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Abstract

In this master thesis, we study the fixed point sets (real loci) of certain
anti-symplectic involutions of toric symplectic manifolds. Based on a
theorem of Duistermaat [13], we show that they are branched cover-
ings over the moment polytope, and exploit this fact to get a simple
description of their topology.

Additionally, we carefully present the proof of a theorem of Oda [33],
which shows that the moment polygon of any 4-dimensional toric
symplectic manifold can be obtained from a triangle or a quadrilateral
by a finite sequence of corner-choppings. Using this, we are able to
explicitly determine the full list of possibilities for the real locus in
dimension 4, up to diffeomorphism.

Résumé

Dans cette thèse de master, on étudie les ensembles de points fixes
(lieux réels) de certaines involutions anti-symplectiques de variétés
symplectiques toriques. Sur la base d’un théorème de Duistermaat [13],
on montre qu’ils sont des revêtements ramifiés sur le polytope moment,
et on exploite ce résultat pour obtenir une description simple de leur
topologie.

En outre, on présente soigneusement la preuve d’un théorème d’Oda
[33], qui montre que le polygone moment de toute variété symplectique
torique à dimension 4 peut être obtenu à partir d’un triangle ou d’un
quadrilatère par une suite finie de “coupes de coin”. Grâce à cela, on
parvient à déterminer explicitement la liste complète de possibilités
pour le lieu réel en dimension 4, à difféomorphisme près.
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Introduction

A toric symplectic manifold is a symplectic manifold equipped with an
effective Hamiltonian action of a torus with half the dimension of the mani-
fold. Objects of this kind were first studied by algebraic geometers as toric
varieties (see e.g. [33, 14]), but since the foundational work of Delzant [12]
they have too become mainstays of symplectic geometry. He proved that
these manifolds are classified by their moment map image, which is a convex
polytope, according to an earlier result obtained independently by Guillemin
and Sternberg [19] and by Atiyah [3]. This allows many geometric questions
to be translated into more amenable combinatorial statements. In this way,
toric symplectic manifolds have served as a testing ground for new theories
and developments in the field, while still forming a rich and extensive theory
of their own.

Given a toric symplectic manifold, we consider the notion of a real locus,
which is the fixed point set of an anti-symplectic involution compatible with
the Hamiltonian torus action. The motivating example is that of complex
projective space CPn under the complex conjugation map, or more gener-
ally any complex submanifold thereof. These real loci were considered by
Duistermaat in [13], albeit in a slightly more general setting. Building up on
the work of Meyer [29], who had proven that they are compact embedded
Lagrangians, Duistermaat proved that their moment map image is the whole
moment polytope. His results were later extended by Goldin and Holm
in [15], and by Biss, Guillemin and Holm in [6]. Additionally, O’Shea and
Sjamaar have generalised these results to Hamiltonian actions of non-abelian
groups [32] (see also [36]).

In the toric setting, it can moreover be shown that the restriction of the
moment map to the real locus is a branched covering with 2n sheets, where
2n is the dimension of the symplectic manifold. This fact has been known for
a long time, and we are able to trace it at least to the work of Guillemin (see
[18]), although the very closely related concept of a small cover had already

v



Introduction

been studied by Davis and Januszkiewicz in [11]. In Theorem 3.11, we present
a proof of this fact, establishing as well that the real locus can be obtained
as a quotient of the disjoint union of 2n copies of the moment polytope,
glued along their boundaries in a manner which is fully determined by the
geometry of the polytope. This has already been explored in the work of
Abreu and Macarini in [2], and of Abreu and Gadbled in [1].

In the 4-dimensional case (n = 2), this result can be further exploited. In
fact, it exhibits the real locus in a very explicit way as the compact connected
surface obtained from a polygonal region by gluing its edges in pairs. Fur-
thermore, a theorem of Oda [33] shows that the moment polygon of a toric
symplectic manifold of dimension 4 can be obtained from a certain family of
triangles and quadrilaterals by iterated corner-choppings, a procedure which
is defined in Section 2.5. Combining these ingredients, we are able to arrive
at a complete understanding of the topology of 2-dimensional real loci.

Note that Oda, being an algebraic geometer, formulated this result in the
setting of (complete non-singular) toric varieties, although it can be ported
to the symplectic setting without substantial difference. This result is often
quoted in works in symplectic geometry, but seldom proved, usually leaving
the proof to algebraic geometry references (for instance, the later account
by Fulton in [14]). This situation served as the motivation to include in the
present thesis a self-contained account of this result, and more generally
of 4-dimensional toric symplectic manifolds. In the process, we discovered
another account of this proof by Audin in [4].

We must also mention the very closely related work of Brendel, Joontae Kim
and Moon [8]. They study real Lagrangians, in a more general setting than the
real loci considered here, and explore their topology, including a complete
description of the monotone 4-dimensional case (toric symplectic del Pezzo
surfaces). Moreover, Brendel [7] and Jin Hong Kim [24], among others, have
explored the realization problem of a given Lagrangian submanifold of a
symplectic manifold as a real Lagrangian.

Overview of this work The present work is an EPFL master’s thesis, which
was written by the author as a project exchange student at ETH Zurich,
during the fall semester of 2023/24.

The main body of this thesis is divided into three chapters.

In Chapter 1, we present some background material which is relevant to the
remaining of the thesis. This allows us to fix notations and conventions, as
well as to easily reference this content when needed.

In Chapter 2, we look in detail at 4-dimensional toric symplectic manifolds.
We classify the associated moment polygons in the triangle and quadrilateral
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case, and present a proof of Oda’s theorem that the general case is obtained
from these by a finite sequence of corner-choppings.

Finally, in Chapter 3, we consider the notion of a real structure and the
associated real locus. After establishing its basic properties, we prove, as
promised, that the real locus is a branched covering of the moment polytope.
We combine this result and Oda’s theorem to analyse the 4-dimensional case,
in which the real locus is a compact connected surface.
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Chapter 1

Background

In this chapter, we include some background material which will be relevant
later, for ease of reference.

Whenever it is not explicitly stated otherwise, all manifolds, diffeomorphisms,
vector fields, differential forms, Lie group actions, etc. are assumed to be
smooth, i.e. infinitely differentiable. By default, manifolds do not have
boundary or corners, and submanifolds are smoothly embedded.

1.1 Linear algebra and lattices

Notation 1.1. If V is a real vector space and V∗ is its dual, there is a natural
pairing between them, which we denote

⟨·, ·⟩ : V∗ × V → R, ⟨ℓ, v⟩ := ℓ(v).

Definition 1.2. Let V be a finite-dimensional real vector space. A lattice Λ in
V is a discrete additive subgroup of V which spans V.

Proposition 1.3. Let V be a finite-dimensional real vector space. An additive
subgroup Λ ⊆ V is a lattice if and only if there exists an R-basis of V which is a
Z-basis of Λ.

Definition 1.4. Let V be a finite-dimensional real vector space and Λ ⊆ V
a lattice. A lattice vector v ∈ Λ is called primitive if it cannot be written as
v = ku with u ∈ Λ, k ∈ Z and |k| > 1.

Proposition 1.5 ([5, (11.4)]). Let V be a finite-dimensional real vector space and
Λ ⊆ V a lattice. Then

Λ∗ := { ℓ ∈ V∗ : ⟨ℓ, v⟩ ∈ Z for all v ∈ Λ } ⊆ V∗

is a lattice in V∗. It is called the dual lattice of Λ.
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1. Background

Proposition 1.6. Let V be a finite-dimensional real vector space and Λ ⊆ V a
lattice. Then, under the canonical isomorphism V∗∗ ∼= V, the double dual lattice
Λ∗∗ is identified with Λ.

1.2 Lie theory

Definition 1.7. Let G be a Lie group acting smoothly on a manifold M. We
say that the action is effective, or faithful, if no element of the group acts
trivially, apart from the identity. Equivalently, the kernel of the action is
trivial.

Definition 1.8. Let G be a Lie group with Lie algebra g, and M a mani-
fold equipped with a smooth action of G. For each X ∈ g, we define the
fundamental vector field X̃ ∈ Γ(TM)1 associated to X by

X̃p :=
d
dt
(exp tX · p)

∣∣∣
t=0

for each p ∈ M.

Proposition 1.9 ([26, Theorem 20.18(a)]). Let G be a Lie group with Lie algebra
g, and M a manifold equipped with a smooth action of G. Then, the map

g → Γ(TM), X 7→ X̃

is a Lie algebra anti-homomorphism.

Definition 1.10. A torus T is a compact connected abelian Lie group.

Theorem 1.11 ([9, Theorem 3.6]). Every torus of dimension n is isomorphic (as a
Lie group) to the standard torus Tn = (S1)n.

Proposition 1.12. Let T be a torus with Lie algebra t, and exponential map denoted
by exp : t → T. Then

tZ := ker exp ⊆ t

is a lattice in t, which we call the integral lattice of T. Moreover,

t∗Z := { ℓ ∈ t∗ : ⟨ℓ, v⟩ ∈ 2πZ for all v ∈ tZ } ⊆ t∗

is a lattice in t∗, which we call the weight lattice of T.

Proof. In light of Theorem 1.11, it is enough to consider the case where
T = Tn is a standard torus. This is done below in Example 1.13.

1The smoothness of X̃ follows from an application of [26, Proposition 9.7].
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1.3. Convex polytopes

Example 1.13. Consider the standard 1-dimensional torus T1 = S1, and regard
it as the unit circle in the complex plane C ∼= R2.

If we pick the vector (0, 1) as a basis of the tangent space to S1 at the identity,
we obtain an isomorphism Lie S1 ∼= R, under which the exponential map of
S1 takes the form

exp : R → S1, θ 7→ eiθ .

The integral lattice of S1 is then ker exp = 2πZ ⊂ R.

By dualising, we also get an isomorphism (Lie S1)∗ ∼= R, under which the
weight lattice of S1 is identified with

{ x ∈ R : xy ∈ 2πZ for all y ∈ 2πZ } = Z ⊂ R.

More generally, we can consider the standard n-dimensional torus Tn = (S1)n.
If we proceed analogously, we obtain an isomorphism Lie Tn ∼= Rn under
which the exponential map of Tn takes the form

exp : Rn → Tn, (θ1, . . . , θn) 7→ (eiθ1 , . . . , eiθn),

and the integral lattice of Tn is identified with (2πZ)n ⊂ Rn. By dualising,
we get an isomorphism (Lie Tn)∗ ∼= Rn, which identifies the weight lattice of
Tn with Zn ⊂ Rn. △

Definition 1.14. We define the group AGL(n, Z) to be the group of affine
linear maps T : Rn → Rn of the form

T(x) = Ax + b,

for some A ∈ GL(n, Z) and b ∈ Rn.

More generally, if V is a finite-dimensional real vector space and Λ is a lattice
in V, we define the group AGL(Λ) to be the group of affine linear maps
T : V → V of the form

T(v) = Av + b,

for some A ∈ GL(Λ) and b ∈ V.

Theorem 1.15 ([26, Theorem 19.26]). Let G be a Lie group with Lie algebra g. If h
is a Lie subalgebra of g, then there exists a unique connected subgroup of G whose
Lie algebra is h.

1.3 Convex polytopes

Definition 1.16. Let V be a finite-dimensional real vector space. A (convex)
polytope ∆ in V is the convex hull of a finite number of points in V.

3



1. Background

Definition 1.17. Let V be a finite-dimensional real vector space. A (convex)
polyhedron P in V is a subset of V which is the intersection of finitely many
half-spaces, i.e.

P =
d⋂

i=1

{ x ∈ V : ⟨ℓi, x⟩ ≥ λi },

where λ1, . . . , λd ∈ R are scalars, and ℓ1, . . . , ℓd ∈ V∗ \ {0} are non-zero linear
functions on V.

Theorem 1.18 (Weyl–Minkowski, [5, Theorem 4.4 and Theorem 4.7]). Let V
be a finite-dimensional real vector space. Then P ⊆ V is a polytope if and only if it
is a bounded polyhedron.

Definition 1.19. Let V be a finite-dimensional real vector space and P ⊆ V a
polyhedron. A subset F ⊆ P is a face of P if it is of the form

F = P ∩ { x ∈ V : ⟨ℓ, x⟩ = λ },

where ℓ ∈ V∗ is a linear function on V and λ ∈ R is a scalar such that for
all x ∈ P we have ⟨ℓ, x⟩ ≥ λ. We also say that { x ∈ V : ⟨ℓ, x⟩ = λ } is a
supporting hyperplane for P.

Definition 1.20. Let V be a finite-dimensional real vector space and S a subset
of V. The (affine) dimension of S, denoted by dim S, is the dimension of the
affine subspace of V generated by S.2

Definition 1.21. Let V be a finite-dimensional real vector space and P ⊆ V a
polyhedron. A face of dimension 0 is necessarily a singleton, whose unique
element is called a vertex of P. A face of dimension 1 is called an edge, and a
face of dimension dim P − 1 is called a facet.

If F is a face of P, the corresponding open face Fo is the relative interior of F.

Proposition 1.22 ([5, Theorem 4.15(2)]). Let V be a finite-dimensional real vector
space and P ⊆ V a polyhedron. Then every point p ∈ P is contained in exactly one
open face of P.

Remark 1.23 ([17, Propositions 2.6.2 and 2.6.3]). Let V be a finite-dimensional
real vector space and P ⊆ V a polyhedron. Write P as an irredundant
intersection of half-spaces,

P =
d⋂

i=1

{ x ∈ V : ⟨ℓi, x⟩ ≥ λi },

for some covectors ℓ1, . . . , ℓd ∈ V∗ \ {0} and scalars λ1, . . . , λd ∈ R. More
precisely, by the irredundancy condition we mean that no proper subset of
this family of half-spaces has P as its intersection.

2Note that the dimension of the empty set as an affine subspace of V is −1.
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1.3. Convex polytopes

If the polyhedron P is full-dimensional (dim P = dim V), then it has exactly
d facets, which are given by

Fi = P ∩ { x ∈ V : ⟨ℓi, x⟩ = λi }, i = 1, . . . , d.

Definition 1.24. Let V be a real vector space of dimension n, Λ a lattice in V,
and ∆ ⊆ V a convex polytope. We say that ∆ is a unimodular polytope (with
respect to Λ) if it is such that

• each vertex of ∆ belongs to exactly n edges (we say that these n edges
meet at the vertex);

• at each vertex p ∈ ∆, the n edges meeting at p are contained in rays of
the form { p + tui : t ≥ 0 }, where (u1, . . . , un) is a Z-basis of Λ.

It is worth stressing that the vertices of a unimodular polytope are not
required to belong to the lattice. Additionally, it follows from the definition
that unimodular polytopes are necessarily full-dimensional.

Remark 1.25. Let V be a finite-dimensional real vector space, Λ a lattice in V,
and ∆ ⊆ V∗ a unimodular polytope.

It is immediate that, for any non-zero constant λ ∈ R \ {0}, the scaled image
λ∆ is also unimodular.

Similarly, for any transformation T ∈ AGL(Λ), the image T(∆) is again a
unimodular polytope.

Proposition 1.26. Let V be a finite-dimensional real vector space, Λ a lattice in V,
and ∆ ⊆ V∗ a full-dimensional convex polytope in the dual space V∗. Consider the
dual lattice Λ∗ ⊆ V∗.

Following Remark 1.23, describe ∆ as an irredundant intersection of half-spaces (we
are using the canonical identification V∗∗ ∼= V):

∆ =
d⋂

i=1

{ ξ ∈ V∗ : ⟨ξ, vi⟩ ≥ λi },

where v1, . . . , vd ∈ V \ {0} are vectors and λ1, . . . , λd ∈ R are scalars.

If ∆ is a unimodular polytope with respect to the dual lattice Λ∗, then each pair
(vi, λi) can be rescaled, without changing the associated half-space, so that vi is a
primitive element of the lattice Λ. In that case, we have moreover that

(*) for each vertex p ∈ ∆, the vectors vi associated to the facets of ∆ containing p
form a Z-basis of Λ.

Conversely, if the vi are primitive elements of Λ and condition (*) holds, then ∆ is
unimodular (with respect to Λ∗).
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1. Background

1.4 Toric symplectic manifolds

Definition 1.27. Let (M, ω) be a symplectic manifold and G a Lie group
acting smoothly on M by symplectomorphisms. Denote by g the Lie algebra
of G. We say that the action is Hamiltonian if there exists a map µ : M → g∗

such that:

• for each X ∈ g, the function µX := ⟨µ(·), X⟩ : M → R is a Hamiltonian
function for the fundamental vector field X̃, i.e. ω(X̃, ·) = dµX;

• µ is equivariant with respect to the action ψ : G → Symp(M, ω), i.e. for
all g ∈ G we have µ ◦ ψg = Ad∗

g ◦µ, where Ad∗ denotes the coadjoint
representation of G on g∗.

The map µ is said to be a moment map for the action. We say that (M, ω, G, µ)
is a Hamiltonian G-space.

If the group G is abelian, the coadjoint representation is trivial, and hence
the second condition for a moment map reduces to invariance with respect
to the action of G on M. This applies in particular when G is a torus, which
will be the main case of interest in the following.

Theorem 1.28 (Atiyah–Guillemin–Sternberg, [3, Theorem 1] or [19, Theorem
4]). Let (M, ω) be a compact connected symplectic manifold equipped with a Hamil-
tonian action of a torus T. Let µ : M → t∗ be a choice of moment map for the action,
where t denotes the Lie algebra of T. Then ∆ := µ(M) ⊆ t∗ is a convex polytope,
which is called the moment polytope associated to the action. The vertices of this
polytope are images under µ of fixed points of the torus action.

Definition 1.29. A toric symplectic manifold of dimension 2n is a compact
connected symplectic manifold (M, ω) of dimension 2n equipped with an
effective Hamiltonian action of a torus T of dimension n, together with a
choice of corresponding moment map µ.

The following terminology is based on [34, 35].

Definition 1.30. Let T be a torus, and (M1, ω1, T, µ1), (M2, ω2, T, µ2) toric
symplectic manifolds. We say that they are

• isomorphic if there exists a T-equivariant symplectomorphism

φ : (M1, ω1, T) → (M2, ω2, T)

such that µ2 ◦ φ = µ1;

• weakly isomorphic if there exists an automorphism h : T → T and a
symplectomorphism φ : (M1, ω1) → (M2, ω2) such that, for any g ∈ T
and p ∈ M1, we have

φ(g · p) = h(g) · φ(p).
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1.4. Toric symplectic manifolds

We already know that the image of the moment map is a polytope. It turns
out that, in the toric case, this map has a close connection to the action of the
torus, and is amenable to a quite concrete description.

Lemma 1.31 ([12, Lemma 2.2]). Let (M, ω, T, µ) be a toric symplectic manifold,
with moment polytope ∆ = µ(M) ⊆ t∗, where t denotes the Lie algebra of T. Then:

• the fibres of µ : M → ∆ are the orbits of the T-action on M;

• for each ξ ∈ ∆, the fibre µ−1(ξ) is a torus of dimension equal to that of the
open face of ∆ containing ξ (cf. Proposition 1.22);

• for each p ∈ M, the isotropy group Tp = { g ∈ T : g · p = p } is the
connected subgroup of T whose Lie algebra is the annihilator in t of the open
face of ∆ containing µ(p) (cf. Theorem 1.15).

However, something much stronger is true: the moment polytope completely
characterises its toric symplectic manifold, up to isomorphism. Moreover,
there is a simple characterisation of the convex polytopes which are the
moment polytope of some toric symplectic manifold.

Theorem 1.32 (Delzant, [12, Theorem 2.1 and Section 3]). Fix a torus T.

For any toric symplectic manifold (M, ω, T, µ), its moment polytope ∆ ⊆ t∗ is a
unimodular polytope with respect to the weight lattice t∗Z of T.

Additionally, any unimodular polytope ∆ ⊆ t∗ can be realised as the moment polytope
of some toric symplectic manifold (M∆, ω∆, T, µ∆).

Moreover, this induces a one-to-one correspondence between toric symplectic mani-
folds (M, ω, T, µ) up to isomorphism, and unimodular polytopes ∆ in t∗.

This descends to a one-to-one correspondence between toric symplectic manifolds
(M, ω, T, µ) up to weak isomorphism and unimodular polytopes ∆ ⊆ t∗ up to a
transformation in AGL(t∗Z).

Remark 1.33. It is important to note that the weight lattice t∗Z of a torus T is not
the dual lattice (tZ)

∗ of the integral lattice tZ, in the sense of Proposition 1.5,
due to the extra factor of 2π. However, by inspecting Definition 1.24, one
sees that the notion of unimodular polytope is the same with respect to both
of these lattices, since they differ only by a positive real scaling factor.

Hence, Proposition 1.26 applies, giving an alternate characterisation of the
moment polytope ∆ of a toric symplectic manifold.

Example 1.34. Let M = CPn be the n-dimensional complex projective space,
with symplectic structure given by the Fubini–Study form ωFS (for more
details, see for instance [10, Homework 12] or [28, Example 4.3.3]). Recall
that, on each open set

Uj =
{
[z0 : · · · : zn] ∈ CPn : zj ̸= 0

}
⊆ CPn,

7



1. Background

the Fubini–Study form is given by

ωFS =
i
2

∂∂ log
(

z0z0 + · · ·+ znzn

zjzj

)
.

The standard n-torus Tn acts on CPn by

(t1, . . . , tn) · [z0 : z1 : · · · : zn] = [z0 : t1z1 : · · · : tnzn].

It is straightforward to check that Tn acts by symplectomorphisms, since
tt = 1 for any t ∈ S1, and that this action is effective.

Moreover, it can be seen that this action is Hamiltonian. Under the identifica-
tions of Example 1.13, we claim that this Tn-action of CPn is Hamiltonian
with moment map

µ : CPn → Rn,

µ([z0 : · · · : zn]) = −1
2

(
|z1|2

|z0|2 + · · ·+ |zn|2
, . . . ,

|zn|2
|z0|2 + · · ·+ |zn|2

)
.

It is clear that µ is invariant with respect to the action. Therefore, it remains
to show, for each X ∈ t ∼= Rn, that µX is a Hamiltonian function for the
fundamental vector field X̃ on CPn.

By Proposition 1.9, it is enough to show this property for a basis of t. In other
words, it is enough to show that the components functions µ1, . . . , µn of the
moment map are Hamiltonian functions for the fundamental vector fields
associated to e1, . . . , en ∈ Rn ∼= t. This can be verified through computations
in local coordinates.

We conclude that (CPn, ωFS, Tn, µ) is a toric symplectic manifold. Note that
its moment polytope ∆ = µ(CPn) is

∆ =

{
x ∈ Rn : x1 + · · ·+ xn ≥ −1

2
, x1, . . . , xn ≤ 0

}
,

the n-dimensional simplex in Rn with vertices 0,− 1
2 e1, . . . ,− 1

2 en. △

Theorem 1.32 states that the weak isomorphism type of a toric symplectic
manifold is determined by the equivalence class of its moment polytope
∆ ⊆ t∗ under the action of AGL(t∗Z). Given a moment polytope ∆, we will
now see how to modify its toric symplectic manifold in order to exhibit the
other elements of its equivalence class as moment polytopes.

Remark 1.35. Let (M, ω, T, µ) be a toric symplectic manifold with moment
polytope ∆ = µ(M) ⊂ t∗.

If c ∈ t∗ is any constant, then µ+ c is also a moment map for this Hamiltonian
T-action of M, and the associated moment polytope is ∆ + c, a translation of
∆.

8



1.4. Toric symplectic manifolds

Remark 1.36. Let (M, ω, T, µ) be a toric symplectic manifold with moment
polytope ∆ = µ(M) ⊂ t∗. Denote the action by ρ : T → Symp(M). For
convenience, we will use Theorem 1.11 to identify T ∼= Tn, which induces
isomorphisms t ∼= t∗ ∼= Rn as in Example 1.13.

Consider a transformation

A ∈ GL(t∗Z) ∼= GL(n, Z) ⊂ GL(n, R) ∼= GL(t∗).

On t ∼= Rn, we have the transpose map AT : Rn → Rn. This map descends to
an automorphism h : Tn → Tn such that the following diagram commutes,

Rn Rn

Tn Tn.

AT

exp exp

h

This is because AT(Zn) ⊆ Zn. The invertibility of AT ∈ GL(n, Z) implies
the invertibility of h.

More concretely, if A =
(
aij
)n

i,j=1, then h can be defined by

h(t1, t2, . . . , tn) = (ta11
1 ta21

2 · · · tan1
n , ta12

1 ta22
2 · · · tan2

n , . . . , ta1n
1 ta2n

2 · · · tann
n ).

We consider a new Tn-action ρ̃ : Tn → Symp(M) defined by ρ̃ := ρ ◦ h. It is
clear that this action is still symplectic and effective. We claim moreover that
this action is Hamiltonian with moment map µ̃ := A ◦ µ.

Indeed, let X ∈ t ∼= Rn. If

X̃ ∈ Γ(TM), X̃p :=
d
dt
(exp tX · p)

∣∣∣
t=0

is the fundamental vector field associated to X with respect to the action ρ,
then its fundamental vector field with respect to the action ρ̃ = ρ ◦ h is

d
dt
(h(exp tX) · p)

∣∣∣
t=0

=
d
dt
(exp AT(tX) · p)

∣∣∣
t=0

= ÃTX.

Then we can see that,

ω(ÃTX, ·) = dµATX = d⟨µ(·), ATX⟩ = d⟨Aµ(·), X⟩ = dµ̃X,

showing that µ̃ is a moment map for this modified action.

The associated moment polytope ∆̃ is then the transformed image of ∆ under
A.

9



1. Background

It is also true that if we scale a unimodular polytope by a non-zero constant,
we obtain again a unimodular polytope. We will now see that we can modify
a given toric symplectic manifold to change the moment polytope by such a
scaling. Note however that this transformation does not preserve the weak
isomorphism class.

Remark 1.37. Let (M, ω, T, µ) be a toric symplectic manifold with moment
polytope ∆ = µ(M) ⊂ t∗.

For any non-zero constant λ ∈ R \ {0}, we can consider the same action of T
on the symplectic manifold M, λω. It is clear that this action is still effective
and symplectic. Moreover, it is Hamiltonian, with moment map λµ : M → t∗

scaled by the same factor: for any X ∈ t we have

(λω)(X̃, ·) = ω(λX̃, ·) = dµλX = d⟨µ(·), λX⟩ = d⟨λµ(·), X⟩ = d(λµ)X.

We finish with yet another result from Delzant’s paper [12]. It tells us that
every toric moment map locally looks identical.

Lemma 1.38 ([12, Lemma 2.5], or [4, Proposition IV.4.21]). Let (M, ω, T, µ) be
a toric symplectic manifold of dimension 2n, with moment polytope ∆ = µ(M) ⊆ t∗.
Let F be a k-dimensional face of ∆, and V an open ball in F such that its closure
V ⊂ Fo is compact and contained in the interior of F.

Identify t∗ ∼= Rn, by choosing an integral basis of the k-dimensional subspace of t∗

parallel to F, and extending it to an integral basis of t∗. Integrality is meant with
respect to the weight lattice, so that this isomorphism identifies t∗Z ∼= Zn. Under this
identification, V is an open subset of a standard Rk ⊆ Rn.

Let B(ε) denote the open ball in C centered at the origin and with radius ε.

Then, there exists a neighbourhood U of µ−1(V) in M, a number ε > 0, and a
diffeomorphism

Φ : U → Tk × V × B(ε)n−k ⊂ Tk × V × Cn−k

such that:

• Φ pulls back the symplectic form

k

∑
j=1

dθj ∧ dµj +
n−k

∑
j=1

dxj ∧ dyj

to the symplectic form ω;

• it transforms the T-action on U into the Tn-action on Tk × V × B(ε)n−k

defined by

(t1, . . . , tn) · (eiθ1 , . . . , eiθk , µ1, . . . , µk, z1, . . . , zn−k) =

= (t1eiθ1 , . . . , tkeiθk , µ1, . . . , µk, tk+1z1, . . . , tnzn−k).

10



1.5. Holomorphic fibre bundles

The moment map µ : Tk × V × B(ε)n−k → Rn is given by

µ(s1, . . . , sk, µ1, . . . , µk, z1, . . . , zn−k) =

= c +
(

µ1, . . . , µk,−1
2
|z1|2, . . . ,−1

2
|zn−k|2

)
.

Note that the expression of the moment map differs slightly from the ones in
the references given, due to differences in the background conventions.

1.5 Holomorphic fibre bundles
Definition 1.39. Let M and F be complex manifolds. A holomorphic fibre bundle
over M with fibre F, or simply an F-bundle over M, is a complex manifold E
together with a surjective holomorphic map π : E → M such that, for each
p ∈ M, there exists a neighbourhood U of p in M and a biholomorphism
Φ : π−1(U) → U × F such that the following diagram commutes:

π−1(U) U × F

U
π π1

Φ

,

where π1 : U × F → U denotes the projection onto the first factor. The map
Φ is called a local trivialization of E over U.

Example 1.40. The simplest example of a holomorphic fibre bundle is the trivial
bundle M × F, with π : M × F → M the projection onto the first factor. △

When the fibre F is a vector space, we can impose an additional linearity
requirement.

Definition 1.41. Let M be a complex manifold. A holomorphic vector bundle
of rank k over M is a holomorphic fibre bundle π : E → M with fibre F = Ck,
such that:

• for each p ∈ M, the fibre Ep = π−1(p) is endowed with the structure
of a k-dimensional complex vector space;

• the local trivializations Φ : π−1(U) → U × Ck can be chosen such
that, for every p ∈ U, the restriction Φ|Ep : Ep → {p} × Ck is a linear
isomorphism.

When k = 1, we say that E is a holomorphic line bundle.

Example 1.42. As before, an immediate example is the trivial holomorphic
vector bundle π : M × Ck → M. △

11



1. Background

Example 1.43. The trivial holomorphic line bundle CPn ×C → CPn is denoted
by OCPn , or simply O when n is clear from the context. △

Definition 1.44. Let π : E → M be a holomorphic vector bundle. A (holomor-
phic) sub-bundle of E is a holomorphic vector bundle π′ : D → M, where D is
an embedded complex submanifold of E and π′ = π|D, such that for each
p ∈ M the fibre Dp = D ∩ Ep is a linear subspace of Ep.

Example 1.45. Consider the trivial bundle CPn × Cn+1 over CPn. Recall that
elements of CPn are (complex) lines in Cn+1. Hence, it is natural to define

OCPn(−1) := { (ℓ, x) ∈ CPn × Cn+1 : x ∈ ℓ }. (1.1)

Together with the associated projection π : OCPn(−1) → CPn, it can be
checked that this is a sub-bundle of CPn × Cn+1, and hence a holomorphic
line bundle over CPn. It is called the tautological line bundle, and denoted
simply by O(−1) when there is no risk of confusion. △

Proposition 1.46 ([21, Example 2.2.4.iv]). Let E → M be a holomorphic vector
bundle. Then there exists the dual bundle E∗ → M, with fibres (E∗)p = (Ep)∗,
for each p ∈ M.

Example 1.47. Recall the tautological line bundle OCPn(−1) → CPn. Its dual
is called the hyperplane line bundle on CPn and is denoted by OCPn(1), or
simply O(1). △

Proposition 1.48 ([21, Example 2.2.4.ii]). Let E → M, F → M be holomorphic
vector bundles over the manifold M. Then there exists the tensor product bundle
E ⊗ F → M, with fibres (E ⊗ F)p = Ep ⊗ Fp, for each p ∈ M.

Example 1.49. Recall the hyperplane line bundle O(1) → CPn. For each
positive integer k, we define the line bundle O(k) → CPn by

O(k) = O(1)⊗k = O(1)⊗ · · · ⊗ O(1)︸ ︷︷ ︸
k times

.

We define moreover the line bundle O(−k) → CPn by

O(−k) = O(−1)⊗k = O(−1)⊗ · · · ⊗ O(−1)︸ ︷︷ ︸
k times

.

There is an embedding of O(−k) as a sub-bundle of a trivial bundle that
generalises Eq. (1.1). More precisely, O(−k) can be identified with a sub-
bundle of CPn × (Cn+1)⊗k → CPn as follows:

O(−k) = { (ℓ, x) ∈ CPn × (Cn+1)⊗k : x ∈ ℓ⊗k }. △

12
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Proposition 1.50 ([21, Example 2.2.4.i]). Let E → M, F → M be holomorphic
vector bundles over the manifold M. Then there exists the direct sum bundle
E ⊕ F → M, with fibres (E ⊕ F)p = Ep ⊕ Fp, for each p ∈ M.

Proposition 1.51 ([21, Example 2.2.4.vi]). Let E → M be a holomorphic vector
bundle of rank k + 1 over the manifold M. Then there exists the projective bundle
associated to E, or the projectivisation of E, which is a holomorphic CPk-bundle
over M denoted by P(E) → M, with fibres (P(E))p = P(Ep), for each p ∈ M.

1.6 Principal bundles
It will also be useful to consider principal G-bundles, where G is a Lie group.
Essentially, these are fibre bundles together with a group whose fibres are
copies of G, but without having a preferred choice of identity element.

In this section, we will be working in the smooth category, as opposed to the
holomorphic category as in the previous section. For that reason, we begin
with the definition of a fibre bundle in this setting.

Definition 1.52. Let M and F be smooth manifolds. A smooth fibre bundle
over M with fibre F, or simply an F-bundle over M, is a smooth manifold
E together with a surjective smooth map π : E → M such that, for each
p ∈ M, there exists a neighbourhood U of p in M and a diffeomorphism
Φ : π−1(U) → U × F such that the following diagram commutes:

π−1(U) U × F

U
π π1

Φ

,

where π1 : U × F → U denotes the projection onto the first factor. The map
Φ is called a local trivialization of E over U.

Example 1.53. The simplest example of a smooth fibre bundle is the trivial
bundle M × F, with π : M × F → M the projection onto the first factor.

We say that a fibre bundle π : E → M is trivializable if there exists a local
trivialization Φ : E → M × F defined over the whole base. △

Definition 1.54. Let G be a Lie group. A (smooth) principal G-bundle is a
smooth fibre bundle π : P → M with fibre G, together with a smooth free
right action P × G → P, such that

• the action of G preserves the fibers of P, i.e. π(p · g) = π(p) for all
p ∈ P and g ∈ G;

• G acts transitively on each fiber of P;

13



1. Background

• the local trivializations Φ : π−1(U) → U × G can be chosen to be G-
equivariant.

Example 1.55. Again, the simplest example of a principal G-bundle is the
trivial bundle M × G, with π : M × G → M the projection onto the first factor.
Here, G acts on M × G by multiplication on the right in the second factor.

We say that a principal bundle π : P → M is trivializable if there exists a local
trivialization Φ : P → M × G defined over the whole base. △
Example 1.56. Let (M, ω, T, µ) be a toric symplectic manifold with moment
polytope ∆ = µ(M). We claim that the restriction

µ|µ−1(∆o) : µ−1(∆o) → ∆o

of the moment map is a principal T-bundle over the interior ∆o of the moment
polytope.

In fact, most of this follows from Lemma 1.31:

• T acts freely on µ−1(∆o) (since the isotropy groups of these points are
trivial);

• the fibres of µ are precisely the orbits of the T-action on M, thus T
preserves them and acts transitively on them;

• the fibres over ∆o are tori of the same dimension as T, and thus they
are diffeomorphic to T by Theorem 1.11.

It remains to show the existence of equivariant local trivializations. For this,
it is enough to apply Lemma 1.38 with k = n. △

We finish this section by stating a very important result about principal
bundles.

Theorem 1.57. Let G be a Lie group and M a contractible smooth manifold. Then,
any principal G-bundle over M is trivializable.

Proof. This follows from [25, Proposition A.8], since the identity map on M
is homotopic to a constant map. Note that this reference treats principal
bundles in the topological setting. However, in light of Remark A.1 in the
same reference, the result should translate to the smooth setting.

Since convex subsets of a finite-dimensional vector space are contractible,
this yields the following consequence.

Corollary 1.58. Let (M, ω, T, µ) be a toric symplectic manifold. Then the principal
T-bundle

µ|µ−1(∆o) : µ−1(∆o) → ∆o

of Example 1.56 is trivializable.
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Chapter 2

Toric symplectic 4-manifolds

2.1 The 2-dimensional case
We begin with a brief look at the simpler case of toric symplectic manifolds
of dimension 2. By Delzant’s theorem, they are classified by their moment
polytopes, which are line segments.

We assume that the manifolds have an action of the standard 1-torus T1 = S1,
and we work under the identifications t ∼= t∗ ∼= R of Example 1.13. References
to unimodularity should be understood with respect to the weight lattice
Z ⊂ R.

We have already seen one example.

Example 2.1. We specialise Example 1.34 to the case n = 1. Consider CP1

with the Fubini–Study symplectic form ωFS, and the action of S1 on CP1

given by
t · [z0 : z1] = [z0 : tz1].

This is an effective Hamiltonian action with moment map

µ0 : CP1 → R, µ0([z0 : z1]) = −1
2

|z1|2
|z0|2 + |z1|2

.

Its moment polytope is the line segment [− 1
2 , 0].

Of course, any translated version of µ0 is also a moment map for this action,
whose associated moment polytope is a translated image of the above line
segment. For instance, if we choose instead

µ̃0 : CP1 → R, µ̃0([z0 : z1]) =
1
2
− 1

2
|z1|2

|z0|2 + |z1|2
=

1
2

|z0|2
|z0|2 + |z1|2

,

the moment polytope is the line segment [0, 1
2 ].
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2. Toric symplectic 4-manifolds

In this way, we can exhibit any line segment in R of length 1
2 as a moment

polytope of a toric symplectic manifold. △
Example 2.2. Alternatively, we can consider CP1 with a scaled symplectic
form λωFS, for some non-zero real number λ. Geometrically, this corresponds
to a copy of CP1 with different surface area and/or orientation. The same
action of S1 is still Hamiltonian with respect to this new symplectic form, but
the moment map, and hence also the moment polytope, are scaled by λ.

For instance, this action of S1 on (CP1,−2ωFS) has a moment map given by

−2 µ0([z0 : z1]) =
|z1|2

|z0|2 + |z1|2
,

and the associated moment polytope is the line segment [0, 1]. △

In the examples above we have identified, for any line segment I ⊂ R, a toric
symplectic 2-manifold whose moment polytope is I. By Delzant’s theorem
(Theorem 1.32), we have identified all toric symplectic 2-manifolds, up to
isomorphism.

Proposition 2.3. Up to the action of AGL(1, Z), any unimodular polytope in R is
equivalent to exactly one interval of the form [0, L], with L > 0.

Equivalently, any toric symplectic manifold (M, ω, S1, µ) of dimension 2 is weakly
isomorphic to (CP1, λωFS, S1, λµ0), for some unique λ > 0.

Proof. An element of AGL(1, Z) is an affine linear map L : R → R of the
form L(x) = ±x + c, for some c ∈ R.

Thus, it is clear that, up to the action of this group, line segments are classified
by their length.

In particular, we see that any toric symplectic manifold of dimension 2 is
diffeomorphic to the sphere S2.

Example 2.4. For the sake of concreteness, we may identify CP1 and S2 via
stereographic projection from the south pole,

σ : S2 → CP1, (x1, x2, x3) 7→
{
[1 + x3 : x1 + ix2] if (x1, x2, x3) ̸= (0, 0,−1)
[0 : 1] if (x1, x2, x3) = (0, 0,−1)

,

σ−1 : CP1 → S2, [z0 : z1] 7→
(

Re(z0z1)

|z0|2 + |z1|2
,

Im(z0z1)

|z0|2 + |z1|2
,
|z0|2 − |z1|2
|z0|2 + |z1|2

)
.

It can be seen that this map satisfies σ∗ωFS = 1
4 ωstd, where ωstd denotes the

standard area form on S2, seen as the unit sphere in R3.

Thus, let us consider the toric symplectic manifold (CP1, 4ωFS, S1, 4µ + 1),
and transfer this structure to S2 through the above identification.

16



2.2. General facts regarding unimodular polygons

It turns out that the resulting action of S1 on S2 is by rotations around the
vertical axis, and the moment map is the height function (see Fig. 2.1):

h := σ ◦ (4µ + 1) : S2 → R, (x1, x2, x3) 7→ x3. △

h

Figure 2.1: The moment map of the Hamiltonian S1-action on S2 by rotations around the vertical
axis, as in Example 2.4.

2.2 General facts regarding unimodular polygons
Having fully understood the toric symplectic manifolds in dimension 2,
we move to the next simplest case of dimension 4. By Delzant’s theorem,
such manifolds are classified by 2-dimensional unimodular polytopes, i.e.
unimodular polygons.

For the rest of this chapter, we assume that the manifolds have an action of
the standard 2-torus T2 = S1 × S1, and we work under the identifications
t ∼= t∗ ∼= R2 of Example 1.13. References to unimodularity should be
understood with respect to the weight lattice Z2 ⊂ R2. By (convex) polygon,
we mean a convex polytope of dimension 2.

We begin by establishing a useful piece of terminology, to which we will refer
repeatedly later.

Definition 2.5. Let P ⊂ R2 be a unimodular polygon. We say that P is in
standard position if it has a vertex at the origin, and the two edges incident at
that vertex lie along the positive coordinate axes.

In particular, by convexity, a unimodular polygon in standard position is
contained in the principal quadrant (R+

0 )
2. See Fig. 2.2 for an example.

Lemma 2.6. Let P ⊂ R2 be a unimodular polygon and p ∈ P a vertex of P. Then,
there exists a transformation T ∈ AGL(2, Z) such that T(p) = 0 and T(P) is a
unimodular polygon in standard position.
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2. Toric symplectic 4-manifolds

. . .

Figure 2.2: A unimodular polygon in standard position.

Proof. If necessary, begin by applying a translation sending p to the origin.

Since P is unimodular, there are now two edges meeting at the origin, lying
along rays generated by vectors u1, u2, for some basis (u1, u2) of Z2.

To transform P into standard position, it is enough to apply a change of basis
to the lattice Z2, which corresponds to a transformation in GL(2, Z).

Before proceeding the study of unimodular polygons, we stop to explicitly
formulate some basic fact about general convex polygons which will be
important. They will allow us to rigorously define what it means to list the
edges of a convex polygon in anticlockwise order.

Lemma 2.7. Let P ⊂ R2 be a convex polygon and p ∈ P a vertex. Then, p belongs
to exactly two edges of P.

Proof. By [17, Proposition 2.6.4], p is the intersection of two edges of P. The
polygon P must be contained in the convex cone C generated by these edges.
Moreover, if a straight line L through p contains P in one of the closed half-
planes it defines, then the whole cone C must be contained in this half-plane.
Thus, the intersection L ∩ P is either the vertex p, or one of the two edges
already in consideration; there are no other edges containing p.

Proposition 2.8. Let P ⊂ R2 be a convex polygon. Let E be an edge of P and
v ∈ R2 an inward-pointing normal vector to E.

The edge E has two vertices. By Lemma 2.7, it is adjacent to exactly two other edges,
say F1 and F2. Let u1, u2 ∈ R2 be inward-pointing normal vectors to F1 and F2,
respectively.

Then the vectors u1, u2 are not parallel to v, and the ordered bases (v, u1) and (v, u2)
of R2 have opposite orientations.

In the above conditions, if (v, u1) is negatively oriented and (v, u2) is posi-
tively oriented, we say that F1 is the previous edge (before E), and F2 is the
next edge (after E). This corresponds to ordering the edges in anticlockwise
order. We also say that E ∩ F1 is the first vertex of E, and E ∩ F2 is the second
vertex of E. See Fig. 2.3 for an illustration.
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E

F1 F2

. . .

v
u1 u2

Figure 2.3: An illustration of Proposition 2.8.

Proof. First of all, if v and u1 were parallel, then the edges E and F1 would
be parallel. Since they intersect at a vertex, this is impossible.

Write v = (v1, v2), u1 = (u11, u12), u2 = (u21, u22). Note that the vector
(v2,−v1) is parallel to the edge E. This choice of vector allows us to dis-
tinguish the two vertices of E. Let (x0, y0) ∈ R2 be the vertex of E such
that

E = { (x0, y0) + t(v2,−v1) : t ∈ [0, T] },

for some T > 0.

This vertex is also a vertex of one of the Fi; without loss of generality, let us
say us that it is a vertex of F1. Choose a vector w = (w1, w2) ∈ R2 such that

F1 = { (x0, y0) + t(w1, w2) : t ∈ [0, T′] },

for some T′ > 0.

By convexity of P, we have that ε(v2 + w1,−v1 + w2) ∈ P, for some small
enough ε > 0. In particular, this vector must be in the open half-plane
determined by an inward normal to the edge F1:

(u11, u12) · ε(v2 + w1,−v1 + w2) = ε(u11v2 − u12v1) > 0,

where we used the fact that u1 and w are orthogonal vectors. This shows that

det(v, u1) = v1u12 − v2u11 < 0,

and hence the ordered basis (v, u1) of R2 is negatively oriented.

An analogous argument at the other vertex of E shows that the ordered basis
(v, u2) of R2 is positively oriented, establishing the claim.

Proposition 2.9. Let P ⊂ R2 be a convex polygon. Make a list of edges of P in the
following way:

• choose an edge E1 of P to begin with;

• at each step, given a list E1, . . . , Ek, add at the end the next edge, in the sense
of Proposition 2.8;

• stop when you find that the next edge is again E1.
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Then, this process terminates, and results in a list of every edge of P, without
repetition. Such a list is an ordering of the edges of P in anticlockwise order.

Proof. The polygon P finitely many edges. Hence, if this process were to
continue indefinitely, we would necessarily have repeated entries in the list.
Let Ei be the first edge to appear a second time in the list.

If Ei ̸= E1, then the previous edge Ei−1 and the next edge Ei+1 have also
already appeared in the list. These are the only two other edges with intersect
Ei. Hence, Ei can only appear in the list if it is immediately preceded by Ei−1.
This contradicts the minimality hypothesis on Ei.

We conclude that Ei = E1 is the first edge that would appear repeated on the
list, if the described process were allowed to continue indefinitely. This shows
that this process terminates, and that the result is a list without repetitions.

It remains to show that the resulting list contains every edge of P. Equiva-
lently, we must show that every two vertices of P are connected by a finite
sequence of edges. Our argument is based on the proof of [17, Proposition
11.3.2].

Let p be a vertex of P, and L ⊂ R2 a supporting line for P (in the sense of
Definition 1.19) such that L ∩ P = {p}. For the sake of contradiction, suppose
that not all vertices are connected to p by a finite sequence of edges. Over
all such vertices, let q be one with minimum distance to L. Note that this
distance is necessarily positive.

The vertex q is adjacent to two other vertices. If both of them were at least as
distant from L as q is, then the convex cone generated by the edges meeting
at q, which contains the polygon P, would not intersect the line L, which is
absurd. Hence, one of the vertices adjacent to q must be closer to L than q is.

By our minimality hypothesis on q, this latter vertex must be connected to
p by a finite sequence of edges. However, this sequence can be enlarged to
connect p to q, which is a contradiction.

We give now a description of unimodular polygons, as a specialisation of
Proposition 1.26. It allows us to decide whether a given convex polygon is
unimodular, given inward normal vectors to its edges.

Proposition 2.10. Let P ⊂ R2 be a convex polygon with d edges.

If P is unimodular, then each of its edges has a unique inward normal vector which
is a primitive element of Z2. Moreover, if v1, . . . , vd ∈ Z2 are the primitive inward
normal vectors to the edges of P, in anticlockwise order, then they must satisfy

(*) det(vi−1, vi) = 1, for all i = 1, . . . , d,
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2.3. Unimodular triangles

where we take v0 = vd.

Conversely, suppose that v1, . . . , vd ∈ Z2 are primitive inward normal vectors to
the edges of P, in anticlockwise order. If condition (*) holds, then P is unimodular.

Proof. Suppose first that P is unimodular. This means that, at each vertex of
P, the two edges meeting there are generated by a Z-basis of the lattice Z2.

Since a quarter-turn rotation is a lattice automorphism of Z2, each edge of P
has a normal vector in Z2. Dividing by the greatest common divisor of its
(integer) components, we obtain a primitive normal vector, which is uniquely
determined up to sign: one inward-pointing and one outward-pointing.

Let p be a vertex of P, at which two edges E1 and E2 meet. By unimodularity,
there exist primitive vectors u1, u2 ∈ Z2 which generate these edges and form
a basis of Z2, i.e. det(u1, u2) = ±1. If ũ1, ũ2 denote the images of u1, u2 under
a quarter-turn rotation, they are primitive (not necessarily inward) normal
vectors to E1 and E2, respectively, and still satisfy det(ũ1, ũ2) = ±1.

If v1, v2 are the primitive inward normal vectors to E1 and E2, respectively,
then

det(v1, v2) = ±det(ũ1, ũ2) ∈ {−1, 1}.

However, by Proposition 2.8, we see that this determinant must be positive,
if we consider the edges in anticlockwise order.

Conversely, we can reverse the argument: if the normals to a consecutive pair
of edges are a basis of Z2, then the edges are themselves generated by a basis
of Z2 obtained from the first one, up to sign, by a quarter-turn rotation.

2.3 Unimodular triangles
In this section, we begin by looking at the simplest kind of polygons: triangles.

Example 2.11. We specialise Example 1.34 to the case n = 2. Consider CP2

with the Fubini–Study symplectic form ωFS, and the action of T2 on CP2

given by
(t1, t2) · [z0 : z1 : z2] = [z0 : t1z1 : t2z2].

This is an effective Hamiltonian action with moment map

µ : CP2 → R2

µ([z0 : z1 : z2]) = −1
2

(
|z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2
|z0|2 + |z1|2 + |z2|2

)
.

The associated moment polygon is an isosceles right triangle with vertices
(0, 0),

(
− 1

2 , 0
)

and
(
0,− 1

2

)
, as shown in Fig. 2.4.
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(0, 0)
(
− 1

2 , 0
)

(
0,− 1

2

)

Figure 2.4: The triangle of Example 2.11, which is the moment polygon of a CP2.

Following Remarks 1.35, 1.36 and 1.37, one can modify this example to obtain
as moment polytope any image of this triangle under scaling and the action
of AGL(2, Z). △

It turns out that the previous example already covers all possible unimodular
triangles in R2.

Proposition 2.12. Up to the action of AGL(2, Z), any unimodular triangle in R2

is equivalent to the isosceles right triangle with vertices (0, 0), (λ, 0) and (0, λ), for
a unique value of λ > 0.

Proof. By Lemma 2.6, we may assume, up to the action of AGL(2, Z), that
our triangle is in standard position. Hence, it is enough to consider triangles
with vertices at (0, 0), (a, 0) and (0, b), for some positive real numbers a, b.

Unimodularity implies that the slope b/a must be rational. Let m, n be
coprime positive integers such that b/a = m/n.

Then, the primitive inward normals vectors are (1, 0), (0, 1) and (−m,−n).

According to Proposition 2.10, these vectors must satisfy

det
(

0 −m
1 −n

)
= det

(
−m 1
−n 0

)
= 1.

Therefore, we have m = n = 1 and a = b, which establishes the proposition.

Uniqueness holds because the transformations in AGL(2, Z) have determi-
nant 1 or −1, and thus they preserve unsigned area.

2.4 Unimodular quadrilaterals
After exploring the case of unimodular triangles, the natural next step is to
consider quadrilaterals. We start with some examples.

22
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Example 2.13. Recall Example 2.1. We can consider the symplectic form
p∗1ωFS + p∗2ωFS on the product CP1 × CP1, where p1, p2 : CP1 × CP1 → CP1

denote the projections to each factor.

Consider the action of T2 on CP1 × CP1 given by

(t1, t2) · ([z0 : z1], [w0 : w1]) = ([z0 : t1z1], [w0 : t2w1]).

It is straightforward to check that this is an effective Hamiltonian action with
moment map

µ : CP1 × CP1 → R2

µ([z0 : z1], [w0 : w1]) = −1
2

(
|z0|2

|z0|2 + |z1|2
,

|w0|2
|w0|2 + |w1|2

)
.

The moment polytope is the square
[
− 1

2 , 0
]
×
[
− 1

2 , 0
]
⊂ R2, which is depicted

in Fig. 2.5. △

(0, 0)
(
− 1

2 , 0
)

(
0,− 1

2

)(
− 1

2 ,− 1
2

)

(0, 0)
(
−λ1

2 , 0
)

(
0,−λ2

2

) (
−λ1

2 ,−λ2
2

)

Figure 2.5: The square of Example 2.13 and one rectangle as in Example 2.14. Each of them is
the moment polygon of a CP1 × CP1.

Example 2.14. More generally, for any constants λ1, λ2 ∈ R \ {0}, one can
consider the symplectic form

ω = λ1 p∗1ωFS + λ2 p∗2ωFS

on CP1 × CP1 (cf. [10, Section 3.4]).

Similarly, the above T2-action on CP1 × CP1 is effective and Hamiltonian
with respect to this symplectic form, with moment map

µ : CP1 × CP1 → R2

µ([z0 : z1], [w0 : w1]) = −1
2

(
λ1|z0|2

|z0|2 + |z1|2
,

λ2|w0|2
|w0|2 + |w1|2

)
.

The moment polytope is a rectangle. For instance, if λ1, λ2 > 0, it is the
rectangle [−λ1/2, 0]× [−λ2/2, 0] ⊂ R2. Another possibility is depicted in
Fig. 2.5. △
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One might hope that every unimodular quadrilateral in R2 is AGL(2, Z)-
equivalent to a rectangle. However, this is not true: one must consider a
more general class of trapezoids, as in the following result.

Proposition 2.15. Up to the action of AGL(2, Z), any unimodular quadrilateral in
R2 is equivalent to a trapezoid with vertices (0, 0), (0, β), (α, β) and (α + kβ, 0),
for some positive real numbers α, β and some non-negative integer k.

Proof. Let P ⊂ R2 be a unimodular quadrilateral. Again by Lemma 2.6, we
may assume, up to the action of AGL(2, Z), that P is in standard position.

Following Proposition 2.10, let (1, 0), (0, 1), (a, b), (c, d) be the primitive
inward normal vectors to the edges of the unimodular quadrilateral, in
anticlockwise order. These must satisfy

det
(

0 a
1 b

)
= det

(
a c
b d

)
= det

(
c 1
d 0

)
= 1.

The first and last determinants imply that a = d = −1, and then the middle
one simplifies to

1 − bc = 1 ⇐⇒ b = 0 or c = 0.

Geometrically, this shows that P has at least two consecutive right angles.
Note that up to a translation and a quarter-turn rotation (which are elements
of AGL(2, Z)), the two alternatives are equivalent. Thus, we may assume
without loss of generality that c = 0, i.e. that we have right angles at the
vertices which lie on the vertical coordinate axis.

Thus far, we reduced to the case where the primitive inward normal vectors
to the edges of P are (1, 0), (0, 1), (−1, k) and (0,−1), for some integer n. In
this case, the vertices of P are (0, 0), (0, β), (α, β) and (α − nβ, 0), for some
positive real numbers α, β.

Finally, up to a translation and a vertical reflection (which are elements of
AGL(2, Z)), we may assume that n ≤ 0. Geometrically, this means that the
lower horizontal edge is not shorter than the upper one. Taking k = −n, we
arrive at the desired result.

The following example introduces the Hirzebruch surfaces, which are a family
of toric symplectic manifolds of dimension 4 whose moment polygons are
the above-described trapezoids. For more details, check [4, Section IV.5.a,
Exercise IV.4, Exercise IV.17] and [21, Exercise 2.4.5].

Example 2.16. Recall the material in Section 1.5. For each non-negative integer
k, we define the k-th Hirzebruch surface Hk to be the total space of the projective
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2.4. Unimodular quadrilaterals

(0, 0) (α + kβ, 0)

(α, β)(0, β)

Figure 2.6: A trapezoid among the family described in Proposition 2.15. This example has
α = 3.14, β = 2.71 and k = 2.

bundle1

Hk = P(O(−k)⊕O) → CP1.

These are complex surfaces, and thus real 4-manifolds.

In Example 1.49, we saw that O(−k) can be identified with a holomorphic
sub-bundle of the trivial bundle CP1 × (C2)⊗k. In fact, that embedding
extends to

ik : Hk ↪→ CP1 × P((C2)⊗k ⊕ C) ∼= CP1 × CP2k
,

which exhibits the Hirzebruch surface Hk as a complex submanifold of a
product of complex projective spaces. Hence, we get symplectic forms on Hk

by pulling back any Kähler form on CP1 × CP2k
.

Alternatively, it can be seen that, as a holomorphic CP1-bundle over CP1, Hk
is isomorphic to

{ ([a : b], [x : y : z]) ∈ CP1 × CP2 : aky = bkx } ⊂ CP1 × CP2.

From now on, we consider this presentation of Hk, since it is more convenient
for our purposes.

Let p1 : CP1 × CP2 → CP1 and p2 : CP1 × CP2 → CP2 be the natural projec-
tions to each factor. We consider on CP1 × CP2 the Kähler form

ω = α p∗1ωCP1 + β p∗2ωCP2 ,

for some constants α, β > 0. If i : Hk ↪→ CP1 × CP2 denotes the above
embedding, then i∗ω is a symplectic form on Hk.

1We could also have defined Hk = P(O(k)⊕O), since these two projective bundles are
actually isomorphic as complex manifolds. This is a consequence of [37, Chapter 3, Exercise
2].
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2. Toric symplectic 4-manifolds

We consider an action of the standard 2-torus T2 on Hk, defined by

(u, v) · ([a : b], [x : y : z]) = ([ua : b], [ukx : y : vz]).

The action is effective, since for instance the element ([1 : 1], [1 : 1 : 1]) ∈ Hk
has trivial isotropy.

We can verify that the action is Hamiltonian. Indeed, the fundamental vector
field associated to the first coordinate of T2 is

X =
d
dt
([eita : b], [eiktx : y : z])

∣∣∣
t=0

= (X1, X2).

Then we can compute that

ω(X, ·) = α ωCP1(X1, (p1)∗·) + β ωCP2(X2, (p2)∗·)

= α d
(
−1

2
|a|2

|a|2 + |b|2

)
+ β d

(
− k

2
|x|2

|x|2 + |y|2 + |z|2

)
= d

(
−1

2

(
α|a|2

|a|2 + |b|2 +
kβ|x|2

|x|2 + |y|2 + |z|2

))
.

Here, we used that we already know the moment map of the usual toric
actions on CP1 and CP2.

For the second coordinate, the computations are analogous, and slightly
simpler. We get that this action is Hamiltonian with moment map

µ : Hk → R2,

µ([a : b], [x : y : z]) = −1
2

(
α|a|2

|a|2 + |b|2 +
kβ|x|2

|x|2 + |y|2 + |z|2 ,
β|z|2

|x|2 + |y|2 + |z|2

)
.

It is not easy at first sight to identify the image of this map. However, recall
from Lemma 1.31 that the vertices of the moment polygon are the images of
the fixed points of the toric action.

By looking at the explicit expression of this action, we see that there are
exactly four fixed points:

([0 : 1], [0 : 0 : 1]), ([0 : 1], [0 : 1 : 0]), ([1 : 0], [1 : 0 : 0]), ([1 : 0], [0 : 0 : 1]).

Hence, we conclude that the image of the map −2µ is the convex polygon
with vertices (0, β), (0, 0), (α + kβ, 0) and (α, β), corresponding to the family
of trapezoids described in Proposition 2.15. △

We remark that the Hirzebruch surfaces are an instance of the more general
notion of a Bott tower, which are iterated CP1-bundles. For more on this, see
e.g. [16].

26



2.5. Chopping corners

2.5 Chopping corners
We have explored the simplest unimodular polygons: triangles and quadrilat-
erals. We will now introduce the operation of corner-chopping, which allows
us to build more complex unimodular polygons out of a given one.

Definition 2.17. Let P ⊂ R2 be a unimodular polygon and p ∈ P a vertex of
P. Let u1, u2 ∈ Z2 be the primitive vectors along the edges meeting at p. Let
ε > 0 be small enough, such that p + εui still lies in the relative interior of
the corresponding edge, for i = 1, 2.

We define the ε-corner-chopping of P at p to be the convex polygon P̃ with the
same vertices as P, except that the vertex p is replaced by p + εu1 and p + εu2
(cf. Fig. 2.7).

Figure 2.7: An illustration of the corner-chopping procedure.

Proposition 2.18. Let P ⊂ R2 be a unimodular polygon, and consider some ε-
corner-chopping of P at a vertex p. If v1, v2 are the primitive inward normal vectors
to the edges meeting at p, then the primitive inward normal vector to the new edge
is v1 + v2.

In particular, any corner-chopping of P is again unimodular.

Proof. Let E1, E2 be the two edges meeting at p, in anticlockwise order, and
let u1, u2 ∈ Z2 be primitive vectors which generate these edges and form a
basis of Z2.

Denote by J : R2 → R2 a quarter-turn rotation in the anticlockwise direction.
Then, one can see, as in the proof of Proposition 2.8, that v1 = Ju1 and
v2 = −Ju2. It follows that

v1 + v2 = J(u1 − u2)

is the primitive inward normal vector to the new edge created by the chop-
ping.
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Note that the definition of corner-chopping generalises naturally to higher-
dimensional polytopes, even though we consider it here only in the two-
dimensional case.

Remark 2.19. There is a geometric construction on toric symplectic manifolds
which corresponds to corner-chopping on polygons. It is a particular case of
the general procedure known as blowing-up. Essentially, it involves removing
a small open ball from the manifold, and collapsing its boundary according
to the Hopf fibration S2n−1 → CPn−1. We will not cover in detail, but we
refer to [23, Remark 2.12], [22, Sections 2 and 3] and [28, Section 7.1] for more
details.

The precise statement is as follows: if M is a toric symplectic manifold with
moment polytope ∆, and ∆̃ is a unimodular polytope that can be obtained
from ∆ by a corner-chopping, then ∆̃ is the moment polytope of a toric
symplectic manifold obtained from M by an equivariant symplectic blow-up
at a T-fixed point.

Notably, if (M, ω) is a 4-dimensional symplectic manifold and (M̃, ω̃) is a
blow-up of the former, then we have a diffeomorphism M̃ ∼= M # CP2 with
the connected sum of M and a copy of CP2 with reversed orientation.

Example 2.20. As illustrated in Fig. 2.7, the corner-chopping of a unimod-
ular triangle is a unimodular quadrilateral with k = 1, in the notation of
Proposition 2.15.

In particular, in light of the previous remark, the blow-up of CP2 at a T2-fixed
point is isomorphic to a first Hirzebruch surface H1, as a toric symplectic
manifold. △

2.6 Classification of unimodular polygons
We are now ready to state and prove a classification result for unimodular
polygons. This result is due to Oda [33, Theorem 8.2], and was originally
considered in the context of algebraic toric varieties. For other later accounts
of this proof, check [14, Section 2.5 and Notes to Chapter 2] and [4, Theorem
VII.4.1].

Theorem 2.21. Up to the action of AGL(2, Z), all unimodular polygons in R2

can be obtained by a finite sequence of corner-choppings from one of the following
polygons:

• the isosceles right triangle with vertices (0, 0), (λ, 0) and (0, λ), for some
positive real number λ;

• the trapezoid with vertices (0, 0), (0, β), (α, β) and (α + nβ, 0), for some
positive real numbers α, β and some non-negative integer n.
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2.6. Classification of unimodular polygons

Proof. Let P ⊂ R2 be a unimodular polygon, and let v1, . . . , vd be the sequence
of primitive inward normal vectors to its edges, in anticlockwise order. The
indices are to be interpreted modulo d, e.g. we consider vd+1 = v1.

We begin with the following lemma (cf. Fig. 2.8).

Lemma 2.22. Let {v, v′} and {w, w′} be Z-bases of Z2. If w lies in the interior of
the sector R+

0 v + R+
0 v′, and w′ is in the sector R+

0 v′ + R+
0 (−v), then it must be

that w′ = v′ or w′ = −v.

v

v′

−v

w
w′

Figure 2.8: An impossible arrangement of bases of Z2, according to the conclusion of Lemma 2.22.

Proof of lemma. Since {v, v′} is a Z-basis of Z2, we can write w = av + bv′

and w′ = cv + dv′, for some integers a, b, c, d. The assumptions on w and w′

translate to a > 0, b > 0, c ≤ 0, d ≥ 0.

If c ̸= 0 and d ̸= 0, we see that

det
(

a c
b d

)
= ad − bc ≥ 2,

which contradicts the fact that {w, w′} is a Z-basis of Z2. Hence, we conclude
that c = 0 or d = 0.

Lemma 2.23. If d ≥ 4, there must be two opposite vectors in the sequence, i.e.
vj = −vi for some i, j. Equivalently, this means that P has at least one pair of
parallel edges.

Proof of lemma. Suppose, for the sake of contradiction, that this does not hold.
Possibly after a cyclic relabelling of the edges, we may assume that, if we
start at v1 and list the normal vectors in anticlockwise order, more than
half of them appear before −v1 (note that, by assumption, −v1 is not in the
sequence).

Let vj be the last of these vectors. Since d ≥ 4, we have by the previous
assumption that j > 2.

By Lemma 2.22 applied to {v2,−v1} and {vj, vj+1}, we see that vj+1 must lie
strictly between −v2 and v1. Moreover, since (vj, vj+1) is a positively oriented
basis, the oriented angle from vj to vj+1 must be less than π, and thus vj+1
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v1

v2

−v1

vj

−v2

vj+1

−vj

v1

v2

−v1

−v2

vj+1

−vj+1

vk
vk+1

vℓ

−vℓ

vℓ+1

−vℓ+1

Figure 2.9: An illustration of the proof of Lemma 2.23.

must lie strictly between −v2 and −vj. This implies that −vj+1 is strictly
between some consecutive pair vk and vk+1, for some k ∈ {2, . . . , j − 1}.

Now, there exists some index ℓ ∈ {j + 1, . . . , d} such that −vℓ is strictly
between vk and vk+1, but −vℓ+1 is strictly between vk+1 and −v1. Loosely
speaking, if we start at vj+1 and continue through the sequence, vℓ is the
“last” one such that −vℓ is “still” strictly between vk and vk+1. Applying
Lemma 2.22 to the bases {vk, vk+1} and {−vℓ,−vℓ+1}, we get a contradiction.

Lemma 2.24. For every index k, there is some integer ak such that

akvk = vk−1 + vk+1.

In fact, this integer ak has a geometric interpretation: it is the Euler class of
the normal bundle of the CP1 corresponding to the edge Ek [4, Section VII.4].

Proof of lemma. Consider a triple vk−1, vk, vk+1 of consecutive vectors. We can
write

vk+1 = Avk−1 + Bvk,

for some integers A, B. The pair (vk, vk+1) is a basis of Z2, so their coordinates
in the basis (vk−1, vk) must satisfy the unimodularity condition

det
(

0 A
1 B

)
= 1 ⇐⇒ A = −1.

Hence, we see that Bvk = vk−1 + vk+1.

Lemma 2.25. If d ≥ 5, there exists some index j such that (vj−1, vj+1) is a positively
oriented Z-basis of Z2, and vj = vj−1 + vj+1.
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Proof of lemma. By Lemma 2.23, possibly after a cyclic relabelling of the edges,
there is some index i such that vi = −v1. Since d ≥ 5, we can moreover make
this choice such that i ≥ 4 (if needed, relabel the sequence starting at vi).

According to Lemma 2.24, our goal is to show that there must exist some
index j such that aj = 1.

v2

v3

vi−1

vi

v1

Figure 2.10: An illustration of the proof of Lemma 2.25.

Note that (v2, vi = −v1) is a positively oriented basis of Z2. Relative to it, all
the vectors v3, . . . , vi−1 are contained in the first quadrant. Hence, for each
index k we can write

vk = bkv2 + b′kvi,

for some integers bk, b′k, which are both positive when k ∈ {3, . . . , i − 1}. By
Lemma 2.24, we also have

akvk = vk−1 + vk+1,

and this integer ak is positive when k ∈ {2, . . . , i − 1} (since in this case the
oriented angle from vk−1 to vk+1 is less than π).

Combining both expressions, we can see that

akbk = bk−1 + bk+1, akb′k = b′k−1 + b′k+1.

We can also consider the quantity ck = bk + b′k, which satisfies the analogous
identity

akck = ck−1 + ck+1.

Since c2 = ci = 1 and c3 ≥ 2, there must exist some j ∈ {2, . . . , i − 1} such
that cj−1 ≤ cj and cj+1 < cj. For such a j, we have from the above identity
that

ajcj = cj−1 + cj+1 < 2cj,
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which implies that aj = 1.

Since (vj−1, vj) is a positively oriented basis of Z2, it follows immediately
that the same is true for (vj−1, vj+1 = vj − vj−1).

Since the pair (vj−1, vj+1) is positively oriented, this means that the lines
spanned by the edges Ej−1 and Ej+1 of P intersect at a point separated from
P by the line spanned by Ej.

Hence, the figure obtained from P by removing the edge Ej is still bounded,
and hence a convex polygon. In fact, it is a unimodular polygon with d − 1
edges, and P is obtained from it by a corner-chopping.

We conclude that any unimodular polygon can be obtained by a finite se-
quence of corner-choppings from a unimodular polygon with at most 4 edges.
By Propositions 2.12 and 2.15, we are done.

We have now concluded the proof of Theorem 2.21. In light of Delzant’s
theorem (Theorem 1.32), this yields a classification result for toric symplectic
manifolds of dimension 4 (cf. Remark 2.19).

Theorem 2.26. Fix the standard 2-torus T2. Up to isomorphism, every toric
symplectic 4-manifold is obtained from a CP2 or a Hirzebruch surface Hk by a finite
sequence of equivariant symplectic blow-ups at T2-fixed points.

Finally, we note that there are some partial results by Oda and Miyake in
the case n = 3 [33, Section 9, and particularly Theorem 9.6]. Nevertheless, it
is hopeless to expect a result analogous to Theorem 2.26 to hold in higher
dimensions (cf. [35], namely Theorems 2.24 and 2.25).

As a follow-up to the contents of this chapter, we should mention the work of
Pelayo, Pires, Ratiu and Sabatini [34] on the moduli space of toric symplectic
4-manifolds. Pelayo and Santos have further extended these results to higher
dimensions in [35].

Additionally, Karshon, Kessler and Pinsonnault have explored in [23] the
question of uniqueness of Hamiltonian toric actions on a given compact
connected symplectic 4-manifold.
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Chapter 3

Real loci

3.1 Real structures
Even though our main setting of interest is toric symplectic manifolds, the
contents of this section hold just as well for more general Hamiltonian torus
actions. For that reason, we state them in this level of generality. We are
essentially following the work of Duistermaat in [13].

Definition 3.1. Let T be a torus and (M, ω, T, µ) be a compact connected
Hamiltonian T-space. A real structure1 on (M, ω, T, µ) is a smooth map
τ : M → M such that:

• τ is an anti-symplectic involution, i.e. τ2 = idM and τ∗ω = −ω;

• the moment map µ is invariant under τ, i.e. µ ◦ τ = µ.

Moreover, the real locus of (M, ω, T, µ, τ) is defined as

Mτ := { p ∈ M : τ(p) = p }.

Example 3.2. Recall from Example 1.34 that (CPn, ωFS, Tn, µ) is a toric sym-
plectic manifold. We define a smooth involution τ : CPn → CPn given by
complex conjugation,

τ([z0 : · · · : zn]) = [z0 : · · · : zn].

From the local expression of the Fubini–Study form given in Example 1.34, it
is clear that τ is anti-symplectic. Similarly, we can see that the formula for
the moment map µ is invariant under complex conjugation. The real locus is
then (CPn)τ = RPn. △

1For some authors, a real structure on (M, ω, T, µ), or perhaps just on (M, ω), is simply
an anti-symplectic involution. Our stricter notion can in that case be called, for instance, a
toric real structure.
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In the above definition of a real structure, we included a compatibility
condition between the anti-symplectic involution and the Hamiltonian torus
action. However, this is not the only possible natural condition that one
might think of imposing. We see now two other equivalent such conditions.

We remark that (a) and (c) are the conditions we are most interested in
and which we will apply in the sequel; condition (b) serves essentially as a
connecting point between them, in the proof.

Proposition 3.3. Let T be a torus with Lie algebra t, (M, ω, T, µ) a compact con-
nected Hamiltonian T-space, and τ : M → M an anti-symplectic smooth involution.
Then, the following are equivalent:

(a) µ ◦ τ = µ;

(b) for all X ∈ t we have τ∗X̃ = −X̃, where as before X̃ denotes the fundamental
vector field on M associated to X;

(c) for all g ∈ T and p ∈ M we have τ(g · p) = g−1 · τ(p).

Proof. We will prove the implications a ⇒ b ⇒ c and c ⇒ b ⇒ a.

a ⇒ b Let X ∈ t. We know that µX ◦ τ = µX. Recall from the definition of a
moment map that dµX = ω(X̃, ·). At each point p ∈ M, the differential
of the left-hand side is

d(µX ◦ τ)p = (dµX)τ(p) ◦ dτp = ωτ(p)(X̃τ(p), dτp(·)).

Using that τ is an anti-symplectic involution, the above equals

ωτ(p)(dτp dττ(p)X̃τ(p), dτp(·)) = (τ∗ω)p(dττ(p)X̃τ(p), ·)
= ωp(−(τ∗X̃)p, ·).

Hence, by differentiating both sides of (a) we see that

ω(−τ∗X̃, ·) = ω(X̃, ·).

By non-degeneracy of the symplectic form ω, it follows that τ∗X̃ = −X̃.

b ⇒ c Fix an arbitrary p ∈ M. What we wish to show is then equivalent to
that, for every g ∈ T, we have

g · τ(g · p) = τ(p).

Define F : T → M by F(g) = g · τ(g · p). Since T is connected and
F(e) = τ(p), it is enough to show that the differential of F is identically
zero. Note that, for each g ∈ T, the tangent space to T at g is im (dLg)e,
where Lg : T → T denotes left multiplication by g.
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For each g ∈ T and X ∈ t, we can compute

dFg((dLg)eX) =
d
dt

F(g exp tX)
∣∣∣
t=0

=
d
dt
[(g exp tX) · τ(g exp tX · p)]

∣∣∣
t=0

=
d
dt
[(g exp tX) · τ(g · p)]

∣∣∣
t=0

+
d
dt
[g · τ(g exp tX · p)]

∣∣∣
t=0

, (3.1)

where in the last equality we have applied the chain rule. Recall that T
is an abelian group, and thus we can see that

d
dt
[(g exp tX) · τ(g · p)]

∣∣∣
t=0

=
d
dt
[exp tX · (g · τ(g · p))]

∣∣∣
t=0

= X̃g·τ(g·p). (3.2)

On the other hand, if we denote by ψ : T → Symp(M, ω) the T-action
on M, we have

d
dt
[g · τ(g exp tX · p)]

∣∣∣
t=0

= (dψg)τ(g·p)(dτ)g·p
d
dt
[exp tX · (g · p)]

∣∣∣
t=0

= (dψg)τ(g·p)(dτ)g·p X̃g·p

= −(dψg)τ(g·p) X̃τ(g·p)

= − d
dt
[g exp tX · τ(g · p)]

∣∣∣
t=0

= − d
dt
[exp tX · (g · τ(g · p))]

∣∣∣
t=0

= −X̃g·τ(g·p). (3.3)

Note that in the third equality we used that (b) holds.

Combining Eqs. (3.1) to (3.3), we conclude that the differential of F does
indeed vanish identically.

c ⇒ b Let X ∈ t. We wish to show that for all p ∈ M we have

dτp X̃p = −X̃τ(p).

By definition of X̃ and of the differential of a smooth map, we see that

dτp X̃p =
d
dt

τ(exp tX · p)
∣∣∣
t=0

=
d
dt
[exp(−tX) · τ(p)]

∣∣∣
t=0

,

where the last equality is an application of (c). By the chain rule, the
above equals

− d
dt
[exp tX · τ(p)]

∣∣∣
t=0

= −X̃τ(p).
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3. Real loci

b ⇒ a It is clearly equivalent to showing that µX ◦ τ = µX, for every X ∈ t.

As in the proof of a ⇒ b, we can see that d(µX ◦ τ) = ω(−τ∗X̃, ·). By
(b), this equals ω(X̃, ·) = dµX.

Hence, µX ◦ τ and µX are real-valued smooth functions on the connected
manifold M whose differentials are identical. It follows that these
functions differ by an additive constant cX ∈ R. However, if we
precompose both sides of this identity with the involution τ, we see
that

µX ◦ τ = µX + cx =⇒ µX = µX + 2cX.

It follows that cX = 0 and µX ◦ τ = µX, as we wished to show.

We establish now some basic properties of the real locus.

Proposition 3.4 ([13, Section 2]). Let T be a torus and (M, ω, T, µ, τ) a compact
connected Hamiltonian T-space equipped with a real structure. Then the real locus
Mτ is a compact Lagrangian submanifold of (M, ω).

Proof. Mτ is compact, since it is a closed subset of the compact manifold M:

Mτ = (idM, τ)−1({ (p, p) ∈ M × M : p ∈ M }).

We will now show that Mτ is a Lagrangian submanifold of M. The main
ingredient for this is the following fact: every point p ∈ Mτ has a τ-invariant
neighbourhood U in M, together with local coordinates x : U → R2n, such
that the local representation of τ in these coordinates is linear. This is shown
separately as Lemma 3.5.

Thus, let p ∈ Mτ and apply this fact to get an appropriate coordinate chart
(U, x). Denote V := x(U) ⊆ R2n, and let Lp : R2n → R2n be a linear map
such that the local representation of τ in this chart is a restriction of Lp. Then,
note that

x(Mτ ∩ U) = { x ∈ V : Lp(x) = x } = V ∩ ker(Lp − id), (3.4)

which is an open subset of an eigenspace of Lp. Hence, Mτ ∩ U is an embed-
ded submanifold of M of dimension dim ker(Lp − id) = dim ker(dτp − id),
and for all p ∈ U

Tp(Mτ ∩ U) = ker(dτp − id) ⊆ Tp M.

Note that the linear map dτp is also an involution, and thus it can only have
1 or −1 as eigenvalues. We can moreover see that dτp is diagonalisable: its
eigenvectors span Tp M, since every vector v ∈ Tp M can be written in the
form

v =
v + dτpv

2
+

v − dτpv
2

.
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3.1. Real structures

This implies that we have a decomposition

Tp M = ker(dτp − id)⊕ ker(dτp + id).

We claim that both summands are isotropic subspaces of the symplectic
vector space (Tp M, ωp), from which it follows that they are in fact Lagrangian
subspaces. Indeed, if v, w ∈ ker(dτp − id), we have that

ωp(v, w) = ωp(dτpv, dτpw) = (τ∗ω)p(v, w) = −ωp(v, w),

showing that ωp(v, w) = 0. The same argument applies to ker(dτp + id).

This shows that, for every p ∈ Mτ, we have dim ker(dτp − id) = n. Together
with the above, we can conclude that the real locus Mτ is a Lagrangian
submanifold of M.

Lemma 3.5. Let M be a smooth manifold of dimension d and τ : M → M a
smooth involution. Then, for every point p ∈ M with τ(p) = p, there exists a
neighbourhood U of p in M satisfying τ(U) = U, together with local coordinates
x : U → Rd on U, such that the local representation of τ in these coordinates is the
restriction to x(U) ⊆ Rd of a linear map L : Rd → Rd.

Proof. Let p ∈ M be such that τ(p) = p. Consider some local coordinates
x : U1 → Rd for M around p. Restricting the coordinates to

U2 := U1 ∩ τ−1(U1) = U1 ∩ τ(U1),

and using the fact that τ is a continuous involution, we find a coordinate
neighbourhood U2 of p satisfying τ(U2) = U2.

Let V2 := x(U2) ⊆ Rd and denote by τ̂ : V2 → V2 the local representation of
τ in the (U2, x) coordinate chart. Let

L = dτ̂x(p) : Rd → Rd

be the derivative of τ̂ at the point x(p). More concretely, we have that

L = dxp ◦ dτp ◦ (dxp)
−1. (3.5)

Note that the linear map L is also an involution.

We want to find new local coordinates x̃ on a neighbourhood of p such
that x̃ ◦ τ ◦ x̃−1 is a restriction of the linear map L. In other words, we are
searching for a map x̃ : U2 → Rd such that x̃ ◦ τ = L ◦ x̃. If one looks at maps
of the form x̃(p) = x(p) + F(p), one might arrive at the following candidate:

x̃ : U2 → Rd, x̃ = x + L ◦ x ◦ τ.
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3. Real loci

Indeed, this is a smooth map, and we can compute

x̃ ◦ τ = x ◦ τ + L ◦ x ◦ τ2 = L2 ◦ x ◦ τ + L ◦ x = L ◦ x̃.

Moreover, using Eq. (3.5) we see that

dx̃p = dxp + L ◦ dxp ◦ dτp = dxp + dxp ◦ (dτp)
2 = 2 dxp,

which is an invertible linear map. By the inverse function theorem, we can
find a neighbourhood U3 ⊆ U2 of p such that x̃ : U3 → Rd is a diffeomor-
phism into its open image, i.e. a local coordinate map.

As before, to ensure τ-invariance, we take U := U3 ∩ τ(U3). It is now possible
to consider the local representation of τ in the (U, x̃) chart, and check that it
is the restriction to x̃(U) of the linear map L previously defined.

In [13], Duistermaat proved a convexity theorem for the real locus. We will
not cover its proof, but it is closely related to the Atiyah–Guillemin–Sternberg
convexity theorem (Theorem 1.28).

Theorem 3.6 (Duistermaat, [13, Theorem 2.5]). Let T be a torus and (M, ω, T, µ, τ)
a compact connected Hamiltonian T-space equipped with a real structure. Suppose
that the real locus Mτ is not empty. Then Mτ has full image under the moment map,
i.e. µ(Mτ) = µ(M) = ∆. In fact, the same is true if we replace Mτ with any one of
its connected components.

3.2 The real locus as a branched covering
From now on, we focus again on the toric case. In this context, one can obtain
stronger results describing the real locus. This goes back at least to the work
of Guillemin in [18]. Moreover, the very closely related concept of a small
cover had already been studied by Davis and Januszkiewicz in [11].

First of all, in the toric case, the real locus is always non-empty.

Lemma 3.7. Let (M, ω, T, µ, τ) be a toric symplectic manifold equipped with a real
structure. Then the real locus Mτ is non-empty, and contains all the fixed points of
the T-action on M.

Proof. Let p ∈ M be a fixed point of the T-action on M. Then q := τ(p) is
also a fixed point of the T-action: for any g ∈ T we have that

g · τ(p) = τ(g−1 · p) = τ(p).

Moreover, we have that µ(q) = µ(τ(p)) = µ(p). By Lemma 1.31, it follows
that p and q belong to the same T-orbit. Since p is a fixed point of the
T-action, we conclude that q = τ(p) = p, and thus p ∈ Mτ.
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3.2. The real locus as a branched covering

Finally, Lemma 1.31 also implies that the preimage of each vertex of the
moment polytope ∆ is one fixed point of the T-action. It follows that these
fixed points do exist, and hence Mτ ̸= ∅.

Moreover, one can show that, in the toric case, the real locus is connected.

Proposition 3.8. Let (M, ω, T, µ, τ) be a toric symplectic manifold equipped with
a real structure. Then the real locus Mτ is a compact connected Lagrangian subman-
ifold of (M, ω).

Proof. Recall from Proposition 3.4 and Lemma 3.7 that Mτ is non-empty, and
a compact embedded Lagrangian submanifold of (M, ω).

Let ∆ = µ(M) be the moment polytope. By Theorem 3.6, we know that
µ(C) = ∆, for any connected component C of Mτ. However, by Lemma 1.31,
we know that the pre-images of the vertices of the moment polytope ∆ are
singletons. This implies that any two connected components must intersect,
and hence that there is at most one connected component.

We will now see that the order 2 elements in T generate a finite subgroup
which acts on Mτ.

Notation 3.9. Let T be a torus. Then we define the subgroup

TR := { g ∈ T : g2 = e }.

For instance, if T = Tn is the standard n-torus, then TR = {−1, 1}n is a finite
subgroup of order 2n.

Lemma 3.10. Let (M, ω, T, µ, τ) be a toric symplectic manifold equipped with a
real structure. Then, for each T-orbit O ⊆ M, the intersection Mτ ∩O is exactly
one TR-orbit.

Proof. We begin by showing that, for each g ∈ TR and p ∈ Mτ, we have
g · p ∈ Mτ. This shows that each Mτ ∩O is a union of TR-orbits. Indeed, we
have that

τ(g · p) = g−1 · τ(p) = g−1 · p = g · p.

Now, suppose that p, q ∈ Mτ and g ∈ T are such that q = g · p. We will show
that there exists g′ ∈ TR such that q = g′ · p. Indeed, we can see that

q = τ(q) = τ(g · p) = g−1 · τ(p) = g−1 · p.

This implies that g2 · p = p, i.e. g2 ∈ Tp, the isotropy group of p. Note that,
by Lemma 1.31, Tp is a subtorus of T. Hence, by Theorem 1.11 we can find
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3. Real loci

h ∈ Tp such that h2 = g2. Now, take g′ = gh−1. It is immediate that q = g′ · p.
Moreover,

(g′)2 = g2h−2 = e,

and thus g′ ∈ TR.

Thus far, we can conclude that each intersection Mτ ∩O is either empty or
exactly one TR-orbit. However, combining Lemma 1.31 and Theorem 3.6 we
see that Mτ intersects every T-orbit.

Theorem 3.11. Let (M, ω, T, µ, τ) be a toric symplectic manifold of dimension
2n equipped with a real structure, with real locus Mτ and moment polytope ∆ =
µ(M) = µ(Mτ). Then, the following holds.

(a) The T-action on M restricts to a TR-action on Mτ.

(b) There exists a TR-equivariant (topological) quotient map

q : ∆ × TR → Mτ,

which makes the following diagram commute

∆ × TR Mτ

∆
p µ

q

.

Here, TR acts on ∆ × TR by multiplication in the second factor, and we denote
by p : ∆ × TR → ∆ the natural projection onto the first factor.

Note that we are not claiming that the map q is smooth2; in fact, it follows from
the proof that this is not true, if n > 0.

(c) Over the interior ∆o, this quotient map restricts to a (TR-equivariant) diffeo-
morphism

Ψ = q|∆o×TR : ∆o × TR ∼−→ Mτ ∩ µ−1(∆o).

This result implies that µ|Mτ : Mτ → ∆ is a branched covering map, which
breaks into 2n connected components over the interior ∆o. More precisely,
Mτ ∩ µ−1(∆o) is the disjoint union of 2n open subsets of Mτ, each of which
is mapped diffeomorphically onto ∆o by µ.

2We should remark that, for n > 0, ∆ is not a smooth manifold, and if n > 1 it is not even
a smooth manifold with boundary. Thus, it might not be clear what smoothness of q would
mean in the first place. There are two equivalent ways to solve this issue: we may regard ∆ as
a smooth manifold with corners; or we may regard it as a subset of the finite-dimensional
vector space t∗. In both cases, a map from ∆ to a manifold is smooth if and only if it can be
locally extended to a smooth map on an open subset of t∗ ∼= R2.
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3.2. The real locus as a branched covering

Moreover, by part (b), since TR has the discrete topology, this means that
Mτ is (homeomorphic to) a quotient of the disjoint union of 2n copies of the
moment polytope ∆.

Finally, the restriction µ|Mτ∩µ−1(∆o) : Mτ ∩ µ−1(∆o) → ∆o of the moment map
is a trivializable principal TR-bundle.

Proof. The fact that TR acts on Mτ is a direct consequence of (half of)
Lemma 3.10. This shows part (a).

(b) Choose be a connected component P0 of Mτ ∩ µ−1(∆o). We claim that
the restriction µ|P0

: P0 → ∆ is a homeomorphism.

If we show that µ|P0
: P0 → ∆ is a proper local homeomorphism, it

follows by [27, Exercise 11-9] that it is a covering map. Since ∆ is simply
connected, this must in fact be a homeomorphism. Note that P0 is
compact and ∆ is Hausdorff, ensuring that µ|P0

is a proper map.

We are thus left to show that µ|P0
: P0 → ∆ is a local homeomorphism.

To do this, we use Lemma 1.38, which gives a local normal form for the
moment map. More precisely, let p ∈ Mτ. Then, in a neighbourhood of
p in M, the moment map looks like µ : Tk × V × B(ε)n−k → Rn, given
by

µ(s1, . . . , sk, µ1, . . . , µk, z1, . . . , zn−k) =

= c +
(

µ1, . . . , µk,−1
2
|z1|2, . . . ,−1

2
|zn−k|2

)
.

Adapting the argument of Duistermaat’s lemma [13, Proposition 2.2],
we may also assume that the involution τ is locally given by

τ : Tk × V × B(ε)n−k → Tk × V × B(ε)n−k,

τ(s1, . . . , sk, µ1, . . . , µk, z1, . . . , zn−k) =

= (s−1
1 , . . . , s−1

k , µ1, . . . , µk, z1, . . . , zn−k).

Hence, the real locus locally looks like

(Tk × V × B(ε)n−k) ∩ Mτ = {−1, 1}k × V × (−ε, ε)n−k

⊂ {−1, 1}k × V × Rn−k.

Note that the points lying over the interior ∆o are those whose coor-
dinates z1, . . . , zn−k are all non-zero, since these are the points with a
trivial isotropy group. When intersected with the real locus, this gives
locally

{−1, 1}k × V × ((−ε, 0) ∪ (0, ε))n−k.
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This corresponds to 2n disjoint copies of V × (0, ε)n−k, which are
open neighbourhoods in each of the 2n connected components of
Mτ ∩ µ−1(∆o). We can conclude that P0 locally looks like V × [0, ε)n−k ,
with the moment map locally given by

µ : V × [0, ε)n−k → Rn,

(µ1, . . . , µk, r1, . . . , rn−k) 7→
(

µ1, . . . , µk,− r2
1
2

, . . . ,−
r2

n−k

2

)
.

This is in fact a homeomorphism to its image. (Note, though, that for
k < n it is not a diffeomorphism!)

We have now shown that, for each component P of Mτ ∩ µ−1(∆o), its
closure P is a homeomorphic copy of ∆; more precisely, it is mapped
homeomorphically onto ∆ by µ. It also follows that these 2n copies of
∆ are permuted under the action of TR.

We must also show that these copies cover the whole real locus Mτ, i.e.

Mτ =
⋃

g∈TR

g · P =
⋃

g∈TR

g · P = Mτ ∩ µ−1(∆o).

Note that µ : Mτ → ∆ is a quotient relative to a group action (of TR),
and hence is an open map [see 26, Lemma 21.1].

Then, µ
(

Mτ \⋃g∈TR g · P
)

is an open subset of ∆ which does not
intersect the interior ∆o. It follows that this subset must be empty, and
thus we get the desired equality.

At this point we are able to define a surjective map q : ∆ × TR → Mτ,
such that

q|∆×{g} = (µ|g·P0
)−1,

for each g ∈ TR. This maps each ∆ × {g} to g · P0 ⊆ Mτ.

(c) Equivalently, we must show that, for all g ∈ TR, the restriction

q|∆o×{g} : ∆o × {g} → g · P0

is a diffeomorphism. By symmetry and definition of the map q, this
reduces to showing that

µ|P0 : P0 → ∆o

is a diffeomorphism.

We already know, from the proof of the previous point, that this map is
a homeomorphism. Moreover, that proof also shows that this map is a
local diffeomorphism (we are in the case k = n). It follows that it is a
diffeomorphism, as we wanted to show.
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3.3 The case n = 2

Let (M, ω, T, µ, τ) be a toric symplectic manifold of dimension 4 equipped
with a real structure. In this case, the real locus Mτ is a compact connected
surface embedded in M.

In light of the classification of surfaces, this raises the following question:
for any given example, is it possible to easily identify the diffeomorphism
type of Mτ? Moreover, can every diffeomorphism type of compact connected
surfaces arise in this way, or is the topology of Mτ constrained?

Using the description of the real locus as a branched covering over the
moment polygon ∆ = µ(M) = µ(Mτ), given in the previous section, we will
be able to use ∆ to recover the diffeomorphism type of Mτ, and answer the
questions raised above. In particular, we will see that the diffeomorphism
type of Mτ is in fact independent of τ, and depends only on the weak
isomorphism type of (M, ω, T, µ), or equivalently on the AGL(2, Z)-orbit of
∆.

We should note that the methods in the previous section only allow us to
identify the real locus Mτ up to homeomorphism. However, it is a well-
known fact that, in dimensions at most 3, two manifolds are diffeomorphic if
and only if they are homeomorphic (see [31] or [20] for dimension 2 and [30,
Theorem 6.3] for dimension 3).

Proposition 3.12. Let (M, ω, T, µ, τ) be a toric symplectic manifold of dimension
4 equipped with a real structure, with real locus Mτ and moment polygon ∆ =
µ(M) = µ(Mτ). Suppose that µ is chosen such that ∆ has a vertex at the origin.

Fix an isomorphism t∗ ∼= R2 which identifies the lattices t∗Z
∼= Z2 and sends ∆

to standard position. By exponentiating, this induces an associated isomorphism
T ∼= T2.

Let E1, . . . , Ed be the edges of ∆. Following Proposition 1.26, write ∆ as an irredun-
dant intersection of half-planes,

∆ = { x ≥ 0 } ∩ { y ≥ 0 } ∩
d⋂

j=3

{ (x, y) ∈ R2 : ajx + bjy ≥ λj },

where, for each j = 3, . . . , d, the vector (aj, bj) ∈ Z2 is the inward-pointing primitive
normal vector to the edge Ej, and λj is a real constant.

Denote ∆(+1,+1) := ∆ and let ∆(−1,+1) be the image of ∆(+1,+1) under reflection
with respect to the coordinate x-axis. Similarly, we define ∆(+1,−1) and ∆(−1,−1),
respectively, as the images of ∆(+1,+1) and ∆(−1,+1) under reflection with respect to
the coordinate y-axis.

The union of these four copies of ∆ can be seen as a polygonal region P ⊂ R2 with
4(d − 2) edges.
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Then, Mτ is the compact connected surface obtained by identifying the edges of P
in pairs, as follows: for each j = 3, . . . , d, and (ε1, ε2) ∈ {−1,+1}2, the edge Ej of
∆(ε1,ε2) is identified with its copy in ∆

((−1)aj ε1,(−1)bj ε2)
.

Notably, the way in which the edges of P are identified depends only on the parity of
the components aj, bj of the primitive normal vectors to the edges of P.

Proof. According to Theorem 3.11, we have a TR-equivariant quotient map

q : ∆ × TR → Mτ,

which is such that the composition µ ◦ q equals the canonical projection
∆ × TR → ∆. Moreover, when restricted to ∆o × TR, the map q is a diffeo-
morphism to its image.

We begin by understanding precisely which is the equivalence relation on
∆ × TR induced by q. Note that if two points in ∆ × TR are identified by
q, they must also have the same image under p, i.e. they correspond to the
same point in ∆ in different “slices”.

First, let v ∈ ∆o be an interior point. Since q is injective on ∆o × TR, each
point in {v} × TR is only identified with itself.

Now, let v ∈ ∆ be a vertex. By Lemma 1.31 and Lemma 3.7, we know that
µ−1(v) ⊆ Mτ is a singleton. This implies that all the four points in {v} × TR

are identified together.

Finally, let v ∈ Eo
j ⊂ ∆ lie in the interior of an edge. Recall that we have fixed

an isomorphism t∗ ∼= R2, along with the induced isomorphisms t ∼= R2 and
T ∼= T2. Moreover, this last one restricts to an isomorphism TR ∼= {−1,+1}2.

According to these identifications, the annihilator in t ∼= R2 of the edge
Ej is the line spanned by the normal vector (aj, bj). By Lemma 1.31, we
can conclude that, for any ε = (ε1, ε2) ∈ {−1,+1}2, the isotropy group of
q(v, ε) ∈ Mτ relative to the T2-action on M is the 1-dimensional subtorus

Tj := { (eiajt, eibjt) : t ∈ R } ⊂ T2.

Recall that, by assumption, aj and bj are coprime integers. Then, the isotropy
group of q(v, ε) relative to the {−1,+1}2-action on Mτ is

Tj ∩ {−1,+1}2 = {(1, 1), ((−1)aj , (−1)bj)}.

By equivariance of q, we have then that q(v, ε) = ε · q(v, 1), which coincides
with q(v, 1) if and only if ε ∈ Tj ∩ {−1,+1}2.

It follows that the four points in {v} × {−1,+1}2 are identified in pairs: each
(v, ε) ∈ ∆ × {−1,+1}2 is identified with the point (v, ((−1)aj , (−1)bj)ε).
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Let us look in particular at points in the edges

E1 = ∆ ∩ { (0, y) : y ∈ R } and E2 = ∆ ∩ { (x, 0) : x ∈ R },

for which (a1, b1) = (1, 0) and (a2, b2) = (0, 1).

Note that the polygonal region P can be obtained as a quotient of ∆ ×
{−1,+1}2, under the following identifications:

• (v, (1, 1)) ∼ (v, (−1, 1)) and (v, (1,−1)) ∼ (v, (−1,−1)), for v ∈ E1;

• (v, (1, 1)) ∼ (v, (1,−1)) and (v, (−1, 1)) ∼ (v, (−1,−1)), for v ∈ E2.

In other words, P is obtained from ∆ × {−1,+1}2 by gluing the copies of ∆
along the edges E1 and E2. By identifying the remaining edges, we obtain
that Mτ is a quotient of P.

Moreover, we can check that the quotient ∆ × {−1, 1}2 respects our labelling
of the copies of ∆. More precisely, for any ε ∈ {−1, 1}2, ∆ × {ε} is mapped
to ∆ε ⊂ P. This shows that identifications of the edges of P are as claimed in
the statement of this result.

This theorem gives us a very explicit description of the real locus. Let us look
at some examples.

Example 3.13. Consider M = CP2 as in Example 2.11. The moment polytope
is a triangle (cf. Proposition 2.12). If we follow the construction in Propo-
sition 3.12, we get that the real locus Mτ is diffeomorphic to the compact
connected surface obtained from the polygon in Fig. 3.1.

(0, 0) (λ, 0)

(0, λ)

(−1,−1)

Figure 3.1: The real locus of a CP2 is a RP2.

It is well-known that the compact connected surface obtained from this
polygon identification scheme is the real projective plane RP2.

Note that this agrees with Example 3.2. △
Example 3.14. Consider now the family of trapezoids from Proposition 2.15,
corresponding to Hirzebruch surfaces Hk. The primitive normal vectors to
the edges are (1, 0), (0, 1), (−1,−k), (0,−1).
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3. Real loci

(0, 0) (α, 0)

(α, β)(0, β)

(0,−1)

(−1, 0)

(0, 0) (α + 2β, 0)

(α, β)(0, β)

(0,−1)

(−1,−2)

Figure 3.2: The construction of Proposition 3.12 applied to Hirzebruch surfaces Hk with k = 0
and k = 2. Their real loci are 2-tori T2.

According to the construction of Proposition 3.12, the diffeomorphism type
of the real locus of Hk will depend only on the parity of k.

If k is even, the real locus of Hk is diffeomorphic to a 2-torus, as exemplified
in Fig. 3.2.

On the other hand, if k is odd, we see that the real locus of Hk is diffeomorphic
to a Klein bottle, as in Fig. 3.3. Recall that a Klein bottle is diffeomorphic to
the connected sum of two real projective planes, K ∼= RP2 # RP2. △

(0, 0) (α + β, 0)

(α, β)(0, β)

(0,−1)

(−1,−1)

Figure 3.3: The construction of Proposition 3.12 applied to a Hirzebruch surface Hk with k = 1.
Its real locus is a Klein bottle.

If one wants to understand the topology of the real locus of an arbitrary
4-dimensional toric symplectic manifold, Theorems 2.21 and 2.26 are highly
useful. In fact, it is enough to consider, as we already have, the cases of a CP2

or a Hirzebruch surface, and then examine what happens after a blow-up.
At the level of moment polygons, this corresponds to a corner-chopping, as
we have seen in Remark 2.19.

Example 3.15. Let ∆ ⊂ R2 be a unimodular polygon, and ∆̃ the unimodular
polygon obtained from ∆ after a corner-chopping.

Up to the action of AGL(2, Z), we may assume that ∆ is in standard position.
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3.3. The case n = 2

Moreover, we suppose that this is done such that the corner-chopping is
performed at the vertex at the origin.

Applying the construction of Proposition 3.12 to ∆, we obtain a polygonal
region P ⊂ R2, together with a labelling scheme for identifying its edges.
If the same construction is applied to the subpolygon ∆̃ ⊂ ∆, we obtain
a polygonal subregion P̃ ⊂ P, which differs from P by the removal of a
small square centered at the origin and with diagonals aligned along the
coordinates axes (see Fig. 3.4). Following Proposition 3.12, the edges of this
square are identified in the same way as in Fig. 3.1.3

Figure 3.4: The construction of Proposition 3.12 performed after a corner-chopping.

We know that the real locus with respect to any real structure on the toric
symplectic manifold (M, ω, T, µ) associated to P is homeomorphic to a certain
compact connected surface S. The picture shows that, after blow-up, the real
locus is transformed by connected sum with a real projective plane, i.e. it
becomes S̃ ∼= S # RP2.

Note the similarity with the identity M̃ ∼= M # CP2, mentioned in Re-
mark 2.19. △

In this way, we have fully determined the possible homeomorphism and
diffeomorphism types of the real locus of a 4-dimensional toric symplectic
manifold. Note that, with the exception of the even Hirzebruch surfaces, Mτ

is never orientable.

Corollary 3.16. Let (M, ω, T, µ, τ) be a 4-dimensional toric symplectic manifold
equipped with a real structure, and Mτ be the real locus.

3Note that, strictly speaking, Proposition 3.12 does not apply directly to ∆̃ and P̃ (e.g.,
∆̃ does not have a vertex at the origin, even though it has edges along the coordinate axes).
However, it is easily seen that the result extends to this case.
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3. Real loci

Then Mτ is a compact connected surface which, up to diffeomorphism, is independent
of the particular choice of τ.

If Mτ is orientable, then (M, ω, T, µ) is weakly isomorphic to a Hirzebruch surface
Hk for some even k, and Mτ is a 2-torus.

In particular, Mτ is never diffeomorphic to a sphere, or to an compact connected
orientable surface of genus higher than 1.

By contrast, any compact connected non-orientable surface can be realised as such a
Mτ:

• if Mτ ∼= RP2, then (M, ω, T, µ) is weakly isomorphic to the standard CP2;

• if Mτ ∼= RP2 # RP2 = K is a Klein bottle, then (M, ω, T, µ) is weakly
isomorphic to a Hirzebruch surface Hk, for some odd k;

• if Mτ ∼= RP2 # . . . # RP2︸ ︷︷ ︸
g+1 times

, for some g > 1, then (M, ω, T, µ) is weakly

isomorphic to a (g − 1)-fold blow-up of a Hirzebruch surface Hk, for some odd
k;

Proof. Recall from Example 2.20 that a blow-up of CP2 is isomorphic to a
Hirzebruch surface H1. For the last point, we recall the identity

T # RP2 ∼= K # RP2 ∼= RP2 # RP2 # RP2.
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