V, ωV) the
symplectic slice representation. Choose splittings

g0
x
∼= (k/gx)

∗ ⊕ Rµα(x)

g∗ ∼= g0
x ⊕ g∗x

and thereby a splitting

g∗ ∼= (k/gx)
∗ ⊕ Rµα(x)⊕ g∗x.

Let i : g∗x ↪→ g∗, j : (k/gx)∗ ↪→ g∗ be the corresponding embeddings.

There exists a G-invariant neighborhood U of the zero section G · [1, 0, 0] in

N = G ×Gx ((k/gx)
∗ ⊕ V)

and an open G-equivariant embedding φ : U ↪→ M with φ([1, 0, 0]) = x and a
G-invariant 1-form αN on N such that

1. φ∗α = e f αN for some function f ∈ C∞(U) and

2. the αN-moment map µαN is given by

µαN ([a, η, v]) = µα(x) + j(η) + i(ΦV(v))

where ΦV : V → g∗ is the moment map for the slice representation.

Consequently,

µα ◦ φ([a, η, v]) = (e f µαN )([a, η, v])

= e f ([a,η,v])(µα(x) + j(η) + i(ΦV(v)))

for some G-invariant function f on N.

We give a rough sketch of the proof. For the details of the full proof see [19].
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2.1. Local Structure of Contact Toric Manifolds

Proof (Sketch) Identify T∗G ∼= G × g∗ using trivialization of the cotangent
bundle by translations. Consider the hypersurface

Σ = G × (µα(x) + j((k/gx)
∗) + i(gx)) ⊆ G × g∗ ∼= T∗G

Consider the Liouville vector field v on T∗G ∼= G × g∗ generated by the
flow (t, g, ν) 7→ (g, etν). As, µα(x) ̸= 0, the vector field v is transverse to Σ.
Therefore, Σ is a hypersurface of contact type with contact form given by the
restriction of the tautological 1-form λT∗G.

Consider the actions g · (a, ν) = (ga, ν) of G and h · (a, ν) = (ah−1, ν) of Gx
on G × g∗ ∼= T∗G. These actions preserve the hypersurface Σ, the Liouville
vector field v, and the 1-form λT∗G.

On the other hand, consider the action of Gx on V given by the slice repre-
sentation. This action preserves the 1-form αV = iRωV where R is the radial
vector field in V

The product Σ × V is a contact manifold with the contact form λT∗G ⊕ αV
where Gx acts preserving the contact form through the diagonal action where
actions are defined as above in each component.

The corresponding moment map µ : Σ × V → g∗x is given by

µ((g, µα(x) + j(η) + i(β)), v) = −β + ΦV(v)

Thus, µ−1(0) = {(g, η, β, v) : β = ΦV(v)} and by contact reduction, we have

N := µ−1(0)/Gx ∼= G ×Gx ((k/gx)
∗ ⊕ V)

and λT∗G ⊕ αV descends to a G-invariant contact form αN on N. The moment
map for the action of G on Σ × V descends to the desired moment map on
N.

By Lemma 2.6, a neighborhood in N embeds into M as desired. □

We will state the following two representation theoretic results without proof.
For the proofs, see [11], [19].

Lemma 2.8 If ρ : H → Sp(V, ω) is a faithful symplectic representation of a
compact abelian group H and if 2 dim H = dim V then H is connected and the
weights of ρ form a basis of the weight lattice Z∗

H of H.

By the construction of the moment map ΦV , it is homogeneous and its image
is a cone. The next lemma gives a detailed description of the image ΦV(V)

Lemma 2.9 Let (M, α, µα : M → g∗) be a contact toric G-manifold. For any
point x ∈ M the symplectic slice representation ρ : Gx → Sp(V) is faithful and
dim Gx = 1

2 dim V. Consequently the isotropy group Gx is connected.

Also the image of the moment map ΦV(V) for the slice representation ρ has the
following properties:
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2.1. Local Structure of Contact Toric Manifolds

• the cone ΦV(V) has d = dim Gx edges;

• each edge is spanned by a weight of Gx;

• these weights form a basis of the integral lattice of Gx.

Hence the cone ΦV(V) completely determines the slice representation ρ.

By the previous lemma, in the special case of c.c.c.t. G-manifolds, we can
describe this local form as follows:

Theorem 2.10 Let (M, α, µα : M → g∗) be a c.c.c.t. G-manifold normalized so
that µα(M) ⊆ S(g∗) = {η ∈ g∗ | ||η|| = 1}.

Let x ∈ M be a point, Gx = {g ∈ G : g · x = x} be its isotropy group (which
is connected). Let ρ : Gx → Sp(V, ωV) denote the symplectic slice representation,
ΦV : V → g∗ denote the corresponding moment map, and let k = (Rµα(x))0 be the
characteristic subalgebra. Choose the embeddings

i : g∗x → g∗

and
j : (k/gx)

∗ → g∗

as in Lemma 2.7.

There exists an open embedding φ from a neighborhood of the orbit G/Gx × {0} ×
{0} in G/Gx × (k/gx)∗ × V into M such that

(µα ◦ φ) (aGx, η, v) =
µα(x) + j(η) + i(ΦV(v))

||µα(x) + j(η) + i(ΦV(v))||
. (2.1)

Proof Since the group Gx is connected, the sequence

0 Gx G G/Gx 0

splits. Therefore, we have

G ×Gx ((k/gx)
∗ ⊕ V) = G × ((k/gx)

∗ ⊕ V)/Gx

= G/Gx × Gx × ((k/gx)
∗ ⊕ V)/Gx

∼= G/Gx × (k/gx)
∗ × V

The theorem follows from Lemma 2.7. □

The previous results can be used to prove the following result which will be
useful to construct locally isomorphic contact toric manifolds.

Lemma 2.11 Let (M, α, µα : M → g∗) be a compact connected contact toric G-
manifold. Then
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2.2. Properties of Contact Moment Maps

1. The connected components of the fibers of µα are G-orbits.

2. For any point x ∈ M and any sufficiently small G-invariant neighborhood U
of x in M, the sets R+µα(x) = {tµα(x) : t > 0} and C(µα|U)) determine
the contact toric manifold (U, α|U , µα|U = µα|U ).

(Recall that
C(µα|U)) = {tµα(x) | t ∈ [0, ∞), x ∈ U}

is the moment cone of µα).

For the proof, see [19]. It proceeds by using the local form in a neighborhood
to investigate the fibers and determine the c.c.c.t. G-manifold using the
established properties of the isotropy group and the slice representation.

2.2 Properties of Contact Moment Maps

To describe the properties of moment maps we introduce the orbital moment
map. The orbital moment map will be our main tool to describe and classify
c.c.c.t. G-manifolds M using the orbit space M/G:

Definition 2.12 Let µα : M → g∗ be the moment map for an action of a torus G
on a manifold M preserving a contact form α. We define orbital moment map to
be the induced map µα : M/G → g∗ on the orbit space.

To describe the image of the moment map we need to define rational polyhe-
dral cones:

Definition 2.13 Let g∗ be the dual of the Lie algebra of a torus G. A subset C ⊆ g∗

is a rational polyhedral cone if there exists a finite set of vectors {vi} in the
integral lattice ZG of G such that

C =
⋂
{η ∈ g∗ | ⟨η, vi⟩ ≥ 0}.

Without loss of generality, we will assume that the set {vi} is minimal, i.e., that for
any index j

C ̸=
⋂
i ̸=j

{η ∈ g∗ | ⟨η, vi⟩ ≥ 0},

and that each vector vi is primitive, i.e., svi ̸∈ ZG for s ∈ (0, 1).

The following theorem gives the convexity and the connectedness properties
of the contact moment map. It is the analogue of the Atiyah-Guillemin-
Sternberg Convexity Theorem for symplectic toric manifolds. In our presen-
tation, it is formulated in the ”convexity package” of Karshon and Chiang
[10]:

Theorem 2.14 Let (M, ξ = ker α, µ : ξ0
+ → g∗) be a c.c.c.t. G-manifold. Assume

the torus G has dimension greater than 2. Then
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2.2. Properties of Contact Moment Maps

1. The moment map µ is open as a map to its image.

2. The moment cone C(µ) is a convex polyhedral cone.

3. The nonzero level sets, µ−1(y), for y ̸= 0, are connected.

4. Let A be a convex subset of g∗.

• If the action is transverse, suppose that 0 ̸∈ A.

• If the action is not transverse, suppose that A ̸= {0}.

Then the preimage µ−1(A) is connected.

See Karshon and Chiang’s work [10] for the proof. This convexity result is a
generalization of the result proved by Lerman [18]. The proofs use techniques
of length spaces and convexity.

By the Lemma 1.36, we get the convexity and connectedness result for c.c.c.t.
G-manifolds, originally due to Banyaga and Molino [5],[6]:

Corollary 2.15 Suppose (M, ξ = ker α, µ : ξ0
+ → g∗) is a c.c.c.t. G-manifold with

dim M > 3. Then, the fibers, µ−1(y) are connected and the moment cone C(µ) is a
convex rational polyhedral cone.

The following lemma will be useful to describe the structure of the orbit
space M/G:

Lemma 2.16 Suppose a Lie group G acts on a manifold M preserving a contact
form α. Let µα : M → g∗ denote the corresponding moment map. Suppose the
action of G at a point x is free and the value η of the moment map at x is non-zero.
Then πη ◦ d(µα)x : Tx M → g∗/Rη is onto. Here πη : g∗ → g∗/Rη is the quotient
projection.

Proof We will show that (πη ◦ d(µα)x)∗ : (g∗/Rη)∗ → T∗
x M is injective to

show that πη ◦ d(µα)x is onto. We will show for any nonzero

X ∈ (g∗/Rη)∗ ∼= 2 ker η

we have (πη ◦ d(µα)x)∗(X) ̸≡ 0. That is, we will show that there is v ∈ Tx M
such that

(πη ◦ d(µα)x)
∗(X)(v) = ⟨d(µα)x(v), X⟩ ̸= 0

Since the action of G is free at x, for any X ̸= 0 in g, we have X#
x ̸= 0. Since

the action of G preserves α, we have

0 = LX# α = iX# dα + d(iX# α)

2Identification is the one induced by the identification with double dual via evaluation.
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2.2. Properties of Contact Moment Maps

It follows that, for any v ∈ Tx M, we have

⟨d(µα)x(v), X⟩ = d⟨µα, X⟩x(v)
= d(iX# α)x(v)

= −dαx(X#
x, v) = dαx(v, X#

x)

Now

(g∗/Rη)∗ ∼= ker η = {X ∈ g : ⟨µα(x), X⟩ = 0}
= {X ∈ g : ⟨αx, X#

x⟩ = 0}
= {X ∈ g : X#

x ∈ ξ}

By the contact condition dαx is nondegenerate on ξ. Hence, if X#
x ∈ ξ is

nonzero, there is a v ∈ ξ such that dαx(v, X#
x) ̸= 0, proving the lemma. □

In higher dimensions, the fibers of the moment map are exactly the orbits
of the torus G and the orbital moment map is an embedding, as we will see
in the next lemma. While for the case dim M = 3 this is not true, the orbital
moment map is locally an embedding.

The following lemma describes the structure of the orbit space M/G for a
c.c.c.t. G-manifold via the moment map µα.

Lemma 2.17 (Sructure of the Orbit Space) Let (M, α, µα : M → g∗) be a
c.c.c.t. G-manifold normalized so that µα(M) ⊆ S(g∗)

1. For any G · x ∈ M/G there is a neighborhood U of G · x in M/G such that
the restriction of the orbital moment map µα to U is an embedding into S(g∗).

2. If the action of G is free, then the moment map µα : M → S(g∗) is a
submersion.

3. If dim M > 3, then the fibers of the moment map µα are G-orbits. Con-
sequently the orbital moment map µα : M/G → S(g∗) is a (topological)
embedding.

4. If dim M > 3 and the moment map µα : M → S(g∗) is onto, then the action
of G on M is free, hence µα : M → S(g∗) is a principal G-bundle.

Proof 1. This is a consequence of the local normal form theorem. By
Theorem 2.10, there is a G-equivariant embedding φ of a G-invariant
neighborhood of the orbit G/Gx × {0} × {0} ⊆ G/Gx × (k/gx)∗ × V
into a neighborhood of x ∈ M such that φ(G/Gx × 0 × 0) = G · x.

Let U be the image of this neighborhood in M/G. Then, by the normal
form of the map µα ◦ φ, the orbital moment map gives an embedding
of U into S(g∗).
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2.2. Properties of Contact Moment Maps

2. By the preceding lemma, the differential of the map µα : M → S(g∗) is
surjective at every point.

The image µα(M) is open. On the other hand, as M is compact so the
image µα(M) is closed. By connectedness of S(g∗), the image is the
whole sphere.

3. By 2.11, the connected components of the fibers of µα are G-orbits.
On the other hand, by Corollary 2.15 the fibers of µα are connected.
Therefore, the fibers are G-orbits.

Since the fibers are G-orbits, the orbital moment map µα : M/G →
S(g∗) is an injective map from a compact space, to a Hausdorff space.
Therefore, it is a topological embedding.

4. By part (3), µα is a homeomorphism onto its image. Hence, for any
orbit G · x we may find a G-invariant neighborhood U of G · x and an
open neighborhood W of µα(x) ∈ S(g∗) such that

µα(U) = W ∩ µα(M).

Moreover, by Theorem 2.10, we may choose U,W such that

µα(U) = W ∩
{

µα(x) + j(η) + i(ΦV(v))
||µα(x) + j(η) + i(ΦV(v))||

: η ∈ (k/gx)
∗, v ∈ V

}
where we use the notation of the previous section.

Assume the action of G is not free. Then, Gx is at least 1-dimensional
for some point x ∈ M and the slice representation V at x is at least
2-dimensional by Lemma 2.9. The cone ΦV(V) has Gx edges and each
edge is spanned by a weight of Gx. Therefore, ΦV(V) is a proper cone
in g∗x. Hence, by the local form above

W ∩ µα(M) ̸= W

contradicting the fact that µα : M → S(g∗) is onto. Therefore, the action
of G must be free.

Again, by part (3), the fibers of µα are G orbits and G acts freely.
Therefore, µα : M → S(g∗) is a principal G-bundle. □

The parts (3) and (4) of the lemma are not true for the case that dim M = 3.

As a counterexample, if we consider (S1 × T2, cos(nt)dθ1 + sin(nt)dθ2) for
n > 1, then the orbital moment map t 7→ (cos(nt), sin(nt)) is not an embed-
ding into S1.

The following notion of local equivalence will be our main tool to investigate
contact toric manifolds via the local properties of their orbit spaces:

33



2.2. Properties of Contact Moment Maps

Definition 2.18 Two contact toric G-manifolds (M1, α1, µα1 : M → g∗) and
(M2, α2, µα2 : M → g∗) are called locally isomorphic if

• there is a homeomorphism f : M1/G → M2/G, and

• for any point x ∈ M1/G, there is a neighborhood U ⊆ M/G of x and an
isomorphism of contact toric manifolds fU : π−1

1 (U) → (π2)−1( f (U)) such
that π2 ◦ fU = f ◦ π1

where πi : Mi → Mi/G are orbit quotient maps.

The following theorem will allow us to construct local isomorphisms between
c.c.c.t. G-manifolds, given a homeomorphism of orbit spaces:

Theorem 2.19 Let (M1, α1, µα1 : M → g∗) and (M2, α2, µα2 : M → g∗) be two
c.c.c.t. G-manifolds normalized so that µαi(M) lies in S(g∗), for i = 1, 2.

Suppose there is a homeomorphism

f : M1/G → M2/G

so that µα2 ◦ f = µα1 where µαi : Mi/G → S(g∗) are orbital moment maps.

Then, (M1, α1, µα1 : M → g∗) and (M2, α2, µα2 : M → g∗) are locally isomorphic.

Proof Denote the projections to the orbit space by πi : Mi → Mi/G. We will
construct local contactomorphisms that induce f .

Let G · x1 ∈ M1/G be an orbit and pick x2 ∈ π−1
2 ( f (G · x1)). By the assump-

tion µα2 ◦ f = µα1 , we have

µα2(x2) = µα2(G · x2) = µα1(G · x1) = µα1(x1)

Let U1 be a G invariant neighborhood of x1 ∈ M1, and U2 = π−1
2 ( f (π(U1)))

a G invariant neighborhood of x2 ∈ M2. Then, we have

µα2(U2) = µα2( f (π(U1)) = µα1(π(U1)) = µα1(U1)

Therefore, by the Lemma 2.11, if U1 and consequently U2 are small enough,
we have an isomorphism of contact toric manifolds:

φU : (U1, α1, µα1) → (U2, α2, µα2)

By Lemma 2.17, if U1 and consequently U2 are small enough, the orbital
moment maps are embeddings into S(g∗). Consider the map

φU : U1/G → U2/G

induced by φU . From µα2(φ(U1)) = µα1(U1), we have

µα2 ◦ φU = µα1
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Therefore,
φU = µα2

−1 ◦ µα1 = f

where we suppressed restrictions.

Hence, (M1, α1, µα1) and (M2, α2, µα2) are locally isomorphic. □

2.3 Cohomology Classification of Local Isomorphisms

In this section, we sketch the sheaf theoretic results that will give us the tools
to investigate isomorphism classes of contact toric manifolds using the local
results we described in the previous sections.

Recall the correspondence between smooth functions and contact vector fields
that we described in Section 1.1.1.

Assume G acts through a contact action on (M, ξ = ker α). In that corre-
spondence, if we require α to be a G-invariant contact form, then we get
a correspondence between G-invariant functions f and G-invariant contact
vector fields v f .

The following lemma describes how such a v f behaves on the orbits of the
action:

Lemma 2.20 Suppose (M, ξ = ker α, µα) is a contact toric G-manifold. For any
G-invariant function f , the flow φ

f
t of the corresponding contact vector field v f

preserves the contact form α and induces the identity map on the orbit space M/G.
In particular, v f is tangent to G-orbits.

Proof We will start by considering the Reeb vector field associated to α and
then use this special case to prove the lemma.

First, consider the Reeb vector field, that is f = 1 and v f = Rα.

We have
LRα α = d(α(Rα)) + iRα dα = d(1) + 0 = 0

by the definition of the Reeb vector field. Hence, the flow of Rα preserves α.

Moreover, since Rα is unique and α is assumed to be G-invariant, Rα is also
G-invariant. Then, for X ∈ g we have

LX# Rα = −LRα X# = 0

by definition of the Lie derivative of vector fields, as X# is induced by the
action of G.

Combining these, we get

LRα⟨µα, X⟩ = LRα(α(X#))

= (LRα α)(X#) + α(LRα X#) = 0
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2.3. Cohomology Classification of Local Isomorphisms

Therefore, the flow of Rα preserves ⟨µα, X⟩ for all X ∈ g. Hence, Rα is tangent
to the fibers of µα.

Since, by Lemma 2.11, connected components of the fibers of µα are G-orbits,
Rα is tangent to G-orbits.

Now for the general case, let f be a G-invariant function and consider the
corresponding G-invariant contact vector field

v f = f Rα + (dα|ξ)−1(d f |ξ)

Again, we have

Lv f ⟨µα, X⟩ = Lv f (α(X#))

= (Lv f α)(X#) + α(Lv f X#)

We have Lv f α = Rα( f )α by the correspondence of functions and contact
vector fields. Moreover, since v f is G-invariant, for X ∈ g we have

LX# v f = −Lv f X# = 0

by a similar argument as before. Thus

Lv f ⟨µα, X⟩ = (Lv f α)(X#) + α(Lv f X#) = Lv f α = Rα( f )α

Since, Rα is tangent to G-orbits, its integral curves ρt(x) are contained in
G-orbits. Hence for every t, f (ρt(x)) = f (g · x) for some g ∈ G. Hence, we
have

Rα( f ) = LRα f = 0

for a G-invariant function f .

Therefore, from the previous discussion

Lv f α = 0

so v f preserves the contact form. Moreover,

Lv f ⟨µα, X⟩ = 0

and by the argument as in the case of the Reeb vector field, v f is tangent to

G-orbits and its flow φ
f
t induces identity on M/G. □

By the following theorem, the isomorphism classes of contact toric manifolds
that are locally isomorphic to a given one are determined by elements of the
first cohomology group with coefficients in a given sheaf:
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2.3. Cohomology Classification of Local Isomorphisms

Proposition 2.21 For a fixed torus G, the isomorphism classes of contact toric G-
manifold locally isomorphic to a given contact toric G-manifold (M, ξ = ker α, µα)
are in one-to-one correspondence with the elements of the first Čech cohomology
group H1(M/G,S) where S is the sheaf of groups on the orbit space M/G defined
by

S(U) = Iso(π−1(U))

where Iso(π−1(U)) is the group of isomorphisms of the contact toric manifold

(π−1(U), α|π−1(U), µα|π−1(U))

and π : M → M/G is the orbit quotient map.

Proof (Sketch) The argument is similar to the one from [15, Theorem 4.2].

Suppose (M0, ξ0 = ker α0, µα0) is a contact toric G-manifold locally isomor-
phic to (M, ξ = ker α, µα).

Fix a homeomorphism g : M/G → M0/G. Choose an open cover Vi of M/G
such that for each i there is a diffeomorphism si : π−1(Vi) → (π0)−1(g(Vi))
inducing g on Vi where π0 : M0 → M0/G is the orbit map. This is possible
by being locally isomorphic. Set

fij = s−1
i ◦ sj|Vi∩Vj

The collection of maps { fij : π−1(Vi ∩Vj) → π−1(Vi ∩Vj)} is a Čech 1-cocycle
whose cohomology class in H1(M/G,S) is independent of the choices made
to define it.

Conversely, given an element of H1(M/G,S) we can represent it by a Čech
cocycle

fij = π−1(Vi ∩ Vj) → π−1(Vi ∩ Vj)

We construct the corresponding contact toric G-manifold by taking the dis-
joint union of the manifolds (π−1(Vi), α|π−1(Vi)

, µα|π−1(Vi)
) and gluing using

fij. The cocycle condition guarantees that the gluing is consistent.

Now, let { fij} be the collection obtained by (M0, ξ0 = ker α0, µα0) which is
locally isomorphic to (M, ξ = ker α, µα). The map

F̃ : ⨿ π−1(Vi) → M0

defined by F̃|π−1(Vi)
= si induces an isomorphism

F : (⨿ π−1(Vi))/ ∼→ M0

The converse correspondence follows from the fact that cohomologous
cochains induce the same gluing. □
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For the next proposition, let C∞(π−1(U))G denote G-invariant smooth func-
tions on π−1(U) and similarly, C∞(π−1(U), ZG)

G denote G-invariant smooth
functions on π−1(U) with values in the lattice ZG

Proposition 2.22 Let (M, α, µα) be a contact toric G-manifold. Let π : M →
M/G denote the orbit map, and let ZG := ker{exp : g → G} denote the integral
lattice of the torus G. There exists a short exact sequence of sheaves of groups

0 ZG C S 0
j Λ

where for a sufficiently small open subset U of the orbit space M/G

1. ZG(U) := C∞(π−1(U), ZG)
G;

2. C(U) := C∞(π−1(U))G;

3. S(U) := Iso(π−1(U)) is the sheaf defined in Proposition 2.21.

Hence S is a sheaf of abelian groups and the cohomology groups Hi(M/G,S) are
defined for all indices i ≥ 0.

The maps of the exact sequence are defined as follows:

Let f ∈ C(U). Then, by Lemma 2.20, the flow φ
f
t induces identity on

U ⊆ M/G. Hence, φ
f
t ∈ S(U) for all t. We define

Λ( f ) = φ
f
1

Let X ∈ ZG. As ZG is discrete, we identify the constant function with value
X on connected U with the element X ∈ ZG and extend accordingly to
locally constant functions. We define

j(X) = ⟨µα, X⟩

For the proof of the proposition, see [19, Proposition 5.3]. The proof uses the
arguments of [15] and the notion of basic forms from [16] to show that the
sequence is exact.

Corollary 2.23 Under the hypotheses of the proposition above,

Hi(M/G,S) ∼= Hi+1(M/G, ZG)

for all i > 0.

Proof From the fact that M admits a partition of unity, the sheaf C is a fine
sheaf. Hence Hi(M/G, C) ∼= 0) for all i > 0.

Therefore, from the long exact sequence of cohomology groups induced by
the sequence in Proposition 2.22, we get the isomorphism

Hi(M/G,S) ∼= Hi+1(M/G, ZG)

for all i > 0. □
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Chapter 3

Classification of Compact Connected
Contact Toric Manifolds

In this chapter, we will discuss the classification of compact connected contact
toric (shortly, c.c.c.t ) G-manifolds (M2n+1, α, µα) where G = Tn+1. We will
conclude with some applications of the classification theorem.

The complete classification we will describe in this chapter is due to Lerman
[19], building on the previous partial classification results due to Banyaga -
Molino [6], [7], [5] and Boyer - Galicki [8].

3.1 Statement of the Classification Theorem

To state the classification theorem for c.c.c.t. G-manifolds, we need to define
the notion of ”good cones”. These cones are analogous to Delzant (or
unimodular) polytopes that appear in the classification of symplectic toric
manifolds. See [11] and [9] for Delzant’s Theorem.

Definition 3.1 (Good Cones) A rational polyhedral cone

C =
N⋂

i=1

{η ∈ g∗ : ⟨η, vi⟩ ≥ 0}

where {vi} ⊆ ZG and N ≥ n+ 1 with non-empty interior is good if the annihilator
of a linear span of the vectors in a face F of codimension k, where 0 < k < dim G, is
the Lie algebra of a subtorus H of G and the normals to the face form a basis of the
integral lattice ZH = ZG ∩ h of H, where h is the lie algebra of H.

That is, if

F = C ∩
k⋂

j=1

{η ∈ g∗ : ⟨η, vij⟩ = 0}
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3.1. Statement of the Classification Theorem

is a face of codimension k of C , where 0 < k < dim G, for {i1, . . . , ik} ⊆
{1, . . . , N}, then

ZG ∩ {
k

∑
j=1

ajvij : aj ∈ R} = {
k

∑
j=1

mjvij : mj ∈ Z} = ZH

and {vij} is independent over Z.

The condition for a rational polyhedral cone to be good can be also stated
as any codimension k face, where 0 < k < dim G, is the intersection of
exactly k facets whose set of normals {vij} can be completed to a Z-basis of
Zn+1 ∼= ZG.

With the definition of good cones, c.c.c.t. G-manifolds are classified as
follows:

Theorem 3.2 (Lerman [19]) Compact connected contact toric G-manifolds

(M2n+1, α, µα : M → g∗)

where G = Tn+1, are classified as follows:

1. Suppose dim M = 3 and the action of G = T2 is free. Then, M is a principal
T2-bundle over S1, hence is diffeomorphic to T3 = S1 × T2. The contact
structure on M is given by the form

α = cos(nt)dθ1 + sin(nt)dθ2

for some positive integer n, where (t, θ1, θ2) ∈ S1 × T2. The moment cone is
g∗ ∼= (R2)∗.

2. Suppose dim M = 3 and the action of G = T2 is not free. Then M is
diffeomorphic to a lens space (this includes S3 and S1 × S2) equipped with
one of the various contact structures. As a c.c.c.t. G-manifold, (M, α, µα) is
classified by two rational numbers r, q with 0 ≤ r < 1 and r < q.

3. Suppose dim M = 2n + 1 > 3 and the action of G = Tn+1 is free. Then M
is a principal Tn+1-bundle over Sn. Moreover, each principal Tn+1-bundle
over Sn has a unique Tn+1-invariant contact structure making it a compact
connected contact toric manifold. The moment cone is g∗ ∼= (Rn+1)∗.

4. Suppose dim M = 2n + 1 > 3 and the action of G = Tn+1 is not free. Then
the moment cone of (M, α, µα) is a good cone. Conversely, given a good cone
C ⊆ g∗, there is a unique c.c.c.t. G-manifold (M, α, µα) with moment cone C.

By a theorem of Giroux [14], for distinct integers, the contact manifolds that
appear in (1) are distinct.

Principal Tn+1-bundles over Sn are in one-to-one correspondence with the
second cohomology classes of Sn with Zn+1 coefficients, see [15]. Since the
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3.2. Proof of the Classification Theorem

cohomology groups are H2(Sn, Zn+1) = 0 for n ̸= 2, it follows that for the
case that dim M > 5 in part (3), this bundle M is the trivial bundle Tn+1 × Sn.

In the case of dim M = 5 in part (3), we have H2(S2, Z3) = Z3, and each of
these principal T3-bundles over S2 that are indexed by Z3 carries a unique
T3-invariant contact structure.

3.2 Proof of the Classification Theorem

We will now describe the proof of Theorem 3.2.

In the cases (1) and (3) of free actions, the proofs proceed by viewing the
c.c.c.t. G-manifolds (M, α, µα) as principal torus bundles over spheres that
are locally isomorphic to S∗G, and showing the isomorphisms using the
cohomology classification of isomorphism classes.

In the case (2) of non-free action in dimension 3, we show that the image
of the moment map is given by two rational numbers and it determines
the c.c.c.t. G-manifolds. Then, we construct c.c.c.t. manifolds by ”contact
cutting”.

Lastly, in the case (4) of non-free action in higher dimensions, we construct
c.c.c.t. G-manifolds by adapting the construction of Delzant from [11]. Con-
versely, we show that the contact cone is a good cone by using the local
properties of c.c.c.t. manifolds described in Chapter 2.

3.2.1 Free Actions in Dimension 3

Suppose (M3, α, µα) is a c.c.c.t. G-manifold, where G = T2, normalised such
that µα(M) lies in S(g∗) = S((R2)∗) ∼= S1 and suppose the action of T2

is free. Then the orbit space M/T2 is a 1-dimensional compact connected
manifold without boundary, hence it is a circle S1. Moreover, the projection

M → M/T2 ∼= S1

is a principal T2-bundle. Since any principal T2-bundle over S1 is trivial, M
is diffeomorphic to S1 × T2 = T3.

It remains to show that

(M, α, µα) ∼= (S1 × T2, αn, µαn)

where
αn = cos(nt)dθ1 + sin(nt)dθ2

for some positive integer n, as contact toric manifolds.
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3.2. Proof of the Classification Theorem

By Corollary 2.17, the map µα : M → S((R2)∗) is a submersion because the
action of T2 is free. Hence, the induced orbital moment map

µα : M/G ∼= S1 → S(g∗) ∼= S1

is also a submersion and, by equality of dimensions, a local diffeomorphism.
Therefore, by compactness of S1, the map µα : S1 → S1 is a covering map.

Let n be the number of sheets of the covering map µα : S1 → S1 of the
circle. By a similar argument as above, µαn : S1 → S1 is also an n-sheeted
covering map. Therefore, by the equivalence of covering maps, there exists a
homeomorphism

f : S1 ∼= M/G → S1 ∼= (S1 × T2)/T2

such that µαn ◦ f = µα. Then, by Theorem 2.19, c.c.c.t. T2-manifolds (M, α, µα)
and (S1 × T2, αn, µαn) are locally isomorphic.

By Proposition 2.21, isomorphism classes of c.c.c.t. G-manifolds (M, α, µα)
locally isomorphic to (S1 × T2, αn, µαn) are in one-to-one correspondence
with the elements of the first Čech cohomology group H1((S1 × T2)/T2,S)
where S is defined as in Proposition 2.21. However, by Corollary 2.23, we
have

H1((S1 × T2)/T2,S) = H2(S1, Z2) = 0

Therefore,

(M, α, µα : M → (R2)∗) ∼= (S1 × T2, αn, µαn : S1 × T2 → (R2)∗)

as c.c.c.t. T2-manifolds and the moment cone is C(µα) = C(µαn) = (R2)∗.

3.2.2 Non-free Actions in Dimension 3

We first describe the orbit space and the image of the orbital moment map:

Proposition 3.3 Let (M, α, µα) is a c.c.c.t. G-manifold normalised such that
µα(M) lies in S(g∗) and suppose the action of G = T2 is not free. Then

1. The orbit space M/G is homeomorphic to the interval [0, 1].

2. The orbital moment map µα : M/G → S(g∗) ∼= S1 lifts to an embedding
µ̃α : M/G → R so that p ◦ µ̃α = µα where p : R → S1 is the covering map
p(t) = (cost, sint).

3. µ̃α(M/G) = [t1, t2], and tan t1, tan t2 are rational numbers.

4. If (M0, α0, µα0) is another such c.c.c.t. G-manifold with

µ̃α0(M0/G) = [t1, t2] = µ̃α(M/G)

then (M0, α0, µα0) is isomorphic to (M, α, µα).
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3.2. Proof of the Classification Theorem

Proof Since 0 /∈ µα(M) by Lemma 1.36, we have that for any point x ∈ M,
there is some X ∈ g such that 0 ̸= ⟨µα(x), X⟩ = αx(X#

x). In particular, exp(tX)
does not fix x, and hence G does not fix x. Therefore, the action of G on M
has no fixed points. By Lemma 2.9, all the isotropy groups Gx are connected.
By the dimension, Gx are either trivial or circles.

Assume Gx is a circle S1. Then, gx is equal to the characteristic algebra k
by dimension. On the other hand, Gx is a subtorus of G. Therefore, µα(x)
is a multiple of a weight η ∈ Z∗

G. Also, in this case, the dimension of the
symplectic slice is 2 and the symplectic slice representation is isomorphic
to the standard action of S1 on C by multiplication. By Theorem 2.10, a
neighbourhood of x ∈ M is diffeomorphic to S1 × C and a neighbourhood of
G · x ∈ M is diffeomorphic to C/S1 ∼= [0, ∞).

Thus, if Gx is a circle S1, then then a neighbourhood of G · x ∈ M/G is
diffeomorphic to [0, ∞). Therefore, M/G is a compact connected topological
1-manifold and hence:

• M/G is homeomorphic to [0, 1];

• there are exactly two orbits G · x1, G · x2 (that are mapped to 0, 1) such
that Gx1 and Gx2 are isomorphic to the circle S1.

• At xj for j = 1, 2, µα(xj) = (cos tj, sin tj) ∈ Z2 ∼= Z∗
G

By the last point tan tj is rational.

Since M/G ∼= [0, 1] is contractible, the orbital moment map µα lifts to a map

µ̃α : M/G → R

such that p ◦ µ̃α = µα. By the preceeding discussion,

µ̃α(M/G) = [µ̃α(Gx2), µ̃α(Gx2)] = [t1, t2]

where we may assume 0 ≤ t1 < 2π and we have that tan tj is rational.

It remains to show that µ̃α is an embedding. By Lemma 2.17, µα is locally an
embedding and it lifts to an injective local embedding µ̃α : M/G ∼= [0, 1] 7→
[t1, t2]. Therefore, µ̃α : M/G 7→ [t1, t2] is a homeomorphism.

Now assume (M0, α0, µα0) is another such c.c.c.t. G-manifold as described in
part (4). Then, for the homeomorphism f = µ̃α0

−1 ◦ µ̃α we have µα0 ◦ f = µα.
Hence, by Proposition 2.19, (M0, α0, µα0) is localy isomorphic to (M, α, µα).

On the other hand, by previous parts M/G is contractible. Hence, by 2.23,
H1(M/G,S) = H2(M/G, Z2) = 0. Therefore, (M0, α0, µα0) is isomorphic to
(M, α, µα) as c.c.c.t. G-manifolds, by 2.21. □

It remains to show the converse statement. We will need the following
equivariant version of contact cutting to prove the existence of the desired
c.c.c.t. T2-manifold:
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3.2. Proof of the Classification Theorem

Theorem 3.4 Suppose (M̃, α) is a contact manifold, M is a manifold with boundary
of the same dimension as M̃ embedded in M̃. Suppose further that there is a
neighborhood U in M̃ of the boundary ∂M and a free S1 action on U preserving α
such that the corresponding moment map f : U → R satisfies

1. f−1(0) = ∂M and

2. f−1([0, ∞)) = U ∩ M.

Let Mcut = M/ ∼, where, for m ̸= m′, m ∼ m′ if and only if

1. m, m′ ∈ ∂M and

2. m = λ · m′ for some λ ∈ S1,

Then Mcut is a contact manifold, ∂M/S1 is a contact submanifold of Mcut, and
Mcut ∖ (∂M/S1) is contactomorphic to M ∖ ∂M.

Moreover, if there is an action of a Lie group G on M̃ preserving M, α and commuting
with the action of S1 on U, then there is an induced action of G on Mcut preserving
the induced contact structure.

For the proof and further discussion about contact cutting, see Lerman, [17].

With this result, we can show the existence of a c.c.c.t manifold given two
rational numbers.

Proposition 3.5 Given t1, t2 ∈ R with 0 ≤ t1 < 2π, t1 < t2 and tan t1, tan t2 are
rational numbers, there is a c.c.c.t. G-manifold (M, α, µα) with µ̃α(M/G) = [t1, t2].

Proof Suppose we are given t1, t2 ∈ R with 0 ≤ t1 < 2π, t1 < t2 and
tan t1, tan t2 are rational numbers. Then for each i = 1, 2 there is a (mi, ni) ∈
Z2 such that (cos ti, sin ti) lies on the ray through (mi, ni).

Choose ε > 0 sufficiently small so that f1(t) = −n1 cos t + m1 sin t is non-
negative on [t1, t1 + ε) and f2(t) = n2 cos t − m2 sin t is non-negative on
[t2, t2 + ε).

Consider R × S1 × S1 with the contact form

α = cos tdθ1 + sin tdθ2

for (t, θ1, θ2) ∈ R × S1 × S1.

To apply contact cutting, let

M = [t1, t2]× S1 × S1

and
U = ((t1 − ε, t1 + ε) ∪ (t2 − ε, t2 + ε))× S1 × S1
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3.2. Proof of the Classification Theorem

Consider f : U → R given as

f (t, θ1, θ2) =

{
f1(t) t ∈ (t1 − ε, t1 + ε)

f2(t) t ∈ (t2 − ε, t2 + ε)

The function f is a moment map for a circle action on U generated by the
vector field −n1

∂
∂θ1

+ m1
∂

∂θ2
on (t1 − ε, t1 + ε)× S1 × S1 and by the vector field

n2
∂

∂θ1
− m2

∂
∂θ2

on (t2 − ε, t2 + ε)× S1 × S1.

Note that M, U, and the above circle action with moment map f satisfies the
assumptions of contact cutting. Moreover, the action of T2 on R × S1 × S1

by multiplication in the S1 × S1 factor preserves M, α, U and commutes with
the action of S1. Therefore we may apply Proposition 3.4 to obtain c.c.c.t.
G-manifold Mcut with the moment map lifting to a map with image [t1, t2].□

The cut space can be described as [t1, c]× S1 × S1/ ∼ and [c, t2]× S1 × S1/ ∼
each of which is a solid torus, glued at their boundary {c} × S1 × S1. See [23]
for descriptions of the lens spaces as two solid tori glued at their boundary.

3.2.3 Free Actions in Higher Dimensions

Let (M, α, µα) be a c.c.c.t. G-manifold normalised such that µα(M) lies in
S(g∗) with dim M = 2n + 1 > 3. Suppose the action of G is free.

By Corollary 2.17, the map µα : M → S(g∗) is a principal G-bundle. Therefore,
the orbital moment map µα : M/G → S(g∗) gives a diffeomorphism.

On the other hand, consider the unit cosphere bundle S∗G ∼= G × S(g∗) with
its standard contact structure induced by λ and the action of G by multiplica-
tion in G factor, making it a c.c.c.t G-manifold with moment map µλ. Then,
again the orbital moment map S∗G/G → S(g∗) gives a diffeomorphism.

As we have S∗G/G ∼= S(g∗) ∼= M/G, by Proposition 2.19, (M, α, µα) is
locally isomorphic to (S∗G, λ, µλ). Therefore, by Proposition 2.21, (M, α, µα)
corresponds to a cohomology class in H1(S(g∗),S).

For a group H we will denote the sheaf given by U 7→ C∞(U, H) and the
function restrictions by H. Recall that, principal G-bundles over S(g∗) are
classified by the classes in the Čech cohomology group H1(S(g∗), G).

We will construct an isomorphism H1(S(g∗),S) → H1(S(g∗), G) to show that
every principal G-bundle over S(g∗) has a unique invariant contact structure
making it a c.c.c.t. G-manifold.

Recall that we have the following exact sequence of sheaves on M/G ∼= S(g∗)
induced by the exact sequence of groups:

0 ZG g G 0
exp
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3.2. Proof of the Classification Theorem

On the other hand, we have the following short exact sequence of sheaves by
Proposition 2.22:

0 ZG C S 0
j Λ

We will construct maps a and b such that the following diagram commutes:

0 ZG C S 0

0 ZG g G 0

j

id

Λ

a b

exp

Denote the bundle projection by π : M → S(g∗), and by choosing an open
set U ⊆ S(g∗) small enough, identify π−1(U) ∼= U × G.

Let f ∈ C. Then f defines a G-invariant contact vector field v f . By Lemma
2.20, v f is tangent to the G orbits, that is, to the fibers of π. So for any x ∈ U,
we have a unique element X(x) ∈ g such that

v f (m) = (X(x)#)(m)

for all m ∈ π−1(x). See [19] for more details on how X(x) ∈ g is constructed.
Define a( f ) : U → g to be

a( f )(x) = X(x)

By definition φ ∈ S(U) is a G-equivariant diffeomorphism of U × G onto
itself, and is determined by its values on U × {1}. Define b(φ) : U → G to be

b(φ)(x) = projG ◦ φ(x, 1)

where projG : U × G → G is the projection.

The left-hand square commutes by the fact that the function ⟨µα, X⟩ generates
the contact vector field X# for X ∈ g.

For the right-hand square, note that Λ( f ) = φ
f
1 is the time one flow of v f .

That is, by definition of exponential map,

Λ( f )(m) = exp(v f (m)) · m = exp((X(x)#)(m)) · m = exp(a(x)) · m

for m ∈ π−1(U) and x = π(m). Thus,

b(Λ( f ))(x) = projG ◦ Λ( f )(x, 1) = projG(exp(a(x)) · (x, 1)) = exp(a(x))

where we ued the identification π−1(U) ∼= U × G. Therefore, b ◦ Λ = exp ◦ a
as desired.
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3.2. Proof of the Classification Theorem

As the diagram above commutes and the sheaves C and g are fine sheaves,
we have the following diagram from the long exact sequence of cohomology
groups:

H2(S(g∗), ZG) H1(S(g∗),S)

H2(S(g∗), ZG) H1(S(g∗), G)

id

∼=

b∗

∼=

Therefore the map induced by b is an isomorphism.

As in the arguments of [15, Section 4], the map b allows us to glue c.c.c.t.
G-manifolds locally isomorphic to S∗G and identify them with isomorphism
classes of principle G-bundles over the sphere S∗G.

3.2.4 Non-free Actions in Higher Dimensions

First, we will construct a symplectic cone (W, ω, X) with an action of G =
Tn+1 such that the moment cone is C. We will start with the standard
action of a torus TN on (CN , i

2 ∑N
i=1 dzi ∧ dz̄i) and use symplectic reduction

by a suitable subgroup of K ⊂ TN to obtain the desired symplectic cone.
From this cone, we will obtain the desired compact connected contact toric
Tn+1-manifold (M, α, µα) with the moment cone C.

The construction is adapted from Delzant’s construction [11] of compact
symplectic toric manifolds.

Theorem 3.6 Let n be greater than 1 and C ⊆ g∗ ∼= (Rn+1)∗ be a good cone. Then,
there exists a compact connected contact toric Tn+1-manifold (M2n+1, α, µα) such
that the moment cone is C.

Proof Let C =
⋂N

i=1{η ∈ (Rn+1)∗ : ⟨η, vi⟩ ≥ 0} be the given cone, where
vi ∈ ZN for i = 1, . . . , N are a minimal, primitive set of normals.

Define the map φ : ZN → Zn+1 by φ(ei) = vi, and extend it linearly to
φ : RN → Rn+1. Since C is a good cone, vi span Zn+1. Thus, the map φ
maps ZN onto Zn+1 and induces a map of tori

φ : TN = (RN/ZN) −→ Tn+1 = (Rn+1/Zn+1)

We will denote all three of these maps by φ. In particular, φ denotes both the
map of Lie groups Tk and the induced map of their Lie algebras Rk.

We will denote the kernel

{[a] :
N

∑
i=1

aivi ∈ Zn+1}

of the map φ : TN → Tn+1 by K, which is a closed subgroup of TN .
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From the map φ, we get the short exact sequences Lie groups, Lie algebras,
and the dual spaces:

0 K TN Tn+1 0i φ

0 k RN Rn+1 0i φ

0 (Rn+1)∗ (RN)∗ k∗ 0
φ∗

i∗

where i are the corresponding inclusion maps.

Consider the Hamiltonian action of TN on (CN , ωst =
i
2 ∑N

i=1 dzi ∧ dz̄i) by

[a1, . . . , aN ] · (z1, . . . , zN) = (e2πia1 z1, . . . , e2πiaN zN)

with the moment map µ : CN → (RN)∗ given by

µ(z1, . . . , zN) = π
N

∑
i=1

|zi|2e∗i

where e∗i is the dual basis to the standard basis of RN . Then, the map

i∗ ◦ µ : CN → k∗

is the moment map of the action of the kernel K on CN .

Observe that β ∈ µ(CN) if and only if ⟨β, ei⟩ ≥ 0 for all i = 1, . . . , N, since
for suitable z ∈ CN , the expression |zi|2 can take any value in R≥0.

We aim to show that the action of K on the (i∗ ◦ µ)−1(0) is free. Then, we can
use symplectic reduction to obtain the symplectic manifold (i∗ ◦ µ)−1(0)/K

First, we claim that (i∗ ◦ µ)−1(0) = µ−1(φ∗(C)). We have z ∈ (i∗ ◦ µ)−1(0)
exactly when µ(z) ∈ ker i∗ ∩ µ(CN). On the other hand, by exactness of the
third sequence above and definitions of φ and C, we have

ker i∗ ∩ µ(CN) = im µ∗ ∩ µ(CN)

= {φ∗η : η ∈ (Rn+1)∗ and ⟨φ∗η, ei⟩ ≥ 0 for all i = 1, . . . , N}
= {φ∗η : η ∈ (Rn+1)∗ and ⟨η, φ(ei)⟩ ≥ 0 for all i = 1, . . . , N}
= {φ∗η : η ∈ (Rn+1)∗ and ⟨η, vi⟩ ≥ 0 for all i = 1, . . . , N}
= φ∗(C)

Therefore, z ∈ (i∗ ◦ µ)−1(0) if and only if µ(z) ∈ µ∗(C). That is,

(i∗ ◦ µ)−1(0) = µ−1(φ∗(C))

as we claimed.
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To show that the action of K is free, we need to show that the stabilizer
Kz = K ∩ TN

z of a point z ∈ (i∗ ◦ µ)−1(0) under the action of K is trivial.

To this end, consider the stabilizer TN
z of a point z ∈ CN under the action of

TN . Let [a] ∈ TN . We have,

[a] · z = z ⇔ e2πiai zi = zi for all i
⇔ ai ∈ Z for all i such that zi ̸= 0

That is,
TN

z = {[a] ∈ TN : ai ∈ Z for all i such that zi ̸= 0}

and
Kz = K ∩ TN

z

= {[a] ∈ TN :
N

∑
i=1

aivi ∈ Zn+1 and ai ∈ Z for all i such that zi ̸= 0}

= {[a] ∈ TN : ∑
i

aivi ∈ Zn+1 for all i such that zi = 0,

and ai ∈ Z for all i such that zi ̸= 0}

for a point z ∈ CN .

On the other hand, z ∈ (i∗ ◦ µ)−1(0) if and only if µ(z) = φ∗(η) for some
η ∈ C. We have ⟨µ(z), ei⟩ = π|zi|2. Hence,

zj = 0 ⇔ |zj|2 = 0

⇔ ⟨µ(z), ei⟩ = 0
⇔ ⟨φ∗(η), ei⟩ = 0
⇔ ⟨η, vi⟩ = 0

By the condition of being a good cone, the set of vi’s such that ⟨η, vi⟩ = 0 are
Z-independent. In particular, if ∑i aivi ∈ Zn+1 for {i : ⟨η, vi⟩ = 0}, then ai is
in Z. Hence, for z ∈ (i∗ ◦ µ)−1(0), we have

Kz = {[a] ∈ TN : ai ∈ Z} = {0}

That is, K acts freely on (i∗ ◦ µ)−1(0). Therefore, we get the reduced space
(i∗ ◦ µ)−1(0)/K with the symplectic form ω such that

proj∗ω = ωst|(i∗◦µ)−1(0)

Now observe, by the fact that {vi}N
i=1 is a minimal set that defines the good

cone, the map
s : Tn+1 → TN
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3.2. Proof of the Classification Theorem

defined by s(∑n+1
i=1 aivi) = ∑n+1

i=1 aiei gives a splitting of

0 K TN Tn+1 0i µ

and we can view TN ∼= Tn+1 × K. Thus, we can view the Hamiltonian actions
of Tn+1 = TN/K and K as commuting actions to get the induced Hamiltonian
action of Tn+1 = TN/K on (i∗ ◦ µ)−1(0)/K where the moment map

µ0 : (i∗ ◦ µ)−1(0)/K → (Rn+1)∗

is given by µ|(i∗◦µ)−1(0) = µ0 ◦ proj. Also,

µ0((i∗ ◦ µ)−1(0)/K) = µ((i∗ ◦ µ)−1(0)) = µ∗(C) ∼= C

The action of K restricts to an action on ((i∗ ◦ µ)−1(0)− {0}) and the action
of R on CN given by t · z = etz commutes with the action of TN . Thus,

(W, ω) = (((i∗ ◦ µ)−1(0)− {0})/K, ω)

is a symplectic cone with the action of R induced by the action of R on CN .

Moreover, as the unit sphere S2n+1 in the symplectic cone CN − {0} is a TN

invariant compact hypersurface of contact type, we have that

M = (((i∗ ◦ µ)−1(0)− {0})/R)/K

= (i∗ ◦ µ)−1(0) ∩ S2n+1/K

is a compact contact toric Tn+1-manifold with the corresponding moment
map

µ|M : M → (Rn+1)∗

with the moment cone µ∗(C) ∼= C

Lastly, we need to check the connectedness of M. The cone µ∗(C) ∼= C is
connected. On the other hand, the fiber µ−1(ξ) is a (possibly degenerate)
product of circles, and hence path connected.

We had established that (i∗ ◦ µ)−1(0) = µ−1(φ∗(C)). Suppose

(i∗ ◦ µ)−1(0) = µ−1(φ∗(C)) ⊆ U1 ∪ U2

where Ui are disjoint open sets in CN . Since fibers are connected, we have
µ−1(ξ) ⊆ Ui for some i. Thus, we have φ∗(C) = A1 ∪ A2 where Ai are
disjoint and defined as

Ai = {ξ ∈ φ∗(C) : µ−1(ξ) ∈ Ui} = φ∗(C) ∩ µ(Ui)
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3.2. Proof of the Classification Theorem

Observe that the moment map µ : CN → (RN)∗ given by

µ(z1, . . . , zN) = π
N

∑
i=1

|zi|2e∗i

is an open map. Therefore, Ai are disjoint relatively open sets in φ∗(C).
By connectedness of φ∗(C), one of the Ai is empty. Hence, (i∗ ◦ µ)−1(0) is
contained in one Ui, showing that (i∗ ◦ µ)−1(0) is connected.

By the condition 2n + 1 > 3 we have the manifold (i∗ ◦ µ)−1(0) − {0} is
also connected and as a continuous quotient of a connected manifold, M is
connected. Therefore,

(M2n+1, α, µα)

is a c.c.c.t. Tn+1-manifold with the good moment cone µ∗(C) ∼= C □

Now we prove the converse statement. That is, we show that the moment
cone of a c.c.c.t. manifold is a good cone.

Theorem 3.7 Suppose (M, α, µα) is a c.c.c.t. G-manifold where G = Tn+1,
dim M > 3 and the action of G is not free. Then the moment cone C(µ) is a
good rational polyhedral cone.

Before the proof, we state a fact about cones that will be needed in the proof:

Let C ∈ g∗ be a polyhedral cone and let F ⊆ C be a face. Denote the subspace
spanned by the vectors in F by ⟨F⟩ and let πF : g∗ → g∗/⟨F⟩ be the projection.

We have π−1
F (πF(C)) ∼= πF(C)× ⟨F⟩ and for any point q in the interior of F

there is an open neighbourhood W of q in g∗ such that

C ∩ W = π−1
F (πF(C)) ∩ W

Now we can sketch the argument from [19]:

Proof (Sketch) By Theorem 2.14 we have that

C := C(µ) =
N⋂

i=1

{η ∈ g∗ : ⟨η, vi⟩ ≥ 0}

is convex rational polyhedral cone, for a minimal primitive set of vectors
{vi} ⊆ ZG.

Moreover, by Lemma 2.17, since the action is not free, µα : M → S(g∗) is not
onto. Therefore, C is a proper cone in g∗.

Let F be a codimension k face of C, with 0 < k < dim G. Then,

⟨F⟩ =
k⋂

j=1

{η ∈ g∗ : ⟨η, vij⟩ = 0}
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for a subset {vij} ⊆ {vi} ⊆ ZG.

Let x ∈ M be a point such that µα(x) is in the interior of F. Therefore,
dim gx = dim Gx = k.

By Lemma 2.17, the orbital moment map gives a topological embedding
of the orbit space M/G into S(g∗). Thus, for any open and G-invariant
neighbourhood U of the orbit G · x, there is an open neighbourhood W̃ in the
sphere S(g∗) such that

µα(U) = µα(M) ∩ W̃

Then, we have
C(µ|U) = C(µ) ∩ W

for the cones, where W = R+W̃ ∪ {0}.

By Theorem 2.10, using the same notation, locally we have

C(µ) = R+(µα(x) + j((k/gx)
∗) + i(ΦV(V))) ∪ {0}

and
C(µ|U) = (R+(µα(x) + j((k/gx)

∗) + i(ΦV(V))) ∪ {0}) ∩ W

By identifying the dual of the quotient and the annihilator, for W̃ sufficiently
small, we have

R+(µα(x) + j((k/gx)
∗)) ∩ W = g0

x ∩ W

From this, we get

C(µ|U) = (g0
x + i(ΦV(V))) ∩ W = proj−1

x (ΦV(V)) ∩ W

where projx : g∗ → g∗x is the natural projection of g∗ ∼= g0
x + g∗x onto g∗x.

Note that, ⟨F⟩ = g0
x and the map projx can be identified with πF. Moreover,

if we identify g/g0
x
∼= g∗x, then πF(C) ∼= ΦV(V) and

π−1
F (πF(C)) = proj−1

x (ΦV(V))

Also, {vij} ⊂ gx ∼= (g0
x)

0. Therefore, {vij} ⊆ ZGx = ZG ∩ gx.

Hence, for a small enough W, we have

C(µ) ∩ W = C(µ|U) = W ∩ proj−1
x (ΦV(V))

= W ∩ π−1
F (πF(C))

= W ∩
k⋂

j=1

{η ∈ g∗ : ⟨η, vij⟩ ≥ 0}
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Therefore, proj−1
x (ΦV(V)) =

⋂k
j=1{η ∈ g∗ : ⟨η, vij⟩ ≥ 0} and

ΦV(V) =
k⋂

j=1

{η ∈ g∗x : ⟨η, vij⟩ ≥ 0}

where {vij} is a minimal primitive set with this property.

On the other hand, by Lemma 2.9,

ΦV(V) = {
k

∑
j=1

ajνj : aj ≥ 0}

for some basis of Z∗
Gx

.

The dual set {v∗ij
} ⊆ Z∗

Gx
of {vij} ⊆ ZGx spans the cone ΦV(V) and by the

minimality it is also a basis of Z∗
Gx

. Therefore, {vij} is a basis of ⊆ ZGx and
C is a good cone. □

It remains to show that there is a one-to-one correspondence between good
cones and c.c.c.t G-manifolds.

For this, let (M, α, µα) be a c.c.c.t. G-manifold normalised such that µα(M0)
lies in S(g∗) with the moment cone C.

Now assume, (M0, α0, µα0) is another such c.c.c.t. G-manifold normalised
such that µα(M0) lies in S(g∗), with the same moment cone C. Then, we have

µα0(M0) = µα0(M0/G) = µα(M/G) = µα(M)

By Corollary 2.19, the c.c.c.t (M0, α0, µα0) is locally isomorphic to (M, α, µα).
We want to show that they are isomorphic as c.c.c.t. G-manifolds.

By Theorem 2.23, we have

H1(M/G,S) = H2(M/G, Zn+1)

On the other hand, M/G ∼= µα(M) by Proposition 2.17.

The image of the moment map is contractible and H2(M/G, Zn+1) = 0.
Therefore, by 2.21, (M0, α0, µα0) is isomorphic to (M, α, µα) as a c.c.c.t G-
manifold.

3.3 Applications of the Classification

Consider the cosphere bundle S∗Tn := (T∗Tn − 0)/R of the n-torus where
the action of t ∈ R is given by the dilation (p, q) 7→ (p, etq). Then S∗Tn

has a natural contact structure induced by the symplectic structure on T∗Tn.
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Similarly, consider the cosphere bundle S∗S2 := (T∗S2\0)/R of the sphere.
Then S∗S2 has a natural contact structure induced by the symplectic structure
on T∗S2. See [21, Example 3.5.7] for details of these contact structures which
are constructed in a similar manner to Example 1.4.

Using the classification theorem for compact connected contact toric mani-
folds, we can prove the following two theorems (see [19, Section 1]) regarding
the contact actions on S∗Tn and S∗S2:

Theorem 3.8 Up to isomorphism, there is only one effective Tn-action on S∗Tn

making it a contact toric manifold.

Theorem 3.9 Up to isomorphism, there is only one effective T2-action on S∗S2

making it a contact toric manifold.

As a consequence of Theorem 3.9 and the classification theorem, we see that
any effective contact Tn-action on S∗Tn must be free. Using this result and
the relation of the symplectic structure on T∗Tn\0 and the contact structure
it induces on S∗Tn, we can prove:

Proposition 3.10 Any effective Tn-action on T∗Tn\0 which preserves the symplec-
tic form and commutes with dilations, is free.

Through the work of Toth and Zeldich [24] this proposition implies that
certain classes of metrics (called ”toric integrable”, see [19]) on tori are flat.
In fact, this problem about the toric integrable metrics was the main moti-
vation for the classification of c.c.c.t. manifolds. See [19] and [4] for further
discussions about this problem and its relation to contact toric manifolds.

More recently, in [1], [2], Abreu and Macarini proved that for a contact toric
G-manifold which falls under the case (4) of the Theorem 3.2 of Lerman, if in
addition the first Chern class of the symplectization vanishes, then normals
that define the moment cone can be used to define a polytope D ∈ Rn where
n = dim G − 1. They then used the combinatorial properties such as the
volume of this polytope to describe the invariants of contact toric manifolds.
In particular, they calculated the contact homology, mean Euler characteristic,
and number of closed orbits in the flow of Reeb vector fields for certain
examples of contact toric manifolds.

3.4 Submanifolds of Contact Toric Manifolds

In this last section, we will point out some possible directions of investigation
about G-invariant compact connected contact submanifolds of a c.c.c.t. G-
manifolds.

Let N be a G-invariant compact connected codimension 2 contact subman-
ifold of a c.c.c.t. G-manifold M with the embedding i : N → M. That is, a
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3.4. Submanifolds of Contact Toric Manifolds

contact manifold (N, ξ ′) embedded in (M, ξ) with the embedding i : N → M,
such that di(ξ ′) = ξ ∩ di(TN) and action of G on M preserves N and ξ ′.

The action is necessarily non-effective by dimension considerations. However,
by taking the quotient by the kernel of the restricted action on N, we may
view N as a c.c.c.t. manifold as the quotient group is connected.

In the case of a non-free action of G = Tn+1 on M, in higher dimensions
where 2n + 1 > 5, the classification indicates that these submanifolds N
correspond to the faces of the moment cone. In the case that 2n + 1 = 5 and
dim N = 3, by the classification, N needs to be a certain lens space embedded
in M as a contact submanifold.

In the case of a free action of G = Tn+1 on M, in higher dimensions where
2n + 1 > 7, the classification implies that these submanifolds N correspond
to the subspaces of g∗ and are embeddings of Tn × Sn−1 into Tn+1 × Sn+1 as
contact manifolds. In the case of 2n + 1 = 7, by the classification, N needs
to be a (not necessarily trivial) principal T3 bundle over S2 embedded in
T4 × S3 as a contact submanifold.

The existence and properties of such embeddings are possible directions that
remain to be investigated.

55



Bibliography

[1] M. Abreu and L. Macarini, “Contact homology of good toric contact
manifolds,” Compositio Mathematica, vol. 148, no. 1, pp. 304–334, Nov.
2011. doi: 10.1112/s0010437x11007044. [Online]. Available: https:
//doi.org/10.1112%2Fs0010437x11007044.

[2] M. Abreu and L. Macarini, On the mean euler characteristic of gorenstein
toric contact manifolds, 2020. arXiv: 1611.00735 [math.SG].
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