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Preface

These notes are the product of two semester projects done at ETH Zurich in the
academic year 2018/2019 under the supervision of Prof. Dr. Ana Cannas da Silva.
The aim of these notes is to give a thoughtful introduction to the mathematical
methods used in the realm of classical mechanics and their strong connection to
differential topology and differential geometry, especially symplectic geometry. I will
roughly follow the first chapter of the bookQuantumMechanics for Mathematicians
by Leon A. Takhtajan [19], which serves as an introduction to classical mechanics.
As the title already suggests, this is not a treatment of the physical part of classical
mechanics, but rather a mathematical one. Finally, I make use of the book Lectures
on Symplectic Geometry by Ana Cannas da Silva [15].

Happy reading!

Winterthur, Yannis Bähni
September 2018
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Chapter 1
Lagrangian Mechanics

Classical mechanics models systems of finitely many interacting particles, that is,
material bodies whose dimensions may be neglected by describing their motion.

We begin by giving an example of an variational problem coming from the realm
of partial differential equations to motivate the methods used later in this chapter.
They are guided by a variational principle, which is of equal importance in both
physics and mathematics.

Thenwe introduce the basic notions of Lagrangianmechanics, that are Lagrangian
systems and the action functional associated to them. We derive the equations of
motion of general Lagrangian systems, the Euler-Lagrange equations.

Next we introduce the dual notion of a Lagrangian function, that is the associated
Hamiltonian function which is obtained via a Legendre transformation.

Then we introduce the most important theorem in Lagrangian mechanics con-
cerning symmetries: Noether’s theorem.

We conclude by giving a criterion for determining whether a certain Legendre
transform is a diffeomorphism or not, since this is crucial for the dualisation process.

1.1 Introduction

Classical mechanics deals with ordinary differential equations originating from ex-
tremals of functionals, that is functions defined on an infinite-dimensional function
space. The study of such extremality properties of functionals is known as the cal-
culus of variations. To illustrate this fundamental principle, let us consider the
variational formulation of second order elliptic operators in divergence form based
on [18, 167–168].
For convention, unless explicietly stated otherwise, we will assume that all manifolds
are smooth, that is of classC1, finite-dimensional, Hausdorff and paracompact with
at most countably many connected components. Moreover, we use the Einstein sum-
mation convention.
Let n 2 N, n � 1, and � �� Rn such that x� is a smooth manifold with boundary.

1



2 1 Lagrangian Mechanics

Moreover, letH 1
0 .�/ denote the Sobolev space W 1;2

0 .�/ with inner product

hu; viH1
0
.�/ D

Z
�

uv C

Z
�

rurv:

Suppose aij 2 C1.x�/ symmetric, f 2 C1.x�/ and consider the second order
homogenous Dirichlet problem

�
�
@

@xj

�
aij

@u

@xi

�
D f in �;

u D 0 on @�;
(1.1)

Suppose u 2 C1.x�/ solves (1.1). Then integration by parts (see [6, 436]) yieldsZ
�

f v D �

Z
�

@

@xj

�
aij

@u

@xi

�
v

D �

Z
�

div.X/v

D

Z
�

hX;rvi

D

Z
�

aij
@u

@xi
@v

@xj

for any v 2 C1c .�/, whereX WD
�
aij @u

@xi

�
j
. Thus we say that u 2 H 1

0 .�/ is a weak
solution of (1.1) iff

8v 2 C1c .�/ W

Z
�

aij
@u

@xi
@v

@xj
D

Z
�

f v:

If .aij /ij is uniformly elliptic, i.e. there exists � > 0 such that

8x 2 �8� 2 Rn W aij .x/�i�j � �j�j
2 ;

then (1.1) admits a unique weak solution u 2 H 1
0 .�/ (in fact u 2 C1.�/ using

regularity theory, for more details see [18, 175]). Indeed, observe that

h�; �ia W H
1
0 .�/ �H

1
0 .�/! R

defined by

hu; via WD

Z
�

aij
@u

@xi
@v

@xj
(1.2)

is an inner product onH 1
0 .�/ with induced norm equivalent to the standard one on

H 1
0 .�/ due to Poincaré’s inequality [18, 107]. Applying the Riesz Representation

theorem [18, 49–50] yields the result. Moreover, this solution can be characterized
by a variational principle, i.e. if we define the energy functional E W H 1

0 .�/! R



1.1 Introduction 3

E.v/ WD
1

2
kvk2a �

Z
�

f v;

for any v 2 H 1
0 .�/, wherek�ka denotes the norm induced by the inner product (1.2),

then u 2 H 1
0 .�/ solves (1.1) if and only if

E.u/ D inf
v2H1

0
.�/

E.v/: (1.3)

Indeed, suppose u 2 H 1
0 .�/ is a solution of (1.1). Let v 2 H

1
0 .�/. Then u D vCw

for w WD u � v 2 H 1
0 .�/ and we compute

E.v/ D E.uC w/

D
1

2
kuk2a C hu;wia C

1

2
kwk2a �

Z
�

f .uC w/

D E.u/C
1

2
kwk2a

� E.u/

with equality if and only if u D v a.e. Conversly, suppose the infimum is attained by
some u 2 H 1

0 .�/. Thus by elementary calculus

0 D
d

dt

ˇ̌̌̌
tD0

E.uC tv/ D hu; via �

Z
�

f v (1.4)

for all v 2 H 1
0 .�/.

Suppose now that u 2 C1.x�/ with uj@� D 0 solves the variational formulation
(1.3). Then again integration by parts yields

hu; via �

Z
�

f v D �

Z
�

div.X/v �
Z
�

f v D

Z
�

�
�
@

@xj

�
aij

@u

@xi

�
� f

�
v

for all v 2 C1c .�/ and where X WD
�
aij @u

@xi

�
j
. Hence (1.4) implies

8v 2 C1c .�/ W

Z
�

�
�
@

@xj

�
aij

@u

@xi

�
� f

�
v D 0:

We might expect that this implies

�
@

@xj

�
aij

@u

@xi

�
D f:

That this is indeed the case, is guaranteed by a foundational result in the calculus
of variations (therefore the name).

Proposition 1.1 (Fundamental Lemma of Calculus of Variations [18, 40]). Let
� � Rn open and f 2 L1loc.�/. If



4 1 Lagrangian Mechanics

8' 2 C1c .�/ W

Z
�

f ' D 0;

then f D 0 a.e.

Thuswe recovered a second order partial differential equation from the variational
formulation. In fact, this is exactly the boundary value problem (1.1) from the
beginning of our exposition. This technique, and in particular the fundamental lemma
of calculus of variations 1.1 will play an important role in our treatment of classical
mechanics. However, since we are concerned with smooth manifolds only, we use a
version of the fundamental lemma of calculus of variations 1.1, which is fairly easy
to prove and hence really deserves the terminology “lemma”.

Lemma 1.2 (Fundamental Lemma of Calculus of Variations, Smooth Version).
Let � � Rn open and f 2 C1.�/. If

8' 2 C1c .�/ W

Z
�

f ' D 0;

then f D 0.

Proof. Towards a contradiction, assume that f ¤ 0 on�. Thus there exists x0 2 �,
such that f .x0/ ¤ 0. Without loss of generality, we may assume that f .x0/ >
0, since otherwise, consider �f instead of f . The smoothness of f implies the
continuity of f on �. Thus there exists ı > 0, such that f .x/ 2 Bf .x0/=2

�
f .x0/

�
holds for all x 2 Bı.x0/ or equivalently, f .x/ > f .x0/=2 > 0 for all x 2 Bı.x0/.
By lemma 2:22 [6, 42], there exists a smooth bump function ' supported in Bı.x0/
and ' D 1 on xBı=2.x0/. In particular, ' 2 C1c .�/. Therefore we have

0 D

Z
�

f ' D

Z
Bı.x0/

f ' �

Z
Bı=2.x0/

f ' >
1

2
f .x0/ jBı=2.x0/j > 0;

which is a contradiction. �

Exercise 1.3. 1 Let � �� Rn, 2 � p < 1 and define B WD fv 2 C1.x�/ W vj@� D 0g.
Moreover, define Ep W B ! R by Ep.v/ WD

R
� jrvj

p . Derive the partial differential equation
satisfied by minimizers u 2 B of the variational problemE.u/ D infv2B E.v/.

1.2 Lagrangian Systems and the Principle of Least Action

Mechanical systems, for example a pendulum, are modelled using the language
of differential geometry. Thus it is necessary to introduce the relevant physical
counterparts.

1 This is exercise 1:2:.b/ from exercise sheet 1 of the course Functional Analysis II taught by Prof.
Dr. A. Carlotto at ETHZ in the spring of 2018, which can be found here.

https://metaphor.ethz.ch/x/2018/fs/401-3462-00L/ex/Problems01-FAII.pdf
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Definition 1.4 (Configuration Space). A configuration space is defined to be a
finite-dimensional smooth manifold.

Definition 1.5 (Motion). A motion in a configuration spaceM is defined to be a
path 
 2 C1.J;M/, where J � R is an interval.

Definition 1.6 (State).A state of the configuration space is defined to be an element
of the tangent bundle of the configuration space, called the state space.

One should think of a state .x; v/ of a configuration space as follows: x gives the
position of the mechanical system and v its velocity at this position. The fundamental
principle governing motions of mechanical systems is the following.

Axiom 1.7 (Newton-Laplace Determinacy Principle).Amotion in a configuration
space is completely determined by a state at some instant of time.

The Newton-Laplace determinacy principle 1.7 motivates our main definition of
this chapter.

Definition 1.8 (Lagrangian System). A Lagrangian system is defined to be a tuple
.M;L/ consisting of a smooth manifold M and a function L 2 C1.TM � R/,
called a Lagrangian function.

Example 1.9 (Lagrangian System). Let T 2 C1.TM �R/ and V 2 C1.M �R/.
Define L 2 C1.TM �R/ by L WD T � V . In this situation, T is called the kinetic
energy and V is called the potential energy.

Definition 1.10 (Path Space). Let M be a smooth manifold. For x0; x1 2 M and
t0; t1 2 Rwith t0 � t1, define the path space ofM connecting .x0; t0/ and .x1; t1/
to be the set

P .M/
x0;t0
x1;t1
WD
˚

 2 C1

�
Œt0; t1� ;M

�
W 
.t0/ D x0 and 
.t1/ D x1

	
: (1.5)

Remark 1.11. For the sake of simplicity, we will just use the terminology path
space for P .M/

x0;t0
x1;t1

and simply write P .M/. However, we implicitely assume the
conditions of definition 1.10.

Definition 1.12 (Variation).LetP .M/ be a path space and 
 2 P .M/. A variation
of 
 is defined to be a morphism � 2 C1

�
Œt0; t1� � Œ�"0; "0� ;M

�
for some "0 > 0

and such that

� � .t; 0/ D 
 for all t 2 Œt1; t0�.
� � .t0; "/ D x0 for all " 2 Œ�"0; "0�.
� � .t1; "/ D x1 for all " 2 Œ�"0; "0�.

Remark 1.13. If � is a variation of 
 2 P .M/, we write 
".�/ WD � .�; "/ for all
" 2 Œ�"0; "0�. With this notation, 
" 2 P .M/ for all " 2 Œ�"0; "0�.



6 1 Lagrangian Mechanics

Example 1.14 (Perturbation of a Path along a Single Direction). Let M n be a
smooth manifold, .U; '/ a chart on M and suppose that 
 is a path in U . With
respect to this chart, we can write the coordinate representation of 
 as


.t/ D
�

1.t/; : : : ; 
n.t/

�
for any t 2 Œt0; t1�. Let f 2 C1c .t0; t1/. Consider the family

� W Œt0; t1� � Œ�"0; "0�!M

defined by

� .t; "/ WD .� ı '�1/
�

1.t/; : : : ; 
 i .t/C "f .t/; : : : ; 
n.t/

�
where � W U ,! M denotes inclusion and "0 > 0 is to be determined. Suppose
kf k1 ¤ 0. By exercise 1.15, there exists ı > 0 such that

Uı WD
˚
x 2 Rn W dist

�
x; 
.Œt0; t1�/

�
< ı

	
� '.U /:

Choose "0 > 0 such that 0 < "0 < ı=kf k1. Then in coordinates

dist
�

".t/; 
.Œt0; t1�/

�
� j
".t/ � 
.t/j �j"jkf k1 � "0kf k1 < ı

for all t 2 Œt0; t1�. Hence 
".t/ 2 Uı and thus 
".t/ 2 '.U /. Therefore, � is indeed
well-defined. Moreover, it is easy to show that the properties of definition 1.12 holds,
therefore, � is a variation of 
 . In fact, this example shows, that any path 
 contained
in a single chart admits infinitely many variations. An example of such a variation is
shown in figure 1.1.

Exercise 1.15. Let .X; d/ be a metric space and A � U � X where U is open in X and A is
closed inX . Then there exists ı > 0 such that

Uı WD fx 2 X W dist.x;A/ < ıg � U:

Definition 1.16 (ActionFunctional).Let .M;L/be aLagrangian systemandP .M/

be a path space. The morphism S W P .M/! R defined by

S.
/ WD

Z t1

t0

L
�

.t/; P
.t/; t

�
dt

is called the action functional associated to the Lagrangian system .M;L/.

Motions of Lagrangian systems are characterized by an axiom.

Axiom 1.17 (Hamilton’s Principle of Least Action). Let .M;L/ be a Lagrangian
system and P .M/ be a path space. A path 
 2 C1.Œt0; t1� ;M/ describes a motion
of .M;L/ between .x0; t0/ and .x1; t1/ if and only if

d

d"

ˇ̌̌̌
"D0

S.
"/ D 0 (1.6)



1.2 Lagrangian Systems and the Principle of Least Action 7

Fig. 1.1: Example of a variation of the path 
.t/ D .
1.t/; 
2.t// in R2 defined
by 
.t/ WD .t2 C sin.t/ cos.t/; t3 � t / for t 2 Œ�3

2
; 3
2
� along the second coordinate

using a smooth bump function as in [6, 42].

for all variations 
" of 
 .

Definition 1.18 (Extremal). A motion of a Lagrangian system between two points
is called an extremal of the action functional S .

The Newton-Laplace determinacy principle 1.7 implies that motions of mechan-
ical systems can be described as solutions of second order ordinary differential
equations. That this is indeed the case, is shown by the next theorem. But first, let us
fix some notation. Let M n be a smooth manifold and .U; '/ be a chart on M with
coordinates .xi /. In what follows, we will use the abbreviation

@

@x
WD

�
@

@x1
; : : : ;

@

@xn

�
;

where as usual @

@xi
W U ! TM denotes the i -th coordinate vector field, that is

@f

@xi
.x/ WD

@

@xi

ˇ̌̌̌
x

f D @i .f ı '
�1/

�
'.x/

�
;

for all i D 1; : : : ; n, x 2 U and f 2 C1.M/. Also recall, that on this chart

dfx D
@f

@xi
.x/dxi jx (1.7)

holds for all x 2 U (see [6, 281]). Additionally, we need the following proposition.
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Proposition 1.19 (Derivative of a Function along a Curve [6, 283]). SupposeM
is a smooth manifold, J � R an interval, 
 2 C1.J;M/ a curve on M and
f 2 C1.M/. Then for all t 2 J holds

.f ı 
/0.t/ D df
.t/
�

 0.t/

�
:

Theorem 1.20 (Euler-Lagrange Equations). Let .M n; L/ be a Lagrangian system.
A path 
 2 C1.Œt0; t1� ;M/ describes a motion of .M;L/ between .x0; t0/ and
.x1; t1/ if and only if with respect to all charts .U; xi /

@L

@x

�

.t/; P
.t/; t

�
D

d

dt

@L

@v

�

.t/; P
.t/; t

�
(1.8)

holds, where .xi ; vi / denotes the standard coordinates on TM . The system of equa-
tions (1.8) is referred to as the Euler-Lagrange equations.

Proof. By Hamilton’s principle of least action 1.17, we may assume that 
 is an
extremal of the action functional S . The proof is divided into two steps.
Step 1: Suppose that 
 is contained in a chart domainU .Let t 2 Œt0; t1� and abreviate
xt WD .
.t/; P
.t/; t/. Suppose � W Œt0; t1�� Œ�"0; "0�!M is a variation of 
 . Then
there exists a rectangle R such that

Œt0; t1� � f0g � R � Œt0; t1� � Œ�"0; "0�

and � .R/ � U . Indeed, � is continuous since � is smooth and so � �1.U / is open
in Œt0; t1� � Œ�"0; "0�. Since 
 is a path in U , we get

Œt0; t1� � f0g � �
�1.U /

by the definition of a variation. By exercise 2.4. (c) [5, 22], the standard Euclidean
metric and the maximum metric j � j1 generate the same topology, thus for all t 2
Œt0; t1� there exists rt > 0 such that

Brt .t; 0/ WD
˚
.x; "/ 2 Œt0; t1� � Œ�"0; "0� W max fjx � t j ;j"jg < rt

	
� � �1.U /:

Since Œt0; t1� � f0g is compact in Œt0; t1� � Œ�"0; "0�, we find m 2 N such that

Œt0; t1� � f0g �

m[
iD1

Bri .ti ; 0/:

Set r WD miniD1;:::;m ri and define R WD Œt0; t1�� .�r; r/. Then if .t; "/ 2 R we get
that there exists some index i such that .t; 0/ 2 Bri .ti ; 0/. Hencejt � ti j < ri and so

j.t; "/ � .ti ; 0/j1 D max fjt � ti j ;j"jg < ri :

Thus .t; "/ � Bri .ti ; 0/ � �
�1.U / and so � .R/ � U . Hence we can write


".t/ D
�

1" .t/; : : : ; 


n
" .t/

�
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and
P
".t/ D

�
P
1" .t/; : : : ; P


n
" .t/

�
for all .x; "/ 2 R, where the dot denotes a derivative with respect to time.
Using the formula for the derivative of a function along a curve 1.19, we compute

d

d"

ˇ̌̌̌
"D0

L
�

".t/; P
".t/; t

�
D dLxt

�
d

d"

ˇ̌̌̌
"D0


".t/;
d

d"

ˇ̌̌̌
"D0

P
".t/; 0

�
D dLxt

�
d


j
" .t/

d"
.0/

@

@xj

ˇ̌̌̌

.t/

;
d P


j
" .t/

d"
.0/

@

@vj

ˇ̌̌̌
P
.t/

; 0

�
:

for all variations 
" of 
 in U . Moreover, using the formula for the differential of a
function on coordinates (1.7) yields

dLxt D
@L

@xi
.xt /dx

i
jxt C

@L

@vi
.xt /dv

i
jxt C

@L

@t
.xt /dt jxt :

Therefore

0 D
d

d"

ˇ̌̌̌
"D0

S.
"/

D

Z t1

t0

d

d"

ˇ̌̌̌
"D0

L
�

".t/; P
".t/; t

�
dt

D

Z t1

t0

dLxt

�
d


j
" .t/

d"
.0/

@

@xj

ˇ̌̌̌

.t/

;
d P


j
" .t/

d"
.0/

@

@vj

ˇ̌̌̌
P
.t/

; 0

�
D

Z t1

t0

@L

@xi
.xt /

d
 i".t/

d"
.0/dt C

Z t1

t0

@L

@vi
.xt /

d P
 i".t/

d"
.0/dt

D

Z t1

t0

@L

@xi
.xt /

d
 i".t/

d"
.0/dt C

Z t1

t0

@L

@vi
.xt /

�
d
 i".t/

d"
.0/

�0
dt

D

Z t1

t0

@L

@xi
.xt /

d
 i".t/

d"
.0/dt C

@L

@vi
.xt /

d
 i".t/

d"
.0/

ˇ̌̌̌t1
t0

�

Z t1

t0

d

dt

@L

@vi
.xt /

d
 i".t/

d"
.0/dt

D

Z t1

t0

�
@L

@xi
.xt / �

d

dt

@L

@vi
.xt /

�
d
 i".t/

d"
.0/dt

since 
 i".t0/ and 
 i".t1/ are constant by definition of a variation. Let f 2 C1c .t0; t1/,
j D 1; : : : ; n and 
" be the variation of 
 defined in example 1.14 along the j -th
direction. Above computation therefore yields

0 D

Z t1

t0

�
@L

@xj
.xt / �

d

dt

@L

@vj
.xt /

�
f .t/dt
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for all f 2 C1c .t0; t1/. Hence the fundamental lemma of calculus of variations 1.2
implies

@L

@xj
.xt / �

d

dt

@L

@vj
.xt / D 0

for all j D 1; : : : ; n.
Conversly, if we assume that the Euler-Lagrange equations (1.8) hold, above com-
putation yields

d

d"

ˇ̌̌̌
"D0

S.
"/ D

Z t1

t0

�
@L

@xi
.xt / �

d

dt

@L

@vi
.xt /

�
d
 i".t/

d"
.0/dt D 0

for every variation 
" of 
 .
Step 2: Suppose that 
 is an arbitrary extremal of S . The key technical result used
here is the following lemma.

Lemma 1.21 (Lebesgue Number Lemma [5, 194]). Every open cover of a compact
metric space admits a Lebesgue number, i.e. a number ı > 0 such that every subset
of the metric space with diameter less than ı is contained in a member of the family.�

Let .U˛/˛2A be the smooth structure onM , i.e. the maximal smooth atlas. Since 

is continuous,

�

�1.U˛/

�
˛2A

is an open cover for Œt0; t1�. By the Lebesgue number
lemma 1.21, this open cover admits a Lebesgue number ı > 0. LetN 2 N such that
.t1 � t0/=N < ı and define

ti WD
i

N
.t1 � t0/C t0

for all i D 0; : : : ; N . Then for all i D 1; : : : ; N , 
 jŒti�1;ti � is contained inU˛ for some
˛ 2 A. Let us extend the construction of example 1.14. Suppose f 2 C1c .ti�1; ti /.
Then we can define a variation � W Œt0; t1� � Œ�"0; "0�!M as follows: Define

� W .Œt0; t1� n suppf / � Œ�"0; "0�!M

by � .t; "/ WD 
.t/, and � W .ti�1; ti / � Œ�"0; "0� ! M to be the map defined in
example 1.14. Since both definitions agree on the overlap .ti�1; ti / n suppf , an
application of the gluing lemma for smooth maps [6, 35] yields the existence of a
variation � of 
 onM . Therefore, step 1 implies the Euler-Lagrange equations (1.8).
The converse direction is content of problem 1.80 �

Due to the Newton-Laplace Determinacy Principle 1.7, the motions on a La-
grangian system are inherently characterized by the Lagrangian function and locally
by the Euler-Lagrange equations (1.8). Hence any motion satisfies locally a system
of second order ordinary differential equations. This system bears its own name.

Definition 1.22 (Equations of Motion). The Euler-Lagrange equations (1.8) of a
Lagrangian system are called the equations of motion.

Example 1.23. Motions on Riemannian Manifolds Let .M n; g/ be a Riemannian
manifold and consider the Lagrangian L onM defined in example 1.9 with kinetic
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energy

T .x; v; t/ WD
1

2
gx.v; v/ D

1

2
jvj2g

and potential energy V.x; t/ WD 0 for x 2M , v 2 TxM and t 2 R. Let .U; xi / be a
chart onM . We compute

L.x; v; t/ D
1

2
gx .v; v/

D
1

2
gx

�
vi

@

@xi

ˇ̌̌̌
x

; vj
@

@xj

ˇ̌̌̌
x

�
D
1

2
gx

�
@

@xi

ˇ̌̌̌
x

;
@

@xj

ˇ̌̌̌
x

�
vivj

D
1

2
gij .x/v

ivj ;

where gij .x/ WD gx
�
@

@xi

ˇ̌
x
; @

@xj

ˇ̌
x

�
. Thus

@L

@xl
.x; v; t/ D

1

2

@gij

@xl
.x/vivj

and in particular

@L

@xl

�

.t/; P
.t/; t

�
D
1

2

@gij

@xl

�

.t/

�
P
 i .t/ P
j .t/;

for all l D 1; : : : ; n. Moreover

@L

@vl
.x; v; t/ D

1

2
gij .x/ı

i
lv
j
C
1

2
gij .x/v

iı
j

l
D
1

2
glj .x/v

j
C
1

2
gil .x/v

i

implies

d

dt

@L

@vl

�

; P
; t

�
D
1

2

d

dt
glj .
/ P


j
C
1

2
glj .
/ R


j
C
1

2

d

dt
gil .
/ P


i
C
1

2
gil .
/ R


i

D
1

2
dglj . P
/ P


j
C
1

2
glj .
/ R


j
C
1

2
dgil . P
/ P


i
C
1

2
gil .
/ R


i

D
1

2

@glj

@xk
P
k P
j C

1

2
glj .
/ R


j
C
1

2

@gil

@xk
P
k P
 i C

1

2
gil .
/ R


i

D
1

2

@gjl

@xk
P
k P
j C

1

2
gjl .
/ R


j
C
1

2

@gil

@xk
P
k P
 i C

1

2
gil .
/ R


i

D gil R

i
C
1

2

@gjl

@xi
P
 i P
j C

1

2

@gil

@xj
P
 i P
j :

Therefore the Euler-Lagrange equations (1.8) read

0 D
d

dt

@L

@vl
�
@L

@xl
D gil R


i
C
1

2

�
@gjl

@xi
C
@gil

@xj
�
@gij

@xl

�
P
 i P
j ;
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for all l D 1; : : : ; n. Multiplying both sides by gkl yields

R
k C � kij P

i
P
j D 0; (1.9)

for all k D 1; : : : ; n, where

� kij WD
1

2
gkl

�
@gjl

@xi
C
@gil

@xj
�
@gij

@xl

�
are the Christoffel symbols with respect to the choosen chart (see [4, 70]). The
system of equations (1.9) is called geodesic equations (see [4, 58]). Hence extremals

 of the action functional satisfy the geodesic equation and are therefore geodesics
on the Riemannian manifoldM .

Lemma 1.24. Let .M;L/ be a Lagrangian system and define LCdf 2 C1.TM �
R/ by

.LC df /.x; v; t/ WD L.x; v; t/C dfx.v/

for any f 2 C1.M/. Then .M;L/ and .M;LC df / admit the same equations of
motion.

Proof. Let us denote the action function corresponding toLCdf by zS and suppose

" is a variation of 
 inM . Using the formula for the derivative of a function along
a curve [6, 283] we compute

zS.
"/ D

Z t1

t0

L.
".t/; P
".t/; t/dt C

Z t1

t0

df
".t/
�
P
".t/

�
dt

D S.
"/C

Z t1

t0

.f ı 
"/
0.t/dt

D S.
"/C f
�

".t1/

�
� f

�

".t0/

�
D S.
"/C f .x1/ � f .x0/:

In particular
d

d"

ˇ̌̌̌
"D0

zS.
"/ D
d

d"

ˇ̌̌̌
"D0

S.
"/:

Remark 1.25. Lemma 1.24 implies, that the Lagrangian of a mechanical system can
only be determined up to differentials of smooth functions. Actually, in coordinates,
also up to total time derivatives. Hence a law of motion, that is a Lagrangian de-
scribing a certain mechanical system, is in fact an equivalence class of Lagrangian
functions.
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1.3 Legendre Transform

In this section we dualize the notion of a Lagrangian function, that is, to each
Lagrangian function L 2 C1.TM/ we will associate a dual function L� 2
C1.T �M/. It turns out, that in this dual formulation, the equations of motion
take a very symmetric form. To simplify the notation and illuminating the main
concept, we consider Lagrangian functions of a special type.

Definition 1.26 (Autonomous System). An autonomous Lagrangian system is de-
fined to be a tuple .M;L/ consitsing of a smooth manifold M and a function
L 2 C1.M/.

Let .M n; L/ be an autonomous Lagrangian system and .U; xi / a chart on M .
Moreover, let .xi ; vi / denote standard coordinates on TM , that is vi WD dxi for all
i D 1; : : : ; n. Expanding the Euler-Lagrange equations (1.8) yields

@L

@xj

�

.t/; P
.t/

�
D

d

dt

@L

@vj

�

.t/; P
.t/

�
D

@2L

@xi@vj

�

.t/; P
.t/

�
P
 i .t/C

@2L

@vi@vj

�

.t/; P
.t/

�
R
 i .t/

for all j D 1; : : : ; n. In order to solve above system of second order ordinary
differential equations for R
 i .t/ and all initial conditions in the chart on T U , the
matrix HL.x; v/ defined by

HL.x; v/ WD

�
@2L

@vi@vj
.x; v/

�i
j

(1.10)

must be invertible on T U .

Definition 1.27 (Nondegenrate System).AnautonomousLagrangian system .M;L/
is said to be nondegenerate, iff for all coordinate charts U onM , detHL.x; v/ ¤ 0

holds on T U .

Example 1.28 (Nondegenrate System on a Riemannian Manifold). Let .M; g/
be a Riemannian manifold. Consider the Lagrangian T � V with kinetic energy
T 2 C1.TM/ defined by T .v/ WD 1

2
jvj2 and potential energy V 2 C1.M/. Then

the computation performed in example 1.23 yields

HT�V .x; v/ D
�
gij .x/

�i
j

on every chart since @V

@vi
D 0 for every i , and so this Lagrangian system is nonde-

generate.

The nondegeneracy of an autonomous Lagrangian system is intrinsically con-
nected to a certain differential form in �1.TM/, which we will construct now.
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Proposition 1.29. Let .M;L/ be an autonomous Lagrangian system. For every
.x; v/ 2 TM we can define a covector �Lj.x;v/ 2 T �.x;v/TM by setting

�Lj.x;v/ WD
@L

@vi
.x; v/dxi j.x;v/: (1.11)

in induced coordinates
�
xi ; vi

�
about .x; v/ on TM . Then �L 2 �1.TM/.

Proof. We have to show that the chartwise definition (1.11) does not depend on the
choice of coordinates. Let

�
zU ; zxi

�
be another chart on M such that U \ zU ¤ ¿.

Denote the induced coordinates on TM by
�
zxi ; zvi

�
. Then for .x; v/ 2 U \ zU we

have that

@

@xj

ˇ̌̌̌
.x;v/

D
@zxk

@xj
.x; v/

@

@zxk

ˇ̌̌̌
.x;v/

C
@zvk

@xj
.x; v/

@

@zvk

ˇ̌̌̌
.x;v/

;

and

@

@zvi

ˇ̌̌̌
.x;v/

D
@xj

@zvi
.x; v/

@

@xj

ˇ̌̌̌
.x;v/

C
@vj

@zvi
.x; v/

@

@vj

ˇ̌̌̌
.x;v/

D
@vj

@zvi
.x; v/

@

@vj

ˇ̌̌̌
.x;v/

:

We compute

d zxi j.x;v/

�
@

@xj

ˇ̌̌̌
.x;v/

�
D
@zxi

@xj
.x; v/

and
d zxi j.x;v/

�
@

@vj

ˇ̌̌̌
.x;v/

�
D 0:

Thus

d zxi j.x;v/ D
@zxi

@xj
.x; v/dxj j.x;v/:

Observe that
@zxi

@xj
.x; v/ D

@zxi

@xj
.x/:

This can be seen directly by using the definitions and the coordinate structure on
TM . Finally, we have that

dxj jx.v/ D
@xj

@zxi
.x/d zxi jx.v/;

or equivalently

vj .x; v/ D
@xj

@zxi
.x/zvi .x; v/:

Hence we compute

�Lj.x;v/ D
@L

@zvi
.x; v/d zxi j.x;v/
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D
@L

@vj
.x; v/

@vj

@zvi
.x; v/

@zxi

@xk
.x/dxkj.x;v/

D
@L

@vj
.x; v/

@xj

@zxi
.x/

@zxi

@xk
.x/dxkj.x;v/

D
@L

@vj
.x; v/ı

j

k
dxkj.x;v/

D
@L

@vj
.x; v/dxj j.x;v/:

Therefore �L is independent of the choice of coordinates and so �L 2 �1.TM/. �

Corollary 1.30. Let .M;L/ be an autonomous Lagrangian system. Then the map
DFL W TM ! T �M defined in coordinates

�
xi ; vi

�
about .x; v/ 2 TM by

DFL.x;v/ WD
@L

@vi
.x; v/dxi jx

is well-defined.

Proof. This follows immediately from the proof of proposition 1.29. Indeed, for
different coordinates

�
zxi ; zvi

�
we compute

DFL.x;v/ D
@L

@zvi
.x; v/d zxi jx

D
@L

@vj
.x; v/

@xj

@zxi
.x/

@zxi

@xk
.x/dxkjx

D
@L

@vj
.x; v/dxj jx :

�

Definition 1.31 (Associated Form). Let .M;L/ be an autonomous Lagrangian sys-
tem. Then the form �L defined in proposition 1.29 is called the associated form.

Definition 1.32 (Fibrewise Derivative). Let .M;L/ be an autonomous Lagrangian
system. The map DFL W TM ! T �M defined in corollary 1.30 is called the
fibrewise derivative.

Example 1.33 (Fibrewise Derivative on a Riemannian Manifold). Consider the
autonomous Lagrangian system as defined in example 1.28. Then the computation
performed in example 1.23 yields

DF .T � V /.x;v/ D gij .x/v
idxj

on every chart since @V

@vj
D 0 for all j .

Definition 1.34 (Nondegenrate Tensor). Let V be a finite-dimensional real vector
space. A tensor ! 2 ƒ2.V �/ is said to be nondegenrate, iff the map y! W V ! V �

defined by y!.v/ WD iv! is an isomorphism.
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Lemma 1.35. Let V be a finite-dimensional real vector space and let ! 2 ƒ2.V �/.
Then the following statements are equivalent:

(a) ! is nondegenerate.
(b) With respect to any basis for V , the matrix representing y! is invertible.
(c) If !.v; u/ D 0 for all u 2 V , then v D 0.
(d) If v ¤ 0, then there exists some u 2 V such that !.v; u/ ¤ 0.
(e) The matrix representing ! in any basis of V is invertible.

Definition 1.36 (Nondegenerate Form). Let M be a smooth manifold and ! 2
�2.M/. Then ! is said to be nondegenerate, iff !x is nondegenerate for every
x 2M .

Proposition 1.37. An autonomous Lagrangian system .M;L/ is nondegenerate if
and only if d�L is nondegenerate.

Proof. Using the computation performed in [6, 363], we get

d�L D d

�
@L

@vj
dxj

�
D

@2L

@xi@vj
dxi ^ dxj C

@2L

@vi@vj
dvi ^ dxj :

Moreover, using part (e) of properties of the wedge product [6, 356], we compute

d�L

�
@

@xk
;
@

@xl

�
D

@2L

@xi@vj
det

0BBB@
dxi

�
@

@xk

�
dxj

�
@

@xk

�
dxi

�
@

@xl

�
dxj

�
@

@xl

�
1CCCA

C
@2L

@vi@vj
det

0BBB@
dvi

�
@

@xk

�
dxj

�
@

@xk

�
dvi

�
@

@xl

�
dxj

�
@

@xl

�
1CCCA

D
@2L

@xi@vj
.ıikı

j

l
� ıil ı

j

k
/

D
@2L

@xk@vl
�

@2L

@xl@vk

for all k; l D 1; : : : ; n. Similarly, we compute

d�L

�
@

@vk
;
@

@xl

�
D

@2L

@vk@vl
and d�L

�
@

@vk
;
@

@vl

�
D 0;

and using skew-symmetry, we also deduce

d�L

�
@

@xk
;
@

@vl

�
D �

@2L

@vk@vl
:



1.3 Legendre Transform 17

Therefore, the matrix representing d�L with respect to the standard basis is given
by the block matrix

d�L D

 
� �HL

HL 0

!
;

where HL is the matrix defined in (1.10). Thus

det
�
d�L

�
D .�1/n.detHL/

2

Hence the matrix representation of d�L is invertible if and only if HL is invertible,
and the conclusion follows. �

So far, we have associated to each Lagrangian system .M;L/ a 1-form on TM ,
the associated form �L. In order to get closer to our goal of dualizing the concept of
a Lagrangian function, we need also a 1-form on T �M . Suppose .U; xi / is a chart
on M . The induced standard coordinates on the cotangent bundle T �M of M are
given by

�
xi ; �i

�
, where �i WD @

@xi
, considered as an element of the double dual

T ��U . On this chart, define a one 1-form ˛ by � WD �idx
i . Suppose

�
zxi ; z�i

�
are

other coordinates. Then from the computations performed at the beginning of the
previous section, we have that

z�i D
@xj

@zxi
�j and d zxi D

@zxi

@xk
dxk :

Thus

� D z�id zx
i
D
@xj

@zxi
�j
@zxi

@xk
dxk D �j ı

j

k
dxk D �jdx

j ;

and so, � is independen of the choice of coordinates.

Definition 1.38 (Tautological Form). Let M be a smooth manifold. The tauto-
logical form on T �M , denoted by �, is the form ˛ 2 �1.T �M/ defined locally
by

� WD �idx
i ;

where
�
xi ; �i

�
denotes the standard coordinates on T �M .

Remark 1.39. The preceeding discussion showed, that the tautological form ˛ is
well-defined.

Recall, that if F 2 C1.M;N / for some smooth manifoldsM andN , and l 2 N,
we can define a mapping F � W �

�
T .0;l/TN

�
! �

�
T .0;l/TM

�
, called the pullback

by F , by
.F �A/x.v1; : : : ; vl / WD AF.x/

�
dFx.v1/; : : : ; dFx.vl /

�
for all x 2M and v1; : : : ; vl 2 TxM (see [6, 320]).

Definition 1.40 (Legendre Transform). A Legendre transform of an autonomous
Lagrangian system .M;L/ is defined to be afibrewisemapping �L 2 C1.TM; T �M/

such that
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�L D �
�
L.�/:

Example 1.41. Legendre Transform on a Riemannian Manifold Let .M;L/ be a
Lagrangian system. Then the morphism �L W TM ! T �M defined by

�L.x; v/ WD
�
x;DFL.x;v/

�
(1.12)

is a Legendre transform. In particular, if we consider the Lagrangian systemdefined in
example 1.28, we get that the above defined Legendre transform is a diffeomorphism.
Indeed, suppose that �T�V .x; v/ D �T�V .zx; zv/. Then x D zx and

gij .x/v
idxj D gij .x/zv

idxj

using example 1.33. So we must have

gij .x/v
i
D gij .x/zv

i

for all j . Multiplying both sides by gkj .x/ yields vk D zvk for every k and hence v D
zv. Thus �T�V is injective. Let � 2 T �xM be given by �idxi jx . Then �T�V .x; v/ D
.x; �/, where v is given in coordinates by vk WD gki .x/�i .

Since the nondegenracy of a Lagragian system .M;L/ is inherently connected
to the nondegenracy of the form d�L and the definition of the Legendre transform
invokes the form �L, one would expect a connection between the nondegeneracy of
the Lagrangian system and a local property of Legendre transform. Moreover, the
proof shows that any Legendre transform has the form from example 1.41.

Lemma 1.42. A Legendre transform on a Lagrangian system is a local diffeomor-
phism if and only if the Lagrangian system is nondegenrate.

Proof. Denote the Lagrangian system by .M;L/. Let .U; xi / be a chart onM and
denote by

�
xi ; vi

�
and

�
xi ; �i

�
the induced standard coordinates on TM and T �M ,

respectively. Then we compute

��L.�/ D �
�
L

�
�jdx

j
�
D .�j ı �L/d

�
xj ı �L

�
;

which must coincide with
�L D

@L

@vj
dxj :

Thus
�L.x; v/ D D

FL.x;v/; (1.13)

and so

D�Lj.x;v/ D

 
I 0

� HL

!
at every .x; v/ 2 TM . Hence

det
�
D�Lj.x;v/

�
D detHL:



1.3 Legendre Transform 19

If �L is a local diffeomorphism, by definition, we have that some restriction of
�L to some neighbourhood of .x; v/ is a diffeomorphism, and so, by properties of
differentials (d) [6, 55], we have that D�Lj.x;v/ is an isomorphism. Conversly, if
the Lagrangian system is nondegenerate, we conclude using the inverse function
theorem for manifolds [6, 79], that �L is a local diffeomorphism. �

Corollary 1.43. Let .M;L/ be an autonomous Lagrangian system with Legendre
transform �L W TM ! T �M . Then

�L.x; v/ D D
FL.x;v/:

Definition 1.44 (Energy). The energy of an autonomous Lagrangian system
.M;L/ is defined to be the function EL 2 C1.TM/ given by

EL.x; v/ WD D
FL.x;v/.v/ � L.x; v/

for .x; v/ 2 TM .

Example 1.45 (Energy on a Riemannian Manifold). Consider the Lagrangian
system defined in example 1.28. Then the computation performed in example 1.33
yields

ET�V .x; v/ D
@T

@vk
vk �

@V

@vk
vk � T .v/C V.x/

D
1

2
gij ı

i
kv
j vk C

1

2
gij v

iı
j

k
vk � T .v/C V.x/

D gij v
ivj � T .v/C V.x/

D T .v/C V.x/

for every .x; v/ 2 TM . Hence the energy of this Lagrangian system is given by
kinetic energy plus potential energy.

Definition 1.46 (HamiltonianFunction).Let .M;L/ be an autonomousLagrangian
systemand �L a diffeomorphicLegendre transform.ThemorphismHL 2 C1.T �M/

defined by
HL WD EL ı �

�1
L

is called the Hamiltonian function associated to the Lagrangian function L.

Example 1.47. Hamiltonian function on a Riemannian Manifold Consider the La-
grangian system defined in example 1.28. By example 1.41 the Legendre transform
�T�V is a diffeomorphism. Using example 1.45, we compute

HT�V .x; �/ D ET�V
�
��1T�V .x; �/

�
D ET�V

�
x; v

�
D T .v/C V.x/

D
1

2
gij .x/v

ivj C V.x/
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D
1

2
gij .x/g

ik.x/�kg
jl .x/�l C V.x/

D
1

2
ıkj �jg

jl .x/�l C V.x/

D
1

2
gkl .x/�k�l C V.x/

where v D
�
gki

�k
i
� .

Theorem 1.48 (Hamilton’s Equations). Let 
 be a motion on an autonomous La-
grangian system .M n; L/ and suppose that �L is a diffeomorphic Legendre trans-
form. Then 
 satisfies the Euler-Lagrange equations in every chart if and only if the
path �


.t/; �.t/
�
WD �L

�

.t/; P
.t/

�
satisfies the following system of first order ordinary differential equations in every
chart:

P
.t/ D
@HL

@�

�

.t/; �.t/

�
and P�.t/ D �

@HL

@x

�

.t/; �.t/

�
(1.14)

The equations (1.14) are called Hamilton’s equations.

Proof. First we computeHL in standard coordinates .xi ; �i / on T �M . By corollary
1.43 we have that

�L.x; v/ D D
FL.x;v/: (1.15)

Since �L is a diffeomorphismby assumption, in particular it is a local diffeomorphism
(see [6, 80]). Hence by lemma 1.42, the Lagrangian system .M;L/ is nondegenerate.
So considering ��1L .x; �/, we can apply the implicit function theorem [6, 661] to
obtain v implicitely from the equation

� D
@L

@v
.x; v/:

Hence in coordinates

HL.x; �/ D

�
@L

@vi
vi � L.x; v/

� ˇ̌̌̌
�D @L

@v

:

Therefore
@HL

@�j
D

@

@�j

�
�iv

i
� L.x; v/

� ˇ̌
�D @L

@v

D ı
j
i v
i
D vj :

Hence
@HL

@�j

�

.t/; �.t/

�
D P
j .t/;

for all j D 1; : : : ; n. Moreover, we have that
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@HL

@xj
D

@

@xj

�
@L

@vi
vi � L.x; v/

� ˇ̌̌̌
�D @L

@v

D �
@L

@xj
.x; v/

ˇ̌̌̌
�D @L

@v

;

and so
@HL

@xj

�

.t/; �.t/

�
D �

@L

@xj

�

.t/; P
.t/

�
;

for all j D 1; : : : ; n. If the Euler-Lagrange equations (1.8) hold, then we get

@HL

@xj

�

.t/; �.t/

�
D �

d

dt

@L

@vj

�

.t/; P
.t/

�
D �P�j .t/;

and thus the Hamilton’s equations (1.14) hold. Conversly, if we suppose that Hamil-
ton’s equations (1.14) hold, we get that

�
d

dt

@L

@vj

�

.t/; P
.t/

�
D �P�j .t/ D

@HL

@xj

�

.t/; �.t/

�
D �

@L

@xj

�

.t/; P
.t/

�
;

and so the Euler-Lagrange equations (1.8) are satisfied. �

1.4 Conservation Laws and Noether’s Theorem

Definition 1.49 (Conservation Law).A conservation law for a Lagrangian system
.M;L/ is defined to be a function I 2 C1.TM/ such that

d

dt
I
�

.t/; P
.t/

�
D 0

for all extremals of the action functional (1.16).

Proposition 1.50 (Conservation of Energy). The energy of an autonomous La-
grangian system is a conservation law.

Proof. By definition of the fibrewise derivative 1.32 we have that

DFL.
; P
/ . P
/ D
@L

@vi

�

; P


�
dxi

�
P
j

@

@xj

�
D
@L

@vi
.
; P
/ P
j ıij D

@L

@vi
.
; P
/ P
 i :

Thus by definition of the energy 1.44 and the Euler-Lagrange equations 1.20 we
compute
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d

dt
E .
; P
/ D

d

dt

�
@L

@vi
.
; P
/ P
 i

�
�
d

dt
L .
; P
/

D
d

dt

@L

@vi
.
; P
/ P
 i C

@L

@vi
.
; P
/ R
 i �

@L

@xi
.
; P
/ P
 i �

@L

@vi
.
; P
/ R
 i

D
d

dt

@L

@vi
.
; P
/ P
 i �

@L

@xi
.
; P
/ P
 i

D
@L

@xi
.
; P
/ P
 i �

@L

@xi
.
; P
/ P
 i

D 0:

Recall, that for a smooth manifold M , we define the set of diffeomorphisms on
M by

Diff.M/ WD f' 2 C1.M;M/ W ' is a diffeomorphismg :

In fact Diff.M/ constitutes a group under ordinary composition of maps. Thus we
define a one-parameter group of diffeomorphisms of M to be a group homomor-
phisms

.R;C/! Diff.M/

Explicitely, given any one-parameter group � W .R;C/ ! Diff.M/, we define
�s WD �.s/ for all s 2 R and we can therefore write .�s/s2R for the one-parameter
group � of diffeomorphisms ofM . Since � is a homomorphism of groups, we have
that

�sCt D �s ı �t and �0 D idM

for all s; t 2 R. We say that the one-parameter group .�s/s2R of diffeomorphisms of
M is smooth, iff the corresponding map � W R�M !M defined by .s; x/ 7! �s.x/

is smooth. If F 2 C1.M;N / for two smooth manifoldsM and N , for x 2 M we
define the differential of F at x to be the mapping DFx W TxM ! TF.x/N , given
byDFx.v/.f / WD v.f ı F / for all f 2 C1.N /. These fibrewise mappings can be
assembled to the global differential of F , defined to be the mapping DF W TM !
TN given by DF.x; v/ WD

�
F.x/;DFx.v/

�
. The global differential is a smooth

map (see [6, 68]) and has the following properties.

Proposition 1.51 (Properties of the Global Differential [6, 68]). Let M;N;P be
smooth manifolds, F 2 C1.M;N / and G 2 C1.N; P /. Then:
1. D.G ı F / D DG ıDF .
2. D.idM / D idTM .
3. If F is a diffeomorphism, then DF is a diffeomorphism with .DF /�1 D
D
�
F �1

�
.

Remark 1.52. In amore sophisticated language, proposition 1.51 says that the global
differential is a functorD W Man! Man, where Man denotes the category of finite-
dimensional smooth manifolds.

Lemma 1.53. Let .�s/s2R be a smooth one-parameter group of diffeomorphisms of
a smooth manifold M . Then .D�s/s2R is a smooth one-prameter group of diffeo-
morphisms of TM .
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Proof. Part (c) of the properties of the global differential 1.51 implies thatD�s is a
diffeomorphism for all s 2 R. Moreover, by part (c) of the properties of the global
differential 1.51 we compute

D�sCt D D.�s ı �t / D D�s ıD�t

for all s; t 2 R. Lastly, part (b) of the properties of the global differential 1.51 implies

D�0 D D.idM / D idTM :

Given a one-parameter group .�s/s2R of diffeomorphisms of a smooth manifold
M , we can define a vector field V by

Vx WD
d

ds

ˇ̌̌̌
sD0

�s.x/

for all x 2 M . This vector field is actually smooth by [6, 210] and is called the
infinitesimal generator of � .

Definition 1.54 (Symmetry). A symmetry of an autonomous Lagrangian system
.M;L/ is defined to be a diffeomorphism F 2 Diff.M/, such that

.DF /�L D L:

A symmetry group of .M;L/ is defined to be a Lie group G, such that there exists
a left action � W G �M ! M and such that �g is a symmetry of .M;L/ for all
g 2 G.

Recall, that if k 2 N and X 2 .M/ for a smooth manifold M , we can define a
mapping iX W �kC1.M/! �k.M/, called interior multiplication, by

.iX!/x.v1; : : : ; vk/ WD !x
�
X jx ; v1; : : : ; vk

�
for all x 2 M and v1; : : : ; vk 2 TxM . One-parameter groups of symmetries of
autonomous Lagrangian systems give rise to conservation laws.

Theorem 1.55 (Noether’s Theorem, Lagrangian Version). Let .�s/s2R be a
smooth one-parameter group of symmetries of an autonomous Lagrangian system.
Then iV .�L/ is a conservation law, where V denotes the infinitesimal generator of
the one-parameter group .D�s/s2R of diffeomorphisms of TM . The conservation
law iV .�L/ is called the Noether integral.

Proof. Let
�
T U; .xi ; vi /

�
be a chart on TM . First we compute the infinitesimal

generator V of the one-parameter group .�s/s2R in the chart
�
U; .xi /

�
. Let x 2 U .

Then

Vx D
d

ds

ˇ̌̌̌
sD0

�s.x/ D
d� is .x/

ds
.0/

@

@xi

ˇ̌̌̌
�0.x/

D
d� is .x/

ds
.0/

@

@xi

ˇ̌̌̌
x

:
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Thus
Vx D V

i .x/
@

@xi

ˇ̌̌̌
x

where V i W U ! R are given by

V i .x/ WD
d� is .x/

ds
.0/:

Next consider the infinitesimal generator V of the one-parameter group .D�s/s2R.
For .x; v/ 2 T U , where v D vi @

@xi
, we compute

V.x;v/ D
d

ds

ˇ̌̌̌
sD0

�
�s.x/;D�sjx.v/

�
D

d

ds

ˇ̌̌̌
sD0

�
�s.x/; v

j @�
i
s

@xj
.x/

@

@xi

ˇ̌̌̌
�s.x/

�
D
d� is .x/

ds
.0/

@

@xi

ˇ̌̌̌
.x;v/

C vj
@2� i

@s@xj
.0; x/

@

@vi

ˇ̌̌̌
.x;v/

D V i .x/
@

@xi

ˇ̌̌̌
.x;v/

C vj
@2� i

@xj @s
.0; x/

@

@vi

ˇ̌̌̌
.x;v/

D V i .x/
@

@xi

ˇ̌̌̌
.x;v/

C vj
@

@xj
d� is .x/

ds
.0/

@

@vi

ˇ̌̌̌
.x;v/

D V i .x/
@

@xi

ˇ̌̌̌
.x;v/

C vj
@V i

@xj
.x/

@

@vi

ˇ̌̌̌
.x;v/

:

Therefore

iV .�L/ .x; v/ D �Lj.x;v/
�
V.x;v/

�
D
@L

@vi
.x; v/dxi j.x;v/

�
V.x;v/

�
D
@L

@vi
.x; v/V i .x/:

For .x; v/ 2 TM set 
.s/ WD d�s.x; v/. If f 2 C1.TM/, the definition of the
velocity of a curve and of the differential yields

.Vf /.x; v/ D V.x;v/f D

�
d

ds

ˇ̌̌̌
sD0


.s/

�
f D D


�
d

ds

ˇ̌̌̌
sD0

�
f D

d

ds

ˇ̌̌̌
sD0

.f ı
/:

So using the Euler-Lagrange equations 1.20 and the assumption that �s is a symmetry
of .M;L/ for all s 2 R, we get

d

dt
iV .�L/ .
; P
/ D

d

dt

�
@L

@vi
.
; P
/V i .
/

�
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D
d

dt

@L

@vi
.
; P
/V i .
/C

@L

@vi
.
; P
/

d

dt
V i .
/

D
@L

@xi
.
; P
/V i .
/C

@L

@vi
.
; P
/

d

dt
V i .
/

D
@L

@xi
.
; P
/V i .
/C

@L

@vi
.
; P
/

@V i

@xj
.
/ P
j

D V.
; P
/L

D
d

ds

ˇ̌̌̌
sD0

�
L ıD�s

�
.
; P
/

D
d

ds

ˇ̌̌̌
sD0

L.
; P
/

D 0:

Thus iV .�L/ is a conservation law. �

1.5 Tonelli Lagrangians

In order to associate to a Lagrangian system a Hamiltonian function, we need that the
Legendre transform is a diffeomorphism. So far, we discussed no conditions when
this is the case. We follow [9, 7–8]. First of all, we give an invariant characterisation
of the fibrewise derivative 1.32. Let � W E ! N be a fibre bundle with fibre F and
' 2 C1.M;N /. Define

'�E WD
˚
.x; p/ 2M �E W '.x/ D �.p/

	
Then the following diagram commutes

'�E E

M N:

�2

�1 �

'

Moreover, �1 W '�E !M is a fibre bundle with fibre F , and if � W E !M admits
a structure group G, then '�E admits a Lie subgroup of F as structure group. The
fibre bundle '�E is called the pullback bundle of E by '.
Suppose now that �1 W E1 ! M1 and �2 W E2 ! M2 are two vector bundles,
f 2 C1.M1;M2/ and F 2 C1.E1; E2/ such that the diagram

E1 E2

M1 M2

F

�1 �2

f
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commutes. For each x 2M1 we get an induced map

Fx WD F jE1jx W E1jx ! E2jf .x/:

Its derivative is a map

D.Fx/p W TpE1jx ! TF.p/E2jf .x/

for every p 2 E1jx and since E1jx and E2jf .x/ are vector spaces, we get a map

zD.Fx/p WD ˚
�1
F .p/ ıD.Fx/p ı p̊ W E1jx ! E2jf .x/; (1.16)

where p̊ and ˚F.p/ are the isomorphisms from lemma F.39. Consider the vector
bundle z� W Hom.E1; f �E2/!M1. Then p 7! zD.Fx/p defines a smooth map

DF F W E1 ! Hom.E1; f �E2/:

If M1 D M2 D M , f D idM , E1 D TM and E2 D M � R, then any F 2
C1.TM;M � R/ can be identified with a function L 2 C1.TM/. Moreover,
DFL defined above coincides with the fibrewise derivative of L defined in 1.32.
Indeed, let .x; v/ 2 TM with v D vi @

@xi

ˇ̌
x
, and w D wi @

@xi

ˇ̌
x
for some local

coordinates .xi / about x, we compute

DFL.x;v/.w/ D dL

�
d

dt

ˇ̌̌̌
tD0

�
vi C twi

� @

@xi

ˇ̌̌̌
x

�
D dL

�
wi

@

@vi

ˇ̌̌̌
.x;v/

�
D
@L

@vi
.x; v/wi

D
@L

@vi
.x; v/dxi jx.w/:

Proposition 1.56. Let .M;L/ be an autonomous Lagrangian system with symme-
try group G and corresponding action � . Denote by f 2 C1.TM/ the function
f .x; v/ WD DFL.x;v/.v/. Then

.D�g/
�f D f

for all g 2 G.

Proof. By definition of the pullback, we need to show that f ıD�g D f holds for
all g 2 G. Let .x; v/ 2 TM . Then we compute (identifying the derivative with the
differential)

.f ıD�g/.x; v/ D
�
d.L�g.x//D�g.x;v/ ı ˚D�g.x;v/

� �
D�g.x; v/

�
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D d.L�g.x//D�g.x;v/

�
d

dt

ˇ̌̌̌
tD0

.1C t /D.�g/x.v/

�
D

d

dt

ˇ̌̌̌
tD0

L�g.x/
�
.1C t /D.�g/x.v/

�
D

d

dt

ˇ̌̌̌
tD0

L�g.x/
�
D.�g/x

�
.1C t /v

��
D

d

dt

ˇ̌̌̌
tD0

Lx
�
.1C t /v

�
D d.Lx/.x;v/

�
d

dt

ˇ̌̌̌
tD0

.1C t /v

�
D d.Lx/.x;v/

�
˚v.v/

�
D f .x; v/:

�

In what follows, we need to recall the rudiments of convex analysis. We do state
the full results as encountered in [13].

Definition 1.57 (Convex Subset). Let V be a real vector space. A subset A � V is
said to be convex, iff for all x; y 2 A, we have that

.1 � t /x C ty 2 A

for all t 2 I .

Definition 1.58 (Convex Function).LetV be a real vector space andA � V convex.
A function f W A! R is said to be

� convex, iff
f
�
.1 � t /x C ty

�
� .1 � t /f .x/C tf .y/

holds for all x; y 2 A and t 2 I .
� strictly convex, iff

f
�
.1 � t /x C ty

�
< .1 � t /f .x/C tf .y/

holds for all x; y 2 A, x ¤ y, and t 2 .0; 1/.

Lemma 1.59. Let E be a real Banach space, U � E convex and f W U ! R
convex. Then every local minimiser of f is a global minimiser. If f is strictly
convex, the set of global minimiser is either a empty or a singleton.

Lemma 1.60 (K. Weierstrass). Let X be a topological space and f W X ! R sat-
isfying the following condition: For all ˛ 2 R, the sublevel set fx 2 X W f .x/ � ˛g
is compact. Then f is uniformly bounded from below and attains its infimum.

The condition of having bounded level sets is a growth condition.
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Lemma 1.61. Let E be a Banach space and f W E ! R. Then all sublevel sets of
f are bounded if and only if f is coercive, that is

lim
jxj!1

f .x/ D C1:

Proof. Suppose that all level sets of f are bounded. Let ˛ 2 R. Then there exists
R D R.˛/ such that K˛ � BR.0/ � E. Thus

fx 2 E W f .x/ > ˛g D E nK˛ � E n BR.0/;

which implies limjxj!1 f .x/ D C1.
Conversly, suppose that f is coercive and that for some ˛ 2 R the sublevel set K˛
is unbounded. Thus we can construct a sequence .xn/n2N � E with jxnj ! 1 as
n!1. But

lim
n!1

f .xn/ � ˛;

contradicting coercivity. �

Corollary 1.62. Every coercive continuous (strictly) convex function f W E ! R
on a finite-dimensional real normed space E admits a (unique) global minimiser.

Proof. Lemma 1.61 implies that all sublevel sets of f are bounded. Since they are
closed by definition and continuity of f , we get that each sublevel set is compact by
Heine-Borel. Now apply 1.60 and conlude with lemma 1.59. �

Let us recall the notion of directional derivatives or Gâteaux differentiability.

Definition 1.63 (Gâteaux Derivative). Let E and F be two real Banach spaces.
Suppose that U � E is open and x0 2 U . A function f W U ! F is said to be
Gâteaux differentiable at x0, iff

f 0.x0I x/ WD lim
t!0

f .x0 C tx/ � f .x0/

t

exists for all x 2 E and such that f 0.x0/ W E ! F given by f 0.x0/.x/ WD f 0.x0I x/
is a continuous linear operator.

Lemma 1.64 (First Derivative Test of Convexity). Let E be a real Banach space
and U � E open and convex. Then a Gâteaux differentiable function f W U ! R
is convex if and only if

f .x/ � f .x0/C f
0.x0/.x � x0/

holds for every x; x0 2 U .

Definition 1.65 (Second Gâteaux Derivative). Let E be a real Banach spaces.
Suppose that U � E is open and x0 2 U . A Gâteaux differentiable function
f W U ! R is said to be twice Gâteaux differentiable at x0, iff
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f 00.x0I x; y/ WD lim
t!0

f 0.x0 C ty/.x/ � f
0.x0/.x/

t

exists for all x; y 2 E and such that f 00.x0/ W E�E ! F given by f 00.x0/.x; y/ WD
f 0.x0I x; y/ is a continuous bilinear form.

Remark 1.66. If E D Rn, then the twice Gâteaux differentiability simply means
the existence of the Hessian matrix

Hessx0 f D
�

@2f

@xi@xj
.x0/

�i
j

of f at x0.

Lemma 1.67 (Second Derivative Test of Convexity). Let E be a real Banach
space and U � E open and convex. Suppose that f W U ! R is twice Gâteaux
differentiable on U .

(a) If
f 00.xI v; v/ � 0

for all x 2 U and v 2 E, then f is convex on U .
(b) If the inequality in (a) is strict for v ¤ 0, then f is strictly convex.
(c) Every convex function satisfies the inequality in (a).

A stronger condition than Gâteaux differentiability is Fréchet differentiability.

Definition 1.68 (Fréchet Derivative). Let E and F be two real Banach spaces.
Suppose that U � E is open and x0 2 U . A function f W U ! F is said
to be Fréchet differentiable at x0, iff there exists a continuous linear operator
Df.x0/ 2 L.E; F /, such that

lim
x!x0

jf .x/ � f .x0/ �Df.x0/.x � x0/j

jx � x0j
D 0:

Clearly, Fréchet differentiability implies Gâteaux differentiability and also the
equality of the respective derivatives f 0.x0/ D Df.x0/. Moreover, the twice Fréchet
differentiability of a function f W U ! R means the differentiability of both, f and
Df , and one can show that

D2f .x0/.x; y/ D f
00.x0I x; y/

holds for all x0 2 U and x; y 2 E.

Proposition 1.69. Let L 2 C1.Rn/ be convex. Then DL W Rn ! .Rn/� is a
diffeomorphism if and only if L is supercoersive, that is

lim
jxj!1

L.x/

jxj
D C1; (1.17)

and the Hessian of L is everywhere positive-definite.
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Remark 1.70. Note that supercoercivity implies coercivity. The converse might not
be true, however. Consider for example the absolute value functionj�j W R! R.

Proof. Suppose that DL is a diffeomorphism. Then the Hessian of L is invertibe.
Since L is convex, the second derivative test of convexity 1.67 implies HessL � 0.
So HessL > 0 and HessL is positive-definite. For every R > 0 set

SR WD fx 2 Rn W kDLxk D Rg :

Then SR is compact. Indeed, we have that

SR D DL
�1
�
Sn�1R

�
;

where
Sn�1R WD f' 2 .Rn/� Wk'k D Rg

denotes the sphere of radius R in .Rn/�. Since .Rn/� Š Rn is finite-dimensional,
Heine-Borel implies that Sn�1R is compact because it is closed and bounded. Thus
SR is compact as the image of a compact set under a continuous function. Moreover,
for every x 2 Rn, there exists a unique x0 D x0.R; x/ 2 Rn such that

DLx0 D
R

jxj
hx; �i 2 .Rn/�;

due to the assumption that DL is a diffeomorphism. We claim that x0 2 SR. Using
the Cauchy-Schwarz inequality yields

kDLx0k D sup
y2Rn;jyjD1

jDLx0.y/j D sup
y2Rn;jyjD1

R

jxj
jhx; yij � sup

y2Rn;kykD1

R

jxj
jxjjyj ;

and thus kDLx0k � R. But

kDLx0k � jDLx0.x=jxj/j D R;

and x0 2 SR. Using the first derivative test of convexity 1.64, we compute

L.x/ � L.x0/CDLx0.x/ �DLx0.x0/

D L.x0/CRjxj �DLx0.x0/

� Rjxj C min
y2SR

�
L.y/ �DLy.y/

�
;

because SR is compact. Set

CR WD min
y2SR

�
L.y/ �DLy.y/

�
2 R:

Then by the previous estimate we have that
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lim
jxj!1

L.x/

jxj
� RC lim

jxj!1

CR

jxj
D R:

Since R > 0 was arbitrary, we conclude (1.17).
Conversely, suppose thatL is supercoercive and that the Hessian ofL is everywhere
positive-definite. Let ' 2 .Rn/�. Define L' 2 C1.Rn/ by L' WD L � '. Then
HessL' D HessL, and thus by part (b) of the second derivative test of convexity
1.67 we get that L' is strictly convex. Moreover, L' is supercoercive. Indeed, since
' 2 .Rn/�, there exists C > 0 such that j'.x/j � C jxj holds for all x 2 Rn. Thus
we estimate

L'.x/ D L.x/ � '.x/ � L.x/ � j'.x/j � L.x/ � C jxj

for every x 2 Rn and so

lim
jxj!1

L'.x/

jxj
D lim
jxj!1

L.x/

jxj
� C D C1:

Hence by corollary 1.62,L' admits a unique minimiser x0 D x0.'/. By elementary
calculus

0 D D.L'/x0 D DLx0 � ':

So DLx0 D '. Hence DL is surjective. Moreover, uniqueness of x0 implies injec-
tivity of DL. Indeed, suppose that there exists x00 2 Rn such that DLx0

0
D '. Then

x00 is a critical point for L' . Since HessL' is positive-definite, we have that x00 is a
minimiser ofL' , in particular x00 D x0 by uniqueness. HenceDL is bijective. Since
HessL is positive definite,DL is a local diffeomorphism, thus a diffeomorphism.�

Definition 1.71 (Tonelli Lagrangian). Let .M;L/ be an autonomous Lagrangian
system. Fix a Riemannian metric g onM . The Lagrangian L is said to be Tonelli,
iff the following conditions are satisfied:

(T1) The fibrewise Hessian of L is positive-definite, that is,

@2L

@vi@vj
.x; v/uiuj > 0

for all .x; v/ 2 TM and u WD ui @

@xi
2 TxM such that u ¤ 0.

(T2) L is fibrewise supercoersive, that is,

lim
jvjg!1

L.x; v/

jvjg
D C1

for all x 2M .

Example 1.72 (Tonelli Lagrangian on a Riemannian Manifold). Let .M; g/ be a
Riemannian manifold. For V 2 C1.M/, define L 2 C1.TM/ by

L.x; v/ WD
1

2
jvj2g � V.x/:
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Then by the computation performed in example 1.28, the fibrewise Hessian of L is
positive-definite. Moreover, L is supercoercive since

lim
jvjg!1

L.x; v/

jvjg
D lim
jvjg!1

1

2
jvjg � lim

jvjg!1

V.x/

jvjg
D lim
jvjg!1

1

2
jvjg D C1

for all x 2M . Thus L is Tonelli.

Proposition 1.73. Let .M n; L/ be a Lagrangian system such that L is fibrewise
convex. Then the Legendre transform is a diffeomorphism if and only if L is Tonelli.

Proof. Let x 2M . Then by equation 1.16, we have that

DFLjTxM W TxM ! T �xM

is given by
DFLv D d.Lx/v ı ˚v:

By proposition F.40, this is just the Fréchet derivative of Lx at v 2 TxM . Under the
noncanonical identification TxM Š Rn the result follows from proposition 1.69.�

1.6 Legendre-Fenchel Duality

In this final section we come back to the terminology established in the section on
the Legendre transform, namely, the notion of dualisation. Again, we make use of
concepts established in the field of convex analysis and use them to show that the
Legendre transform can be seen as a more concrete case of an abstract dualisation
process, that is exchanging a normed space E by its dual E�.

Definition 1.74 (Legendre-Fenchel Transform). LetE be a real Banach space and
f W E ! R [ fC1g, f ¤ C1. Then the Legendre-Fenchel transform of f ,
written f �, is defined to be the function f � W E� ! R [ fC1g, given by

f �.'/ WD sup
x2E

f'.x/ � f .x/g : (1.18)

Lemma 1.75. Let E be a real Banach space and f W E ! R [ fC1g, f ¤ C1.
Then the Legendre-Fenchel transform f � W E� ! R [ fC1g is convex.

Proof. Let '; 2 E� and t 2 I . Then we compute

f �
�
.1 � t /' C t 

�
D sup
x2E

˚
.1 � t /'.x/C t .x/ � f .x/

	
D sup
x2E

˚
.1 � t /'.x/C t .x/ � .1 � t /f .x/ � tf .x/

	
� .1 � t / sup

x2E

f'.x/ � f .x/g C t sup
x2E

f .x/ � f .x/g

D .1 � t /f �.'/C tf �. /:
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�

Remark 1.76. Note that the Legendre-Fenchel transform f � of f is always convex
by means of lemma 1.75, no matter what the nature of f is.

Proposition 1.77 (The Fenchel-Young Inequality). Let E be a real Banach space
and f W E ! R [ fC1g, f ¤ C1, lower semicontinuous and convex. Then

f .x/C f �.'/ � '.x/ (1.19)

holds for all x 2 E and ' 2 E�.

Proposition 1.78 (The Classical Legendre Transform). Let f 2 C 2.Rn/ with
Hessf > 0. Then

(a) The map r W Rn ! Rn given by x 7! rf .x/ is a homeomorphism.
(b) f �.x/ D hx; .rf /�1.x/iRn � f

�
.rf /�1.x/

�
for all x 2 Rn.

(c) f � 2 C 1 .Rn/ and rf � D .rf /�1.
(d) Hessx f and Hessrf .x/ f � are inverse to each other for all x 2 Rn.

Proposition 1.79. Let L 2 C1.Rn � Rn/ such that Lx 2 C1.Rn/ defined by
Lx.y/ WD L.x; y/ for all x 2 Rn is convex. Suppose that the Legendre transform is
a diffeomorphism. Then

HL.x; y/ D .Lx/
� .y/

for all x; y 2 R.

Proof. By assumption,L is fibrewise convex and a diffeomorphism, thusL is Tonelli
by proposition 1.73, and thus in particular HessLx > 0 for all x 2 Rn. Using part
(b) of proposition 1.78, we compute

HL.x; y/ D
�
EL ı �

�1
L

�
.x; y/

D EL
�
x; .rLx/

�1.y/
�

D DFL.x;.rLx/�1.y//
�
.rLx/

�1.y/
�
� Lx

�
.rLx/

�1.y/
�

D hrLx
�
.rLx/

�1.y/
�
; .rLx/

�1.y/iRn � Lx
�
.rLx/

�1.y/
�

D hy; .rLx/
�1.y/iRn � Lx

�
.rLx/

�1.y/
�

D .Lx/
�.y/

for all x; y 2 Rn. �
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1.7 Problems

1.80. Adopt the theory developed in the section on theLegendre Transform to the non-
autonomous case, that is to the case of a Lagrangian system where the Lagrangian
function can depend on time.

1.81. Complete the proof of theorem 1.20 about the Euler-Lagrange equations.Hint:
Use the generalized notion of a fibrewise differential established in problem 1.80



Chapter 2
Hamiltonian Mechanics

Hamiltonian mechanics serves the same aim as Lagrangian mechanics, that is to
describe systems of finitely many interacting particles. However, in the Hamiltonian
case, we investigate a dual notion of a Lagrangian system, called Hamiltonian sys-
tem, which has much more underlying structure. We begin this chapter by defining
what this additional structure is, namely a symplectic structure. Then we give two
important theorems in this new setting which are often used: the tangent-cotangent
bundle isomorphism theorem and the Moser theorem.

Finally, we state the definitions governing Hamiltonian mechanics and prove an
analogue of Noether’s theorem for this case. Moreover, we point out the connection
between the two versions of this theorem.

2.1 Symplectic Geometry

A profound difference between the tangent bundle TM and the cotangent bundle
T �M of a smooth manifoldM is that on the latter there exists a natural 1-form, the
tautological form ˛ defined in definition 1.38.

A concise introduction to the very basics of symplectic geometry can be found in
the last chapter of [6]. A more extensive treatment is given in [15] or [10].

2.1.1 Linear Symplectic Geometry

Recall the notion of a nondegenrate tensor 1.34.

Definition 2.1 (Symplectic Vector Space). A symplectic vector space is defined to
be a tuple .V; !/, where V is a finite-dimensional real vector space and ! 2 ƒ2.V �/
is nondegenerate, called a linear symplectic structure on V .

35
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Example 2.2. Let V be a finite-dimensional real vector space with dimV D 2n. Let
.ai ; bi / be a basis for V and denote by

�
˛i ; ˇi

�
the corresponding dual basis. Then

! WD

nX
iD1

˛i ^ ˇi

is a linear symplectic structure on V . Indeed, it is easy to see that the matrix
representing y! is given by �

y!ij
�
D

 
0 I

�I 0

!
:

Definition 2.3 (Symplectic Complement). Let .V; !/ be a symplectic vector space
and S � V a linear subspace. Define the symplectic complement of S in V with
respect to !, written S! , to be the linear subspace of V given by

S! WD fv 2 V W !.v; u/ D 0 for all u 2 Sg :

Lemma 2.4 (Dimension Formula for the Symplectic Complement). Let .V; !/ be
a symplectic vector space and S � V a linear subspace. Then

dimS C dimS! D dimV:

Proof. Define ˚ W V ! S� by ˚.v/ WD .iv!/jS . Then clearly ker˚ D S! and
moreover, ˚ is surjective. Indeed, let ' 2 S�. Extend ' to z' 2 V � by setting

z'.v/ WD

(
'.v/ v 2 S;

0 v … S:

Since iv! is an isomorphism, we find v 2 V such that iv! D z'. In particular,
.iv!/jS D '. Hence ˚ is surjective and the usual rank-nullity theorem yields

dimV D dimS� C dimS! D dimS C dimS! :

�

Lemma 2.5. Let S � V be a subspace of a symplectic vector space .V; !/. Then�
S!
�!
D S:

Proof. Using the dimension formula for the symplectic complement 2.4 twice, we
get that dim

�
S!
�!
D dimS . Thus it is enough to show the inclusion � only. Let

u 2 S . Then for any v 2 S! we have that

!.u; v/ D �!.v; u/ D 0

by definition of S! . So S �
�
S!
�! . �

Definition 2.6. A subspace S � V of a symplectic vector space .V; !/ is said to be
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� symplectic, iff S \ S! D f0g.
� isotropic, iff S � S! .
� coisotropic, iff S! � S .
� Lagrangian, iff S D S! .

Lemma 2.7. Let S � V be a subspace of a symplectic vector space .V; !/. Then
the following conditions are equivalent:

(a) S is symplectic.
(b) S! is symplectic.
(c) !jS 2 ƒ2.S/ is nondegenerate.
(d) V D S ˚ S! .

Proof. For proving (a),(b), simply observe that

S! \
�
S!
�!
D S! \ S

by lemma 2.5. For proving (a),(c), suppose that v 2 S and !.v; u/ D 0 for all
u 2 S . Then v 2 S! and by assumption v D 0. Conversly, if v 2 S \ S! , then
!.v; u/ D !jS .v; u/ D 0 for all u 2 S . Since !jS is nondegenrate by assumption,
we have that v D 0. Finally, for proving (a),(d), we compute

dim.S C S!/ D dimS C dimS! � dim.S \ S!/ D dimS C dimS! D dimV

using lemma 2.4. Hence V D S C S! . The converse is just the definition of the
direct sum. �

The symplectic vector space given in example 2.2 turns out to be the standard
model of any symplectic vector space.

Proposition 2.8 (Canonical Form Theorem for Symplectic Vector Spaces). Let
.V; !/ be a symplectic vector space. Then dimV D 2n and there exists a basis
.ai ; bi / of V such that

! D

nX
iD1

˛i ^ ˇi

where
�
˛i ; ˇi

�
denotes the dual basis of .ai ; bi /.

Proof. We induct over the dimension dimV . If dimV D 0, there is nothing to
show. So assume that the statement is true for all symplectic vector spaces with
dimension strictly less than dimV � 1. Since dimV � 1, there exists a1 2 V ,
such that a1 ¤ 0. Moreover, there exists v 2 V such that !.a1; v/ ¤ 0 since !
is nondegenerate. Hence dimV � 2. Set b1 WD v=!.a1; v/. Then !.a1; b1/ D 1

and antisymmetry of ! implies that .a1; b1/ is linearly independent. Indeed, assume
that b1 D �a1 for some � 2 R. Then !.a1; b1/ D �!.a1; a1/ D 0. We claim
that S WD spanR fa1; b1g � V is a symplectic subspace. It is immediate that
!jS is nondegenerate, thus by lemma 2.7, we have that S is symplectic. Moreover,
V D S˚S! and S! is symplectic. Again by lemma 2.7, this means that

�
S! ; !jS!

�
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is a symplectic vector space. But the dimension formula for symplectic complements
2.4 yields

dimS! D dimV � dimS D dimV � 2:

Thus we can apply the induction assumption to
�
S! ; !jS!

�
. �

Definition 2.9 (Symplectomorphism). Let .V; !/ and
�
zV ; z!

�
be two symplectic

vector spaces. An isomorphism A W V ! zV is said to be a symplectomorphism, iff
A� z! D !, where A� z!.�; �/ WD z!.A�; A�/.

Let n 2 N, n � 1, and consider the real vector space R2n with its standard basis
.ei /. Setting ai WD ei for 1 � i � n and bi WD ei for nC 1 � i � 2n, we get from
example 2.2 the linear symplectic structure

!0.v; u/ WD

nX
iD1

"i ^ "nCi .v; u/ D vtJ0u;

where

J0 WD

 
0 I

�I 0

!
2 Mat.2n/:

Proposition 2.10. Let n 2 N, n � 1. Define

Sp.2n/ WD Sp.R2n; !0/ WD fA 2 GL.2n/ W A�!0 D !0g :

Then Sp.2n/ is a Lie group, called the symplectic linear group of dimension 2n2Cn
with associated Lie algebra

sp.2n/ D fA 2 Mat.2n/ W J0AC AtJ0 D 0g :

Proof. Let A;B 2 Sp.2n/. Then�
AB�1

��
!0 D

�
B�1

��
A�!0 D

�
B�1

��
!0 D

�
B�1

��
B�!0 D id�R2n !0 D !0:

Thus Sp.2n/ is a subgroup of GL.2n/. Moreover, it is easy to check that by definition

Sp.2n/ D fA 2 GL.2n/ W AtJ0A D J0g :

We show that Sp.2n/ is a regular level set of some smooth function. Observe that
J0 as well as AtJ0A are antisymmetric. If o.2n/ denotes the real vector space of
antisymmetric matrices in Mat.2n/, we define F W GL.2n/! o.2n/ by

F.A/ WD AtJ0A:

Then Sp.2n/ D F �1.J0/ and we claim that J0 is a regular value of F . Suppose
A0 2 F

�1.J0/. We want to calculate DFA0 W TA0 GL.2n/ ! TF.A0/o.2n/. Since
GL.2n/ is an open subset ofMat.2n/, we can identifyTA0 GL.2n/withTA0 Mat.2n/.
By lemma F.39 the latter is given by Mat.2n/ and for sufficiently small intervals
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A.t/ WD A0 C tA takes values in GL.2n/ for A 2 Mat.2n/. Indeed, this follows
from an application of the Neumann-series [18, 23]. Using proposition F.38, we
compute

DFA0
�

 0A.0/

�
D .F ı 
A/

0.0/

D
d

dt

ˇ̌̌̌
tD0

�
J0 C t .A

t
0J0AC A

tJ0A0/C t
2AtJ0A

�
D At0J0AC A

tJ0A0:

LetB 2 o.2n/. Then one can check thatDFA0
�

 0A.0/

�
D B forA D �1

2
J0.A

t
0/
�1B .

Hence J0 is a regular value and by the implicit function theorem for manifolds F.58,
Sp.2n/ is an embedded submanifold of GL.2n/ of dimension

dimSp.2n/ D dimGL.2n/ � dim o.2n/ D 4n2 � n.2n � 1/ D 2n2 C n:

So by proposition F.95, Sp.2n/ is a Lie subgroup of GL.2n/ and thus itself a Lie
group. Using proposition F.59 we finally compute

sp.2n/ D TI Sp.2n/ D kerDFI D fA 2 Mat.2n/ W J0AC AtJ0 D 0g :

Exercise 2.11. Let A 2 GL.n/ and B 2 Mat.n/. Show that there exists an open interval J � R
containing 0 such that AC tB 2 GL.n/ for all t 2 J . Hint: Use the Neumann series.

Proposition 2.12. Let V be a 2n-dimensional real vector space and ! 2 ƒ2.V �/.
Then .V; !/ is a symplectic vector space if and only if !n ¤ 0.

Proof. Suppose that .V; !/ is a symplectic vector space. By the canonical form
theorem for symplectic vecto spaces 2.8, there exists a basis .ai ; bi / of V such that

! D

nX
iD1

˛i ^ ˇi :

Using the multinomial theorem, we compute

!n D
X

i1C���CinDn

 
n

i1; : : : ; in

! �
˛1 ^ ˇ1

�i1
^ � � � ^

�
˛n ^ ˇn

�in
D nŠ

�
˛1 ^ ˇ1 ^ � � � ^ ˛n ^ ˇn

�
;

which is clearly nondegenerate. Conversly, suppose that ! is degenerate. Then there
exists v 2 V such that iv! D 0. Since iv is a graded derivation, we have that
iv.!

n/ D n.iv!/ ^ !
n�1 D 0. Extend v to a basis .e1; : : : ; e2n/ of V with e1 D v.

Then
!n.e1; : : : ; e2n/ D

�
iv.!

n/
�
.e2; : : : ; e2n/ D 0:

Hence !n D 0. �



40 2 Hamiltonian Mechanics

From the definition of Sp.2n/ it is easy to show that detA D ˙1. In fact, even
more is true.

Lemma 2.13. Let A 2 Sp.2n/. Then detA D 1.

Proof. By proposition 2.12, we have that !n0 ¤ 0. Moreover, we compute

!n0 D
�
A�!0

�n
D .detA/!n0 :

But then detA D 1. �

2.1.2 The Category of Symplectic Manifolds

Definition 2.14 (Symplectic Manifold). A symplectic manifold is defined to be a
tuple .M;!/ consisting of a smooth manifoldM and a closed nondegenerate 2-form
! 2 �2.M/, called a symplectic form onM .

Lemma 2.15. Let .M;!/ be a symplectic manifold. Then dimM is even andM is
orientable.

Proof. Let x 2 M . Then .TxM;!x/ is a symplectic vector space. By proposition
F.33, we have that dimM D dimTxM . But by the canonical form theorem for
symplectic vector spaces 2.8, we have that dimTxM is even.
To show that M is orientable, it suffices to show the existence of a volume form.
However, this immediately follows from proposition 2.12, since !nx ¤ 0 for all
x 2M and thus !n is a volume form onM . �

Lemma 2.16. Let .M;!/ be a compact symplectic manifold. ThenH 2
dR.M/ ¤ 0.

Proof. Suppose ! is exact. Hence ! D d� for some � 2 �1.M/. But then

!n D .d�/n D d
�
� ^ !n�1

�
:

Using positivity together with Stokes theorem F.239, we compute

0 <

Z
M

!n D

Z
M

d
�
� ^ !n�1

�
D

Z
@M

� ^ !n�1 D 0:

So ! cannot be exact. But ! is closed, so Œ!� ¤ 0 inH 2
dR.M/. �

Corollary 2.17. S2n does not admit a symplectic form for all n � 2.

Proof. Suppose that S2n admits a symplectic form for n � 2. Then by lemma 2.16,
we have thatH 2

dR.M/ ¤ 0. But by [6, 450]

zH k
dR.S

n/ D

(
R k D n;

0 k ¤ n;

for all n � 0. �
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Example 2.18 (R2n). Consider R2n with coordinates .xi ; yi /. Then

!0 WD

nX
iD1

dxi ^ dyi

is a symplectic form on R2n.

Example 2.19 (Cn). A more concise notation for the symplectic manifold given in
example 2.18 is via the identification R2n Š Cn and

!0 D
i

2

nX
kD1

dzk ^ dxzk

where
�
zk
�
denote the standard coordinates on Cn with zk D xk C iyk .

Example 2.20 (Orientable Surfaces). Let ˙ be an orientable surface. Then any
volume form on ˙ is also a symplectic form because it is closed for dimensional
reasons and nondegenerate since it is nowhere vanishing.

Example 2.21 (The Cotangent Bundle). Let M be a smooth manifold. Define
� 2 �1.T �M/ as follows: for .x; �/ 2 T �M , define

�.x;�/.v/ WD �
�
D�.x;�/.v/

�
(2.1)

for all v 2 T.x;�/T �M , where � W T �M !M denotes the canonical projection. Of
course, we need to check that � is smooth. Let

�
xi ; �i

�
denote local coordinates on

T �M and � D �idxi . Then we compute

�

�
@

@xi

�
D �jdx

j

�
@�k

@xi
@

@xk

�
D �j ı

k
i ı
j

k
D �i ;

and similarly

�

�
@

@�i

�
D �jdx

j

�
@�k

@�i

@

@xk

�
D 0:

Hence � D �idx
i , which is smooth. The form � 2 �1.T �M/ is called the tauto-

logical 1-form or Liouville 1-form. Now set

! WD �d� 2 �2.T �M/: (2.2)

Then ! is clearly closed and moreover, we compute

! D �d
�
�idx

i
�
D �

@�i

@xj
dxj ^ dxi �

@�i

@�j
d�j ^ dx

i
D dxi ^ d�i

in any local coordinates
�
xi ; �i

�
. Hence ! is nondegenerate and thus a symplectic

form, called the canonical symplectic form on T �M .
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Example 2.22 (S2). By (F.5), we can identify TxS2 with x? for every x 2 S2. Thus
we can define ! 2 �2.S2/ by

!x.v; w/ WD hx; v � wi D det.x; v; w/

for any x 2 S2 and v;w 2 x?. Then ! is non-degenerate, since for v ¤ 0 choose for
examplew D x�v. To show that! is smooth, we deduce a coordinate representation
for it. Since S2 is an embedded hypersurface in R3, [6, 384] yields that

��S2
�
iN .dx ^ dy ^ dz/

�
is an area form on S2 where N is the nowhere tangent vector field along S2 given
by (this follows immediately from (F.5))

N WD x
@

@x
C y

@

@y
C z

@

@z
:

Then
iN .dx ^ dy ^ dz/ D xdy ^ dz C ydz ^ dx C zdx ^ dy

which is easily seen to be the same as !. Moreover, in cylindrical coordinates .�; h/
on S2 given by�p

1 � h2 cos �;
p

1 � h2 sin �; h
�

for .�; h/ 2 .0; 2�/ � .�1; 1/

a short computation yields that

! D d� ^ dh:

Proposition 2.23. LetM be a smooth manifold and F 2 Diff.M/. Then�
DF �

��
� D �:

Proof. Let .x; �/ 2 T �M and v 2 T.x;�/T �M . We compute��
DF �

��
�
�
.x;�/

.v/ D �.DF �/.x;�/
�
D
�
DF �

�
.x;�/

.v/
�

D �.F .x/;�ı.DFx/�1/
�
D
�
DF �

�
.x;�/

.v/
�

D
�
� ı .DFx/

�1
� �
D�.F .x/;�ı.DFx/�1/

�
D
�
DF �

�
.x;�/

.v/
��

D �
�
.DFx/

�1
ıD

�
� ıDF �

�
.x;�/

.v/
�

D �
�
.DFx/

�1
ıD

�
F ı �

�
.x;�/

.v/
�

D �
�
.DFx/

�1
ıDFx ıD�.x;�/.v/

�
D �

�
D�.x;�/.v/

�
D �.x;�/.v/:
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�

Definition 2.24. A morphism F W .M;!/!
�
zM; z!

�
between two symplectic man-

ifolds .M;!/ and
�
zM; z!

�
is defined to be a morphism F 2 C1

�
M; zM

�
such that

F � z! D !.

Exercise 2.25. Consider as objects symplecticmanifolds and asmorphisms the ones from definition
2.24. Show that they do form a category, the category of symplectic manifolds.

Definition 2.26 (Symplectomorphism [10, 96]). A symplectomorphism is defined
to be an isomorphism in the category of symplectic manifolds. Moreover, for .M;!/
a symplectic manifold, define the group of symplectomorphisms on .M;!/, written
Symp.M;!/, by

Symp.M;!/ WD
˚
F 2 Diff.M/ W F �! D !

	
:

2.1.3 The Tangent-Cotangent Bundle Isomorphism

As in Riemannian geometry, one very important feature of a symplectic manifold
.M;!/ is that there is a canonical identification of the tangent bundle TM and the
cotangent bundle T �M (for the Riemannian case see [6, 341]). But first we recall
some basic facts from the tensor calculus on smooth manifolds.

Lemma 2.27 (VectorBundleChartLemma [6, 253]).LetM be a smoothmanifold,
k 2 N and suppose that for all x 2 M we are given a real vector space Ex of
dimension k. Let E WD

`
x2M Ex and let � W E ! M be given by �.x; v/ WD x.

Moreover, suppose that we are given the following data:

(i) An open cover .U˛/˛2A ofM .
(ii) For all ˛ 2 A a bijection ˚˛ W ��1.U˛/! U˛ �Rk such that the restriction

˚˛jEx W Ex ! fxg � Rk Š Rk is an isomorphism of vector spaces for all
x 2M .

(iii) For all ˛; ˇ 2 A with U˛ \ Uˇ ¤ ¿, a smooth mapping �˛ˇ W U˛ \ Uˇ !
GL.k;R/ such that themapping˚˛ı˚�1ˇ W .U˛\Uˇ /�Rk ! .U˛\Uˇ /�Rk

is of the form ˚˛ ı ˚�1ˇ .x; v/ D
�
x; �˛ˇ .x/v

�
.

Then E admits a unique topology and a smooth structure making it into a smooth
manifold and a smooth vector bundle � W E !M of rank k with local trivializations
.U˛; ˚˛/˛2A.

LetM n be a smooth manifold and let k; l 2 N. For all x 2 M define the space
of mixed tensors of type .k; l/ on TxM by

T .k;l/.TxM/ WD TxM ˝ � � � ˝ TxMœ
k

˝ T �xM ˝ � � � ˝ T
�
xM�

l

:
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By proposition 12.10 [6, 311] we have that

T .k;l/.TxM/ Š L
�
T �xM; : : : ; T

�
xM›

k

; TxM; : : : ; TxM›
l

IR
�

since .T �xM/� Š TxM canonically (TxM is finite-dimensional) where the latter
denotes the space of all R-valued multilinear forms on

T �xM � � � � � T
�
xMœ

k

�TxM � � � � � TxMœ
l

:

We will always think of mixed tensors as multilinear forms. Let .U; xi / be a chart
about x. Then using corollary 12.12 [6, 313] we get that a basis for T .k;l/.TxM/ is
given by all elements

@

@xi1

ˇ̌̌̌
x

˝ � � � ˝
@

@xik

ˇ̌̌̌
x

˝ dxj1 jx ˝ � � � ˝ dx
jl jx

for all 1 � i1; : : : ; ik ; j1; : : : ; jl � n. Consequently, dimT .k;l/.TxM/ D nkCl and
a particular tensor A 2 T .k;l/.TxM/ expressed in this basis is given by

A D A
i1:::ik
j1:::jl

@

@xi1

ˇ̌̌̌
x

˝ � � � ˝
@

@xik

ˇ̌̌̌
x

˝ dxj1 jx ˝ � � � ˝ dx
jl jx (2.3)

where
A
i1:::ik
j1:::jl

WD A

�
dxi1 jx ; : : : ; dx

ik jx ;
@

@xj1

ˇ̌̌̌
x

; : : :
@

@xjl

ˇ̌̌̌
x

�
: (2.4)

Next we want to “glue” together the different spaces of mixed tensors.

Proposition 2.28. LetM be a smooth manifold and let k; l 2 N. Then

T .k;l/TM WD
a
x2M

T .k;l/.TxM/

admits a unique topology and a smooth structure making it into a smooth manifold
and a smooth vector bundle � W T .k;l/TM ! M of rank nkCl . This smooth vector
bundle is called the bundle of mixed tensors of type .k; l/ onM .

Proof. This is an application of the vector bundle chart lemma 2.27. For all x 2M
define Ex WD T .k;l/.TxM/. By the preceeding discussion, dimEx D nkCl . Let
.U˛; '˛/˛2A denote the smooth structure on M . Then clearly .U˛/˛2A is an open
cover forM . For each ˛ 2 A, define

˚˛ W

(
��1.U˛/! U˛ �Rn

kCl

.x; A/ 7!
�
x; .A

i1:::ik
j1:::jl

/
�
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where we expressed A as in (2.3). Observe, that this map strongly depends on the
coordinate functions. Clearly, the inverse is given by

˚�1˛ W

(
U˛ �Rn

kCl
! ��1.U˛/�

x; .A
i1:::ik
j1:::jl

/
�
7! .x; A/

:

Hence each ˚˛ is bijective. Now we have to check, that ˚˛jEx is an isomorphism
for all x 2 M . By elementary linear algebra it is enough to show that ˚˛ is linear.
So let � 2 R and A;B 2 Ex . Then

˚˛jEx .x; AC �B/ D
�
x; .AC �B/

i1:::ik
j1:::jl

/
�

D
�
x; .A

i1:::ik
j1:::jl

/C �.B
i1:::ik
j1:::jl

/
�

D ˚˛jEx .x; A/C �˚˛jEx .x; B/:

Lastly, let ˛; ˇ 2 A such that U˛ \ Uˇ ¤ ¿ and coordinates .xi˛/ and .xi
ˇ
/,

respectively. Then for x 2 U˛ \ Uˇ we have that

@

@xi˛

ˇ̌̌̌
x

D
@x
j

ˇ

@xi˛
.x/

@

@x
j

ˇ

ˇ̌̌̌
x

and dxi˛jx D
@xi˛

@x
j

ˇ

.x/dx
j

ˇ
jx :

So if Ai1:::ikj1:::jl
are coordinates of a mixed tensor with respect to the basis induced by

.xi˛/, we compute

A
i1:::ik
j1:::jl

D A

�
dxi1˛ jx ; : : : ; dx

ik
˛ jx ;

@

@x
j1
˛

ˇ̌̌̌
x

; : : :
@

@x
jl
˛

ˇ̌̌̌
x

�
D
@x
i1
˛

@x
p1
ˇ

.x/ � � �
@x
ik
˛

@x
pk
ˇ

.x/
@x
q1
ˇ

@x
j1
˛

.x/ � � �
@x
ql
ˇ

@x
jl
˛

.x/Ap1:::pkq1:::ql

Thus define �˛ˇ W U˛ \ Uˇ ! GL.nkCl ;R/ by

�˛ˇ .x/ WD

 
@x
i1
˛

@x
p1
ˇ

.x/ � � �
@x
ik
˛

@x
pk
ˇ

.x/
@x
q1
ˇ

@x
j1
˛

.x/ � � �
@x
ql
ˇ

@x
jl
˛

.x/

!
:

Then �˛ˇ is clearly smooth and moreover

˚˛ ı ˚
�1
ˇ

�
x; .Ap1:::pkq1:::ql

/
�
D
�
x; .A

i1:::ik
j1:::jl

/
�
D
�
x; �˛ˇ .x/.A

p1:::pk
q1:::ql

/
�
:

Therefore, conditions (i)-(iii) in the vector bundle chart lemma 2.27 are satisfied and
the statement follows. �
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Remark 2.29. There is a much more abstract approach for constructing vector bun-
dles1 than the explicit one used for the bundle of mixed tensors in proposition 2.28.
Let us first formulate a metatheorem:

“Anything one can do with vector spaces, one can also do with vector bundles.”

Wemake this precise now. Let Vect denote the category of finite-dimensional real
vector spaces. A functor

F W Vect � � � � � Vect›
k

! Vect

which is either contravariant or covariant in its arguments, is said to be smooth, iff
for all vector spaces V1; : : : ; Vk ; W1; : : : ; Wk 2 Vect the induced map

kM
iD1

zL.Vi ; Wi /! L
�
F .V1; : : : ; Vk/;F .W1; : : : ; Wk/

�
where

zL.Vi ; Wi / WD

(
L.Vi ; Wi / F is covariant in the i -th argument;
L.Wi ; Vi / F is contravariant in the i -th argument;

is a smooth map. The formal statement of the metatheorem can now be phrased
as follows. If F W Vect � � � � � Vect ! Vect is a smooth functor as above and
�i W Ei ! M are k vector bundles, then � W F .E1; : : : ; Ek/ ! M is a vector
bundle where

F .E1; : : : ; Ek/ WD
a
x2M

F .E1jx ; : : : ; Ekjx/

and �.x; v/ WD x.

Recall, that in a category C , a section of a morphism f W X ! Y is a morphism
� W Y ! X such that f ı � D idY .

Definition 2.30 (Tensor Field). Let M be a smooth manifold and k; l 2 N.
A smooth tensor field of type .k; l/ on M is defined to be a section of
� W T .k;l/TM ! M . The space of all smooth tensor fields of type .k; l/ on
M is denoted by T k;l .M/ WD �

�
T .k;l/TM

�
.

Example 2.31. Vector Field and Covector Field Let M be a smooth manifold. Of
particular importance are the tensor fields such that kC l D 1. If k D 1, such tensor
fields are called vector fields and we write X.M/ WD �

�
T .1;0/TM

�
. Likewise, if

l D 1, we call such tensor fields covector fields andwriteX�.M/ WD �
�
T .0;1/TM

�
.

1 See lecture 14 from the lecture notes of the courseDifferential Geometry I taught byWill J. Merry
at the ETH Zurich in the autumn semester 2018.

https://www.merry.io/differential-geometry-i-lecture-notes/14-constructing-new-vector-bundles
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Let
�
U; .xi /

�
be a chart on M and A W M ! T .k;l/TM such that Ax 2

T .k;l/.TxM/ for all x 2M . From (2.3) we get that

Ax D A
i1:::ik
j1:::jl

.x/
@

@xi1

ˇ̌̌̌
x

˝ � � � ˝
@

@xik

ˇ̌̌̌
x

˝ dxj1 jx ˝ � � � ˝ dx
jl jx

for all x 2 U where Ai1:::ikj1:::jl
W U ! R are given as in (2.4). We will call these

functions the component functions of A. Recall, that a map F W M ! N between
two smooth manifolds M and N is said to be smooth, iff for every x 2 M there
exists a chart .U; '/ about x on M and a chart .V;  / about F.x/ on N such
that U \ F �1.V / is open in M and  ı F ı '�1 W '

�
U \ F �1.V /

�
!  .V /

is smooth. Moreover, if A � U � M , where U is open and A is closed in M , a
function 2 C1.M/ is said to be a smooth bump function forA supported inU , iff
0 �  � 1,  jA D 1 and supp � U . The paracompactness condition guarantees
that smooth bump functions exist in great abundance.

Proposition 2.32 (Existence of Smooth Bump Functions [6, 44]). Let M be a
smooth manifold and A � U � M , where U is open and A is closed in M . Then
there exists a smooth bump function for A supported in U .

Proposition 2.33 (Smoothness Criteria for Tensor Fields [6, 317]). Let M be
smooth manifold, k; l 2 N and A WM ! T .k;l/TM such that Ax 2 T .k;l/TxM for
all x 2M . Then the following conditions are equivalent:

(a) A 2 �
�
T .k;l/TM

�
.

(b) In every smooth coordinate chart, the component functions of A are smooth.
(c) Each point of M is contained in a chart in which A has smooth component

functions.
(d) For all !1; : : : ; !k 2 X�.M/ and X1; : : : ; Xl 2 X.M/, the function

A.!1; : : : ; !k ; X1; : : : ; Xl / WM ! R

defined by

A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
.x/ WD Ax

�
!1x ; : : : ; !

k
x ; X1jx ; : : : ; Xl jx

�
(2.5)

is smooth.
(e) Let U �M be open. If !1; : : : ; !k 2 X�.U / and X1; : : : ; Xl 2 X.U /, then A

defined by (2.5) belongs to C1.U /.

Proof. We prove (a), (b) and (b)) (c)) (d)) (e)) (b).
To prove (a) , (b), let x 2 M and

�
U; .xi /

�
be a smooth chart on M about x.

Proposition 2.28 yields a map ˚U W ��1.U / ! U � Rn
kCl , and the proof of the

vector bundle chart lemma implies, that the corresponding chart on T .k;l/TM is
given by

�
��1.U /; z'

�
, where

z' W ��1.U /! '.U / �Rn
kCl
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is defined by
z' WD

�
' � id

RnkCl
�
ı ˚U :

Since Ax 2 T .k;l/TxM for all x 2M , we have that

A�1
�
��1.U /

�
D .� ı A/�1.U / D idM .U / D U:

Hence U \ A�1
�
��1.U /

�
D U , which is open inM , and

z' ı A ı '�1 W '.U /! z'
�
��1.U /

�
is given by �

z' ı A ı '�1
� �
'.y/

�
D
�
' � id

RnkCl
� �
˚U .Ay/

�
D
�
'.y/; .A

i1:::ik
j1:::jl

/.y/
�

D
�
'.y/;

�
.A
i1:::ik
j1:::jl

/ ı '�1
� �
'.y/

��
for all y 2 U . Thus z' ı A ı '�1 is smooth if and only if .Ai1:::ikj1:::jl

/ ı '�1 is smooth,
which is equivalent to Ai1:::ikj1:::jl

being smooth.
The implication (b)) (c) is immediate.
To prove (c)) (d), suppose x 2 M and let .U; .xi // be a chart about x such that
the component functions of A are smooth. By example 2.31 and the equivalence (a)
, (b) we have

!i D !ijdx
j and Xi D X

j
i

@

@xj

on U for smooth functions !ij and X
j
i . Thus for any y 2 U we compute

A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
.y/ D Ax

�
!1x ; : : : ; !

k
x ; X1jx ; : : : ; Xl jx

�
D !1i1.y/ � � �!

k
ik
.y/X

j1
1 .y/ � � �X

jl
l
.y/A

i1:::ik
j1:::jl

.y/

and so A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
is smooth.

To prove (d)) (e), we use the fact that smoothness is a local property. Let x 2 U
and suppose .V; '/ is a chart onU centered at x. Then '.V / � Rn is open and so we
find " > 0 such that B".0/ � '.V /. Set A WD '�1

�
xB"=2.0/

�
� U . Then A is closed

in U and by proposition 2.32 there exists a smooth bump function  2 C1.U / for
A supported in U . Define z!i WM ! T �M and zXi WM ! TM by

z!ix WD

(
 .x/!ix x 2 U;

0x x 2M n supp ;

and

zXi jx WD

(
 .x/Xi jx x 2 U;

0x x 2M n supp :
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Then z!i 2 X�.M/ and zXi 2 X.M/ by the gluing lemma for smooth maps (see [6,
35]). Moreover, on '�1

�
B"=2.0/

�
we have that z!i D !i and zXi D Xi . But then

also
A
�
z!1; : : : ; z!k ; zX1; : : : ; zXl

�
D A

�
!1; : : : ; !k ; X1; : : : ; Xl

�
on this neighbourhood, and so since the former is smooth by assumption, so is the
latter. Finally, to prove (e)) (b), let .U; .xi // be a chart about x 2 M . Consider
!i 2 X�.U / and Xi 2 X.U / defined by

!i WD ıijdx
j and Xi WD ı

j
i

@

@xj
:

Then it is easy to verify that

A
�
!i1 ; : : : ; !ik ; Xj1 ; : : : ; Xjl

�
D A

i1:::ik
j1:::jl

holds on U . Thus by assumption, each component function is smooth. �

Part (d) of the smoothness criteria for tensor fields 2.33 implies that for any tensor
field A 2 �

�
T .k;l/TM

�
there is a mapping

A W X�.M/ � � � � � X�.M/�
k

� X.M/ � � � � � X.M/�
l

! C1.M/

defined by �
!1; : : : ; !k ; X1; : : : ; Xl

�
7! A

�
!1; : : : ; !k ; X1; : : : ; Xl

�
:

We will call this mapping the map induced by the tensor field A.

Proposition 2.34 (Tensor Field Characterisation Lemma [6, 318]). Let M be a
smooth manifold and k; l 2 N. A mapping

A W X�.M/ � � � � � X�.M/�
k

� X.M/ � � � � � X.M/�
l

! C1.M/

is induced by a .k; l/-tensor field if and only if A is multilinear over C1.M/.

Proof. Suppose A is induced by a .k; l/-tensor field A. Let !1; : : : ; !k ; z!i 2
X�.M/ and X1; : : : ; Xl 2 X.M/ as well as f 2 C1.M/. Then for any x 2 M we
compute

A
�
: : : ; !i C f z!i ; : : :

�
.x/ D Ax

�
: : : ; !ix C f .x/z!

i
x ; : : :

�
D Ax

�
: : : ; !ix ; : : :

�
C f .x/Ax

�
: : : ; z!ix ; : : :

�
D A

�
: : : ; !i ; : : :

�
.x/C f .x/A

�
: : : ; z!i ; : : :

�
.x/

D
�
A
�
: : : ; !i ; : : :

�
C fA

�
: : : ; z!i ; : : :

��
.x/:
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Thus A is C1.M/-multilinear with respect to the first k arguments. Similarly, A is
C1.M/-multilinear with repect to the last l arguments.
Conversly, suppose that

A W X�.M/ � � � � � X�.M/�
k

� X.M/ � � � � � X.M/�
l

! C1.M/

is C1.M/-multilinear. We wish to define a .k; l/-tensor field A that induces A.
That this is indeed possible, is the observation that A

�
!1; : : : ; !k ; X1; : : : ; Xl

�
.x/

only depends on !1x ; : : : ; !kx ; X1jx ; : : : ; Xl jx . Thus we divide the remaining proof
into three steps.
Step 1: A

�
!1; : : : ; !k ; X1; : : : ; Xl

�
acts locally. That is, if either some !i or Xi

vanish on an open set U , then so does A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
. Let x 2 U and

 2 C1.M/ be a smooth bump function for fxg supported in U . Then  !i D 0

onM and by C1.M/-multilinearity

0 D A
�
: : : ;  !i ; : : :

�
D  .x/A

�
: : : ; !i ; : : :

�
.x/ D A

�
: : : ; !i ; : : :

�
.x/:

An analogous argument works if some Xi vanishes on U .
Step 2: A

�
!1; : : : ; !k ; X1; : : : ; Xl

�
acts pointwise. Thats is, if !ix or Xi jx vanish

for some x 2M , then so does A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
. Let .U; .xi // be a chart

about x. Then !i D !ijdx
j on U . Let  2 C1.U / denote the smooth bump

function used in the proof of part (d) ) (e) of the smoothness criteria for tensor
fields 2.33. Define

"j WD

(
 .x/dxj jx x 2 U;

0x x 2M n supp ;

and

f ij WD

(
 .x/!ij .x/ x 2 U;

0x x 2M n supp :

Then !i D f ij "
j on a neighbourhood of x and so by multilinearity and step 1, we

have that
A
�
: : : ; !i ; : : :

�
D f ij A

�
: : : ; "j ; : : :

�
on a neighbourhood of x. But since !ix vanishes so does each !ij .x/. Hence

A
�
: : : ; !i ; : : :

�
.x/ D f ij .x/A

�
: : : ; "j ; : : :

�
.x/ D !ij .x/A

�
: : : ; "j ; : : :

�
.x/ D 0:

An analogous argument works if some Xi jx .
Step 3: Definition of the .k; l/-tensor field A inducing A. Let x 2M , !1; : : : ; !k 2
T �xM and v1; : : : ; vl 2 TxM . Suppose that z!1; : : : ; z!k 2 X�.M/ and zX1; : : : ; zXl 2
X.M/ are any extensions, respectively. That is, z!ix D !i and zXi jx D vi . They do
always exist, since in a chart .U; .xi // we may write
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!i D !ijdx
j
jx and vi D v

j
i

@

@xj

ˇ̌̌̌
x

and so using a smooth bump function for fxg supported inU we can construct global
maps as in step 2 if we consider the components as constant functions. Now define

Ax
�
!1; : : : ; !k ; v1; : : : ; vl

�
WD A

�
z!1; : : : ; z!k ; zX1; : : : ; zXl

�
.x/: (2.6)

This is well-defined by step 2. Now if !1; : : : ; !k 2 X�.M/ and X1; : : : ; Xl 2
X.M/, we have that

A
�
!1; : : : ; !k ; X1; : : : ; Xl

�
.x/ D Ax

�
!1x ; : : : ; !

k
x ; X1jx ; : : : ; Xl jx

�
;

since !i and Xi are extensions of !ix and Xi jx , respectively, for all x 2 M . So the
assumption that A takes values in the space of smooth functions C1.M/ together
with part (d) of the smoothness criteria for tensor fields 2.33 yields thatA is a smooth
.k; l/-tensor field which moreover induces A. �

Proposition 2.35 (Bundle Homomorphism Characterisation Lemma [6, 262]).
Let � W E !M and z� W zE !M be smooth vector bundles over a smooth manifold
M . A map F W �.E/ ! �. zE/ is linear over C1.M/ if and only if there exists a
smooth bundle homomorphism F W E ! zE overM such that F .�/ D F ı � for all
� 2 �.E/.

Theorem 2.36 (Tangent-Cotangent Bundle Isomorphism). Let .M;!/ be a sym-
plectic manifold. Define ˝ W TM ! T �M by

˝.v/.w/ WD !x.v; w/ (2.7)

for all x 2 M and v;w 2 TxM . Then ˝ is a well-defined smooth bundle isomor-
phism. The morphism ˝ is called the tangent-cotangent bundle isomorphism.

Proof. Using the tensor field characterisation lemma 2.34, ! induces a map

! W X.M/ � X.M/! C1.M/

which is C1.M/-multilinear. Thus for X 2 X.M/ we define ˝X W X.M/ !

C1.M/ by
˝X .Y / WD !.X; Y /:

Since ! is multilinear over C1.M/, so is ˝X , and thus again by the tensor field
characterisation lemma 2.34, ˝X belongs to X�.M/. Hence we get a map ˝ W
X.M/! X�.M/ by˝.X/ WD ˝X which is also multilinear over C1.M/. Finally,
by the bundle homomorphism characterisation lemma 2.35, there exists a smooth
vector bundle homomorphism ˝ W TM ! T �M such that ˝X D ˝ ı X for all
X 2 X.M/. Let x 2M , v;w 2 TxM and V;W 2 X.M/ be extensions of v and w,
respectively (see step 3 in the proof of the tensor field characterisation lemma 2.34).
We compute
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˝V jx.w/ D ˝V .W /.x/ D !.V;W /.x/ D !x.V jx ; W jx/ D !x.v; w/

and since .˝ ıV /jx.w/ D ˝.V jx/.w/ D ˝.v/.w/, we have that˝ coincides with
the map defined in (2.7). Next we show that ˝ is injective. Let v; zv 2 TM such
that˝.v/ D ˝.zv/. Since˝ is a fibrewise mapping, we must have that v; zv 2 TxM
for some x 2 M . Moreover, by definition we have that !x.v � zv;w/ D 0 for
every w 2 TxM . By nondegeneracy, it follows that v D zv. Moreover, since TxM
is finite-dimensional, we get that ˝ is also surjective, thus bijective. Since any
bijective smooth bundle homomorphism over M is automatically a smooth bundle
isomorphism by [6, 262], ˝ is a smooth bundle isomorphism. �

Remark 2.37. In what follows, we will denote both the smooth bundle isomorphism
˝ W TM ! T �M as well as the induced C1.M/-linear morphism ˝ W X.M/!

X�.M/ by the same letter ˝. However, as a subtle distinction between those two
maps, we will write ˝X for the evaluation of the latter at some X 2 X.M/.

Proposition 2.38. Let .M;!/ be a symplectic manifold and � 2 �1.M/. Then there
exists a unique vector field X 2 X.M/ such that

iX! D �:

Proof. Using the tangent-cotangent bundle isomorphism 2.36, set

X WD ˝�1.�/:

Then for any x 2M and v 2 TxM we compute

�x.v/ D
�
˝X

�
x
.v/ D ˝.X jx/.v/ D !x

�
X jx ; v

�
D .iX /x.v/:

�

2.1.4 The Darboux Theorem

This section deals with a nonlinear analogue of the canonical form theorem for a
symplectic vector space 2.8. The main theorem of this section illustrates the most
dramatic difference between symplectic structures and Riemannian ones: unlike in
the Riemannian case, there is no local obstruction to a symplectic structure being
locally equivalent to the standard flat model

�
R2n; !0

�
.

Definition 2.39 (Time-Dependent Vector Field [6, 236]). LetM be a smooth man-
ifold. A time-dependent vector field onM is a smooth map X W J �M ! TM ,
where J � R is an interval, such that X.t; x/ 2 TxM for all .t; x/ 2 J � M .
An integral curve of a time-dependent vector field X is defined to be a curve

 2 C1.J0;M/, where J0 � J is an interval, such that


 0.t/ D X
�
t; 
.t/

�
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holds for all t 2 J0.

Proposition 2.40 (Fundamental Theorem of Time-Dependent Flows [6, 237]).
Let M be a smooth manifold, J � R an open interval and X W J �M ! TM

a time-dependent vector field. Then there exists an open subset D � J � J �M

together with a map  2 C1.D ;M/, called the time-dependent flow of X , such
that:

(a) For all t0 2 J and x 2 M , the set D.t0;x/ WD ft 2 J W .t; t0; x/ 2 Dg is an
open interval containing t0 and the curve  .t0;x/.t/ WD  .t; t0; x/ is the unique
maximal integral curve of X with initial condition  .t0;x/.t0/ D x.

(b) If t1 2 D.t0;x/ and y D  .t0;x/.t1/, then D.t1;y/ D D.t0;x/ and  .t1;y/ D
 .t0;x/.

(c) For each .t1; t0/ 2 J � J , the setMt1;t0 WD fx 2M W .t1; t0; x/ 2 Dg is open
inM , and the map  t1;t0 WMt1;t0 !M defined by  t1;t0.x/ WD  .t1; t0; x/ is
a diffeomorphism fromMt1;t0 ontoMt0;t1 with inverse  t0;t1 .

(d) If x 2Mt1;t0 and  t1;t0.x/ 2Mt2;t1 , then x 2Mt2;t0 and

 t2;t1 ı  t1;t0.x/ D  t2;t0.x/:

In [2], the Lie derivative is referred to as the fisherman’s derivative.

Proposition 2.41 (Fisherman’s Formula [6, 571]). Let M be a smooth manifold
and suppose that X W J �M ! TM is a time-dependent vector field with time-
dependent flow  W D !M . For any form ! 2 �k.M/ and any .t1; t0; x/ 2 D

d

dt

ˇ̌̌̌
tDt1

 �t;t0! D  
�
t1;t0

�
LXt1!

�
;

holds, where Xt1 WD X.t1; �/ 2 X.M/.

Proof. Applying  �t0;t1 to above equation yields

d

dt

ˇ̌̌̌
tDt1

 �t;t1! D LXt1!

using part (c) and (d) of the fundamental theorem of time-dependent flows 2.40.
An appropriate modification of proposition F.191 shows that the left-hand-side is a
graded derivation of degree zero. Thus it is enough to show that both sides coincide
on functions and exact 1-forms by mean of proposition F.199. Let f 2 C1.M/.
Then for any x 2M we compute

d

dt

ˇ̌̌̌
tDt1

�
 �t;t1f

�
x
D

d

dt

ˇ̌̌̌
tDt1

f
�
 t;t1.x/

�
D

�
f ı  .t1;x/

�0
.t1/

D

�
 .t1;x/

�0
.t1/f
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D X
�
t1;  

.t1;x/.t1/
�
f

D Xt1.x/f

D
�
LXt1f

�
x

using part (a) of the fundamental theorem of time-dependent flows 2.40. Moreover
with proposition F.202 we compute

d

dt

ˇ̌̌̌
tDt1

 �t;t1.df / D
d

dt

ˇ̌̌̌
tDt1

d
�
 �t;t1f

�
D d

�
d

dt

ˇ̌̌̌
tDt1

 �t;t1f

�
D d

�
LXt1f

�
D LXt1df:

�

We need the following adapted version of Fisherman’s formula 2.41.

Proposition 2.42 ([6, 573]). Let M be a smooth manifold and J � R an open
interval. Suppose X W J �M ! TM is a time-dependent vector field with time-
dependent flow  W D ! M and ! W J �M ! ƒkT �M is a time-dependent
differential k-form. Then for any .t1; t0; x/ 2 D

d

dt

ˇ̌̌̌
tDt1

 �t;t0!t D  
�
t1;t0

�
LXt1!t1 C

d

dt

ˇ̌̌̌
tDt1

!t

�
(2.8)

holds.

Proof. For " > 0 sufficiently small, define

F W .t1 � "; t1 C "/ � .t1 � "; t1 C "/! ƒkT �M

by
F.u; v/ WD  �u;t0!v:

Using the chain rule and Fisherman’s formula 2.41 we compute

d

dt

ˇ̌̌̌
tDt1

 �t;t0!t D
d

dt

ˇ̌̌̌
tDt1

F.t; t/

D
@F

@u
.t1; t1/C

@F

@v
.t1; t1/

D
d

du

ˇ̌̌̌
uDt1

 �u;t0!t1 C
d

dv

ˇ̌̌̌
vDt1

 �t1;t0!v

D  �t1;t0

�
LXt1!t1

�
C  �t1;t0

�
d

dv

ˇ̌̌̌
vDt1

!v

�
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D  �t1;t0

�
LXt1!t1 C

d

dt

ˇ̌̌̌
tDt1

!t

�
:

�

Proposition 2.43 (Moser’s Trick [10, 108]). LetM be a compact smooth manifold
and suppose that we are given a smooth family of symplectic forms .!t /t2J 2 �2.M/

for some open interval J � R containing 0, such that there exists a smooth family
.�t /t2J 2 �

1.M/ with exact derivatives:

d

dt
!t D d�t :

Then there exists a family of diffeomorphisms . t /t2J 2 Diff.M/ such that

 �t !t D !0: (2.9)

Proof. The key observation to achieve this is to represent the diffeomorphisms
. t /t2J as the time-dependent flow of a time-dependent vector field X , where
 t WD  t;0 in the terminology of proposition 2.40. This extremely useful argument
is called Moser’s argument or as Moser’s trick. Using the adapted version of
Fisherman’s formula 2.42 and Cartan’s magic formula F.204 we compute

d

dt
 �t !t D  

�
t

�
LXt!t C

d

dt
!t

�
D  �t

�
iXt .d!t /C d

�
iXt!t

�
C
d

dt
!t

�
D  �t

�
d
�
iXt!t

�
C
d

dt
!t

�
D  �t

�
d
�
iXt!t

�
C d�t

�
In order to satisfy equation (2.9), wewant �t !t to be constant, so above computation
yields

 �t
�
d
�
iXt!t

�
C d�t

�
D 0:

Since  �t is an isomorphism, we can equivalently solve

d
�
iXt!t

�
C d�t D 0

and because d is a sheaf morphism, it is sufficient to solve

iXt!t C �t D 0: (2.10)

Equation (2.10) is called Moser’s equation and can be solved by proposition 2.38
explicitly by

Xt D �˝
�1
t .�t /;
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where ˝t denotes the tangent-cotangent bundle isomorphism 2.36 induced by !t .
Note that thus Xt varies smoothly in t . Hence by the fundamental theorem of time-
dependent flows 2.40 together with the compactness ofM yields the existence of a
time-dependent flow  W J � J �M !M . But then

 �t !t D  
�
0!0 D id�M !0 D !0

as desired. �

Definition 2.44 (Tubular Neighbourhood [7, 133]). Let .M; g/ be a Riemannian
manifold, S �M an embedded submanifold and denote by� W NS ! S the normal
bundle of S inM . Consider the restriction expS W E \ NS ! M the restriction of
the exponential map ofM with domain E � TM . A neighbourhood U of S inM
is called a tubular neighbourhood of S inM , iff there exists a positive continuous
function ı W S ! R such that U is the diffeomorphic image under expS of a subset
V � E \NS of the form

V D
˚
.x; v/ 2 NS W jvjg < ı.x/

	
:

If ı is constant, then U is called a uniform tubular neighbourhood of S inM .

See figure 2.1 for an illustration of a tubular neighbourhood.

x

NxS

S

U

M

Fig. 2.1: A tubular neighbourhood U of an embedded submanifold S of a smooth
manifoldM .

Proposition 2.45 (The Tubular Neighbourhood Theorem [7, 133]). Let .M; g/
be a Riemannian manifold. Every embedded submanifold of M admits a tubular
neighbourhood in M , and every compact submanifold admits a uniform tubular
neighbourhood.
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In order to apply the tubular neighbourhood theorem 2.45 to any smoothmanifold,
we need the following basic result from Riemannian geometry.

Proposition 2.46 (Existence of RiemannianMetrics [6, 329]). Every smooth man-
ifold admits a Riemannian metric.

Proposition 2.47 (HomotopyFormula [15, 45]). LetU be a tubular neighbourhood
of an embedded submanifold S of a smooth manifoldM . Suppose that ! 2 �k.U /
is closed and ��! D 0, where � W S ,! U . Then there exists � 2 �k�1.U / such that
! D d�. Moreover, we can choose � such that �x D 0 for all x 2 S .

Proof. By definition of a tubular neighbourhood 2.44, there exists a positive contin-
uous function ı W S ! R such that U D expS .V /, where

V D
˚
.x; v/ 2 NS W jvjg < ı.x/

	
:

Let t 2 I and define  t W U ! U by

 t
�
expS .x; v/

�
WD expS .x; tv/:

Then  t is a diffeomorphism for t > 0 onto its image

 t .U / D expS .Vt /

where
Vt WD

˚
.x; v/ 2 NS W jvjg < tı.x/

	
;

since expS is injective and an explicit smooth inverse is given by

expS .x; tv/ 7! expS .x; v/:

Moreover,  t .U / is open in U because expS is a diffeomorphism, thus a homeo-
morphism and so in particular an open map. So we can restrict any form in �k.U /
to a form in �k

�
 t .U /

�
. Also

 1 D idU and  0 D � ı � ı exp�1S

where � W NS ! S is the projection. Hence we are done if we show the existence
of a mapH W �k.U /! �k�1.U / such that

H ı d C d ıH D  �1 �  
�
0 ; (2.11)

since then by assumption ! D d.H!/ and so we can choose � WD H.!/. We claim
that such an operatorH is given by

H.!/ WD

Z 1

0

 �t
�
iXt!

�
dt

for ! 2 �k.U /, where Xt 2 X
�
 t .U /

�
is given by
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Xt WD

�
d

dt
 t

�
ı  �1t

for t > 0. Or equivalently

H D

Z 1

0

Htdt

whereHt W �
k.U /! �k�1.U / is defined by

.Ht!/x.v1; : : : ; vk�1/ WD ! t .x/

�
d

dt
 t .x/;D. t /x.v1/; : : : ;D. t /x.vk�1/

�
for x 2 U and v1; : : : ; vk�1 2 TxU . Indeed, using Cartan’s magic formula F.204
and Fisherman’s formula 2.41 we compute

H.d!/C d.H!/ D

Z 1

0

 �t
�
iXt .d!/

�
C d

�
 �t

�
iXt!

��
dt

D

Z 1

0

 �t
�
iXt .d!/C diXt!

�
dt

D

Z 1

0

 �t
�
LXt!

�
dt

D

Z 1

0

d

dt

�
 �t !

�
dt

D  �1! �  
�
0!;

since  t is the time-dependent flow of Xt . Moreover, we have that  t jS D idS for
all t 2 I , so Xt vanishes on S and so does �. �

Remark 2.48. Equation (2.11) is referred to as a Homotopy formula, because a
similar formula is used to show the homotopy invariance of the deRhamcohomology.
See for example [6, 443–446].

Remark 2.49. Alternatively, one could also prove proposition 2.47 using the follow-
ing result due to Élie Cartan:

Proposition 2.50 (Cartan [14, 104]). Let M and N be smooth manifolds, J � R
an interval and F W I �M ! N a smooth map. For all t 2 J define

Ht W �
k.N /! �k�1.M/

by

.Ht!/x.v1; : : : ; vk�1/ WD !Ft .x/

�
d

dt
Ft .x/;D.Ft /x.v1/; : : : ;D.Ft /x.vk�1/

�
for x 2M and v1; : : : ; vk�1 2 TxM . Then



2.1 Symplectic Geometry 59

Ht .d!/C d.Ht!/ D
d

dt
F �t !

for all ! 2 �k.N / and t 2 J .

Proposition 2.51 (Moser Isotopy [10, 109]). Let M 2n be a smooth manifold and
S �M a compact submanifold. Suppose that !0; !1 2 �2.M/ are closed and such
that:

(i) !0jx D !1jx for all x 2 S .
(ii) !0jx and !1jx are nondegenerate for all x 2 S .

Then there exist neighbourhoods U0 and U1 of S in M and a diffeomorphism
F W U0 ! U1 such that

F jS D idS and F �
�
!1jU1

�
D !0jU0 :

Proof. In view of Moser’s trick 2.43, we can argue as follows. Let U be a uniform
tubular neighbourhood of S in M . Note that xU is compact by construction. By
proposition 2.47 there exists � 2 �1.U / such that

!1 � !0 D d�:

For t 2 R set
!t WD !0 C t .!1 � !0/:

By shrinking U to a new neighbourhood U0 of S inM if necessary, we may assume
that !t is non-degenerate for t in some bounded open interval containing I (this is
due to the fact that !t D !0 on S and non-degeneracy is an open condition). By
definition

d

dt
!t D !1 � !0 D d�:

ByMoser’s trick and the fact that xU0 � xU is compact as a closed subset of a compact
space, there exists a family of diffeomorphisms . t /t2J such that

 �t !t D !0:

Thus set F WD  1 and U1 WD F.U0/. Then by definition and since � vanishes on S ,
we have that F jS D idS . �

Theorem 2.52 (The Darboux Theorem [6, 571]). Let
�
M 2n; !

�
be a symplectic

manifold. For every x 2 M , there exists a chart
�
U; .xi ; yi /

�
centred about x such

that

!jU D

nX
iD1

dxi ^ dyi :

Any such chart is called a Darboux chart about x.
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Proof. By the canonical form theorem for symplectic vector spaces 2.8 there exists
a basis .ai ; bi / of TxM such that

!x D

nX
iD1

˛i ^ ˇi

where
�
˛i ; ˇi

�
denotes the dual basis of .ai ; bi /. By proposition F.34, there exists a

chart
�
U; z'

�
with associated coordinates

�
zxi ; zyi

�
centred about x such that

@

@zxi

ˇ̌̌̌
x

D ai and
@

@zyi

ˇ̌̌̌
x

D bi :

In particular

!x D

nX
iD1

d zxi jx ^ d zy
i
jx :

Set

!0 WD !jU and !1 WD

nX
iD1

d zxi ^ d zyi :

Then !0 as well as !1 are symplectic forms on U . Applying the Moser isotopy 2.51
to the compact submanifold fxg of U yields the existence of two neighbourhoods
U0 and U1 of x in U and a diffeomorphism F W U0 ! U1 such that

F.x/ D x and F �
�
!1jU1

�
D !0jU0 :

Define a new chart .U0; '/ by ' WD z'jU1 ı F . Then the associated coordinates are
given by

xi D zxi ı F and yi D zyi ı F:

Moreover '.x/ D z'.x/ D 0 and

!jU0 D !0jU0 .by definition of !0/
D F �

�
!1jU1

�
.by definition of F /

D F �

 
nX
iD1

d zxi ^ d zyi

!
.by definition of !1/

D

nX
iD1

F �
�
d zxi ^ d zyi

�
.since F � is linear/

D

nX
iD1

F �
�
d zxi

�
^ F �

�
d zyi

�
.by lemma F.193/

D

nX
iD1

d
�
F �zxi

�
^ d

�
F � zyi

�
.by proposition F.201/
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D

nX
iD1

d
�
zxi ı F

�
^ d

�
zyi ı F

�
.by definition of F �/

D

nX
iD1

dxi ^ dyi .by definition of xi and yi /:

Thus .U0; '/ is our desired chart. �

2.2 Hamiltonian Systems

If the Legendre transform 1.40 is a diffeomorphism, we can define an associated
Hamiltonian function by 1.46, that is a smooth function H on T �M , whereM is a
smooth manifold. By example 2.21, we know that the cotangent bundle T �M admits
a canonical symplectic structure in terms of the tautological form 1.38. The tuple
.T �M;H/ turns out to be the prototype of a much more general structure.

Definition 2.53 (Hamiltonian System). A Hamiltonian system is defined to be a
tuple

�
.M;!/;H

�
consisting of a symplectic manifold .M;!/, called a phase space,

and a functionH 2 C1.M/, called a Hamiltonian function.

Remark 2.54. In what follows, we will write simply .M;!;H/ for a Hamiltonian
system instead of the more cumbersome

�
.M;!/;H

�
. The latter was choosen in the

definition to emphasize the similarity to the definition of a Lagrangian system 1.8.

2.2.1 Hamiltonian Vector Fields

As in Riemannian geometry, a main advantage of the symplectic structure is to
reinstate the definition of the gradient of a smooth function as a vector field instead of
a covector field using the tangent-cotangent bundle isomorphism (for the Riemannian
case see [6, 342–343]).

Definition 2.55 (Hamiltonian Vector Field). Let .M;!;H/ be a Hamiltonian sys-
tem and denote by˝ W X.M/! X�.M/ the tangent-cotangent bundle isomorphism
from proposition 2.36. The vector field XH defined by

XH WD ˝
�1.dH/ (2.12)

is called the Hamiltonian vector field associated to the Hamiltonian system.

Let .M;!;H/ be a Hamiltonian system and suppose
�
U; .xi ; yi /

�
is a Darboux

chart (see theorem 2.52). In these coordinates write

XH D X
i @

@xi
C Y i

@

@yi
:
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Then we compute

iXH! D iXH

 
nX
iD1

dxi ^ dyi

!

D

nX
iD1

��
iXH dx

i
�
^ dyi � dxi ^

�
iXH dy

i
��

D

nX
iD1

�
X idyi � Y idxi

�
:

Comparing with

dH D
@H

@xi
dxi C

@H

@yi
dyi

yields

X i D
@H

@yi
and Y i D �

@H

@xi
:

Thus

XH D

nX
iD1

�
@H

@yi
@

@xi
�
@H

@xi
@

@yi

�
:

Definition 2.56 (Invariance). LetM be a smooth manifold,X 2 X.M/ a complete
vector field with flow � . A tensor field A 2 T k;l .M/ is said to be invariant under
the flow � of X , iff

��t A D A

for all t 2 R.

Recall, that a tensor field A is invariant under the flow of a vector field X if and
only if LXA D 0 (see [6, 324]). The next proposition is a prime example why we
require a symplectic structure to be both closed and nondegenerate. For the proof,
we need one more preliminary result from the calculus of differential forms.

Proposition 2.57. Let .M;!;H/ be aHamiltonian system such that theHamiltonian
vector field is complete. Then the symplectic form is invariant under the flow of the
Hamiltonian vector field.

Proof. By the previous discussion it is enough to show that LXH! D 0. Using
Cartan’s magic formula F.204, closedness of ! together with proposition 2.38 we
compute

LXH! D iXH .d!/C d.iXH!/ D d.iXH!/ D .d ı d/H D 0:

�
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2.2.2 Poisson Brackets

Definition 2.58 (Poisson Bracket). Let .M;!/ be a symplectic manifold. Define a
mapping

f�; �g W C1.M/ � C1.M/! C1.M/

by
ff; gg WD !.Xf ; Xg/

where Xf and Xg are Hamiltonian vector fields associated to the Hamiltonian
systems .M;!; f / and .M;!; g/, respectively. The mapping f�; �g is called the
Poisson bracket on C1.M/.

Recall, that if f 2 C1.M/ for a smooth manifold M , the differential of f is
defined to be the covector field given by dfx.v/ WD vf for x 2 M and v 2 TxM .
This is indeed a smooth covector field by part (d) of the smoothness criteria for
tensor fields 2.33 since

df .X/.x/ D dfx.X jx/ D X jxf D .Xf /.x/ (2.13)

for any X 2 X.M/ and x 2 M , and Xf is smooth by [6, 180] (proving this is
analogous to the proof of the smoothness criteria for tensor fields 2.33).

Lemma 2.59. Let .M;!/ be a symplectic manifold. Then ff; gg D Xgf holds for
all f; g 2 C1.M/.

Proof. Using proposition 2.38 and equation (2.13), we compute

ff; gg D !.Xf ; Xg/ D .iXf !/ .Xg/ D df .Xg/ D Xgf:

Definition 2.60 (Integral of Motion). Let .M;!;H/ be a Hamiltonian system. A
function f 2 C1.M/ is said to be an integral of motion for the Hamiltonian
system .M;!;H /, iff fH;f g D 0.

2.2.3 Lie Group Actions and Noether’s Theorem

Let us recall some basic facts from the theory of Lie groups and Lie algebras. A
Lie group is defined to be a group .G; �/, such that G is a smooth manifold and the
multiplication � as well as the inversion map ��1 W G ! G defined by g 7! g�1 are
smooth. If G is a Lie group, we can associate to G its Lie algebra g defined to be
g WD TeG, where e denotes the neutral element ofG. It can be shown that g Š XL.G/
as real vector spaces, whereXL.G/ � X.G/ denotes the space of left invariant vector
fields on G, that is, the vector fields X 2 X.G/ satisfying .Lg/�X D X , where
Lg is the diffeomorphism Lg W G ! G defined by Lg.h/ WD gh and .Lg/� is the
pushforward of X defined to be the vector field

�
.Lg/�X

�
h
WD d.Lg/g�1hX jg�1h
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for h 2 G. Most importantly, any left invariant vector field on G is complete and so
we can define the exponential map exp W g! G by

exp v WD 
.1/;

where 
 2 C1.R; G/ is the integral curve of the left invariant vector field Xv
associated to v on G, that is Xvjg WD d.Lg/e.v/, with starting point 
.0/ D e.
Then we have that 
.t/ D exp tv and .exp tv/�1 D exp.�tv/ for all v 2 g and
t 2 R.

The most important applications of Lie groups to smooth manifold theory involve
actions by Lie groups on manifolds. Let G be a Lie group and M be a smooth
manifold. A map in C1.G �M;M/ given by .g; x/ 7! g � x, is said to be a left
action of G onM iff

g � .h � x/ D .gh/ � x and e � x D x

holds for all g; h 2 G and x 2M . Similarly, a right action of G onM is defined to
be a map in C1.M �G;M/ given by .x; g/ 7! x � g satisfying

.x � g/ � h D x � .gh/ and x � e D x

for all g; h 2 G and x 2M . Note that any left action ofG onM can be transformed
into a right action of G onM by defining x � g WD g�1 � x for all g 2 G and x 2M ,
and similarly every right action of G onM can be transformed into a left action of
G onM .

Suppose we are given a right action of a Lie group G on a smooth manifoldM .
Then each element v 2 g determines a global flow onM by

.t; x/ 7! x � exp tv:

Define yv 2 X.M/ by

yvx WD
d

dt

ˇ̌̌̌
tD0

x � exp tv

for all x 2 M . This is the infinitesimal generator associated to the above flow (see
[6, 210]). Hence we get a map g! X.M/ defined by v 7! yv. By [6, 526], this map
is actually a Lie algebra homomorphism. This is the main reason we are working
with right actions rather than left actions.
Lemma 2.61 (Computing the Differential Using a Velocity Vector [6, 70]). Let
F 2 C1.M;N / for two smooth manifoldsM and N , x 2M and v 2 TxM . Then

dFx.v/ D .F ı 
/
0.0/

for any path 
 2 C1.J;M/, where J � R is an interval such that 0 2 J , 
.0/ D x
and 
 0.0/ D v.
Proposition 2.62. Suppose we are given a right action of a Lie groupG on a smooth
manifold M . Then for each v 2 g, the infinitesimal generator yv associated to the
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flow generated by v satisfies

.yvf /.x/ D
d

dt

ˇ̌̌̌
tD0

f .x � exp tv/

for all x 2M and f 2 C1.M/.

Proof. Let x 2 M and denote by � W M � G ! M the right action of G on
M . Define �x W G ! M by �x.g/ WD x � g. Then �x is smooth since �x is the
composition

G Š fxg �G M �G M
�

where the first two maps steem from [6, 100]. Set 
.t/ WD exp tv for all t 2 R. Then
it is immediate, that

x � exp tv D �x
�

.t/

�
:

Thus we compute

.yvf /.x/ D yvxf

D
d

dt

ˇ̌̌̌
tD0

�x
�

.t/

�
f

D d.�x/e.v/f .by lemma 2:61/
D v.f ı �x/ .by definition of d�x/
D d.f ı �x/e.v/ .by definition of d.f ı �x//

D .f ı �x ı 
/
0
.0/ .by lemma 2:61/

D
d

dt

ˇ̌̌̌
tD0

f .x � exp tv/:

Remark 2.63. From now on, we will consider left actions of Lie groups G on
smooth manifolds M only instead of right actions, since they are more common.
This is however no drawback, since any left action can be converted into a right
action. Hence if v 2 g, the corresponding infinitesimal generator V is given by

yvx D
d

dt

ˇ̌̌̌
tD0

exp.�tv/ � x:

Proposition 2.64. Let � W G �M ! M be a Lie group action. Then for all g 2 G
and v 2 g we have that

3Adg�1.v/ D ��g yv:
Proof. By proposition F.109 we have a commutative diagram
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g g

G G;

Adg

exp exp

�g

where �g.h/ WD ghg�1 denotes the conjugation action of G on itself. Let x 2 M .
We compute �

��g yv
�
x
D
��
�g�1

�
�
yv
�
x

D D
�
�g�1

�
�g.x/

�
yvj�g.x/

�
D D

�
�g�1

�
�g.x/

�
d

dt

ˇ̌̌̌
tD0

�exp.�tv/
�
�g.x/

��
D

d

dt

ˇ̌̌̌
tD0

�g�1 ı �exp.�tv/
�
�g.x/

�
D

d

dt

ˇ̌̌̌
tD0

�g�1 exp.�tv/g.x/

D
d

dt

ˇ̌̌̌
tD0

�exp.�t Ad
g�1

.v//.x/

D 3Adg�1.v/jx
for all g 2 G and v 2 g. �

Definition 2.65 (Action by Symplectomorphisms). A left action � of a Lie group
G on a symplectic manifold .M;!/ is said to be an action by symplectomorphisms,
iff �g 2 Symp.M;!/ for all g 2 G.

Example 2.66 (Cotangent Lift). Let � be a left action of a Lie groupG on a smooth
manifoldM . Define a left action z� of G on T �M by

z�g WD D
�
��1g

��
for all g 2 G. Using proposition 2.23 we compute

z��g! D �
z��g .d�/ D �d

�
z��g�

�
D �d� D !

for all g 2 G.

Definition 2.67 (Equivariant Action [6, 164]). Let G be a Lie group acting on
smooth manifolds M and N on the left. A map F 2 C1.M;N / is said to be
G -equivariant, iff

F.g � x/ D g � F.x/
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holds for all g 2 G and x 2M .

Definition 2.68 (Weakly Hamiltonian Action and Hamiltonian Action). A left
action of a Lie group G on a symplectic manifold .M;!/ by symplectomorphisms
is said to be

� weakly Hamiltonian, iff for each v 2 g, there exists a Hamiltonian system
.M;!;Hv/, such that XHv D yv.
� Hamiltonian, iff the action is weakly Hamiltonian and additionally the induced
mapping g ! C1.M/ defined by v 7! Hv is G-equivariant with respect to the
adjoint action of G on its associated Lie algebra g (see F.120) and the induced
action of G on C1.M/, that is

HAd
g�1

.v/ D Hv ı �g

holds for all g 2 G and v 2 g.

Lemma 2.69. Let F WM ! N be a diffeomorphism, X 2 X.N / and ! 2 �1.M/.
Then

iF �X .!/ D iX
�
F�!

�
ı F:

Proof. By definition we have that F � D
�
F �1

�
�
, so for x 2M we compute�

iF �X .!/
�
.x/ D

�
i.F�1/�X .!/

�
.x/

D !x

�
D
�
F �1

�
F.x/

�
XF.x/

��
D

��
F �1

��
!
�
F.x/

�
XF.x/

�
D iX .F�!/

�
F.x/

�
:

�

Proposition 2.70. Let � be a left action of a Lie group G on an exact symplectic
manifold

�
M;�d�

�
such that ��g� D � for all g 2 G holds. Then the action � is

Hamiltonian with
Hv D iyv.�/

for all v 2 g.

Proof. Step 1: � is an action by symplectomorphisms.Let g 2 G. Using proposition
F.201 we compute

���g .d�/ D �d
�
��g�

�
D �d�:

Step 2: � is a weaklyHamiltonian action.Let v 2 g.Wewant to prove thatXHv D yv.
By proposition 2.38, XHv is the unique vector field such that �iXHv .d�/ D dHv .
Thus it is enough to show that �iyv.d�/ D dHv holds for all v 2 g. Using Cartan’s
magic formula F.204 we compute

�iyv.d�/ D d
�
iyv�
�
�Lyv�
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D d
�
iyv�
�
�
d

dt

ˇ̌̌̌
tD0

��exp.�tv/�

D d
�
iyv�
�
�
d

dt

ˇ̌̌̌
tD0

�

D d
�
iyv�
�

D dHv:

Step 3: � is a Hamiltonian action. Left to show is that �g is G-equivariant with
respect to the adjoint action of G on g and the induced action of G on C1.M/, that
is, we have to show

HAdg.v/ D Hv ı �g

for all g 2 G and v 2 g. We compute

HAd
g�1

.v/ D i2Ad
g�1

.v/
�

D i��g yv� .by proposition 2.64/

D iyv
�
��
g�1

�
�
ı �g .by lemma 2.69/

D iyv� ı �g

D Hv ı �g :

Thus � is a Hamiltonian action. �

Definition 2.71 (Symmetry Group).A Lie groupG is said to be a symmetry group
of a Hamiltonian system .M;!;H /, iff there exists a weakly Hamiltonian action
of G on .M;!/, such that

��gH D H

holds for all g 2 G.

Theorem 2.72 (Noether’s Theorem, Hamiltonian Version). Let G be a symmetry
group of a Hamiltonian system .M;!;H/. Then for each v 2 g, the function
Hv 2 C

1.M/ such that XHv D yv is an integral of motion.

Proof. Let x 2M . We compute

fH;Hvg .x/ D
�
XHvH

�
.x/ .by lemma 2:59/

D .yvH/.x/

D
d

dt

ˇ̌̌̌
tD0

H
�
exp.�tv/ � x

�
.by proposition 2:62/

D
d

dt

ˇ̌̌̌
tD0

�
��exp.�tv/H

�
.x/

D
d

dt

ˇ̌̌̌
tD0

H.x/

D 0:
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�

If F 2 C1.M;N /, then the derivative of F can be interpreted as a vector bundle
homomorphismDF W TM ! F �TN . Indeed, define

DF.x; v/ WD
�
x;
�
F.x/;DFx.v/

��
for any .x; v/ 2 TM . If � W E !M is a fibre bundle, we can define

VE WD
a
p2E

kerD�p:

Then VE with the usual footpoint projection is a vector bundle over E, called the
vertical bundle of E . Moreover, one can show that VE is isomorphic to ��E.
Explicitely, the isomorphism ˚ W ��E ! VE is given by

˚.p; q/ WD
d

dt

ˇ̌̌̌
tD0

.p C tq/: (2.14)

Proposition 2.73 (Invariant Definition of the Associated Form). Let .M;L/ be
an autonomous Lagrangian system. Then

�L.v/ D dL
�
.˚ ıD�/v

�
(2.15)

for all v 2 T TM , where � W TM !M is the projection and ˚ W ��TM ! V TM

is the vector bundle isomorphism (2.14).

Proof. Let u 2 T.x;v/TM be given by

u WD �i
@

@xi

ˇ̌̌̌
.x;v/

C �i
@

@vi

ˇ̌̌̌
.x;v/

:

Then we compute

dL
�
.˚ ıD�/u

�
D dL

�
˚
�
.x; v/;

�
x;D�.x;v/.u/

���
D dL.x;v/

�
d

dt

ˇ̌̌̌
tD0

�
v C tD�.x;v/.u/

��
D dL.x;v/

 
d

dt

ˇ̌̌̌
tD0

v C t

�
�i
@�j

@xi
.x; v/C �i

@�j

@vi
.x; v/

�
@

@xj

ˇ̌̌̌
x

!
D dL.x;v/

�
d

dt

ˇ̌̌̌
tD0

v C t�i
@

@xi

ˇ̌̌̌
x

�
D dL.x;v/

�
�i

@

@vi

ˇ̌̌̌
.x;v/

�
D
@L

@vi
.x; v/�i
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D
@L

@vi
.x; v/dxi j.x;v/.u/

D �L.u/:

�

Corollary 2.74. Let G be a symmetry group of a Lagrangian system .M;L/. Then

.D�g/
��L D �L

for all g 2 G.

Proof. Using proposition 2.73 we compute

.D�g/
��L.v/ D .D�g/

�dL
�
.˚ ıD�/v

�
D d

�
.D�g/

�L
� �
.˚ ıD�/v

�
D dL

�
.˚ ıD�/v

�
D �L.v/:

for v 2 T .TM/. �

Proposition 2.75. Let .M;L/ be an autonomous Lagrangian system with symmetry
group G and such that the Legendre transform is a diffeomorphism. Then G is
a symmetry group of the corresponding Hamiltonian system

�
T �M;!;EL ı �

�1
L

�
,

where ! denotes the canonical symplectic form on the cotangent bundle, with

Hv D izv.�L/ ı �
�1
L

for all v 2 g, where zv 2 X.TM/ is defined by

zv WD
d

dt

ˇ̌̌̌
tD0

D�exp.�tv/:

Moreover, the action is Hamiltonian.

Proof. Define a left action z� of G on T �M by

z�g WD �L ıD�g ı �
�1
L

for all g 2 G. This action preserves �, that is ��g� D � for all g 2 G, and preserves
the Hamiltonian functionHL D EL ı ��1L . Indeed, using corollary 2.74 we compute

z��g� D
�
�L ıD�g ı �

�1
L

��
�

D
�
��1L

��
.D�g/

���L�

D
�
��1L

��
.D�g/

��L

D
�
��1L

��
�L
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D �;

and denoting by f 2 C1.TM/ the function

f .x; v/ WD DFL.x;v/.v/;

proposition 1.56 yields

z��gHL D
z��g
�
EL ı �

�1
L

�
D z��g

�
��1L

��
EL

D
�
��1L ı

z�g
��
EL

D
�
D�g ı �

�1
L

��
EL

D
�
��1L

��
.D�g/

�EL

D
�
��1L

��
.D�g/

�.f � L/

D
�
��1L

�� �
.D�g/

�f � .D�g/
�L
�

D
�
��1L

��
.f � L/

D
�
��1L

��
EL

D EL ı �
�1
L

D HL

for all g 2 G. Hence by proposition 2.70, the action z� is Hamiltonian with

Hv D iyv�

for all v 2 g. But

Hv.x; �/ D
�
izv.�L/ ı �

�1
L

�
.x; �/

D
�
izv .�

�
L�/ ı �

�1
L

�
.x; �/

D
�
��L�

�
��1
L
.x;�/

�
zvj��1

L
.x;�/

�
D �.x;�/

�
D�L

�
zvj��1

L
.x;�/

��
D �.x;�/

 
D�L

�
d

dt

ˇ̌̌̌
tD0

D�exp.�tv/
�
��1L .x; �/

��!
D �.x;�/

�
d

dt

ˇ̌̌̌
tD0

�L ıD�exp.�tv/
�
��1L .x; �/

��
D �.x;�/

�
d

dt

ˇ̌̌̌
tD0

z�exp.�tv/.x; �/

�
D �.x;�/

�
yvj.x;�/

�
D
�
iyv�
�
.x; �/
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for all .x; �/ 2 T �M . �

2.2.4 Moment Maps

Definition 2.76 (Moment Map [10, 205]). A moment map for a weakly Hamilto-
nian action of a Lie group G on a symplectic manifold .M;!/ is defined to be a
G-equivariant map

� WM ! g�

with respect to the coadjoint action Ad� of G on g�, such that for all v 2 g we have
that yv D XHv whereHv 2 C1.M/ is defined by

Hv.x/ WD �.x/v:

Proposition 2.77. Let � W M ! g� be a moment map for a weakly Hamiltonian
action of a Lie group G on a symplectic manifold .M;!/. Then the action is Hamil-
tonian.

Proof. Denote ˚ W g ! C1.M/ the map given by ˚.v/ WD Hv . Then we must
show that

˚
�
Adg.v/

�
.x/ D Hv.g � x/

holds for all g 2 G, v 2 g and x 2M . We compute

˚
�
Adg.v/

�
.x/ D HAdg.v/.x/ .by definition of ˚/
D �.x/

�
Adg.v/

�
.by definition ofHv/

D Ad�g
�
�.x/

�
v .by definition of Ad�g/

D �.g � x/v .by G-equivariance of �/
D Hv.g � x/ .by definition ofHv/:

�

By virtue of proposition 2.77, every weakly Hamiltonian action admitting a
momentmap is in fact Hamiltonian. Thus the action beingHamiltonian is a necessary
condition for a moment map to exist.

Definition 2.78 (Hamiltonian G -Space). Let � W M ! g� be a moment map for
a Hamiltonian action of a Lie group G on a symplectic manifold .M;!/. Then the
tuple .M;!;G;�/ is called a Hamiltonian G -space.
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2.3 Problems





Appendix A
Basic Category Theory

A short introduction to the rudiments of category theory can be found in [8]. A more
extensive treatment is given in the classic [3].

A.1 Categories

Definition A.1 (Category). A category C consists of

� A class ob.C/, called the objects of C .
� A class mor.C/, called the morphisms of C .
� Two functions dom W mor.C/! ob.C/ and cod W mor.C/! ob.C/, which assign
to each morphism f in C its domain and codomain, respectively.
� For each X 2 ob.C/ a function ob.C/! mor.C/ which assigns a morphism idX
such that dom idX D cod idX D X .
� A function

ı W f.g; f / 2 mor.C/ �mor.C/ W domg D codf g ! mor.C/ (A.1)

mapping .g; f / to g ıf , called composition, such that dom.g ıf / D domf and
cod.g ı f / D codg.

Subject to the following axioms:

� (Associativity Axiom) For all f; g; h 2 mor.C/with dom h D codg and domg D
codf , we have that

.h ı g/ ı f D h ı .g ı f /: (A.2)

� (Unit Axiom) For all f 2 mor.C/ with domf D X and cod f D Y we have that

f D f ı idX D idY ıf: (A.3)

Remark A.2. Let C be a category. For X; Y 2 ob.C/ we will abreviate

75
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C.X; Y / WD ff 2 mor.C/ W domf D X and codf D Y g :

Moreover, f 2 C.X; Y / is depicted as

f W X ! Y: (A.4)

Example A.3. Let � be a single, not nearer specified object. Consider as morphisms
the class of all cardinal numbers and as composition cardinal addition. By [?, 112–
113], cardinal addition is associative and ¿ serves for the identity id�.

Definition A.4 (Locally Small, Hom-Set). A category C is said to be locally small
if for all X; Y 2 C , C.X; Y / is a set. If C is locally small, C.X; Y / is called a
hom-set for all X; Y 2 C .

Definition A.5 (Monic). Let C be a category. A morphism f 2 C.X; Y / is said to
be monic, iff for all objects A 2 C and morphisms g; h 2 C.A;X/

f ı g D f ı h) g D h

holds.

Exercise A.6. In Set, show that a morphism is monic if and only if it is injective.

Definition A.7 (Epic). Let C be a category. A morphism f 2 C.X; Y / is said to be
epic, iff f is monic in Cop.

Exercise A.8. In Set, show that a morphism is epic if and only if it is surjective.

Definition A.9 (Isomorphism). Let C be a category. An isomorphism in C is a
morphism f 2 C.X; Y /, such that there exists a morphism g 2 C.Y;X/ with

g ı f D idX and f ı g D idY :

Exercise A.10. Let C be a category. Show that any isomorphism is both monic and epic.

Exercise A.11. In Set, show that any monic and epic morphism is an isomorphism.

In the definition of an isomorphism A.9, a morphism is forced to admit a two-
sided inverse. However, in reality, often only one-sided inverses do exist. Since they
are particularly useful, they get they own terminology.

Definition A.12 (Section). Let C be a category and f 2 C.X; Y /. A morphism
� 2 C.Y;X/ is called a section of f , iff f ı � D idY .

Exercise A.13. Let C be a category. Show that any morphism admitting a section is epic.

Exercise A.14. In Set, show that any epic morphism admits a section (observe the subtle use of the
axiom of choice!).

Definition A.15 (Retraction). Let C be a category and f 2 C.X; Y /. A morphism
� 2 C.Y;X/ is called a retraction of f , iff � ı f D idX .
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Exercise A.16. Let C be a category. Show that any morphism admitting a retraction is monic.

In algebraic topology, there is a very useful construction on categories.

Definition A.17 (Congruence). Let C be a category. A congruence on C is an
equivalence relation � on mor.C/ such that

(a) If f 2 C.X; Y / and f �g, then g 2 C.X; Y /.
(b) If f0 W X ! Y and g0 W Y ! Z such that f0�f1 and g0�g1, then g0 ıf0�g1 ı
f1.

Exercise A.18. Let C be a category. Show that for any congruence on C , there exists a category
C 0, called quotient category, with ob.C 0/ D ob.C/, for any objectsX;Y 2 C 0

C 0.X;Y / D fŒf � W f 2 C.X;Y /g ;

and pointwise composition.

A.2 Functors

Definition A.19 (Functor). Let C and D be categories. A functor F W C ! D

is a pair of functions .F1; F2/, F1 W ob.C/ ! ob.D/, called the object function
and F2 W mor.C/ ! mor.D/, called the morphism function, such that for every
morphism f W X ! Y we have that F2.f / W F1.X/ ! F1.Y / and .F1; F2/ is
subject to the following compatibility conditions:

� For all X 2 ob.C/, F2.idX / D idF1.X/.
� For all f 2 C.X; Y / and g 2 C.Y;Z/ we have that F2.g ı f / D F2.g/ ıF2.f /.

Remark A.20. Let F W C ! D be a functor. It is convenient to denote the compo-
nents F1 and F2 also with F .





Appendix B
Basic Point-Set Topology

A short but formal introduction to the basics of point-set topology is given in the first
four chapters of [5]. A more extensive treatment can be found in the classic [11].
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Appendix C
Review of Analysis

C.1 Normed Spaces

Definition C.1 (Weak Convergence). Let .X;k�kX / be a normed space and x 2 X .
A sequence .xk/k2N � X is said to converge weakly to x, written xk w

+ x as
k !1, iff for all ' 2 X� we have that

'.xk/! '.x/

as k !1.

Definition C.2 (Reflexivity). A normed space .X;k�k/X is said to be reflexive, iff
the map ˚ W X ! X��, defined by ˚.x/.'/ WD '.x/ is surjective (˚ is already a
linear isometry).

Theorem C.3 (Eberlein-Šmulyan).Let .X;k�kX / be reflexive and .xk/k2N bounded.
Then there exists x 2 X and a subsequence ƒ � N such that

xk
w
+ x

as k !1, k 2 ƒ.

C.2 Differentiability

Definition C.4 (Carathéodory Differentiability). Let .V;j � jV / and .W;j � jW / be
finite-dimensional vector spaces, U � V open and x0 2 U . A map F W U ! W is
said to be differentiable at x0, iff there exists a map ' W U ! L.V;W / such that '
is continuous at x0 and

F.x/ � F.x0/ D '.x/.x � x0/ (C.1)

holds for all x 2 U .
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Example C.5 (Linear Map). Let .V;j � jV / and .W;j � jW / be finite-dimensional
vector spaces and L 2 L.V;W /. Then L is differentiable at every x0 2 V since

L.x/ � L.x0/ D L.x � x0/ D '.x/.x � x0/

holds, where ' W V ! L.V;W / is given by '.x/ WD L.

Proposition C.6. Let .V;j � jV / and .W;j � jW / be finite-dimensional vector spaces,
U � V open and x0 2 U . Suppose '; W U ! L.V;W / are continuous at x0 such
that

F.x/ � F.x0/ D '.x/.x � x0/ and F.x/ � F.x0/ D  .x/.x � x0/

holds for all x 2 U . Then '.x0/ D  .x0/.

Proof. Define ˚ W U ! L.V;W / by

˚.x/ WD '.x/ �  .x/:

Then
˚.x/.x � x0/ D '.x/.x � x0/ �  .x/.x � x0/ D 0

holds for all x 2 U and so

j˚.x0/.x � x0/jW D
ˇ̌�
˚.x0/ � ˚.x/

�
.x � x0/

ˇ̌
W
� j˚.x0/ � ˚.x/jop jx � x0jV

for all x 2 U . Equivalentlyˇ̌̌̌
˚.x0/

x � x0

jx � x0jV

ˇ̌̌̌
W

� j˚.x0/ � ˚.x/jop (C.2)

for all x ¤ x0. Let " > 0. Since˚ is continuous at x0, there exists 0 < ı < r , where
Br .x0/ � U , wuch that for all x 2 PBı.x0/

j˚.x0/ � ˚.x/jop < "

holds. Moreover˚
j˚.x0/.x � x0/= jx � x0jV j W x 2

PBı.a/
	
D
˚
j˚.x0/xjW W jxjV D 1

	
:

Indeed, the inclusion� is clear. Suppose that jyjV D 1. Define x WD x0C
ı
2
y. Then

jx � x0jV �
ı

2
jyjV < ı

and so x 2 PBı.x0/. Also

˚.x0/
x � x0

jx � x0j
D ˚.x0/

ı
2
y

ı
2
jyjV

D ˚.x0/y:



C.2 Differentiability 83

Hence (C.2) yields

j˚.x0/jop D sup
jxjVD1

j˚.x0/xj D sup
x2 PBı.x0/

ˇ̌̌̌
˚.x0/

x � x0

jx � x0j

ˇ̌̌̌
< "

Since " > 0 was arbitrary, we have that j˚.x0/jop D 0 and thus ˚.x0/ D 0, that is
'.x0/ D  .x0/. �

Definition C.7 (Differential). Let .V;j � jV / and .W;j � jW / be finite-dimensional
vector spaces, U � V open and x0 2 U . If F is differentiable at x0, define the
differential of F at x0, writtenDFx0 , by

DFx0 WD '.x0/

where ' is as in C.1.

Lemma C.8. Let U � R open, f W U ! Rn and x0 2 U . Then f is differentiable
at x0 if and only if

lim
x!x0;x2U

f .x/ � f .x0/

x � x0
2 R: (C.3)

Proof.

Definition C.9 (Derivative). Let U � R open and f W U ! Rn differentiable at
x0 2 U . Then the derivative of f at x0, written f 0.x0/, is defined by

f 0.x0/ WD lim
x!x0;x2U

f .x/ � f .x0/

x � x0
:

Definition C.10 (Directional Derivative). Let U � Rn be open, F W U ! Rm and
v 2 Rn. Define the directional derivative of F in direction v at x0, writtenDvFx0 ,
by

DvFx0 WD lim
t!0;t2R

F.x0 C tv/ � F.x0/

t

Definition C.11 (PartialDerivative).LetU � Rn open,F W U ! Rm andx0 2 U .
If F is differentiable at x0, then define the i -th partial derivative of F at x0, written
DiF.x0/, by

DiF.x0/ WD DeiFx0 ;

where .ei / denotes the standard basis of Rn.

Proposition C.12. Let U � Rn open, F W U ! Rm and x0 2 U . If F is differen-
tiable at x0, then

DFx0.v/ D DvFx0

for all v 2 Rn.
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Proof. Consider the composition

t x0 C tv F.x0 C tv/:
f F

Then we compute

DvFx0 D .F ı f /
0.0/ D D.F ı f /0 D DFx0 ıDf0 D DFx0 ı f

0.0/ D DFx0.v/:

C.3 The Inverse Function Theorem

Theorem C.13 (The Inverse Function Theorem). LetU � Rn open, f W U ! Rn

smooth and x 2 U . If Dfx is invertible, then there exists a neighbourhood V � U
of x such that f W V ! f .V / is a diffeomorphism.

C.4 The Implicit Function Theorem

Theorem C.14 (The Implicit Function Theorem). Let U � Rn � Rk be open,
˚ W U ! Rk smooth, .x0; y0/ 2 U and c WD ˚.x0; y0/. If

det
�
Dj˚

i
.x0;y0/

�i
jDnC1;:::;nCk

¤ 0;

then there exist neighbourhoods V0 � Rn of x0 and W0 � Rk of y0 and a smooth
function F W V0 ! W0 such that ˚�1.c/ \ .V0 �W0/ is the graph of F .

C.5 Sobolev Spaces

In what follows, let n 2 N, n � 1, and 1 � p � 1.

Definition C.15 (Distributional and Weak Derivative). Let ˝ � Rn open and
u 2 L1loc.˝/. For any multiindex ˛, the distributional derivative of order ˛ of u,
writtenD˛u, is defined to be the mappingD˛u W C1c .˝/! R defined by

' 7! .�1/j˛j
Z
˝

uD˛'dx:

Moreover, a function D˛u 2 Lp.˝/ is called weak derivative of order ˛ of u with
exponent p, iff
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8' 2 C1c .˝/ W

Z
˝

D˛u'dx D .�1/j˛j
Z
˝

uD˛'dx:

Theorem C.16 (Fundamental Lemma of Variational Calculus). Let ˝ � Rn

open and f 2 L1loc.˝/. If

8' 2 C1c .˝/ W

Z
˝

f 'dx D 0;

then f D 0 a.e.

Remark C.17. Let ˝ � Rn open. Then Lp.˝/ � L1loc.˝/.

Remark C.18. From the fundamental lemma of variational calculus C.16 it follows
that weak derivatives, if they exist, are unique.

Examples C.19 (Weak Derivatives).

(a) Suppose u is classically differentiable. Then u is weakly differentiable using
integration by parts ??.
(b) Consider ˝ WD .�1; 1/ and u WDjxj. Then u0 D �Œ0;1/ � �.�1;0/.
(c) Consider ˝ WD R and u WD �.0;1/. Then the weak derivative u0 does not exist.
Indeed, theDirac distribution is not representable as one may see by considering the
smooth family '" W R! R for " > 0 defined by

'".x/ WD

(
e"
2=.x2�"2/ jxj < ";

0 jxj � ":

(d) Let ˝ WD .0; 1/ and consider the Cantor function u W ˝ ! ˝. Then u0 D 0

classically a.e. but the distributional derivative of u does not vanish.

Definition C.20 (Sobolev Space). Let ˝ � Rn open. For any k 2 !, the Sobolev
space of index .k; p/, written W k;p.˝/, is defined to be the space

W k;p.˝/ WD ff 2 Lp.˝/ W D˛u 2 Lp.˝/ exists for all j˛j � kg ;

with norm
k�kW k;p.˝/ WD

X
j˛j�k

kD˛
�kLp.˝/ :

Moreover, define
W
k;p
0 .˝/ WD C1c .˝/

k�k
Wk;p.˝/ ;

andH k.˝/ WD W k;2.˝/ as well asH k
0 .˝/ WD W

k;2
0 .˝/.

Theorem C.21. Let ˝ � Rn open. Then W k;p.˝/ is

(a) a Banach space for all 1 � p � 1.
(b) separable for all 1 � p <1.
(c) reflexive for all 1 < p <1.
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Proof. The proof basically boils down to using the correponding properties of the
Lebesgue spaces Lp.˝/.

(a) This follows from the fact that Lp.˝/ is a Banach space for all 1 � p � 1. Let
.fi /i2! be a Cauchy sequence inW k;p . By definition of theW k;p-norm, .D˛fi /i2!
is a Cauchy sequence in Lp . Thus we getD˛fi ! f˛ in Lp , in particular, fi ! f

in Lp . Using Hölder’s inequality we computeZ
˝

f˛'dx D lim
i!1

Z
˝

D˛fi'dx D .�1/
j˛j lim
i!1

Z
˝

fiD
˛'dx D .�1/j˛j

Z
˝

fD˛'dx

for ' 2 C1c .˝/.
(b) For simplicity, we consider k D 1 only. Consider � W W 1;p ,! .Lp/nC1 defined
in the obvious way. Then � is an isometry and the statement follows.
(c) Same argument as in part (b). �

In what follows, let �1 � a < b � 1 and I WD .a; b/.

Lemma C.22 (Du Bois-Reymond). Let f 2 L1loc.I / such that

8' 2 C1c .I / W

Z
I

f '0dx D 0:

Then f is almost everywhere constant.

Proof. Let v WD w�c0 forw; 2 C1c .I / such that
R
I
 D 1 and

R
I
v D 0. This

implies c0 D
R
I
w. By the fundamental theorem of calculus, the function ' W I ! R

defined by

'.x/ WD

Z
I

v.t/dt

belongs to C1c .I / with '0 D v. Thus we compute

0 D

Z
I

f '0 D

Z
I

f v D

Z
I

f w � c0

Z
I

f  D

Z
I

f w �

Z
I

w

Z
I

f  D

Z
I

.f � c/w;

where c WD
R
I
f  . Since w was arbitrary, we conclude by the fundamental lemma

of variational calculus C.16. �

Lemma C.23. Let f 2 L1loc.I / and x0 2 I . Then u W I ! R defined by

u.x/ WD

Z x

x0

f .t/dt

is absolutely continuous and belongs to W 1;1
loc .I / with u0 D f a.e.

Proof. Absolute continuity follows from real analysis. Let ' 2 C1c .I /. Then Fubini
yields
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I

u'0 D

Z x0

a

Z x

x0

f .t/'0.x/dtdx C

Z b

x0

Z x

x0

f .t/'0.x/dtdx

D �

Z x0

a

Z x0

x

f .t/'0.x/dtdx C

Z b

x0

Z x

x0

f .t/'0.x/dtdx

D �

Z x0

a

Z t

a

f .t/'0.x/dxdt C

Z b

x0

Z b

t

f .t/'0.x/dxdt

D �

Z x0

a

f .t/'.t/dt �

Z b

x0

f .t/'.t/dt

D �

Z
I

f ':

Theorem C.24. Let u 2 W 1;p.I /. Then there exists an absolutely continuous rep-
resentant zu of u on xI , such that

zu.x/ D zu.x0/C

Z x

x0

u0.t/dt

holds for all x; x0 2 I . In particular, zu is classically differentiable a.e. and zu0 D u0.

Proof. By lemma C.23, the function v.x/ WD
R x
x0
u0.t/dt is in W 1;1

loc .I / with weak
derivative u0. Moreover, for any ' 2 C1c .I / we computeZ

I

.u � v/'0 D

Z
I

u'0 �

Z
I

v'0 D �

Z
I

u0' C

Z
I

u0' D 0:

Thus lemma C.22 yields u D c C v, for some c 2 R. Set

zu.x/ WD c C

Z x

x0

u0.t/dt:

Then zu.x0/ D c and thus the statement follows. �

Theorem C.25 (Characterization of W 1;p.I/). Let 1 < p � 1 and u 2 Lp.I /.
Then the following statements are equivalent:

(a) u 2 W 1;p.I /.
(b) There exists C � 0 such that

8' 2 C1c .I / W

ˇ̌̌̌Z
I

u'0
ˇ̌̌̌
� Ck'kLq :

(c) There exists C � 0 such that for all I 0 �� I andjhj < dist.I 0; @I / holds

k�hu � ukLp.I 0/ � C jhj ;

where �hu.x/ WD u.x C h/.
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Proof. The implication .a/ ) .b/ follows immediately from Hölder’s inequality.
To prove .b/) .a/, we observe that l W C1c .I /! R defined by

l.'/ WD

Z
I

u'0

is continuous. Since C1c .I / is dense in Lq.I /, we get that l 2 .Lq.I //�. Hence we
find g 2 Lp , such that

R
I
g' D l.'/ and so u0 D �g.

Next we show .a/ ) .c/. By theorem C.24, we find an absolutely continuous
representant zu of u. Thus

zu.x C h/ � zu.x/ D h

Z 1

0

u0.x C th/dt

Hence Jensen’s inequality yields

k�hu � ukLp.I 0/ �jhj

Z 1

0

ku0.� C th/kLp.I 0/ dt �jhj ku
0
kLp.I / :

Lastly, we prove .c/) .b/. Let ' 2 C1c .I /. Then we may find I 0 �� I such that
supp' � I 0. Hence we computeˇ̌̌̌Z

I

u'0
ˇ̌̌̌
D lim
h!0

1

jhj

ˇ̌̌̌Z
I

u.x/
�
'.x C h/ � '.x/

�
dx

ˇ̌̌̌
D lim
h!0

1

jhj

ˇ̌̌̌Z
I

�
u.x � h/ � u.x/

�
'.x/dx

ˇ̌̌̌
D lim
h!0

1

jhj

ˇ̌̌̌Z
I

.��hu � u/ '

ˇ̌̌̌
� lim
h!0

1

jhj
k��hu � ukLp.I 0/k'kLq.I /

� Ck'kLq.I / :

Theorem C.26 (Sobolev Embedding). There is a continuous embedding

W 1;p.I / ,! L1.I /:

Proof. First consider I bounded. By theorem C.24 we get that

kukL1 D sup
x2I

ju.x/j �ju.y/j C sup
x2I

ˇ̌̌̌Z x

y

u0.t/dt

ˇ̌̌̌
�ju.y/j C ku0kL1 ;

for any y 2 I . Hence

kukL1 � inf
y2I
ju.y/jCku0kL1 �

1

jI j

Z
I

ju.y/jCku0kL1 � CkukW 1;1 � CkukW 1;p :
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Assume now that I is unbounded. Then we find I 0 �� I such that

kukL1.I 0/ �
1

2
kukL1.I /

and thus the claim follows by the previous computation. Indeed, note that by theorem
C.24, we have that

ju.x/j �ju.y/j C ku0kL1.I /

for all x 2 I and fixed y 2 I , and thus u 2 L1.I /. Moreover, there exists x0 2 I
such that ju.x0/j > 1

2
kukL1.I /, if not, this would contradict the definition of the

supremum norm. Since u is continuous by theorem C.24, we find ı > 0 such that

ju.x/ � u.x0/j �ju.x0/j �
1

2
kukL1.I /

for all x 2 I such thatjx � x0j < ı. Hence the reversed triangle inequality yields

1

2
kukL1.I / �ju.x0/j � ju.x/j �ju.x0/j �ju.x0/j �

1

2
kukL1.I /

and so
1

2
kukL1.I / � ju.x/j

for all x 2 I \ .x0 � ı; x0 C ı/ DW I 0. �





Appendix D
Review of Algebraic Topology

Aquick introduction to the rudiments of Algebraic Topology can be found in chapters
7-13 in [5]. A more extensive treatment can be found in [12]. However, we focus
primarily on the excellent lecture notes of the course Algebraic Topology I/II given
at the ETH Zurich in the autumn semester 2017 and spring semester 2018. These
notes can be found here

https://www.merry.io/algebraic-topology/.
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Appendix E
The Fundamental Group

The Fundamental Grupoid

�0

Lemma E.1. There exists a functor Top ! Set. Moreover, if f; g 2 Top.X; Y / are
freely homotopic, then �0.f / D �0.g/.

Proof. On objects X 2 ob.Top/, define �0.X/ to be the set of equivalence classes
of X under path connectedness. On morphisms f W X ! Y , define �0.f / W
�0.X/ ! �0.Y / by �0.f / Œx� WD Œf .x/�. This is well defined since if Œx� D Œy�,
there exists a path u from x to y inX and it is easy to check that f ıu is a path from
f .x/ to f .y/. Checking that �0 is indeed a functor is left as an exercise. Suppose
H W f ' g and let x 2 X . Then H.x; t/ is a path from f .x/ to g.x/ and thus
�0.f / Œx� D Œf .x/� D Œg.x/� D �0.g/ Œx�. �
Exercise E.2. Check the functoriality of �0 W Top! Set.

Proposition E.3. If X; Y 2 ob.Top/ have the same homotopy type, then j�0.X/j D
j�0.Y /j, i.e. X and Y have the same number of path components.

Proof. Since X and Y are of the same homotopy type, they are isomorphic in hTop.
By lemma E.1, �0 descends to hTop and since functors preserve isomorphisms,
we have that �0.X/ Š �0.Y /. In Set, isomorphisms are bijections and thus the
statement follows. �

Construction of the Fundamental Grupoid

Lemma E.4 (Gluing Lemma). Let X; Y 2 ob.Top/, .X˛/˛2A a finite closed cover
of X and .f˛/˛2A a finite family of maps f˛ 2 Top.X˛; Y / such that f˛jX˛\Xˇ D
fˇ jX˛\Xˇ for all ˛; ˇ 2 A. Then there exists a unique f 2 Top.X; Y / such that
f jX˛ D f˛ for all ˛ 2 A.
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Proof. Let x 2 X . Since .X˛/˛2A is a cover of X , we find ˛ 2 A such that x 2 X˛ .
Define f .x/ WD f˛.x/. This is well defined, since if x 2 X˛ \Xˇ for some ˇ 2 A,
we have that f .x/ D fˇ .x/ D f˛.x/. Clearly f jX˛ D f˛ for all ˛ 2 A and f is
unique. Let us show continuity. To this end, let K � Y be closed. Then

f �1.K/ D X \ f �1.K/

D

[
˛2A

X˛ \ f
�1.K/

D

[
˛2A

�
X˛ \ f

�1.K/
�

D

[
˛2A

�
X˛ \ f

�1
˛ .K/

�
:

Since each f˛ is continuous, f �1˛ .K/ is closed in X˛ for each ˛ 2 A and thus since
X˛ is closed, f �1.K/ is closed as a finite union of closed sets. �

Theorem E.5. There is a functor Top! Grpd.

Proof. The proof is divided into several steps. Let us denote ˘ W Top ! Grpd for
the claimed functor.

Step 1: Definition of ˘ on objects. Let X; Y 2 ob.Top/, f; g 2 Top.X; Y / and
A � X . A map F 2 Top.X � I; Y / is called a homotopy from X to Y relative to
A, if

� F.x; 0/ D f .x/, for all x 2 X .
� F.x; 1/ D g.x/, for all x 2 X .
� F.x; t/ D f .x/ D g.x/, for all x 2 A and for all t 2 I .

If there exists a homotopy between f and g relative to A we say that f and g are
homotopic relative to A and write f 'A g. If we want to emphasize the homotpoy
relative to A, we write F W f 'A g.

Lemma E.6. Let X; Y 2 ob.Top/ and A � X . Then being homotopic relative to A
is an equivalence relation on Top.X; Y /. �

Proof. Define a binary relation RA � Top.X; Y / � Top.X; Y / by

fRAg W, f 'A g:

Let f 2 Top.X; Y /. Define F 2 Top.X � I; Y / by

F.x; t/ WD f .x/:

Then clearly F W f 'A f . Hence RA is reflexive.
Let g 2 Top.X; Y / and assume that fRAg. Thus G W f 'A g. Define F 2
Top.X � I; Y / by

F.x; t/ WD G.x; 1 � t /:
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Then it is easy to check that F W g 'A f and so RA is symmetric.
Finally, let h 2 Top.X; Y / and suppose that fRAg and gRAh. Hence F1 W f 'A g
and F2 W g 'A h. Define F 2 Top.X � I; Y / by

F.x; t/ WD

(
F1.x; 2t/ 0 � t � 1

2
;

F2.x; 2t � 1/
1
2
� t � 1:

Continuity of F follows by an application of the gluing lemma E.4. Then it is easy
to check that F W f 'A h and hence RA is transitive. �

Let X 2 ob.Top/ and u a path in X from p to q. Define the path class Œu� of u by
Œu� WD Œu�R@I . Define now

� ob
�
˘.X/

�
WD X .

� ˘.X/.p; q/ WD fŒu� W u is a path from p to qg for all p; q 2 X .
� Let p 2 X . Then define idp 2 ˘.X/.p; p/ by idp WD Œcp�, where cp is the
constant path defined by cp.s/ WD p for all s 2 I .
� And ˘.X/.q; r/ �˘.X/.p; q/! ˘.X/.p; r/ by

.Œv� ; Œu�/ 7! Œu � v�

Where u � v 2 Top.p; r/ is the concatenated path of u and v, defined by

.u � v/.s/ WD

(
u.2s/ 0 � t � 1

2
;

v.2s � 1/ 1
2
� t � 1

:

Continuity follows again from the gluing lemma E.4 whereas well definedness
follows from the next lemma.

Lemma E.7. Suppose that Œu1� ; Œu2� 2 ˘.X/.p; q/ and Œv1� ; Œv2� 2 ˘.X/.q; r/
such that Œu1� D Œu2� and Œv1� D Œv2�. Then Œu1 � v1� D Œu2 � v2�. �

Proof. By assumption we have G W u1 '@I u2 and H W v1 '@I v2. Define
F 2 Top.I � I;X/ by

F.s; t/ WD

(
G.2s; t/ 0 � s � 1

2
;

H.2s � 1; t/ 1
2
� s � 1:

Again, continuity follows from the gluing lemma E.4 and it is easy to check that
F W u1 � v1 '@I u2 � v2. �

Let us now check that ˘.X/ is indeed a category. Let Œu� 2 ˘.X/.p; q/. We want
to show that u '@I cp � u. To this end, we consider figure E.1a and conclude that a
suitable homotopy is given by F 2 Top.I � I;X/ defined by
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F.s; t/ WD

�
p 0 � 2s � t;

u

�
2s � t

2 � t

�
t � 2s � 2:

Similarly, considering figure E.1b leads to F 2 Top.I � I;X/ defined by

t

s
u

cp u

(a) u '@I cp � u.

t

s
u v w

u v w

(b) .u�v/�w '@I u�.v�
w/.

t

s

cp

u xu

(c) u � xu '@I cp .

Fig. E.1: Visualization of the proof that ˘.X/ is a grupoid object.

F.s; t/ WD

˚
u

�
4s

t C 1

�
�1 � 4s � 1 � t;

v.4s � t � 1/ t � 4s � 1 � t C 1;

w

�
4s � t � 2

4 � t � 2

�
t C 1 � 4s � 1 � 3:

Lastly, we check that˘.X/ is a grupoid. To this end, for a path u from p to q, define
its reverse path xu by

xu.s/ WD u.1 � s/:

We claim that u � xu '@I cp . From figure E.1c we deduce that F 2 Top.I � I;X/
is given by

F.s; t/ WD

‚
u.2s/ 0 � 2s � 1 � t;

u.1 � t / 1 � t � 2s � t C 1;

xu.2s � 1/ t C 1 � 2s � 2:

Step 2: Definition of˘ on morphisms. Let f 2 Top.X; Y /. Then˘.f / is a functor
from ˘.X/ to ˘.Y /. Define ˘.f / as follows:

� Let p 2 ob
�
˘.X/

�
. Then define ˘.f /.p/ WD f .p/ 2 ob

�
˘.Y /

�
.
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� Let Œu� 2 ˘.X/.p; q/. Then define ˘.f / Œu� WD Œf ı u� 2. We have to check
that this definition is independent of the choice of the representative.

Lemma E.8. Let u and v be paths from p to q in X and suppose that Œu� D Œv�.
Then for any f 2 Top.X; Y / we also have that Œf ı u� D Œf ı v�. �

Proof. Suppose thatH W u '@I v. Define F 2 Top.I � I; Y / by

F.s; t/ WD .f ı F /.s; t/:

Then F W f ı u '@I f ı v. �

Checking that ˘ satisfies the functorial properties is left as an exercise. �

Exercise E.9. Check that˘ W Top! Grpd is indeed a functor.

Definition E.10 (Free Homotopy). Let f; g 2 Top.X; Y /. f and g are said to be
freely homotopic if f '¿ g.

Example E.11 (Straight Line Homotopy). Let V be a real vector space. A subset
S � V is said to be convex, if the line segment f.1 � t /p C tq W 0 � t � 1g is
contained in S for all p; q 2 V . Suppose now that V is finite dimensional and
S � V is convex. Moreover, let f; g 2 Top.X; S/ for some X 2 ob.Top/. Define
H W X � I ! S by

H.x; t/ WD .1 � t /f .x/C tg.x/:

ThenH is continuous and clearlyH W f ' g. We callH the straight line homotopy
between f and g. Hence any two continuous maps defined on the same domain into
a convex space are freely homotopic.

Remark E.12. We will also write f ' g for a free homotopy.

Definition E.13 (Nullhomotopic). A mapping f 2 Top.X; Y / is said to be nullho-
motopic, if f is freely homotopic to a constant map.

Definition E.14 (Contractible). A topological spaceX is said to be contractible, if
idX is nullhomotopic.

Definition E.15 (Reparametrization). Let u be a path in a topological space X . A
reparametrization of u is a path u ı ', where ' 2 Top.I; I / fixing 0 and 1.

Lemma E.16. let u be a path in a topological space x and uı' a reparametrization
of u. Then u '@I u ı '.

Proof. Since I is convex, we find a straight line homotopyH W idI ' '. Now uıH
is the homotopy we are looking for. �
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The Fundamental Group

Lemma E.17. Let � be a locally small grupoid. Then for everyX 2 ob.�/, �.X;X/
can be equipped with a group structure.

Proof. Since � is locally small, �.X;X/ is a set for every X 2 ob.�/. Define
a multiplication �.X;X/ � �.X;X/ ! �.X;X/ by gh WD h ı g. Clearly, this
multiplication is associative. Moreover, the identity element is given by idX 2
�.X;X/ and since every g 2 �.X;X/ is an isomorphism, the multiplicative inverse
is given by the inverse in �.X;X/. �

Proposition E.18. There is a functor Top� ! Grp.

Proof. Define �1 W Top� ! Grp on objects .X; p/ 2 Top� by

�1.X; p/ WD ˘.X/.p; p/:

By theorem E.5 together with lemma E.17, �1.X; p/ is actually a group, called the
fundamental groupofX with basepointp. Onmorphismsf 2 Top�

�
.X; p/; .Y; q/

�
,

define
�1.f / WD ˘.f / W ˘.X/.p; p/! ˘.Y /.q; q/:

Let Œu� ; Œv� 2 �1.X; p/. Then

�1.Œu� Œv�/ D ˘.f /.Œu� Œv�/

D ˘.f / Œu � v�

D Œf ı .u � v/�

D Œ.f ı u/ � .f ı v/�

D ˘.f / Œu�˘.f / Œv�

D �1.f / Œu� �1.f / Œv� :

Thus �1.f / is a morphism in Grp. Functoriality of �1 immediately follows from the
functoriality of ˘ . �

Definition E.19 (Simply Connected). A path connected topologial space X is said
to be simply connected, if �1.X/ is trivial.

First Properties of the Fundamental Group

Lemma E.20. Let X 2 ob.Top/, p 2 X and A be the path component of X con-
taining p. Then �1.�/, where � W A ,! X denotes the inclusion, is an isomorphism.

Proof. Suppose Œu� 2 ker�1.�/. Then Œ� ı u� D Œcp� and Hence F W � ı u '@I cp .
Since I � I is path connected and p 2 F.I � I /, it follows that F.I � I / � A
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and thus F W u '@I cp in A and hence Œu� D Œcp�. To see that �1.�/ is surjective,
just observe that u.I / � A for Œu� 2 �1.X; p/ since u.I / is path connected and
p 2 u.I /. �

Lemma E.21. Let X 2 ob.Top/ be path connected and p; q 2 X . Then

�1.X; p/ Š �1.X; q/:

Proof. Since X is path connected we find a path v from p to q in X . Define a
mapping ˚v W �1.X; p/! �1.X; q/

˚v Œu� WD Œxv � u � v� :

Clearly,˚v is invertible with inverse˚xv . Moreover, for Œu� ; Œw� 2 �1.X; p/we have
that

˚v.Œu� Œw�/ D ˚v Œu � w�

D Œxv � u � w � v�

D Œxv � u � v � xv � w � v�

D Œxv � u � v� Œxv � w � v�

D ˚v Œu� ˚v Œw� :

Lemma E.22 (Square Lemma). Let F 2 Top.I � I;X/. Then

F.0; �/ � F.�; 1/ '@I F.�; 0/ � F.1; �/:

Proof. The idea is to consider first the case F D idI�I . Hence define the paths
f0, f1, g0 and g1 in I � I as indicated in figure E.2a. Then there is a straight line
homotopyH W I � I ! I � I between them as indicated in figure E.2b. Explicitly

H.s; t/ WD .1 � t /.f0 � f1/.s/C t .g0 � g1/.s/:

Then

.F ıH/.s; t/ D

(
F
�
2st; 2s.1 � t /

�
0 � s � 1

2
;

F
�
t C .1 � t /.2s � 1/; 1C 2t.s � 1/

�
1
2
� s � 1;

is the homotopy we are looking for.

Proposition E.23. Let f0; f1 2 Top.X; Y / such that F W f0 ' f1. Moreover, let
p 2 X . Then the diagram

�1.X; p/ �1.Y; f0.p//

�1.Y; f1.p//

�1.f0/

�1.f1/
˚F.p;�/
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g0

g1f0

f1

(a) The paths f0, f1, g0 and g1 in I � I .
t

s
g0

g1f0

f1

(b) f0 � f1 '@I g0 � g1.

commutes, where ˚� denotes the isomorphism in lemma E.21.

Proof. Let Œu� 2 �1.X; p/. We have that

�1.f1/ Œu� D
�
˚F.p;�/ ı �1.f0/

�
Œu�, Œf1 ı u� D Œ xF .p; �/ � .f0 ı u/ � F.p; �/�

, ŒF .p; �/ � .f1 ı u/� D Œ.f0 ı u/ � F.p; �/�

, ŒF .u.0/; �/ � F.u�; 1/� D ŒF .u�; 0/ � F.u.1/; �/� ;

where the last equality is true by the square lemma E.22. �

Homotopy Invariance of �1

Lemma E.24. Being freely homotopic is a congruence on Top.

Proof. (a) is immediate so we only have to check (b). Suppose f0 2 Top.X; Y / and
g0 2 Top.Y;Z/ such thatF W f0 ' f1 andG W g0 ' g1. ConsiderH1 W X�I ! Z

defined byH1 WD g0 ıF . Then clearlyH1 W g0 ıf0 ' g0 ıf1. Moreover, we define
H2 W X � I ! Z by H2 WD G.f1�; �/. Then H2 W g0 ı f1 ' g1 ı f1. And we
conclude by transitivity. �
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Definition E.25 (hTop). The quotient category under the congruence of being freely
homotopic is called the homotopy category, and is denoted by hTop.

Definition E.26 (Homotopy Type). Two topological spaces X and Y are of the
same homotopy type, if they are isomorphic in hTop. An explicit choice of such an
isomorphism is called a homotopy equivalence.

Exercise E.27. Show that a topological spaceX has the same homotopy type as a one-point space
if and only ifX is contractible.

Theorem E.28 (Homotopy Invariance of �1). Suppose X and Y are of the same
homotopy type with homotopy equivalence f W X ! Y . Then for any p 2 X we
have that �1.f / W �1.X; p/! .Y; f .p// is an isomorphism.

Proof. By assumption there exists g 2 Top.Y;X/ such that F W g ı f ' idX and
G W f ı g ' idY . By the functoriality of �1 and proposition E.23, the diagram

�1.Y; f .p//

�1.X; p/ �1.X; g.f .p///

�1.X; p/

�1.g/�1.f /

id�1.X;p/

�1.gıf /

˚F.p;�/

commutes. Since ˚F.p;�/ is an isomorphism, �1.g ı f / is an isomorphism, too.
Hence �1.f / is injective. Using G instead of F and a similar argument yields that
�1.f / is surjective. �

Lemma E.29. Let G 2 ob.Grp/, S 2 Set and ' W U.G/ ! S a bijection. Then S
can be given a group structure such that ' is an isomorphism.

Proof. It is easy to show that xy WD '
�
'�1.x/'�1.y/

�
defines a group structure

on S with the requested property. �

Proposition E.30. Let .X; p/ 2 ob.Top�/. Then�1.X; p/ Š hTop�
�
.S1; 1/; .X; p/

�
.

Proof. Let u 2 ˝.X; p/. Then u passes to the quotient zu W .S1; 1/! .X; p/. Define
now ' Œu� WD Œzu� 2 hTop�

�
.S1; 1/; .X; p/

�
. This is well defined, since ifH W u '@I

v, it is easy to see that zH W zu 'f1g zv. Moreover, if f 2 hTop�
�
S1; 1/; .X; p/

�
, we

define  Œf � WD Œf ı !�. Again, this is well defined since if H W f 'f1g g, then
H ı .! � idI / W f ı ! '@I g ı !. It is easy to check that ' and  are inverses of
each other and thus we have a bijection �1.X; p/ Š hTop�

�
.S1; 1/; .X; p/

�
of sets.

Hence an application of lemma E.29 yields the result. �
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�1.S
1/

Definition E.31 (Exponential Quotient Map and Fundamental Loop). The map-
ping " W R! S1 defined by

".x/ WD e2�ix (E.1)

is called the exponential quotientmap. Moreover, the fundamental loop! is defined
to be the restriction ! WD "jI .

Proposition E.32 (Lifting Property of the Circle). Let n 2 Z, n � 0, X � Rn

compact and convex, p 2 X , f 2 Top�
�
.X; p/; .S1; 1/

�
and m 2 Z. Then there

exists a unique map zf 2 Top�
�
.X; p/; .R; m/

�
, called the lifting of f , such that

.R; m/

.X; p/ .S1; 1/

"

f

zf

commutes.

Proof. We show first existence and then uniqueness.

Step 1: Existence. Since X is compact and f is continuous, f is uniformly contin-
uous on X . Thus we find ı > 0 such thatjf .x/ � f .y/j < 2, wheneverjx � yj < ı,
i.e. f .x/ and f .y/ are not antipodal points. Moreover, since X is compact, X is
bounded and hence we find N 2 N, such that jx � yj < Nı holds for all x; y 2 X .
Let x 2 X . For 0 � k � N , define Lk W X ! X by

Lk.x/ WD

�
1 �

k

N

�
p C

k

N
x:

Those arewell defined functions sinceX is convex.Moreover, eachLk is continuous.
Indeed, it is easy to check that Lk is Lipschitz. Also, for each 0 � k < N ,
f .Lk.x// and f .LkC1.x// are not antipodal for all x 2 X . Indeed, it is easy to
check that jLk.x/ � LkC1.x/j < ı holds for all x 2 X . For 0 � k < N define
gk W X ! S1 n f�1g by

gk.x/ WD
f .LkC1.x//

f .Lk.x//
:

Clearly gk is well defined and continuous as a composition of continuous functions.
Let Log W S1 n f�1g ! C denote the principal branch of the logarithm. Define
zf W X ! R by

zf .x/ WD mC
1

2�i

N�1X
kD0

Log.gk.x//:

Clearly, zf is continuous and moreover we have that zf D m since gk.p/ D 1 for all
0 � k < N . Finally, for any x 2 X we have that
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." ı zf /.x/ D ".m/

N�1Y
kD0

gk.x/ D
f .LN .x//

f .L0.x//
D
f .x/

f .p/
D f .x/:

Step 2: Uniqueness. Suppose zg 2 Top�
�
.X; p/; .R; m/

�
is another such function.

Define ' 2 Top�
�
.X; p/; .R; 0/

�
by

'.x/ WD zf .x/ � zg.x/:

Then clearly " ı ' D 1 and thus '.X/ � Z. Since X is convex, X is connected and
so ' D 0. �

Corollary E.33. Let u; v 2 ˝.S1; 1/ such that Œu� D Œv�. If zu; zv W .I; 0/ ! .R; 0/
are the liftings of u and v, respectively, then Œzu� D Œzv�.

Proof. LetF W u '@I v. By propositionE.32,wefind zF 2 Top�
�
.I � I; .0; 0//; .R; 0/

�
,

such that " ı zF D F . We claim that zF W zu '@I zv. For s 2 I define
zu0.s/ WD zF .s; 0/. Then zu0.0/ D zF .0; 0/ D 0 and since zu0 is continuous we
have that zu0 2 Top�

�
.I; 0/; .R; 0/

�
. Moreover

." ı zu0/.s/ D "
�
zF .s; 0/

�
D F.s; 0/ D u.s/

for all s 2 I and thus zu0 is a lifting of u. But by proposition E.32, liftings are
unique and thus zu0 D zu. Next define zw0.t/ WD zF .0; t/ for all t 2 I . Then zw0.0/ D
zF .0; 0/ D 0 and so zw0 2 Top�

�
.I; 0/; .R; 0/

�
. Moreover

." ı zw0/.t/ D "
�
zF .0; t/

�
D F.0; t/ D u.0/ D v.0/ D 1:

for all t 2 I . Thus
.R; 0/

.I; 0/ .S1; 1/

"

c1

zw0

commutes. But also c0 makes the above diagram commute. By uniqueness, zw0 D c0.
Define zv0.s/ WD zF .s; 1/ for all s 2 I . Then zv0.0/ D zF .0; 1/ D zw0.1/ D 0 and it is
easy to check that zv0 is a lift for v. Hence zv0 D zv. Finally, define zw1.t/ WD zF .1; t/
for all t 2 I . Then zw1.0/ D zF .1; 0/ D zu.1/ and thus zw1 2 Top�

�
.I; 0/; .R; zu.1//

�
.

Moreover

." ı zw1/.t/ D "
�
zF .1; t/

�
D F.1; t/ D v.1/ D u.1/ D 1

for all t 2 I . By proposition E.32, we have again that zw1 D czu.1/. SoF W zu '@I zv.�

Definition E.34 (Degree). Let u 2 ˝.S1; 1/. The degree of u, written degu, is
defined by degu WD zu.1/, where zu is the unique lift of u such that zu.0/ D 0.

Theorem E.35 (Fundamental Group of the Circle). �1.S1/ Š Z.



104 E The Fundamental Group

Proof. Define deg W �1.S1; 1/ ! Z by deg Œu� WD degu. This is well defined by
corollary E.33, since if Œu� D Œv�, then Œzu� D Œzv� and in particular zu.1/ D zv.1/.

Step 1: deg 2 Grp
�
�1.S1; 1/; .Z;C/

�
. Let Œu� ; Œv� 2 �1.S1; 1/. Moreover, let zu

and zv denote the unique liftings of u and v, respectively, such that zu.0/ D 0 and
zv.0/ D 0. Define zw W I ! R by

zw.s/ WD

(
zu.2s/ 0 � s � 1

2
;

deguC zv.2s � 1/ 1
2
� s � 1:

Then zw is continuous by the gluing lemmaand zw.0/ D 0. Hence zw 2 Top�
�
.I; 0/; .R; 0/

�
.

Alsowe have that "ı zw D u�v and thus zw is the lift ofu�v. But zw.1/ D deguCdeg v
and so

deg.Œu� Œv�/ D deg Œu � v� D deg.u�v/ D zw.1/ D deguCdeg v D deg Œu�Cdeg Œv� :

Step 2: deg is injective. Suppose deg Œu� D 0. Then zu.1/ D 0 and thus zu 2 ˝.R; 0/.
Since R is contractible, we have that Œzu� D Œc0� and thus

Œu� D Œ" ı zu� D �1."/ Œzu� D �1."/ Œc0� D Œ" ı c0� D Œc1� :

Thus ker.deg/ is trivial.
Step 3: deg is surjective. Let m 2 Z. Then deg Œ"m� D deg "m D �"m.1/ D m. �

The Seifert-Van Kampen Theorem

Coproducts and Pushouts in Grp

Proposition E.36 (Coproducts in Grp). Grp has all small coproducts.

Proof. LetA 2 ob.Set/ and A be the small category defined as the discrete category
with ob.A/ WD A, i.e.

� � � � � � � � �

Let D W A ! Grp be a functor. Hence we get a family .G˛/˛2A in Grp, where
G˛ WD D.˛/ for all ˛ 2 A. A word in .G˛/˛2A is a finite sequence in

`
˛2AG˛ . A

word in .G˛/˛2A will simply be written as .g1; : : : ; gn/, where gk 2 G˛ for some
˛ 2 A. The empty word is denoted by ./. Let W denote the set of all words in
.G˛/˛2A. On W define a multiplication by concatenation

.g1; : : : ; gn/.h1; : : : ; hm/ WD .g1; : : : ; gn; h1; : : : ; hm/:

An elementary reduction is an operation of one of the following forms:
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� .g1; : : : ; gk ; gkC1; : : : ; gn/ 7! .g1; : : : ; gkgkC1; : : : ; gn, where gk ; gkC1 2 G˛
for some ˛ 2 A.
� .g1; : : : ; gk�1; 1˛; gkC1; : : : ; gn/ 7! .g1; : : : ; gk�1; gkC1; : : : ; gn/. �

Let � denote the equivalence relation on W generated by elementary reductions.

Lemma E.37. W=� together with concatenation of representatives is an element of
Grp.

Proof. Define

Œ.g1; : : : ; gn/� Œ.h1; : : : ; hm/� WD Œ.g1; : : : ; gn; h1; : : : ; hm/� :

It is left to the reader to show that this is well defined and that W=� is indeed a
group. �

The group defined in lemma E.37 will be denoted by
¨
˛2AG˛ and called the free

product of .G˛/˛2A . Let us define a cocone on D. For this consider the inclusions
�˛ W G˛ !

¨
˛2AG˛ defined by

�˛.g/ WD Œ.g/�

for all ˛ 2 A. It is immediate from

�˛.gh/ D Œ.gh/� D Œ.g; h/� D Œ.g/� Œ.h/� D �˛.g/�˛.h/

for g; h 2 G˛ , that �˛ is a morphism of groups. Since there are only the identity
morphisms in A,

�¨
˛2AG˛; .�˛/˛2A

�
is a cocone on D. Let us show that this is in

fact a universal cocone. To this end, suppose that
�
C; .'˛/˛2A

�
is another cocone on

D. Define a mapping xf W
¨
˛2AG˛ ! C by

xf Œ.g1; : : : ; gn/� WD '˛1.g1/ � � �'˛n.gn/

where gk 2 G˛k . Then xf is easily seen to be well defined since each '˛ is a
morphism of groups. Moreover, if g 2 G˛ , then

. xf ı �˛/.g/ D xf Œ.g/� D '˛.g/

for all ˛ 2 A. Suppose that f W
¨
˛2AG˛ ! C is another homomorphism of groups

such that f ı �˛ D '˛ for all ˛ 2 A. Then for Œ.g1; : : : ; gn/� 2
¨
˛2AG˛ we have

f Œ.g1; : : : ; gn/� D f .Œ.g1/� � � � Œ.gn/�/

D f Œ.g1/� � � � f Œ.gn/�

D f .�˛1.g1// � � � f .�˛n.gn//

D '˛1.g1/ � � �'˛n.gn/

D xf Œ.g1; : : : ; gn/� :
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Exercise E.38. Check that W=� is indeed a group with the declared group structure and that xf is
indeed well defined.

Proposition E.39 (Pushouts in Grp). Grp has all pushouts.

Proof. Consider the diagramD W A! Grp

� � G H1

D
�!

� H2

'1

'2

and define N to be the normal subgroup of H1 �H2 generated by elements of the
form Œ.'1.g

�1/; '2.g//� for g 2 G. Let K WD .H1 �H2/=N . Then

G
'1 //

'2

��

H1

�ı�1

��
H2 �ı�2

// K

commutes. Indeed, if g 2 G, we have that .� ı �1 ı '1/.g/ D Œ.'1.g//� N and
similarly .� ı �2 ı '2/.g/ D Œ.'2.g//� N . Then

Œ.'1.g//�
�1 Œ.'2.g//� D Œ.'1.g/

�1/� Œ.'2.g//� D Œ.'1.g
�1//� Œ.'2.g//� 2 N:

Suppose that we have another cocone onD:

G
'1 //

'2

��

H1

 1

��
H2

 2

// C

By proposition E.36, there exists a unique morphism of groups f W H1 �H2 ! C

and we thus get the following diagram:

G
'1 //

'2

��

H1

�1

��  1

��

H2 �2
//

 2 33

H1 �H2

�

$$

f

..

K
xf

  
C
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To show that N � ker f is left as an exercise. Hence by the factorization theorem
(see [1, 23]), f factors uniquely through � , i.e. there exists a unique morphism of
groups xf W K ! C such that xf ı � D f . �

Exercise E.40. In the previous proposition, verify thatN � kerf .

Definition E.41 (Amalgamated Free Product). The pushout of a diagram

G H1

H2

'1

'2

in Grp is called the amalgamated free product of H1 and H2 along .G; '1; '2/,
writtenH1 �.G;'1;'2/ H2.

The Seifert-Van Kampen Theorem and its Consequences

Theorem E.42 (Seifert-Van Kampen). Let X 2 ob.Top/, .U; V / an open cover for
X , such that U , V and U \ V are path connected. Moreover, let p 2 U \ V . Then

�1.X; p/ Š �1.U; p/ �.�1.U\V;p/;�1.�U /;�1.�V // �1.V; p/; (E.2)

where �U W U \ V ,! U and �V W U \ V ,! V denote inclusion.

Proof. Let �U W U ,! X and �V W V ,! X denote inclusions. We will show that�
�1.X; p/; �1. �U /; �1. �V /

�
is a pushout of the diagram

�1.U \ V; p/ �1.U; p/

�1.V; p/

�1.�U /

�1.�V / (E.3)

in Grp and hence by proposition E.39 and uniqueness, the statement follows. Clearly

�1.U \ V; p/ �1.U; p/

�1.V; p/ �1.X; p/

�1.�U /

�1.�V / �1. �U /

�1. �V /

commutes. Suppose now that .G; 'U ; 'V / is another cocone for the diagram (E.3).
We want to show that there exists a unique homomorphism˚ W �1.X; p/! G such
that˚ ı�1. �U / D 'U and˚ ı�1. �V / D 'V . Let Œu� 2 �1.X; p/. Choose a partition
0 D x0 < � � � < xn D 1 of I such that u.xk/ 2 U \V for all k D 0; : : : ; n and such
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that all ujŒxk�1;xk � take values either in U or in V for all k D 1; : : : ; n. The existence
of such a partition follows from an application of the Lebesgue number lemma on the
open cover .u�1.U /; u�1.V // of I . Indeed, if ı > 0 is the corresponding Lebesgue
number of the cover, we find n 2 !, n > 0, such that 1=n < ı. Thus Œ.i � 1/=n; i=n�
is contained in either u�1.U / or u�1.V / for all i D 1; : : : ; n. Now choose those i
such that u.i=n/ 2 U \ V . For k D 1; : : : ; n, let uk W I ! X be defined by

uk.s/ WD u ..1 � s/xk�1 C sxk/ :

Moreover, for each k D 1; : : : ; n � 1 choose a path 
k in U \ V from p to u.xk/
and set 
0; 
n WD cp . Define now

˚ Œu� WD

nY
kD1

'� Œ
k�1 � uk � x
k � ; (E.4)

where '� denotes either 'U or 'V depending on whether 
k�1 �uk � x
k is a loop in
U or in V . If u is a loop in U \V , we can choose either 'U or 'V since .G; 'U ; 'V /
is a cocone of the diagram (E.3). Now there are some things to check.
˚ is a function. SupposeH W u '@I v.
˚ Œu� does not depend on the choice of 
k . Fix some k D 1; : : : ; n � 1 and suppose
that 
 0

k
is another path from p to u.xk/ in U \ V . Then we have that

'� Œ
k�1 � uk � x
k � D '� Œ
k�1 � uk � x

0
k � 


0
k � x
k � D '� Œ
k�1 � uk � x


0
k � '� Œ


0
k � x
k �

and

'� Œ
k � ukC1 � x
kC1� D '� Œ
k � x

0
k � 


0
k � ukC1 � x
kC1�

D '� Œ
k � x

0
k � '� Œ


0
k � ukC1 � x
kC1�

D
�
'� Œ


0
k � x
k �

��1
'� Œ


0
k � ukC1 � x
kC1� :

Since 
 0
k
� x
k is a loop in U \ V , we have that

'� Œ
k�1 � uk � x
k � '� Œ
k � ukC1 � x
kC1� D '� Œ
k�1 � uk � x

0
k � '� Œ


0
k � ukC1 � x
kC1� :

˚ Œu� does not depend on the choice of a partition of I . Suppose P1 and P2 are both
partitions of I , their union P1 [ P2 is a refinement of both P1 and P2. If we can
show that adding a single point to a partition P of I does not affect the value ˚ Œu�,
then so it does not on P1 [P2 and hence is independent of the choice of a partition.
Suppose we add xk�1 < y < xk . Let us denote by uy the reparametrized restriction
of u from u.xk�1/ to u.y/ and by u0k the reparametrized restriction of u from u.y/

to u.xk/. Moreover, let 
y be a path from p to u.y/ in U \ V . We compute

'� Œ
k�1 � uy � x
y � '� Œ
y � u
0
k � x
k � D '� Œ
k�1 � uy � x
y � 
y � u

0
k � x
k �

D '� Œ
k�1 � uy � u
0
k � x
k �

D '� Œ
k�1 � uk � x
k � ;
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since uy �u0k is a reparametrization of uk and 
k�1 �uy � x
y , 
y �u0k � x
k are both
loops either in U or in V .
˚ is a morphism of groups. Let Œu� ; Œv� 2 �1.X; p/. Let 0 D x0 < � � � < xn D 1 be
a partition of I as above. By invariance under a change of partitions, we may assume
that 0 D x0 < � � � < xm D 1

2
< � � � < xn D 1. Clearly .u � v/.xm/ D p 2 U \ V .

Now both 0 D 2x0 < � � � < 2xm D 1 and 0 D 2xm � 1 < � � � < 2xn � 1 D 1

are partitions of I with .u � v/k D uk for k D 1; : : : ; m and .u � v/k D vk
for k D m C 1; : : : ; n. By using invariance of the choice of a partition again and
invariance of the choice of the 
k yields

˚.Œu� Œv�/ D ˚ Œu � v�

D

nY
kD1

'� Œ
k�1 � .u � v/k � x
k �

D

mY
kD1

'� Œ
k�1 � uk � x
k �

nY
kDmC1

'� Œ
k�1 � vk � x
k �

D ˚ Œu�˚ Œv� :

Checking commutativity.We have to show that˚ ı�1. �U / D 'U and˚ ı�1. �V / D
'V hold. Let us show the first identity, the second is similar. Let Œu� 2 �1.U; p/.
Then we can choose the trivial partition 0 D x0 < x1 D 1 of I and thus get

.˚ ı �1. �U // Œu� D ˚ Œu� D 'U Œ
0 � u1 � x
1� D 'U Œu� :

Showing uniqueness of ˚ . Suppose 	 W �1.X; p/ ! G is another map with the
smae properties as ˚ . Let Œu� 2 �1.X; p/. They keypoint is to observe that

Œu� D

"
nY
kD1

.
k�1 � uk � x
k/

#
holds. Thus

	 Œu� D 	

"
nY
kD1

.
k�1 � uk � x
k/

#
D

Y
kD1

	
�

k�1 � uk � x
k

�
D

nY
kD1

'�
�

k�1 � uk � x
k

�
D ˚ Œu� :

Exercise E.43. In the proof of the Seifert-Van Kampen theorem, show that uy � u0k D uk ı ',
where ' 2 Top.I; I / is given by
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'.s/ WD

(
2s.y � xk�1/=.xk � xk�1/ 0 � s � 1

2
;

2.1� s/.y � xk�1/=.xk � xk�1/C 2s � 1
1
2
� s � 1:

E.1 Singular Simplices

Definition E.44 (Affinely Independent). Let n; k 2 !. A family .v0; : : : ; vk/ in
Rn is said to be affinely independent, iff the following condition is satisfied: Given
�0; : : : ; �k 2 R such that

kX
iD0

�i D 0 and
kX
iD0

�ivi D 0

implies c0 D � � � D ck D 0.

Lemma E.45. Let n; k 2 !. Then a family .v0; : : : ; vk/ inRn is affinely independent
if and only if .v1 � v0; : : : ; vk � v0/ is linearly independent in Rn.

Exercise E.46. Prove lemma E.45.

Definition E.47 (Simplex). Let n; k 2 ! and .v0; : : : ; vk/ affinely independent in
Rn. Define the simplex spanned by .v0; : : : ; vk/, written Œv0; : : : ; vk �, to be the
topological subspace

Œv0; : : : ; vk � WD

(
kX
iD0

�ivi W �i 2 R�0 and
kX
iD0

�i D 1

)
� Rn:

Moreover, each of the vi ’s, i D 0; : : : ; k, is called a vertex of the simplex Œv0; : : : ; vk �.

Remark E.48. Let � WD Œv0; : : : ; vk � be a simplex spanned by .v0; : : : ; vk/. Then
we will also simply call � a k-simplex in Rn.

Example E.49 (Standard Simplex). Let n 2 !. Then the family .e0; : : : ; en/ in
Rn, where e0 WD 0 and .e1; : : : ; en/ is the standard oriented basis of Rn, is affinely
independent by exercise E.46. The n-simplex spanned by this family is called the
standard n-simplex and is denoted by �n.

Lemma E.50. Let n; k 2 ! and Œv0; : : : ; vk � a k-simplex in V . Then any x 2
Œv0; : : : ; vk � admits a unique representation x D

Pk
iD0 �ivi .

Exercise E.51. Prove lemma E.50.

Definition E.52 (Affinely Linear Mapping). Let n;m 2 !. A mapping A W Rn !
Rm is said to be affinely linear, iff there exists an R-linear vector space morphism
L W Rn ! Rm and y 2 Rm, such that

A.x/ D L.x/C y
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e0

(a)�0.

e0 e1

(b)�1.

e0 e1

e2

(c)�2.

Fig. E.3: Standard n-simplices.

holds for all x 2 Rn.

Exercise E.53. Show that any affinely linear mapping is continuous with respect to the standard
Euclidean topologies.

Exercise E.54. Show that the composition of affinely linear mappings is again affinely linear.

Proposition E.55 (Affine Map induced by Vertex Map). Let n; k;m 2 ! and
� WD Œv0; : : : ; vn� a k-simplex in Rn. Given a function f W fv0; : : : ; vkg ! Rm,
there exists a unique extension zf W � ! Rm, which is the restriction of an affinely
linear map.

Proof. We show first existence and then uniqueness.

Step 1: Existence.By exercise E.46, .v1�v0; : : : ; vk�v0/ is linearly independent in
Rn. SinceRn is finite dimensional, wemay complete this linearly independent subset
to a basis of Rn. Hence there exists a unique vector space morphism L W Rn ! Rm,
mapping

vi � v0 7! f .vi / � f .v0/;

for i D 1; : : : ; k and to the zero vector else. Now A W Rn ! Rm defined by

A WD L � L.v0/C f .v0/

is the map we are looking for.
Step 2: Uniqueness.Given another such extension zg W � ! Rm off , say zg D zLCy,
we have that zL.vi / D f .vi / � y for all i D 0; : : : ; k. Thus we compute

zg

 
kX
iD0

�ivi

!
D

kX
iD0

�i zL.vi /C y D

kX
iD0

�if .vi / �

kX
iD0

�iy C y D

kX
iD0

�if .vi /:

Definition E.56 (Singular Simplex). Let n 2 ! and X 2 Top. An element of
Top.�n; X/ is called a singular n-simplex in X .
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Example E.57 (Affine Singular Simplex). Let n;m 2 ! and let �n denote
the standard n-simplex of example E.49. Given any v0; : : : ; vn 2 Rm, define
A.v0; : : : ; vn/ W �

n ! Rm by the vertex map ei 7! vi for i D 0; : : : ; n (see
proposition E.55). By exercise E.53,A.v0; : : : ; vn/ is continuous and thus a singular
n-simplex, called an affine singular n-simplex.

Example E.58 (Face Map). Let n 2 !, n � 1, and let �n denote the standard
n-simplex of example E.49. For k 2 !, 0 � k � n, define a singular simplex
'n
k
W �n�1 ! �n, called the k-th face map in dimension n, by

'nk WD A.e0; : : : ; yek ; : : : ; en/:

This map is indeed well-defined as the uniqueness part of the proof of proposition
E.55 shows.

e0 e1

e2

'22

'20
'21

Fig. E.4: Face maps for n D 2.

E.2 The Singular Chain Complex

Proposition E.59. LetR 2 Ring. Then the forgetful functorU W RMod! Set admits
a left adjoint.

Proof. Consider the free module functor F W Set! RMod defined as follows:

Step 1: Definition on objects. Let S 2 Set and define

F.S/ WD
˚
f 2 RS W suppf is finite

	
:

Equipped with pointwise defined addition and multiplication, F.S/ is a left R-
module. Moreover, there is an inclusion � W S ,! U.F.S// sending x 2 S to the
function taking the value one at x and zero else. It is easy to check that F.S/ is free
on S .
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Step 2: Definition on morphisms. Let f W S ! S 0 in Set, define F.f / W F.S/ !
F.S 0/ by setting

F.f /

 X
x2S

rxx

!
WD

X
x2S

rxf .x/:

Step 3: F a U . Let M 2 RMod and ' 2 RMod.F.S/;M/. Define x' 2
RMod.S; U.M// to be the restriction to S of the underlying map of sets. Con-
versly, if f 2 Set.S; U.G//, extending by linearity yields xf 2 RMod.F.S/;M/

given by

xf

 X
x2S

rxx

!
WD

X
x2S

rxf .x/:

It is now easy to check that xx' D ' and xxf D f holds. �

Exercise E.60. In the proof of proposition F.150, check functoriality of F and naturality of the
bijection RMod.F .S/;M/ Š Set.S;U.M//.

Theorem E.61 (Singular Chain Complex Functor). Let R 2 Ring. Then there
exists a functor

C� W Top! Ch�0.RMod/:

Proof. The proof is divided into two steps.

Step 1: Definition on objects. Let X 2 Top. Then define

C�.X/n WD F.Top.�n; X//

for all n 2 !, where F W Set ! RMod denotes the free module functor from
proposition F.150 and �n denotes the n-th standard simplex from example E.49.
Let � 2 Top.�n; X/, n � 1. Define

@n� WD

nX
kD0

.�1/k� ı 'nk ; (E.5)

where 'n
k
denotes the k-th face map in dimension n from example E.58. Extending

by linearity yields a morphism of R-modules @n W C�.X/n ! C�.X/n�1. For any
� 2 Top.�nC1; X/ we compute
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.@n ı @nC1/.�/ D @n

 
nC1X
kD0

.�1/k� ı 'nC1
k

!

D

nC1X
kD0

.�1/k@n
�
� ı 'nC1

k

�
D

nC1X
kD0

nX
jD0

.�1/kCj� ı 'nC1
k
ı 'nj

D

X
0�k�j�n

.�1/kCj� ı 'nC1
k
ı 'nj C

X
0�j<k�nC1

.�1/kCj� ı 'nC1
k
ı 'nj

D

X
0�j�k�n

.�1/kCj� ı 'nC1j ı 'nk C
X

0�j<k�nC1

.�1/kCj� ı 'nC1
k
ı 'nj

D

X
0�j<k�nC1

�
.�1/kCj�1� ı 'nC1j ı 'nk�1 C .�1/

kCj� ı 'nC1
k
ı 'nj

�
Since 'nC1j ı'n

k�1
and 'nC1

k
ı'nj are both equal toA.e0; : : : ; yej ; : : : ; yek ; : : : ; enC1/,

it follows that
@n ı @nC1 D 0:

Indeed, consider the following chart of vertex maps:

'n
k�1

'nC1j

e0 7! e0 7! e0
:::

:::
:::

ej 7! ej 7! ejC1
:::

:::
:::

ek�1 7! ek 7! ekC1
:::

:::
:::

en�1 7! en 7! enC1

'nj 'nC1
k

e0 7! e0 7! e0
:::

:::
:::

ej 7! ejC1 7! ejC1
:::

:::
:::

ek�1 7! ek 7! ekC1
:::

:::
:::

en�1 7! en 7! enC1

:

Step 2: Definition on morphisms. Let f W X ! Y be a morphism in Top. For n 2 !,
define C�.f /n W C�.X/n ! C�.Y /n by

C�.f /n.�/ WD f ı �;

for any � 2 Top.�n; X/. We compute

.@n ı C�.f /n/.�/ D

nX
kD0

.�1/kf ı � ı 'nk D .C�.f /n�1 ı @n/.�/:

Thus C�.f / is a morphism in Ch�0.RMod/.

Checking functoriality is left as an exercise. �
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Exercise E.62. Check thatC� W Top! Ch�0.RMod/ defined in theorem E.61 is indeed a functor.

Theorem E.63 (Relative Singular Chain Complex Functor). Let R 2 Ring. Then
there exists a functor

C� W Top2 ! Ch�0.RMod/:

Proof.

E.3 Homology of Product Spaces

E.3.1 The Universal Coefficient and the Künneth Theorem

Proposition E.64. Let A 2 Ab. Then .�/˝ A W Ab! Ab and A˝ .�/ W Ab! Ab
are both right exact.

Example E.65. Zm ˝Z Zn D Zgcd.m;n/.

Definition E.66 (Tor). Let A 2 Ab and

0 K F A 0
f

a short free resolution of A. Given any B 2 Ab, set

Tor.A;B/ WD ker.f ˝ idB/:

Example E.67. If either A or B are torsion free, then Tor.A;B/ D 0.

Example E.68. Tor.Zm;Zn/ D Zgcd.m;n/.

Theorem E.69 (Universal Coefficient Theorem). Let .C�; @�/ be a free chain com-
plex and A 2 Ab. Then for any n 2 ! there is a split exact sequence

0 Hn.C�/˝ A Hn.C� ˝ A/ Tor.Hn�1.C�/; A/ 0:

Theorem E.70 (Künneth Theorem). Let .C�; @�/ and .C 0�; @0�/ be two non-negative
free chain complexes. Then there exists a split exact sequence

0
L

iCjDn

Hi .C�/˝Hj .C
0
�/ Hn.C� ˝ C

0
�/

L
kClDn�1

Tor
�
Hk.C�/;Hl .C

0
�/
�

0:

E.3.2 The Eilenberg-Zilber Theorem and the Künneth Formula

Theorem E.71 (The Augmented AcyclicModels Theorem). A LetC be a category
with family of models M. Consider
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S; T W C ! AugCh.Ab/

such that:

� Sn is free with basis contained in M for any n 2 !.
� Any M 2 M is totally T -acyclic, i.e. Hn.S.M// D 0 for all n � 1 and
H0.S.M// D Z.

Then there exists a natural augmentation preserving chain map

� W S ) T

Moreover, any two such natural augmenation preserving chain maps are naturally
chain homotopic.
If additionally Tn is free with basis contained in M and each model M 2 M is
totally S -acyclic, then every such natural augmentation preserving chain map is a
natural chain equivalence.

Theorem E.72 (Eilenberg-Zilber).LetX; Y 2 Top. Then there exists a chain equiv-
alence

˝ W C�.X � Y /! C�.X/˝ C�.Y /

unique up to chain homotopy. Any such map ˝ is called an Eilenberg-Zilber mor-
phism.

Proof. We make use of the augmented acyclic models theorem E.71. In Top � Top
define a family of models M by

M WD f.�i ; �j / W i; j 2 !g :

Moreover, define S; T W Top � Top! AugCh.Ab/ by

S.X; Y / WD C�.X � Y / and T .X; Y / WD C�.X/˝ C�.Y /:

Since�i��j is convex, we get that each modelM WD .�i ; �j / is totally S -acyclic.
Moreover, the Künneth theorem E.70 implies that eachmodelM is totally T -acyclic.
That Sn is free with basis contained in M can be seen by choosing the diagonal map
dn W �

n ! �n ��n for any n 2 !. Finally, Tn is also free with basis contained in
M, since we can choose the model basis

f.�i ; �j / W i C j D ng

for fixed n 2 ! and �i ˝ �j 2 .C�.�i /˝ C�.�j //n, where �k W �k ! �k denotes
the identity map. �

Corollary E.73 (Künneth Formula). Let X; Y 2 Top. Then there is a split exact
sequence

0
L

iCjDn

Hi .X/˝Hj .Y / Hn.X � Y /
L

kClDn�1

Tor
�
Hk.X/;Hl .Y /

�
0:
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Example E.74. Let n 2 !, n � 1. Define the n-torus Tn by

Tn
WD S1 � � � � � S1„ ƒ‚ …

n

:

Using induction and the KÃĳnneth theorem E.73, one can show that

Hk.T
n/ D Z.

n
k/:

E.4 Singular Cohomology

Proposition E.75. Let A 2 Ab. Then Hom.�; A/ W Ab ! Ab and Hom.A;�/ W
Ab! Ab are both left exact.

Corollary E.76. Let X 2 Top be of finite type, i.e. Hn.X/ is finitely generated for
any n 2 Z. Then

Hn.X/ Š Hn.X/=Tn.X/˚ Tn�1.X/

where Tn.X/ denotes the torsion subgroup of Hn.X/, i.e. the subgroup consisting
of all elements of finite order.

Theorem E.77 (Universal Coefficient Theorem for Cohomology). Let X 2 Top
of finite type and A 2 Ab. Then there is a split exact sequence

0 Hn.X/˝ A Hn.X IA/ Tor.HnC1.X/; A/ 0:

E.4.1 The Cohomology Ring

Proposition E.78. Let X 2 Top and R 2 Ring. Then there exists a contravariant
functor

C.�IR/ W Top! GRing:

Proof. We proceed in two (uncomplete) steps.

Step 1: Definition on objects. Let X 2 Top. For ˛ 2 C n.X IR/ and ˇ 2 Cm.X IR/
define

.˛ Y ˇ/.�/ WD ˛.� ı A.e0; : : : ; en//ˇ.� ı A.en; : : : ; enCm//;

for all singular nCm-simplices � in X . Hence extending by linearity yields a map

Y W C n.X IR/ � Cm.X IR/! C nCm.X IR/:

Moreover, if
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C.X IR/ WD
M
n2!

C n.X IR/;

we define Y W C.X IR/ � C.X IR/! C.X IR/ byX
i

˛i Y
X
j

ǰ WD

X
i;j

˛i Y ǰ :

This is called the cup product on C.X IR/. It is easily verified that .C.X IR/;Y/ 2
GRing.
Step 2: Definition on morphisms. Let n 2 ! and f 2 Top.X; Y /. For ˛ 2 C n.Y IR/
define

C.f IR/.˛/ WD C n.f IR/.˛/ 2 C n.X IR/;

and extend by linearity. �

Lemma E.79. Let R 2 GRing and I be a two-sided homogeneous ideal in R. Then
also R=I 2 GRing with

R=I D
M
n2!

Rn=.Rn \ I /:

Theorem E.80. Let R 2 Ring. Then there is a contravariant functor

H.�IR/ W hTop! GRing:

Proof. Set

Z WD
M
n2!

Zn.X IR/ and B WD
M
n2!

Bn.X IR/:

Then Z is a homogeneous subring of C.X IR/ by using the fact that

d.˛ Y ˇ/ D d˛ Y ˇ C .�1/n˛ Y dˇ

for any ˛ 2 C n.X IR/ and ˇ 2 Cm.X IR/ holds. Moreover, B is a homogeneous
two-sided ideal in Z. Therefore by lemma E.79, we have

H.X IR/ D
M
n2!

Zn.X IR/=Bn.X IR/ D
M
n2!

Hn.X IR/:

Example E.81. Let n 2 !, n � 1. Then using the fact that zHk.Sn/ D Z if k D n

and zero otherwise, corollary E.76 implies that

H 0.Sn/ D Z and Hn.Sn/ D Z

and zero otherwise. Thus
H.SnIZ/ D Z˚ Z:
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Denote the generator of the first summand by 1 and the second by X , we get that
X YX 2 H 2n.Sn/ D 0 and thus

H.SnIZ/ Š ZŒX�=.X2/:

Actually, if R 2 CRing, thenH.�IR/ attains values in CGRing.

Definition E.82 (Diagonal Approximation). A diagonal approximation is defined
to be a natural chain map

C�.�/! C�.�/˝ C�.�/

such thatD0.x/ D x ˝ x holds for any x 2 X , X 2 Top.

Theorem E.83 (Alexander-Whitney Formula). An Eilenberg Zilber morphism

˝ W C�.X � Y /! C�.X/˝ C�.Y /

is given by the Alexander-Whitney formula

˝.�/ WD

nX
iD0

.�1 ı � ı A.e0; : : : ; ei //˝ .�2 ı � ı A.ei ; : : : ; en// (E.6)

for any � W �n ! X � Y .

Proposition E.84. For the Alexander-Whitney choice of an Eilenberg-Zilber mor-
phism ˝, the composition

C �ı ı Hom.˝;R/ ı �

where � W C �.X IR/˝ C �.X IR/! Hom.C�.X/˝ C�.X/;R/ is defined by

�.˛ ˝ ˇ/

 
nCmX
kD0

�k ˝ �
0
nCm�k

!
WD ˛.�n/ˇ.�

0
m/

coincides with the cup product.

Proof. Let ˛ 2 C n.X IR/, ˇ 2 Cm.X IR/ and � 2 C nCm.X/. We compute

.C �ı ı Hom.˝;R/ ı �/.˛ ˝ ˇ/.�/ D Hom.˝ ı ı; R/.�.˛ ˝ ˇ//.�/
D �.˛ ˝ ˇ/ ı˝ ı C�ı.�/

D �.˛ ˝ ˇ/.˝.ı ı �//

D .˛ Y ˇ/.�/:

Theorem E.85. Let R 2 CRing and X 2 Top. Then

h˛i Y hˇi D .�1/nmhˇi Y h˛i



120 E The Fundamental Group

for any h˛i 2 Hn.X IR/ and hˇi 2 Hm.X IR/.

Proof. Since˝ ı C�ı and twist ı˝ ı C�ı are both diagonal approximations, hence
naturally chain homotopic. Now just evaluate both compositions. �

Corollary E.86. Let X; Y 2 Top of finite type and suppose that Hn.Y / is free
abelian for any n 2 Z. Then the cross product

H.X/˝H.Y /
�
! H.X � Y /

is an isomorphism of graded rings.

Example E.87. Suppose Tn is the n-torus from example E.74. We claim that

H.Tn
IZ/ Š ZŒX1; : : : ; Xn�=.X

2
k /:

Indeed, example E.81, implies the base case for an induction over n. Suppose the
claim holds for some n 2 !, n � 1. Then using corollary E.86 implies that

H.TnC1/ D H.Tn
� S1/

D H.Tn/˝H.S1/

D ZŒX1; : : : ; Xn�=.X
2
k /˝ ZŒXnC1�=.X

2
nC1/

D ZŒX1; : : : ; XnC1�=.X
2
k /:



Appendix F
Review of Differential Topology

We follow the treatment as provided byWill J. Merry in the year course Differential
Geometry I and II at the ETH Zurich in the autumn semester 2018 and spring
semester 2019, respectively. The course notes are available at

https://www.merry.io/differential-geometry/.

Additionally, we rely on [6] as well as [16].

F.1 The Category of Smooth Manifolds

Definition F.1 (Topological Manifold). Let n 2 N. A topological spaceM is said
to be a topological manifold of dimension n, iff

(i) M is locally Euclidean of dimension n, that is, for every x 2 M there exist
an open subset U � M and a function ' W U ! Rn such that '.U / � Rn

is open and ' W U ! '.U / is a homeomorphism. Every such pair .U; '/ is
called a chart onM about x.

(ii) M is Hausdorff and has at most countably many connected components.
(iii) M is paracompact, that is, every open cover ofM admits a locally finite open

refinement.

Example F.2 (The Empty Manifold). Let n 2 N. Then the empty set ¿ endowed
with the trivial topology is a topological manifold of dimension n.

Instead of requiring a topological manifold to be paracompact and to admit only
countably many connected components, many authors instead use that any manifold
is second countable. This is due to the following point-set topological result:

Theorem F.3 ([5, 126]). Every Hausdorff locally Euclidean paracompact topolog-
ical space is second countable if and only if it admits countably many connected
components.
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Definition F.4 (Lindelöf Space).A topological space is said to be a Lindelöf space,
iff every open cover admits a countable subcover.

Theorem F.5. Every second countable space is a Lindelöf space.

Corollary F.6. Every topological manifold is a Lindelöf space.

Definition F.7 (Smooth Atlas). A smooth atlas for a topological manifoldM is a
collection .U˛; '˛/˛2A of charts onM such that

(i) .U˛/˛2A is an open cover forM .
(ii) For all ˛; ˇ 2 A such that U˛ \ Uˇ ¤ ¿, the function

'˛ ı '
�1
ˇ W 'ˇ .U˛ \ Uˇ /! '˛.U˛ \ Uˇ /

is smooth. The function '˛ ı '�1ˇ is called a transition function.

Let A and A0 be two smooth atlases on a topological manifold M . Define a
relation on the set of all smooth atlases onM (this is a subset of the power set 2M )
by

A � A0 W, A [A0 is an atlas forM:

Exercise F.8. Show that above relation is actually an equivalence relation on the set of all smooth
atlases on a topological manifoldM .

Definition F.9 (Smooth Structure).A smooth structure on a topological manifold
M is an equivalence class ŒA� where A is a smooth atlas forM .

Definition F.10 (Maximal Smooth Atlas). Let ŒA� be a smooth structure on a
topological manifoldM . Define the maximal smooth atlas onM by

S
A02ŒA� A

0.

Definition F.11 (Smooth Manifold). Let n 2 N. A smooth manifold of dimension
n is defined to be a pair .M;A/, whereM is a topological manifold of dimension n
and A is a maximal smooth atlas onM .

Example F.12 (Open Subsets). Let M be a smooth manifold and U � M open.
Then U inherits a smooth manifold structure fromM .

Example F.13 (Vector Spaces). Let V be a finite-dimensional real vector space.
Then V Š RdimV and V inherits a norm from the standard norm on RdimV . In
fact, by a standard result in functional analysis the choice of norm does not matter,
since any two norms on a finite-dimensional vector space are equivalent. Define the
standard smooth structure on V to be the maximal atlas containg the smooth atlas
consisting of the single chart induced by the coordinate isomorphism.

Example F.14 (n-Spheres). Let n 2 N. If n D 0, we have that S0 D f˙1g. It
is easily seen that S0 is a smooth manifold of dimension 0. Let n � 1. Define
N WD enC1 and S WD �enC1, where enC1 denotes the nC1-th standard basis vector
of RnC1. Moreover, set
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UC WD Sn n S and U� WD Sn nN:

Then UC and U� are open subsets of Sn, the upper and lower hemisphere, respec-
tively. Then the functions '˙ W U˙ ! Rn defined by

'˙.x/ WD
1

1˙ xnC1
.x1; : : : ; xn/;

are homeomorphisms. Indeed, one can check that  ˙ W Rn ! U˙ defined by

 ˙.x/ WD

 
2x

1C jxj2
;
˙.1 � jxj2/

1C jxj2

!
is a continuous inverse for 'C and '�, respectively. We claim that f.U˙; '˙/g is a
smooth atlas forSn. Clearly,Sn is covered by the two charts. Nextwe have to calculate
the transition functions '� ı '�1˙ D '� ı ˙ W '˙.UC \U�/! '�.UC \U�/. It
is easy to see that '˙.UC \ U�/ D Rn n f0g and that

'� ı  ˙ D
x

jxj2
;

which is smooth. Since Sn is Hausdorff as a metric space and as a subspace of
a second countable space, itself second countable, Sn equipped with the smooth
structure induced by the smooth atlas constructed above, is a smooth manifold of
dimension n.

Example F.15 (Real Projective Spaces). Let n 2 N and define an equivalence
relation on RnC1 n f0g by

x�y W, 9� 2 R� W x D �y:

Define the real projective space of dimension n, written RPn, to be the quotient
space of the above equivalence relation. Then RPn admits a smooth structure by
defining a smooth atlas via the charts .Ui ; 'i /iD1;:::;nC1, where

Ui WD
˚
Œx� W xi ¤ 0

	
;

and 'i W Ui ! Rn is defined by

'i Œx� WD
1

xi

�
x1; : : : ; xi�1; xiC1; : : : ; xnC1

�
:

That each .Ui ; 'i / is indeed a chart, can be seen by using the fact that an explicit
inverse of 'i is given by  i W Rn ! Ui defined by

 i .x/ WD
�
x1; : : : ; xi�1; 1; xiC1; : : : ; xn

�
:

Exercise F.16. Check that the relation defined in example F.15 is indeed an equivalence relation.
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Proposition F.17 (Smooth Manifold Chart Lemma). LetM be a set and suppose
.U˛; '˛/˛2A is a family of subsets U˛ � M and maps '˛ W U˛ ! Rn, for some
fixed n 2 N, such that:

(i) For all ˛ 2 A, '˛.U˛/ is open and ' W U˛ ! '˛.U˛/ is a bijection.
(ii) For all ˛; ˇ 2 A, '˛.U˛ \ Uˇ / and 'ˇ .U˛ \ Uˇ / are open in Rn.
(iii) If U˛ \ Uˇ ¤ ¿, then '˛ ı '�1ˇ W 'ˇ .U˛ \ Uˇ /! '˛.U˛ \ Uˇ / is smooth.
(iv) Countably many of the sets U˛ coverM .
(v) If x; y 2 M such that x ¤ y, there either exists some ˛ 2 A such that

x; y 2 U˛ or there exists ˛; ˇ 2 A such that U˛ \ Uˇ D ¿, x 2 U˛ and
y 2 Uˇ .

ThenM admits a unique smooth structure containing the atlas .U˛; '˛/˛2A.

Definition F.18 (Smooth Map). LetM and N be smooth manifolds and F WM !
N a map. We say that F is smooth, iff for all x 2 M , there exists a chart .U; '/ on
M about x and a chart .V;  / on N about F.x/ such that

(i) U \ F �1.V / is open inM .
(ii)  ı F ı  �1 W '

�
U \ F �1.V /

�
!  .V / is smooth.

The set of all smooth maps fromM to N is denoted by C1.M;N / and the set of
all smooth functions onM is denoted by C1.M/.

Exercise F.19. LetM be a smooth manifold. Show thatC1.M/ is an R-algebra under pointwise
defined operations.

Example F.20. Coordinate Functions LetM n be a smooth manifold and .U; '/ be a
chart about some x 2M . Let � i W Rn ! R be defined by � i .x1; : : : ; xn/ WD xi for
i D 1; : : : ; n. Define xi W U ! R by xi WD � i ı '. Then xi 2 C1.U / and we call
xi a coordinate function. Moreover, we may denote the chart .U; '/ by

�
U; .xi /

�
and say that .xi / are local coordinates about x.

F.2 Tangent Spaces and the Differential

LetM be a smooth manifold and let x 2M . Define a binary relation on the set

X WD
˚
.U; f / W U �M neighbourhood of x; f 2 C1.U /

	
by

.U; f / � .V; g/ W, 9W � U\V neighbourhood of x, such that f jW D gjW :

Exercise F.21. Show that the above relation is actually an equivalence relation.

Definition F.22 (Germ). Let M be a smooth manifold and let x 2 M . The set of
germs at p, written C1x .M/ is defined to be C1x .M/ WD X=�.
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Exercise F.23. Show that C1x .M/ is an R-algebra under the obvious operations.

Remark F.24. Note that if f 2 C1.M/, then Œ.M; f /� � Œ.U; f jU /� for any
neighbourhood U of x. Thus any germ at p contains a representant which is defined
on the whole manifold and we thus may simply write Œf � for a germ at p.

Remark F.25. Let Œf � be a germ at x 2 M . Then f .x/ is well-defined. Indeed, if
f jU D gjU on some neighbourhood of x, then in particular f .x/ D g.x/.

Definition F.26 (Tangent Space). LetM be a smooth manifold and let x 2M . The
tangent space ofM at x, written TxM , is defined to be the vector space

�
C1x .M/

��
such that

v.Œf � Œg�/ D v Œf � g.x/C f .x/v Œg�

holds.

Lemma F.27. LetM be a smooth manifold and x 2 M . Suppose � 2 C1.M/ is a
constant function. Then v Œ�� D 0 for all v 2 TxM .

Proof. This immediately follows from

v Œ�� D v Œ� � 1� D �v Œ1� D �v Œ1 � 1� D 2�v Œ1� D 2v Œ�� :

Definition F.28 (Derivation). LetM be a smooth manifold, x 2M and U a neigh-
bourhood of x. The space of derivations ofC1.U / at x, written Dx.U /, is defined
to be the vector space

�
C1.U /

�� such that

v.fg/ D v.f /g.x/C f .x/v.g/

holds.

Proposition F.29. LetM be a smooth manifold, x 2M and U be a neighbourhood
of x. Then

TxM Š Dx.U /:

Proof. Let ˚ W TxM ! Dx.U / be defined by

˚.v/.f / WD v Œf �

for all f 2 C1.U /. Clearly ˚ is well-defined and linear. We want to construct an
inverse 	 W Dx.U /! TxM for ˚ . This implies, that we should define

	.v/ Œf � D v
�
zf
�

where zf 2 C1.U / such that
�
zf
�
D Œf �.

Step 1: Existence of zf . Let .V; f / be a representant of Œf �. As in the proof of the
smoothness criteria for tensor fields 2.33, we find a neighbourhoodW about x such
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that SW � U \V . Then there exists a smooth bump function  2 C1.U \V / such
that  jW D 1 and supp � U \ V . Let zf WD  f extended to be zero on U . Then
clearly

�
zf
�
D Œf � since zf D f on W .

Step 2: 	 is well-defined. Suppose that Œf � D Œg� inC1x .M/. Then f D g on some
neighbourhood V of x. We claim that v.f / D v.g/ on U \ V . Indeed, let  be a
smooth bump function for fxg supported in U \ V . Then  .f � g/ D 0 on U and
we compute

0 D v
�
 .f � g/

�
D v. /.f � g/.x/C  .x/v.f � g/ D v.f � g/:

Lemma F.30. Let M be a smooth manifold and U a neighbourhood of x 2 M .
Suppose � 2 C1.U / is a constant function. Then v.�/ D 0 for all v 2 Dx.U /.

Proof. Using the notation of the proof of proposition F.29, lemma F.27 yields

v.�/ D .˚ ı 	/.v/.�/ D 	.v/ Œ�� D 0:

Example F.31. Coordinate Derivation LetM n be a smooth manifold and .U; '/ be
a chart onM . For every x 2 U and every i D 1; : : : ; n define

@

@xi

ˇ̌̌̌
x

W C1.U /! R

by
@

@xi

ˇ̌̌̌
x

.f / WD Di .f ı '
�1/

�
'.x/

�
:

Then clearly @

@xi

ˇ̌
x
is a derivation ofC1.U / at x. Thus by proposition F.29, @

@xi

ˇ̌
x
2

TxM .

One of the profound features of tangent spaces to a smooth manifold are that they
are finite dimensional. In fact, they admit the same dimension as the manifold.

Lemma F.32. Let � � Rn be open and star-shaped about x0 2 �. Suppose f 2
C1.�/. Then there exists '1; : : : ; 'n 2 C1.�/ such that 'i .x0/ D Dif .x0/ and

f .x/ D f .x0/C �
i .x � x0/'i .x/

holds for all x 2 �

Proof. For x 2 � define 
x W Œ0; 1�! � by 
x.t/ WD x0C t .x � x0/ (note that this
is only possible since � is assumed to be star-shaped with centre x0). Then
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f .x/ � f .x0/ D

Z 1

0

.f ı 
x/
0.t/dt

D

Z 1

0

Dif
�

x.t/

�
P
 ix.t/dt

D

Z 1

0

Dif
�

x.t/

�
� i .x � x0/dt

D � i .x � x0/'i .x/

where

'i .x/ WD

Z 1

0

Dif
�

x.t/

�
dt:

Proposition F.33 (Basis for the Tangent Space). LetM n be a smooth manifold and
.U; '/ a chart onM . Then �

@

@xi

ˇ̌̌̌
x

W i D 1; : : : ; n

�
is a basis for TxM for all x 2 U , where xi WD � i ı '. In particular, dimTxM D
dimM D n.

Proof. Since '.U / � Rn is open, there exists " > 0 such that B"
�
'.x/

�
� '.U /.

Set V WD '�1
�
B"
�
'.x/

��
. Then V is a neighbourhood of x in M and thus by

proposition F.29, we have that TxM Š Dx.V /. Let f 2 C1.V /. An application of
lemma F.32 to f ı '�1 2 C1

�
B"
�
'.x/

��
yields

.f ı '�1/.y/ D f .x/C � i
�
y � '.x/

�
'i .y/

D f .x/C
�
� i .y/ � xi .x/

�
'i .y/

D f .x/C
�
.� i ı '/

�
'�1.y/

�
� xi .x/

�
.'i ı '/

�
'�1.y/

�
:

Thus
f D f .x/C

�
xi � xi .x/

�
.'i ı '/

on V . Using lemma F.30 we compute

v.f / D v
��
xi � xi .x/

�
.'i ı '/

�
D v.xi /'i

�
'.x/

�
D v.xi /

@

@xi

ˇ̌̌̌
x

.f /: (F.1)

Suppose that �i @

@xi

ˇ̌
x
D 0. Then using example C.5 and proposition C.12 we

compute

0 D �i
@

@xi

ˇ̌̌̌
x

.xj / D �iDi�
j
�
'.x/

�
D �i�j .ei / D �

iı
j
i D �

j : (F.2)
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Proposition F.34. LetM n be a smooth manifold and x 2M . Suppose .ei / is a basis
for TxM . Then there exists a chart

�
U; xi

�
centred about x such that

@

@xi

ˇ̌̌̌
x

D ei 8i D 1; : : : ; n:

Proof. Let
�
U; .zxi /

�
be a chart about x 2 M . Since .ei / and @

@zxi

ˇ̌̌
x
are bases for

TxM , we find an invertible matrix .Aij / such that

@

@zxj

ˇ̌̌̌
x

D Aij ei :

Define new coordinates xi W U ! Rn by

xi WD Aij
�
zxj � zxj .x/

�
:

Then xi .x/ D 0 and using (F.1) we compute

@

@xi

ˇ̌̌̌
x

D
@

@xi

ˇ̌̌̌
x

�
zxj
� @

@zxj

ˇ̌̌̌
x

D
@

@xi

ˇ̌̌̌
x

��
A�1

�j
k
xk C zxj .x/

� @

@zxj

ˇ̌̌̌
x

D
�
A�1

�j
k
ıki

@

@zxj

ˇ̌̌̌
x

D
�
A�1

�j
i

@

@zxj

ˇ̌̌̌
x

D
�
A�1

�j
i
Akj ek

D ıki ek

D ei :

�

Definition F.35 (Derivative). Let M and N be smooth manifolds and F 2

C1.M;N /. For x 2M , define a mapDFx W TxM ! TF.x/N by

DFx.v/.f / WD v
�
zf ı F

�
for all f 2 C1.V /, where V � N open and zf is any extension of f in some
neighbourhood of F.x/. This map is called the derivative of F at x.

Proposition F.36. LetM andN be smooth manifolds. Then for any .x; y/ 2M �N
there is a canonical isomorphism

T.x;y/.M �N/ Š TxM � TyN: (F.3)
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Proof. Observe that ˚ W T.x;y/.M �N/! TxM � TyN defined by

˚.v/ WD
�
D�1.x;y/.v/;D�

2
.x;y/.v/

�
and 	 W TxM � TyN ! T.x;y/.M �N/ defined by

	.v;w/ WD D.�y/x.v/CD.�x/y.w/

are linear and inverse to each other. �

Definition F.37 (Velocity of a Curve). Let J � R be an open interval and 
 2
C1.J;M/ be a curve in a smooth manifoldM . For every t 2 J , define the velocity
vector of 
 at t, written 
 0.t/, by


 0.t/ WD D
t

�
d

dt

ˇ̌̌̌
t

�
2 T
.t/M:

It is immediate from the definition of the velocity vector of a curve F.37, that


 0.t/.f / D D
t

�
d

dt

ˇ̌̌̌
t

�
.f / D

d

dt

ˇ̌̌̌
t

.f ı 
/ D .f ı 
/0.t/

for all f 2 C1.M/. Moreover, if .U; '/ is a chart onM , then equation F.1 yields


 0.t/ D 
 0.t/.xi /
@

@xi

ˇ̌̌̌

.t/

D .xi ı 
/0.t/
@

@xi

ˇ̌̌̌

.t/

D P
 i .t/
@

@xi

ˇ̌̌̌

.t/

(F.4)

at least sufficiently close to t .

Proposition F.38 (The Velocity of a Composite Curve). Let F 2 C1.M;N / and

 2 C1.J;M/ for some interval J � R. Then

.F ı 
/0.t/ D DF
�

 0.t/

�
for all t 2 J .

Proof. This is immediate by

.F ı 
/0.t/ D D.F ı 
/

�
d

dt

ˇ̌̌̌
t

�
D DF ıD


�
d

dt

ˇ̌̌̌
t

�
D DF

�

 0.t/

�
:

Lemma F.39. Let V be a finite-dimensional real vector space and x 2 V . Define
˚x W V ! TxV by˚x.v/ WD 
 0.0/, where 
 W R! V is defined by 
.t/ WD xC tv.
Then ˚x is an isomorphism.

Proof. By (F.4) we have that


 0.0/ D P
 i
@

@xi

ˇ̌̌̌
x

D vi
@

@xi

ˇ̌̌̌
x

:
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Thus ˚x maps bases to bases. �

Using lemma F.39 we can relate the two notions of a derivative on Eudlidean
spaces.

Proposition F.40. Let U � Rn open and F 2 C1.U;Rm/. Let x0 2 U . Since
F is differentiable at x0, there exists a map ' W U ! L.Rn;Rm/ such that ' is
continuous at x0 and for all x 2 U

F.x/ � F.x0/ D '.x/.x � x0/

holds. Then the following diagram commutes:

Rn Rm

Tx0R
n TF.x0/R

m:

'.x0/

˚x0 ˚Fx0

DFx0

Proof. Problem F.255. �

Velocity vectors to a curve give yet another way to think about the tangent space
TxM to a point x 2M of a smooth maifoldM . Consider the set

X WD
˚

 2 C1.J;M/ W J � R open interval with 0 2 J; 
.0/ D x

	
:

Define a binary relation on X as follows:


1 � 
2 W, 9 chart .U; '/ about x such that .' ı 
1/0.0/ D .' ı 
2/0.0/:

Exercise F.41. Show that the above relation is an equivalence relation.

Let VxM WD X=�.

Proposition F.42. Let M be a smooth manifold and x 2 M . Then TxM Š VxM

as sets.

Proof. Define ˚ W VxM ! TxM by ˚ Œ
� WD 
 0.0/. This map is well-defined.
Indeed, if Œ
1� D Œ
2�, there exists a chart .U; '/ about x such that .' ı 
1/0.0/ D
.' ı
2/

0.0/. This immediately implies that P
 i1.0/ D P

i
2.0/ for all i D 1; : : : ; n. Thus

(F.4) yields 
 01.0/ D 
 02.0/. From this also follows that ˚ is injective. Indeed, if

 01.0/ D 
 02.0/, then P


i
1.0/ D P


i
2.0/ for all i D 1; : : : ; n by (F.4) and proposition

F.33. Let v 2 TxM . Then in any chart .U; '/ centered about x we have that
v D vi @

@xi

ˇ̌
x
. Hence for " > 0 sufficiently small we can define 
v W .�"; "/! M n

by

v.t/ WD '

�1
�
tvi ; : : : ; tvn

�
:

Thus ˚ is surjective. �
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We can equip VxM with the structure of a vector space by means of the following
lemma.

Lemma F.43. Let V be a a finite-dimensional real vector space and S be a set. If
there exists a bijection ' W S ! V , we can equip V with a structure of a real vector
space such that ' is an isomorphism.

Proof. Just define
�x C y WD '�1

�
�'.x/C '.y/

�
for all x; y 2 S and � 2 R. �

Definition F.44 (Cotangent Space). Let M be a smooth manifold. For x 2 M ,
define the cotangent space ofM at x, written T �xM , to be

T �xM WD .TxM/�:

Definition F.45 (Differential). LetM be a smooth manifold, U a neighbourhood of
x 2 M and f 2 C1.U /. Define the differential of f at x, written dfx , to be the
element dfx 2 T �xM given by

dfx.v/ WD v.f /:

Lemma F.46 (Basis for the Cotangent Space). LetM n be a smooth manifold and
.U; '/ a chart onM . Then ˚

dxi jx W i D 1; : : : ; n
	

is a basis for T �xM for all x 2 U , where xi WD � i ı '.

Proof. We only need to note that this is the dual basis of the tangent space basis
F.33. This follows from (F.2) since

dxi jx

�
@

@xj

ˇ̌̌̌
x

�
D

@

@xj

ˇ̌̌̌
x

.xi / D ıij :

F.3 Submanifolds

Proposition F.47. Let M n and N n be smooth manifolds, F 2 C1.M;N / and
x 2 M . If DFx is invertible then there exists a neighbourhood U of x in M such
that F W U ! F.U / is a diffeomorphism.

Proof. Let .V; '/ be a chart about x and .W; / be a chart about F.x/. Then

 ı F ı '�1 W '
�
V \ F �1.W /

�
! Rn
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and using the chain rule yields

D
�
 ı F ı '�1

�
'.x/
D D F.x/ ıDFx ıD

�
'�1

�
'.x/

and thus D
�
 ı F ı '�1

�
'.x/

is invertible. An application of the inverse function
theorem C.13 yields a neighbourhood zU in '

�
V \ F �1.W /

�
about '.x/ such that

the restriction  ı F ı '�1j zU is a diffeomorhism. Set U WD '�1. zU/. �

Proposition F.48. Let U � Rn be a neighbourhood about 0 and f W U ! Rk

smooth such that f .0/ D 0. Then:

(a) If n � k and the matrix Df0 has maximal rank, then there exists a chart  
about 0 on Rk such that  ı f D �, where � W Rn ,! Rk denotes the inclusion.

(b) If n � k and the matrixDf0 has maximal rank, then there exists a chart ' about
0 on Rn such that f ı ' D � , where � W Rn ! Rk denotes the projection.

Definition F.49 (Immersion). A smooth map F WM ! N is said to be an immer-
sion, iffDFx is injective for all x 2M .

Definition F.50 (Embedding). A smooth map F WM ! N is said to be an embed-
ding, iff F is an injective immersion and F W M ! F.M/ is a homeomorphism,
where F.M/ is endowed with the subspace topology.

Every immersion is a local embedding.

Proposition F.51. Suppose F W M n ! N k is an immersion. Then for any x 2 M ,
there exists a chart U of x and a chart .V;  / about F.x/ such that

(a) If yi WD � i ı  , then

F.U / \ V D
˚
y 2 V W ynC1.y/ D � � � D yk.y/ D 0

	
:

(b) F jU is an embedding.

Corollary F.52. Suppose F W M n ! N k is an embedding. Then for any x 2 M ,
there exists a chart U of x and a chart .V;  / about F.x/ such that if yi WD � i ı ,
then

F.M/ \ V D
˚
y 2 V W ynC1.y/ D � � � D yk.y/ D 0

	
:

If F is simply inclusion ofM intoN , we call the above choice of coordinates a slice
chart forM in N .

Proof. Since F is a homeomorphism onto F.M/, we have that F.U / is open in
F.M/. By definition of the subspace toology, F.U / D F.M/ \ W , where W is
open in N . But then

F.M/ \ .W \ V / D
˚
y 2 V W ynC1.y/ D � � � D yk.y/ D 0

	
by proposition F.51. �
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Definition F.53 (Immersed Submanifold). LetM andN be smooth manifolds and
M � N as sets. We say thatM is an immersed submanifold ofN , iff the inclusion
M ,! N is an immersion.

Definition F.54 (Embedded Submanifold).LetM andN be smoothmanifolds and
M � N as sets. We say thatM is a embedded submanifold of N , iff the inclusion
M ,! N is an embedding.

By corollary F.52 every embedded submanifold admits an atlas consisting of slice
charts. In fact, the converse is also true.

Proposition F.55. Let N be a smooth manifold and M � N a subset, such that
for every x 2 M there exists a slice chart for M in N . If M is endowed with the
subspace topology, thenM admits a smooth structure making it into an embedded
submanifold of N .

Definition F.56 (Regular and Critical Point). LetF WM ! N be smooth. A point
x 2 M is said to be a regular point, iff rankDFx D dimN . A point x 2 M is said
to be a critical point, iff x is not a regular point.

Definition F.57 (Regular and Critical Value). Let F W M ! N be smooth. A
point y 2 N is said to be a regular value, iff F �1.y/ consist only of regular points.
A point y 2 N is said to be a critical value, iff y is not a regular value.

Theorem F.58 (The Implicit Function Theorem for Manifolds). Let F W M n !

N k be smooth and suppose that y 2 N is a regular value of F such that F �1.y/ ¤
¿. ThenF �1.y/ is a topological manifold of dimension n�k. Moreover, there exists
a smooth structure on F �1.y/ making it into an embedded submanifold ofM .

Proposition F.59. Let F W M ! N be smooth and y 2 N a regular value of F
such that F �1.y/ ¤ ¿. Then

D�x
�
TxF

�1.y/
�
D kerDFx

holds for all x 2 F �1.y/ where � W F �1.y/ ,!M denotes the inclusion.

Proof. Observe, that both sides are subspaces of dimension n � k of TxM . Thus
it suffices to show that D�x

�
TxF

�1.y/
�
� kerDFx . Let v 2 TxF

�1.y/ and
f 2 C1.N /. Using the chain rule and lemma F.30 we compute

.DFx ıD�x/.v/f D D.F ı �/x.v/f D v.f ı F ı �/ D v
�
f .y/

�
D 0:

Example F.60 (n-Spheres). Let n 2 N with n � 1. Then we can define

F W RnC1 ! R by F.x/ WDjxj2 :

Then Sn D F �1.f1g/ and it is easy to see that for any x 2 RnC1 we have that
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DFx.v/ D 2hx; vi

for any v 2 RnC1. Hence any x 2 R n f0g is a regular point of F under the identi-
fication given by proposition F.40 (˚x and ˚F.x/ are isomorphisms). In particular,
1 is a regular value of F and thus Sn is an embedded submanifold of RnC1 by the
implicit function theorem for manifolds F.58. Moreover, using proposition F.59, we
have that

D�x
�
TxSn

�
D kerDFx D

˚
v 2 RnC1 W hx; vi D 0

	
D x? (F.5)

for all x 2 Sn, again under the identification given by proposition F.40 (see figure
F.1).

x

TxS2

S2

Fig. F.1: Tangent space TxS2 at x 2 S2.

Definition F.61 (Submersion). A smooth map F WM ! N is said to be a submer-
sion, iff every point ofM is a regular value.

The next theorem is the main reason why we require smooth manifolds to admit
only countably many connected components.

Theorem F.62 (Sard’s Theorem for Manifolds). Let F W M n ! N k be smooth.
The set of critical values of F has measure zero in N and the set of regular values
is dense in N . In particular, if n < k, every point is critical, and thus N n F.M/ is
dense in N .

Theorem F.63 (The StrongWhitney Embedding Theorem). LetM n be a smooth
manifold. Then there exists a proper embeddingM ! R2n.

Theorem F.64 (The Weak Whitney Embedding Theorem). LetM n be a smooth
manifold. Then there exists a proper embeddingM ! R2nC1.
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Proof. We will only give a sketch of the proof ifM is compact. We proceed in two
steps.

Step 1: M n embeds into some Euclidean space. Let .V˛/˛2A be a finite open cover
forM such that xV˛ � U˛ for charts .U˛; '˛/ andjAj D k.Moreover, let ˛ be cutoff-
functions for xV˛ supported in U˛ and set f˛ WD  ˛'˛ . Define F W M ! RknCk

by
F.x/ WD

�
f1.x/; : : : ; fk.x/;  1.x/; : : : ;  k.x/

�
:

Then F is an injective immersion and hence an embedding.
Step 2: Inductively reducing the dimension obtained in step 1. Replacing M by
F.M/, we can assumeM � RN . Suppose N > 2nC 1, otherwise there is nothing
to prove. We are looking for unit vectors v 2 RN n RN�1 such that the projection
Pv parallel to v induces an embedding

PvjM WM ! RN�1:

It can be shown that Pv is an injective immersion if and only if

v ¤
x � y

jx � yj
and v ¤

w

jwj

for all x; y 2 M and w 2 TxM . Using Sard’s theorem for manifolds F.62, one can
show the existence of such a v. �

Using the Whitney embedding theorems we can prove a foundational result in the
de Rham cohomology.

Proposition F.65. LetM be a smooth manifold and g 2 C.M;Rk/. For any positive
ı 2 C.M/, there exists f 2 C1.M;Rk/ such that

jf .x/ � g.x/j < ı.x/

holds for all x 2M .

Next we want to improve above proposition to the case where the codomain itself
is an arbitrary manifold. For this we need the notion of a tubular neighbourhood.

Theorem F.66 (The Tubular Neighbourhood Theorem, Euclidean Case). Every
embedded submanifoldM � Rk admits a tubular neighbourhood.

Theorem F.67 (The Whitney Approximation Theorem). Let F W M ! N be a
continuous map between two smooth manifoldsM and N . Then F is homotopic to
a smooth map.

Proof. Use the Whitney embedding theorems together with the existence of tubular
neighbourhoods F.66 and proposition F.65. �
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F.4 Vector Fields

Definition F.68 (Vector Field). Let M be a smooth manifold and U � M open
and non-empty. A vector field on U is defined to be a section of the projection
� W T U ! U . The set of all vector fields on U is denoted by X.U /.

Example F.69. Coordinate Vector Fields LetM be a smooth manifold and
�
U; .xi /

�
be a chart onM . Define @

@xi
W U ! TM by

@

@xi
.x/ WD

@

@xi

ˇ̌̌̌
x

:

It immediately follows from the smoothness criteria for tensor fields 2.33 that @

@xi
2

X.U /.

Exercise F.70. Show thatX.U / is aC1.U /-module.Hint:Use the smoothness criteria for tensor
fields 2.33.

In contrast to arbitrary tensor fields, vector fields can act on smooth functions.

Proposition F.71. LetM be a smooth manifold and U �M open. ThenX 2 X.U /
if and only if the function Xf W U ! R defined by Xf .x/ WD X.x/f is smooth for
all f 2 C1.V /, where V � U is open.

Proof. Using the smoothness criteria for tensor fields 2.33, we locally write X D
X i @

@xi
, where X i are smooth functions. Hence

Xf D X i
@f

@xi

which is smooth.
Conversly, suppose that Xf is smooth for any f 2 C1.V /. Then in particular

X.xj / D X i
@xj

@xi
D Xj

is smooth. �

We adopt the terminology from [20, 218].

Definition F.72 (Derivation). Let M be a smooth manifold and U � M open. A
derivation of C1.U / is a linear mapD W C1.U /! C1.U / such that

D.fg/ D D.f /g C fD.g/

holds for all f; g 2 C1.U /. Denote the set of all derivations of C1.U / by Der.U /.

Exercise F.73. Show that Der.U / is a C1.M/-module.
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Proposition F.74. LetM be a smooth manifold andU �M be open and non-empty.
Then X.U / Š Der.U / as modules over C1.U /.

Proof. Define ˚ W X.U / ! Der.U / by ˚.X/.f / WD Xf using proposition F.71.
Moreover, define	 W Der.U /! X.U / by	.D/.x/.f / WD Df for all f 2 C1.U /
again using proposition F.71. �

Remark F.75. From now on we will identify vector fields in X.U / with derivations
Der.U / by means of proposition F.74.

Proposition F.74 yields a new tool for constructing vector fields.

Exercise F.76. LetM be a smooth manifold and U �M a non-empty open subset. Show that

ŒX;Y � WD X ı Y � Y ıX 2 X.U /

for anyX;Y 2 X.U /.

Definition F.77. Let M and N be smooth manifold and F 2 C1.M;N /. Two
vector fields X 2 X.M/ and Y 2 X.N / are said to be F -related, iff

DFx.X jx/ D YF.x/

holds for all x 2M .

Proposition F.78. Let M and N be smooth manifolds and F 2 C1.M;N /. Then
X 2 X.M/ and Y 2 X.N / are F -related if and only if

X.f ı F / D .Yf / ı F

holds for all f 2 C1.V /, where V �M is open.

Proposition F.79. LetM andN be smoothmanifolds andF 2 C1.M;N /. Suppose
X1; X2 2 X.M/ and Y1; Y2 2 X.N / such that X1 is F -related to Y1 and X2 is
F -related to Y2. Then ŒX1; X2� is F -related to ŒY1; Y2�.

F.5 Flows

Definition F.80 (Integral Curve). LetM be a smooth manifold and X 2 X.M/. A
curve 
 2 C1.J;M/, where J � R is an interval, is said to be an integral curve
of X , iff


 0.t/ D X
.t/

holds for all t 2 J .

Proposition F.81 (Fundamental Theorem for Autonomous ODEs). Let U � Rn

open and X 2 C1.U;Rn/. Consider the initial value problem
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 0.t/ D X

�

1.t/; : : : ; 
n.t/

�

.t0/ D c;

(F.6)

for t0 2 R and c 2 U . Then:

(a) For any t0 2 R and x0 2 U there exists an open interval J0 containing t0 and
an open subset U0 � U containing x0 such that for each c 2 U0 there is a map

 2 C 1.J0; U / that solves (F.6).

(b) Any two solutions to (F.6) agree on their common domain.
(c) Define

� W J0 � U0 ! U

by �.t; x/ WD 
.t/, where 
.t/ is the unique solution of (F.6) such that 
.t0/ D x.
Then � is smooth.

Theorem F.82 (Local Flow). Let M be a smooth manifold and X 2 X.M/. For
every x 2M there exists a neighbourhood U of x, " > 0 and a smooth map

� W .�"; "/ � U !M

such that: �.�; x/ is the unique integral curve of X passing through x.

Definition F.83 (Maximal Integral Curve). LetM be a smooth manifold and X 2
X.M/. Given x 2M , denote by

�
t�.x/; tC.x/

�
the maximal interval around 0 such

that the integral curve 
x of X starting at x is defined. This integral curve is called
the maximal integral curve of X starting at x.

Theorem F.84 (Fundamental Theorem of Flows). Let M be a smooth manifold
and X 2 X.M/. Then there exists a unique open set D � R �M and a unique
smooth map � W D !M , called the maximal flow associated to X , such that

(a) For all x 2M we have that

D \ .R � fxg/ D
�
t�.x/; tC.x/

�
� fxg :

(b) �.t; x/ D 
x.t/ for all .t; x/ 2 D .

Proof. Observe that (a) and (b) determine D and � uniquely. Therefore it suffices to
show that D is open and � is smooth. In order to show this, it is enough to show that
for every x 2M the setAx consisting of all t 2

�
t�.x/; tC.x/

�
such that there exists

a neighboruhood of .t; x/ in D such that � is smooth, is closed and non-empty. �

Definition F.85 (Complete Vector Field). A vector field X 2 X.M/ on a smooth
manifoldM is said to be complete, iff its flow � admits the domain R �M .

A sufficient condition for completeness is given in the following lemma.

Lemma F.86. Let M be a smooth manifold and X 2 X.M/. Suppose that there
exists " > 0 such that .�"; "/ �

�
t�.x/; tC.x/

�
for all x 2M . Then X is complete.
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Proposition F.87. Let M be a smooth manifold and X 2 X.M/ with compact
support. Then X is complete.

Corollary F.88. Every vector field on a compact smooth manifold is complete.

F.6 Lie groups and Lie algebras

Definition F.89 (Lie Group). A Lie group is defined to be a group object in Man.

Examples F.90 (Lie Groups). The following are examples of Lie groups.

(a) .GL.V /; ı/.
(b) ConsiderS1 � C. ThenS1 is an abelian Lie group under complexmultiplication

(see problem F.254).
(c) LetG1; : : : ; Gn be Lie groups. ThenG1�� � ��Gn is a Lie group. IfG1; : : : ; Gn

are abelian Lie groups, then so is G1 � � � � �Gn.
(d) The torus

Tn
WD Sn � � � � � Snš

n

is an abelian Lie group from part (b) and (c).

Definition F.91 (Lie Group Homomorphism). A map F 2 C1.G;H/ between
two Lie groups G andH is said to be a Lie group homomorphism, iff F W G ! H

is a homomorphism.

The group structure of a Lie group induces canonical maps.

Definition F.92 (Translation). LetG be a Lie group and g 2 G. Define morphisms
Lg ; Rg 2 Diff.G/ by

Lg.h/ WD gh and Rg.h/ WD hg:

These maps are called left translation by g and right translation by g, respectively.

Proposition F.93. Every Lie group homomorphism has constant rank.

Definition F.94 (Lie Subgroup). A Lie subgroup of a Lie group G is defined to be
a subgroup of G, which is itself a Lie group and an immersed submanifold of G.

Proposition F.95. Let G be a Lie group and H be a subgroup of G such that H is
an embedded submanifold of G. ThenH is a Lie subgroup of G.

To every Lie group we can associate an algebraic object.
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Definition F.96 (Lie Algebra). A Lie algebra is defined to be a real vector space g,
such that there exists a bilinear mapping

Œ � ; � � W g � g! g;

called the Lie bracket on g, such that:

(i) (Antisymmetry) Œx; y� D �Œy; x�,
(ii) (Jacobi’s Identity) Œx; Œy; z��C Œz; Œx; y��C Œy; Œz; x�� D 0,

holds for all x; y; z 2 g.

Example F.97. Vector Fields LetM be a smooth manifold and U �M open. Then
X.U / together with Œ � ; � � defined in exercise F.76 is a Lie algebra, called the Lie
algebra of vector fields on U .

Definition F.98 (Left-Invariance). LetG be a Lie group. A vector field onG is said
to be left-invariant, iff it is Lg -related to itself for all g 2 G. The vector space of
left-invariant vector fields on G is denoted by XL.G/.

Proposition F.99. Let G be a Lie group. Then XL.G/ is a Lie-subalgebra of X.G/.

Proof. By definition,X and Y areLg -related to themselves for all g 2 G. Hence by
proposition F.79 we have that ŒX; Y � isLg -related to itself and so ŒX; Y � 2 XL.G/.�

Theorem F.100. Let G be a Lie group. Then TeG Š XL.G/ as real vector spaces.

Proof. Consider the map ev W XL.G/ ! g defined by ev.X/ WD Xe . Then ev is
linear and injective by left-invariance. So we need to show that ev is surjective. Let
v 2 g. Define Xv W G ! TG by

Xvjg WD D.Lg/e.v/: (F.7)

ThenXv 2 XL.G/. Indeed, by F.71 it is enough to show thatXvf is smooth for every
f 2 C1.G/. Moreover, by proposition F.42 we find a smooth path 
 W .�"; "/! G

such that 
.0/ D e and 
 0.0/ D v. Hence

.Xvf /.g/ D Xvjg.f /

D D.Lg/e.v/.f /

D v.f ı Lg/

D 
 0.0/.f ı Lg/

D .f ı Lg ı 
/
0.0/:

Also Xv is left-invariant by the chain rule. �

Definition F.101 (Lie Algebra associated to a Lie Group). Let G be a Lie group.
The Lie algebra g WD TeG is called the Lie algebra associated to the Lie group G .
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Definition F.102 (Lie Algebra Homomorphism). Let g and h be two Lie algebras.
A Lie algebra homomorphism between g and h is defined to be a homomorphism
L 2 L.g; h/ such that

LŒx; y� D ŒLx;Ly�

holds for all x; y 2 g.

Proposition F.103. Let G and H be Lie groups and F W G ! H a Lie group
homomorphism. Then

DFe W g! h

is a Lie algebra homomorphism.

Proposition F.104. Every left-invariant vector field is complete.

Definition F.105 (One-Parameter Subgroup). Let G be a Lie group. A one-
parameter subgroup ofG is defined to be a Lie group homomorphism .R;C/! G.

Proposition F.106 (Characterisation of One-Parameter Subgroups). The one-
parameter subgroups of a Lie group are in one-to-one correspondence with the
maximal integral curves of left-invariant vector fields starting at the identity.

Proof. Suppose 
 is an integral curve of some left-invariant vector fieldX 2 XL.G/.
By proposition F.104, 
 W R! G. Let s 2 R and consider the path z
 2 C1.R; G/
defined by

z
.t/ WD 
.s/�1
.s C t / D L
.s/�1
�

.s C t /

�
:

Then z
.0/ D e and

z
 0.t/ D D
�
L
.s/�1

�

.sCt/

�

 0.s C t /

�
D D

�
L
.s/�1

�

.sCt/

�
X
.sCt/

�
D X
.s/�1
.sCt/

D Xz
.t/:

Thus by uniqueness z
 D 
 . But this implies


.s C t / D 
.s/
.t/

for all s; t 2 R.
Conversly, suppose that 
 W R ! G is a one-parameter subgroup of G. Then

 0.0/ 2 TeG and thus by theorem F.100, we can associate to 
 0.0/ a left-invariant
vector field X . Then 
 is an integral curve of X . Indeed, we compute
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X
.t/ D D
�
L
.t/

�
e

�

 0.0/

�
D

d

ds

ˇ̌̌̌
sD0

�
L
.t/ ı 


�
D

d

ds

ˇ̌̌̌
sD0


.s C t /

D 
 0.t/:

Definition F.107 (Exponential Map). Let G be a Lie group and g its Lie algebra.
Then the map exp W g ! G, defined by v 7! 
.1/, where 
 is the unique one-
parameter subgroup of G associated to v, is called the exponential map.

Theorem F.108. The exponential map is smooth andD exp0 D idg.

Proof. Consider the map zX on G � g defined by

zX j.g;v/ WD
�
Xvjg ; 0

�
2 TgG � Tvg Š T.g;v/.G � g/

by proposition F.36. Then zX is a vector field onG�g. Indeed, for anyf 2 C1.G�g/
we compute�
zXf
�
.g; v/ D zX j.g;v/f D D.�v/.Xvjg/f D Xvjg.f ı �v/ D

�
Xv.f ı �v/

�
.g/

using proposition F.36. The latter function is smooth and so is zXf . Now the flow
� W R �G � g! G � g of zX is given by

�.t; g; v/ D
�
g exp.tv/; v

�
:

Thus �.1; e; �/ is smooth, but this is simply the map v 7!
�
exp.v/; v

�
. So exp is

smooth since exp D �1 ı �.1; e; �/. �

Proposition F.109. Let G and H be Lie groups with corresponding Lie algebras
g and h, respectively. If F W G ! H is a Lie algebra homomorphism, then the
diagram

g h

G H

DFe

exp exp

F

commutes.

A prominent feature of Lie groups is their action on smooth manifolds.

Definition F.110 (Left Action). LetG be a Lie group andM be a smooth manifold.
A left action of G onM is defined to be a smooth map � 2 C1.G �M;M/ such
that
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�
�
g; �.h; x/

�
D �.gh; x/ and �.e; x/ D x

holds for all g; h 2 G and x 2M .

Example F.111. The Conjugation Action Let G be a Lie group. Then G acts on
itself via the conjugation action, written C W G �G ! G, defined by

C.g; h/ WD ghg�1 D Lg
�
Rg�1.h/

�
:

Definition F.112 (Transitive Action). A left Lie group action of a Lie group G on
a smooth manifoldM is said to be transitive, iff for all x; y 2M there exists g 2 G
such that g � x D y.

Definition F.113 (Free Action). A left Lie group action of a Lie group G on a
smooth manifoldM is said to be free, iff g � x D x implies g D e for all g 2 G and
x 2M .

Definition F.114 (Effective Action). A left action � W G �M !M of a Lie group
G on a smooth manifoldM is said to be effective, iff �g D idM if and only if g D e.

It immediately follows from the definitions, that every free action is effective.
Recall, that a morphism f W X ! Y in Top is said to be proper, iff f �1.K/ is
compact for every K � Y compact.

Definition F.115 (Proper Action). A left Lie group action of a Lie group G on a
smooth manifoldM is said to be proper, iff the map G �M ! G �M defined by
.g; x/ 7! .g; gx/ is proper.

Finally, we want to give a short introduction in a subject called representation
theory, which has many applications.

Definition F.116 (Representation). LetG be a Lie group. A representation ofG is
defined to be a tuple .V; �/ consisting of a finite-dimensional real vector space and
a Lie group homomorphism � W G ! GL.V /.

Definition F.117 (Linear Action). Let V be a finite-dimensional real vector space
and G a Lie group. A left action � W G � V ! V is said to be a linear action, iff
�g 2 GL.V / for all g 2 G.

Definition F.118 (Fixed Point). Let � be a left action of a Lie group G on a smooth
manifoldM . A fixed point of � is defined to be a point x 2M , such that �.g; x/ D x
holds for all g 2 G.

Proposition F.119. Let � be a left action of a Lie groupG on a smooth manifoldM .
Suppose x 2M is a fixed point of � . Then � W G ! GL.TxM/ defined by

�.g/.v/ WD D.�g/x.v/

is a representation of G.
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Definition F.120 (The Adjoint Representation). Let G be a Lie group. The rep-
resentation induced by proposition F.119 at the identity of G from the conjugation
action is called the adjoint representation of G , written Ad W G ! GL.g/.

We can go one step further and differentiate the adjoint representation Ad. We
write

ad WD D.Ad/e W g! gl.g/:

There is an easy description of this representation.

Proposition F.121. LetG be a Lie group with Lie algebra g. Then adv.w/ D Œv; w�.

F.7 Distributions

Definition F.122 (Distribution). Let M n be a smooth manifold and k � n. A
distribution � onM of dimension k is defined to be a choice of a k-dimensional
subspace�x � TxM for every x 2M such that the following smoothness condition
is satisfied: For every x0 2 M there exists a neighbourhood U of x0 and k vector
fields X1; : : : ; Xk 2 X.U / such that

�x D spanR

˚
X1jx ; : : : ; Xkjx

	
holds for all x 2 U .

Example F.123. Nowhere-Vanishing Vector Field LetM be a smooth manifold and
X 2 X.M/ nowhere-vanishing, that is, Xx ¤ 0 for all x 2M . Then

�x WD spanRXx

defines a one-dimensional distribution onM .

Definition F.124 (Integral Manifold). Let � be a k-dimensional distribution on a
smooth manifold M . An immersed submanifold L � M is said to be an integral
manifold of�, iff

D�x.TxL/ D �x

holds for all x 2 L.

Definition F.125 (Integrable Distribution).A distribution� on a smooth manifold
M is said to be integrable, iff the following condition is satisfied: If X; Y 2 X.M/

such that Xx ; Yx 2 �x for all x 2M , then also ŒX; Y �x 2 �x for all x 2M .

Theorem F.126 (The Local Frobenius Theorem). Let M n be a smooth manifold
and � an integrable k-dimensional distribution onM . Then for every x 2M there
exists a chart ' W U ! .�1; 1/n centered at x and such that for every c 2 .�1; 1/n�k

the slice ˚
x 2 U W xkC1.x/ D c1; : : : ; xn D cn�k
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is an integral manifold of �. Moreover, every connected integral manifold of �
contained in U is of this form.

The following proposition is crucial in the proof of the local Frobenius theorem
F.126.

Proposition F.127. Let M n be a smooth manifold and W � M a non-empty open
subset. Suppose X1; : : : ; Xk 2 X.W / are such that

(i) There exists x0 2 W such that
�
Xi jx0

�
is linearly independent.

(ii) ŒXi ; Xj � D 0 for all i and j .

Then there exists a chart .U; '/ contained in W about x0 such that Xi jU D @

@xi
.

Definition F.128 (Foliation). LetM n be a smooth manifold. A k-dimensional foli-
ation F ofM is a partition ofM into k-dimensional connected immersed subman-
ifolds, called the leaves, such that:

(i) The collection of tangent spaces of the leaves defines a distribution onM .
(ii) Any connected integral manifold of this distribution is contained in a leaf.

Example F.129. LetF WM n ! N k be a surjective submersion. Then
�
F �1.y/

�
y2N

is an .n � k/-dimensional foliation ofM .

Theorem F.130 (The Frobenius Theorem). Let� be an integrable distribution on
M . Then � is induced by a foliation.

The Frobenius theorem has many applications.

Theorem F.131. Let G be a Lie group with associated Lie algebra g. If h � g is a
Lie subalgebra, then there exists a unique connected Lie subgroup H � G, whose
associated Lie algebra is h.

Proof. Consider the distribution � on G defined by

�g WD fXvjg W v 2 hg

and apply the Frobenius theorem F.7. �

One particularly important application of the Frobenius theorem F.7 is the next
theorem.

Theorem F.132. Let G be a Lie group and H � G a closed subgroup. If G=H
denotes the set of left cosets of H in G, then G=H is a topological manifold of
dimension

dim.G=H/ D dimG � dimH

endowed with the quotient topology. Moreover, there exists a smooth structure on
G=H making � W G ! G=H into a smooth submersion.
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Definition F.133 (Homogeneous Space). A homogeneous space is defined to be a
smooth manifold M , such that there exists a Lie group G and a closed subgroup
H � G, such that M Š G=H in Man, where G=H is endowed with the smooth
structure of theorem F.132.

Theorem F.134. Let � be a transitive left action of a Lie group G on a smooth
manifoldM . Fix x 2M and let

H WD fg 2 G W �g.x/ D xg :

ThenM is a homogeneous space withM Š G=H , where an explicit diffeomorphism
is given by F W G=H !M defined by F

�
�.g/

�
WD �g.x/.

F.8 Vector Bundles

Definition F.135 (FibreBundle).Afibre bundle is defined to be a tuple .E;M; �; F /
consisting of smooth manifolds E;M and F together with a surjective map
� 2 C1.E;M/ such that there exists an open cover .U˛/˛2A of M and maps
'˛ 2 C

1
�
��1.U˛/; F

�
for all ˛ 2 A such that .�; '˛/ W ��1.U˛/ ! U˛ � F is

a diffeomorphism. If .E;M; �; F / is a fibre bundle, we call M the base space, E
the total space and F the fibre. Moreover, the family .U˛; '˛/˛2A is called a bundle
atlas for .E;M; �; F /.

Example F.136 (Trivial Bundle). LetM and F be smooth manifolds. Then

� WM � F !M

is a fibre bundle.

The fibre F of a fibre bundle .E;M; �; F / is completely determined by � W E !
M .

Proposition F.137. Let .E;M; �; F / be a fibre bundle. Then � is a submersion,
Ex WD ��1.x/ is an embedded submanifold of E for all x 2 M and Ex Š F in
Man.

Proof. Let x 2 M . Then there exists a neighbourhood U˛ of x such that � D
�1 ı .�; '˛/. But then � is a submersion as a composition of submersions. Thus
an application of the implicit function theorem for manifolds F.58 yields that Ex is
an embedded submanifold of E. Now Ex Š fxg � F by '˛ , but fxg � F Š F in
Man. �
Exercise F.138. LetM and N be smooth manifolds and G 2 C1.M;N/. Moreover, suppose
that .E;N;�/ is a fibre bundle. Define

G�E WD
˚
.x;p/ 2M �E W G.x/ D �.p/

	
:

Show that .G�E;M;�1; F / is a fibre bundle. This fibre bundle is called the pullback bundle.
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One particularly important notion concerning vector bundles are sections.

Definition F.139 (Local Section). Let � W E ! M be a fibre bundle. A local
section of E is defined to be a section of the fibre bundle �j��1.U / W ��1.U /! U

for some U 2 O.M/. The set of all local sections on U is denoted by �.U;E/.

Definition F.140 (Compatibility).Let .E;M; �/ be a fibre bundle and � W G�F !
F an effective Lie group action. Let ˛; ˇ 2 A such that U˛ \ Uˇ ¤ ¿. We say that
'˛ W �

�1.U˛/ ! F and 'ˇ W ��1.Uˇ / ! F are .G; �/ - compatible, iff there
exists z�˛ˇ W U˛ \ Uˇ ! G such that

�˛ˇ .x/.y/ D z�˛ˇ .x/ � y

holds for all x 2 U˛ \ Uˇ and y 2 F , where �˛ˇ W U˛ \ Uˇ ! Diff.F / is defined
by

�˛ˇ .x/ WD '˛jEx ı 'ˇ j
�1
Ex
:

Definition F.141 (StructureGroup).A structure group of a fibre bundle .E;M; �/
is a Lie groupG such that there exists an effective Lie group action onF and a bundle
atlas .U˛; '˛/˛2A which is G-compatible.

Definition F.142 (Vector Bundle). Let k 2 N. A vector bundle of rank k is defined
to be a fibre bundle .E;M; �;Rk/ admitting a matrix Lie subgroup of GL.k/ as a
structure group.

As aestetically pleasing the definition of a vector bundle F.142may be, in practice,
it is not that useful. Hence we give an alternative definition.

Definition F.143 (Vector Bundle). Let � W E ! M be a fibre bundle with fibre
Rk . We say that .E;M; �/ is a vector bundle of rank k, iff

(i) For all x 2M , the fibreEx admits the structure of a k-dimensional real vector
space.

(ii) For all x 2M , '˛jEx W Ex ! Rk is an isomorphism of vector spaces.

Example F.144 (The Tangent Bundle). LetM n be a smooth manifold. Define

TM WD
a
x2M

TxM

and � W TM !M by �.x; v/ WD x. Then � is certainly surjective. If .U˛;  ˛/˛2A
is a countable atlas ofM (this is possible since every smooth manifold is Lindelöf
by corollary F.6), define T U˛ WD

`
x2U˛

TxM and

z'˛ W T U˛ ! Rn

by setting
z'˛.x; v/ WD dx

i
˛jx.v/ei :

Then
�
�; z'˛

�
W T U˛ ! U˛ �Rn is a bijection since the explicit inverse is given by
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�; z'˛

��1
.x; v/ WD

�
x; vi

@

@xi˛

ˇ̌̌̌
x

�
:

Moreover, if U˛ \ Uˇ ¤ ¿, the transition function�
'˛ ı �; z'˛

�
ı
�
'ˇ ı �; z'ˇ

��1
W 'ˇ .U˛ \ Uˇ / �Rn ! '˛.U˛ \ Uˇ / �Rn

is given by

�
'˛ ı �; z'˛

�
ı
�
'ˇ ı �; z'ˇ

��1 �
'ˇ .x/; v

�
D

 
'˛.x/; v

i @x
j
˛

@xi
ˇ

.x/ej

!
:

Hence the transition functions are smooth and by the smooth manifold chart lemma
F.17, TM admits a smooth structure that makes it into a smooth manifold of di-
mension 2n and moreover, � W TM ! M is a vector bundle of rank n, called the
tangent bundle.

Definition F.145 (Vector Bundle Morphism). Let .E;M; �/ and .E 0;M 0; � 0/ be
two vector bundles and f 2 C1.M;M 0/. A vector bundle morphism along f is
defined to be a map F 2 C1.E;E 0/ such that

E E 0

M M 0

�

F

� 0

f

commutes and F jEx W Ex ! E 0
f .x/

is linear for all x 2M .

Example F.146. The derivative as a Vector Bundle Morphism Let F 2 C1.M;N /.
ThenDF is a vectro bundle morphism along F .

Definition F.147 (VectorBundleHomomorphism).Let .E;M; �/ and .E 0;M; � 0/
be two vector bundles over the same base space. A vector bundle homomorphism
is a vector bundle morphism along idM .

Definition F.148. A functor

F W Vect � � � � � Vect›
k

! Vect

is said to be smooth, iff for all V1; : : : ; Vk ; W1; : : : ; Wk 2 Vect, the map

kM
iD1

zL.Vi ; Wi /! L
�
F .V1; : : : ; Vk/;F .W1; : : : ; Wk/

�
where
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zL.Vi ; Wi / WD

(
L.Vi ; Wi / F covariant in the i -th argument;
L.Wi ; Vi / F contravariant in the i -th argument

given by
.T1; : : : ; Tk/ 7! F .T1; : : : ; Tk/

is smooth.

Theorem F.149. Let
F W Vect � � � � � Vect›

k

! Vect

be a smooth functor of mixed variance and �i W Ei ! M vector bundles for
i D 1; : : : ; k. Then

� W
a
x2M

F .E1jx ; : : : ; Ekjx/!M

is a vector bundle.

There are two particularly important constructions from linear algebra in differ-
ential topology, namely the tensor product and the exterior product.

Proposition F.150 (The Free Module Functor). Let R 2 Ring. Then the forgetful
functor U W RMod! Set admits a left adjoint.

Proof. Consider the free module functor F W Set! RMod defined as follows:

Step 1: Definition on objects. Let S 2 Set and define

F.S/ WD
˚
f 2 RS W suppf is finite

	
:

Equipped with pointwise defined addition and multiplication, F.S/ is a left R-
module. Moreover, there is an inclusion � W S ,! U.F.S// sending x 2 S to the
function taking the value one at x and zero else. It is easy to check that F.S/ is free
on S .
Step 2: Definition on morphisms. Let f W S ! S 0 in Set, define F.f / W F.S/ !
F.S 0/ by setting

F.f /

 X
x2S

rxx

!
WD

X
x2S

rxf .x/:

Step 3: F a U . Let M 2 RMod and ' 2 RMod.F.S/;M/. Define x' 2
RMod.S; U.M// to be the restriction to S of the underlying map of sets. Con-
versly, if f 2 Set.S; U.G//, extending by linearity yields xf 2 RMod.F.S/;M/

given by

xf

 X
x2S

rxx

!
WD

X
x2S

rxf .x/:

It is now easy to check that xx' D ' and xxf D f holds. �
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Exercise F.151. In the proof of proposition F.150, check functoriality of F and naturality of the
bijection RMod.F .S/;M/ Š Set.S;U.M//.

Definition F.152 (Universal Property of the Tensor Product). Let V;W 2 Vect.
The tensor product of V and W is defined to be a tuple .V ˝ W;˝/, where
V ˝ W 2 Vect and ˝ W V � W ! V ˝ W is a bilinear mapping such that the
following universal property in Vect is satisfied:

V �W V ˝W

8U

˝

8f bilinear 9Š zf

Lemma F.153. Let V;W 2 Vect. The V � ˝W Š Hom.V;W /.

Proof. Just apply the universal property of the tensor product F.152 to the map
f W V � �W ! Hom.V;W / defined by

f .!;w/.v/ WD !.v/w:

�

Definition F.154 (Pairing). Let V;W 2 Vect. A bilinear form ˇ is said to be a
noon-degenerate pairing, iff ˇ.v; �/ D 0 if and only if v D 0, and ˇ.�; w/ D 0 if
and only if w D 0.

Proposition F.155. Let k; l 2 N and V 2 Vect. Then

V ˝ � � � ˝ Vš
k

˝ V � ˝ � � � ˝ V �›
l

Š L.V �; : : : ; V �™
k

; V; : : : ; Ṽ

l

IR/:

Lemma F.156 (Permutation Lemma). Let V 2 Vect, ! 2 ƒk.V �/ and � 2
ƒl .V �/. Then

.! ^ �/
�
v1; : : : ; vkCl

�
D

1

kŠlŠ

X
�2SkCl

sgn.�/!
�
v�.1/; : : : ; v�.k/

�
�
�
v�.kC1/; : : : ; v�.kCl/

�
(F.8)

for all v1; : : : ; vkCl 2 V .

One particular advantage of studying vector bundles instead of mere fibre bundles
is that the set of sections admits an additional structure.

Lemma F.157. Let .E;M; �/ be a vector bundle. Then for any U � M open and
non-empty, the set �.U;E/ is a vector space and a C1.U /-module.

Proof. Let ' W ��1.U /! Rk be a vector bundle chart and .V;  / be a chart onM
such that U \ V ¤ ¿. Then
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. ı �; '/ W ��1.U \ V /!  .U \ V / �Rk

is a chart on E compatible with its smooth structure. Since � is a section, we have
that

. ı �; '/ ı � ı  �1 W  .U \ V /!  .U \ V / �Rk

Hence the coordinate representation of � is of the form
�
id; z�

�
. Hence � is smooth

if and only if z� is smooth for all charts. This readily implies the statement. �

Definition F.158 (Local Frame). Let � W E !M be a vector bundle of rank k and
U 2 O.M/. A local frame for E over U is defined to be a family .e1; : : : ; ek/ of
sections in �.U;E/ such that .e1jx ; : : : ; ekjx/ is a basis for Ex for all x 2 U .

Lemma F.159. Let � W E ! M be vector bundle. Then for every x 2 M a local
frame exists.

Proof. Let .U˛; '˛/˛2A a vector bundle atlas and assume that the vector bundle
is of rank k. Let .e1; : : : ; ek/ denote the standard basis of Rk . For ˛ 2 A define
ei W U˛ ! ��1.U˛/ by

ei .x/ WD '˛j
�1
Ex
.ei /:

Then ei 2 �.U;E/ by the argument in the proof of lemma F.157 and .e1; : : : ; ek/
forms a local frame since '˛jEx is an isomorphism for all x 2 U˛ . �

Theorem F.160 (The Hom�� -Theorem). Let � W E ! M and � 0 W E 0 ! M be
two vector bundles. Then there is a one-to-one correspodence between vector bundle
homomorphisms from E to E 0 and C1.M/-linear maps from �.E/ to �.E 0/.
Explicitely, if ˚ W E ! E 0 is a vector bundle homomorphism, then the induced map
� W �.E/! �.E 0/ is given by

�.�/ D ˚ ı �:

If M is a smooth manifold, so is U for any open subset U � M . Most of the
constructions we performed so far also work for this induced smooth structure on U .
However, it is tedious to explicitely mention this all the time. So we introduce now
a foundational notion of a mathematical field called Algebraic Geometry.

Let .X; T / 2 Top. Then denote by O.X/ the category of open subsets of X , that
is the category associated to the poset .T ;�/ (see [8, 24]). Recall, that for any two
categories C and D , there exists the functor category DC from C to D (see [8, 30]).

Definition F.161 (Presheaf). LetX 2 Top and C be a category. A presheaf of C on
X is defined to be a contravariant functor O.X/! C . The category of presheaves
of C on X is denoted by PSh.X IC/.

Remark F.162. Let F W O.X/ ! C , where C is the category of a mathematical
structure, that is Grp, Ring, Vect, : : : , be a presheaf of C on X . Then if U � V for
U; V 2 O.X/, we simply write f jU for F.U ,! V /.f /, where f 2 F.V /.
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Example F.163 (Presheaf of Sections of a Vector Bundle). Let .E;M; �/ be a
vector bundle. Define EE W O.X/ ! Vect on objects U 2 O.X/ by EE .U / WD

�.U;E/ and on morphisms by restriction.

Definition F.164 (Local Operator). Let � W E ! M and � 0 W E 0 ! M be two
vector bundles. An R-linear operator � W �.E/ ! �.E 0/ is said to be a local
operator, iff the following condition is satisfied: if � 2 �.E/ such that � jU D 0 for
some U 2 O.M/, then also �.�/jU D 0.

Proposition F.165. Let� W E !M and� 0 W E 0 !M be two vector bundles. Every
local operator � W �.E/ ! �.E 0/ uniquely induces a morphism of presheaves
� W EE ! EE 0 .

Proof. Let U 2 O.M/. Define a morphism �U W EE .U /! EE 0.U / by

�U .�/.x/ WD � .z�/ .x/

for all x 2 U where z� 2 �.E/ is any extension of � in a neighbourhood of x. Since
� is a local operator, this is well defined. It is easy to check that .�U /U2O.M/ is a
natural transformation. �

Proposition F.166. Let � W E ! M and � 0 W E 0 ! M be two vector bundles.
Every C1.M/-linear operator � W �.E/! �.E 0/ is a local operator.

Proof. The usual argument via bump functions. �

Definition F.167 (Point Operator). Let � W E ! M and � 0 W E 0 ! M be two
vector bundles. An R-linear operator � W �.E/ ! �.E 0/ is said to be a point
operator, iff the following condition is satisfied: if � 2 �.E/ such that �x D 0 for
some x 2M , then also �.�/x D 0.

Proposition F.168. Let � W E ! M and � 0 W E 0 ! M be two vector bundles.
Every C1.M/-linear map �.E/! �.E 0/ is a point operator.

Proof. Let � 2 �.E/ and suppose that �x D 0. By lemma F.159, there exists a local
frame .ei / on a neighbourhoodU about x. Then � jU D f iei for some f i 2 C1.U /
and f i .x/ D 0 for all i . By proposition F.166, � is a local operator, and thus using
proposition F.165 we compute

�.�/.x/ D �U .� jU /.x/ D f
i .x/�U .ei /.x/ D 0

since it is easy to show via a bump function argument that �U is C1.U /-linear. �

Proof (of theorem F.160). Let � W �.E/ ! �.E 0/ be C1.M/-linear. Define ˚ W
E ! E 0 as follows. If x 2M , defined

˚.p/ WD �.�/.x/

for p 2 Ex , where � 2 �.E/ such that �x D p. This is well-defined, since � is a
point opertaor by proposition F.168.Moreover,˚ is fibre-preserving and linear on the
fibres. Also one can show that˚ is smooth, hence a vector bundle homomorphism.�
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F.9 Sheaves

Definition F.169 (Sheaf). Let X 2 Top and F a presheaf of Set (Grp, Ring, Vect,
: : : ) onX . We say that F is a sheaf onX , iff for all U 2 O.X/ the following gluing
condition is satisfied: Given any open cover .U˛/˛2A for U and f˛ 2 F.U˛/ for all
˛ 2 A such that

f˛jU˛\Uˇ D fˇ jU˛\Uˇ

for all ˛; ˇ 2 A with U˛ \ Uˇ ¤ ¿, then there exists a unique element f 2 F.U /
with f jU˛ D f˛ for all ˛ 2 A. A morphism of sheaves is simply defined to be a
morphism of presheaves.

From example F.163 we already know that EE is a presheaf. In fact, more is true.

Proposition F.170. Let .E;M; �/ be a vector bundle. Then EE W O.M/! Vect is
a sheaf.

Example F.171 (Tensor Sheaf). Let M be a smooth manifold. Then tensor fields
of type .k; l/ can be assembled in a sheaf by proposition F.170. Denote this sheaf by
T
k;l
M
WD ET .k;l/TM . We can assemble these sheaves in a total sheaf TM W O.M/!

RGAlg by setting
TM .U / WD

M
k;l�0

T
k;l
M .U /:

We call TM the tensor algebra sheaf onM .

Proposition F.172 (The Tensor Characterisation Lemma). Let M be a smooth
manifold and U 2 O.M/ non-empty. Then there is a one-to-one correspondence
between T k;l .U / and C1.U /-multilinear maps

�1.U / � � � � ��1.U /�
k

�X.U / � � � � � X.U /œ
l

! C1.U /:

Example F.173 (Sheaf of Differential Forms). LetM n be a smooth manifold and
let 0 � k � n. Then by F.170,Eƒk.T �M/ is a sheaf. This sheaf is denoted by�kM and
called the sheaf of differential k-forms. As with tensor fields in example F.171,we
can define a sheaf �M W O.M/! RGSCAlg by

�M .U / WD
M
0�k�n

�kM .U /:

Proposition F.174 (The Differential Form Characterisation Lemma). LetM be
a smooth manifold and U 2 O.M/ non-empty. Then there is a one-to-one corre-
spondence between �l .U / and alternating C1.U /-multilinear maps

X.U / � � � � � X.U /œ
l

! C1.U /:



154 F Review of Differential Topology

F.10 The Lie Derivative

Definition F.175 (Pullback). Let l 2 N and F 2 C1.M;N /. Define

F � W T 0;l .N /! T 0;l .M/

by
.F �A/x.v1; : : : ; vl / WD AF.x/

�
DFx.v1/; : : : ;DFx.vl /

�
for all x 2M and v1; : : : ; vl 2 TxM , if k � 1 and by F �f WD f ıF if k D 0. We
call F �A the pullback of A under F .

To extend the notion of a pullback of a tensor field to arbitrary tensor fields, we
must impose an additional condition on the map.

Definition F.176 (Cotangent Lift). Let F 2 C1.M;N / be a diffeomorphism.
Define a mapDF � W T �M ! T �N by

DF �.x; �/.v/ WD �
�
.DFx/

�1.v/
�

for all v 2 TF.x/N . This map is called the cotangent lift of the diffeomorphism F .

Definition F.177 (Pullback). Let k; l 2 N and f 2 C1.M;N / a diffeomorphism.
Define

F � W T k;l .N /! T k;l .M/

by
A 7! .F �A/x

�
�1; : : : ; �k ; v1; : : : ; vl

�
for all x 2M , �1; : : : ; �k 2 T �xM and v1; : : : ; vl 2 TxM , if k � 1, where the latter
is defined to be

AF.x/
�
DF �.�1/; : : : ;DF �.�k/;DFx.v1/; : : : ;DFx.vk/

�
We call F �A the pullback ofA under F . Extending by linearity yields a morphism

F � W T .N /! T .M/:

Proposition F.178. Let F be a diffeomorphism. Then

F �.A˝ B/ D F �A˝ F �B:

Definition F.179 (Pushforward).LetF 2 C1.M;N / be a diffeomorphism.Define

F� W T .M/! T .N /

by
F�A WD

�
F �1

��
A:

This morphism is called the pushforward by F .
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Proposition F.180. Let F 2 C1.M;N /, A 2 T 0;k.N / and let X1; : : : ; Xk 2
X.M/, Y1; : : : ; Yk 2 X.N / such that Xi is F -related to Yi for i D 1; : : : ; k. Then

.F �A/.X1; : : : ; Xk/ D A.Y1; : : : ; Yk/ ı F:

Proposition F.181. Let F 2 C1.M;N / and X 2 X.N /. Then F �X is F -related
to X .

Definition F.182 (Trace).Let v1˝� � �˝vk˝!1˝� � �˝!l 2 T k;lV for some vector
space V such that k; l � 1. Define a trace of A to be the tensor TrA 2 T k�1;l�1V
defined by

TrA WD !j .vi /v1 ˝ � � � ˝ yvi ˝ � � � ˝ vk ˝ !1 ˝ � � � ˝ y!j ˝ � � � ˝ !l

for some 1 � i � k and 1 � j � l . Extend this map by linearity to T k;lV and then
pointwise to a sheaf morphism Tr W T k;l

M ! T
k�1;l�1
M .

Proposition F.183 (Traces commute with Pullbacks). Let F 2 C1.M;N / and
A 2 T k;l .N /. Then

Tr.F �A/ D F �.TrA/

for any trace Tr.

Definition F.184 (Tensor Derivation). A tensor derivation on a smooth manifold
M is defined to be a sheaf morphism D W TM ! TM that preserves type and
satisfies:

(i) For all U 2 O.M/, DU commutes with all contractions of TM .U /.
(ii) For all U 2 O.M/, DU is a derivation, that is

DU .A˝ B/ D DUA˝ B C A˝DUB

holds for all A;B 2 T .U /.

Lemma F.185. Let D be a tensor derivation, U 2 O.M/ and A 2 T k;l .U /. Then
for all !1; : : : ; !k 2 �1.U / and X1; : : : ; Xl 2 X.U / we have that

DU .A/
�
!1; : : : ; !k ; X1; : : : ; Xl

�
D DU

�
A
�
!1; : : : ; !k ; X1; : : : ; Xl

��
�

kX
iD1

A
�
!1; : : : ;DU

�
!i
�
; : : : ; !k ; X1; : : : ; Xl

�
�

lX
iD1

A
�
!1; : : : ; !k ; X1; : : : ;DU .Xi /; : : : ; Xl

�
:

Proposition F.186. Let D and D 0 be two tensor derivations on a smooth manifold
which agree on functions and vector fields. Then D D D 0.
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Proof. By the contraction lemma F.185 we have that tensor derivations are uniquely
characterised by their action on functions, vector fields and covector fields. In fact,
only on functions and vector fields. Indeed, if ! 2 �1.U /, then again by the
contraction lemma F.185 we have that

DU .!/.X/ D DU

�
!.X/

�
� !

�
DU .X/

�
D D 0U

�
!.X/

�
� !

�
D 0U .X/

�
D D 0U .!/.X/

for all X 2 X.U /. �

Proposition F.187. Let D be a sheaf morphism on functions and vector fields. If

DU .fg/ D DU .f /g C fDU .g/ and DU .fX/ D DU .f /X C fDU .X/

holds for all U 2 O.M/, f; g 2 C1.U / and X 2 X.U /, then D extends uniquely
to a tensor derivation onM .

Theorem F.188 (TheLieDerivative). LetM be a smoothmanifold andX 2 X.M/.
Then there exists a unique tensor derivation

LX W TM ! TM

onM such that
LXf D Xf and LXY D ŒX; Y �

for all U 2 O.M/, f 2 C1.U / and Y 2 X.U /. This tensor derivation is called
the Lie derivative.

Proof. This immediately follows from proposition F.187 since�
LX .f Y /

�
g D ŒX; f Y � g

D X
�
.f Y /.g/

�
� f Y

�
X.g/

�
D X

�
f Y.g/

�
� f Y

�
X.g/

�
D X.f /Y.g/C f

�
X
�
Y.g/

��
� f Y

�
X.g/

�
D X.f /Y.g/C f ŒX; Y � g

implies
LX .f Y / D LX .f /Y C fLXY:

The next proposition shows why the name Lie derivative is appropriate.

Proposition F.189. LetM be a smooth manifold and X 2 X.M/ with flow � . Then

LXA D
d

dt

ˇ̌̌̌
tD0

��t .A/ DW L
0
X .A/

for any A 2 T k;l .U /, U 2 O.M/.
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Crucial in the proof of proposition F.189 are the following two results.

Lemma F.190. Let " > 0 and f 2 C1
�
.�"; "/ � U

�
, where U 2 O.M/ for M

a smooth manifold and f .0; x/ D 0 for all x 2 U . Then there exists a function
g 2 C1

�
.�"; "/ � U

�
such that

f .t; x/ D tg.t; x/ and
@f

@t
.0; x/ D g.0; x/

holds for all .t; x/ 2 .�"; "/ � U .

Proof. Just set

g.t; x/ WD

Z 1

0

@f

@t
.st; x/ds:

�

Proposition F.191. Let

A W T
k;l
M � T

k0;l 0

M ! T
k00;l 00

M

be a C1M -bilinear sheaf homomorphism. Moreover, suppose that for every local
diffeomorphism F 2 C1.U; V / for U; V 2 O.M/ we have that

F �
�
AV .A;B/

�
D AU

�
F �A;F �B

�
:

Then
L0X

�
A.A;B/

�
D A

�
L0X .A/; B

�
CA

�
A;L0X .B/

�
:

Proof. We compute

L0X
�
A.A;B/

�
D

d

dt

ˇ̌̌̌
tD0

��t .A.A;B//

D
d

dt

ˇ̌̌̌
tD0

A .��t A; �
�
t B/

D lim
t!0

A .��t A; �
�
t B/ �A.A;B/

t

D lim
t!0

A .��t A � A; �
�
t B/CA.A; ��t B � B/

t

D A

�
lim
t!0

��t A � A

t
; B

�
CA

�
A; lim

t!0

��t B � B

t

�
D A

�
L0X .A/; B

�
CA

�
A;L0X .B/

�
:

�

Proof. We make use of F.186. Let f 2 C1.M/. Then for x 2M we compute

d

dt

ˇ̌̌̌
tD0

�
��t f

�
x
D

d

dt

ˇ̌̌̌
tD0

�
f ı �t

�
.x/ D

�
f ı �x

�0
.0/ D .�x/0.0/f D X jxf:
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Next, we show that L0XY D ŒX; Y �. Let x 2 M . Then there exists " > 0 and
neighbourhood U of x in M such that the flow � of X is defined on .�"; "/ � U .
Let f 2 C1.U /. Applying lemma F.190 to the function f ı �t � f we compute

d

dt

ˇ̌̌̌
tD0

.��t Y /f D
d

dt

ˇ̌̌̌
tD0

D.��t /
�
Y j�t

�
f

D
d

dt

ˇ̌̌̌
tD0

Y j�t
�
f ı ��t

�
D

d

dt

ˇ̌̌̌
tD0

Y j�t
�
f � th�t

�
D

d

dt

ˇ̌̌̌
tD0

Y j�tf � Y j�0h0

D
d

dt

ˇ̌̌̌
tD0

.Yf / ı �t � Y
�
LXf

�
D LX .Yf / � Y

�
LXf

�
D .XY � YX/f

D ŒX; Y �f;

since by continuity of h, we have that

h0 D lim
t!0

ht D
d

dt

ˇ̌̌̌
tD0

.f ı �t / D LXf:

�

Proposition F.192. LetM be a smoothmanifold andX 2 X.M/. IfA is an arbitrary
tensor field onM , we have that

d

dt

ˇ̌̌̌
tDt0

��t .A/ D �
�
t0

�
LXA

�
:

Lemma F.193. Let F 2 C1.M;N / for some smooth manifolds M and N , and
!; � 2 �.N/. Then

F �.! ^ �/ D F �! ^ F ��:

Proof. Immediate from the permutation lemma F.156 and the definitions. �

Proposition F.194. LetX 2 X.M/ for some smooth manifoldM and!; � 2 �.M/.
Then

LX .! ^ �/ D LX! ^ �C ! ^LX�:

Proof. Using proposition F.189 together with lemma F.193 yields
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LX .! ^ �/ D
d

dt

ˇ̌̌̌
tD0

��t .! ^ �/

D
d

dt

ˇ̌̌̌
tD0

�
��t ! ^ �

�
t �
�

D
d

dt

ˇ̌̌̌
tD0

��t ! ^ �
�
0 �C �

�
0! ^

d

dt

ˇ̌̌̌
tD0

��t �

D
d

dt

ˇ̌̌̌
tD0

��t ! ^ �C ! ^
d

dt

ˇ̌̌̌
tD0

��t �

D LX! ^ �C ! ^LX�

since ��0 D id�M D id. �

F.11 Differential Forms

Differential forms are a key technical tool in differential geometry. In contrast to
mere tensor fields, they can be both differentiated and integrated.

Definition F.195. LetM be a smooth manifold and l 2 Z. A graded derivation of
degree l onM is defined to be a sheaf morphism D W �M ! �M satisfying:

(i) If ! 2 �k.U /, then DU .!/ 2 �
kCl .U /.

(ii) If ! 2 �k.U / and � 2 �.U /, then

DU .! ^ �/ D DU .!/ ^ �C .�1/
kl! ^DU .�/:

Note that by the contraction lemma F.185, the Lie derivative LX can be seen as
a sheaf morphism LX W �M ! �M for any vector field X 2 X.M/ on a smooth
manifoldM .

Example F.196 (TheLieDerivative).LetM be a smoothmanifold andX 2 X.M/.
Then the Lie derivative LX is a graded derivation of degree 0 by proposition F.194.

Lemma F.197. Let D and D 0 be two graded derivations of degree k and l , respec-
tively. Then

D ıD 0 � .�1/klD 0 ıD

is a graded derivation of degree k C l .

Exercise F.198. Prove lemma F.197.

Proposition F.199. Let M be a smooth manifold and suppose that D and D 0 are
two graded derivations on M of the same degree which coincide on functions and
exact 1-forms, that is, forms ! 2 �1.U / such that there exists f 2 C1.U / with
! D df , for U 2 O.M/. Then D D D 0.
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Proof. Every graded derivation is entirely determined by what it does on a chart on
expressions of the form

fdxi1 ^ � � � ^ dxik :

Theorem F.200 (The Exterior Differential). Let M be a smooth manifold. Then
there exists a unique graded derivation d W �M ! �M of degree 1 such that

dU .f / D df and d ı d D 0

holds for all f 2 C1.U /. This graded derivation is called the exterior differential.

Proof. It is enough to define dU W �k.U / ! �kC1.U / for some chart .U; '/. If
! D fIdx

I in this chart, define

dU .!/ WD dfI ^ dx
I ;

where I denotes an increasing multiindex. If ! 2 �k.U /, then for any � 2 �.U /,
where � D gJdxJ , we compute

dU .! ^ �/ D dU
�
fIgJdx

I
^ dxJ

�
D d

�
fIgJ

�
^ dxI ^ dxJ

D
�
.dfI /gJ C fI .dgJ /

�
^ dxI ^ dxJ

D gJ .dfI / ^ dx
I
^ dxJ C fIdgJ ^ dx

I
^ dxJ

D dU .!/ ^ �C .�1/
kfIdx

I
^ dgJ ^ dx

J

D dU .!/ ^ �C .�1/
k! ^ dU .�/:

Moreover, for any f 2 C1.U / we compute

dU .dUf / D d.df /

D d

�
@f

@xj
dxj

�
D d

�
@f

@xj

�
^ dxj

D
@2f

@xi@xj
dxi ^ dxj

D

X
i<j

�
@2f

@xi@xj
�

@2f

@xj @xi

�
dxi ^ dxj

D 0

by Schwarz and by the previous computation it follows that dU ıdU D 0. Lastly, dU
is well-defined. Indeed, by proposition F.199 it is enough to check that if we have
two charts .U; '/ and .V;  / with U \ V ¤ ¿, then the graded derivation dU\V
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on�.U \ V / is the same with respect to both coordinates for smooth functions and
exact 1-forms. But this is immediate by the previous computation. �

Proposition F.201. LetM and N be smooth manifolds and F 2 C1.M;N /. Then
for ! 2 �.M/ we have that

F �.d!/ D d.F �!/:

Proof. First we prove this for functions f 2 C1.N /. Let X 2 X.M/. Then we
compute

F �.df /.X/ D df
�
DF.X/

�
D DF.X/f

D X.f ı F /

D d.f ı F /.X/

D d.F �f /.X/:

Thus in a chart .U; '/ for ! D fIdxI we compute

F �.d!/ D F �
�
dfI ^ dx

I
�

D F �.dfI / ^ F
�
�
dxI

�
D d.F �fI / ^ F

�
�
dxI

�
D d

�
.F �fI /F

�
�
dxI

��
D d.F �!/:

Proposition F.202. LetM be a smooth manifold and X 2 X.M/. Then

LX ı d D d ıLX :

Proof. By lemma F.197, LX ı d � d ıLX is a graded derivation of degree 1. Thus
by proposition F.199 it is enough to show that LX ıd �d ıLX vanishes for smooth
functions and exact 1-forms. Note that by the contraction lemma F.185, we have that

LX .!/.Y / D X
�
!.Y /

�
� !

�
ŒX; Y �

�
for all Y 2 X.M/. Hence�

LX ı d � d ıLX
�
f .Y / D LX .df /.Y / � d.Xf /.Y /

D X
�
df .Y /

�
� !

�
ŒX; Y �

�
� d.Xf /.Y /

D XYf � !
�
ŒX; Y �

�
� YXf

D 0:

for all f 2 C1.M/. Consider an exact form df . Then by the previous computation
we have that
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LX ı d � d ıLX

�
df D �d

�
LX .df /

�
D �.d ı d/

�
LXf

�
D 0:

Proposition F.203 (Interior Multiplication). Let M be a smooth manifold and
x 2 X.M/. Then there exists a unique graded derivation iX W �M ! �M of degree
�1 such that

iX .f / D 0 and iX .!/ D !.X/

for all smooth functions f and 1-forms !.

Proof. Let U 2 O.M/, k 2 N and X1; : : : ; Xk 2 X.U /. For any ! 2 �kC1.U /
define

iX .!/
�
X1; : : : ; Xk

�
WD !.X;X1; : : : ; Xk/: (F.9)

Proposition F.204 (Cartan’s Magic Formula). Let M be a smooth manifold and
X 2 X.M/. Then

LX D d ı iX C iX ı d:

Proof. By lemma F.197, d ı iX C iX ı d is a graded derivation of degree 0. Hence
by proposition F.199, it is enough to check that d ı iX C iX ı d and LX coincide on
smooth functions and exact 1-forms. Let f 2 C1.M/. Then we compute�

d ı iX C iX ı d
�
f D iX .df / D df .X/ D Xf D LX :

Moreover �
d ı iX C iX ı d

�
df D d

�
iX .df /

�
D d

�
df .X/

�
D d.Xf /

which coincides with

LX .df / D d
�
LXf

�
D d.Xf /

by proposition F.202. �

Finally, usingCartan’smagic formula ??, we can give a coordinate free description
of the exterior differential.

Proposition F.205. LetM be a smooth manifold, k 2 N and ! 2 �k.M/. Then for
all X0; : : : ; Xk 2 X.M/ we have

d!.X0; : : : ; Xk/ D

kX
iD0

.�1/iXi
�
!.X0; : : : ; yXi ; : : : ; Xk/

�
C

X
i<j

.�1/iCj!
�
ŒXi ; Xj �; X0; : : : ; yXi ; : : : ; yXj ; : : : ; Xk

�
:

Exercise F.206. Prove proposition F.205.
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F.12 Orientability and Orientations

Definition F.207 (Orientation). Let V be a real vector space. An orientation of V
is defined to be a choice of one of the two connected components ofƒdimV .V /nf0g.

Definition F.208 (Determinant Functor). Define a functor

det W Vect�1 ! Vect1

on objects by detV WD ƒdimV V and on morphisms L W V ! W as follows: If
dimV D dimW D n, then set

detL.v1 ^ � � � ^ vn/ WD Lv1 ^ � � � ^ Lvn

and to be the zero-morphism otherwise.

Proposition F.209. Let � W E ! M be a vector bundle of rank k, k � 1. The
following conditions are equivalent:

(a) There exists a nowhere-vanishing section � 2 �.detE�/.
(b) The structure group of E can be reduced to GLC.k/.
(c) The bundle detE� !M is trivial.

Proof. That (i),(iii) is trivial. To prove (i))(ii), suppose that � 2 �.detE�/ is
nowhere-vanishing. Suppose .U˛; '˛/˛2A is a vector bundle chart such that each
U˛ is connected. Moreover, let .e˛1 ; : : : ; e

˛
k
/˛2A be a family of corresponding local

frames. Since � is nowhere-vanishing, the function

�
�
e˛1 ; : : : ; e

˛
k

�
is either positive or negative. If it is negative, substitute the local frame .e˛1 ; : : : ; e

˛
k
/

with the local frame .�e˛1 ; : : : ; e
˛
k
/ and also the corresponding vector bundle chart.

Thus �
�
e˛1 ; : : : ; e

˛
k

�
is positive for all ˛ 2 A. Suppose now thatU˛\Uˇ ¤ ¿. Then

the transition matrix between the bases
�
e˛i .x/

�
and

�
e
ˇ
i .x/

�
ofEx for x 2 U˛ \Uˇ

is given by �˛ˇ .x/. But

�
�
e
ˇ
1 ; : : : ; e

ˇ

k

�
.x/ D

�
det �˛ˇ .x/

�
�
�
e˛1 ; : : : ; e

˛
k

�
.x/

and so det �˛ˇ .x/.
Conversly, to prove (ii),(i), suppose that .U˛; '˛/ is a vector bundle atlas which
is GLC.k/-compatible. Let . ˛/˛2A be a partition of unity subordinate to the open
cover .U˛/˛2A. Define � 2 �.detE�/ by

� WD
X
˛2A

 ˛"
1
˛ ^ � � � ^ "

k
˛;

where
�
"i
�
is the dual frame corresponding to the local frame

�
ei
�
. Then � is

nowhere-vanishing. Indeed, if x 2 M , then x 2 Uˇ for some ˇ 2 A and we
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compute
�x
�
e
ˇ
1 .x/; : : : ; e

ˇ

k
.x/
�
D

X
˛2A

 ˛.x/ det �˛ˇ .x/ > 0:

�

Definition F.210 (Orientability). A vector bundle � W E ! M is said to be ori-
entable, iff one of the conditions of proposition F.209 is satisfied. A smooth manifold
M is said to be orientable, iff the tangent bundle � W TM !M is orientable.

Definition F.211 (Volume Form). Let M n be a smooth manifold. A volume form
onM is defined to be a nowhere-vanishing n-form.

Corollary F.212 (Orientability of Manifolds). LetM be a smooth manifold. Then
the following conditions are equivalent:

(a) M admits a volume form.
(b) There exists a smooth atlas .U˛; '˛/˛2A onM such that when U˛ \ Uˇ ¤ ¿

detD.'˛ ı '�1ˇ /
�
'ˇ .x/

�
> 0

holds for all x 2 U˛ \ Uˇ .
(c) The bundle detT �M !M is trivial.

Example F.213 (Lie Groups are Orientable). Let G be a Lie group. Then from
problem F.257 we know that TG Š G � g in Man. In particular, TG is trivial and
so is det.T �G/. Indeed, we have that

det.T �G/ Š det.G � g�/ Š G � det.g�/:

Hence G is orientable.

Example F.214 (Spheres are Orientable). Let n � 1 and ! WD dx0 ^ � � � ^ dxn

be the standard volume form on RnC1. Moreover, define X 2 X.RnC1 n f0g/ by
X jx WD x. View Sn � RnC1 n f0g. Then

��.iX!/ 2 �
n.Sn/

is a volume form. Indeed, let v1; : : : ; vn 2 TxSn be a basis. Then D� idenifies vi
with a vector in x?. But then .x; v1; : : : ; vn/ is a basis for RnC1 and we have that

�X!.v1; : : : ; vn/ D !.x; v1; : : : ; vn/ ¤ 0:

Definition F.215 (Positively Oriented). Let � W E ! M be an orientable vector
bundle of rank k and denote by � 2 �.detE�/ a nowhere vanishing section. A basis
.v1; : : : ; vk/ of Ex , x 2M , is said to be positively oriented, iff �.v1; : : : ; vk/ > 0.

Definition F.216 (Orientation). Let � W E ! M be an orientable vector bundle.
An orientation ofE is defined to be an equivalence class Œ�� of a nowhere vanishing
section � 2 �.detE�/ under the equivalence relation
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� � � 0 W, 9f 2 C1
�
M;RC

�
W � D f� 0

on the set of all nowhere vanishing sections of the determinant bundle detE�. If an
orientation Œ�� is fixed, we call � W E !M and oriented vector bundle.

Remark F.217. Let � W E ! M be an oriented vector bundle with orientation Œ��.
IfM is connected, there are exactly two equivalence classes, Œ�� and Œ���.
Exercise F.218. Prove the statement made in remark F.217.

F.13 Manifolds with Boundary

Definition F.219 (Half-Space). Let V be a vector space and � 2 V �. Define half-
spaces associated to � by

V C� WD
˚
v 2 V W �.v/ � 0

	
and V �� WD

˚
v 2 V W �.v/ � 0

	
:

Definition F.220 (StandardHalf-Spaces).Let n 2 N. Then the half-spaces defined
by

RnC WD
�
Rn
�C
�1

and Rn� WD
�
Rn
��
�1

are called the standard half-spaces.

Definition F.221 (Topological Manifold with Boundary). Let n 2 N. A topolog-
ical space M is said to be a topological manifold with boundary of dimension n,
iff

(i) M is locally Euclidean of dimension nwith boundary, that is, for every x 2M
there exist an open subset U �M , � 2

�
Rn
�� and a function ' W U ! �

Rn
�˙
�

such that '.U / �
�
Rn
�˙
�
is open and ' W U ! '.U / is a homeomorphism.

Every such pair .U; '/ is called a chart onM about x.
(ii) M is Hausdorff and has at most countably many connected components.
(iii) M is paracompact.

Essentially, a smooth manifold with boundary is the same as an ordinary smooth
manifold, but the each chart in the atlas is allowed to have its image in an open subset
of some half-space.

Definition F.222 (Smooth Atlas). A smooth atlas for a topological manifold with
boundaryMn is a collection .U˛; '˛/˛2A of charts onM such that

(i) .U˛/˛2A is an open cover forM .
(ii) For all ˛; ˇ 2 A such that U˛ \ Uˇ ¤ ¿, the function

'˛ ı '
�1
ˇ W 'ˇ .U˛ \ Uˇ /! Rn

is smooth in the sense that there exists a smooth extension. The function
'˛ ı '

�1
ˇ

is called a transition function.



166 F Review of Differential Topology

Proposition F.223. Let M n be a smooth manifold with boundary. Then intM is a
smooth manifold without boundary of dimension n and @M is a smooth manifold
without boundary of dimension n � 1.

Lemma F.224. Let � 2
�
Rn
�� such that � ¤ 0. Then�

Rn
�˙
�
Š ker � �R˙

as manifolds with boundaries.

Remark F.225. By means of lemma F.224 we may assume always that a smooth
manifold with boundaryM n admits an atlas where all the charts have image in some
open subset of Rn�.

Definition F.226 (Outward Pointing). LetM be a smooth manifold with boundary.
A tangent vector v 2 TxM for x 2 @M is said to be an outward pointing vector, iff

dx1jx.v/ > 0

for some chart
�
U; .xi /

�
about x. Moreover, a section X of TM j@M ! @M is said

to be an outward-pointing vector field, iff Xx is an outward pointing vector for all
x 2 @M .

Lemma F.227. Let M be a smooth manifold with nonempty boundary. Then there
exists an outward pointing vector field.

Proof. Let U˛; .xi˛/˛2A be an atlas for M and . ˛/˛2A a partition of unity subor-
dinate to the atlas. Then

X WD
X
˛2A

 ˛
@

@x1˛

is an outward-pointing vector field. Indeed, we have that

dx1˛jx.Xx/ D
X
˛2A

 ˛.x/dx
1
˛jx

�
@

@x1˛

�
D

X
˛2A

 ˛.x/ D 1

for all x 2 @M . �
Definition F.228 (Induced Orientation). Let M be a smooth manifold with
nonempty boundary and ! a volume form on M . Then the induced orientation
on @M is defined to be the equivalence class ŒiX .!/�, where X is an outward
pointing vector field.

F.14 Integration on Manifolds

Definition F.229. Let M and N be smooth manifolds and A � M a subset. A
map F W A ! N is said to be smooth on A, iff for every x 2 A there exists a
neighbourhood U of x and a map zF 2 C1.U;N /, such that zF jU\A D F .
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Definition F.230 (Singular Cube). Let k 2 N and M be a smooth manifold. A
singular k-cube inM is defined to be a morphism � 2 C1.I k ;M/.

Definition F.231. Let k 2 N, ! 2 �k.M/ and � D �i�i be a singular k-chain in
M . Then ��i ! D fidx

1 ^ � � � ^ dxk for some fi 2 C1.I k/. Define the integral of
! over � to beZ

�

! WD �i
Z
Ik
fi and

Z
�

f WD �if
�
�i .0/

�
if k � 1 and k D 0, respectively.

Definition F.232 (Front and Back Face). Let � be a singular k-cube. For 1 � i � k
define the i -th front face of � , to be the singular k � 1-cube Fi� defined by

Fi�
�
x1; : : : ; xi�1; 0; xiC1; : : : ; xk

�
and the i -th back face of � , to be the singular k � 1-cube Bi� defined by

Bi�
�
x1; : : : ; xi�1; 1; xiC1; : : : ; xk

�
:

F2�

F1� B1�

B2�

Fig. F.2: Face maps for k D 2 and � the inclusion I 2 ,! R2.

Definition F.233 (Boundary). Let � be a singular k-cube, k � 1. Define the bound-
ary of � to be the singular k-chain @� defined by

@� WD

kX
iD1

.�1/k
�
Fi� � Bi�

�
:

Moreover, define the boundary of a singular 0-cube to be 1.
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F2�

�F1� B1�

�B2�

Fig. F.3: Boundary of the inclusion I 2 ,! R2.

Proposition F.234 (Stoke’sTheorem,LocalVersion).LetM be a smoothmanifold,
� 2 Ck.M/ and ! 2 �k�1.M/. ThenZ

�

d! D

Z
@�

!:

Definition F.235 (Orientation-Preserving). Let
�
M n; Œ!�

�
and

�
N n; Œ��

�
be two

oriented manifolds and F 2 C1.M;N / a diffeomorphism. Then F is said to be
orientation-preserving, iff f > 0 where f 2 C1.M/ is defined by F �� D f!.

Definition F.236. LetM n be an oriented manifold. A singular n-cube is said to be
orientation-preserving, iff it admits an orientation-preserving extension which is
also an embedding.

Definition F.237 (Special Singular Cube). LetM n be an oriented smooth manifold
with boundary. An orientation preserving singular n-cube � is said to be special, iff
either im � � intM or @M \ im � D im.F1�/.

Definition F.238. LetM n be an oriented manifold with boundary and ! 2 �nc .M/.
Then define Z

M

! WD
X
˛2A

Z
�˛

 ˛!:

where . ˛/˛2A is a partition of unity subordinate to a cover .U˛/˛2A with the
property that eachU˛ is conatined in the interior of the image of a special orientation
preserving singular n-cube �˛ for all ˛ 2 A.

Theorem F.239 (Stoke’s Theorem, global Version). Let M n be an oriented
smooth manifold with boundary and endow @M with the induced orientation. If
! 2 �n�1c .M/, then
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M

d! D

Z
@M

!: (F.10)

F.15 De Rham Cohomology

Definition F.240 (Closed and Exact Form). Let M be a smooth manifold, U 2
O.M/ non-empty and k 2 N, k � 1. A form ! 2 �k.U / is said to be closed, iff
d! D 0, and exact, iff there exists � 2 �k�1.U / with ! D d�.

Definition F.241 (The de Rham Chain Complex). The contravariant functor

C dR
� W Man! Ch�0;fin.Vect/

defined on objectsM 2 Man by

C kdR.M/ WD �k.M/ and dk WD d W �k.M/! �kC1.M/

and on morphisms F 2 C1.M;N / by

C �dR.F / WD F
�

is called the de Rham chain complex functor.

Using Stoke’s theorem F.239 one can show the homotopy invariance of the de
Rham cohomology.

Proposition F.242. LetM be a smooth manifold. For t 2 I define �t WM !M � I

by �t .x/ WD .x; t/. Then there is a map

h W �k.M � I /! �k�1.M/

such that
h.d!/C d

�
h.!/

�
D ��1.!/ � �

�
0.!/:

Proof. Define h W �k.M � I /! �k�1.M/ by

h.!/x WD

Z 1

0

��t
�
iX!.x;t/

�
dt

where X.x;t/ WD
�
0; @t jt

�
. �

Theorem F.243 (The Poincaré Lemma). Let M be a smooth manifold and ! 2
�k.M/ be closed. Then for every x 2M there exists a neighbourhood U of x such
that !jU is exact.



170 F Review of Differential Topology

F.16 Principal Bundles

Definition F.244 (Principal Bundle). A fibre bundle � W P ! M with fibre a Lie
group G is said to be a principal G -bundle, iff

(i) There exists a fibre-preserving free right action of G on P .
(ii) There exists a bundle atlas such that each bundle chart '˛ W ��1.U˛/! G is

G -equivariant, that is, we have that

'˛.p � g/ D '˛.p/g

for all p 2 ��1.U˛/ and g 2 G.

Proposition F.245. The structure group of a principal G-bundle � W P !M is G,
acting via left translations.

A particular interesting example of a principal bundle is the following.

Proposition F.246 (The Frame Bundle). Let E ! M be a vector bundle of rank
k. For all x 2M define

Fr.Ex/ WD fisomorphisms Rk ! Exg :

Then
� W Fr.E/ WD

a
x2M

Fr.Ex/!M

is a principal GL.k/-bundle. This bundle is called the frame bundle.

Proof. Let .U˛; '˛/˛2A be a vector bundle atlas for E ! M . For every ˛ 2 A
define z'˛ W ��1.U˛/! GL.k/ by

z'˛.x; A/ WD '˛jEx ı A:

Then
z�˛ˇ .x/.A/ D z'˛jFr.Ex/ ı z'ˇ jFr.Ex/.A/ D �˛ˇ .x/ ı A

for all U˛ \Uˇ ¤ ¿. Hence Fr.E/ can be given the structure of a smooth manifold.
Define a right action

Fr.E/ � GL.k/! Fr.E/

by �
.x; A/; T

�
7! .x; A ı T /:

This action is obviously free and we have that

z'˛
�
.x; A/ � T

�
D z'˛.x; AıT / D '˛jEx ı.AıT / D .'˛jEx ıA/ıT D z'˛.x; A/ıT:

To each principal bundle one can associate a fibre bundle.
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Definition F.247. Let � W P ! M be a principal G-bundle and suppose that there
is an effective action � W G � F ! F on some smooth manifold F . Define an
equivalence relation � on P � F via

.p � g; v/ �
�
p; �.g; v/

�
for all p 2 P , g 2 G and v 2 F . Denote the quotient space by P �.G;�/ F .

Theorem F.248. Let � W P !M be a principal G-bundle nd suppose that there is
an action � W G � F ! F on some smooth manifold F . Then:

(a) z� W P �.G;�/ F ! M is a fibre bundle with fibre F and structure group G,
where

z�Œp; v� WD �.p/:

(b) P is the principal bundle associated to P �.G;�/ F .

Lemma F.249. Let � W P ! M be a principal G-bundle. Then G acts transitively
on the fibres.

Proof. Let x 2 M and p; q 2 Px . Thus there exists '˛ W ��1.U˛/ ! M such
that p; q 2 ��1.U˛/. Suppose that there exists g 2 G such that p D q � g. Then
equivariance yields

'˛.p/ D '˛.q � g/ D '˛.q/g

which implies g D '˛.q/�1'˛.p/ 2 G. �

Up to now we have never used the fact that the action is free. The next proposition
however makes use of it.

Proposition F.250. Let� W P !M and� 0 W P 0 !M 0 be two principalG-bundles.
Suppose˚ W P ! P 0 is a principal bundle morphism along a diffeomorphism. Then
˚ is a diffeomorphism.

Proposition F.251. Let � W P ! M be a principal G-bundle. Then � admits a
section if and only if P is trivial.

Proof. Suppose P is trivial, that is P ŠM �G. For any g 2 G, � WM !M �G

defined by �.x/ WD .x; g/ is a section.
Conversly, suppose that � admits a section. Then for each p 2 P , p and �

�
�.p/

�
belong to the same fibre. Since the action of G on the fibres is transitive by lemma
F.249, we can define a map ' W P ! G such that

p D �
�
�.p/

�
� '.p/:

Then .�; '/ is a principalG-bundlemorphism along idM , and thus a diffeomorphism
by proposition F.251. �
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F.17 Connections on Principal Bundles

Definition F.252 (Bundle Valued Differential Form). Let � W E !M be a vector
bundle. A bundle-valued differential k-form is defined to be a section of the bundle

ƒk.T �M/˝E !M:

The vector space of all such sections is denoted by �k.M IE/

Thus a bundle-valued differential k-form ! 2 �k.M IE/ is nothing more than
an alternating map

!x W TxM � � � � � TxMœ
k

! Ex

for all x 2M .

Proposition F.253 (The Bundle-Valued Differential Form Criterion). There is a
naturalC1.M/-module isomorphismbetween�k.M IE/andalternatingC1.M/-
multilinear maps

X.M/ � � � � � X.M/�
k

! �.E/:

Problems

F.254. Aim of this exercise is to show that S1 is a Lie group under complex multi-
plication.

(a) We can endow S1 with a different smooth atlas as follows: Construct two charts
with range a bounded interval in R2. Those are called angle coordinates.

(b) Show that complex multiplication in these coordinates is smooth.
(c) Show that complex inversion in these coordinates is smooth.

F.255. Prove proposition F.40.

F.256. LetM be a smooth manifold and X; Y 2 X.M/. Show that

iŒX;Y � D LX ı iY � iY ıLX :

F.257.

(a) Let M be a smooth manifold and suppose that there exist vector fields
X1; : : : ; Xn 2 X.M/ such that .X1jx ; : : : ; Xnjx/ is a basis for TxM for ev-
ery x 2M . Prove that the tangent bundle TM is trivial.

(b) Let G be a Lie group. Prove that TG Š G � g in Man.



Appendix G
Review of Differential Geometry

An excellent introduction to the subject is given in [7].

G.1 Pseudo-Riemannian Manifolds

Definition G.1 (Pseudo-Riemannian Metric). Let M be a smooth manifold. A
pseudo-Riemannian metric onM is defined to be a symmetric covariant 2-tensor
field g 2 T 0;2.M/ which is nondegenerate at each point x 2 M , that is, we have
gx.v; w/ D 0 for all w 2 TxM and some v 2 TxM implies v D 0.

Definition G.2 (Pseudo-RiemannianManifold).APseudo-Riemannianmanifold
is defined to be a tuple .M; g/ consisting of a smooth manifold M and a pseudo-
Riemannian metric g onM .

Remark G.3. The tangent-cotangent isomorphism from theorem 2.36 is also valid
for a pseudo-Riemannian manifold since the proof is only based on nondegeneracy
of a covariant 2-tensor field.

Proposition G.4 (Sylvester’s Law of Inertia). Let q be a nondegenerate symmetric
bilinear form on a finite-dimensional real vector space V . Then there exists a basis�
ˇi
�
for V � such that

q D
�
ˇ1
�2
C � � � C

�
ˇr
�2
�
�
ˇrC1

�2
� � � � �

�
ˇrCs

�2
:

Moreover, the natural numbers r and s are independent on the choice of basis. Thus
the pair .r; s/ is called the signature of q.

Example G.5 (RiemannianManifolds).Riemannianmanifolds are pseudo-Riemannian
manifolds .M; g/ such that gx has signature .r; 0/ for all x 2M .

Example G.6 (Lorentz Manifolds). Lorentz Manifolds are pseudo-Riemannian
manifolds .M; g/ such that gx has signature .1; s/ for all x 2M .

173
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G.2 Connections

Definition G.7 (Koszul Connection). Let � W E ! M be a vector bundle. A
connection in E is a map

r W X.M/ � �.E/! �.E/

written .X; Y / 7! rXY such that:

(i) r is C1.M/-linear in the first argument.
(ii) r is R-linear in the second argument.
(iii) The following Product rule holds:

rX .f Y / D f rXY C .Xf /Y

for all f 2 C1.M/.

Any section rXY is called the covariant derivative of Y in the direction X .

Definition G.8 (Connection Coefficients). Let � W E !M be a vector bundle and
r be a connection in E. Let .ei / be a local frame on U �M . Then

rei ej D �
k
ij ek

for some functions �kij 2 C
1.U /. The family

�
�kij
�
is called the connection coeffi-

cients of r with respect to the local frame .ei /.

Remark G.9. There is an immediate transformation rule for the connection coeffi-
cients of a connection. Moreover, it can be seen that the connection coefficients do
not transform like the component functions of a .1; 2/-tensor field due to an error
term coming from the product rule.

Exercise G.10. Establish the transformation law for connection coefficients with respect to another
local frame zei D Aji ej for some smooth functions Aj

i
.

Proposition G.11. Let M be a smooth manifold and r a connection in TM . Then
for every X 2 X.M/, there exists a unique tensor derivation

zrX W TM ! TM

such that
zrXf D Xf and zrXY D rXY

holds for all smooth functions f and vector fields Y .

Proof. Immediate by proposition F.187. �

Definition G.12 (Vector Field along a Curve). Let M be a smooth manifold and

 2 C1.J;M/ a path inM where J �M is an interval. A vector field along 
 is
defined to be a map V 2 C1.J; TM/ such that Vt 2 T
.t/M holds for all t 2 J .
The set of all vector fields along a curve 
 is denoted by X.
/.
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Exercise G.13. LetM be a smooth manifold and 
 2 C1.J;M/ a curve inM . Show thatX.
/
is a module over C1.J /.

Theorem G.14 (CovariantDerivative along aCurve).LetM be a smoothmanifold
and r a connection in TM . For each curve 
 2 C1.J;M/, there is a unique
operator

D
 W X.
/! X.
/;

called the covariant derivative along 
 , such that

(i) D
 is R-linear.
(ii) The following Product rule holds:

D
 .f V / D f
0V C fD
V

for all f 2 C1.J /.
(iii) If V 2 X.
/ is extendible, then for every extension zV of V we have that

D
V jt D r
 0.t/ zV :

for all t 2 J .

Proof. Let t0 2 J and suppose
�
U; .xi /

�
is a chart about 
.t0/. Then for sufficiently

t 2 J sufficiently close to t0, we may write

Vt D V
j .t/

@

@xj

ˇ̌̌̌

.t/

:

We compute

D
V jt D PV
j .t/

@

@xj

ˇ̌̌̌

.t/

C V j .t/D


�
@

@xj

� ˇ̌̌̌
t

D PV j .t/
@

@xj

ˇ̌̌̌

.t/

C V j .t/r
 0.t/

�
@

@xj

� ˇ̌̌̌
t

D PV j .t/
@

@xj

ˇ̌̌̌

.t/

C V j .t/ P
 i .t/r@=@xi j
.t/

�
@

@xj

�
D PV j .t/

@

@xj

ˇ̌̌̌

.t/

C V j .t/ P
 i .t/�kij
�

.t/

� @

@xk

ˇ̌̌̌

.t/

D

�
PV k.t/C V j .t/ P
 i .t/�kij

�

.t/

�� @

@xk

ˇ̌̌̌

.t/

:

This shows existence and uniqueness. �

Definition G.15 (Acceleration of a Curve). Let M be a smooth manifold with a
connection r in TM . The acceleration of a curve 
 2 C1.J;M/ is defined to be
the vector fieldD

 0 along 
 .
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Definition G.16 (Geodesic). Let M be a smooth manifold with connection r in
TM . A curve is said to be a geodesic, iff its acceleration vanishes.

More generally, we have the following definition.

Definition G.17 (Parallel Vector Field along a Curve). LetM be a smooth mani-
fold with connection r in TM . Suppose 
 2 C1.J;M/ is a curve. Then a vector
field V 2 X.
/ is said to be parallel along 
 , iffD
V D 0.

Theorem G.18 (Existence and Uniqueness of Parallel Transport). Let M be a
smooth manifold with connection r. Given a curve 
 2 C1.J;M/, t0 2 J and
v 2 T
.t0/M , there exists a unique parallel vector field along 
 such that Vt0 D v.

Definition G.19 (Parallel Transport). Let M be a smooth manifold and r a con-
nection onM . For every 
 2 C1.J;M/ and t0; t1 2 J define a map

P


t0t1
W T
.t0/M ! T
.t1/M

by P 
t0t1.v/ WD Vt1 , where V is the unique parallel vector field along 
 such that
Vt0 D v whose existence is guaranteed by theorem G.18.

Theorem G.20 (Parallel Transport Determines Covariant Derivative). Let M
be a smooth manifold with connection r. Suppose 
 2 C1.J;M/ is a path and
V 2 X.
/. Then for each t0 2 J we have that

D
V jt0 D lim
t1!t0

P


t1t0
Vt1 � Vt0

t1 � t0
:

Corollary G.21 (Parallel Transport Determines the Connection). Let M be a
smooth manifold with connection r. Then for allX; Y 2 X.M/ and x 2M we have
that

rXY jx D lim
h!0

P



h0
Y
.h/ � Yx

h

where 
 2 C1.J;M/ is a curve such that 
.0/ D x and 
 0.0/ D Xx .

Theorem G.22 (Fundamental Theorem of Riemannian Geometry). Let .M; g/
be a pseudo-Riemannian manifold. Then there exists a unique connection r onM
with:

(i) Compatibility: rg D 0.
(ii) Torsion Free: rXY � rYX � ŒX; Y � D 0 for all X; Y 2 X.M/.

This connection is called the Levi-Civita connection. Explicitely, the connection
coefficients in any chart are given by

�kij D
1

2
gkl

�
@igjl C @jgil � @lgij

�
: (G.1)

These connection coefficients are called the Christoffel symbols.
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Proposition G.23. Let .M; g/ be a pseudo-Riemannian metric. Then

LXg.Y;Z/ D g
�
rYX;Z

�
C g

�
Y;rZX

�
for every X; Y;Z 2 X.M/ where r denotes the Levi-Civita connection onM .

Proof. Since rX is a tensor derivation, compatibility implies

0 D .rXg/.Y;Z/ D rXg.Y;Z/ � g
�
rXY;Z

�
� g

�
Y;rXZ

�
:

Moreover, torsion-freeness implies

ŒX; Y � D rXY � rYX and ŒX;Z� D rXZ � rZX:

Thus we compute

.LXg/.Y;Z/ DLXg.Y;Z/ � g
�
LXY;Z

�
� g

�
Y;LXZ

�
DX

�
g.Y;Z/

�
� g

�
ŒX; Y �; Z

�
� g

�
Y; ŒX;Z�

�
DrXg.Y;Z/ � g

�
ŒX; Y �; Z

�
� g

�
Y; ŒX;Z�

�
Dg

�
rXY;Z

�
C g

�
Y;rXZ

�
� g

�
ŒX; Y �; Z

�
� g

�
Y; ŒX;Z�

�
Dg

�
rXY;Z

�
C g

�
Y;rXZ

�
� g

�
rXY;Z

�
C g

�
rYX;Z

�
� g

�
Y;rXZ

�
C g

�
Y;rZX

�
Dg

�
rYX;Z

�
C g

�
Y;rZX

�
:

�

Definition G.24 (The Exponential Map). Let .M; g/ be a pseudo-Riemannian
manifold. Define E � TM by

E WD fv 2 TM W 
v is defined on an interval containing I g

and exp W E !M by
exp v WD 
v.1/:

This map is called the exponential map.

Proposition G.25 (Properties of the Exponential Map). Let .M; g/ be a pseudo-
Riemannian manifold.

(a) E � TM is open and contains the image of the zero section.
(b) For each v 2 TM , the geodesic 
v is given by


v.t/ D exp.tv/

for all t such that either side is defined.
(c) The exponential map is smooth.
(d) For each x 2M ,D.expx/0 D idTxM .
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Definition G.26 (Normal Coordinates). Let .M n; g/ be a pseudo-Riemannian
manifold. Let x 2 M . Then there exists a star-shaped neighbourhood V of the
origin in TxM and a neighbourhood U of x in M such that expx W V ! U is a
diffeomorphism. Let .bi / be an orthonormal basis of TxM with coordinate isomor-
phism B . Then

' WD B�1 ı
�
expx jV

��1
W U ! Rn

is called a normal coordinate chart about x.

Proposition G.27 (Properties of Normal Coordinates). Let .M n; g/ be a pseudo-
Riemannianmanifold and let

�
U; .xi /

�
be any normal coordinate chart aboutx 2M .

(a) The components of the metric are given by gij D ˙ıij .
(b) For every v D vi @

@xi
jx , we have that


v.t/ D
�
tv1; : : : ; tvn

�
:

(c) The Christoffel symbols vanish at x.
(d) All first partial derivatives of gij vanish at x.
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