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Preface

These notes are the product of two semester projects done at ETH Zurich in the
academic year 2018/2019 under the supervision of Prof. Dr. Ana Cannas da Silva.
The aim of these notes is to give a thoughtful introduction to the mathematical
methods used in the realm of classical mechanics and their strong connection to
differential topology and differential geometry, especially symplectic geometry.1will
roughly follow the first chapter of the book Quantum Mechanics for Mathematicians
by Leon A. Takhtajan [19], which serves as an introduction to classical mechanics.
As the title already suggests, this is not a treatment of the physical part of classical
mechanics, but rather a mathematical one. Finally, I make use of the book Lectures
on Symplectic Geometry by Ana Cannas da Silva [15].
Happy reading!

Winterthur, Yannis Bdhni
September 2018
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Chapter 1
Lagrangian Mechanics

Classical mechanics models systems of finitely many interacting particles, that is,
material bodies whose dimensions may be neglected by describing their motion.

We begin by giving an example of an variational problem coming from the realm
of partial differential equations to motivate the methods used later in this chapter.
They are guided by a variational principle, which is of equal importance in both
physics and mathematics.

Then we introduce the basic notions of Lagrangian mechanics, that are Lagrangian
systems and the action functional associated to them. We derive the equations of
motion of general Lagrangian systems, the Euler-Lagrange equations.

Next we introduce the dual notion of a Lagrangian function, that is the associated
Hamiltonian function which is obtained via a Legendre transformation.

Then we introduce the most important theorem in Lagrangian mechanics con-
cerning symmetries: Noether’s theorem.

We conclude by giving a criterion for determining whether a certain Legendre
transform is a diffeomorphism or not, since this is crucial for the dualisation process.

1.1 Introduction

Classical mechanics deals with ordinary differential equations originating from ex-
tremals of functionals, that is functions defined on an infinite-dimensional function
space. The study of such extremality properties of functionals is known as the cal-
culus of variations. To illustrate this fundamental principle, let us consider the
variational formulation of second order elliptic operators in divergence form based
on [18, 167-168].

For convention, unless explicietly stated otherwise, we will assume that all manifolds
are smooth, that is of class C *°, finite-dimensional, Hausdorff and paracompact with
at most countably many connected components. Moreover, we use the Einstein sum-
mation convention.

Letn € N,n > 1, and €< R” such that Q is a smooth manifold with boundary.



2 1 Lagrangian Mechanics

Moreover, let HO1 (£2) denote the Sobolev space WOI’Z(Q) with inner product

(u.v)g1(q) 2/ uv—i—/ VuVu.
0 Q Q

Suppose a’/ € C*®(Q) symmetric, f € C*®(Q) and consider the second order
homogenous Dirichlet problem

_i (al]a_u) :f in Q’

ax/ axt
u=20 on 092,

(1.1)

Suppose u € C(Q) solves (1.1). Then integration by parts (see [6, 436]) yields
ad ij Ou
foro=faw (5)
= —/ div(X)v
Q
| ex.v
Q
[
o  ox! dox/J

forany v € C°(2), where X := (aij ic—“i)j. Thus we say thatu € HJ(Q) is a weak
solution of (1.1) iff

Yv e C(Q): /aija—u 0v :[ fu.
Q Q

Ot Q)

If (a');; is uniformly elliptic, i.e. there exists A > 0 such that
Vx € QVE e R": a” (x)&E > Mg,

then (1.1) admits a unique weak solution u € Hg () (in fact u € C*°(2) using
regularity theory, for more details see [18, 175]). Indeed, observe that

()a: Hy(Q) x Hy () - R

defined by

(u,v)q 1= / a’ ou 8—U (1.2)
Q

oxt 0x/

is an inner product on H(} (£2) with induced norm equivalent to the standard one on
HJ () due to Poincaré’s inequality [18, 107]. Applying the Riesz Representation
theorem [18, 49-50] yields the result. Moreover, this solution can be characterized
by a variational principle, i.e. if we define the energy functional E HO1 () >R
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1 2
E@):=3lvli= [ fv.
Q

forany v € H(}(Q), where||-||, denotes the norm induced by the inner product (1.2),
then u € HO1 (R2) solves (1.1) if and only if

E(u)= inf E(®). (1.3)
veHL(Q)

Indeed, suppose u € H( (2) is a solution of (1.1). Letv € Hy (). Thenu = v+w
forw :=u —v € Hy () and we compute

EWw)=E@u+ w)
_ 1 2 1 2
= Sl + e+ 510l = [ w
= B + 5wl
> E(u)

with equality if and only if u = v a.e. Conversly, suppose the infimum is attained by
some u € Hj (S2). Thus by elementary calculus

oo d
T dt

E(u+1tv) = (u,v)a—/ fu (1.4)
0 Q

t=

forall v € HJ (Q). _
Suppose now that u € C*°(Q2) with u|3q = 0 solves the variational formulation
(1.3). Then again integration by parts yields

(u,v)a—fgfv =—/Qdiv(X)v—fov =/Q(—% (aij%)—f)v

forall v € C2°(Q) and where X := (a%/ a—")] Hence (1.4) implies

ax?

Vv e CX(Q): /5‘2(_% (aij%)—f)v =0.

We might expect that this implies

0 (o f
dx/ ox?
That this is indeed the case, is guaranteed by a foundational result in the calculus
of variations (therefore the name).

Proposition 1.1 (Fundamental Lemma of Calculus of Variations [18, 40]). Ler
Q CR"openand f € LL (Q). If

loc
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voecr@: [ fo=o
Q

then f =0 a.e.

Thus we recovered a second order partial differential equation from the variational
formulation. In fact, this is exactly the boundary value problem (1.1) from the
beginning of our exposition. This technique, and in particular the fundamental lemma
of calculus of variations 1.1 will play an important role in our treatment of classical
mechanics. However, since we are concerned with smooth manifolds only, we use a
version of the fundamental lemma of calculus of variations 1.1, which is fairly easy
to prove and hence really deserves the terminology “lemma”.

Lemma 1.2 (Fundamental Lemma of Calculus of Variations, Smooth Version).
Let Q C R" openand [ € C*(Q). If

voecr@: [ fo=o

then f = 0.

Proof. Towards a contradiction, assume that f # 0 on . Thus there exists x¢ € €2,
such that f(x¢) # 0. Without loss of generality, we may assume that f(xg) >
0, since otherwise, consider — f instead of f. The smoothness of f implies the
continuity of f on Q. Thus there exists § > 0, such that f(x) € By(x,)/2 (f(xo))
holds for all x € Bg(xgo) or equivalently, f(x) > f(x¢)/2 > 0 for all x € Bs(xp).
By lemma 2.22 [6, 42], there exists a smooth bump function ¢ supported in Bg(x¢)
and ¢ = 1 on B /2(X0). In particular, ¢ € CZ°(2). Therefore we have

1
o= [ o= [ foz [  fos3r60Byacol=0
Q B (xo) Bs/2(x0)

which is a contradiction. O

Exercise 1.3. ' Let 2 CC R”, 2 < p < 00 and define B := {v € C®(Q) : v|sq = 0}.
Moreover, define E, : 8 — R by E,(v) := [ |Vv|”. Derive the partial differential equation
satisfied by minimizers ¥ € B of the variational problem E (1) = infyc g E (v).

1.2 Lagrangian Systems and the Principle of Least Action

Mechanical systems, for example a pendulum, are modelled using the language
of differential geometry. Thus it is necessary to introduce the relevant physical
counterparts.

! This is exercise 1.2.(b) from exercise sheet 1 of the course Functional Analysis II taught by Prof.
Dr. A. Carlotto at ETHZ in the spring of 2018, which can be found here.


https://metaphor.ethz.ch/x/2018/fs/401-3462-00L/ex/Problems01-FAII.pdf
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Definition 1.4 (Configuration Space). A configuration space is defined to be a
finite-dimensional smooth manifold.

Definition 1.5 (Motion). A motion in a configuration space M is defined to be a
path y € C*°(J, M), where J C R is an interval.

Definition 1.6 (State). A state of the configuration space is defined to be an element
of the tangent bundle of the configuration space, called the state space.

One should think of a state (x, v) of a configuration space as follows: x gives the
position of the mechanical system and v its velocity at this position. The fundamental
principle governing motions of mechanical systems is the following.

Axiom 1.7 (Newton-Laplace Determinacy Principle). A motion in a configuration
space is completely determined by a state at some instant of time.

The Newton-Laplace determinacy principle 1.7 motivates our main definition of
this chapter.

Definition 1.8 (Lagrangian System). A Lagrangian system is defined to be a tuple
(M, L) consisting of a smooth manifold M and a function L € C*®°(TM x R),
called a Lagrangian function.

Example 1.9 (Lagrangian System). Let 7 € C*°(TM xR)and V € C®°(M xR).
Define L € C*®°(TM xR) by L := T — V. In this situation, T is called the kinetic
energy and V is called the potential energy.

Definition 1.10 (Path Space). Let M be a smooth manifold. For x¢, x; € M and
to, 1 € Rwithty < t1, define the path space of M connecting (x¢,t9) and (x1,1t1)
to be the set

PM)0 = {y € C®([to.1]. M) : y(ty) = xo and y(t1) = x1}.  (L.5)
Remark 1.11. For the sake of simplicity, we will just use the terminology path
space for P (M )X and simply write (M ). However, we implicitely assume the

X1,
conditions of definition 1.10.

Definition 1.12 (Variation). Let (M) be a path space and y € P (M). A variation
of y is defined to be a morphism I" € C*® ([to, t1] X [—€o, 0] , M) for some g > 0
and such that

o ['(t,0) =y forall t € [t1, to].
o [(tg,€) = x¢ for all & € [—ey, &].
o ['(t1,€) = xy forall € € [—¢&g, g¢].

Remark 1.13. If " is a variation of y € P (M), we write y.(-) := I'(-, &) for all
€ € [—&p, €9]. With this notation, y, € (M) for all ¢ € [—e&y, &¢].
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Example 1.14 (Perturbation of a Path along a Single Direction). Let M” be a
smooth manifold, (U, ¢) a chart on M and suppose that y is a path in U. With
respect to this chart, we can write the coordinate representation of y as

v = '®.....y" 1)
forany ¢ € [fo,11]. Let f € C2° (to, t1). Consider the family
I" :to. 1] x [—g0,80] > M
defined by

I@te)= oo™ ) (' @)....Y' () +ef().....¥" (1))

where ¢ : U — M denotes inclusion and gy > 0 is to be determined. Suppose
|| floo 7 O. By exercise 1.15, there exists § > 0 such that

Us := {x € R” : dist (x, y([to,tl])) < 5} CoU).
Choose g9 > 0 such that 0 < g9 < /|| f || - Then in coordinates

dist (ye (1), y([t0. 11])) < |7s(®) — v Zlelll flloo < €0ll flloo <8

for all ¢ € [tg, t1]. Hence y.(t) € Us and thus y.(t) € ¢(U). Therefore, I" is indeed
well-defined. Moreover, it is easy to show that the properties of definition 1.12 holds,
therefore, I" is a variation of y. In fact, this example shows, that any path y contained
in a single chart admits infinitely many variations. An example of such a variation is
shown in figure 1.1.

Exercise 1.15. Let (X, d) be a metric space and A € U C X where U is openin X and A4 is
closed in X . Then there exists § > 0 such that

Us :={x € X :dist(x,A) <8} C U.

Definition 1.16 (Action Functional). Let (M, L) be a Lagrangian system and /> (M)
be a path space. The morphism S : (M) — R defined by

3}
s i= [ L0 70.0)d
o
is called the action functional associated to the Lagrangian system (M, L).
Motions of Lagrangian systems are characterized by an axiom.

Axiom 1.17 (Hamilton’s Principle of Least Action). Let (M, L) be a Lagrangian
system and 4 (M) be a path space. A path y € C*°([to,?1], M) describes a motion
of (M, L) between (xy, fp) and (x1, #1) if and only if

d
Te g=0S(y8) =0 (1.6)
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Fig. 1.1: Example of a variation of the path y(t) = (y!(z),y?(¢)) in R? defined
by y(t) := (¢ + sin(r) cos(r),1*> — 1) for t € [-3, 2] along the second coordinate
using a smooth bump function as in [6, 42].

for all variations y, of y.

Definition 1.18 (Extremal). A motion of a Lagrangian system between two points
is called an extremal of the action functional S .

The Newton-Laplace determinacy principle 1.7 implies that motions of mechan-
ical systems can be described as solutions of second order ordinary differential
equations. That this is indeed the case, is shown by the next theorem. But first, let us
fix some notation. Let M™ be a smooth manifold and (U, ¢) be a chart on M with
coordinates (x?). In what follows, we will use the abbreviation

o (d 9
ax  \ax17"7axn )

where as usual % : U — TM denotes the i-th coordinate vector field, that is

f

— 9. fop-!
e f =0 o0™) (v0).

X

ad
(X) = W

foralli = 1,...,n,x € U and f € C°(M). Also recall, that on this chart

af
oxi

dfy = = (x)dx"|x (1.7)

holds for all x € U (see [6, 281]). Additionally, we need the following proposition.
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Proposition 1.19 (Derivative of a Function along a Curve [6, 283]). Suppose M
is a smooth manifold, J C R an interval, y € C*(J,M) a curve on M and
f e C®(M). Then forallt € J holds

(f o) (1) =dfye (YO)).

Theorem 1.20 (Euler-Lagrange Equations). Let (M", L) be a Lagrangian system.
A path 'y € C*([to.11], M) describes a motion of (M, L) between (xo, 1) and
(x1,t1) if and only if with respect to all charts (U, x*)

aL . d oL )
= (0. 7(0).1) = === (v(0), 7 (1), 1) (1.8)
holds, where (x*,v') denotes the standard coordinates on TM . The system of equa-
tions (1.8) is referred to as the Euler-Lagrange equations.

Proof. By Hamilton’s principle of least action 1.17, we may assume that y is an
extremal of the action functional S. The proof is divided into two steps.

Step 1: Suppose that y is contained in a chart domain U. Lett € [ty, t;] and abreviate
x; := (y(t),y(t),t). Suppose I : [tg, t1] X [—€0, £0] — M is a variation of y. Then
there exists a rectangle R such that

[f0.11] X {0} S R C [to.11] X [—€0. €0]

and I'(R) C U. Indeed, I' is continuous since I” is smooth and so I"~!(U) is open
in [tg, 1] X [—€0, €0]. Since y is a path in U, we get

[to.11] x {0} € ' ~'(U)

by the definition of a variation. By exercise 2.4. (c) [5, 22], the standard Euclidean
metric and the maximum metric | - |, generate the same topology, thus for all 7 €
[to, t1] there exists r; > 0 such that

loo

B, (¢,0) := {(x,s) € [to, t1] X [—€0, 0] : max {|x —¢],|e|} < r,} c Y.
Since [tg, 1] x {0} is compact in [tg, t;] X [—&0, &o], we find m € N such that
m
[t0, 1] x {0} < U By, (1;,0).
i=1

Setr := min;—;, , r; and define R := [ty, 1] x (—r, 7). Thenif (¢, &) € R we get
that there exists some index i such that (¢,0) € B,, (¢;,0). Hence|t — #;| < r; and so

(2. &) — (1:. 0)| oo = max{[t — ;] |e]} < ri.
Thus (7,&) € By, (t;,0) € I'"'(U) and so I'(R) € U. Hence we can write

Ye(t) = (e (0),....y2 1))
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and
Ve(t) = (PL(t).... .72 (1))

for all (x, &) € R, where the dot denotes a derivative with respect to time.
Using the formula for the derivative of a function along a curve 1.19, we compute

d d
' L ) Y ) = dL 5 [ y 70
& Lo —an (5 o5 o)
dyl (t dylt
:der()/s()()aJ ’ J;ls() s ,0).
Xy € LA 705

for all variations y, of y in U. Moreover, using the formula for the differential of a
function on coordinates (1.7) yields

aL ; aL ; oL
det = W(x,)dx’ |Xt =+ W(xt)dvlbw + E(xt)d”xt'

Therefore
d
0=d— S(Vs)
= d L y d
- / | Lo ar
B dyl@) 8 dyl (1)
_/ dLXI ( dS (0)@ y(t)’ dS m y(t),o)
0 d 9 d
_ / e V“”(O)dr / o ) Vs(’)(mdr
- [ e O o+ [ S t)(d“(”w))
o
0 d 0 d
=/ 2w V“”(O)d + 2 Vs(”
hog oL dys(t)
- . EW( Xt) (0)dt
oL d oL dyi (1)
-/ (@(xt)—EF< 0) L0 0yar

since y! (fp) and y! (1) are constant by definition of a variation. Let f € C (to, 1),
j = 1,...,n and Y, be the variation of y defined in example 1.14 along the j-th
direction. Above computation therefore yields

a
0= [ (550 = Gy s
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forall f € C2 (fo,t1). Hence the fundamental lemma of calculus of variations 1.2
implies
aL d oL

_ - =0

a7 ) ™ gt gur )

forall j =1,...,n.

Conversly, if we assume that the Euler-Lagrange equations (1.8) hold, above com-

putation yields

d

de

_ 9L d oL d)/é(l) _
S(e) = / (WW‘EWW) 0 0)ar = o

e=0

for every variation y, of y.
Step 2: Suppose that y is an arbitrary extremal of S. The key technical result used
here is the following lemma.

Lemma 1.21 (Lebesgue Number Lemma [5, 194]). Every open cover of a compact
metric space admits a Lebesgue number, i.e. a number § > 0 such that every subset
of the metric space with diameter less than § is contained in a member of the family.(]

Let (Uy)qea be the smooth structure on M, i.e. the maximal smooth atlas. Since y
is continuous, (y ™' (Us)),, 4 is an open cover for [19, 71]. By the Lebesgue number
lemma 1.21, this open cover admits a Lebesgue number § > 0. Let N € N such that
(t1 —t9)/N < & and define

I
t = ﬁ([l — to) + 1t

foralli =0,..., N.Thenforalli =1,..., N, )/|[,i71 ;] is contained in Uy, for some
o € A. Let us extend the construction of example 1.14. Suppose f € C°(ti—1, ;).
Then we can define a variation I" : [tg, #1] X [—&0, &9] — M as follows: Define

I = ([to, t1] \ supp f) X [—¢€0, 0] = M

by I'(t,e) :== y(t),and I" : (t;—1,t;) X [—€0,&0] = M to be the map defined in
example 1.14. Since both definitions agree on the overlap (t;—1,t;) \ supp f, an
application of the gluing lemma for smooth maps [6, 35] yields the existence of a
variation I" of y on M. Therefore, step 1 implies the Euler-Lagrange equations (1.8).
The converse direction is content of problem 1.80 O

Due to the Newton-Laplace Determinacy Principle 1.7, the motions on a La-
grangian system are inherently characterized by the Lagrangian function and locally
by the Euler-Lagrange equations (1.8). Hence any motion satisfies locally a system
of second order ordinary differential equations. This system bears its own name.

Definition 1.22 (Equations of Motion). The Euler-Lagrange equations (1.8) of a
Lagrangian system are called the equations of motion.

Example 1.23. Motions on Riemannian Manifolds Let (M", g) be a Riemannian
manifold and consider the Lagrangian L on M defined in example 1.9 with kinetic
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energy

1 1
T(x,v,t):= ng(v,v) = §|v|§,

and potential energy V(x,t) := Oforx € M,v € TxM andt € R. Let (U, x*) be a
chart on M. We compute

L(x,v,t) = ;gx (v,v)
1 ; 0

= 3o (vl
1 ad ad
28 (W

. 0x/
= Egij(x)vivj,

0

ox/ x)
) viv-/

J

Thus

where g;;(x) 1= gx (ax, X IxT 1)

1 8g,-j

20w

L
W(x,v,l) =

and in particular

oL . 8glj i .
— (y@),y(0),t) = == (y(t Ny (@),
ot O.7(0).1) = 5= () 7 (07 (©)
forall/ = 1,...,n. Moreover
JaL 1 | . 1 | .
W(x,v,t) = Egij(x)S}v] + Egij(x)vlg'll = Eglj(x)v’ + Egil(x)v’
implies
d oL . . d 1 1d 1
. q 7 ) at = N 7.
7r 901 1 701) 2dzg’f(7/)” + 58P +2d g + S2u ()7’
N 1
= —dgzj(y)y’ + —gzj()/)y’ + —dgiz()f)y’ + Egil()/))’l
1 aglj k. 1 3gtl 1 i
=33k o+ gz;(y)y t ok vy + 58 (V)7
1 ag/l k. 1 agtl 1 i
=39k P+ < gjl(V)V t 2ok A +§glz(V)V
1ogjr ;i 10&i ;.
=gup + =Lyl -2ty

AR T
Therefore the Euler-Lagrange equations (1.8) read

=18_L_8L i ang_'_agil_@ i
dt dv!  9x! = s’ axi | oxd  ox! Y
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forall / = 1,...,n. Multiplying both sides by g*’ yields

p*+ rkyiyl =o. (1.9)
forallk = 1,...,n, where
1 agj . 0gu  08ij
Fk = = ki —1, l. - _]
i =58 (Bx’ T T ol

are the Christoffel symbols with respect to the choosen chart (see [4, 70]). The
system of equations (1.9) is called geodesic equations (see [4, 58]). Hence extremals
y of the action functional satisfy the geodesic equation and are therefore geodesics
on the Riemannian manifold M.

Lemma 1.24. Let (M, L) be a Lagrangian system and define L + df € C*°(TM x
R) by
(L+df)(x,v,t) := L(x,v,t) + dfy(v)

forany f € C®(M). Then (M, L) and (M, L + df) admit the same equations of
motion.

Proof. Let us denote the action function corresponding to L + df by S and suppose
Ve is a variation of y in M. Using the formula for the derivative of a function along
a curve [6, 283] we compute

S0 = / L), 760, )1 + / Cdfy (1)) dr

0

S+ / (f o) (D)di

= Se) + f (r:(t1)) — f (v:(t0))
= S(ye) + f(x1) — f(x0).

In particular
d

de S(ve)-

=0

~ d
S(ye) = %

e=0

Remark 1.25. Lemma 1.24 implies, that the Lagrangian of a mechanical system can
only be determined up to differentials of smooth functions. Actually, in coordinates,
also up to total time derivatives. Hence a law of motion, that is a Lagrangian de-
scribing a certain mechanical system, is in fact an equivalence class of Lagrangian
functions.
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1.3 Legendre Transform

In this section we dualize the notion of a Lagrangian function, that is, to each
Lagrangian function L € C*(TM) we will associate a dual function L* €
C®(T*M). It turns out, that in this dual formulation, the equations of motion
take a very symmetric form. To simplify the notation and illuminating the main
concept, we consider Lagrangian functions of a special type.

Definition 1.26 (Autonomous System). An autonomous Lagrangian system is de-
fined to be a tuple (M, L) consitsing of a smooth manifold M and a function
LeC®(M).

Let (M", L) be an autonomous Lagrangian system and (U, xt ) a chart on M.
Moreover, let (x?, v*) denote standard coordinates on 7'M, that is v* := dx* for all
i = 1,...,n. Expanding the Euler-Lagrange equations (1.8) yields

oL . d oL .
- t = — t
o7 V©.70) = 2= (v(0).7(1)
2, . 2 .
= 57 (VO.T0) 7O + 5 (1. 70) 710)
for all j = 1,...,n. In order to solve above system of second order ordinary

differential equations for 7 (¢) and all initial conditions in the chart on T U, the
matrix 7, (x, v) defined by

ovigvs

2 i
Hr(x,v) = (8—L(x,v)) (1.10)
J

must be invertible on T U .

Definition 1.27 (Nondegenrate System). An autonomous Lagrangian system (M, L)
is said to be nondegenerate, iff for all coordinate charts U on M, det #,(x,v) # 0
holdson T U.

Example 1.28 (Nondegenrate System on a Riemannian Manifold). Let (M, g)
be a Riemannian manifold. Consider the Lagrangian T — V' with kinetic energy
T € C*°(TM) defined by T (v) := %|v|2 and potential energy V € C*°(M). Then
the computation performed in example 1.23 yields

Hr—y(x,v) = (gij(x));-

on every chart since W= 0 for every i, and so this Lagrangian system is nonde-

ov?
generate.

The nondegeneracy of an autonomous Lagrangian system is intrinsically con-
nected to a certain differential form in Q! (7M), which we will construct now.
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Proposition 1.29. Let (M, L) be an autonomous Lagrangian system. For every

(x,v) € TM we can define a covector Ar|(x,v) € T("; M by setting

oL ,
ALl(xw) 1= W(x’ V)dX" |(x,v)- (1.11)

in induced coordinates (xi, vi) about (x,v) on TM. Then Ay € QY (TM).

Proof. We have to show that the chartwise definition (1.11) does not depend on the
choice of coordinates. Let (17 , fi) be another chart on M such that U N U #* @.
Denote the induced coordinates on 7M by (X', 9"). Then for (x,v) € U N U we
have that

9 axk . 9) F) N vk (x.0) 9
—_— = —X,V)— — X, V) — 5
Ox7 [y 0x7 0F |(xy  Ox7 07 [y
and
Eed (x,v) IhE (x.) dx/ (x,v) oo’ (x’v)m (x,v) B W(X’U)m (X,U).
We compute
. P ox"
d~l — = T )
X (x,0) (8)“ (x’v)) 97 (x,v)
and
Fon(i]) =
(xv)\ 97 =Y
X,V av/ (x’v)
Thus .
o ox’ i
A3 |y = 55 (0 0)dx |-
Observe that . .
ax* ox’
W(x,v) = 5 ().

This can be seen directly by using the definitions and the coordinate structure on
TM . Finally, we have that

. dx/ ~i
dx’|x(v) = ﬁ(x)dx lx(v),

or equivalently
. oxd .
v/ (x,v) = %(x)v’(x, v).
X

Hence we compute

JdL i
ALl(x,v) = W(x’ v)dxl |(x,v)
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(X ) (x v) (X)dx lGe.v)

_ 9= _' - k
= avf (x, v) PR (x) 8xk (x)dx lGx,v)

IL .
= —.(x, V)8 dx¥|(x )

8L
= —(x v)dx’ |(x,v).

Therefore A7, is independent of the choice of coordinates and so Ay, € QU (TM). O

Corollary 1.30. Let (M, L) be an autonomous Lagrangian system. Then the map
D¥ L : TM — T*M defined in coordinates (x’,v‘) about (x,v) € TM by

oL ;
DY Leyy 1= 5 (x. v)dx’

is well-defined.

Proof. This follows immediately from the proof of proposition 1.29. Indeed, for
different coordinates (X’, 3") we compute

oL i
DY Lz = W(m)dxﬂx

oL

= W(X (x) (x)dxk|x
oL

= B_J(x U)dxj|x

|

Definition 1.31 (Associated Form). Let (M, L) be an autonomous Lagrangian sys-
tem. Then the form Ay defined in proposition 1.29 is called the associated form.

Definition 1.32 (Fibrewise Derivative). Let (M, L) be an autonomous Lagrangian
system. The map D¥ L : TM — T*M defined in corollary 1.30 is called the
fibrewise derivative.

Example 1.33 (Fibrewise Derivative on a Riemannian Manifold). Consider the
autonomous Lagrangian system as defined in example 1.28. Then the computation
performed in example 1.23 yields

DF(T = V) xw) = &ij (x)0'dx/

on every chart since 3% = = Oforall j.

Definition 1.34 (Nondegenrate Tensor). Let V be a finite-dimensional real vector
space. A tensor @ € A2(V*) is said to be nondegenrate, iff the map @ : V — V*
defined by @(v) := iyw is an isomorphism.
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Lemma 1.35. Let V be a finite-dimensional real vector space and let w € A2(V*).
Then the following statements are equivalent:

(a) w is nondegenerate.

(b) With respect to any basis for V, the matrix representing @ is invertible.
©) Ifo(v,u) =0forallu € V, thenv = 0.

(d) If v # 0, then there exists some u € V such that w(v,u) # 0.

(e) The matrix representing w in any basis of V' is invertible.

Definition 1.36 (Nondegenerate Form). Let M be a smooth manifold and @ €
Q2(M). Then w is said to be nondegenerate, iff v, is nondegenerate for every
xeM.

Proposition 1.37. An autonomous Lagrangian system (M, L) is nondegenerate if
and only if d Ay, is nondegenerate.

Proof. Using the computation performed in [6, 363], we get

dv' Adx’.

oL : %L : ; %L
— —— x| = 1 J
d/\L d (3vj dx ) X907 dx' ndx! + T,

Moreover, using part (e) of properties of the wedge product [6, 356], we compute

. 0 (0
dxt (=) dd (=
(2 AN _PL * (Bxk) * (3xk)
L\oxk axl ) Taxiovs | ./ 9 )
dx’ (—) dx’ (—)
dx! X
X 0 . d
I ) Iy
°L v (axk) * (axk)
- - €
dvt dv/ . .
vt Jvi (i) dx.;(
X
2L o o
=W(5k51] _51510
_®L 2L
T axkou!  9xlovk

forall k,/ = 1,...,n. Similarly, we compute
0 0 %L 0 0
dip | —, — | = —— d dA; | —,— ] =0,
L (avk 8xl) vk gv! an L (avk Bvl)

and using skew-symmetry, we also deduce

d 0 02L
(2, L )= 2
£ (Bxk 81}1) dvkov!
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Therefore, the matrix representing d Ay, with respect to the standard basis is given

by the block matrix
. % —:%L
EEA)

where 1 is the matrix defined in (1.10). Thus
det (dAr) = (=1)"(det J)?

Hence the matrix representation of d Ay, is invertible if and only if #, is invertible,
and the conclusion follows. O

So far, we have associated to each Lagrangian system (M, L) a 1-form on TM,
the associated form Az . In order to get closer to our goal of dualizing the concept of
a Lagrangian function, we need also a 1-form on T*M . Suppose (U, x') is a chart
on M. The induced standard coordinates on the cotangent bundle 7*M of M are
given by (xi,éi), where §; = %, considered as an element of the double dual
T**U. On this chart, define a one 1-form « by A := &dx'. Suppose (¥, ;) are
other coordinates. Then from the computations performed at the beginning of the
previous section, we have that

< O _oF

i = ﬁ j and d.;C‘l = E))C—kdxk.
Thus ) .
-~ o xS % : :
A =Ed¥ = W;&jax—kdxk = £;8] dx* = £;dx7,

and so, A is independen of the choice of coordinates.

Definition 1.38 (Tautological Form). Let M be a smooth manifold. The tauto-
logical form on T*M, denoted by A, is the form a € Q!(T*M) defined locally
by

A= Edx',

where (xi , SZ) denotes the standard coordinates on T* M.

Remark 1.39. The preceeding discussion showed, that the tautological form « is
well-defined.

Recall, thatif F € C°°(M, N) for some smooth manifolds M and N,and! € N,
we can define a mapping F* : ' (T®DTN) — T (T©DTM), called the pullback
by F, by

(F*A)x(v1,...,v7) 1= Ap(x) (de(vl), N de(vl))

forallx € M and vy, ...,v; € TxM (see [6, 320]).

Definition 1.40 (Legendre Transform). A Legendre transform of an autonomous
Lagrangian system (M, L) is defined to be a fibrewise mapping 17, € C°(TM,T*M)
such that
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AL =1 (0).

Example 1.41. Legendre Transform on a Riemannian Manifold Let (M, L) be a
Lagrangian system. Then the morphism tz, : TM — T*M defined by

. (x,v) 1= (x, D‘?L(x,v)) (1.12)

is aLegendre transform. In particular, if we consider the Lagrangian system defined in
example 1.28, we get that the above defined Legendre transform is a diffeomorphism.
Indeed, suppose that t7_y (x,v) = t7—y (X, V). Then x = X and

gij ()'dx’ = gi;(x)v dx’
using example 1.33. So we must have
gij (V' = gij (x)7'

forall j. Multiplying both sides by g¥/ (x) yields v¥ = 7% for every k and hence v =
v. Thus 77—y is injective. Let § € T* M be given by &dx'|x. Then t7_y (x,v) =
(x, £), where v is given in coordinates by vk := gk (x)&;.

Since the nondegenracy of a Lagragian system (M, L) is inherently connected
to the nondegenracy of the form dA;, and the definition of the Legendre transform
invokes the form A7, one would expect a connection between the nondegeneracy of
the Lagrangian system and a local property of Legendre transform. Moreover, the
proof shows that any Legendre transform has the form from example 1.41.

Lemma 1.42. A Legendre transform on a Lagrangian system is a local diffeomor-
phism if and only if the Lagrangian system is nondegenrate.

Proof. Denote the Lagrangian system by (M, L). Let (U, x') be a chart on M and
denote by (x*,v") and (x*, ;) the induced standard coordinates on TM and T*M,
respectively. Then we compute

A =17 (§dx’) = (§ot)d (x/ 01),

which must coincide with

oL .
_ J
AL = 507 dx’.
Thus
. (x,v) = D¥ Ly, (1.13)
and so

1|0
DTL|(x,v) = (* %L)

det (DTL|(x,v)) = det #y..

atevery (x,v) € TM. Hence
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If 77 is a local diffeomorphism, by definition, we have that some restriction of
77, to some neighbourhood of (x, v) is a diffeomorphism, and so, by properties of
differentials (d) [6, 55], we have that Dtz |(x,y) is an isomorphism. Conversly, if
the Lagrangian system is nondegenerate, we conclude using the inverse function
theorem for manifolds [6, 79], that 7z is a local diffeomorphism. O

Corollary 1.43. Let (M, L) be an autonomous Lagrangian system with Legendre
transform tp: TM — T*M. Then

‘EL()C, v) = D‘?L(x,v).

Definition 1.44 (Energy). The energy of an autonomous Lagrangian system
(M, L) is defined to be the function E; € C°°(TM) given by

Ep(x,v):= DfL(x,v)(v) — L(x,v)

for (x,v) e TM.

Example 1.45 (Energy on a Riemannian Manifold). Consider the Lagrangian
system defined in example 1.28. Then the computation performed in example 1.33
yields

or . oV

3vkv —mv —TWw)+ V(x)

1 o 1 o
= —g;;6 v’ vk Egijv’SIvak —T)+ V(x)

Er_y(x,v) =

2
= gijv'v/ = T(v) + V(x)
=TW) + V(x)

for every (x,v) € TM. Hence the energy of this Lagrangian system is given by
kinetic energy plus potential energy.

Definition 1.46 (Hamiltonian Function). Let (M, L) be an autonomous Lagrangian
system and 7z, a diffeomorphic Legendre transform. The morphism Hy, € C*®°(T*M)
defined by

Hp = Ep ot}
is called the Hamiltonian function associated to the Lagrangian function L.

Example 1.47. Hamiltonian function on a Riemannian Manifold Consider the La-
grangian system defined in example 1.28. By example 1.41 the Legendre transform
tr_y is a diffeomorphism. Using example 1.45, we compute

Hr_y(x.§) = Er—y (171 (x.§))
= ET—V (x, v)
=TW) + V(x)

1 o
= Egij(x)vlvj + V(x)
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Se (g * (WEE (08 + V(0

1 .
S8 (E +V(x)

365 W + V(0

N3
where v = (gk’)l. £.

Theorem 1.48 (Hamilton’s Equations). Let y be a motion on an autonomous La-
grangian system (M™, L) and suppose that tp, is a diffeomorphic Legendre trans-
form. Then y satisfies the Euler-Lagrange equations in every chart if and only if the
path

(r@),£@) := 7 (y(0), 7(0))
satisfies the following system of first order ordinary differential equations in every
chart:
Hj, .

d 0
10 = S (0.60) f0 = "L (.60)  (L14)

The equations (1.14) are called Hamilton’s equations.

Proof. First we compute Hy in standard coordinates (x?, ;) on T*M . By corollary
1.43 we have that
L (x,v) = D¥ Lc . (1.15)

Since 7, is a diffeomorphism by assumption, in particular it is a local diffeomorphism
(see [6, 80]). Hence by lemma 1.42, the Lagrangian system (M, L) is nondegenerate.
So considering ‘L’EI(X, &), we can apply the implicit function theorem [6, 661] to
obtain v implicitely from the equation

JaL

£ = 5o (x0).

Hence in coordinates

Hp(x,§) = (%vi - L(x,v)) ‘

=3
Therefore 3H, 5 i o
T = @ (&v' — L(x,v)) |§:% =§/v' =0/
Hence oH, y
B (r®.60) =7’ 0.

forall j =1,...,n. Moreover, we have that
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oH d (0L ; oL
L (—.v’ — L(x, v)) ‘ =——(x,v) ,
av? g=iL dax/J é

v

axi  oxJ

Q,
~

v
<

and so o 9L
I _ oL .
= (r0.£0) = === (y(). 7).

forall j =1,...,n. If the Euler-Lagrange equations (1.8) hold, then we get

oH d oL . :
Wj‘ (y(t),é(t)) TEN (7/([), )/(t)) = —§ (),

and thus the Hamilton’s equations (1.14) hold. Conversly, if we suppose that Hamil-
ton’s equations (1.14) hold, we get that

d oL , : OH L .
— 07 (y(®).7(1) ==& @) = WL (r(0).£()) = ~on7 (y(0),y(®)).

and so the Euler-Lagrange equations (1.8) are satisfied. |

1.4 Conservation Laws and Noether’s Theorem

Definition 1.49 (Conservation Law). A conservation law for a Lagrangian system
(M, L) is defined to be a function / € C°°(T M) such that

d
7! (y().y@®) =0

for all extremals of the action functional (1.16).

Proposition 1.50 (Conservation of Energy). The energy of an autonomous La-
grangian system is a conservation law.

Proof. By definition of the fibrewise derivative 1.32 we have that
oL ; ;0 aL o 0L ;
7 ey 9L . i _ N s o\ i
D7 Ly (1) = 55 (r-7) dx (V —axj) = o0f W8 = 55

Thus by definition of the energy 1.44 and the Euler-Lagrange equations 1.20 we
compute
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d d (0L : d
—EWwy)=—|—@wny)—-—LH.y
TEvn) =~ (av,(yy)y) Lo
d oL i OL i 0L o L
= 2 9gi WV A 5 NV - o Y - S5 ()Y
d oL g aL e
=Ew(%y)y —W(y,y)y
8L . . i aL o\ o]
= W(%V)V —W(V’V)V
=0.

Recall, that for a smooth manifold M, we define the set of diffeomorphisms on
M by
Diff (M) := {¢ € C*®°(M, M) : ¢ is a diffeomorphism} .

In fact Diff (M) constitutes a group under ordinary composition of maps. Thus we
define a one-parameter group of diffeomorphisms of M to be a group homomor-
phisms

(R, +) — Diff(M)

Explicitely, given any one-parameter group 6 : (R,+) — Diff(M), we define
05 := 0O(s) for all s € R and we can therefore write (6;)ser for the one-parameter
group 6 of diffeomorphisms of M. Since 6 is a homomorphism of groups, we have
that

954_; = 95 o 9; and 90 = ldM

for all s,¢ € R. We say that the one-parameter group (6s)ser of diffeomorphisms of
M is smooth, iff the corresponding map 6 : R x M — M defined by (s, x) + 05(x)
is smooth. If F € C*°(M, N) for two smooth manifolds M and N, for x € M we
define the differential of F at x to be the mapping DFy : TyM — Tr)N, given
by DF(v)(f) :=v(f o F) forall f € C°(N). These fibrewise mappings can be
assembled to the global differential of F, defined to be the mapping DF : TM —
TN given by DF(x,v) := (F(x), DFy(v)). The global differential is a smooth
map (see [6, 68]) and has the following properties.

Proposition 1.51 (Properties of the Global Differential [6, 68]). Let M, N, P be
smooth manifolds, F € C*°(M,N) and G € C*®(N, P). Then:

1. D(Go F)=DGo DF.
2. D(idpy) = id7py.
3.If F is a diffeomorphism, then DF is a diffeomorphism with (DF)™! =
D (F71).
Remark 1.52. In a more sophisticated language, proposition 1.51 says that the global
differential is a functor D : Man — Man, where Man denotes the category of finite-
dimensional smooth manifolds.

Lemma 1.53. Let (65)ser be a smooth one-parameter group of diffeomorphisms of
a smooth manifold M. Then (D0s)ser is a smooth one-prameter group of diffeo-
morphisms of TM .
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Proof. Part (c) of the properties of the global differential 1.51 implies that D is a
diffeomorphism for all s € R. Moreover, by part (c) of the properties of the global
differential 1.51 we compute

DOS_H = D(QS o Qt) = Dgs o Dgt
forall s, ¢ € R. Lastly, part (b) of the properties of the global differential 1.51 implies
D6y = D(idys) = idrps .

Given a one-parameter group (6s)ser of diffeomorphisms of a smooth manifold
M , we can define a vector field V' by

Vyii=— Os(x
=T, 5 (x)
for all x € M. This vector field is actually smooth by [6, 210] and is called the
infinitesimal generator of 6.

Definition 1.54 (Symmetry). A symmetry of an autonomous Lagrangian system
(M, L) is defined to be a diffeomorphism F € Diff(M), such that

(DF)*L = L.

A symmetry group of (M, L) is defined to be a Lie group G, such that there exists
a left action 6 : G x M — M and such that 8, is a symmetry of (M, L) for all
geG.

Recall, that if k € N and X € (M) for a smooth manifold M, we can define a
mapping ix : Q¥TH(M) — QK (M), called interior multiplication, by

(ixw)x(vy,...,0r) = wy (X|x, Ulyenns vk)

for all x € M and vy,...,vr € TxM. One-parameter groups of symmetries of
autonomous Lagrangian systems give rise to conservation laws.

Theorem 1.55 (Noether’s Theorem, Lagrangian Version). Let (05)ser be a
smooth one-parameter group of symmetries of an autonomous Lagrangian system.
Then iy (AL) is a conservation law, where V denotes the infinitesimal generator of
the one-parameter group (D05)ser of diffeomorphisms of TM. The conservation
law iy (AL) is called the Noether integral.

Proof. Let (TU, (x',v")) be a chart on TM. First we compute the infinitesimal

generator V' of the one-parameter group ()ser in the chart (U, (x")). Let x € U.
Then

d@’(x) doi(x) o 9 _ dfi) o )_

d
Ve=— 0
X s=0 S(X) dax? 6o (x) ds 3x’

ds
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Thus 3
Ve = Vix)—
= Viwgg|

where Vi : U — R are given by

df; (x)

Vix) = 7

(0).

Next consider the infinitesimal generator V' of the one-parameter group (D 6;)ser-
For (x,v) € TU, where v = v} 3%,-, we compute

d
V(x,v) = % (es(x)s D9s|x(v))
d
ds

30 9
oxs Vg

5s=0
(OS(x),vj
s=0
doi(x) 0 . 020!
= ——0)— 4 -
ds ( )ax’ (x.v) v dsdx/
0 - 026! 0
— J - 0, —
ox! (x,v)—i-v axfas( *)
; 0 -0 dbi(x) 0
= Vt - j—.s— -
) X | (x.0) T oxJ ds v
0 n jBVi 0
— V) —X)—
0x? | (x.v) ox/ 7 ov'

es(x))

(0.x)

d
vt

(x,v)

=V'(x)

=V'(x)

(x,v).

Therefore
iy (AL) (x,v) = AL|(x,v) (V(x,v))

oL .
= W(xv U)dxl |(x,v) (V(x,v))

aL ;
W(x, v)VH(x).
For (x,v) € TM set y(s) := dbs(x,v). If f € C>®(TM), the definition of the
velocity of a curve and of the differential yields
d d
= D —_— = —
s=0y(S)) f v (ds s=0) f ds

So using the Euler-Lagrange equations 1.20 and the assumption that 6, is a symmetry
of (M, L) for all s € R, we get

(fop).

s=0

d
V0 = Ve f = (55

d d (dL .
Eiv (AL) (r.y) = N (W(% )'/)V’(V))
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daL oL . d
= EW(% Vi) + W(% )’)ZV )

oL oL ..d .
= o r.VVi(y) + P (7, y)dtV ()

BPi P
y Y

dL , oL
= — Y Vl b Y
™ r.VVi(y) + 7 . )
= VoL

ds (L © Dgs) . y)

s=0

L(y.y)
s=0

=0.

Thus iy (A7) is a conservation law. |

1.5 Tonelli Lagrangians

In order to associate to a Lagrangian system a Hamiltonian function, we need that the
Legendre transform is a diffeomorphism. So far, we discussed no conditions when
this is the case. We follow [9, 7-8]. First of all, we give an invariant characterisation
of the fibrewise derivative 1.32. Let ¥ : E — N be a fibre bundle with fibre F' and
@ € C®°(M, N). Define

¢ E = {(x.p) € M X E : p(x) = n(p)}

Then the following diagram commutes

0'E T E

| .
M

Moreover, ! : @*E — M is a fibre bundle with fibre F, andif 7 : E — M admits
a structure group G, then ¢* E admits a Lie subgroup of F as structure group. The
fibre bundle ¢* E is called the pullback bundle of E by ¢.

Suppose now that 7y : £y — M; and 7, : E» — M, are two vector bundles,
f € C®(My, M) and F € C*®(E, E>) such that the diagram

E1L>E2

’”l lﬂz

M17>M2
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commutes. For each x € M; we get an induced map
Fy:=Flg,|,  Eilx = E2lf).
Its derivative is a map
D(Fy)p : TpEilx = Tr(p) E2lrx)
for every p € E1|x and since Eq|x and E5|r(y) are vector spaces, we get a map
D(Fy)p := ®f(, 0 D(Fx)p o By : Eilx = Ealf(x). (1.16)

where @, and @f(p) are the isomorphisms from lemma F.39. Consider the vector
bundle 7: Hom(E;, f*E;) — M;. Then p > 5(Fx)p defines a smooth map

D¥ F: E; - Hom(E;, f*E,).

tM, =M, =M, f =idy, Ey = TM and E;, = M x R, then any F €
C®(TM,M x R) can be identified with a function L € C*(TM). Moreover,
D¥ L defined above coincides with the fibrewise derivative of L defined in 1.32.

Indeed, let (x,v) € TM with v = via;ii and w = wi-L . for some local

dx?

x’
coordinates (x') about x, we compute

d . ‘
DFL =dL|— ') —
Gy () (dt t=0 (U i ) dx?! x)
.0
31) (x,v)
JaL .
= W(x,v)w’

oL :
= —(x,v)dx"|x(w).
v’

Proposition 1.56. Let (M, L) be an autonomous Lagrangian system with symme-
try group G and corresponding action 6. Denote by f € C®°(TM) the function
f(x,v) := DF Ly 4)(v). Then

(Db f = f
forall g € G.

Proof. By definition of the pullback, we need to show that f o Dfg = f holds for
all g € G. Let (x,v) € TM. Then we compute (identifying the derivative with the
differential)

(f 0 DOg)(x,v) = (d(Lo,(x)) D (x,v) © PD, (x,0)) (DOg(x,0))
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d
= d(Lg,(x)) Dby (x,v) (— 1+ t)D(eg)x(v))
=0

dt
d
= E ng(x) ((1 + I)D(eg)x(v))
t=0

d

= | Loy (DO (1 +1)0))
t=0

_ d

~dr,

d

= d(Lx)(x,v) (E =0

= d(Ly)(x) (Po(v))

= f(x, U).

t

L, ((1 + t)v)

1+ t)v)

O

In what follows, we need to recall the rudiments of convex analysis. We do state
the full results as encountered in [13].

Definition 1.57 (Convex Subset). Let V' be a real vector space. A subset A C V is
said to be convex, iff for all x, y € A, we have that

(1—t)x+tyeA
forallt € I.

Definition 1.58 (Convex Function). Let V be areal vector space and A C V convex.
A function f : A — R is said to be

e convex, iff

f(A=0Dx+1y) <A =0 f(x) +1f(y)

holds forall x,y € Aandt € I.
o strictly convex, iff

F(A=0)x +1y) <(1=0)f(x) + ()
holds forall x,y € A, x # y,and t € (0, 1).

Lemma 1.59. Let E be a real Banach space, U C E convex and f : U — R
convex. Then every local minimiser of f is a global minimiser. If f is strictly
convex, the set of global minimiser is either a empty or a singleton.

Lemma 1.60 (K. Weierstrass). Let X be a topological space and f : X — R sat-
isfying the following condition: For all @ € R, the sublevel set {x € X : f(x) < a}
is compact. Then f is uniformly bounded from below and attains its infimum.

The condition of having bounded level sets is a growth condition.
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Lemma 1.61. Let E be a Banach space and f: E — R. Then all sublevel sets of
f are bounded if and only if f is coercive, that is

lim f(x) = +o0.

|x|—>00

Proof. Suppose that all level sets of f are bounded. Let « € R. Then there exists
R = R(x) such that K, € Bgr(0) € E. Thus

xeE: f(x)>a}=E\ Ky 2 E\ Br(0),

which implies limy|-o f(x) = 400.

Conversly, suppose that f is coercive and that for some & € R the sublevel set K,
is unbounded. Thus we can construct a sequence (x,),eN S E with|x,| — oo as
n — oo. But

lim f(x,) <a,
n—>o0
contradicting coercivity. O

Corollary 1.62. Every coercive continuous (strictly) convex function f: E — R
on a finite-dimensional real normed space E admits a (unique) global minimiser.

Proof. Lemma 1.61 implies that all sublevel sets of f are bounded. Since they are
closed by definition and continuity of f, we get that each sublevel set is compact by
Heine-Borel. Now apply 1.60 and conlude with lemma 1.59. O

Let us recall the notion of directional derivatives or Gdteaux differentiability.

Definition 1.63 (Gateaux Derivative). Let £ and F be two real Banach spaces.
Suppose that U C FE is open and x¢g € U. A function f : U — F is said to be
Giteaux differentiable at x, iff

f(xo0 + 1x) — f(x0)

t

f(x0;x) := lim
t—0
exists forall x € E and suchthat f'(xo) : E — F givenby f'(x0)(x) := f’(x0;Xx)

is a continuous linear operator.

Lemma 1.64 (First Derivative Test of Convexity). Let E be a real Banach space
and U C E open and convex. Then a Géteaux differentiable function f: U — R
is convex if and only if

f(x) = f(xo0) + f'(x0)(x — xo)
holds for every x,xo € U.

Definition 1.65 (Second Géateaux Derivative). Let £ be a real Banach spaces.
Suppose that U € E is open and xo € U. A Gateaux differentiable function
f 1 U — R is said to be twice Gdteaux differentiable at x, ift
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£ (xoix. y) = lim f'(xo + fy)o? — f(x0)(x)

exists forall x, y € E and suchthat " (xg) : ExXE — F givenby f"(x0)(x, y) :=
f’(xo; x, y) is a continuous bilinear form.

Remark 1.66. If £ = R”, then the twice Gateaux differentiability simply means
the existence of the Hessian matrix

Hessy, f = (az—f(xo )l'

oxiox/ j

of f at xq.

Lemma 1.67 (Second Derivative Test of Convexity). Let E be a real Banach
space and U C E open and convex. Suppose that f: U — R is twice Gdteaux
differentiable on U.

(a) If
f(x;v,v) >0

forallx e U andv € E, then f is convex on U.
(b) If the inequality in (a) is strict for v # 0, then f is strictly convex.
(c) Every convex function satisfies the inequality in (a).

A stronger condition than Gateaux differentiability is Fréchet differentiability.

Definition 1.68 (Fréchet Derivative). Let £ and F be two real Banach spaces.
Suppose that U € E is open and xo € U. A function f : U — F is said
to be Fréchet differentiable at x, iff there exists a continuous linear operator
Df(xo) € L(E, F), such that

lim 1S &) = f(x0) = Df (xo)(x — Xo)| _
m =

0.
30 ¥ — ol

Clearly, Fréchet differentiability implies Gateaux differentiability and also the
equality of the respective derivatives f”/(xo) = Df(x¢). Moreover, the twice Fréchet
differentiability of a function f : U — R means the differentiability of both, f and
Df, and one can show that

D? f(xo)(x,y) = f"(x0:x.y)

holds for all xo € U and x,y € E.

Proposition 1.69. Let L € C°(R") be convex. Then DL : R® — (R™)* is a
diffeomorphism if and only if L is supercoersive, that is

L) _

|x|]—>o00 |x|

00, (1.17)

and the Hessian of L is everywhere positive-definite.
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Remark 1.70. Note that supercoercivity implies coercivity. The converse might not
be true, however. Consider for example the absolute value function|-| : R — R.

Proof. Suppose that DL is a diffeomorphism. Then the Hessian of L is invertibe.
Since L is convex, the second derivative test of convexity 1.67 implies Hess L > 0.
So Hess L > 0 and Hess L is positive-definite. For every R > 0 set

Sr:={x eR":|DLx|| = R}.
Then Sg is compact. Indeed, we have that
Sg=DL7'(S% ).

where
Sk i={p e ®R")* ¢l = R}

denotes the sphere of radius R in (R”)*. Since (R")* =~ R” is finite-dimensional,
Heine-Borel implies that S’I’{l is compact because it is closed and bounded. Thus
Sr is compact as the image of a compact set under a continuous function. Moreover,
for every x € R”, there exists a unique xo = xo(R, x) € R” such that

R
DLy, = —({x.:) € R")",
x|

due to the assumption that DL is a diffeomorphism. We claim that xo € Sg. Using
the Cauchy-Schwarz inequality yields

R R
[DLxoll = sup [DLx,(y)|= sup —[{x,y)[< sup —|x[[y],
yeR |y|=1 yeRrn,|y|=1X] yer |ly|=1 %]

and thus | DLy, || < R. But
[DLx, |l = [DLxy(x/x]D| = R,
and xo € Sg. Using the first derivative test of convexity 1.64, we compute

L(x) = L(xo) + DLx,(x) — DLx,(xo)
= L(xo) + R|x| = DLy (x0)
= Rix| + min (L) = DLy (7).

because Sg is compact. Set

Cr = yrg}gr}e (L(y) - DLy(y)) e R.

Then by the previous estimate we have that
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Cr

L
LS Rt gim SEog

|x|—>00 |x| |x|—>00 |x| -
Since R > 0 was arbitrary, we conclude (1.17).
Conversely, suppose that L is supercoercive and that the Hessian of L is everywhere
positive-definite. Let ¢ € (R”)*. Define L, € C*°(R") by L, := L — ¢. Then
Hess L, = Hess L, and thus by part (b) of the second derivative test of convexity
1.67 we get that L, is strictly convex. Moreover, L, is supercoercive. Indeed, since

¢ € (R™)*, there exists C > 0 such that |¢(x)| < C|x| holds for all x € R”. Thus
we estimate

Ly(x) = L(x) —¢(x) = L(x) — lp(x)| = L(x) = C |x]

for every x € R” and so

L) _ . LG

|x|]—>o00 |x| |x]—>o00 |x|

Hence by corollary 1.62, L, admits a unique minimiser xo = xo(¢). By elementary
calculus
0=D(Ly)xy =DLx,— .

So DL, = ¢. Hence DL is surjective. Moreover, uniqueness of xo implies injec-
tivity of DL. Indeed, suppose that there exists x;, € R” such that DL Xy =@ Then
Xy is a critical point for L. Since Hess L, is positive-definite, we have that x;, is a
minimiser of L, in particular x, = xo by uniqueness. Hence DL is bijective. Since
Hess L is positive definite, DL is a local diffeomorphism, thus a diffeomorphism.]

Definition 1.71 (Tonelli Lagrangian). Let (M, L) be an autonomous Lagrangian
system. Fix a Riemannian metric g on M. The Lagrangian L is said to be Tonelli,
iff the following conditions are satisfied:
(T1) The fibrewise Hessian of L is positive-definite, that is,
02L P
—(x,v)u'u! >0
av' dv/ (x.)

forall (x,v) € TM and u := u' -2 € Ty M such that u # 0.

dx!
(T2) L is fibrewise supercoersive, that is,

L(x,v) _

[v|g—>00 |v

lg
forallx e M.

Example 1.72 (Tonelli Lagrangian on a Riemannian Manifold). Let (M, g) be a
Riemannian manifold. For V' e C*°(M), define L € C*°(T M) by

1
L(x,v) = 5|v|§ —V(x).
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Then by the computation performed in example 1.28, the fibrewise Hessian of L is
positive-definite. Moreover, L is supercoercive since

L(x,v)

[v|g—>o00 |l)|

Vix) _

[v|g—>o00 |U|g - [v]g—00

1 1
_|U|g_ —|U|g:+OO

g [v|g—>o00

for all x € M. Thus L is Tonelli.

Proposition 1.73. Let (M™, L) be a Lagrangian system such that L is fibrewise
convex. Then the Legendre transform is a diffeomorphism if and only if L is Tonelli.

Proof. Let x € M. Then by equation 1.16, we have that
DY Lir.p: TeM — T M
is given by
DF Ly =d(Ly)y o ®y.

By proposition F.40, this is just the Fréchet derivative of L, at v € Tx M. Under the
noncanonical identification 7, M = R” the result follows from proposition 1.69. O

1.6 Legendre-Fenchel Duality

In this final section we come back to the terminology established in the section on
the Legendre transform, namely, the notion of dualisation. Again, we make use of
concepts established in the field of convex analysis and use them to show that the
Legendre transform can be seen as a more concrete case of an abstract dualisation
process, that is exchanging a normed space E by its dual E*.

Definition 1.74 (Legendre-Fenchel Transform). Let E be a real Banach space and
f 1 E > RU{+o0}, f # 4o00. Then the Legendre-Fenchel transform of f,
written f*, is defined to be the function f* : E* — R U {400}, given by

[ (e) = sup lp(x) — f(x)}. (1.18)

Lemma 1.75. Let E be a real Banach space and [ : E — R U {+o00}, f # +o0.
Then the Legendre-Fenchel transform f* : E* — R U {400} is convex.

Proof. Letg, ¥ € E* andt € I. Then we compute

(=0 +1y) = sup {(1—=)x) + 19(x) — f(x)}
= sup {(1 =)o) + 19 (x) — (1 —1) f(x) — 1 (x)}
(1-1) sup {o(x) — f(X)} +1 sup Wx) — f(x)}

=1 =0/ @ +1f*W).

IA
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O

Remark 1.76. Note that the Legendre-Fenchel transform f* of f is always convex
by means of lemma 1.75, no matter what the nature of f is.

Proposition 1.77 (The Fenchel-Young Inequality). Let E be a real Banach space
and f : E — R U {+o0}, f # 400, lower semicontinuous and convex. Then

F)+ (@) = o(x) (1.19)
holds for all x € E and ¢ € E*.

Proposition 1.78 (The Classical Legendre Transform). Let f € C?(R") with
Hess f > 0. Then

(a) The map V : R" — R” given by x — V f(x) is a homeomorphism.

(b) f*(x) = (x, (VL)' )re — f (V)7 (x)) forall x € R".
) f*eC'®R")YandVf*=(Vf) L
(d) Hessx f and Hessy r(x) f* are inverse to each other for all x € R".

Proposition 1.79. Let L € C*®(R” x R") such that L, € C>®(R") defined by
Lx(y):= L(x,y) forall x € R" is convex. Suppose that the Legendre transform is
a diffeomorphism. Then

Hi(x.y) = (Lx)" ()
forall x,y € R.
Proof. By assumption, L is fibrewise convex and a diffeomorphism, thus L is Tonelli

by proposition 1.73, and thus in particular Hess L, > 0 for all x € R”. Using part
(b) of proposition 1.78, we compute

Hp(x,y) = (Epot.') (x,y)
= Er (x. (VL)™' (»))
= D¥ L vr-106y (VL)™' () = Ly (VL)' (1)
= (VLx (VL)"') . (VL) 0))rr — Ly (VL)' (1))
= (3. (VL) 0))rr — Lx (VL)L)
= (L)*(»)

for all x, y € R”. |
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1.7 Problems

1.80. Adopt the theory developed in the section on the Legendre Transform to the non-
autonomous case, that is to the case of a Lagrangian system where the Lagrangian
function can depend on time.

1.81. Complete the proof of theorem 1.20 about the Euler-Lagrange equations. Hint:
Use the generalized notion of a fibrewise differential established in problem 1.80



Chapter 2
Hamiltonian Mechanics

Hamiltonian mechanics serves the same aim as Lagrangian mechanics, that is to
describe systems of finitely many interacting particles. However, in the Hamiltonian
case, we investigate a dual notion of a Lagrangian system, called Hamiltonian sys-
tem, which has much more underlying structure. We begin this chapter by defining
what this additional structure is, namely a symplectic structure. Then we give two
important theorems in this new setting which are often used: the tangent-cotangent
bundle isomorphism theorem and the Moser theorem.

Finally, we state the definitions governing Hamiltonian mechanics and prove an
analogue of Noether’s theorem for this case. Moreover, we point out the connection
between the two versions of this theorem.

2.1 Symplectic Geometry

A profound difference between the tangent bundle TM and the cotangent bundle
T*M of a smooth manifold M is that on the latter there exists a natural 1-form, the
tautological form « defined in definition 1.38.

A concise introduction to the very basics of symplectic geometry can be found in
the last chapter of [6]. A more extensive treatment is given in [15] or [10].

2.1.1 Linear Symplectic Geometry

Recall the notion of a nondegenrate tensor 1.34.

Definition 2.1 (Symplectic Vector Space). A symplectic vector space is defined to
be a tuple (V, @), where V is a finite-dimensional real vector space and w € A2(V'*)
is nondegenerate, called a linear symplectic structure on V .

35



36 2 Hamiltonian Mechanics

Example 2.2. Let V' be a finite-dimensional real vector space with dim V' = 2n. Let
(a;i, b;) be a basis for V' and denote by (oz‘ , ﬂ‘) the corresponding dual basis. Then

n
W= Za’ A B!
i=1

is a linear symplectic structure on V. Indeed, it is easy to see that the matrix
representing @ is given by
; 0 1
iy
(@)) = <_ I 0) :

Definition 2.3 (Symplectic Complement). Let (V/, w) be a symplectic vector space
and S C V a linear subspace. Define the symplectic complement of S in V with
respect to w, written S, to be the linear subspace of V' given by

S?:={veV: :wlu)=0fraluecS}.

Lemma 2.4 (Dimension Formula for the Symplectic Complement). Let (V, w) be
a symplectic vector space and S C V a linear subspace. Then

dim S 4+ dim S® = dim V.

Proof. Define @ : V — S* by @(v) := (iyw)|s. Then clearly ker® = S and
moreover, @ is surjective. Indeed, let ¢ € S*. Extend ¢ to ¢ € V* by setting

p(v) veS,

P = 0 véS.

Since iy is an isomorphism, we find v € V such that iyw = . In particular,
(iyw)|s = ¢. Hence @ is surjective and the usual rank-nullity theorem yields
dimV =dimS* + dim S® = dim S + dim S®.
O

Lemma 2.5. Let S C V be a subspace of a symplectic vector space (V, w). Then
(8°)” = s.

Proof. Using the dimension formula for the symplectic complement 2.4 twice, we
get that dim (S©)” = dim S. Thus it is enough to show the inclusion 2 only. Let
u € S. Then for any v € S we have that

w(,v) = —-w(,u)=0

by definition of S. So § C (S“’)w. O

Definition 2.6. A subspace S C V of a symplectic vector space (V, w) is said to be
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o symplectic, iff S N S« = {0}.
e isotropic, iff S C S®.

e coisotropic, iff S® C S.

e Lagrangian, iff S = S®.

Lemma 2.7. Let S C V be a subspace of a symplectic vector space (V,w). Then
the following conditions are equivalent:

(a) S is symplectic.

(b) S is symplectic.

(c) w|s € A%(S) is nondegenerate.
@vVv=SeS”

Proof. For proving (a)< (b), simply observe that
SN (s°) =8NS

by lemma 2.5. For proving (a)<>(c), suppose that v € S and w(v,u) = 0 for all
u € §. Then v € S* and by assumption v = 0. Conversly, if v € S N S, then
w(v,u) = w|s(v,u) = 0forallu € S. Since w|g is nondegenrate by assumption,
we have that v = 0. Finally, for proving (a)< (d), we compute

dim(S + $®) = dim S + dim S® — dim(S N $®) = dim S + dim S® = dim V

using lemma 2.4. Hence V = S + S¢. The converse is just the definition of the
direct sum. O

The symplectic vector space given in example 2.2 turns out to be the standard
model of any symplectic vector space.

Proposition 2.8 (Canonical Form Theorem for Symplectic Vector Spaces). Let
(V,w) be a symplectic vector space. Then dimV = 2n and there exists a basis

(ai, b;) of V such that
n
w = Zai A B
i=1

where (ozi, ,Bi) denotes the dual basis of (a;, b;).

Proof. We induct over the dimension dim V. If dim V' = 0, there is nothing to
show. So assume that the statement is true for all symplectic vector spaces with
dimension strictly less than dim V' > 1. Since dim V' > 1, there exists a; € V,
such that a; # 0. Moreover, there exists v € V such that w(a;,v) # 0 since @
is nondegenerate. Hence dim V' > 2. Set b; := v/w(a,v). Then w(a;, b1) = 1
and antisymmetry of w implies that (a1, b1) is linearly independent. Indeed, assume
that by = Aa, for some A € R. Then w(ay,b1) = Aw(ay,a;) = 0. We claim
that S := spang {a1,b1} € V is a symplectic subspace. It is immediate that
w|s is nondegenerate, thus by lemma 2.7, we have that S is symplectic. Moreover,
V = S& S and S is symplectic. Again by lemma 2.7, this means that (S, @|s«)
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is a symplectic vector space. But the dimension formula for symplectic complements
2.4 yields
dimS® = dimV —dim § = dimV — 2.

Thus we can apply the induction assumption to (S, w|se). O

Definition 2.9 (Symplectomorphism). Let (V, w) and (17,5) be two symplectic
vector spaces. An isomorphism A : V — V is said to be a symplectomorphism, iff
A*® = w, where A*@(-,-) ;= @(A-, A-).

Letn € N, n > 1, and consider the real vector space R2" with its standard basis

(e;). Setting a; :=¢; for1l <i <mnandb; :=¢; forn +1 <i < 2n, we get from
example 2.2 the linear symplectic structure

n
wo(v,u) 1= Zsi A" (v, u) = v Jou,

i=1

Jo 1= (_OI é) € Mat(2n).

Proposition 2.10. Let n € N, n > 1. Define

where

Sp(2n) := Sp(R?", wp) := {A € GL(2n) : A*wo = wo} .

Then Sp(2n) is a Lie group, called the symplectic linear group of dimension 2n> +n
with associated Lie algebra

sp(2n) = {A € Mat(2n) : JoA + A" Jo = 0} .
Proof. Let A, B € Sp(2n). Then
(AB_I)* wy = (B_l)* A*wo = (B_l)* wo = (B_l)* B*wy = idizn wo = Wy.
Thus Sp(2n) is a subgroup of GL(2n). Moreover, it is easy to check that by definition
Sp(2n) = {A € GL(2n) : A"JoA = Jo}.

We show that Sp(2n) is a regular level set of some smooth function. Observe that
Jo as well as A’ JyA are antisymmetric. If 0(2n) denotes the real vector space of
antisymmetric matrices in Mat(2n), we define F : GL(2n) — 0(2n) by

F(A) := A" JoA.

Then Sp(2n) = F~1(Jy) and we claim that Jj is a regular value of F. Suppose
Ao € F~1(Jo). We want to calculate DFy, : T4, GL(2n) — TF(4,)0(2n). Since
GL(2n) is an open subset of Mat(2n), we can identify T4, GL(2n) with T4, Mat(2n).
By lemma F.39 the latter is given by Mat(2#n) and for sufficiently small intervals
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y4(t) := Ay + tA takes values in GL(2n) for A € Mat(2n). Indeed, this follows
from an application of the Neumann-series [18, 23]. Using proposition F.38, we
compute

DFy, (y4(0)) = (F o y4)'(0)
_d
dt,
= ABJ()A + AtJ()A().

(Jo + 1(AgJoA + A" JoAg) + 12 A" JyA)

Let B € 0(2n). Then one can check that DFy,, (y4(0)) = B for A = —3Jo(44)™'B.
Hence Jj is a regular value and by the implicit function theorem for manifolds F.58,
Sp(2n) is an embedded submanifold of GL(2#r) of dimension

dim Sp(2n) = dim GL(2n) — dim o(2n) = 4n* —n(2n — 1) = 2n% + n.

So by proposition F.95, Sp(2n) is a Lie subgroup of GL(2n) and thus itself a Lie
group. Using proposition F.59 we finally compute

sp(2n) = Ty Sp(2n) = ker DF; = {A € Mat(2n) : JoA + A" Jy = 0}.

Exercise 2.11. Let A € GL(n) and B € Mat(n). Show that there exists an open interval J € R
containing 0 such that A + ¢tB € GL(n) for all ¢ € J. Hint: Use the Neumann series.

Proposition 2.12. Let V be a 2n-dimensional real vector space and w € A%(V*).
Then (V, w) is a symplectic vector space if and only if o™ # 0.

Proof. Suppose that (V,w) is a symplectic vector space. By the canonical form
theorem for symplectic vecto spaces 2.8, there exists a basis (a;, b;) of V such that

n
w:Za’/\ﬁ’.

i=1

Using the multinomial theorem, we compute

i1 +tin=n
=nl(a" AB A A" A BT,

which is clearly nondegenerate. Conversly, suppose that w is degenerate. Then there
exists v € V such that iyw = 0. Since i, is a graded derivation, we have that
iv(@") = n(iyw) A w" ! = 0. Extend v to a basis (eq, ..., ez,) of V with e; = v.
Then

w"(e1,... ) = (iv(@") (e2,...,€24) = 0.

Hence w™ = 0. O
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From the definition of Sp(2n) it is easy to show that det A = =+1. In fact, even

more is true.

Lemma 2.13. Let A € Sp(2n). Then det A = 1.

Proof. By proposition 2.12, we have that wg # 0. Moreover, we compute
o = (A*wo)" = (det A)wy.

But thendet 4 = 1. O

2.1.2 The Category of Symplectic Manifolds

Definition 2.14 (Symplectic Manifold). A symplectic manifold is defined to be a
tuple (M, w) consisting of a smooth manifold M and a closed nondegenerate 2-form
w € Q%(M), called a symplectic form on M .

Lemma 2.15. Let (M, w) be a symplectic manifold. Then dim M is even and M is
orientable.

Proof. Let x € M. Then (T, M, w,) is a symplectic vector space. By proposition
F.33, we have that dim M = dim 7, M. But by the canonical form theorem for
symplectic vector spaces 2.8, we have that dim Tx M is even.

To show that M is orientable, it suffices to show the existence of a volume form.
However, this immediately follows from proposition 2.12, since w? # 0 for all
x € M and thus " is a volume form on M. |

Lemma 2.16. Let (M, ) be a compact symplectic manifold. Then HZ, (M) # 0.
Proof. Suppose w is exact. Hence w = dn for some n € Q!(M). But then

" =dn"=d(nro"").

Using positivity together with Stokes theorem F.239, we compute

O</ w"=[ d(r]/\w"_l)zf nA" !l =0.
M M M

So w cannot be exact. But w is closed, so [w] # 0 in HZ (M). |
Corollary 2.17. S?" does not admit a symplectic form for all n > 2.

Proof. Suppose that S>" admits a symplectic form for n > 2. Then by lemma 2.16,
we have that HZ, (M) # 0. But by [6, 450]

R k =n,

H&(S™) = 0 ktn

foralln > 0. O
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Example 2.18 (R2"). Consider R?” with coordinates (x’, y?). Then
n
wp = de’ Ady
i=1
is a symplectic form on R?”,

Example 2.19 (C”). A more concise notation for the symplectic manifold given in
example 2.18 is via the identification R?” = C” and

N n
i _
wo = EkE_Ide A dzF

where (Zk) denote the standard coordinates on C” with z¥ = x* + iyk.

Example 2.20 (Orientable Surfaces). Let X~ be an orientable surface. Then any
volume form on X' is also a symplectic form because it is closed for dimensional
reasons and nondegenerate since it is nowhere vanishing.

Example 2.21 (The Cotangent Bundle). Let M be a smooth manifold. Define
A € QUT*M) as follows: for (x,£) € T*M, define

Ay (v) :=§ (D7 £y (v)) @2.1)

forallv € Ty 5yT*M,wherenw : T*M — M denotes the canonical projection. Of
course, we need to check that A is smooth. Let (x‘ , E,) denote local coordinates on
T*M and £ = £ dx". Then we compute

0 VT -
A (ﬁ) = §dx’ (Wax_k) = &85 = &.

ad ok D
()= (55

Hence A = £ dx’, which is smooth. The form A € Q!(T*M) is called the tauto-
logical 1-form or Liouville 1-form. Now set

and similarly

w:=—d) e Q¥(T*M). (2.2)
Then w is clearly closed and moreover, we compute

98

_xj

w=—d (§dx') =

. TS . .
dx’ Adx' — %déj Adx' =dx' NdE;
J

in any local coordinates (xi , Ei). Hence w is nondegenerate and thus a symplectic
form, called the canonical symplectic form on T* M .
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Example 2.22 (S?). By (F.5), we can identify TS? with x* for every x € S2. Thus
we can define w € Q2(S?) by

wx (v, w) := (x,v x w) = det(x, v, w)

forany x € S? and v, w € x1. Then w is non-degenerate, since for v # 0 choose for
example w = x xv. To show that w is smooth, we deduce a coordinate representation
for it. Since S? is an embedded hypersurface in R3, [6, 384] yields that

tg2 (in(dx Ady A dz))

is an area form on S? where N is the nowhere tangent vector field along S? given
by (this follows immediately from (F.5))

N ad n d n 0
=X — +z—.
0x y8y az
Then
in(dx ndy Adz) =xdy ANdz 4+ ydz Adx 4+ zdx Ndy

which is easily seen to be the same as w. Moreover, in cylindrical coordinates (8, i)
on S? given by

(«/1 —h2cosf,v1—h? sine,h) for (6,h) € (0,27) x (—1,1)
a short computation yields that
o =d0 Ndh.
Proposition 2.23. Let M be a smooth manifold and F € Diftf(M). Then
(DFT)" 1 =a.
Proof. Let (x,§) € T*M and v € T(x £ T*M. We compute
((DFT)” M) ey ) = ApFiyep (D (DFT)(x,g) (v))
= A(F().s0(DF)1) (D (DFT) ) (V)
= (§0(DFx)™) (DJT(F(X)9§°(DFX)71) (D (DFY) () (U)))
((DF™ oD (70 DFY) o )
(DFy) ' oD (Fo ) ey @)

(DFy)™" 0 DFy 0 Dty ) (v))
D7 (x ) (v))

=§
=§
=§
§
A
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O

Definition 2.24. A morphism F : (M, ®) — (]\7[ , cﬁ) between two symplectic man-
ifolds (M, w) and (M, &) is defined to be a morphism F € C* (M, M) such that

F*®o = w.

Exercise 2.25. Consider as objects symplectic manifolds and as morphisms the ones from definition
2.24. Show that they do form a category, the category of symplectic manifolds.

Definition 2.26 (Symplectomorphism [10, 96]). A symplectomorphism is defined
to be an isomorphism in the category of symplectic manifolds. Moreover, for (M, w)
a symplectic manifold, define the group of symplectomorphisms on (M, ), written
Symp(M, w), by

Symp(M, ) := {F € Diff(M) : F*o = o} .

2.1.3 The Tangent-Cotangent Bundle Isomorphism

As in Riemannian geometry, one very important feature of a symplectic manifold
(M, w) is that there is a canonical identification of the tangent bundle TM and the
cotangent bundle 7* M (for the Riemannian case see [6, 341]). But first we recall
some basic facts from the tensor calculus on smooth manifolds.

Lemma 2.27 (Vector Bundle Chart Lemma [6, 253]). Let M be a smooth manifold,
k € N and suppose that for all x € M we are given a real vector space E of
dimension k. Let E = ||, cps Ex and let w : E — M be given by m(x,v) := x.
Moreover, suppose that we are given the following data:

(i) An open cover (Uy)qea of M.

(i) For all o € A a bijection @y : w1 (Uy) — Uy x R¥ such that the restriction
DylE, : Ex = {x} x R¥ =~ R is an isomorphism of vector spaces for all
xeM.

(iil) For all a, B € A with Uy N Ug # @, a smooth mapping tap : Uy N Ug —
GL(k, R) such that the mapping CDaoQﬁﬂ_l : (UaﬂUﬂ)XRk — (UaﬂUﬂ)XRk
is of the form ®q 0 @5 (x,v) = (x, Tap (X)V).

Then E admits a unique topology and a smooth structure making it into a smooth
manifold and a smooth vector bundle w : E — M of rank k with local trivializations
(Ua B (pa)aeA-

Let M" be a smooth manifold and let k,/ € N. For all x € M define the space
of mixed tensors of type (k,1) on T, M by

TENT M)y =TiM®---@TMRT)M®---QT*M .
N ————_—
k I
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By proposition 12.10 [6, 311] we have that

TED(T M) = L(TIM, ..., Ty M, TuM,... . TyM;R)
N — ————
k 1

since (Ty M)* = Ty M canonically (TxM is finite-dimensional) where the latter
denotes the space of all R-valued multilinear forms on

TIM XX TYM XTxM X -+ x TyM .

k 1

We will always think of mixed tensors as multilinear forms. Let (U, x) be a chart
about x. Then using corollary 12.12 [6, 313] we get that a basis for T®-D (T M) is
given by all elements

.. - J1 Ji
e Q- ® e RdAxN |y ®---®dx’!|,
X X
forall 1 <iy,....ix,j1.....j1 < n.Consequently, dim 7®D (T, M) = n**! and

a particular tensor A € T®D (T M) expressed in this basis is given by

D
_ 1.l .
A= AJIJI Oxi1 N ® ® Oxik

Qdx |y @ @ dx'!|, (2.3)
X

) . 2.4)

Next we want to “glue” together the different spaces of mixed tensors.

where

0
IxJ1 .

0
T

’

i . i i
Aj1-~~j1 = A (dx sy oon, dx' |y,

Proposition 2.28. Let M be a smooth manifold and let k,l € N. Then

T®OTM = [ T®P (T M)
xeM

admits a unique topology and a smooth structure making it into a smooth manifold
and a smooth vector bundle = : T®DTM — M of rank n*+*. This smooth vector
bundle is called the bundle of mixed tensors of type (k,1) on M.

Proof. This is an application of the vector bundle chart lemma 2.27. For all x €¢ M
define E, := T®D (T M). By the preceeding discussion, dim E, = n**!. Let
(Uy, 9a)aca denote the smooth structure on M. Then clearly (Uy)qe4 is an open
cover for M. For each a € A, define

N7 (Uy) = Uy x R

| (xA) > (x (A5

o
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where we expressed A as in (2.3). Observe, that this map strongly depends on the
coordinate functions. Clearly, the inverse is given by

. U, x R™ 7 Y(Uy)

* (x (AL ”‘)) — (x, A)

J1---J1

Hence each @, is bijective. Now we have to check, that @y |, is an isomorphism
for all x € M. By elementary linear algebra it is enough to show that @, is linear.
SoletA € Rand A, B € E,. Then

(pctlEx(x,A‘}_),B) (x (A+AB)” lk )

= (x. (4550 + MB}J )

= Pyl|E, (X, A) + APy |, (x. B).

Lastly, let o, B € A such that U, N Ug # @ and coordinates (x.) and (xfg),
respectively. Then for x € U, N Ug we have that

9 E)xé J i dxg J
@ . = @(X)@ ) and dxa|x = ax;} (x)dxﬂ|x.

So if A;-' 'k are coordinates of a mixed tensor with respect to the basis induced by

-1
7l
x’ o 3le

xt , We compute
a p

d
ale

‘11

.0k i i
A]l i —A(dxa‘|x,...,dxak|x,

dxi! dxlk xg’ ,
= ale CONS 9x Zk( )3 ]1( xX) dx ]1( x)4 111,11¢Zk

B

Thus define 74p : Uy N Ug — GL(n¥*! R) by

0xy axif dxg
Tap (x) 1= (a ) "pk( >a ‘fl ()2 i (x))

Then 7,4 is clearly smooth and moreover

By 0 Dp" (x. (AB1-FK)) = (x, (A 75)) = (x. T4p (X)(ALIPF)).

Therefore, conditions (i)-(iii) in the vector bundle chart lemma 2.27 are satisfied and
the statement follows. O
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Remark 2.29. There is a much more abstract approach for constructing vector bun-
dles! than the explicit one used for the bundle of mixed tensors in proposition 2.28.
Let us first formulate a metatheorem:

“Anything one can do with vector spaces, one can also do with vector bundles.”

We make this precise now. Let Vect denote the category of finite-dimensional real
vector spaces. A functor

F :Vect x --- x Vect — Vect
—— ——

k

which is either contravariant or covariant in its arguments, is said to be smooth, iff
for all vector spaces Vi, ..., Vi, Wi,..., Wr € Vect the induced map

k
PLyvi. W) - L(F(Vi..... Vi), F(Wh..... W)
i=1

where

LV W) = L(V;,W;) & iscovariant in the i-th argument,
e L(W;,V;) ¥ iscontravariant in the i-th argument,

is a smooth map. The formal statement of the metatheorem can now be phrased
as follows. If ¥ : Vect x --- x Vect — Vect is a smooth functor as above and
nw; © E; — M are k vector bundles, then w : ¥ (Ey,..., Ex) — M is a vector
bundle where
F(Er.....E):= || F(Eilx..... Exlo)
xeM

and 7 (x,v) 1= x.

Recall, that in a category €, a section of a morphism f : X — Y is a morphism
0:Y — X suchthat f oo = idy.

Definition 2.30 (Tensor Field). Let M be a smooth manifold and k,/ € N.
A smooth tensor field of type (k,1) on M is defined to be a section of
7 T®DTM — M. The space of all smooth tensor fields of type (k,l) on
M is denoted by 75/ (M) := T (T®DTM).

Example 2.31. Vector Field and Covector Field Let M be a smooth manifold. Of
particular importance are the tensor fields such that k +/ = 1. If k = 1, such tensor
fields are called vector fields and we write X(M) = I” (T(l’o) ™ ) Likewise, if

I = 1, we call such tensor fields covector fields and write X* (M) := I" (T®VTM).

! See lecture 14 from the lecture notes of the course Differential Geometry I taught by Will J. Merry
at the ETH Zurich in the autumn semester 2018.


https://www.merry.io/differential-geometry-i-lecture-notes/14-constructing-new-vector-bundles
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Let (U,(x")) be a chart on M and A : M — T®DTM such that A, €
T®D(T M) for all x € M. From (2.3) we get that

0
axin |,

A= Ao

- Jl

i | RdAx |y ® - @ dx'|,

for all x € U where Ai']ll"l : U — R are given as in (2.4). We will call these
functions the component functions of A. Recall, that a map F : M — N between
two smooth manifolds M and N is said to be smooth, iff for every x € M there
exists a chart (U, ¢) about x on M and a chart (V, ) about F(x) on N such
that U N F~'(V) isopenin M and y o Fo ™! : o (UNF~1(V)) = (V)
is smooth. Moreover, it A € U € M, where U is open and 4 is closed in M, a
function ¥ € C*°(M) is said to be a smooth bump function for A supported in U , ift
0<y <1,¥|q4 =1andsuppy C U. The paracompactness condition guarantees

that smooth bump functions exist in great abundance.

Proposition 2.32 (Existence of Smooth Bump Functions [6, 44]). Let M be a
smooth manifold and A C U C M, where U is open and A is closed in M. Then
there exists a smooth bump function for A supported in U.

Proposition 2.33 (Smoothness Criteria for Tensor Fields [6, 317]). Let M be
smooth manifold, k,1 € N and A : M — T®DTM such that Ay € T®DT M for
all x € M. Then the following conditions are equivalent:

(@ Aer (T®DTM).
(b) In every smooth coordinate chart, the component functions of A are smooth.
(c) Each point of M is contained in a chart in which A has smooth component

functions.
(d) Forallw',..., 0% € X*(M) and X1, ..., X; € X(M), the function

A, ... 0% X1,....X)): M >R
defined by
A 0 X1, X)) (6) = Ax (@) 08 X X)) (225)

is smooth.
(e) Let U € M be open. If o', ..., 0% € X*(U) and X1, ..., X; € X(U), then A
defined by (2.5) belongs to C*°(U).

Proof. We prove (a) < (b) and (b) = (c) = (d) = (e) = (b).

To prove (a) & (b), let x € M and (U, (x’)) be a smooth chart on M about x.
Proposition 2.28 yields a map @y : 7~ (U) — U x R”Hl, and the proof of the
vector bundle chart lemma implies, that the corresponding chart on T®DTM is
given by (71 (U), ), where

nk+i

¢:n Y U) - oU) xR
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is defined by
Q= ((p X iank+l) o dy.

Since A, € T(k’l)TxM for all x € M, we have that
AT (x7(U)) = (0 A)TN(U) = idy (U) = U.

Hence U N A~! (n_l(U)) = U, which is open in M, and

godAdog o) — g (x " (U))

is given by

(Fodop™)(p(y) = (¢ xidg,k+1) (Pu(A,))
= (p(y). (A7) ()
= (0. (457 %) 0 07") (0(3)))

1 is smooth,

forall y € U. Thus @ o A o ¢! is smooth if and only if (A;.‘1 ’j’; op~
which is equivalent to A;ll lj" being smooth.
The implication (b) = (c) is immediate. _
To prove (¢) = (d), suppose x € M and let (U, (x*)) be a chart about x such that
the component functions of A are smooth. By example 2.31 and the equivalence (a)
& (b) we have
. o -
— S 7
o' = widx’ and  X; = X; s

on U for smooth functions w} and X l’ . Thus for any y € U we compute

Ao 0f X1, X)) () = Ax (@), 0f Xk, X
= 0l ()0l XL 0 X[ () A5 )

and so 4 (o', ... L0k, X1,..., X;) is smooth.

To prove (d) = (e), we use the fact that smoothness is a local property. Let x € U
and suppose (V, ¢) is achart on U centered at x. Then ¢(}') € R” is open and so we
find & > 0 such that B¢(0) € ¢(V). Set 4 := ¢! (ES/Z(O)) C U.Then 4 is closed
in U and by proposition 2.32 there exists a smooth bump function ¥ € C*°(U) for
A supported in U. Define @ : M — T*M and X; : M — TM by

~i y(x)oy xeU,
@) =
Oy X €M \ supp ¥,

and
V() Xilx xeU,

)?ilx =
0y Xx € M \ supp .
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Then @ € X*(M) and X; € X(M) by the gluing lemma for smooth maps (see [6,
35]). Moreover, on ¢! (BS/Z(O)) we have that @ = ' and X; = X;. But then
also

A@,.. 85X X)) = A 0R XL X))

on this neighbourhood, and so since the former is smooth by assumption, so is the
latter. Finally, to prove (e) = (b), let (U, (x*)) be a chart about x € M. Consider
o' € X*(U) and X; € X(U) defined by

. o )
e i O
o' = S}dxf and Xi ==&} g
Then it is easy to verify that
A X X)) = AL
holds on U. Thus by assumption, each component function is smooth. O

Part (d) of the smoothness criteria for tensor fields 2.33 implies that for any tensor
field A e’ (T(k’l)TM) there is a mapping

A XF(M) X X X5 (M) x X(M) %+« x X(M) — C®(M)

k 1
defined by
(a)l,...,a)k,Xl,...,Xl) — c/’o(a)l,...,a)k,)(l,...,)(l).
We will call this mapping the map induced by the tensor field A.

Proposition 2.34 (Tensor Field Characterisation Lemma [6, 318]). Let M be a
smooth manifold and k,l € N. A mapping

A XF(M) X x X5(M) x X(M) x -+ x X(M) — C®(M)

—

k !
is induced by a (k, l)-tensor field if and only if A is multilinear over C*°(M).

Proof. Suppose # is induced by a (k,[)-tensor field A. Let »!,... 0%, & <
X*(M)and Xy,...,X; € X(M) aswell as f € C°°(M). Then for any x € M we
compute
Al o+ f@ ) x)=Ac (.. 0h + f)@L. )
:Ax(...,a)i,...)+f(x)Ax(...,65fC,...)
=0 )X+ f)A(...D...) ()
=(A(..0 )+ fALE ) X).
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Thus «4 is C*° (M )-multilinear with respect to the first k arguments. Similarly, # is
C%°(M)-multilinear with repect to the last / arguments.
Conversly, suppose that

A XM X x XXM x X(M) - x X(M) — C®(M)

——

k i

is C*°(M)-multilinear. We wish to define a (k,/)-tensor field A that induces A.
That this is indeed possible, is the observation that A (a)l, Lok X Xl) (x)
only depends on w!,... ,a)f, Xilx,-.., Xi|x- Thus we divide the remaining proof
into three steps.

Step 1: A (0!, ... LD C X;) acts locally. That is, if either some o’ or X;
vanish on an open set U, then so does 4 (o', ... RLED C X;).Letx € U and

¥ € C®(M) be a smooth bump function for {x} supported in U. Then o’ = 0
on M and by C*°(M)-multilinearity

O=A(.. Yo' ...)=y@)A(...0 ... ) x)=A(.. 0, ...) ).

An analogous argument works if some X; vanishes on U.

Step 2: A (a)l, Lok X Xl) acts pointwise. Thats is, if a)fc or X;|, vanish
for some x € M, then so does A (a)l, Lok Xy Xl). Let (U, (x*)) be a chart
about x. Then o' = widx’/ on U. Let ¥ € C*(U) denote the smooth bump
function used in the proof of part (d) = (e) of the smoothness criteria for tensor
fields 2.33. Define

o %1//(x)dxf|x xeU,

Oy X € M \ supp ¥,
and A
f’i = W(x)w]l(x) X € U7
/ 0y X € M \ supp .
Then o' = f/.i &’ on a neighbourhood of x and so by multilinearity and step 1, we
have that

ef’o(...,a)i,...)=fj"eAa(...,sj,...)

on a neighbourhood of x. But since a); vanishes so does each a); (x). Hence

e;4»(...,50",...)()6)=]_”]-"(x)a%(...,zzj,...)()c)=a)]’:(x),Aa(...,sj,...)(x)=0.

An analogous argument works if some Xj|.

Step 3: Definition of the (k,[)-tensor field A inducing 4. Letx € M, ', ..., oF
TXMandvy,...,v € Tx M . Suppose that@!, . . Lok e (M) andfl, e )?1 €
X(M) are any extensions, respectively. That is, @. = ' and Xile = vi. They do
always exist, since in a chart (U, (x?)) we may write
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P a)}dxj|x and v = v/

and so using a smooth bump function for {x} supported in U we can construct global
maps as in step 2 if we consider the components as constant functions. Now define

Ay (a)l,...,a)k,vl,...,vl) = A(&Sl,...,ék,fl,...,fl) (x). (2.6)

This is well-defined by step 2. Now if wl,... of € X*(M) and X4,...,X; €
X(M), we have that

Aol 0f X, LX) () = A (o) 0k Xk X))

since @’ and X; are extensions of a)fc and X; |y, respectively, for all x € M. So the
assumption that # takes values in the space of smooth functions C *° (M) together
with part (d) of the smoothness criteria for tensor fields 2.33 yields that A4 is a smooth
(k, I)-tensor field which moreover induces 4. |

Proposition 2.35 (Bundle Homomorphism Characterisation Lemma [6, 262]).
Letw :E— Mand7 : E —> M be smooth vector bundles over a smooth manifold
M. Amap ¥ : T(E) — T'(E) is linear over C*°(M) if and only if there exists a
smooth bundle homomorphism F : E — E over M such that F (o) = Foo forall
o e '(E).

Theorem 2.36 (Tangent-Cotangent Bundle Isomorphism). Let (M, w) be a sym-
plectic manifold. Define 2 : TM — T*M by

W) (w) = wx(v,w) 2.7

forall x € M and v,w € TxM. Then 2 is a well-defined smooth bundle isomor-
phism. The morphism §2 is called the tangent-cotangent bundle isomorphism.

Proof. Using the tensor field characterisation lemma 2.34, @ induces a map
®:X(M)xX(M) — C®(M)

which is C°°(M)-multilinear. Thus for X € X(M) we define 2x : X(M) —
C>(M) by
2x(Y) = wlX,Y).

Since w is multilinear over C*° (M), so is §2x, and thus again by the tensor field
characterisation lemma 2.34, 2y belongs to X*(M). Hence we get a map £2 :
X(M) - X*(M) by 2(X) := £2x which is also multilinear over C °*°(M). Finally,
by the bundle homomorphism characterisation lemma 2.35, there exists a smooth
vector bundle homomorphism §2 : TM — T*M such that 2x = £ o X for all
XeX(M).Letxe M,v,we TyM and V, W € X(M) be extensions of v and w,
respectively (see step 3 in the proof of the tensor field characterisation lemma 2.34).
We compute
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Rvix(w) = Ly(W)(x) = o(V. W)(x) = 0x(V]x, W|x) = 0x (v, )

and since (20 V)|x(w) = 2(V]x)(w) = £2(v)(w), we have that §2 coincides with
the map defined in (2.7). Next we show that £2 is injective. Let v,v € TM such
that £2(v) = £2(V). Since £2 is a fibrewise mapping, we must have that v, v € T,y M
for some x € M. Moreover, by definition we have that w,(v — v, w) = 0 for
every w € Ty M. By nondegeneracy, it follows that v = v. Moreover, since Ty M
is finite-dimensional, we get that §2 is also surjective, thus bijective. Since any
bijective smooth bundle homomorphism over M is automatically a smooth bundle
isomorphism by [6, 262], §2 is a smooth bundle isomorphism. O

Remark 2.37. In what follows, we will denote both the smooth bundle isomorphism
2 :TM — T*M as well as the induced C*°(M)-linear morphism 2 : X(M) —
X*(M) by the same letter £2. However, as a subtle distinction between those two
maps, we will write £2x for the evaluation of the latter at some X € X(M).

Proposition 2.38. Let (M, w) be a symplectic manifold and n € Q1 (M). Then there
exists a unique vector field X € X(M) such that

iyw =n.
Proof. Using the tangent-cotangent bundle isomorphism 2.36, set
X =27 '(n).
Then for any x € M and v € T,y M we compute

nx(v) = (QX)X (v) = 2(X[x)(v) = wx (X|x» U) = (ix)x(v).

2.1.4 The Darboux Theorem

This section deals with a nonlinear analogue of the canonical form theorem for a
symplectic vector space 2.8. The main theorem of this section illustrates the most
dramatic difference between symplectic structures and Riemannian ones: unlike in
the Riemannian case, there is no local obstruction to a symplectic structure being
locally equivalent to the standard flat model (R*", wy).

Definition 2.39 (Time-Dependent Vector Field [6, 236]). Let M be a smooth man-
ifold. A time-dependent vector field on M is a smoothmap X : J x M — TM,
where J C R is an interval, such that X(¢,x) € T,y M for all (t,x) € J x M.
An integral curve of a time-dependent vector field X is defined to be a curve
y € C*®(Jy, M), where Jy C J is an interval, such that

Y1) =X (1.y(1))
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holds for all ¢ € Jy.

Proposition 2.40 (Fundamental Theorem of Time-Dependent Flows [6, 237]).
Let M be a smooth manifold, J C R an open interval and X : J x M — TM
a time-dependent vector field. Then there exists an open subset D € J x J x M
together with a map W € C°(D, M), called the time-dependent flow of X, such
that:

(a) For all ty € J and x € M, the set DY0X) := {t € J : (t,19,x) € D} is an
open interval containing ty and the curve Y% (t) := (¢, to, X) is the unique
maximal integral curve of X with initial condition ¥ %0 (1) = x.

) Ift; € DX and y = 09 (1)), then DY) = DX and 't =
w(to,X).

(c) For each (t1,t9) € J x J, the set My, 1, = {x € M : (t1,%p,x) € D} is open
in M, and the map Vs, 1, : My, 1o — M defined by Yy, 1,(x) := Y (t1, %0, X) is
a diffeomorphism from My, r, onto My, 1, with inverse Yy 1, .

(d) If x € My, 1y and Yy, 1o(x) € My, 4., then x € My, 1, and

wt2stl © Ir//tlyl‘o(x) = wtz,to(x)
In [2], the Lie derivative is referred to as the fisherman’s derivative.

Proposition 2.41 (Fisherman’s Formula [6, 571]). Let M be a smooth manifold
and suppose that X : J x M — TM is a time-dependent vector field with time-
dependent flow ¥ : D — M. For any form w € Q¥(M) and any (1,19, x) € D

d

dt

* *
Ipl,tow = 1'//tlalo (‘lel a)) ’

1=t
holds, where X;, := X(t1,-) € X(M).
Proof. Applying ¥ ,, to above equation yields

3
— v o =%Lx, o
dt t=t, Lh f

using part (c) and (d) of the fundamental theorem of time-dependent flows 2.40.
An appropriate modification of proposition F.191 shows that the left-hand-side is a
graded derivation of degree zero. Thus it is enough to show that both sides coincide
on functions and exact 1-forms by mean of proposition F.199. Let f € C°(M).
Then for any x € M we compute

d
M (I/It*,flf)x =

dt 1=t

f (1/ft,t1 (X))

T dr t=t
=(fo l/f(t]’x)>/(t1)
= (¥) ) s




54 2 Hamiltonian Mechanics

=X (n.y ) s
=X, () f
= (ixn f)x

using part (a) of the fundamental theorem of time-dependent flows 2.40. Moreover
with proposition F.202 we compute

dl . d ,
dt t=tlwt’tl = dt t=t1d Vi)
a|
=d (£x,, f)
= xthdf

We need the following adapted version of Fisherman’s formula 2.41.

Proposition 2.42 ([6, 573]). Let M be a smooth manifold and J < R an open
interval. Suppose X : J x M — TM is a time-dependent vector field with time-
dependent flow ¥ 1 D — M and w : J x M — A¥T*M is a time-dependent
differential k-form. Then for any (t1,1t9,x) € D

d

d
* %
E wl,t()w[ - wll ,to (inlwtl + E

w,) 2.8)
=ty

t=ty
holds.

Proof. For ¢ > 0 sufficiently small, define
F:i(ti—eti+6)x(t1—et+6)— AT*M

by
F(u,v) = ¥, 0.
Using the chain rule and Fisherman’s formula 2.41 we compute

4
dt

Ft.1)

1=t

* —_
Viw® = 4

1=t
oF oF

= —(t1,t1) + —(t1, 1)
ou v

d

d
E 1//:,t()a)tl + 5

E3
v, o
trto Y
dv‘v=t1

V=1

U=t

* * d
= wz‘l,to (xthwtl) + th,to (

dv
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o)
—_— wy | .
=ty

. *
- th o (IXII C()tl +

dt
(]

Proposition 2.43 (Moser’s Trick [10, 108]). Let M be a compact smooth manifold
and suppose that we are given a smooth family of symplectic forms (w;)iey € Q2(M)
for some open interval J C R containing 0, such that there exists a smooth family
(n1)ies € QU(M) with exact derivatives:

d
Ewt = d77t

Then there exists a family of diffeomorphisms (V;);cy € Diff (M) such that
Vo = wo. (2.9)

Proof. The key observation to achieve this is to represent the diffeomorphisms
(¥t)res as the time-dependent flow of a time-dependent vector field X, where
Y = VY0 in the terminology of proposition 2.40. This extremely useful argument
is called Moser’s argument or as Moser’s trick. Using the adapted version of
Fisherman’s formula 2.42 and Cartan’s magic formula F.204 we compute

d " d
a% wy = % (xtht + d_a)t)

= wt (d tha)t _twt)
=y, (d (ix, ) + dn)

In order to satisfy equation (2.9), we want ;" @, to be constant, so above computation
yields

d
ix,(dw:) + d lX,a),) + Ew,)

¥ (d (ix,@0) + dni) = 0.
Since ¥/ is an isomorphism, we can equivalently solve
d (ix,o;) +dn; =0
and because d is a sheaf morphism, it is sufficient to solve
ix,w: +n; =0. (2.10)

Equation (2.10) is called Moser’s equation and can be solved by proposition 2.38
explicitly by
X = —-Qt_l(??t),
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where £2; denotes the tangent-cotangent bundle isomorphism 2.36 induced by wy.
Note that thus X, varies smoothly in #. Hence by the fundamental theorem of time-
dependent flows 2.40 together with the compactness of M yields the existence of a
time-dependent flow ¥ : J x J x M — M. But then

* * s 1%
Y 0 = Yowo = idy, wg = wo
as desired. O

Definition 2.44 (Tubular Neighbourhood [7, 133]). Let (M, g) be a Riemannian
manifold, S € M an embedded submanifold and denote by & : NS — S the normal
bundle of S in M. Consider the restriction expg : & N NS — M the restriction of
the exponential map of M with domain & € TM . A neighbourhood U of S in M
is called a tubular neighbourhood of S in M , iff there exists a positive continuous
function § : § — R such that U is the diffeomorphic image under expg of a subset
V € & N NS of the form

V= {(x,v) € NS :|v[, < S(x)}.
If § is constant, then U is called a uniform tubular neighbourhood of S in M .

See figure 2.1 for an illustration of a tubular neighbourhood.

Fig. 2.1: A tubular neighbourhood U of an embedded submanifold S of a smooth
manifold M.

Proposition 2.45 (The Tubular Neighbourhood Theorem [7, 133]). Let (M, g)
be a Riemannian manifold. Every embedded submanifold of M admits a tubular
neighbourhood in M, and every compact submanifold admits a uniform tubular
neighbourhood.
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In order to apply the tubular neighbourhood theorem 2.45 to any smooth manifold,
we need the following basic result from Riemannian geometry.

Proposition 2.46 (Existence of Riemannian Metrics [6, 329]). Every smooth man-
ifold admits a Riemannian metric.

Proposition 2.47 (Homotopy Formula [15,45]). Let U be a tubular neighbourhood
of an embedded submanifold S of a smooth manifold M. Suppose that » € Q¥(U)
is closed and 1*w = 0, where 1 : S <> U. Then there exists n € QK=Y (U) such that
w = dn. Moreover, we can choose 1 such that ny = 0 forall x € S.

Proof. By definition of a tubular neighbourhood 2.44, there exists a positive contin-
uous function § : § — R such that U = expg(V'), where

V= {(x,v) € NS :v], < 8(x)}.
Lett € I and define Y, : U — U by
¥t (expg(x,v)) 1= expg(x,1v).
Then v, is a diffeomorphism for # > 0 onto its image
Vi(U) = expg (Vi)

where
Vi = {(x,v) € NS :|v|, <18(x)},

since expg is injective and an explicit smooth inverse is given by
expg(x,1v) = expg(x,v).

Moreover, y;(U) is open in U because expg is a diffeomorphism, thus a homeo-
morphism and so in particular an open map. So we can restrict any form in Q¥ (U)
to a form in Q¥ (wt(U)). Also

Y = idy and Yo = Lo oexpg'

where 7 : NS — S is the projection. Hence we are done if we show the existence
of amap H : Q¥(U) — Q¥ 1(U) such that

Hod+doH =y} -y, @2.11)

since then by assumption w = d(H ) and so we can choose 1 := H(w). We claim
that such an operator H is given by

1
H(w) := /0 v; (ix,0) dt

for o € Q¥(U), where X; € X ((U)) is given by
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d
X; = (EW’) oy, !

1
H= [ Ha
0

where H; : QX(U) — QF~1(U) is defined by

for t > 0. Or equivalently

d
(Hi0)x (01, k) 2= 0,0 (Ewt(xx DWx D), D(wx(vk_l))

forx € U and vy,...,vx—; € T, U. Indeed, using Cartan’s magic formula F.204
and Fisherman’s formula 2.41 we compute

1
H(dw) + d(Hw) = /0 v (ix,(dw)) +d (¥} (ix,0)) dt

1

:/ l//t* (iX,(da))—i-diX,w)dt
0
1

- / U (x,0) di
0
L q

- fo i) dr

= W{kw - lﬁng

since v is the time-dependent flow of X;. Moreover, we have that ¥;|s = idg for
allt € 1, so X; vanishes on S and so does 7. O

Remark 2.48. Equation (2.11) is referred to as a Homotopy formula, because a
similar formula is used to show the homotopy invariance of the de Rham cohomology.
See for example [6, 443—-446].

Remark 2.49. Alternatively, one could also prove proposition 2.47 using the follow-
ing result due to Elie Cartan:

Proposition 2.50 (Cartan [14, 104]). Let M and N be smooth manifolds, J € R
anintervaland F : I x M — N a smooth map. For allt € J define

H, : QK(N) = Q1 (m)
by
d
(Hiw)x(v1, ..., Vk—1) = OF,(x) (EF}()C), D(F)x(v1), ..., D(Ft)x(vkl))

forx € M and vq,...,vk—1 € Tx M. Then
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d o

forallw € Q¥(N)andt € J.

Proposition 2.51 (Moser Isotopy [10, 109]). Let M?" be a smooth manifold and
S C M a compact submanifold. Suppose that wg, w; € 2*(M) are closed and such
that:

(i) wol|x = wil|x forallx € S.
(ii) wo|x and w1 |y are nondegenerate for all x € S.

Then there exist neighbourhoods Uy and Uy of S in M and a diffeomorphism
F : Uy — Uy such that

Fl|s =ids and F* (601|U1) = woluy-

Proof. In view of Moser’s trick 2.43, we can argue as follows. Let U be a uniform
tubular neighbourhood of S in M. Note that U is compact by construction. By
proposition 2.47 there exists n € Q! (U) such that

w1 — Wy = d?}

Fort € R set
w; = wo + t(w) — wp).

By shrinking U to a new neighbourhood Uy of S in M if necessary, we may assume
that w;, is non-degenerate for ¢ in some bounded open interval containing / (this is
due to the fact that ; = wp on S and non-degeneracy is an open condition). By
definition

d
Ea), =w; —wy = dn.

By Moser’s trick and the fact that Uy C U is compact as a closed subset of a compact
space, there exists a family of diffeomorphisms (y/;);es such that

Wt*wt = Wo.

Thus set F := ¢y and U; := F(Uy). Then by definition and since 1 vanishes on S,
we have that F|g = ids. O

Theorem 2.52 (The Darboux Theorem [6, 571]). Let (M>", w) be a symplectic
manifold. For every x € M, there exists a chart (U, (xf, yi)) centred about x such
that

n
oly = dei Ady'.
i=1

Any such chart is called a Darboux chart about x.
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Proof. By the canonical form theorem for symplectic vector spaces 2.8 there exists
a basis (a;, b;) of Ty M such that

n
Wy =Za’ A B

i=1

where (', ') denotes the dual basis of (a;, b;). By proposition F.34, there exists a
chart (U, ¢) with associated coordinates (X*, 5 ) centred about x such that

0

Xt

0

ord == bl‘.
0y!

P

=aqa; and
X

In particular
n
wx =Y d¥ | AdF .
i=1
Set
n
wo ‘= wly and w1 :=Zd}?’ AdY'.
i=1

Then wy as well as w; are symplectic forms on U. Applying the Moser isotopy 2.51

to the compact submanifold {x} of U yields the existence of two neighbourhoods
Up and U; of x in U and a diffeomorphism F : Uy — Uj such that

Fx)=x and  F*(o1ly,) = oolu,-

Define a new chart (Up, ¢) by ¢ := @|y, o F. Then the associated coordinates are
given by _ ' ‘ .
x*=X'oF and y =3 oF.

Moreover ¢(x) = @(x) = 0 and

wly, = wolu, (by definition of wq)
= F* (o1|v,) (by definition of F)

n . .
=F* (Z dx* A djfl) (by definition of wy)

i=1

n . .

= Z F*(dX' Ad7") (since F* is linear)
i=1
n . .

=Y F*(d¥) A F* (d7") (by lemma F.193)

i=1

n
= Z d (F*3") nd (F*5") (by proposition F.201)

i=1
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n
=Y d(FoF)rd(§oF) (by definition of F*)
i=1
n . . . .
= Z dx' ndy' (by definition of x* and y*).
i=1
Thus (Uy, ¢) is our desired chart. O

2.2 Hamiltonian Systems

If the Legendre transform 1.40 is a diffeomorphism, we can define an associated
Hamiltonian function by 1.46, that is a smooth function H on T*M, where M is a
smooth manifold. By example 2.21, we know that the cotangent bundle 7* M admits
a canonical symplectic structure in terms of the tautological form 1.38. The tuple
(T*M, H) turns out to be the prototype of a much more general structure.

Definition 2.53 (Hamiltonian System). A Hamiltonian system is defined to be a
tuple ((M ,w), H ) consisting of a symplectic manifold (M, w), called a phase space,
and a function H € C*°(M), called a Hamiltonian function.

Remark 2.54. In what follows, we will write simply (M, w, H) for a Hamiltonian
system instead of the more cumbersome ((M ,w), H ) The latter was choosen in the
definition to emphasize the similarity to the definition of a Lagrangian system 1.8.

2.2.1 Hamiltonian Vector Fields

As in Riemannian geometry, a main advantage of the symplectic structure is to
reinstate the definition of the gradient of a smooth function as a vector field instead of
a covector field using the tangent-cotangent bundle isomorphism (for the Riemannian
case see [0, 342-343]).

Definition 2.55 (Hamiltonian Vector Field). Let (M, @, H) be a Hamiltonian sys-
tem and denote by £2 : X(M) — X* (M) the tangent-cotangent bundle isomorphism
from proposition 2.36. The vector field Xz defined by

Xpg = Q7 Y(dH) (2.12)

is called the Hamiltonian vector field associated to the Hamiltonian system.

Let (M, w, H) be a Hamiltonian system and suppose (U, (x’, y)) is a Darboux
chart (see theorem 2.52). In these coordinates write

Xy = X' 9 +Y! J
H =2 55 oyt
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Then we compute
n
ixy o =ixy (Z dx' A dy’)
i=1

n
= Z ((iXdei) Adyt —dx' A (iXdei))

i=1
n . . o .
= Z (X'dy' —Y'dx").
i=1

Comparing with
_O0H , ;  0H

dH = de’ + Wdyi
yields
. O0H : oH
Xl = ﬁ and Yl = —ﬁ
y X
Thus

n
oH 0 0H 0
" ; (By’ axt  dx' dy? )
Definition 2.56 (Invariance). Let M be a smooth manifold, X € X(M) a complete
vector field with flow 6. A tensor field A € 75! (M) is said to be invariant under
the flow 0 of X, iff
;A=A

forall € R.

Recall, that a tensor field A4 is invariant under the flow of a vector field X if and
only if £y A = 0 (see [6, 324]). The next proposition is a prime example why we
require a symplectic structure to be both closed and nondegenerate. For the proof,
we need one more preliminary result from the calculus of differential forms.

Proposition 2.57. Let (M, w, H) be a Hamiltonian system such that the Hamiltonian
vector field is complete. Then the symplectic form is invariant under the flow of the
Hamiltonian vector field.

Proof. By the previous discussion it is enough to show that £x,® = 0. Using
Cartan’s magic formula F.204, closedness of @ together with proposition 2.38 we
compute

Lx, 0 =ix, (dw) + d(ix,v) = d(ix,,w) = (d od)H = 0.
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2.2.2 Poisson Brackets

Definition 2.58 (Poisson Bracket). Let (M, ) be a symplectic manifold. Define a
mapping
{1 CPM)x C®(M) - C®(M)
by
{f.8):=oXr. X¢)

where Xy and X, are Hamiltonian vector fields associated to the Hamiltonian
systems (M,w, ) and (M, w, g), respectively. The mapping {-,-} is called the
Poisson bracket on C*°(M).

Recall, that if f € C°°(M) for a smooth manifold M, the differential of f is
defined to be the covector field given by dfy(v) := vf forx € M andv € Ty M.
This is indeed a smooth covector field by part (d) of the smoothness criteria for
tensor fields 2.33 since

df (X)(x) = dfx(X]x) = X|x f = (Xf)(x) (2.13)

forany X € X(M) and x € M, and Xf is smooth by [6, 180] (proving this is
analogous to the proof of the smoothness criteria for tensor fields 2.33).

Lemma 2.59. Let (M, ) be a symplectic manifold. Then {f, g} = Xg f holds for
all f,g € C*®(M).

Proof. Using proposition 2.38 and equation (2.13), we compute

{8} =w(Xr Xg) = (iX/CU) (Xg) =df (Xg) = Xg f.

Definition 2.60 (Integral of Motion). Let (M, w, H) be a Hamiltonian system. A
function f € C°(M) is said to be an integral of motion for the Hamiltonian
system (M,w, H), ift {H, f} = 0.

2.2.3 Lie Group Actions and Noether’s Theorem

Let us recall some basic facts from the theory of Lie groups and Lie algebras. A
Lie group is defined to be a group (G, -), such that G is a smooth manifold and the
multiplication - as well as the inversion map -~! : G — G defined by g > g~ ! are
smooth. If G is a Lie group, we can associate to G its Lie algebra g defined to be
g := T, G, where e denotes the neutral element of G. It can be shown that g =~ X7 (G)
asreal vector spaces, where X7, (G) C X(G) denotes the space of left invariant vector
fields on G, that is, the vector fields X € X(G) satisfying (Lg)«X = X, where
L, is the diffeomorphism Lg : G — G defined by Lg(h) := gh and (L)« is the
pushforward of X defined to be the vector field ((Lg)«X),, := d(Lg)g-1,X -1,
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for h € G. Most importantly, any left invariant vector field on G is complete and so
we can define the exponential map exp : g — G by

expv = y(1),

where y € C®°(R, G) is the integral curve of the left invariant vector field X,
associated to v on G, that is Xy|g := d(Lg).(v), with starting point y(0) = e.
Then we have that y(¢) = exptv and (expfv)~! = exp(—tv) for all v € g and
t e R.

The most important applications of Lie groups to smooth manifold theory involve
actions by Lie groups on manifolds. Let G be a Lie group and M be a smooth
manifold. A map in C*°(G x M, M) given by (g, x) + g - x, is said to be a left
action of G on M iff

g-(h-x)=1(gh)-x and e-x=x

holds for all g,h € G and x € M. Similarly, a right action of G on M is defined to
be a map in C*®°(M x G, M) given by (x, g) — x - g satisfying

(x-g)-h=x-(gh) and X-e=Xx

forall g,h € G and x € M. Note that any left action of G on M can be transformed
into a right action of G on M by defining x - g :== g~ !-xforallg € Gandx € M,
and similarly every right action of G on M can be transformed into a left action of
GonM.

Suppose we are given a right action of a Lie group G on a smooth manifold M .
Then each element v € g determines a global flow on M by

(t,x) —> x -exptv.

Define ¥ € X(M) by
~ d
Uy 1= —

T dt o,
for all x € M. This is the infinitesimal generator associated to the above flow (see
[6, 210]). Hence we get a map g — X (M) defined by v > 0. By [6, 526], this map
is actually a Lie algebra homomorphism. This is the main reason we are working
with right actions rather than left actions.

Lemma 2.61 (Computing the Differential Using a Velocity Vector [6, 70]). Let
F € C*®(M, N) for two smooth manifolds M and N, x € M and v € TyM. Then

X -exptv

dFx(v) = (F 0y)'(0)
foranypathy € C*®(J, M), where J C R is an interval such that 0 € J, y(0) = x
and y'(0) = v.

Proposition 2.62. Suppose we are given a right action of a Lie group G on a smooth
manifold M. Then for each v € g, the infinitesimal generator U associated to the
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flow generated by v satisfies

d
@ f)(x) = 7 f(x-exptv)

t=0

forallx € M and f € C*®(M).

Proof. Let x € M and denote by 6 : M x G — M the right action of G on
M . Define 6* : G — M by 6*(g) := x - g. Then 6% is smooth since 6% is the
composition

Gx={x}xG— MxG —25 M

where the first two maps steem from [6, 100]. Set y(¢) := exptv forall € R. Then
it is immediate, that

x-exprv = 0% (y(1)).

Thus we compute

W)(x) =0x f

S AN

=d(0%).(v) f (by lemma 2.61)
=v(f 00%) (by definition of d6*)
=d(f 260%)c(v) (by definition of d(f o %))
=(f06*0y) (0) (by lemma 2.61)
= % lzof(x -exptv).

Remark 2.63. From now on, we will consider left actions of Lie groups G on
smooth manifolds M only instead of right actions, since they are more common.
This is however no drawback, since any left action can be converted into a right
action. Hence if v € g, the corresponding infinitesimal generator V' is given by

Vy = — exp(—tv) - x.
x dr|,— p( )

Proposition 2.64. Let 6 : G x M — M be a Lie group action. Then for all g € G
and v € g we have that

Adg1(v) = 635.

Proof. By proposition F.109 we have a commutative diagram
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where g (h) := ghg™! denotes the conjugation action of G on itself. Let x € M.
We compute

—_
>
0 %
<)
SN—
=

I
—_
—_
>
0q

|
SN—
*
<)
SN—
=

93—1)9g(x) (6|9g(X))

d
eg_l )eg(x) (E

Qg—l o eexp(—l‘v) (98 (X))
t=0

Il
o

Oexp(—v) (eg (x)))

t=0

o S R W

6’g*1 exp(—tv)g (x)
t=0

eexp(—t Ad,—1 (v)) (x)
t=0

dg—1(v)|x

Il
>

forallg e Gandv € g. O

Definition 2.65 (Action by Symplectomorphisms). A left action 8 of a Lie group
G on a symplectic manifold (M, w) is said to be an action by symplectomorphisms,
iff 6, € Symp(M, w) forall g € G.

Example 2.66 (Cotangent Lift). Let 0 be a left action of a Lie group G on a smooth
manifold M. Define a left action 6 of G on T*M by

5 iyt
O = D (6,")

for all g € G. Using proposition 2.23 we compute
Og = =05 (dA) = —d (9;,‘)&) =—dl=w
forall g € G.

Definition 2.67 (Equivariant Action [6, 164]). Let G be a Lie group acting on
smooth manifolds M and N on the left. A map FF € C*°(M, N) is said to be
G -equivariant, ift

F(g-x) =g F(x)
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holds forall g € G and x € M.

Definition 2.68 (Weakly Hamiltonian Action and Hamiltonian Action). A left
action of a Lie group G on a symplectic manifold (M, w) by symplectomorphisms
is said to be

e weakly Hamiltonian, iff for each v € g, there exists a Hamiltonian system
(M, w, Hy), such that Xy, = 0.

e Hamiltonian, iff the action is weakly Hamiltonian and additionally the induced
mapping g — C°°(M) defined by v — H, is G-equivariant with respect to the
adjoint action of G on its associated Lie algebra g (see F.120) and the induced
action of G on C*°(M), that is

Haa,— ) = Hy 0 0g
holds forall g € G and v € g.

Lemma 2.69. Let F : M — N be a diffeomorphism, X € X(N) and w € Q1 (M).
Then

iF*X(a)) = iX (F*a)) oF.

Proof. By definition we have that F* = (F~!)_, so for x € M we compute

(iF=x (@) (x) = (igp-1),x (@) (x)
= ox (D (F ) e (XF(x)))
= ((F)" @), (Xrw)
= ix (Fuo) (F(x)) .
O

Proposition 2.70. Let 0 be a left action of a Lie group G on an exact symplectic
manifold (M —dn) such that Ogn = n for all g € G holds. Then the action 0 is
Hamiltonian with

Hy = i5(n)

forallv € g.

Proof. Step 1: 0 is an action by symplectomorphisms. Let g € G.Using proposition
F.201 we compute
—0; (dn) = —d (651) = —dn.

Step 2: 0 is a weakly Hamiltonian action. Letv € g. We want to prove that Xy, = .
By proposition 2.38, Xp, is the unique vector field such that —ix,, (dn) = dH,.
Thus it is enough to show that —iz(dn) = d H, holds for all v € g. Using Cartan’s
magic formula F.204 we compute

—ig(dn) = d (izn) — Lon
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) d N

=d (lﬁ?]) - E t_oeexp(—tv)n
. d

=d (ign) — - T

= d (ipn)

=dH,.

Step 3: 0 is a Hamiltonian action. Left to show is that 6, is G-equivariant with
respect to the adjoint action of G on g and the induced action of G on C*°(M), that
is, we have to show

HAdg(U) = HU [¢] 9g

forall g € G and v € g. We compute

Hpa, ) = IAW)U

= lgxp (by proposition 2.64)
= i3 (0;,1 n) o bg (by lemma 2.69)
= ignobg
= Hyo00,.
Thus 6 is a Hamiltonian action. O

Definition 2.71 (Symmetry Group). A Lie group G is said to be a symmetry group
of a Hamiltonian system (M, w, H), iff there exists a weakly Hamiltonian action
of G on (M, w), such that

0; H=H

holds for all g € G.

Theorem 2.72 (Noether’s Theorem, Hamiltonian Version). Let G be a symmetry
group of a Hamiltonian system (M,w, H). Then for each v € g, the function
Hy, € C®(M) such that Xy, = ¥ is an integral of motion.

Proof. Let x € M. We compute

{H,Hy}(x) = (XHUH) (x) (by lemma 2.59)
= (VH)(x)

d
=7 H (exp(—tv) -x) (by proposition 2.62)
1=0

Q| ..
= E o (eexp(—tU)H) ()C)

d
=—| H
ar|,_ A

=0.
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|

If F € C*°(M, N), then the derivative of F can be interpreted as a vector bundle
homomorphism DF : TM — F*TN.Indeed, define

DF(x,v) := (x, (F(x), DFx(v)))
for any (x,v) € TM.If v : E — M is a fibre bundle, we can define

VE := | [ ker D,.

Then VE with the usual footpoint projection is a vector bundle over E, called the
vertical bundle of E. Moreover, one can show that VE is isomorphic to n*E.
Explicitely, the isomorphism @ : 7*E — VE is given by

d
P(p.q) = T

(p +1q). (2.14)
=0

t=
Proposition 2.73 (Invariant Definition of the Associated Form). Let (M, L) be
an autonomous Lagrangian system. Then

Ar(v) =dL ((45 o Dn)v) (2.15)

forallv e TTM, where w : TM — M is the projection and ®: n*TM — VTM
is the vector bundle isomorphism (2.14).

Proof. Letu € T(y ,)TM be given by

9 9
= Al n l—.
" ax? T vt

(x,v) (x,v) .

Then we compute

dL ((45 o Dn)u) =dL (QD ((x, v), (x, Dn(x,v)(u))))
d

=dL(x (E . (v + tDn(x,U)(u)))
t=

d ia”j iaﬁj 0
= dL(x,v) <_ Z=OU +t ()L W(X, U) +u W(x’ v)) ax_]

; )
)

d 9
= dL(x,U) (E OU +tA Il

t=
)
(x,v)

= dLx ) ( iﬁ

oL ,.
= W(X, U)k
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= 2 (e ) e )
= ArL(u).
O
Corollary 2.74. Let G be a symmetry group of a Lagrangian system (M, L). Then
(DOg)*AL = AL
forall g € G.
Proof. Using proposition 2.73 we compute
(Dbg)*AL(v) = (Dbg)*dL ((® o D))
=d ((Dbg)*L) ((@ o Dr)v)

=dL ((® o Dr)v)
=AL(v).

forve T(TM). O

Proposition 2.75. Let (M, L) be an autonomous Lagrangian system with symmetry
group G and such that the Legendre transform is a diffeomorphism. Then G is
a symmetry group of the corresponding Hamiltonian system (T*M yw,Ep ot 1),
where @ denotes the canonical symplectic form on the cotangent bundle, with

Hy =iz(AL) ot
forallv € g, where v € X(TM) is defined by

~ d Do
V= — exo(—t0) -
dt =0 p(—tv)

Moreover, the action is Hamiltonian.

Proof. Define a left action 6 of GonT*M by
(;g :=1,0D0, ot
for all g € G. This action preserves A, that is O;A = A forall g € G, and preserves
the Hamiltonian function Hy, = Ep ot ! Indeed, using corollary 2.74 we compute
0ih = (tpoDbgory!) A
= (i21) " (DO)* 7 r
= (171) (D) AL
— ( -1
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=2,
and denoting by f € C°*°(TM) the function
f@.v) = DT Lz (v),

proposition 1.56 yields

= 5; (EL oty )
=0; (") E
= (7' o §g) Er
= (Dbg o) EyL
= (rL_ ) (Deg)*EL
= (")  (DO)*(f - L)
= ()" ((DO)* f — (DO,)* L)
= (") (/-1
= (") EL
=Epot’
= H;

for all g € G. Hence by proposition 2.70, the action 6 is Hamiltonian with
Hy, =i3n
forall v € g. But

Hy(x,§) = (ig(Ar) o 17 ') (x,6)
= (D‘(TLA)OTL )(X £)
(T*A) o (x, g)( |‘rL1(x,E))

= Ax) (D @ |r;1(x,s)))
Deexp(—tv) (TZI (X, g))))

t=0

7L © Deexp(—tv) (TZI ()C, é)))

o (ruy (5, s>)

71



72 2 Hamiltonian Mechanics

forall (x,§) e T*M. |

2.2.4 Moment Maps

Definition 2.76 (Moment Map [10, 205]). A moment map for a weakly Hamilto-
nian action of a Lie group G on a symplectic manifold (M, ) is defined to be a
G-equivariant map

w:M—g*
with respect to the coadjoint action Ad* of G on g*, such that for all v € g we have
that v = Xpg, where H, € C*(M) is defined by

Hy(x) := pu(x)v.

Proposition 2.77. Let i : M — g* be a moment map for a weakly Hamiltonian
action of a Lie group G on a symplectic manifold (M, o). Then the action is Hamil-
tonian.

Proof. Denote @ : g — C°°(M) the map given by &(v) := H,. Then we must
show that

@ (Adg (v)) (x) = Hy(g - x)
holds for all g € G, v € g and x € M. We compute

@ (Adg (v)) (%) = Hag)(x) (by definition of @)
= u(x) (Adg (v)) (by definition of Hy)
= Ady (u(x)) v (by definition of Ady)
= u(g-x)v (by G-equivariance of )
= Hy(g-x) (by definition of Hy).

|

By virtue of proposition 2.77, every weakly Hamiltonian action admitting a
moment map is in fact Hamiltonian. Thus the action being Hamiltonian is a necessary
condition for a moment map to exist.

Definition 2.78 (Hamiltonian G-Space). Let i : M — g* be a moment map for
a Hamiltonian action of a Lie group G on a symplectic manifold (M, ®). Then the
tuple (M, w, G, ) is called a Hamiltonian G-space.
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Appendix A
Basic Category Theory

A short introduction to the rudiments of category theory can be found in [8]. A more
extensive treatment is given in the classic [3].

A.1 Categories

Definition A.1 (Category). A category € consists of

e A class ob(€), called the objects of €.

e A class mor(€), called the morphisms of €.

e Two functions dom : mor(€) — ob(€) and cod : mor(€) — ob(€), which assign
to each morphism f in € its domain and codomain, respectively.

e For each X € ob(€) a function ob(€) — mor(€) which assigns a morphism idy
such that domidy = codidy = X.

e A function

o:{(g, f) € mor(€) x mor(€) : domg = cod f} — mor(€) (A.1)
mapping (g, f) to g o f, called composition, such that dom(g o ) = dom f and
cod(go f) =codg.

Subject to the following axioms:

o (Associativity Axiom) For all f, g, h € mor(€) withdom/ = cod g and dom g =
cod f, we have that

(hog)o f =ho(go f). (A2)
o (Unit Axiom) For all f € mor(€) withdom f = X and cod f = Y we have that

f=/foidy =idyof. (A.3)

Remark A.2. Let € be a category. For X, Y € ob(€) we will abreviate
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€(X,Y):={f emor(€):dom f = X and cod f =Y}.
Moreover, f € €(X,Y) is depicted as
fiX—>Y. (A.4)

Example A.3. Let x be a single, not nearer specified object. Consider as morphisms
the class of all cardinal numbers and as composition cardinal addition. By [?, 112-
113], cardinal addition is associative and @ serves for the identity id..

Definition A.4 (Locally Small, Hom-Set). A category € is said to be locally small
if for all X,Y € €, €(X,Y) is a set. If € is locally small, €(X,Y) is called a
hom-set for all X,Y € €.

Definition A.5 (Monic). Let € be a category. A morphism f € €(X,Y) is said to
be monic, iff for all objects A € € and morphisms g, € €(A4, X)

fog=foh=g=h

holds.

Definition A.7 (Epic). Let € be a category. A morphism f € €(X,Y) is said to be
epic, iff f is monic in €°P.

Exercise A.8. In Set, show that a morphism is epic if and only if it is surjective.

Definition A.9 (Isomorphism). Let € be a category. An isomorphism in € is a
morphism f € €(X,Y), such that there exists a morphism g € €(Y, X) with

go f =idy and fog=idy.
Exercise A.10. Let € be a category. Show that any isomorphism is both monic and epic.

Exercise A.11. In Set, show that any monic and epic morphism is an isomorphism.

In the definition of an isomorphism A.9, a morphism is forced to admit a two-
sided inverse. However, in reality, often only one-sided inverses do exist. Since they
are particularly useful, they get they own terminology.

Definition A.12 (Section). Let € be a category and f € €(X,Y). A morphism
o € €(Y, X) is called a section of f,iff f oo = idy.

Exercise A.13. Let € be a category. Show that any morphism admitting a section is epic.

Exercise A.14. In Set, show that any epic morphism admits a section (observe the subtle use of the
axiom of choice!).

Definition A.15 (Retraction). Let € be a category and f € €(X,Y). A morphism
p € €(Y, X) is called a retraction of f ,iff po f = idy.



A.2 Functors 77
Exercise A.16. Let € be a category. Show that any morphism admitting a retraction is monic.

In algebraic topology, there is a very useful construction on categories.
Definition A.17 (Congruence). Let € be a category. A congruence on € is an

equivalence relation ~ on mor(€) such that

(@lf fe€(X,Y)and f~g,then g € €(X,Y).
®b)If fo: X > Yand gy : Y — Z suchthat fy~ f; and go~g1,then ggo fo~g;10
f1.

Exercise A.18. Let € be a category. Show that for any congruence on €, there exists a category
€, called quotient category, with ob(€”) = ob('€), for any objects X,Y € €’

(X, Y)={lf]: f eCX,Y)},

and pointwise composition.

A.2 Functors

Definition A.19 (Functor). Let € and D be categories. A functor F : € — D
is a pair of functions (Fy, F3), F; : ob(€) — ob(D), called the object function
and F, : mor(€) — mor(D), called the morphism function, such that for every
morphism f : X — Y we have that F>(f) : F1(X) — Fi1(Y) and (Fy, F>) is
subject to the following compatibility conditions:

e For all X € ob(€), F»(idy) = idF, (x).
e Forall f € €(X,Y)and g € €(Y, Z) we have that F>(go f) = Fa(g) o Fo(f).

Remark A.20. Let F : € — D be a functor. It is convenient to denote the compo-
nents F; and F5 also with F'.






Appendix B
Basic Point-Set Topology

A short but formal introduction to the basics of point-set topology is given in the first
four chapters of [5]. A more extensive treatment can be found in the classic [11].
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Appendix C
Review of Analysis

C.1 Normed Spaces

Definition C.1 (Weak Convergence). Let (X,|||x) be a normed space and x € X.
A sequence (xg)ren C X is said to converge weakly to x, written x; % x as
k — oo, iff for all ¢ € X* we have that

o(xk) = o(x)

as k — oo.

Definition C.2 (Reflexivity). A normed space (X,|-||)x is said to be reflexive, iff
the map @ : X — X**, defined by @(x)(¢) := ¢(x) is surjective (P is already a
linear isometry).

Theorem C.3 (Eberlein-Smulyan). Let (X, ||-|| x ) be reflexive and (xi ) xeN bounded.
Then there exists x € X and a subsequence A C N such that
w

X —7 X

ask — oo, k € A.

C.2 Differentiability

Definition C.4 (Carathéodory Differentiability). Let (V.| - |},) and (W] - |y/) be
finite-dimensional vector spaces, U € V openand xo €e U. Amap F : U — W is
said to be differentiable at x, iff there exists a map ¢ : U — L(V, W) such that ¢
is continuous at xy and

F(x) = F(xo) = ¢(x)(x — xo) (C.DH

holds forall x € U.
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Example C.5 (Linear Map). Let (V|- |y) and (W,|-|y) be finite-dimensional
vector spaces and L € L(V, W). Then L is differentiable at every xo € V since

L(x) — L(xo) = L(x —x0) = ¢(x)(x — Xo)
holds, where ¢ : V — L(V, W) is given by ¢(x) := L.

Proposition C.6. Let (V| - |y/) and (W,| - |y) be finite-dimensional vector spaces,
U C V openand xog € U. Suppose ¢, : U — L(V, W) are continuous at xq such
that

F(x) = F(xo) = ¢(x)(x —xo)  and  F(x) — F(xo) = ¥ (x)(x — xo)
holds for all x € U. Then ¢(xo) = ¥ (xo).
Proof. Define ® : U — L(V, W) by
P(x) := @(x) — Y (x).
Then
P(x)(x — x0) = @(x)(x — x0) =Y (x)(x —xp) =0
holds for all x € U and so
|®(x0) (x = x0) |l = |(@(x0) = P(x)) (x = x0)|, < [P(x0) — P(x)]op [ — Xoly
for all x € U. Equivalently

X0

x‘—’ < |9 (x0) — D)oy C2)
|x —X0|V w

‘QD(XO)

for all x # x¢. Lete > 0. Since @ is pontinuous at xo, there exists 0 < § < r, where
B, (x¢) € U, wuch that for all x € Bgs(x¢)

|¢(X0) - ¢(x)|op <e
holds. Moreover

{|®(x0)(x — x0)/ |x — Xoly| : x € Bs(a)} = {|®(xo)x|y : x|y =1}.

Indeed, the inclusion C is clear. Suppose that | y|;, = 1. Define x := x¢ + % y. Then

8
|x — xoly < §|J’|V <é

and so x € Bgs(xg). Also

5
N0 ()22

(p(-xo) 5
ol 5 |yly

= P(x0)y.
|x
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Hence (C.2) yields

d(x0) 2

[®(xo)lyy = sup [®(xo)x| = sup ‘<s

x|V:1 XEB(S(X()) |x_x0|

Since & > 0 was arbitrary, we have that [@(xo)|,, = 0 and thus ®(xo) = 0, that is
¢(x0) = ¥ (x0). O

Definition C.7 (Differential). Let (V.| -|;,) and (W,| |y ) be finite-dimensional
vector spaces, U C V open and xo € U. If F is differentiable at x¢, define the
differential of F at x¢, written DF,, by

DFXO = go(xo)
where ¢ is as in C.1.

Lemma C.8. Let U C R open, f : U — R" and xog € U. Then f is differentiable

at xo if and only if
lim 18-S o

x—>xq,x€U X — Xo

(C.3)

Proof.

Definition C.9 (Derivative). Let U C R open and f : U — R” differentiable at
xo € U. Then the derivative of f at x¢, written f’(xo), is defined by

PV [ Ry (6]

x—>x0,X€U X — Xo

Definition C.10 (Directional Derivative). Let U € R” be open, F : U — R and
v € R". Define the directional derivative of F in direction v at x¢, written D, Fy,,
by
F tv)— F
DyFy = lim 1010 = Flxo)
t—0,teR t

Definition C.11 (Partial Derivative). LetU C R” open, F : U — R™and xy € U.
If F is differentiable at x¢, then define the i -th partial derivative of F at x, written
D; F(xo), by

DiF(XO) = De,— Fx07

where (e;) denotes the standard basis of R”.

Proposition C.12. Let U C R” open, F : U — R™ and xoy € U. If F is differen-
tiable at x¢, then
DFy,(v) = Dy Fx,

forallv e R™.
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Proof. Consider the composition

t |L> Xg + tv — F(xo + tv).
Then we compute

DyFyxy = (Fo f)(0) = D(Fo f)o = DFy, 0 Dfo = DFx,0 f'(0) = DFx,(v).

C.3 The Inverse Function Theorem

Theorem C.13 (The Inverse Function Theorem). Ler U C R” open, f : U — R”
smooth and x € U. If Dfy is invertible, then there exists a neighbourhood V. C U
of x such that f -V — f(V) is a diffeomorphism.

C.4 The Implicit Function Theorem

Theorem C.14 (The Implicit Function Theorem). Ler U C R” x R¥ be open,
@ : U — R¥ smooth, (xo, yo) € U and ¢ := ®(xo, yo). If
i

i
det (D]¢(XOaYO))j=n+l ..... n+k 7& 0,

then there exist neighbourhoods Vy C R”" of xo and Wy C R¥ of yo and a smooth
function F : Vo — Wy such that ®~1(c) N (Vo x Wy) is the graph of F.

C.5 Sobolev Spaces

In what follows, letn € N,n > 1,and 1 < p < o0.

Definition C.15 (Distributional and Weak Derivative). Let £2 € R” open and
u € L} .(£2). For any multiindex «, the distributional derivative of order « of u,

written D%u, is defined to be the mapping D%u : C£°(§2) — R defined by

0 (—1)‘“'/ uD%pdx.
2

Moreover, a function D%u € L?(£2) is called weak derivative of order « of u with
exponent p, iff
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Yo e CX(£2): / D%updx = (—1)'“'/ uD%pdx.
2 2

Theorem C.16 (Fundamental Lemma of Variational Calculus). Ler 2 € R”
openand f € LL (). If

loc

Vo e CX(£2): / fodx =0,
7}

then f =0 a.e.
Remark C.17. Let £2 € R” open. Then L?(2) € L} (£2).

loc

Remark C.18. From the fundamental lemma of variational calculus C.16 it follows
that weak derivatives, if they exist, are unique.

Examples C.19 (Weak Derivatives).

(a) Suppose u is classically differentiable. Then u is weakly differentiable using
integration by parts 2?.

(b) Consider £2 := (—1,1) and u :=|x|. Then u’ = x[o,1) — X(~1,0)-

(c) Consider £ := R and u := y(0,00). Then the weak derivative u" does not exist.
Indeed, the Dirac distribution is not representable as one may see by considering the
smooth family ¢, : R — R for ¢ > 0 defined by

&?/(x*—e?) lx| < e,

X) =
@e(x) 0 x| > .

(d) Let £2 := (0, 1) and consider the Cantor function u : 2 — 2. Thenu’ = 0
classically a.e. but the distributional derivative of u# does not vanish.

Definition C.20 (Sobolev Space). Let £2 € R” open. For any k € w, the Sobolev
space of index (k, p), written W*-?(£2), is defined to be the space

WkP(2):={f € LP(2) : D € LP(£2) exists for all |o| < k},

with norm
I=llwe.o@y = > ID*~lLocg)-

lo|<k
Moreover, define

Wer(@) = Ca(@) e,

and HK(2) := Wk2(2) as well as HE (2) := W2 ().
Theorem C.21. Let 2 € R” open. Then W*P(2) is

(a) a Banach space forall 1 < p < oco.
(b) separable forall 1 < p < oo.
(c) reflexive forall 1 < p < oo.
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Proof. The proof basically boils down to using the correponding properties of the
Lebesgue spaces L?(£2).

(a) This follows from the fact that L7 (£2) is a Banach space forall 1 < p < co. Let
(f3)iew be a Cauchy sequence in W*-?_ By definition of the W*-?-norm, (D* f;);cw
is a Cauchy sequence in L?. Thus we get D* f; — f, in L?, in particular, f; — f
in L?. Using Holder’s inequality we compute

/.ﬁ¢dx==hm'/ D“ﬁwdx:(—nwyhm!/_ﬁD“¢dx=(—DWh[ fD%pdx
o 1—>00 koi 1—>00 o 2

for p € C°(£2).

(b) For simplicity, we consider k = 1 only. Consider ¢ : W1? < (L?)"*1 defined
in the obvious way. Then ¢ is an isometry and the statement follows.

(c) Same argument as in part (b). O

In what follows, let —oo <a < b <ocoand I := (a, b).

Lemma C.22 (Du Bois-Reymond). Let f € L} (I) such that

loc
Vo e CX(I): /f(p’dx =0.
1

Then f is almost everywhere constant.

Proof. Letv := w—coy forw,y € C(I) suchthat [; = 1and [; v = 0. This
implies co = |, ; w. By the fundamental theorem of calculus, the functiong : I — R
defined by

o(x) :=/Iv(t)dt

belongs to C2°(I) with ¢’ = v. Thus we compute

o= [ s = [rv=[ru=co[ 1y =[ro=[w[rv=[cr=cm.

where ¢ 1= [, ; f¥. Since w was arbitrary, we conclude by the fundamental lemma
of variational calculus C.16. |

Lemma C.23. Let f € L} (I)and xg € 1. Thenu : I — R defined by

loc

u(x) = xfam;

x0
is absolutely continuous and belongs to W];C’I (I) withu' = f a.e.

Proof. Absolute continuity follows from real analysis. Let ¢ € C2°(1). Then Fubini
yields
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/Iu(p’ = /:O /;: F®)e' (x)dtdx + /xb ’ ()¢ (x)dtdx

0 Y X0

__ / e /x " e drdx + /x j x: ()¢ (x)dtdx
__ / e / " 00 () dedt + /x : /t " 0

X0 b
- _/ f(t)go(t)dt—/ SOe(r)dt

=—/If<p~

Theorem C.24. Let u € WLP(I). Then there exists an absolutely continuous rep-
resentant u of u on I, such that

X

i(x) = i (xg) +/ u'(¢)dt

x0
holds for all x, xo € 1. In particular, U is classically differentiable a.e. and ' = u’'.

Proof. By lemma C.23, the function v(x) := fxo u'(t)dt is in Wléél(l) with weak

X
derivative u’. Moreover, for any ¢ € C2°(I) we compute

/(u—v)go’=/u<p’—/v<p’=—/u’<p+/u’<p=O.
1 I I 1 I

Thus lemma C.22 yields u = ¢ + v, for some ¢ € R. Set

i(x):=c+ /x u'(t)dt.

Then #(xo) = ¢ and thus the statement follows. |

Theorem C.25 (Characterization of W1?(I)). Let 1 < p < oo andu € L?(I).
Then the following statements are equivalent:

(@) u € WhP(I).
(b) There exists C > 0 such that

Vo e CX(I): ‘[ugo’
I

=ClellLa-

(c) There exists C > 0 such that for all I' CC I and|h| < dist(I’, 1) holds
lthu —ullLpry = Clhl,

where thu(x) = u(x + h).
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Proof. The implication (a¢) = (b) follows immediately from Holder’s inequality.
To prove (b) = (a), we observe that [ : C>°(I) — R defined by

I(g) = /1 ug/

is continuous. Since C>°([) is dense in L7 ([), we get that / € (L9(/))*. Hence we
find g € L?, such that [, g = I(¢) and sou’ = —g.

Next we show (a) = (c). By theorem C.24, we find an absolutely continuous
representant u of u. Thus

1
u(x +h)—i(x) = h/ u'(x + thydt
0
Hence Jensen’s inequality yields
1
lnu —ullpo ) SIhI/0 e’ G+ t)ll oy dt <[RLHI Lory -

Lastly, we prove (¢) = (b). Let ¢ € C2°(I). Then we may find I’ CC I such that
suppg C I’. Hence we compute

/wp" = lim 1 /u(x) (p(x + h) — p(x)) dx
1 1

h0 ||

/I (u(x —h) —u(x)) p(x)dx

70 [7]
I 1/( )
m — T_huU —Uu
wsoh| | f " ¢

1
< lim — ||lt—pu —u ,
= a0 A [ ||Lﬂ(1)||</)||Lq(1)

< CllelliLacry -

Theorem C.26 (Sobolev Embedding). There is a continuous embedding
WLP(I) — L®(I).

Proof. First consider / bounded. By theorem C.24 we get that

/x u'(t)dt
y

<lu+ llzr

[l oo = sup [u(x)| <|u(y)| + sup
xel xel

for any y € I. Hence

1

lJull oo Syiglu(y)lJrllu/Hu = |I—|/I|M(y)|+||u/||L1 < Cllullwra = Cllullwr.r .
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Assume now that / is unbounded. Then we find I’ CC I such that

1
el zoorry = S llzoocry

and thus the claim follows by the previous computation. Indeed, note that by theorem
C.24, we have that

lu@)] <lu)| + ' ll1

for all x € I and fixed y € I, and thus u € L°°(I). Moreover, there exists xo €
such that |u(xg)| > %||u | Loo 1y if not, this would contradict the definition of the
supremum norm. Since u is continuous by theorem C.24, we find § > 0 such that

1
[u(x) —u(xo)| <[u(xo)| — 5||“||Loo(1)

for all x € I such that|x — x¢| < 8. Hence the reversed triangle inequality yields

1 1
§||u||L°°(I) —lu(xo)| = [u(x)| —|u(xo)| <[u(xo)| — E”MHLOO(I)
and so |
§||“||Loo(1) < |u(x)|

forallx € I N (xg—68,x0 +8) =:1'. O






Appendix D
Review of Algebraic Topology

A quick introduction to the rudiments of Algebraic Topology can be found in chapters
7-13 in [5]. A more extensive treatment can be found in [12]. However, we focus
primarily on the excellent lecture notes of the course Algebraic Topology I/Il given
at the ETH Zurich in the autumn semester 2017 and spring semester 2018. These
notes can be found here

https://www.merry.io/algebraic-topology/.
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Appendix E
The Fundamental Group

The Fundamental Grupoid
o

Lemma E.1. There exists a functor Top — Set. Moreover, if f,g € Top(X,Y) are
freely homotopic, then 7o (f) = mo(g).

Proof. On objects X € ob(Top), define 7o(X) to be the set of equivalence classes
of X under path connectedness. On morphisms f : X — Y, define mo(f) :
7o(X) = mo(Y) by mo(f) [x] := [f(x)]. This is well defined since if [x] = [y],
there exists a path ¥ from x to y in X and it is easy to check that f ou is a path from
f(x) to f(y). Checking that 7y is indeed a functor is left as an exercise. Suppose
H : f ~ gandlet x € X. Then H(x,t) is a path from f(x) to g(x) and thus
mo(f) [x] = [f ()] = [g(0)] = 7o (g) [x]. O

Exercise E.2. Check the functoriality of o : Top — Set.

Proposition E.3. If X, Y € ob(Top) have the same homotopy type, then |mo(X)| =
|o(Y)|, i.e. X and Y have the same number of path components.

Proof. Since X and Y are of the same homotopy type, they are isomorphic in hTop.
By lemma E.1, 7y descends to hTop and since functors preserve isomorphisms,
we have that mo(X) = mo(Y). In Set, isomorphisms are bijections and thus the
statement follows. |

Construction of the Fundamental Grupoid

Lemma E.4 (Gluing Lemma). Let X, Y € ob(Top), (Xy)aea a finite closed cover

of X and (fo)aea a finite family of maps fo € Top(Xy,Y) such that fol|x,nx, =
JBlxynxy for all a, B € A. Then there exists a unique f € Top(X,Y) such that

flxy, = faforalla € A.
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Proof. Let x € X. Since (Xy)qe4 is a cover of X, we find @ € A4 such that x € X,,.
Define f(x) := fo(x). This is well defined, since if x € X, N Xg for some B € A4,
we have that f(x) = fg(x) = fo(x). Clearly f|x, = fo foralla € A and f is
unique. Let us show continuity. To this end, let K € Y be closed. Then

UK =X N fUK)

= U X, N f_l(K)
acA

= U (Xot N f_l(K))
acA

= U (Xot N fa_l(K)) .
acA

Since each f, is continuous, f,, !(K) is closed in X, for each & € A and thus since
X, is closed, f~1(K) is closed as a finite union of closed sets. O

Theorem E.5. There is a functor Top — Grpd.
Proof. The proof is divided into several steps. Let us denote IT : Top — Grpd for
the claimed functor.

Step 1: Definition of Il on objects. Let X,Y € ob(Top), f,g € Top(X,Y) and
AC X.Amap F € Top(X x 1,Y) is called a homotopy from X to Y relative to
A, if

e F(x,0) = f(x),forall x € X.

o F(x,1) =g(x),forall x € X.

o F(x,t) = f(x) = g(x),forall x € Aand forallt € I.

If there exists a homotopy between f and g relative to A we say that f and g are
homotopic relative to A and write f ~4 g. If we want to emphasize the homotpoy
relative to A, we write F : f ~4 g.

Lemma E.6. Let X,Y € ob(Top) and A C X. Then being homotopic relative to A
is an equivalence relation on Top(X,Y). O

Proof. Define a binary relation R4 C Top(X,Y) x Top(X, Y) by
JRag & f=ag
Let f € Top(X,Y). Define F € Top(X x I,Y) by
F(x,t) = f(x).

Then clearly F : f ~4 f.Hence Ry is reflexive.
Let g € Top(X,Y) and assume that fR4g. Thus G : f ~4 g. Define F €
Top(X x 1,Y) by

F(x,t) :=G(x,1—1).
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Then it is easy to check that F : g ~4 f and so R4 is symmetric.
Finally, let # € Top(X, Y) and suppose that fR4g and gR4h. Hence Fy : f ~4 g
and F, : g ~4 h. Define F € Top(X x I,Y) by

F(x,t) := ’

Continuity of F follows by an application of the gluing lemma E.4. Then it is easy
to check that F' : f ~4 h and hence Ry is transitive. O

Let X € ob(Top) and u a path in X from p to ¢. Define the path class [u] of u by
[u] := [u]g,, - Define now

ob (I1(X)) :=X.

H(X)(p,q) :={[u] : u is a path from p to ¢} for all p,q € X.

Let p € X. Then define id, € I1(X)(p, p) by id, := [cp], Where ¢, is the
constant path defined by ¢, (s) := p forall s € /.

And I1(X)(g,r) x T(X)(p.q) — I(X)(p.r) by

(] [u]) = [u * v]

Where u * v € Top(p, r) is the concatenated path of u and v, defined by

Continuity follows again from the gluing lemma E.4 whereas well definedness
follows from the next lemma.

Lemma E.7. Suppose that [u1], [uz2] € II(X)(p, q) and [v1], [v2] € [I(X)(q, 1)
such that [uq] = [uz] and [v1] = [v2]. Then [ug * v1] = [uz * va]. |

Proof. By assumption we have G : u; ~y; up and H : vy ~y; v,. Define
F eTop(I x1,X)by

3

2
Fs.r) = 938D (1)
2

—_— N

=S5 =
=S5 =
Again, continuity follows from the gluing lemma E.4 and it is easy to check that
F:ul*vlzaluz*vz. O

Let us now check that I7(X) is indeed a category. Let [u] € IT(X)(p, q). We want
to show that u >~y ¢, * u. To this end, we consider figure E.1a and conclude that a
suitable homotopy is given by F € Top(/ x I, X) defined by
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p 0<2s<t,
F(s,t) := 25 —t

Similarly, considering figure E.1b leads to F € Top(I x I, X) defined by

t AN t
A u 'U w AN
cp u Cp
\
s
N v w ’ .
u 7S u 7 ?
(b) (uxv)*w ~57 u*x(vx*
@u ~yr cp *u. w). ©u*u >y cp.

Fig. E.1: Visualization of the proof that I7(X) is a grupoid object.

4s
u —1<4s—-1<t,
t+1
F(s,t):=(vds—t—1) t<4s—1<t+1,
4s —t —2
w|—— t+1<4s—1<3.
4—t—-2

Lastly, we check that I7(X) is a grupoid. To this end, for a path u from p to ¢, define
its reverse path u by

u(s) :=u(l—s).
We claim that u * # >~y c,. From figure E.1c we deduce that ' € Top(/ x I, X)
is given by

u(2s) 0<2s<1-—1¢,

F(s,t) == u(l—1) 11—t <2s <t+1,
uR2s—1) t+1<2s<2.

Step 2: Definition of I1 on morphisms. Let f € Top(X,Y). Then IT( f) is a functor
from [1(X) to I1(Y). Define IT( f) as follows:

e Letpeob (H(X)). Then define IT(f)(p) := f(p) € ob (H(Y)).
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e Let [u] € II(X)(p,q). Then define IT(f)[u] := [f ou] €. We have to check
that this definition is independent of the choice of the representative.

Lemma E.8. Let u and v be paths from p to q in X and suppose that [u] = [v].
Then for any [ € Top(X,Y) we also have that [ f ou] = [ f o v]. |

Proof. Suppose that H : u ~y; v. Define F € Top(I x I1,Y) by
F(s,t) := (f o F)(s,1).
Then F : fou >~y fow.
Checking that IT satisfies the functorial properties is left as an exercise.
Exercise E.9. Check that IT : Top — Grpd is indeed a functor.

Definition E.10 (Free Homotopy). Let f, g € Top(X,Y). f and g are said to be
Jreely homotopic if [ ~5 g.

Example E.11 (Straight Line Homotopy). Let V' be a real vector space. A subset
S C V is said to be convex, if the line segment {(1 —¢)p +1q :0<¢ <1} is
contained in S for all p,q € V. Suppose now that V is finite dimensional and
S C V is convex. Moreover, let f, g € Top(X, S) for some X € ob(Top). Define
H:XxI— Sby

H(x,t):= (1 —=1)f(x)+tg(x).

Then H is continuous and clearly H : f >~ g. We call H the straight line homotopy
between f and g.Hence any two continuous maps defined on the same domain into
a convex space are freely homotopic.

Remark E.12. We will also write f >~ g for a free homotopy.

Definition E.13 (Nullhomotopic). A mapping f € Top(X, Y) is said to be nullho-
motopic, if f is freely homotopic to a constant map.

Definition E.14 (Contractible). A topological space X is said to be contractible, if
idy is nullhomotopic.

Definition E.15 (Reparametrization). Let u be a path in a topological space X. A
reparametrization of u is a path u o ¢, where ¢ € Top(/, I) fixing 0 and 1.

Lemma E.16. let u be a path in a topological space x and u o ¢ a reparametrization
of u. Then u ~y5 u o ¢.

Proof. Since I is convex, we find a straight line homotopy H :id;f >~ ¢. Nowuo H
is the homotopy we are looking for. O
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The Fundamental Group

Lemma E.17. Let § be a locally small grupoid. Then for every X € ob($), $(X, X)
can be equipped with a group structure.

Proof. Since § is locally small, (X, X) is a set for every X € ob(4%). Define
a multiplication (X, X) x $(X,X) — 4(X,X) by gh := h o g. Clearly, this
multiplication is associative. Moreover, the identity element is given by idy €
G(X, X) and since every g € 4(X, X) is an isomorphism, the multiplicative inverse
is given by the inverse in §(X, X). a

Proposition E.18. There is a functor Top,. — Grp.

Proof. Define m; : Top, — Grp on objects (X, p) € Top,. by

m1(X, p) == I(X)(p, p).

By theorem E.5 together with lemma E.17, 1 (X, p) is actually a group, called the
Jfundamental group of X with basepoint p. On morphisms f € Top, ((X, p), (Y. q)),
define

mi(f) = 11(f) : II(X)(p, p) > I1(Y)(q.9).
Let [u], [v] € m1(X, p). Then

i ([u] o]) = (f)([u] [v])
= T1(f) [u * v]
=[fo(xv)]
=[(f ou)* (fov)]
= I1(f) [l I1(f) [v]
= 1 (f) [u] w1 (f) [v].

Thus 71 ( f) is a morphism in Grp. Functoriality of 771 immediately follows from the
functoriality of I7. O

Definition E.19 (Simply Connected). A path connected topologial space X is said
to be simply connected, if 71 (X) is trivial.

First Properties of the Fundamental Group

Lemma E.20. Let X € ob(Top), p € X and A be the path component of X con-
taining p. Then 71 (1), where 1 : A — X denotes the inclusion, is an isomorphism.

Proof. Suppose [u] € ker w1 (t). Then [t o u] = [cp] and Hence F : tou 1 cp.
Since I x I is path connected and p € F(I x I), it follows that F(I x I) C A
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and thus F : u >~ cp in A and hence [u] = [c,]. To see that 71 (¢) is surjective,
just observe that u(1) C A for [u] € m1(X, p) since u(I) is path connected and
peu(l). O

Lemma E.21. Let X € ob(Top) be path connected and p,q € X. Then
(X, p) = mi (X, q).

Proof. Since X is path connected we find a path v from p to g in X. Define a
mapping @, : 71 (X, p) —> m11(X,q)

D, [u] :=[v*u = v].

Clearly, @, is invertible with inverse @5. Moreover, for [u], [w] € 71 (X, p) we have
that

Dy ([u] [w]) = Py [u * w]
=[v*u*xws*v
=[U*xu*xv*xU*w*v
=[Uxu*v][v*w*v]
= Dy [u] Dy [w].

Lemma E.22 (Square Lemma). Let F € Top(I x I, X). Then

F,)* F(-,1) =37 F(-,0) % F(1,-).

Proof. The idea is to consider first the case FF = idjxy. Hence define the paths

fo, f1, &o and g in I x [ as indicated in figure E.2a. Then there is a straight line

homotopy H : I x I — I x I between them as indicated in figure E.2b. Explicitly
H(s,t) := (1 =1)(fo * f1)(s) + 1(g0 * g1)(5).

Then

F (251,25(1 — 1)) 0

=
(FoH)(s, 1) = F(r+(1—-0@s—1),142i(s—1) 1<

is the homotopy we are looking for.

Proposition E.23. Let fy, f1 € Top(X,Y) such that F : fo >~ f1. Moreover, let
p € X. Then the diagram

mi (X, p) ZY 7 (v, fo(p))

D .
”m l F(p.)

(Y, f1(p)
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f()/\ A81

\

ko

(a) The paths fo, f1,g0and g1 in I x I.
t

AN

{1

Soi A81

% 7

(®) fo* f1 a1 g0 * &1.

commutes, where ®. denotes the isomorphism in lemma E.21.

Proof. Let [u] € m1(X, p). We have that

(1) ] = (Prep o m1(fo)) [u] & [fioul = [F(p.) * (foou) * F(p,)]
< [F(p.)* (fiow)] =[(foou) * F(p.")]
< [Fu(0),) * F(u-, D] = [F(u-,0) x F(u(1),-)],

where the last equality is true by the square lemma E.22. O

Homotopy Invariance of ¢

Lemma E.24. Being freely homotopic is a congruence on Top.

Proof. (a) is immediate so we only have to check (b). Suppose fy € Top(X,Y) and
go € Top(Y, Z) suchthat F : fo ~ f1and G : go ~ g1.Consider Hy : X xI — Z
defined by Hy := goo F. Thenclearly Hy : ggo fo = go o f1. Moreover, we define
H, : X xI — Z by Hy := G(f1-,-). Then Hy : goo f1 >~ g1 0 f1. And we
conclude by transitivity. O
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Definition E.25 (hTop). The quotient category under the congruence of being freely
homotopic is called the homotopy category, and is denoted by hTop.

Definition E.26 (Homotopy Type). Two topological spaces X and Y are of the
same homotopy type, if they are isomorphic in hTop. An explicit choice of such an
isomorphism is called a homotopy equivalence.

Exercise E.27. Show that a topological space X has the same homotopy type as a one-point space
if and only if X is contractible.

Theorem E.28 (Homotopy Invariance of w1). Suppose X and Y are of the same
homotopy type with homotopy equivalence f : X — Y. Then for any p € X we
have that w1 (f) : m1(X, p) — (Y, f(p)) is an isomorphism.

Proof. By assumption there exists g € Top(Y, X) such that F : g o f ~ idy and
G : f o g ~ idy. By the functoriality of 7 and proposition E.23, the diagram

(Y, f(p)

ny W

71(X. p) mige/) y T (X, g((p)))

idy, m %-)

7T1(X,[7)

commutes. Since Pr(p,) is an isomorphism, m1(g o f) is an isomorphism, too.
Hence 71 (f) is injective. Using G instead of F' and a similar argument yields that
1(f) is surjective. |

Lemma E.29. Let G € ob(Grp), S € Setand ¢ : U(G) — S a bijection. Then S
can be given a group structure such that ¢ is an isomorphism.

Proof. 1t is easy to show that xy := ¢ (¢~'(x)¢~!(y)) defines a group structure
on S with the requested property. O

Proposition E.30. Let (X, p) € ob(Top,). Then w1 (X, p) = hTop, ((S*. 1), (X, p)).

Proof. Letu € $2(X, p). Thenu passes to the quotient i : (S', 1) — (X, p). Define
now ¢ [u] := [ii] € hTop, ((S'. 1), (X, p)). This is well defined, since if H : u ~j;
v, it is easy to see that H : 7 ~(;; T. Moreover, if f € hTop, (S', 1), (X, p)), we
define ¥ [f] := [f o w]. Again, this is well defined since if H : f 2~ g, then
Ho(wxidy): fow ~y; g ow.ltis easy to check that ¢ and v are inverses of
each other and thus we have a bijection 71 (X, p) = hTop, ((Sl, 1), (X, p)) of sets.
Hence an application of lemma E.29 yields the result. a
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m1(ST)

Definition E.31 (Exponential Quotient Map and Fundamental Loop). The map-
ping e : R — S! defined by '
e(x) := 2™* (E.1)

is called the exponential quotient map. Moreover, the fundamental loop w is defined
to be the restriction w = ¢|7.

Proposition E.32 (Lifting Property of the Circle). Letn € Z, n > 0, X C R”
compact and convex, p € X, f € Top, ((X, p), (S, 1)) and m € Z. Then there

exists a unique map f € Top, ((X, p), (R, m)), called the lifting of f, such that

(R, m)

2

(va) T> (Sl’ 1)

commautes.

Proof. We show first existence and then uniqueness.

Step 1: Existence. Since X is compact and f is continuous, f is uniformly contin-
uous on X . Thus we find 6 > 0 such that| f(x) — f(y)| < 2, whenever|x — y| < 6,
ie. f(x) and f(y) are not antipodal points. Moreover, since X is compact, X is
bounded and hence we find N € N, such that|x — y| < N§ holds for all x,y € X.
Letx € X.For0 <k < N,define Ly : X — X by

k k
Li(x):=(1—— —X.

(= (1= ) r+
Those are well defined functions since X is convex. Moreover, each L, is continuous.
Indeed, it is easy to check that Lj is Lipschitz. Also, for each 0 < k < N,
f (Lg(x)) and f (Lg41(x)) are not antipodal for all x € X. Indeed, it is easy to
check that |Lg(x) — Lg+1(x)] < & holds for all x € X. For 0 < k < N define

gk X = ST\ {~1}by
o) i L)
S(Lr(x))

Clearly g is well defined and continuous as a composition of continuous functions.
Let Log : S' \ {~1} — C denote the principal branch of the logarithm. Define
f:X —>Rby
~ | Nl
f@)=m+ o — 3 Log(gk(x).
k=0

Clearly, ]7 is continuous and moreover we have that f = m since gx(p) = 1 for all
0 < k < N. Finally, for any x € X we have that
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N-1
R o) = _ SN ) _
(e f)(x)—s(m)ggk(x)— Lty = oy = T

Step 2: Uniqueness. Suppose g € Top, ((X ,p), (R, m)) is another such function.
Define ¢ € Top, ((X, p), (R, O)) by

p(x) = f(x) —g(x).

Then clearly € o ¢ = 1 and thus ¢(X) C Z. Since X is convex, X is connected and
sop = 0. O

Corollary E.33. Let u,v € 2(S', 1) such that [u] = [v]. If 1,7 : (I,0) — (R,0)

are the liftings of u and v, respectively, then [u] = [v].

Proof. Let F : u ~3; v.By proposition E.32, we find F € Top, ((I x 1,(0,0)), (R,0)),
such that ¢ o F = F. We claim that F : #i ~g; ©. For s € I define
io(s) := F(s,0). Then #o(0) = F(0,0) = 0 and since iy is continuous we
have that iy € Top, ((Z,0), (R, 0)). Moreover

(eoug)(s) =¢ (F(S,O)) = F(s,0) = u(s)

for all s € I and thus iy is a lifting of u. But by proposition E.32, liftings are
unique and thus o = u. Next define wo(z) := F(0,7) forall # € I. Then wo(0) =
F(0,0) = 0 and so Wy € Top, ((I, 0), (R, O)). Moreover

(e 0 o) (t) = & (F(0,1)) = F(0,1) = u(0) = v(0) = 1.

forallt € I. Thus
(R,0)

2l
(1,0) —— (. 1)
commutes. But also ¢y makes the above diagram commute. By uniqueness, o = co.
Define Do (s) := F (s, 1) forall s € I. Then vo(0) = F (0, 1) = wo(1) = O and it is
easy to check that vy is a lift for v. Hence vo = V. Finally, define w,(¢) := F(1,1)
forallt € I.Then w,(0) = F(1,0) = %(1) and thus w; € Top, ((I,O), (R,fj(l))).
Moreover

(eo@i)(t) = e (F(1,1)) = F(1,1) = v(1) = u(l) = 1

forall¢ € I.By proposition E.32, we have again that W = cg(). So F : i1 ~y; v.00

Definition E.34 (Degree). Let u € £2(S!,1). The degree of u, written degu, is
defined by degu := (1), where # is the unique lift of u such that #(0) = 0.

Theorem E.35 (Fundamental Group of the Circle). ;(S') =~ Z.
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Proof. Define deg : m(S!,1) — Z by deg[u] := degu. This is well defined by
corollary E.33, since if [u] = [v], then [#] = [v] and in particular % (1) = v(1).
Step 1: deg € Grp (711 (S, 1), (zZ, +)). Let [u].[v] € m1(S',1). Moreover, let i

and v denote the unique liftings of u and v, respectively, such that #(0) = 0 and
v(0) = 0. Define w : I — R by

uQ2s)

B(s) := degu +v(2s — 1)

= O

IA A
—_— N

N
N

)

IA A

Then @ is continuous by the gluing lemma and @ (0) = 0. Hence & € Top, ((I .0), (R,0)).
Also we have that sotw = u*v and thus @ is the lift of uxv. But w (1) = degu+degv
and so

deg(Ju] [v]) = deg[u * v] = deg(u*v) = w(l) = degu+degv = deg [u]+deg[v].

Step 2: deg is injective. Suppose deg [u] = 0. Then %(1) = O and thus 4 € 2(R, 0).
Since R is contractible, we have that [#Z] = [co] and thus

[u] = [ o ti] = m1(e) [u] = m1(e) [co] = [& © co] = [c1].

Thus ker(deg) is trivial. "
Step 3: deg is surjective. Let m € Z. Then deg [¢"'] = dege™ = ¢™(1) =m. O

The Seifert-Van Kampen Theorem
Coproducts and Pushouts in Grp

Proposition E.36 (Coproducts in Grp). Grp has all small coproducts.

Proof. Let A € ob(Set) and A be the small category defined as the discrete category
with ob(A) 1= A4, i.e.

Let D : A — Grp be a functor. Hence we get a family (Gy)qeq in Grp, where
Gy := D(a) forall @ € A. A word in (Gy)geq is a finite sequence in [ [, 4 Go- A
word in (Gg)geq Will simply be written as (g1, ..., &), where gx € G4 for some
a € A. The empty word is denoted by (). Let ‘W denote the set of all words in
(Gg)aeca- On ‘W define a multiplication by concatenation

(gl""sgﬂ)(h19~~~vhm) = (glv~~-»gn,hl»~~-»hm)~

An elementary reduction is an operation of one of the following forms:
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i (glv"'vgk’gk-Fl»"'»gn) = (glv""gkgk+l"~~’gn’ where 8k>8k+1 € Got
for some o € A.

b (glsn'ugk—ls lougk-i-l»u-»gn) = (glv"'7gk—17gk+1!"'7gn)' O

Let ~ denote the equivalence relation on ‘W generated by elementary reductions.
Lemma E.37. 'W/~ together with concatenation of representatives is an element of
Grp.

Proof. Define

[(gl,...,gn)] [(hl»--o,hm)] = [(glwuagn»hl,u-,hm)]-

It is left to the reader to show that this is well defined and that ' W/~ is indeed a
group. O

The group defined in lemma E.37 will be denoted by 3k, 4 G, and called the free
product of (Gy)gea. Let us define a cocone on D. For this consider the inclusions
la 1 Go = Kyey Go defined by

L (g) == [(g)]

for all @ € A. It is immediate from

te(gh) = [(gm] = [(g. W] = (O] [(M)] = ta(g)ta(h)

for g,h € G, that 1, is a morphism of groups. Since there are only the identity
morphisms in A, (*aeA Gy, (ta)aeA) is a cocone on D. Let us show that this is in
fact a universal cocone. To this end, suppose that (C s (Pa)ae A) is another cocone on
D. Define a mapping f : *Kyea Go — C by

Flg1 - 8n)] = 0u(81) *+* Pa, (8n)

where gr € Gg,. Then f is easily seen to be well defined since each @ is a
morphism of groups. Moreover, if g € Gq, then

(f 2)(@) = ()] = ¢alg)

foralloe € A. Suppose that f : 3k, 4 Go — C is another homomorphism of groups
such that f oty = @4 for all @ € A. Then for [(g1.,...,8n)] € K,eq Ga We have

Sl ....gn)]l = f(I(gD] - [(gn)])
= fl(g)]-- f [(gn)]
= f(‘al(gl))"'f (ta, (&n))
= Qa,(81) ** ¢a,, (8n)

= /(g1 gn)]-
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Exercise E.38. Check that W/~ is indeed a group with the declared group structure and that f_ is
indeed well defined.

Proposition E.39 (Pushouts in Grp). Grp has all pushouts.
Proof. Consider the diagram D : A — Grp

e — e GL)Hl
l D wzl

—
[ H2

and define N to be the normal subgroup of H; * H, generated by elements of the
form [(¢1 (g™ 1), ¢2(g))] for g € G. Let K := (Hy * H,)/N. Then

GLHI

<ﬂ2j Lﬂoll

Hy, ——K

oLy

commutes. Indeed, if g € G, we have that ( o ¢; o ¢1)(g) = [(¢1(g))] N and
similarly (7 o t2 0 ¢2)(g) = [(¢2(g))] N. Then

(1] [(92(e))] = [(91(2) D [(92(e)] = [(@1(g D] [(92(g))] € N.

Suppose that we have another cocone on D:

GL>H1

H2—>C
¥2

By proposition E.36, there exists a unique morphism of groups f : Hy * Hy — C
and we thus get the following diagram:

G —2 > H
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To show that N C ker f is left as an exercise. Hence by the factorization theorem
(see [1, 23]), f factors uniquely through 7, i.e. there exists a unique morphism of
groups f : K — C suchthat fom = f. |

Exercise E.40. In the previous proposition, verify that N C ker f.

Definition E.41 (Amalgamated Free Product). The pushout of a diagram

G 25 H

0|

H,

in Grp is called the amalgamated free product of Hy and H» along (G, ¢1, ¢2),
written Hy *(G,p, ,0,) H2.

The Seifert-Van Kampen Theorem and its Consequences

Theorem E.42 (Seifert-Van Kampen). Let X € ob(Top), (U, V') an open cover for
X, such that U, V and U N'V are path connected. Moreover, let p € U N V. Then

m1(X, p) = 11 (U, p) @, 0V, p).mi (o)omr ) T1 (Vs P), (E2)
where iy :U NV < U and iy : U NV < V denote inclusion.

Proof. Let yyy : U — X and yy : V — X denote inclusions. We will show that
(711 X, p), mi(yy). m (jV)) is a pushout of the diagram

(U NV, p) 2 5w, p)
ﬂl(tv)l (E.3)

in Grp and hence by proposition E.39 and uniqueness, the statement follows. Clearly

(U NV, p) mé) m1(U, p)

T[l(LV)l l”l(lu)

m1(V, p) — m1(X, p)
l(Jv)

commutes. Suppose now that (G, ¢y, ¢y ) is another cocone for the diagram (E.3).
We want to show that there exists a unique homomorphism @ : 71 (X, p) — G such
that @om(yy) = gy and Pomy(yy) = @y.Let[u] € 71 (X, p). Choose a partition
0=x9<---<x, =10fIsuchthatu(xz) e UNV forallk =0,...,n and such



108 E The Fundamental Group

that all ”|[xk_1 x;] take values eitherin U orin V forallk = 1,...,n. The existence
of such a partition follows from an application of the Lebesgue number lemma on the
open cover (u~'(U),u~'(V)) of I.Indeed, if § > 0 is the corresponding Lebesgue
number of the cover, we findn € w,n > 0,suchthat 1/n < §. Thus [(i — 1)/n,i/n]
is contained in either u=(U) or u=1(V) forall i = 1,...,n. Now choose those i
suchthat u(i/n) e UNV.Fork =1,...,n,letuy : I — X be defined by

ur(s) == u (1 —8)xp—1 + sxz) .

Moreover, for each k = 1,...,n — 1 choose a path y; in U NV from p to u(xg)
and set Yo, Yn := cp. Define now

@ [u] =[] o vt * wi * i . (E.4)
k=1

where ¢, denotes either gy or ¢y depending on whether yg_1 * ug * yi is aloop in
UorinV.Ifuisaloopin U NV, we can choose either ¢y or ¢y since (G, ¢y, y)
is a cocone of the diagram (E.3). Now there are some things to check.

@ is a function. Suppose H : u >~y v.

@ [u] does not depend on the choice of yi. Fix some k = 1,...,n — 1 and suppose
that y; is another path from p to u(xx) in U N V. Then we have that

Do [Vk—1 * Uk * V] = Qo [Yk—1 * Uk * Vi * Vi * Vil = Qo [Vi—1 * U * Vi) 0o [V * Vi]

and

P [Vk * Upt1 * Vkr1] = @o [V * Vi * Vi ¥ Ugg1 * Vig1]
= @ [Vk * Vi) @0 [Vi * Ukt * Vic1]

— —1 —
= (@ [y * V)™ @o [Vf * Ukt1 * Viet1] -

Since )/]’c * Yk is aloop in U N V, we have that

Do [Vk—1 * Uk * Vic] Qo [V * Uks1 * Vi41] = Qo [Vi—1 * Uk * Vi) Qo [Vi * Uk 41 * Vit1] -

@ [u] does not depend on the choice of a partition of 1. Suppose $#; and P, are both
partitions of 7, their union #; U #, is a refinement of both &#; and 5. If we can
show that adding a single point to a partition & of I does not affect the value @ [u],
then so it does not on &1 U P, and hence is independent of the choice of a partition.
Suppose we add x;_; < y < xi. Let us denote by u, the reparametrized restriction
of u from u(xx—_1) to u(y) and by ) the reparametrized restriction of u from u(y)
to u(xg ). Moreover, let y, be a path from p to u(y) in U N V. We compute

Do [Vi—1 * Uy * Yyl @o [yy * ) * Vi] = Qo [Yk—1 * Uy * Py * Yy * Uy * Vi)
= Qo [Vi—1 % Uy * Uy * V]
= Qo [Vik—1 * Uk * Vi],
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since uy * u)_is a reparametrization of uy and yx_y * uy * ¥y, yy * U * yi are both
loops either in U orin V.

@ is a morphism of groups. Let [u], [v] € m1(X, p).Let0 = x¢g < --- < x, = 1 be
a partition of / as above. By invariance under a change of partitions, we may assume
that 0 = x9 <+ <Xpp =2 <--- <x, = 1. Clearly (u x V) (xpy) = pe UNV.

2
Now both 0 = 2xg < -+ < 2xpy, = land 0 =2x,, — 1 < -+ < 2x, — 1 =1
are partitions of I with (u x v)y = uy for k = 1,...,m and (u *x V) = vg
fork = m + 1,...,n. By using invariance of the choice of a partition again and

invariance of the choice of the yy yields

O([u] [v]) = @ [u * ]

=] 0o o1 % (u v x 7]

k=1
m n

[Tee ey v sl [] 0o lver =i 7l
k=1 k=m+1

=@ u]®[v].

Checking commutativity. We have to show that @ ot (y;) = ¢y and P om; (yy) =
@y hold. Let us show the first identity, the second is similar. Let [u] € 71(U, p).
Then we can choose the trivial partition 0 = x¢9 < x; = 1 of I and thus get

(@om(yy)) [ul = @ [u]l = v [yo * ur * 11l = ¢u [u].

Showing uniqueness of ®@. Suppose ¥ : m1(X, p) — G is another map with the
smae properties as @. Let [u] € m1(X, p). They keypoint is to observe that

[u] = |:1_[(7/k—1 * U * )7k):|

k=1

holds. Thus

v ] =w []‘[(ykl * U * m}

k=1

= l_[ W [Y—1 * ug * Vi |
k=1

n
= ]_[ @o [Vi—1 * up * Vi |
k=1
=@ [u].

Exercise E.43. In the proof of the Seifert-Van Kampen theorem, show that u), * u} = ux o @,
where ¢ € Top(I, I) is given by
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(=}

) 2s(y = xk—1)/(xk — Xk—1)

1
— 2’
20 —$)(y —xk—1)/(xk —x5-1) +25—1 1.

. =§5=
(p(s) 555

E.1 Singular Simplices

Definition E.44 (Affinely Independent). Let n,k € w. A family (vg,...,vg) in
R” is said to be affinely independent, iff the following condition is satisfied: Given
A0, ..., Ar € R such that

k k
Z/\iZO and ZliviZO
i=0 i=0

implies co = -+ = ¢ = 0.

Lemma E.45. Letn, k € w. Then afamily (vo, . .., vr) in R" is affinely independent
if and only if (v — vy, ...,V — Vg) is linearly independent in R".

Exercise E.46. Prove lemma E.45.

Definition E.47 (Simplex). Let n,k € w and (vy, ..., vx) affinely independent in
R™. Define the simplex spanned by (v, ..., vy), written [vg, ..., vg], to be the
topological subspace

k k
[vo,...,vk] := Zkivi :A; € Ry and ZA,- =1; C R".
i=0 i=0
Moreover, eachof the v;’s,i = 0, ..., k, is called avertex of the simplex [vy, . . ., Vg].

Remark E48. Let 0 := [vy, ..., vx] be a simplex spanned by (vy, ..., vg). Then
we will also simply call o a k-simplex in R”.

Example E.49 (Standard Simplex). Let n € w. Then the family (eg,...,e,) in
R”, where e¢g := 0 and (ey, ..., e,) is the standard oriented basis of R”, is affinely
independent by exercise E.46. The n-simplex spanned by this family is called the
standard n-simplex and is denoted by A”.

Lemma E.50. Let n,k € w and [vg,...,vi] a k-simplex in V. Then any x €
. . . k
[vo, ..., vk] admits a unique representation x =7 ;_, A; v;.

Exercise E.51. Prove lemma E.50.

Definition E.52 (Affinely Linear Mapping). Let n, m € w. A mapping 4 : R” —
R™ is said to be affinely linear, iff there exists an R-linear vector space morphism
L :R" - R™and y € R™, such that

A(x) = L(x) + y
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€2

€0 €o €eo €1

(a) A, (b) AL, (c) AZ.

Fig. E.3: Standard n-simplices.

holds for all x € R”.

Exercise E.53. Show that any affinely linear mapping is continuous with respect to the standard
Euclidean topologies.

Exercise E.54. Show that the composition of affinely linear mappings is again affinely linear.

Proposition E.55 (Affine Map induced by Vertex Map). Let n,k,m € w and
o = [vo,...,vy] a k-simplex in R". Given a function f : {vg,...,vr} — R™,
there exists a unique extension f~ 10 — R™, which is the restriction of an affinely
linear map.

Proof. We show first existence and then uniqueness.

Step 1: Existence. By exercise E.46, (v1 — vy, ..., Vg — V) is linearly independent in
R™. Since R” is finite dimensional, we may complete this linearly independent subset
to a basis of R”. Hence there exists a unique vector space morphism L : R” — R™,
mapping

vi —vo > f(vi) — f(vo),

fori = 1,...,k and to the zero vector else. Now A : R" — R™ defined by
A:=L— L(vg) + f(vo)

is the map we are looking for. _
Step 2: Uniqueness. Given another suchextensiong : 0 — R™ of f,say g = L+,
we have that L(v;) = f(v;) — y foralli =0,...,k. Thus we compute

k k k k k
g(zxivi) B STW RN SPUPTI D SPUNFINED P Uy
i=0 i=0 i=0 i=0 i=0

Definition E.56 (Singular Simplex). Let n € ®w and X € Top. An element of
Top(A”", X) is called a singular n-simplex in X .
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Example E.57 (Affine Singular Simplex). Let n,m € o and let A" denote
the standard n-simplex of example E.49. Given any vg,...,v, € R™, define
A(vg,...,vy) :+ A" — R™ by the vertex map e¢; — v; fori = 0,...,n (see
proposition E.55). By exercise E.53, A(vy, . .., vy) is continuous and thus a singular
n-simplex, called an affine singular n-simplex.

Example E.58 (Face Map). Let n € w, n > 1, and let A" denote the standard
n-simplex of example E.49. For k € w, 0 < k < n, define a singular simplex
o A1 A" called the k-th face map in dimension n, by

op = Aleo, ..., €k, ... en).

This map is indeed well-defined as the uniqueness part of the proof of proposition
E.55 shows.

€2
<
2

2 %o

P14
3>

e 2 e

0 ©5 1

Fig. E.4: Face maps forn = 2.

E.2 The Singular Chain Complex

Proposition E.59. Let R € Ring. Then the forgetful functor U : gRMod — Set admits
a left adjoint.

Proof. Consider the free module functor F : Set — rMod defined as follows:
Step 1: Definition on objects. Let S € Set and define

F(S):= {f € RS :supp f is ﬁnite}.

Equipped with pointwise defined addition and multiplication, F(S) is a left R-
module. Moreover, there is an inclusion ¢ : S < U(F(S)) sending x € S to the
function taking the value one at x and zero else. It is easy to check that F(S) is free
on S.
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Step 2: Definition on morphisms. Let f : S — S’ in Set, define F(f) : F(S) —

F(S’) by setting
F(f) (Z rxx) =Y e f(),
xesS xes
Step3: F 4 U. Let M € gMod and ¢ € gMod(F(S), M). Define ¢ €
RMod(S, U(M)) to be the restriction to S of the underlying map of sets. Con-
versly, if f € Set(S, U(G)), extending by linearity yields f € rMod(F(S), M)

given by
f_(z rxx> = Z rx f(x).
xeS xeS
It is now easy to check that ¢ = ¢ and ;7 = f holds. O

Exercise E.60. In the proof of proposition F.150, check functoriality of F' and naturality of the
bijection gMod(F (S), M) = Set(S, U(M)).

Theorem E.61 (Singular Chain Complex Functor). Let R € Ring. Then there
exists a functor
C, : Top — Chx(gMod).

Proof. The proof is divided into two steps.

Step 1: Definition on objects. Let X € Top. Then define
Ce(X)n 1= F(Top(A™, X))

for all n € w, where F : Set — grMod denotes the free module functor from
proposition F.150 and A” denotes the n-th standard simplex from example E.49.
Let 0 € Top(A”, X), n > 1. Define

n

0,0 = Z(—l)ko o ¢y, (E.5)
k=0

where ¢} denotes the k-th face map in dimension 7 from example E.58. Extending
by linearity yields a morphism of R-modules 9, : Co(X); — Ce(X);—1. For any
o € Top(A™1, X) we compute
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n+1
(On 0 9n41)(0) = (Z(—l)"o o wz“)
k=0
n+1
=Y (=1*9, (6 ogp™)
k=0
n+1 n
=) > ) oogitloy)
k=0j=0

> D oogtog) +

E The Fundamental Group

2

(—1)k+j0 ° (pllc’l-i-l ° (p]n

O0<k<j<n 0=<j<k=n+1
_ k+j n+1 n k+j n+1 n
= Z (Do op!T o + Z (D)o o™ og;
0<j<kz=n 0<j<k<n+1
_ k+j—1 n+1 n k+j n+1 n
= Z ((=Dy**7 ocogiTogl |+ (1) aopT ogl)
0<j<k<n+1
Since "l op? and ¢! o ¢” are both equal to A( s 2 )
®; Y1 (o @; qualto A(eo,....€j,...,€k,... . €nt1),
it follows that
8,, o 8n+1 =0.
Indeed, consider the following chart of vertex maps:
n n+1 n n+1
Pr—1 ®; @; D
€9 = ey €o eg = €p (g €0
e; = e = e€j4 e, H=>¢ei41 > €41
€k—1 > € P> €kt €k—1 = €k = €k+1
€n—1 = €p = €nt1 ép—1 = €n = ény1

Step 2: Definition on morphisms. Let f : X — Y be a morphism in Top. Forn € w,

define Co(f)n : Co(X)y — Co(Y), by

Co(fIn(0) = f oo,

for any o € Top(A”, X). We compute

(0n 0 Co(fIn)(0) = D> (=¥ f o0 0gp = (Ca( fIn—100n)(0).

k=0
Thus C.(f) is a morphism in Chs(gMod).

Checking functoriality is left as an exercise.
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Exercise E.62. Check that C, : Top — Chso(zMod) defined in theorem E.61 is indeed a functor.

Theorem E.63 (Relative Singular Chain Complex Functor). Let R € Ring. Then
there exists a functor
C. : Top*> — Chsg(grMod).

Proof.

E.3 Homology of Product Spaces
E.3.1 The Universal Coefficient and the Kiinneth Theorem

Proposition E.64. Let A € Ab. Then (—) @ A : Ab —> Aband A ® (—) : Ab — Ab
are both right exact.

Example E.65. Z,, ®z Zn = Zgcd(m,n)-
Definition E.66 (Tor). Let A € Ab and

S

0 > K s F > A

~
o

a short free resolution of A. Given any B € Ab, set
Tor(A, B) := ker(f ® idp).

Example E.67. If either A or B are torsion free, then Tor(A4, B) = 0.
Example E.68. Tor(Zy,, Zn) = Zgcam,n)-

Theorem E.69 (Universal Coefficient Theorem). Let (C,, do) be a free chain com-
plex and A € Ab. Then for any n € w there is a split exact sequence

0 —— Hu(Co) ® A — Hp(Co ® A) — Tor(Hy—1(Ca), A) — 0.

Theorem E.70 (Kiinneth Theorem). Let (C,, o) and (C/, 9,,) be two non-negative
free chain complexes. Then there exists a split exact sequence

0+ @ Hi(Cod)®H;(C])» H(Ce®C]) > P Tor (Hk(C.),HI(C./)) - 0.
i+j=n k+l=n—-1

E.3.2 The Eilenberg-Zilber Theorem and the Kiinneth Formula

Theorem E.71 (The Augmented Acyclic Models Theorem). A Let € be a category
with family of models M. Consider
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S,T : '€ — AugCh(Ab)

such that:

e S, is free with basis contained in M for any n € .
e Any M € M is totally T-acyclic, i.e. H,(S(M)) = 0 for all n > 1 and
Ho(S(M)) = Z.

Then there exists a natural augmentation preserving chain map
0:S=T

Moreover, any two such natural augmenation preserving chain maps are naturally
chain homotopic.

If additionally T, is free with basis contained in M and each model M € M is
totally S-acyclic, then every such natural augmentation preserving chain map is a
natural chain equivalence.

Theorem E.72 (Eilenberg-Zilber). Let X, Y € Top. Then there exists a chain equiv-
alence
R2:Ce(X xXY) = Co(X) R Ca(Y)

unique up to chain homotopy. Any such map S2 is called an Eilenberg-Zilber mor-
phism.

Proof. We make use of the augmented acyclic models theorem E.71. In Top x Top
define a family of models M by

M= {(A,AY) i, ] ew).
Moreover, define S, T : Top x Top — AugCh(Ab) by
S(X,Y) = Co(X xXY) and T(X,Y):=Ce(X)® Co(Y).

Since A’ x A7 is convex, we get that each model M := (A, A7) s totally S-acyclic.
Moreover, the Kiinneth theorem E.70 implies that each model M is totally T -acyclic.
That S, is free with basis contained in M can be seen by choosing the diagonal map
dy : A" — A" x A" for any n € w. Finally, T, is also free with basis contained in
M, since we can choose the model basis

(AT, AT) i+ =n)

for fixedn € w and i; ® tj € (Co(A") ® Co(A7))n, where 1 : A* — A¥ denotes
the identity map. O

Corollary E.73 (Kiinneth Formula). Let X,Y € Top. Then there is a split exact

sequence

0— @ H(X)®Hj(Y) = Hy(X xY) — @ Tor(Hg(X), Hi(Y)) — 0.
i+j=n k+l=n—1
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Example E.74. Let n € w, n > 1. Define the n-forus T" by

T" ;=S x...x S,

n

Using induction and the KAijnneth theorem E.73, one can show that

Hy(T") = 7.0,

E.4 Singular Cohomology
Proposition E.75. Let A € Ab. Then Hom(—, A) : Ab — Ab and Hom(A4, —) :
Ab — Ab are both left exact.

Corollary E.76. Let X € Top be of finite type, i.e. H,(X) is finitely generated for
anyn € Z. Then
H™(X) = Hy(X)/Tn(X) & Tp1(X)

where T, (X) denotes the torsion subgroup of Hy,(X), i.e. the subgroup consisting
of all elements of finite order.

Theorem E.77 (Universal Coefficient Theorem for Cohomology). Ler X € Top
of finite type and A € Ab. Then there is a split exact sequence

0 —— H"(X)® A — H"(X; A) — Tor(H"t1(X), A) —— 0.

E.4.1 The Cohomology Ring

Proposition E.78. Let X € Top and R € Ring. Then there exists a contravariant
functor
C(—; R) : Top — GRing.

Proof. We proceed in two (uncomplete) steps.

Step 1: Definition on objects. Let X € Top. Fora € C"(X;R) and B € C™(X; R)
define

(¢ v B)(o) :=a(o o Aleg,...,en))B(0 o Alen, ... ,en+m)),

for all singular n + m-simplices o in X. Hence extending by linearity yields a map
U:C"(X;R)x C™(X;R) — C"t"™(X; R).

Moreover, if
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C(X:R):= P C"(X:R).

neEw

we define U : C(X; R) x C(X; R) - C(X; R) by
ZO(,' UZﬁj = Zai uﬁj.
i j i,j

This is called the cup product on C(X ; R). It is easily verified that (C(X; R),v) €
GRing.
Step 2: Definition on morphisms. Letn € wand f € Top(X,Y).Fora € C"(Y; R)
define

C(f;R)(a):=C"(f;R)(x) e C"(X;R),

and extend by linearity. O

Lemma E.79. Let R € GRing and I be a two-sided homogeneous ideal in R. Then
also R/ € GRing with

R/I=EPR"/(R"NI).

neEw

Theorem E.80. Let R € Ring. Then there is a contravariant functor
H(—; R) : hTop — GRing.

Proof. Set

Z:=@2z"X:R) and B:={PHB"(X:R).

nEw nEwW

Then Z is a homogeneous subring of C(X; R) by using the fact that
dlovp)=davup+(D"'avudp

for any « € C"(X; R) and § € C™(X; R) holds. Moreover, B is a homogeneous
two-sided ideal in Z. Therefore by lemma E.79, we have

H(X:R) =P z"(X:R)/B"(X:R) = (D H"(X: R).

new new

Example E.81. Let n € w, n > 1. Then using the fact that flk (S =Zitk =n
and zero otherwise, corollary E.76 implies that

H’S"Y=7Z and H"(S")=2Z

and zero otherwise. Thus
HS"Z)=7Z & Z.
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Denote the generator of the first summand by 1 and the second by X, we get that
X UX € H?>*(S") = 0 and thus

H(S":Z) = Z[X]/(X?).
Actually, if R € CRing, then H(—; R) attains values in CGRing.

Definition E.82 (Diagonal Approximation). A diagonal approximation is defined
to be a natural chain map

Co(-) = Co(-) ® Co(-)
such that Dg(x) = x ® x holds for any x € X, X € Top.
Theorem E.83 (Alexander-Whitney Formula). An Eilenberg Zilber morphism
R :Ce(X xY) = Co(X) ® Co(Y)

is given by the Alexander-Whitney formula
n
2(0) := Z(m oogoA(eg,...,e;)) ® (mpo0 o0 Alej,...,en)) (E.6)
i=0

foranyo : A" - X x Y.

Proposition E.84. For the Alexander-Whitney choice of an Eilenberg-Zilber mor-
phism $2, the composition

C*§oHom(2,R)o u
where 0 : C*(X; R) ® C*(X; R) > Hom(Ce(X) ® Ce(X), R) is defined by

n+m

wl® p) (Z Ok ® Or;+m—k) = a(0n)B(oy,)

k=0
coincides with the cup product.
Proof. Leta € C"(X:;R),B € C™(X;R)and o € C"™™(X). We compute
(C*8 o Hom(£2, R) o p) (e ® B)(0) = Hom(£2 0 8, R)(u(e ® B))(0)
= (@ ® B) o 20 Ced(0)

= a®p)(2(00))
= (@ v p)(0).

Theorem E.85. Let R € CRing and X € Top. Then

(@) v (B) = (=D)""(B) v (a)
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forany (@) € H*(X; R) and {8) € H™(X; R).

Proof. Since 2 o Co6 and twist 02 o C48 are both diagonal approximations, hence
naturally chain homotopic. Now just evaluate both compositions. O

Corollary E.86. Ler X,Y € Top of finite type and suppose that H,(Y) is free
abelian for any n € Z. Then the cross product

HX)® HY) > HX xY)
is an isomorphism of graded rings.
Example E.87. Suppose T” is the n-torus from example E.74. We claim that
H(T",Z) = Z[X1, ..., Xal/(X}).

Indeed, example E.81, implies the base case for an induction over n. Suppose the
claim holds for some n € w, n > 1. Then using corollary E.86 implies that
H(T"tY) = H(T" x S1)
= H(T") ® H(S")
= Z[X1..... Xl /(XP) ® Z[Xn11]/ (X1 1)
=Z[X1,.... Xn41]/(XD).



Appendix F
Review of Differential Topology

We follow the treatment as provided by Will J. Merry in the year course Differential
Geometry I and Il at the ETH Zurich in the autumn semester 2018 and spring
semester 2019, respectively. The course notes are available at

https://www.merry.io/differential-geometry/.

Additionally, we rely on [6] as well as [16].

F.1 The Category of Smooth Manifolds

Definition F.1 (Topological Manifold). Let n € N. A topological space M is said
to be a topological manifold of dimension n, ift

(i) M is locally Euclidean of dimension #n, that is, for every x € M there exist
an open subset U € M and a function ¢ : U — R” such that ¢(U) € R”
isopen and ¢ : U — ¢(U) is a homeomorphism. Every such pair (U, ¢) is
called a chart on M about x .

(i) M is Hausdorff and has at most countably many connected components.

(iii) M is paracompact, that is, every open cover of M admits a locally finite open
refinement.

Example F.2 (The Empty Manifold). Let » € N. Then the empty set & endowed
with the trivial topology is a topological manifold of dimension 7.

Instead of requiring a topological manifold to be paracompact and to admit only
countably many connected components, many authors instead use that any manifold
is second countable. This is due to the following point-set topological result:

Theorem F.3 ([5, 126]). Every Hausdor{f locally Euclidean paracompact topolog-
ical space is second countable if and only if it admits countably many connected
components.
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Definition F.4 (Lindel6f Space). A topological space is said to be a Lindeldf space,
iff every open cover admits a countable subcover.

Theorem F.5. Every second countable space is a Lindelof space.
Corollary F.6. Every topological manifold is a Lindelof space.

Definition F.7 (Smooth Atlas). A smooth atlas for a topological manifold M is a
collection (Uy, ¢4 )aea of charts on M such that

(i) (Uy)ge4 is an open cover for M .
(ii) For all a, B € A such that U, N Ug # @, the function

Po © (pEI : ‘P,B(Ua n U,B) — @a(Ug N U,B)
is smooth. The function ¢4 o gogl is called a transition function.

Let 4 and A’ be two smooth atlases on a topological manifold M. Define a
relation on the set of all smooth atlases on M (this is a subset of the power set 2M)
by

A~A & AUA isanatlas for M.

Exercise F.8. Show that above relation is actually an equivalence relation on the set of all smooth
atlases on a topological manifold M .

Definition F.9 (Smooth Structure). A smooth structure on a topological manifold
M is an equivalence class [4] where +4 is a smooth atlas for M.

Definition F.10 (Maximal Smooth Atlas). Let [A] be a smooth structure on a
topological manifold M. Define the maximal smooth atlas on M by | 4[4 -

Definition F.11 (Smooth Manifold). Let n € N. A smooth manifold of dimension
n is defined to be a pair (M, #4), where M is a topological manifold of dimension n
and # is a maximal smooth atlas on M .

Example F.12 (Open Subsets). Let M be a smooth manifold and U € M open.
Then U inherits a smooth manifold structure from M.

Example F.13 (Vector Spaces). Let V' be a finite-dimensional real vector space.
Then V = RY™V and V inherits a norm from the standard norm on R™Y  In
fact, by a standard result in functional analysis the choice of norm does not matter,
since any two norms on a finite-dimensional vector space are equivalent. Define the
standard smooth structure on V to be the maximal atlas containg the smooth atlas
consisting of the single chart induced by the coordinate isomorphism.

Example F.14 (n-Spheres). Let n € N. If n = 0, we have that S® = {£1}. It
is easily seen that S° is a smooth manifold of dimension 0. Let n > 1. Define
N :=e,41and S := —e, 41, Where e, 4+1 denotes the n + 1-th standard basis vector
of R**1. Moreover, set
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Uy :=S"\S and U_:=S"\ N.
Then U4 and U_ are open subsets of S”, the upper and lower hemisphere, respec-

tively. Then the functions ¢4 : Ux — R” defined by

o+(x) = (X1,...,%n),

I+ xp4+1

are homeomorphisms. Indeed, one can check that ¥4 : R” — Uy defined by

2
wi(x):=< 2 £(1—|x| ))

1+ |x]? 1+ |x?
is a continuous inverse for ¢4 and ¢_, respectively. We claim that {(UL, ¢1)} is a
smooth atlas for S”. Clearly, S” is covered by the two charts. Next we have to calculate

the transition functions g o <p;1 =prov¥s (U NU-) » (UL NU2). It
is easy to see that ¢+ (U N U-) = R”" \ {0} and that

Iﬂ X
YFovVE = —3.
|x]

which is smooth. Since S” is Hausdorff as a metric space and as a subspace of
a second countable space, itself second countable, S” equipped with the smooth
structure induced by the smooth atlas constructed above, is a smooth manifold of
dimension n.

Example F.15 (Real Projective Spaces). Let n € N and define an equivalence
relation on R”+1 \ {0} by

x~y & FLeR*:x=2Ay.

Define the real projective space of dimension n, written RIP”, to be the quotient
space of the above equivalence relation. Then RP” admits a smooth structure by
defining a smooth atlas via the charts (U;, ¢;)i=1....n+1, Where

.....

U = {[x] : x' # 0},
and ¢; : U; — R” is defined by

1 o
@i [x] == ;(xl,...,x’ l,x’+1,...,x”+1).

That each (U;, ¢;) is indeed a chart, can be seen by using the fact that an explicit
inverse of ¢; is given by ¢; : R” — U; defined by

Yi(x) = [xl,...,xi_l,1,xi+1,...,x”].

Exercise F.16. Check that the relation defined in example F.15 is indeed an equivalence relation.
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Proposition F.17 (Smooth Manifold Chart Lemma). Let M be a set and suppose
(Uws Ya)aca is a family of subsets Uy C M and maps ¢y : Uy — R”, for some
fixedn € N, such that:

(i) Forall @ € A, o (Uy) is open and ¢ : Uy — o (Uy) is a bijection.
(ii) Forall a, B € A, po(Uy N Ug) and ¢g(Uy N Ug) are open in R™.
(iii) If Uy N Up # O, then ¢q © (pgl 1 9g(Uy N Ug) — ¢o(Uy N Up) is smooth.
(iv) Countably many of the sets Uy cover M.
W) If x,y € M such that x # Yy, there either exists some o € A such that
X,y € Uy or there exists o, € A such that Uy N Ug = &, x € Uy and
y € Uﬂ.

Then M admits a unique smooth structure containing the atlas (Uy, 0q)acA-

Definition F.18 (Smooth Map). Let M and N be smooth manifolds and F : M —
N amap. We say that F is smooth, iff for all x € M, there exists a chart (U, ¢) on
M about x and a chart (V, ) on N about F(x) such that

(i) U N F~Y(V)isopenin M.
(i) Yo Foy™':(UNF (V) - (V) is smooth.

The set of all smooth maps from M to N is denoted by C°°(M, N) and the set of
all smooth functions on M is denoted by C*°(M).

Exercise F.19. Let M be a smooth manifold. Show that C *° (M) is an R-algebra under pointwise
defined operations.

Example F.20. Coordinate Functions Let M" be a smooth manifold and (U, ¢) be a
chart about some x € M. Let 7' : R” — R be defined by 7 (x!,...,x") := x' for
i =1,...,n. Define x' : U - Rbyx’ := 7% 0. Then x' € C*®(U) and we call
x! a coordinate function. Moreover, we may denote the chart (U, ¢) by (U, (xi))
and say that (x') are local coordinates about x .

F.2 Tangent Spaces and the Differential

Let M be a smooth manifold and let x € M. Define a binary relation on the set
X :={(U, f) : U € M neighbourhood of x, f € C*(U)}
by
U, f)y~WV,g) & 3IW <CUNV neighbourhood of x, such that f|w = g|w.

Exercise F.21. Show that the above relation is actually an equivalence relation.

Definition F.22 (Germ). Let M be a smooth manifold and let x € M. The set of
germs at p, written C2°(M) is defined to be C°(M) := X /~.
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Exercise F.23. Show that C2° (M) is an R-algebra under the obvious operations.

Remark F.24. Note that if f € C*(M), then [(M, f)] ~ [(U, f|v)] for any
neighbourhood U of x. Thus any germ at p contains a representant which is defined
on the whole manifold and we thus may simply write [ /] for a germ at p.

Remark F.25. Let [ f] be a germ at x € M. Then f(x) is well-defined. Indeed, if
flu = g|u on some neighbourhood of x, then in particular f(x) = g(x).

Definition F.26 (Tangent Space). Let M be a smooth manifold and let x € M. The
tangent space of M at x, written T, M , is defined to be the vector space (C oM )) *
such that

v([f]lgD) = v[flgx) + f(x)v[g]
holds.

Lemma F.27. Let M be a smooth manifold and x € M. Suppose > € C®°(M) is a
constant function. Then v [A] = 0 forallv € TxyM.

Proof. This immediately follows from

vAl=v[A-1]=Av[l] = Av[l-1] = 2Av[1] = 20 [A].

Definition F.28 (Derivation). Let M be a smooth manifold, x € M and U a neigh-
bourhood of x. The space of derivations of C*° (U) at x, written Dy (U), is defined
to be the vector space (C () )) * such that

v(fg) = v(f)g(x) + f(x)v(g)
holds.

Proposition F.29. Let M be a smooth manifold, x € M and U be a neighbourhood
of x. Then
TxM = D, (U).

Proof. Let @ : Ty M — D (U) be defined by
DW)(f) =v[f]

for all f € C*°(U). Clearly @ is well-defined and linear. We want to construct an
inverse ¥ : D, (U) — Tx M for @. This implies, that we should define

v() [f]=v(f)
where f € C®(U) such that []7] =[f].

Step 1: Existence of f Let (V, f) be a representant of [ f]. As in the proof of the
smoothness criteria for tensor fields 2.33, we find a neighbourhood W about x such
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that W C U N V. Then there exists a smooth bump function ¥ € C*°(U N V) such
that 1//|W~: landsuppy C U NV. Let f := ¢ f extended to be zero on U. Then

clearly [f] = [f]since f = f on W.

Step 2: W is well-defined. Suppose that [ f] = [g] in C2°(M). Then f = g on some
neighbourhood V of x. We claim that v(f) = v(g) on U N V. Indeed, let  be a
smooth bump function for {x} supported in U N V. Then ¥(f — g) = 0 on U and
we compute

0=v([Y(f-g)=vW(f - +¥@v(f g =uv(f-2g).

Lemma F.30. Let M be a smooth manifold and U a neighbourhood of x € M.
Suppose A € C*°(U) is a constant function. Then v(X) = 0 for all v € D (U).

Proof. Using the notation of the proof of proposition F.29, lemma F.27 yields

v(A) = (P o¥)(v)(A) = ¥(v) [A] = 0.

Example F.31. Coordinate Derivation Let M" be a smooth manifold and (U, ¢) be

acharton M. For every x € U andeveryi = 1,...,n define
8 o0
— :C®U)—>R
ox? |,
by
d _
| (D= Dilfoe™) (p).
X X

a

Then clearly % |x is aderivation of C*°(U) at x. Thus by proposition F.29, 7| €

<M

One of the profound features of tangent spaces to a smooth manifold are that they
are finite dimensional. In fact, they admit the same dimension as the manifold.

Lemma F.32. Let Q C R” be open and star-shaped about xo € Q2. Suppose [ €
C°(2). Then there exists ¢1, ..., ¢y € C(Q) such that ¢; (x9) = D; f(xo) and

f(x) = f(xo) + 7' (x — x0)¢i (x)
holds for all x € Q

Proof. For x € Q define yy : [0, 1] = Q by yx(¢) := x¢ + t(x — x) (note that this
is only possible since €2 is assumed to be star-shaped with centre x¢). Then
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1
10 = £ = [ (f 0y @y
1
= [ Dif (o) s
0

1
_ /O Di f (e () 7 (x — xo)d1
— 2 (x — x0)gi (x)

where

1
0i(x) = /0 Dy f (ye(0)) dt.

Proposition F.33 (Basis for the Tangent Space). Let M" be a smooth manifold and
(U, @) a chart on M. Then
ad
{8 - = 1,...,n}
X X

is a basis for Ty M for all x € U, where x' := n* o ¢. In particular, dim Tx M =
dimM = n.

Proof. Since ¢(U) € R” is open, there exists ¢ > 0 such that B, (¢(x)) € ¢(U).
Set V := ¢! (B, (¢(x))). Then V is a neighbourhood of x in M and thus by
proposition F.29, we have that Tx M = Dy (V). Let f € C*° (V). An application of
lemma F32to fop~! € C® (BE ((p(x))) yields

(foe ™)) = fx)+ 7' (y —o(x)) @i (y)

= f(x) + (7' (y) = X' (x)) i (¥)
= f(x) + (7' 0 9) (971 () — X' (x)) (gi 0 @) (97" (1)) .

Thus _ _
f = )+ (" =x' (%) (gi 0 9)

on V. Using lemma F.30 we compute
; ; ; .0
v(f) = v (=¥ (@) (g 0 9) = v(xgi (o) = v 5| (1) ED)

Suppose that Aia%i]x = 0. Then using example C.5 and proposition C.12 we
compute

;0
0=4 axt |,

(') = ADind (p(x)) = Aind (e;) = AI§) = A7, (F2)
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Proposition F.34. Let M be a smooth manifold and x € M. Suppose (e;) is a basis
for Txy M. Then there exists a chart (U , xt ) centred about x such that

0

F = €; Vizl,...,l’l.
X

X

Proof. Let (U, (Ei)) be a chart about x € M. Since (¢;) and % are bases for
X

T M, we find an invertible matrix (Aj-) such that

9 i
@ ; = Ajei.

Define new coordinates x* : U — R” by
xli= Aj- (k’j -5/ (x)) .
Then x*(x) = 0 and using (F.1) we compute

0

Oxt

0

Oxt

0

Oxt

0
) —
() 555

X

X X

j ; 0
(a4 700) 55|

j 0

_ (4-1}/ sk

= (A )k d; 7% |
i 0

o a—1yJ

= (47 ax/

— (47" Akey

[

X

X

= §key

=€;.
O

Definition F.35 (Derivative). Let M and N be smooth manifolds and F €
C®(M,N).For x € M, define amap DFy : TyM — Tg)N by

DFy(v)(f) :=v(foF)

for all f € C*°(V), where V C N open and ]7 is any extension of f in some
neighbourhood of F(x). This map is called the derivative of F at x.

Proposition F.36. Let M and N be smooth manifolds. Then for any (x,y) € M x N
there is a canonical isomorphism

Teyy(M x N) = TeM x T, N. (E3)
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Proof. Observe that @ : T(, ,)(M x N) — TyM x T}, N defined by
D(v) = (Dn(lx,y)(v), Dn(zx,y)(v))
and ¥ : TxM x TyN — T(x,)(M x N) defined by
W, w) = D(ty)x (v) + D)y (w)
are linear and inverse to each other. |

Definition F.37 (Velocity of a Curve). Let / C R be an open interval and y €
C®°(J, M) be a curve in a smooth manifold M . For every ¢ € J, define the velocity
vector of y at t, written y'(¢), by

d
"t) := Dy; | —
Y () )’t(d[

) € Ty([)M.
t

It is immediate from the definition of the velocity vector of a curve F.37, that

d
=4

for all f € C°°(M). Moreover, if (U, ¢) is a chart on M, then equation F.1 yields

d
y o =on (5

(foy)=(fop) ()

.90 . 0
Y1) = J’/(f)(xl)ﬁ =(x'o V)/(f)W (F.4)

y() y() 0x* |y )
at least sufficiently close to ¢.

Proposition F.38 (The Velocity of a Composite Curve). Let F € C*°(M, N) and
y € C*®(J, M) for some interval J C R. Then

(Foy) () = DF (y'(1))
forallt € J.

Proof. This is immediate by

d DF o D d
= o] _—
i, "\a

(Foy)(t)=D(Foy) (d—

) = DF (y'(1)).

t

Lemma F.39. Let V be a finite-dimensional real vector space and x € V. Define
@y V = TV by &, (v) := v/ (0), wherey : R — V is defined by y(t) := x + tv.
Then @y is an isomorphism.

Proof. By (F.4) we have that
ad

dxt

9 .
VO =y o =
xx

X
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Thus @, maps bases to bases. O

Using lemma F.39 we can relate the two notions of a derivative on Eudlidean
spaces.

Proposition F.40. Let U € R” open and F € C*®(U,R™). Let xo € U. Since
F is differentiable at xq, there exists a map ¢ : U — L(R",R™) such that ¢ is
continuous at xo and for all x € U

F(x) = F(xo) = ¢(x)(x — xo)
holds. Then the following diagram commutes:

R” @(x0) R™

Dy (prO
TxoRn FXO) TF(XQ) R™,

Proof. Problem F.255. O

Velocity vectors to a curve give yet another way to think about the tangent space
TxM to a point x € M of a smooth maifold M. Consider the set

X :={y eC®(J,M):J CRopeninterval with0 € J, y(0) = x}.
Define a binary relation on X as follows:

Y1 ~y2 & Ichart (U, ¢) about x such that (¢ o y1)'(0) = (¢ o ¥,2)'(0).
Exercise F.41. Show that the above relation is an equivalence relation.
Let ViM = X/~.

Proposition F.42. Let M be a smooth manifold and x € M. Then TxM =~ V., M
as sets.

Proof. Define @ : ViM — TyM by @ [y] := y’(0). This map is well-defined.
Indeed, if [y1] = [y-], there exists a chart (U, ¢) about x such that (¢ o y1)'(0) =
(¢ 0¥2)/(0). This immediately implies that y(0) = pi(0) foralli = 1,...,n. Thus
(F4) yields y;(0) = p5(0). From this also follows that @ is injective. Indeed, if
¥1(0) = y5(0), then yi(0) = y5(0) for all i = 1,...,n by (F.4) and proposition
F33. Let v € TxM. Then in any chart (U, ¢) centered about x we have that
v =1 % .- Hence for & > 0 sufficiently small we can define y, : (—¢,6) - M"
by
Yo(t) = (p_l (tvi, e tv") .

Thus @ is surjective. |
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We can equip 'V, M with the structure of a vector space by means of the following
lemma.

Lemma F.43. Let V be a a finite-dimensional real vector space and S be a set. If
there exists a bijection ¢ : S — V', we can equip V with a structure of a real vector
space such that ¢ is an isomorphism.

Proof. Just define
Ax +y =97 (Ao(x) + 0(y))
forall x,y € Sand A € R. O

Definition F.44 (Cotangent Space). Let M be a smooth manifold. For x € M,
define the cotangent space of M at x, written T M, to be

T*M = (TyM)*.

Definition F.45 (Differential). Let M be a smooth manifold, U a neighbourhood of
x € M and f € C%°(U). Define the differential of f at x, written dfy, to be the
element dfy, € T M given by

dfx(v) :=v(f).

Lemma F.46 (Basis for the Cotangent Space). Let M" be a smooth manifold and
(U, ) achart on M. Then

{dxi|x:i = 1,...,n}
is a basis for Ty M for all x € U, where xi:=nalog.

Proof. We only need to note that this is the dual basis of the tangent space basis
F.33. This follows from (F.2) since
) 9
N dx/

. 0
dxi ], (—

iy __ i
o (x') = &

X

F.3 Submanifolds

Proposition F.47. Let M" and N" be smooth manifolds, F € C*°(M,N) and
x € M. If DFy is invertible then there exists a neighbourhood U of x in M such
that F : U — F(U) is a diffeomorphism.

Proof. Let (V, @) be a chart about x and (W, ¥) be a chart about F(x). Then

yoFop':igp(VNF ' (W) —R"
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and using the chain rule yields
—1 -1
D(yoFog™) o =Dy¥rxoDFioD(p7")

and thus D (1/f oFo (p_l)w(x) is invertible. An application of the inverse function

theorem C.13 yields a neighbourhood U in @© (V nr 71(W)) about ¢(x) such that
the restriction ¥ o F o ¢! is a diffeomorhism. Set U := ¢~ (U). O

Proposition F.48. Let U C R” be a neighbourhood about 0 and f : U — RF
smooth such that f(0) = 0. Then:

(@) If n < k and the matrix Dfy has maximal rank, then there exists a chart
about 0 on R¥ such that y o f = 1, where 1 : R" — R denotes the inclusion.

(b) If n > k and the matrix D fy has maximal rank, then there exists a chart ¢ about
0 on R”" such that f o ¢ = m, where & : R" — RK denotes the projection.

Definition F.49 (Immersion). A smooth map F : M — N is said to be an immer-
sion, iff DF) is injective for all x € M.

Definition F.50 (Embedding). A smooth map F : M — N is said to be an embed-
ding, iff F is an injective immersion and F : M — F(M) is a homeomorphism,
where F(M) is endowed with the subspace topology.

Every immersion is a local embedding.

Proposition F.51. Suppose F : M" — N* is an immersion. Then for any x € M,
there exists a chart U of x and a chart (V, ) about F(x) such that

(@) If y' := 7' o, then
FUNV ={yeV:y"T(y ==y =0}
(b) F|y is an embedding.

Corollary F.52. Suppose F : M" — N is an embedding. Then for any x € M,
there exists a chart U of x and a chart (V, V) about F(x) such that if y' := n* o,
then

FM) NV ={yeV y"y) ==y =0}

If F is simply inclusion of M into N, we call the above choice of coordinates a slice

chart for M in N.

Proof. Since F is a homeomorphism onto F (M), we have that F(U) is open in
F(M). By definition of the subspace toology, F(U) = F(M) N W, where W is
open in N. But then

FM)ynwnvy={yev:y"y ==y =0}

by proposition F.51. |
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Definition F.53 (Immersed Submanifold). Let M and N be smooth manifolds and
M C N as sets. We say that M is an immersed submanifold of N , iff the inclusion
M < N is an immersion.

Definition F.54 (Embedded Submanifold). Let M and N be smooth manifolds and
M C N as sets. We say that M is a embedded submanifold of N , iff the inclusion
M < N is an embedding.

By corollary F.52 every embedded submanifold admits an atlas consisting of slice
charts. In fact, the converse is also true.

Proposition F.55. Let N be a smooth manifold and M C N a subset, such that
for every x € M there exists a slice chart for M in N. If M is endowed with the

subspace topology, then M admits a smooth structure making it into an embedded
submanifold of N.

Definition F.56 (Regular and Critical Point). Let ' : M — N be smooth. A point
X € M is said to be a regular point, iff rank DF, = dim N. A point x € M is said
to be a critical point, iff x is not a regular point.

Definition F.57 (Regular and Critical Value). Let F : M — N be smooth. A
point y € N is said to be a regular value, iff F~'(y) consist only of regular points.
A point y € N is said to be a critical value, iff y is not a regular value.

Theorem F.58 (The Implicit Function Theorem for Manifolds). Let FF : M" —
N* be smooth and suppose that y € N is a regular value of F such that F~(y) #
@. Then F~1(y) is a topological manifold of dimension n — k. Moreover, there exists
a smooth structure on F~Y(y) making it into an embedded submanifold of M .

Proposition F.59. Let F : M — N be smooth and y € N a regular value of F
such that F~1(y) # @. Then

Dy (T« F~'(y)) = ker DFy
holds for all x € F~1(y) where 1 : F~1(y) < M denotes the inclusion.

Proof. Observe, that both sides are subspaces of dimension n — k of Ty M. Thus
it suffices to show that Di, (Tfol(y)) C ker DF,. Let v € T, F~!(y) and
f € C*®(N). Using the chain rule and lemma F.30 we compute

(DFy 0 Diy)(v) f = D(F 00, ()f =v(f 0 Fo1) = v (f()) = 0.

Example F.60 (n-Spheres). Let n € N with n > 1. Then we can define
F:R"™ SR by  F(x):=|x]*.

Then S” = F~!({1}) and it is easy to see that for any x € R”*! we have that
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DFx(v) = 2(x,v)

for any v € R"*!. Hence any x € R \ {0} is a regular point of F under the identi-
fication given by proposition F.40 (@, and @ (y) are isomorphisms). In particular,
1 is a regular value of F and thus S” is an embedded submanifold of R”*! by the
implicit function theorem for manifolds F.58. Moreover, using proposition F.59, we
have that

Dix (TxS") = ker DFy, = {v e R"*!: (x,v) = 0} = x* (E.5)

for all x € S”, again under the identification given by proposition F.40 (see figure
E1).

Fig. F.1: Tangent space T,S? at x € S2.

Definition F.61 (Submersion). A smooth map F : M — N is said to be a submer-
sion, iff every point of M is a regular value.

The next theorem is the main reason why we require smooth manifolds to admit
only countably many connected components.

Theorem F.62 (Sard’s Theorem for Manifolds). Ler F : M" — N* be smooth.
The set of critical values of F has measure zero in N and the set of regular values
is dense in N. In particular, if n < k, every point is critical, and thus N \ F(M) is
dense in N.

Theorem F.63 (The Strong Whitney Embedding Theorem). Let M" be a smooth
manifold. Then there exists a proper embedding M — R?".

Theorem F.64 (The Weak Whitney Embedding Theorem). Let M™ be a smooth
manifold. Then there exists a proper embedding M — R2"+1,
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Proof. We will only give a sketch of the proof if M is compact. We proceed in two
steps.

Step 1: M™ embeds into some Euclidean space. Let (Vy)qea be a finite open cover
for M such that Vo, C Uy for charts (Uy, o) and|A| = k. Moreover, let ¥4 be cutoff-
functions for V,, supported in U, and set f, := Yq@q. Define F : M — Rkn+k
by

F(x) = (i), fir (), Y1 (), Y (x)) -
Then F is an injective immersion and hence an embedding.
Step 2: Inductively reducing the dimension obtained in step 1. Replacing M by
F(M), we can assume M C R¥ . Suppose N > 2n + 1, otherwise there is nothing
to prove. We are looking for unit vectors v € RY \ RV~ such that the projection
P, parallel to v induces an embedding

Pylar : M — RN,
It can be shown that P, is an injective immersion if and only if

v # Ty and v;éﬂ
|x =yl lw]

forall x,y € M and w € T, M. Using Sard’s theorem for manifolds F.62, one can
show the existence of such a v. O

Using the Whitney embedding theorems we can prove a foundational result in the
de Rham cohomology.

Proposition F.65. Let M be a smooth manifold and g € C (M, R¥). For any positive
§ € C(M), there exists f € C®(M,R¥) such that

| f(x) —g(x)] <8(x)
holds for all x € M.

Next we want to improve above proposition to the case where the codomain itself
is an arbitrary manifold. For this we need the notion of a tubular neighbourhood.

Theorem F.66 (The Tubular Neighbourhood Theorem, Euclidean Case). Every
embedded submanifold M C R¥* admits a tubular neighbourhood.

Theorem F.67 (The Whitney Approximation Theorem). Let ' : M — N be a
continuous map between two smooth manifolds M and N. Then F is homotopic to
a smooth map.

Proof. Use the Whitney embedding theorems together with the existence of tubular
neighbourhoods F.66 and proposition F.65. |
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F.4 Vector Fields

Definition F.68 (Vector Field). Let M be a smooth manifold and U € M open
and non-empty. A vector field on U is defined to be a section of the projection
w: TU — U. The set of all vector fields on U is denoted by X(U).

Example F.69. Coordinate Vector Fields Let M be a smooth manifold and (U, (x"))

be a chart on M. Define % :U — TM by

0

0
o )T |

It immediately follows from the smoothness criteria for tensor fields 2.33 that % €
XW).

Exercise F.70. Show that X(U) is a C °° (U )-module. Hint: Use the smoothness criteria for tensor
fields 2.33.

In contrast to arbitrary tensor fields, vector fields can act on smooth functions.

Proposition F.71. Let M be a smooth manifold and U € M open. Then X € X(U)
if and only if the function Xf : U — R defined by X f(x) := X(x) f is smooth for
all f € C®(V), where V C U is open.

Proof. Using the smoothness criteria for tensor fields 2.33, we locally write X =
X9 where X' are smooth functions. Hence

oxt’
af

axt

Xf =X
which is smooth.

Conversly, suppose that X f is smooth for any f € C° (V). Then in particular

. oy .
X(x7) = X’% — X/
xl

is smooth. O

We adopt the terminology from [20, 218].

Definition F.72 (Derivation). Let M be a smooth manifold and U € M open. A
derivation of C*°(U) is a linear map D : C*®°(U) — C°°(U) such that

D(fg) = D(f)g + fD(g)
holds for all f,g € C°(U). Denote the set of all derivations of C °°(U) by Der(U).

Exercise F.73. Show that Der(U) is a C *° (M )-module.
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Proposition F.74. Let M be a smooth manifold and U C M be open and non-empty.
Then X(U) = Der(U) as modules over C*(U).

Proof. Define @ : X(U) — Der(U) by @(X)(f) := Xf using proposition F.71.
Moreover, define & : Der(U) — X(U) by ¥(D)(x)(f) := Df forall f € C*(U)
again using proposition F.71. O

Remark F.75. From now on we will identify vector fields in X(U) with derivations
Der(U) by means of proposition F.74.

Proposition F.74 yields a new tool for constructing vector fields.
Exercise F.76. Let M be a smooth manifold and U € M a non-empty open subset. Show that
[X,Y]:=XoY —YoX e X(U)

forany X,Y € X(U).

Definition F.77. Let M and N be smooth manifold and F € C*°(M, N). Two
vector fields X € X(M) and Y € X(N) are said to be F-related, iff

DFx(X|x) = YF(x)
holds forall x € M.

Proposition F.78. Let M and N be smooth manifolds and F € C*°(M, N). Then
X eX(M)andY € X(N) are F-related if and only if

X(foF)=(Yf)oF
holds for all f € C*°(V), where V C M is open.

Proposition F.79. Let M and N be smooth manifolds and F € C*° (M, N). Suppose
X1,X, € X(M) and Y1,Y, € X(N) such that X is F-related to Y1 and X, is
F-related to Y,. Then [ X1, X3] is F-related to [Y1, Y.

F.5 Flows

Definition F.80 (Integral Curve). Let M be a smooth manifold and X € X(M). A
curve y € C*®(J, M), where J C R is an interval, is said to be an integral curve
of X, iff

Y'(®) = Xy
holds for all t € J.

Proposition F.81 (Fundamental Theorem for Autonomous ODEs). Let U C R”
open and X € C°°(U,R"). Consider the initial value problem
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Y (@) =X (y'@).....y" (1))

y(to) =c, =6)

forto €e Randc € U. Then:

(a) For any ty € R and x¢ € U there exists an open interval Jy containing ty and
an open subset Uy C U containing x¢ such that for each ¢ € Uy there is a map
y € CY(Jo,U) that solves (F.6).
(b) Any two solutions to (F.6) agree on their common domain.
(c) Define
0 : JO X UO —-U

by0(t, x) := y(t), where y(t) is the unique solution of (F.6) suchthat y(ty) = x.
Then 6 is smooth.

Theorem F.82 (Local Flow). Let M be a smooth manifold and X € X(M). For
every x € M there exists a neighbourhood U of x, ¢ > 0 and a smooth map

0:(—,e)xU—>M
such that: 0(-, x) is the unique integral curve of X passing through x.

Definition F.83 (Maximal Integral Curve). Let M be a smooth manifold and X €
X(M). Given x € M, denote by (¢~ (x), 7% (x)) the maximal interval around 0 such
that the integral curve y, of X starting at x is defined. This integral curve is called
the maximal integral curve of X starting at x.

Theorem F.84 (Fundamental Theorem of Flows). Let M be a smooth manifold
and X € X(M). Then there exists a unique open set D C R x M and a unique
smooth map 0 : D — M, called the maximal flow associated to X, such that

(a) For all x € M we have that
DNER x{x}) = (t_(x), t+(x)) x {x}.
(b) O(t, x) = yx(¢t) forall (t,x) € D.

Proof. Observe that (a) and (b) determine O and 6 uniquely. Therefore it suffices to
show that O is open and 6 is smooth. In order to show this, it is enough to show that
forevery x € M the set A4 consisting of all ¢ € (t_(x), tt (x)) such that there exists
a neighboruhood of (¢, x) in O such that 8 is smooth, is closed and non-empty. [

Definition F.85 (Complete Vector Field). A vector field X € X(M) on a smooth
manifold M is said to be complete, iff its flow 6 admits the domain R x M.

A sufficient condition for completeness is given in the following lemma.

Lemma F.86. Let M be a smooth manifold and X € X(M). Suppose that there
exists € > 0 such that (—¢, €) C (t_(x), t+(x))f0r all x € M. Then X is complete.



F.6 Lie groups and Lie algebras 139

Proposition F.87. Let M be a smooth manifold and X € X(M) with compact
support. Then X is complete.

Corollary F.88. Every vector field on a compact smooth manifold is complete.

F.6 Lie groups and Lie algebras

Definition F.89 (Lie Group). A Lie group is defined to be a group object in Man.

Examples F.90 (Lie Groups). The following are examples of Lie groups.

(a) (GL(V), o).
(b) Consider S' € C. Then S! is an abelian Lie group under complex multiplication
(see problem F.254).
(c) Let Gy, ..., G, be Lie groups. Then G x---x G, is aLie group. If G4, ..., G,
are abelian Lie groups, then so is Gy X --- X Gy,.
(d) The torus
T" :=8" x---x S"

N ——
n

is an abelian Lie group from part (b) and (c).

Definition F.91 (Lie Group Homomorphism). A map F € C*°(G, H) between
two Lie groups G and H is said to be a Lie group homomorphism, it F : G - H
is a homomorphism.

The group structure of a Lie group induces canonical maps.

Definition F.92 (Translation). Let G be a Lie group and g € G. Define morphisms
Lg, R, € Diff(G) by

Lg(h) :=gh and Ry (h) := hg.
These maps are called left translation by g and right translation by g, respectively.
Proposition F.93. Every Lie group homomorphism has constant rank.

Definition F.94 (Lie Subgroup). A Lie subgroup of a Lie group G is defined to be
a subgroup of G, which is itself a Lie group and an immersed submanifold of G.

Proposition F.95. Let G be a Lie group and H be a subgroup of G such that H is
an embedded submanifold of G. Then H is a Lie subgroup of G.

To every Lie group we can associate an algebraic object.
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Definition F.96 (Lie Algebra). A Lie algebra is defined to be a real vector space g,
such that there exists a bilinear mapping

[-.-]:gxg—g,

called the Lie bracket on g, such that:

(i) (Antisymmetry) [x, y] = —[y, x],
(ii) (Jacobi’s Identity) [x, [y, z]] + [z, [x, Y]] + [y, [z, x]] = O,

holds for all x, y,z € g.

Example F.97. Vector Fields Let M be a smooth manifold and U € M open. Then
X(U) together with [ -, -] defined in exercise F.76 is a Lie algebra, called the Lie
algebra of vector fields on U .

Definition F.98 (Left-Invariance). Let G be a Lie group. A vector field on G is said
to be left-invariant, iff it is Lg-related to itself for all g € G. The vector space of
left-invariant vector fields on G is denoted by X (G).

Proposition F.99. Let G be a Lie group. Then X1.(G) is a Lie-subalgebra of X(G).

Proof. By definition, X and Y are L ,-related to themselves for all g € G. Hence by
proposition F.79 we have that [ X, Y] is L-related toitselfand so [X, Y] € X.(G).O

Theorem F.100. Let G be a Lie group. Then T,G = X1.(G) as real vector spaces.

Proof. Consider the map ev: X (G) — g defined by ev(X) := X,. Then ev is
linear and injective by left-invariance. So we need to show that ev is surjective. Let
v € g. Define X,: G — TG by

Xylg := D(Lg)e(v). F.7)

Then X, € XL(G). Indeed, by F.71 itis enough to show that X, f is smooth for every
f € C*°(G). Moreover, by proposition F.42 we find a smooth path y : (—¢,¢) - G
such that y(0) = e and y'(0) = v. Hence

(Xv f)(g) = Xulg(f)
= D(Lg)e(v)(f)
=v(foLg)
=y'(0)(f o Lg)
=(foLgoy)(0).

Also X, is left-invariant by the chain rule. O

Definition F.101 (Lie Algebra associated to a Lie Group). Let G be a Lie group.
The Lie algebra g := T, G is called the Lie algebra associated to the Lie group G .
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Definition F.102 (Lie Algebra Homomorphism). Let g and ) be two Lie algebras.
A Lie algebra homomorphism between g and Y is defined to be a homomorphism
L € L(g, b) such that

Llx,y] = [Lx, Ly]

holds for all x, y € g.

Proposition F.103. Let G and H be Lie groups and F : G — H a Lie group
homomorphism. Then
DF,:g— b

is a Lie algebra homomorphism.

Proposition F.104. Every left-invariant vector field is complete.

Definition F.105 (One-Parameter Subgroup). Let G be a Lie group. A one-
parameter subgroup of G is defined to be a Lie group homomorphism (R, +) — G.

Proposition F.106 (Characterisation of One-Parameter Subgroups). The one-
parameter subgroups of a Lie group are in one-to-one correspondence with the
maximal integral curves of left-invariant vector fields starting at the identity.

Proof. Suppose y is an integral curve of some left-invariant vector field X € X (G).
By proposition F.104, y : R — G. Let s € R and consider the path ¥ € C*°(R, G)
defined by

7(t) = y() (s +1) = Lyt (v(s +1).
Then 7 (0) = e and

y'(@t)=D (LV(S)_l)y(sJ,-t) (v'(s +1)
=D (LV(S)*‘)y(Hz) (Xy(s+0)
= Xy~ 1y(s+0)
= X50)-

Thus by uniqueness ¥ = y. But this implies

y(s+1) =y(s)y@)

forall s, € R.

Conversly, suppose that y : R — G is a one-parameter subgroup of G. Then
y’(0) € T,G and thus by theorem F.100, we can associate to y’(0) a left-invariant
vector field X. Then y is an integral curve of X. Indeed, we compute
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Xy = D (Lyw), (v'(0))

d
= (Ly(t) ° V)

s=0

ds

= Szoy(s +1)

=y'(t).

Definition F.107 (Exponential Map). Let G be a Lie group and g its Lie algebra.
Then the map exp: g — G, defined by v — y(1), where y is the unique one-
parameter subgroup of G associated to v, is called the exponential map.

Theorem F.108. The exponential map is smooth and D exp, = idg.
Proof. Consider the map X onG x g defined by

)a(g,v) = (Xv|g,0) € TgG X Tvg = T(g,v)(G X g)

by proposition F.36. Then X is a vector field on G x g. Indeed, forany f € C*(G xg)
we compute

(X /) (g.v) = Xl f = D) (Xolg) f = Xolg(f 010) = (Xo(f o)) (8)

using proposition F.36. The latter function is smooth and so is X f. Now the flow
0:RxGxg— G xgofX is given by

0(t,g,v) = (g exp(tv), v) .

Thus (1, e,-) is smooth, but this is simply the map v > (exp(v),v). So exp is
smooth since exp = w! 0 (1, e, ). O

Proposition F.109. Let G and H be Lie groups with corresponding Lie algebras
g and b, respectively. If F : G — H is a Lie algebra homomorphism, then the
diagram

G— H

commutes.
A prominent feature of Lie groups is their action on smooth manifolds.

Definition F.110 (Left Action). Let G be a Lie group and M be a smooth manifold.
A left action of G on M is defined to be a smooth map 6 € C*°(G x M, M) such
that
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6(g.0(h,x)) =6(gh,x) and  f(e,x) =x
holds forall g,h € G and x € M.

Example F.111. The Conjugation Action Let G be a Lie group. Then G acts on
itself via the conjugation action, written C : G x G — G, defined by

C(g.h):=ghg™"' = Lg (Rg—1(h)).

Definition F.112 (Transitive Action). A left Lie group action of a Lie group G on
a smooth manifold M is said to be transitive, iff for all x, y € M there exists g € G
such that g - x = y.

Definition F.113 (Free Action). A left Lie group action of a Lie group G on a
smooth manifold M is said to be free, iff g- x = x implies g = e forall g € G and
xeM.

Definition F.114 (Effective Action). A left action 0 : G x M — M of a Lie group
G on a smooth manifold M is said to be effective, iff 6, = idys if and only if g = e.

It immediately follows from the definitions, that every free action is effective.
Recall, that a morphism f : X — Y in Top is said to be proper, iff f~1(K) is
compact for every K C Y compact.

Definition F.115 (Proper Action). A left Lie group action of a Lie group G on a
smooth manifold M is said to be proper, iff the map G x M — G x M defined by

(g,x) + (g, gx) is proper.

Finally, we want to give a short introduction in a subject called representation
theory, which has many applications.

Definition F.116 (Representation). Let G be a Lie group. A representation of G is
defined to be a tuple (V, p) consisting of a finite-dimensional real vector space and
a Lie group homomorphism p : G — GL(V).

Definition F.117 (Linear Action). Let V' be a finite-dimensional real vector space
and G a Lie group. A left action 6 : G x V — V is said to be a linear action, iff
0 € GL(V) forallg € G.

Definition F.118 (Fixed Point). Let 6 be a left action of a Lie group G on a smooth
manifold M. A fixed point of 6 is defined to be a point x € M, suchthat 0(g, x) = x
holds forall g € G.

Proposition F.119. Let 6 be a left action of a Lie group G on a smooth manifold M.
Suppose x € M is a fixed point of 0. Then p : G — GL(Ty M) defined by

P(&) () := D(g)x(v)

is a representation of G.
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Definition F.120 (The Adjoint Representation). Let G be a Lie group. The rep-
resentation induced by proposition F.119 at the identity of G from the conjugation
action is called the adjoint representation of G, written Ad : G — GL(g).

We can go one step further and differentiate the adjoint representation Ad. We
write
ad := D(Ad). : g — gl(g)-

There is an easy description of this representation.

Proposition F.121. Let G be a Lie group with Lie algebra g. Then ad, (w) = [v, w].

F.7 Distributions

Definition F.122 (Distribution). Let A" be a smooth manifold and £ < n. A
distribution A on M of dimension k is defined to be a choice of a k-dimensional
subspace A, C Tx M forevery x € M such that the following smoothness condition
is satisfied: For every xo € M there exists a neighbourhood U of x¢ and k vector
fields X1,..., Xz € X(U) such that

Ay = spang {X1|x,...,Xk|x}
holds forall x € U.

Example F.123. Nowhere-Vanishing Vector Field Let M be a smooth manifold and
X € X(M) nowhere-vanishing, that is, X # 0 for all x € M. Then

Ay = spangr X
defines a one-dimensional distribution on M.

Definition F.124 (Integral Manifold). Let A be a k-dimensional distribution on a
smooth manifold M. An immersed submanifold L € M is said to be an integral
manifold of A, iff

Dy (TxL) = Ay

holds for all x € L.

Definition F.125 (Integrable Distribution). A distribution A on a smooth manifold
M is said to be integrable, iff the following condition is satisfied: If X, Y € X(M)
such that X, Yy € A, forall x € M, then also [X, Y], € Ay forallx € M.

Theorem F.126 (The Local Frobenius Theorem). Let M" be a smooth manifold
and A an integrable k-dimensional distribution on M. Then for every x € M there
existsachartp : U — (=1, 1)" centered at x and such that for every c € (—1, 1)n_k

the slice
{x eU: xk'H(x) =cl .. ., x"= c"_k}



F.7 Distributions 145

is an integral manifold of A. Moreover, every connected integral manifold of A
contained in U is of this form.

The following proposition is crucial in the proof of the local Frobenius theorem
F.126.

Proposition F.127. Let M" be a smooth manifold and W C M a non-empty open
subset. Suppose X1, ..., Xy € X(W) are such that

(i) There exists xo € W such that (X il xo) is linearly independent.
(ii) [X;, Xj] = Oforalli and j.

Then there exists a chart (U, ) contained in W about xo such that X;|y = %

Definition F.128 (Foliation). Let M” be a smooth manifold. A k-dimensional foli-
ation ¥ of M is a partition of M into k-dimensional connected immersed subman-
ifolds, called the leaves, such that:

(i) The collection of tangent spaces of the leaves defines a distribution on M .
(i) Any connected integral manifold of this distribution is contained in a leaf.

Example F.129. Let F : M" — N* be asurjective submersion. Then (F I y))
is an (n — k)-dimensional foliation of M.

YEN

Theorem F.130 (The Frobenius Theorem). Let A be an integrable distribution on
M. Then A is induced by a foliation.

The Frobenius theorem has many applications.

Theorem F.131. Let G be a Lie group with associated Lie algebra g. If h C gis a
Lie subalgebra, then there exists a unique connected Lie subgroup H C G, whose
associated Lie algebra is b.

Proof. Consider the distribution A on G defined by
Ag :={Xvlg :v b}
and apply the Frobenius theorem F.7. O

One particularly important application of the Frobenius theorem F.7 is the next
theorem.

Theorem F.132. Let G be a Lie group and H C G a closed subgroup. If G/H
denotes the set of left cosets of H in G, then G/H is a topological manifold of
dimension

dim(G/H) = dimG — dim H

endowed with the quotient topology. Moreover, there exists a smooth structure on
G/H making w : G — G/H into a smooth submersion.
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Definition F.133 (Homogeneous Space). A homogeneous space is defined to be a
smooth manifold M, such that there exists a Lie group G and a closed subgroup
H C G, such that M =~ G/H in Man, where G/H is endowed with the smooth
structure of theorem F.132.

Theorem F.134. Let 0 be a transitive left action of a Lie group G on a smooth
manifold M. Fix x € M and let

H:={geG:0,(x)=x}.

Then M is a homogeneous space with M = G/H, where an explicit diffeomorphism
is givenby F : G/H — M defined by F (n(g)) = Og(x).

F.8 Vector Bundles

Definition F.135 (Fibre Bundle). A fibre bundle is defined tobe atuple (E, M, r, F)
consisting of smooth manifolds £, M and F together with a surjective map
m € C®(E, M) such that there exists an open cover (Uy)qeq of M and maps
go € C® (771 (Uy), F) for all @ € A such that (7, ¢y) : 7' (Uy) — Uy x F is
a diffeomorphism. If (E, M, r, F) is a fibre bundle, we call M the base space, E
the total space and F the fibre. Moreover, the family (Uy, ¢ )ge 4 is called a bundle
atlas for (E, M, r, F).

Example F.136 (Trivial Bundle). Let M and F be smooth manifolds. Then
T MxF—->M

is a fibre bundle.

The fibre F of a fibre bundle (E, M, &, F) is completely determined by 7 : £ —
M.

Proposition F.137. Let (E, M, , F) be a fibre bundle. Then 1 is a submersion,
E, := n7Y(x) is an embedded submanifold of E for all x € M and Ex = F in
Man.

Proof. Let x € M. Then there exists a neighbourhood U, of x such that 7 =
7! o (m,¢y). But then 7 is a submersion as a composition of submersions. Thus
an application of the implicit function theorem for manifolds F.58 yields that E is
an embedded submanifold of E. Now E, = {x} X F by ¢, but {x} x F =~ F in
Man. O

Exercise F.138. Let M and N be smooth manifolds and G € C°°(M, N). Moreover, suppose
that (E, N, m) is a fibre bundle. Define

G*E :={(x,p) € M X E : G(x) = n(p)}.

Show that (G*E, M, !, F) is a fibre bundle. This fibre bundle is called the pullback bundle.
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One particularly important notion concerning vector bundles are sections.

Definition F.139 (Local Section). Let 7 : E — M be a fibre bundle. A local
section of E is defined to be a section of the fibre bundle 7|, -1y : ' (U)—=U
for some U € O(M). The set of all local sections on U is denoted by I'(U, E).

Definition F.140 (Compatibility). Let (E, M, ) be afibrebundleand 6 : G x F —
F an effective Lie group action. Let «, B € A such that Uy N Ug # @. We say that
9o 1 7Y (Uy) — F and @g : 771 (Ug) — F are (G, 0) - compatible, iff there
exists pgg : Us N Ug — G such that

Pap (X)(¥) = Pop(x) -y

holds for all x € Uy, N Ug and y € F, where pgg : Uy N Ug — Diff(F) is defined
by

pap (%) := ¢alE, © 981z, -
Definition F.141 (Structure Group). A structure group of a fibre bundle (E, M, )

is a Lie group G such that there exists an effective Lie group action on F and a bundle
atlas (Uy, ¢o)aca Which is G-compatible.

Definition F.142 (Vector Bundle). Let k € N. A vector bundle of rank k is defined
to be a fibre bundle (E, M, 7, R¥) admitting a matrix Lie subgroup of GL(k) as a
structure group.

As aestetically pleasing the definition of a vector bundle F.142 may be, in practice,
it is not that useful. Hence we give an alternative definition.

Definition F.143 (Vector Bundle). Let 7 : E — M be a fibre bundle with fibre
R¥. We say that (E, M, ) is a vector bundle of rank k , iff

(i) For all x € M, the fibre E, admits the structure of a k-dimensional real vector
space.
(ii) Forall x e M, ¢4|E, : Ex — R¥ is an isomorphism of vector spaces.

Example F.144 (The Tangent Bundle). Let M" be a smooth manifold. Define
™ := || T:M
xXeEM

and 7 : TM — M by 7(x,v) := x. Then x is certainly surjective. If (Uy, ¥¢)aeca
is a countable atlas of M (this is possible since every smooth manifold is Lindelof
by corollary F.6), define T Uy := [ [y, TxM and

@ : TUy — R"

by setting .
o (x,0) 1= dx}|x(v)e;.

Then (n, q'p“a) : TUy — Uy x R” is a bijection since the explicit inverse is given by
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J

~ ~ \—1
((Pa o n,(pa) o ((pﬁ o 7'[,(,0/3) tpg(Ue NUB) x R” — ¢u(Uy N Ug) x R"

~\~1 - i_ 9
(71, (pa) (x,v) := (x,v P

o

Moreover, if U, N Ug # o, the transition function

is given by

_ ox]
(0w o7 3) o (05 0 7. 78) " (08 (1) v) = [ 0al), v 2 (x)e; | -
Bxﬂ

Hence the transition functions are smooth and by the smooth manifold chart lemma
F.17, TM admits a smooth structure that makes it into a smooth manifold of di-
mension 27 and moreover, w : TM — M is a vector bundle of rank 7, called the
tangent bundle.

Definition F.145 (Vector Bundle Morphism). Let (E, M, ) and (E’, M’, ") be
two vector bundles and f € C®°(M, M'). A vector bundle morphism along f is
defined to be amap F € C*°(E, E’) such that

commutes and F|g, : Ex — E J/,(x) is linear for all x € M.

Example F.146. The derivative as a Vector Bundle Morphism Let F € C*°(M, N).
Then DF is a vectro bundle morphism along F'.

Definition F.147 (Vector Bundle Homomorphism). Let (E, M, ) and (E', M, ')
be two vector bundles over the same base space. A vector bundle homomorphism
is a vector bundle morphism along idps.

Definition F.148. A functor

F :Vect x --- x Vect — Vect
N — —

k
is said to be smooth, iff for all Vi, ..., Vi, W1, ..., Wi € Vect, the map

k
PLyvi. W) - L(F(Vi..... Vi), F(Wh..... W)
i=1

where
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i(V W) = L(V;, W;) F covariant in the i-th argument,
po L(W;,V;) & contravariant in the i-th argument
given by
(7&,...,7%) = 37(73,...,7k)
is smooth.

Theorem F.149. Let

F :Vect x --- x Vect — Vect
S ———————

k

be a smooth functor of mixed variance and w; : E; — M vector bundles for
i=1,....k. Then

7 ]_[ F(Etlx, - Exlx) > M
xXeM

is a vector bundle.

There are two particularly important constructions from linear algebra in differ-
ential topology, namely the tensor product and the exterior product.

Proposition F.150 (The Free Module Functor). Let R € Ring. Then the forgetful
functor U : gMod — Set admits a left adjoint.

Proof. Consider the free module functor F : Set — rMod defined as follows:

Step 1: Definition on objects. Let S € Set and define
F(S):= {f € RS :supp f is ﬁnite}.

Equipped with pointwise defined addition and multiplication, F(S) is a left R-
module. Moreover, there is an inclusion ¢ : S < U(F(S)) sending x € S to the
function taking the value one at x and zero else. It is easy to check that F(S) is free
on S.

Step 2: Definition on morphisms. Let f : S — S’ in Set, define F(f) : F(S) —

F(S’) by setting
F(f) (erx) = erf(x).

xeS x€eS

Step3: F 4 U. Let M € gMod and ¢ € gMod(F(S), M). Define ¢ €
RMod(S, U(M)) to be the restriction to S of the underlying map of sets. Con-
versly, if f € Set(S, U(G)), extending by linearity yields f € rMod(F(S), M)

given by
]7(2 rxx> = Z rx f(x).

xeS xeS

It is now easy to check that ¢ = ¢ and }7 = f holds. O
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Exercise F.151. In the proof of proposition F.150, check functoriality of F' and naturality of the
bijection gMod(F (S), M) = Set(S, U(M)).

Definition F.152 (Universal Property of the Tensor Product). Let V, W € Vect.
The tensor product of V and W is defined to be a tuple (V ® W, ®), where
VeWeVectand ® : V x W — V ® W is a bilinear mapping such that the
following universal property in Vect is satisfied:

VxW —8 s vew

vVf bllm /

Lemma F.153. Let V, W € Vect. The V* @ W =~ Hom(V, W).

Proof. Just apply the universal property of the tensor product F.152 to the map
f :V*x W — Hom(V, W) defined by

flw,w)() := w()w.
U

Definition F.154 (Pairing). Let V, W € Vect. A bilinear form f is said to be a
noon-degenerate pairing, iff f(v,-) = 0 if and only if v = 0, and B(-, w) = 0 if
and only if w = 0.

Proposition F.155. Let k,] € N and V € Vect. Then

V@@V V' ® - @V* ~L(V*....V*.V.....V:R).

k 1 k I

Lemma F.156 (Permutation Lemma). Ler V € Vect, € AK(V*) and n €
AL(V*). Then

(@ A1) (Ul,...,vk_H) =

1
m Z sgn(o)a) (v(,(l), ey vg(k)) n (Ug(k_H), ey vg(k+1)) (FS)
o O'ESk+1

forallvy,...,vg41 € V.

One particular advantage of studying vector bundles instead of mere fibre bundles
is that the set of sections admits an additional structure.

Lemma F.157. Let (E, M, 1) be a vector bundle. Then for any U € M open and
non-empty, the set I'(U, E) is a vector space and a C*°(U)-module.

Proof. Let ¢ : 7= (U) — R be a vector bundle chart and (V, v/) be a chart on M
such that U NV # @. Then
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Wome):x " (UNV)—>yUNV)xRF

is a chart on E compatible with its smooth structure. Since o is a section, we have
that
Wom@)oogoy iy (UNV)—>yUNV)xRF

Hence the coordinate representation of o is of the form (id, 5). Hence o is smooth
if and only if & is smooth for all charts. This readily implies the statement. O

Definition F.158 (Local Frame). Let 7 : E — M be a vector bundle of rank k£ and
U € O(M). A local frame for E over U is defined to be a family (eq, ..., ex) of
sections in I'(U, E) such that (e]y, ..., ex|x) is a basis for E, forall x € U.

Lemma F.159. Let w : E — M be vector bundle. Then for every x € M a local
frame exists.

Proof. Let (Uy, ¢o)aca a vector bundle atlas and assume that the vector bundle
is of rank k. Let (ey,...,ex) denote the standard basis of R¥. For a € A define
e; : Uy — n~1(Uy) by

e (x) 1= @q| 5 (i)

Then ¢; € I'(U, E) by the argument in the proof of lemma F.157 and (e, ..., ex)
forms a local frame since ¢y | g, is an isomorphism for all x € U,. O

Theorem F.160 (The Hom —I'-Theorem). Let 7 : E — M and n’ : E' — M be
two vector bundles. Then there is a one-to-one correspodence between vector bundle
homomorphisms from E to E' and C%(M)-linear maps from T'(E) to T'(E’).
Explicitely, if @ : E — E’ is a vector bundle homomorphism, then the induced map
x:T(E) — T'(E') is given by

x(o) =®oo.

If M is a smooth manifold, so is U for any open subset U € M. Most of the
constructions we performed so far also work for this induced smooth structure on U'.
However, it is tedious to explicitely mention this all the time. So we introduce now
a foundational notion of a mathematical field called Algebraic Geometry.

Let (X, 7) € Top. Then denote by (9 (X) the category of open subsets of X, that
is the category associated to the poset (77, ) (see [8, 24]). Recall, that for any two
categories € and D, there exists the functor category D€ from € to D (see [8, 30]).

Definition F.161 (Presheaf). Let X € Top and € be a category. A presheaf of € on
X is defined to be a contravariant functor O (X) — €. The category of presheaves
of € on X is denoted by PSh(X; €).

Remark F.162. Let F : O(X) — €, where € is the category of a mathematical
structure, that is Grp, Ring, Vect, ..., be a presheaf of € on X. Thenif U C V for
U,V € O(X), we simply write f|y for F(U < V)(f), where f € F(V).
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Example F.163 (Presheaf of Sections of a Vector Bundle). Let (E, M, ) be a
vector bundle. Define §g : O(X) — Vect on objects U € O(X) by Eg(U) :=
I'(U, E) and on morphisms by restriction.

Definition F.164 (Local Operator). Let 7 : E — M and 7’ : E/ — M be two
vector bundles. An R-linear operator y : T'(E) — T'(E’) is said to be a local
operator, iff the following condition is satisfied: if o € I'(E) such that o|yy = 0 for
some U € O(M), then also y(o)|y = 0.

Proposition F.165. Letw : E — M andn' : E' — M be two vector bundles. Every
local operator y : T'(E) — T'(E’) uniquely induces a morphism of presheaves
X 8E — 8E/.

Proof. LetU € O(M). Define a morphism yy : Eg(U) — Eg/(U) by

xu(©)(x) := x (o) (x)

for all x € U where ¢ € I'(E) is any extension of ¢ in a neighbourhood of x. Since
X is a local operator, this is well defined. It is easy to check that (yv)veowm) is a
natural transformation. O

Proposition F.166. Let w : E — M and n' : E' — M be two vector bundles.
Every C*°(M)-linear operator y : T'(E) — I'(E’) is a local operator.

Proof. The usual argument via bump functions. |
Definition F.167 (Point Operator). Let 7 : E — M and n’ : E/’ — M be two
vector bundles. An R-linear operator y : I'(E) — TI'(E’) is said to be a point

operator, iff the following condition is satisfied: if o € I"(E) such that o, = 0O for
some x € M, then also y(0)x = 0.

Proposition F.168. Let 7 : E — M and n’ : E' — M be two vector bundles.
Every C®°(M)-linear map T'(E) — T'(E’) is a point operator.

Proof. Leto € I'(E) and suppose that o, = 0. By lemma F.159, there exists a local
frame (e; ) on a neighbourhood U about x. Theno |y = fie; forsome f1 € C®(U)
and f¥(x) = 0 for all i. By proposition F.166, y is a local operator, and thus using
proposition F.165 we compute

X(0)(x) = yu(@lv)(x) = f1(x)xu(e)(x) =0
since it is easy to show via a bump function argument that yg is C°°(U)-linear. O

Proof (of theorem F.160). Let y : T'(E) — T'(E’) be C°°(M)-linear. Define & :
E — E’ as follows. If x € M, defined

@(p) == x(o)(x)

for p € Ey, where 0 € T'(E) such that 6, = p. This is well-defined, since y is a
point opertaor by proposition F.168. Moreover, @ is fibre-preserving and linear on the
fibres. Also one can show that @ is smooth, hence a vector bundle homomorphism.]
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F.9 Sheaves

Definition F.169 (Sheaf). Let X € Top and F a presheaf of Set (Grp, Ring, Vect,
...)on X. We say that F is asheafon X, iff forall U € O(X) the following gluing
condition is satisfied: Given any open cover (Uy)qea for U and f, € F(U,) for all
a € A such that

4f0t|UoszB = fﬂ|U(xﬂUB
for all o, B € A with U, N Ug # @, then there exists a unique element f € F(U)

with f|y, = fo for all @ € A. A morphism of sheaves is simply defined to be a
morphism of presheaves.

From example F.163 we already know that &g is a presheaf. In fact, more is true.

Proposition F.170. Let (E, M, ) be a vector bundle. Then &g : O(M) — Vect is
a sheaf.

Example F.171 (Tensor Sheaf). Let M be a smooth manifold. Then tensor fields
of type (k, ) can be assembled in a sheaf by proposition F.170. Denote this sheaf by
TA];’I := Ep«.nrp- We can assemble these sheaves in a total sheaf 737 : O(M) —
rGAIg by setting

-~ k.l

TmU) = P Ty ).

k,1>0

We call Ty the tensor algebra sheaf on M .

Proposition F.172 (The Tensor Characterisation Lemma). Letr M be a smooth
manifold and U € O (M) non-empty. Then there is a one-to-one correspondence
between T*!'(U) and C*®(U)-multilinear maps

QLU) x---x QY U) xX(U) x---x X(U) - C>®().

k 1

Example F.173 (Sheaf of Differential Forms). Let M" be a smooth manifold and
let0 < k < n. Thenby F.170, & s« (= pr) is a sheaf. This sheaf is denoted by Qﬁl and
called the sheaf of differential k-forms. As with tensor fields in example F.171,we
can define a sheaf Q57 : O(M) — rGSCAIg by

QuU):= @ ).

0<k<n

Proposition F.174 (The Differential Form Characterisation Lemma). Let M be
a smooth manifold and U € O (M) non-empty. Then there is a one-to-one corre-
spondence between QL (U) and alternating C*® (U)-multilinear maps

XU)x -+ xX(U) - C®().
I
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F.10 The Lie Derivative

Definition F.175 (Pullback). Let/ € N and F € C°°(M, N). Define
F*: 7% (N) > 7% (M)

by
(F*A)x(vl, ceey v]) = AF(x) (DFx(vl), ceey DFX(UI))

forallx € M and vy,...,v; € TxyM,ifk > landby F*f := fo Fifk =0. We
call F*A the pullback of A under F .

To extend the notion of a pullback of a tensor field to arbitrary tensor fields, we
must impose an additional condition on the map.

Definition F.176 (Cotangent Lift). Let F € C°>°(M, N) be a diffeomorphism.
Define amap DFT : T*M — T*N by

DFT(x,§)(v) := § (DFy) ™" (v))
for all v € Tr(x)N. This map is called the cotangent lift of the diffeomorphism F .

Definition F.177 (Pullback). Let k,/ € N and f € C*°(M, N) a diffeomorphism.
Define
F*: TN — 7R (M)

by
A (F*A) (E', .. EF v, )

forallx € M,E',... ¥ e T*M and vy, ...,v; € Ty M, if k > 1, where the latter
is defined to be

Ary (DFT(EY), ..., DFT(EF), DFc(v1), ..., DFx(vy))
We call F* A the pullback of A under F . Extending by linearity yields a morphism
F*:T(N)—> T(M).
Proposition F.178. Let F be a diffeomorphism. Then
F*(A® B)y=F*AQ F*B.
Definition F.179 (Pushforward).Let FF € C°° (M, N) be adiffeomorphism. Define
Fe :T(M)— T(N)

by .
FuAd:=(F7') A

This morphism is called the pushforward by F .



F.10 The Lie Derivative 155

Proposition F.180. Let F € C®(M,N), A € T (N) and let Xy,..., Xy €
X(M), Y1,...,Yr € X(N) such that X; is F-related to Y; fori = 1,...,k. Then

(F*A)(X1,..., Xk) = A(Y1,....Yg) o F.

Proposition F.181. Let F € C*°(M, N) and X € X(N). Then F*X is F-related
to X.

Definition F.182 (Trace).Let v, ®- - - Qv Qw! ®- - Q! € T*!V for some vector
space V such that k,[ > 1. Define a trace of A to be the tensor Tr A € Tk-Li-1y
defined by

TrA: =0/ (V)1 @ @1 ® QW' ® QR0 ® Q'

forsome 1 <i <k and 1 < j <. Extend this map by linearity to TV and then

pointwise to a sheaf morphism Tr : ’]'A];’l — ’J’A];_l’l_l.

Proposition F.183 (Traces commute with Pullbacks). Let F € C*°(M, N) and
A € TRL(N). Then
Tr(F*A) = F*(Tr A)

for any trace Tr.

Definition F.184 (Tensor Derivation). A tensor derivation on a smooth manifold
M is defined to be a sheaf morphism D : T3y — Ty that preserves type and
satisfies:

(i) Forall U € O(M), Dy commutes with all contractions of T (U).
(i) Forall U € O(M), Dy is a derivation, that is

Du(A®B) =DyA®B+ARQDyB
holds for all A, B € 7(U).

Lemma F.185. Let D be a tensor derivation, U € O(M) and A € T*'(U). Then
forallw',...,0f € QUU) and X1, ..., X; € X(U) we have that

Dy(A) (@', ...,0" X1,.... X1) = Dy (A (o', ..., 0% X1,..., X))

k
—ZA(a)l,...,JDU (a)i),...,a)k,Xl,...,Xl)

i=1
[

=Y A oF X Dy (X)L X))
i=1

Proposition F.186. Ler D and D’ be two tensor derivations on a smooth manifold
which agree on functions and vector fields. Then D = D’.
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Proof. By the contraction lemma F.185 we have that tensor derivations are uniquely
characterised by their action on functions, vector fields and covector fields. In fact,
only on functions and vector fields. Indeed, if @ € Q!(U), then again by the
contraction lemma F.185 we have that
Dy (@)(X) = Dy (0(X)) — o (Du (X))

= D}y (0(X)) - 0 (D (X))

= Dy (w)(X)
forall X € X(U). a
Proposition F.187. Let D be a sheaf morphism on functions and vector fields. If

Dy (fg) =Du(f)g+ fDu(g) and Dy(fX)=Du(f)X + fDu(X)

holds for allU € O(M), f,g € C®(U) and X € X(U), then D extends uniquely
to a tensor derivation on M.

Theorem F.188 (The Lie Derivative). Ler M be a smooth manifold and X € X(M).
Then there exists a unique tensor derivation
fX . TM —> TM
on M such that
Ex f=Xf and ExY =[X,Y]

forallU € O(M), f € C®°(U) and Y € X(U). This tensor derivation is called
the Lie derivative.

Proof. This immediately follows from proposition F.187 since

(Ex(fY))g =[X. fY]g
= X ((/7)(®) ~ /Y (X(2)
= X (fY(9) - /Y (X(2))
= X(NY (@) + f (X (Y(2)) — 1Y (X(2))
=X(NHY(@+ f[X.Y]g
implies
Lx(fY)=Lx (/)Y + fLxY.
The next proposition shows why the name Lie derivative is appropriate.

Proposition F.189. Ler M be a smooth manifold and X € X(M) with flow 0. Then

d * !
ExA = 0r(4) = Lx(4)
ti=0

forany A € TRL(U), U € O(M).
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Crucial in the proof of proposition F.189 are the following two results.

Lemma F.190. Let ¢ > 0 and f € C*® ((—&,&) x U), where U € O(M) for M
a smooth manifold and f(0,x) = 0 for all x € U. Then there exists a function
geC® ((—8, g) X U) such that

)
f(t,x) =1tg(t, x) and 8—];(0,)6) = g(0,x)

holds for all (t,x) € (—e,e) x U.

Proof. Just set

19
g(t, x) 5=/0 a—];(st,x)ds.

Proposition F.191. Let

.k, —~k’l’ —~k"1"
ATy X Ty ” — Ty

be a Cyp-bilinear sheaf homomorphism. Moreover, suppose that for every local
diffeomorphism F € C®°(U, V) for U,V € O(M) we have that

F* (Av(A, B)) = Ay (F*A, F*B).

Then
Ly (A(A, B)) = A (cf;((A), B) + A (A, éﬁ&(B)) .

Proof. We compute

d
Ly (A(A, B)) =

07 (A(4, B))

dt|,—
d

= — A(0FA, 0B
dt|,_ 0 4.6, B)

. ABFA 0 B)— A(A, B)
= lim

t—0 t

. ABFA—A,0B)+ A(A,0B— B)
= lim

t—0 t
0*A— A 0*B — B
= A (lim S B) + A (A, lim ’—)
t—0 t t—0 t

= A (Zy(A). B) + 4 (4, £4(B)) .

Proof. We make use of F.186. Let f € C°°(M). Then for x € M we compute

d d

E t=0( t*f)x = E (fOQ,)(x): (fo@x) (0) :(ex)/(o)f — X|.f.

t=0
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Next, we show that £ Y = [X,Y]. Let x € M. Then there exists &¢ > 0 and
neighbourhood U of x in M such that the flow 6 of X is defined on (—¢,&) x U.
Let f € C*°(U). Applying lemma F.190 to the function f o 6; — f we compute

d d
— 0*Y)f = —
dt t=0( 0 dt | ;=
d Yo, (f 06)
= — o6_
dt o 0: t
d
= — Y —th_
dt =0 |9[ (f 4 I)
d
= — Y —Ylg. h
dt o |9[f |9o 0
d
= (Yf)ob, —Y (£x /)

di
=2Lx(Yf)—Y (Lx f)
— (XY —YX)f
=[X,Y]f,

D(6-1) (Yle,) f

since by continuity of &, we have that

ho = lim hy = =

_O(f 0b) =Lx f.

t

|

Proposition F.192. Let M be a smooth manifold and X € X(M). If A is an arbitrary
tensor field on M, we have that

d

dt

07 (4) = 07 (Lx A).

t=toy

Lemma F.193. Let F € C*®(M, N) for some smooth manifolds M and N, and
w,n € QN). Then
F*(wAn) =F*o A F*n.

Proof. Immediate from the permutation lemma F.156 and the definitions. O

Proposition F.194. Ler X € X (M) for some smooth manifold M and w,n € Q(M).
Then
Ex(wAn) =Lxorn+oALxn.

Proof. Using proposition F.189 together with lemma F.193 yields
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d .
éﬁx(a)/\n)za 0 (w A1)
1=0
d * *
= (6w A 67)
1=0
d * * * d *
=7 t=09ta)/\90n+90a)/\E tzo@, n
d d
=—| 0o A—| 6F
dt =0 Iw T]+C() dl =0 tr’
=ELxoAn+owAnLxn
since 6y = idy, = id. a

F.11 Differential Forms

Differential forms are a key technical tool in differential geometry. In contrast to
mere tensor fields, they can be both differentiated and integrated.

Definition F.195. Let M be a smooth manifold and [ € Z. A graded derivation of
degree | on M is defined to be a sheaf morphism D : Qpr — Qy satisfying:

() If o € Q¥(U), then Dy (w) € QET(U).
(i) If w € QK(U) and 5 € Q(U), then

Dy An) = Dy(@) An+ (=D w0 A Dy ().

Note that by the contraction lemma F.185, the Lie derivative £x can be seen as
a sheaf morphism £x : Qps — Q) for any vector field X € X(M) on a smooth
manifold M .

Example F.196 (The Lie Derivative). Let M be a smooth manifold and X € X(M).
Then the Lie derivative £y is a graded derivation of degree 0 by proposition F.194.

Lemma F.197. Let D and D’ be two graded derivations of degree k and l, respec-
tively. Then
Do — (DD oD

is a graded derivation of degree k + .

Exercise F.198. Prove lemma F.197.

Proposition F.199. Let M be a smooth manifold and suppose that D and D' are
two graded derivations on M of the same degree which coincide on functions and
exact 1-forms, that is, forms o € QY(U) such that there exists f € C®(U) with
w=df, forU e OM). Then D = D'
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Proof. Every graded derivation is entirely determined by what it does on a chart on
expressions of the form . _
fdx"™ Ao AdXE,

Theorem F.200 (The Exterior Differential). Let M be a smooth manifold. Then
there exists a unique graded derivation d : Qpr — Qp of degree 1 such that

dy(f) =df and dod =0
holds for all f € C*(U). This graded derivation is called the exterior differential.

Proof. It is enough to define dy : Q¥(U) — QK1 (U) for some chart (U, ¢). If
w = f1 dx! in this chart, define

dy (w) = df; A dx?,

where I denotes an increasing multiindex. If o € Q¥ (U), then for any n € Q(U),
where = gydx’, we compute
dy(@ An) =dy (figsdx! Adx”)
=d (figs) ndx' ndx!
= ((dfn)gs + f1(dgy)) ndx" Adx”
= gs(dfi) ndx! ndx? + frdgy ndxT Adx?
=dy(w) An+ (=DF frdx" Adgy ~dx’
= dy (@) A0+ (Do A dy ().

Moreover, for any f € C°°(U) we compute

dy(dy f) = d(df)
=d (a—f.dxj)
ax/

0 .
= (—f) Adx?
oxJ
_ S
T 9xidx/
02 f 02 f ; i
o ; (Bxiaxj B 8xj8xi)dx A dx

=0

dx' A dx’

by Schwarz and by the previous computation it follows that dyy o dy = 0. Lastly, dy
is well-defined. Indeed, by proposition F.199 it is enough to check that if we have
two charts (U, ¢) and (V, ) with U NV # &, then the graded derivation dyny
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on Q(U N V) is the same with respect to both coordinates for smooth functions and
exact 1-forms. But this is immediate by the previous computation. O
Proposition F.201. Let M and N be smooth manifolds and F € C*°(M, N). Then
for w € Q(M) we have that

F*(dw) = d(F*w).

Proof. First we prove this for functions f € C*°(N). Let X € X(M). Then we
compute

F*(df)(X) = df (DF(X))
=DF(X)f
=X(foF)
=d(f o F)(X)
=d(F* f)(X).

Thus in a chart (U, ¢) for o = frdx! we compute
F*(dw) = F* (df; Adx")
= F*(df7) A F* (dx7)
= d(F* fi) A F* (dx")
=d ((F* fi)F* (dx'))
= d(F*w).

Proposition F.202. Let M be a smooth manifold and X € X(M). Then
cfX od=do cfx.

Proof. By lemmaF.197, £y od —d o £x is a graded derivation of degree 1. Thus
by proposition F.199 it is enough to show that £x o d —d o Ly vanishes for smooth
functions and exact 1-forms. Note that by the contraction lemma F.185, we have that

Ex(w)(Y)=X (a)(Y)) ) ([X Y])
forall Y € X(M). Hence
(Lxod —d o Lx) f(Y) = Lx(df)(Y) —d(Xf)(Y)
=X (df(Y)) — o ([X.Y]) - d(Xf)(Y)

= XY/ - (X,Y]) - YXf
=0.

for all f € C°(M). Consider an exact form df . Then by the previous computation
we have that
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(£x od —d o &x)df = —d (£x(df)) = —(d od) (£x f) = 0.

Proposition F.203 (Interior Multiplication). Let M be a smooth manifold and
x € X(M). Then there exists a unique graded derivation ix : Qpr — Qpr of degree
—1 such that

ix(f/)=0 and  ix(0) = w(X)

Sor all smooth functions f and 1-forms w.

Proof. Let U € O(M), k € N and X;,..., Xx € X(U). For any w € QK1 (U)
define
ix(@) (X1,..., Xg) = o(X. X1,..., Xp). (F.9)

Proposition F.204 (Cartan’s Magic Formula). Ler M be a smooth manifold and
X € X(M). Then
Lx =doixy +ixod.

Proof. By lemma F.197, d o ix + iy o d is a graded derivation of degree 0. Hence
by proposition F.199, it is enough to check that d o ix + iy o d and £x coincide on
smooth functions and exact 1-forms. Let f € C°°(M). Then we compute

(doix +ixod) f =ix(df)=df(X) = Xf = £x.
Moreover

(doix +ixod)df =d (ix(df)) =d (df (X)) = d(Xf)

which coincides with

Lx(df) =d (£x f) = d(X[)
by proposition F.202. O

Finally, using Cartan’s magic formula ??, we can give a coordinate free description
of the exterior differential.

Proposition F.205. Let M be a smooth manifold, k € N and w € Q¥ (M). Then for
all Xg, ..., Xy € X(M) we have

k
do(Xo..... X)) =Y (=)' X; (@(Xo..... Xi..... X))
i=0
+ Y Do (X X Xoo o Kiv o XL X

i<j

Exercise F.206. Prove proposition F.205.
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F.12 Orientability and Orientations

Definition F.207 (Orientation). Let V' be a real vector space. An orientation of V
is defined to be a choice of one of the two connected components of A4™Y (1) \ {0}.

Definition F.208 (Determinant Functor). Define a functor
det : Vect=! — Vect!

on objects by det V' := AY™YV and on morphisms L : V — W as follows: If
dim V = dim W = n, then set

det L(vi A---Avy):= Lvy A--- A Ly,

and to be the zero-morphism otherwise.

Proposition F.209. Let m : E — M be a vector bundle of rank k, k > 1. The
following conditions are equivalent:

(a) There exists a nowhere-vanishing section o € I'(det E*).
(b) The structure group of E can be reduced to GL™ (k).
(¢) The bundle det E* — M is trivial.

Proof. That (i)<>(iii) is trivial. To prove (i)=>(ii), suppose that ¢ € I'(det E*) is
nowhere-vanishing. Suppose (Uy, ¢s)acd is a vector bundle chart such that each
Uy is connected. Moreover, let (ef, ... ,e,‘:)ae 4 be a family of corresponding local
frames. Since o is nowhere-vanishing, the function

o o
0(6’1,...,€k)
is either positive or negative. If it is negative, substitute the local frame (ef, ..., e,‘f)
with the local frame (—e{, ..., e,‘i‘) and also the corresponding vector bundle chart.

Thus o (e‘l", ces e,‘:) is positive for all « € A. Suppose now that U, N Ug # <. Then

the transition matrix between the bases (ef‘ (x)) and (eiﬂ (x)) of Ex forx € Uy, NUg
is given by pgg(x). But

a(ef,...,e,f) (x) = (detpaﬁ(x))o(e‘f,...,ez) (x)

and so det pgg (x).

Conversly, to prove (ii)<> (i), suppose that (Uy, ¢) is a vector bundle atlas which
is GL™ (k)-compatible. Let (/4 )qec4 be a partition of unity subordinate to the open
cover (Uy)qeq. Define o € T'(det E*) by

o= Zlﬁaeé/\---/\sg,

acA

where (si) is the dual frame corresponding to the local frame (ei). Then o is
nowhere-vanishing. Indeed, if x € M, then x € Ug for some 8 € A and we



164 F Review of Differential Topology

compute

Oy (e'ls (x),..., ellj (x)) = Z Y (x) det peg (x) > 0.

a€A

|

Definition F.210 (Orientability). A vector bundle 7 : E — M is said to be ori-
entable, iff one of the conditions of proposition F.209 is satisfied. A smooth manifold
M is said to be orientable, iff the tangent bundle 7 : TM — M is orientable.

Definition F.211 (Volume Form). Let M" be a smooth manifold. A volume form
on M is defined to be a nowhere-vanishing n-form.

Corollary F.212 (Orientability of Manifolds). Let M be a smooth manifold. Then
the following conditions are equivalent:

(a) M admits a volume form.
(b) There exists a smooth atlas (Uy, ¢a)aca on M such that when Uy N Ug # &

det D(¢a 0 05") (9p(x)) > 0

holds for all x € Uy N Ug.
(¢) The bundle det T*M — M is trivial.

Example F.213 (Lie Groups are Orientable). Let G be a Lie group. Then from
problem F.257 we know that TG =~ G x g in Man. In particular, T G is trivial and
so is det(T*G). Indeed, we have that

det(T*G) = det(G x g*) = G x det(g*).
Hence G is orientable.

Example F.214 (Spheres are Orientable). Let n > 1 and @ := dx® A --- A dx"
be the standard volume form on R”*1. Moreover, define X € X(R"*!\ {0}) by
X|x := x. View S” € R**1\ {0}. Then

M(ixw) € Q"(S")

is a volume form. Indeed, let vq,...,v, € TxS" be a basis. Then D idenifies v;
with a vector in x1. But then (x, vy, ..., v,) is a basis for R”*! and we have that
xo(vy,...,vy) = o(x,vy,...,0,) # 0.

Definition F.215 (Positively Oriented). Let 7 : E — M be an orientable vector
bundle of rank k and denote by o € T"(det E*) a nowhere vanishing section. A basis
(v1,...,vr) of Ex, x € M, is said to be positively oriented, iff o (vq,...,v;) > 0.

Definition F.216 (Orientation). Let 7 : E — M be an orientable vector bundle.
An orientation of E is defined to be an equivalence class [o] of a nowhere vanishing
section o € I'(det E*) under the equivalence relation
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/

o~0 & 3IfeC®(MR"):0=fo

on the set of all nowhere vanishing sections of the determinant bundle det E*. If an
orientation [o] is fixed, we call ¥ : E — M and oriented vector bundle.

Remark F.217. Let 7 : E — M be an oriented vector bundle with orientation [o].
If M is connected, there are exactly two equivalence classes, [o] and [—o].

Exercise F.218. Prove the statement made in remark F.217.

F.13 Manifolds with Boundary

Definition F.219 (Half-Space). Let IV be a vector space and p € V*. Define half-
spaces associated to p by

Vii={veV:pw) =0} and  V, :={veV:p()=<0}.

Definition F.220 (Standard Half-Spaces). Letn € N. Then the half-spaces defined
by
+ —
R% = (R"), and R :=(R")_,
are called the standard half-spaces.

Definition F.221 (Topological Manifold with Boundary). Let n € N. A topolog-
ical space M is said to be a topological manifold with boundary of dimension n,

iff
(i) M is locally Euclidean of dimension n with boundary, that is, for every x € M
there exist an open subset U € M, p € (]R”)* and a functiong : U — (R”);t

such that ¢(U) < (R”)f is open and ¢ : U — ¢(U) is a homeomorphism.
Every such pair (U, ¢) is called a chart on M about x.

(ii) M is Hausdorff and has at most countably many connected components.

(iii) M is paracompact.

Essentially, a smooth manifold with boundary is the same as an ordinary smooth
manifold, but the each chart in the atlas is allowed to have its image in an open subset
of some half-space.

Definition F.222 (Smooth Atlas). A smooth atlas for a topological manifold with
boundary M™" is a collection (Uy, ¢y )qea of charts on M such that

(i) (Uy)ge4 is an open cover for M .
(ii) For all o, B € A such that U, N Ug # @, the function

Yuo9p 19Uy NUg) — R"

is smooth in the sense that there exists a smooth extension. The function
Qo © gogl is called a transition function.



166 F Review of Differential Topology

Proposition F.223. Let M" be a smooth manifold with boundary. Then int M is a
smooth manifold without boundary of dimension n and dM is a smooth manifold
without boundary of dimension n — 1.

Lemma F.224. Let p € (]R")* such that p # 0. Then
(R") = kerp x R*

as manifolds with boundaries.

Remark F.225. By means of lemma F.224 we may assume always that a smooth
manifold with boundary M" admits an atlas where all the charts have image in some
open subset of R”.

Definition F.226 (Outward Pointing). Let M be a smooth manifold with boundary.
A tangent vector v € Ty M for x € dM is said to be an outward pointing vector, ift

dx|x(v) >0

for some chart (U, (xi)) about x. Moreover, a section X of TM |gpy — dM is said
to be an outward-pointing vector field, iff X, is an outward pointing vector for all
x € oM.

Lemma F.227. Let M be a smooth manifold with nonempty boundary. Then there
exists an outward pointing vector field.

Proof. Let Uy, (x(’;é)oZE 4 be an atlas for M and (V4 )aeca a partition of unity subor-
dinate to the atlas. Then

ad
X = Z I/fa_
acA ax‘}‘

is an outward-pointing vector field. Indeed, we have that

d
dxélx(Xx) = Z Wa(x)dxéh (Bx_l) = Z Ya(x) =1
a acA

acA

for all x € IM. O

Definition F.228 (Induced Orientation). Let M be a smooth manifold with
nonempty boundary and w a volume form on M. Then the induced orientation
on dM is defined to be the equivalence class [ix(w)], where X is an outward
pointing vector field.

F.14 Integration on Manifolds

Definition F.229. Let M and N be smooth manifolds and A € M a subset. A
map F : A — N is said to be smooth on A, iff for every x € A there exists a
neighbourhood U of x and amap F € C*°(U, N), such that F|yng = F.
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Definition F.230 (Singular Cube). Let k¥ € N and M be a smooth manifold. A
singular k-cube in M is defined to be a morphism o € C®°(1*, M).

Definition F.231. Let k € N, w € Q¥(M) and 0 = Al0; be a singular k-chain in
M .Theno/w = fidx' Ao A dx¥ for some f; € C°(I%). Define the integral of
® over o to be

/Uw:x'/lkfi and /Uf:zxff(a,-(O))

if kK > 1 and k = 0, respectively.

Definition F.232 (Front and Back Face). Let o be a singular k-cube. For 1 <i <k
define the i -th front face of o, to be the singular k — 1-cube F;o defined by

Fio (xl,...,x“l,O,x’H,...,xk)

and the i -th back face of o, to be the singular k — 1-cube B;o defined by

Bio (xl,...,x’_l, 1,x’+1,...,xk).
B
7

Flaz\ /\Blo
\
4
F20'

Fig. F.2: Face maps for k = 2 and o the inclusion /2 < R2,

Definition F.233 (Boundary). Let ¢ be a singular k-cube, k > 1. Define the bound-
ary of o to be the singular k-chain do defined by

k

do = Z(—l)k (Fia - Bia) .

i=1

Moreover, define the boundary of a singular O-cube to be 1.
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—BzU

—F1O'V /\BIO—

\
4
F20

Fig. F.3: Boundary of the inclusion /2 < R2.

Proposition F.234 (Stoke’s Theorem, Local Version). Let M be a smooth manifold,
0 € Ce(M) and w € QK=Y (M). Then

/dwz/ .
o do

Definition F.235 (Orientation-Preserving). Let (M", [»]) and (N",[n]) be two
oriented manifolds and F € C*°(M, N) a diffeomorphism. Then F is said to be
orientation-preserving, iff f > 0 where f € C>°(M) is defined by F*n = fw.

Definition F.236. Let M" be an oriented manifold. A singular n-cube is said to be
orientation-preserving, iff it admits an orientation-preserving extension which is
also an embedding.

Definition F.237 (Special Singular Cube). Let M” be an oriented smooth manifold
with boundary. An orientation preserving singular n-cube o is said to be special, iff
either imo C int M or 0M Nimo = im(Fy0).

Definition F.238. Let M" be an oriented manifold with boundary and w € Q7 (M).

Then define
w =
[o=%

where (Y4)qed is a partition of unity subordinate to a cover (Uy)geq With the
property that each Uy, is conatined in the interior of the image of a special orientation
preserving singular n-cube o, for all @ € A.

Yow.
O

Theorem F.239 (Stoke’s Theorem, global Version). Let M" be an oriented
smooth manifold with boundary and endow 0M with the induced orientation. If
w € QUY(M), then
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/dcoz/ . (F.10)
M oM

F.15 De Rham Cohomology

Definition F.240 (Closed and Exact Form). Let M be a smooth manifold, U €
O(M) non-empty and k € N, k > 1. A form w € Q¥(U) is said to be closed, iff
dw = 0, and exact, iff there exists n € Q¥~1(U) with w = dn.

Definition F.241 (The de Rham Chain Complex). The contravariant functor
CIR : Man — Ch=%fi"(Vect)
defined on objects M € Man by
cCkM):=Q¥M) and  d¥:=d:QFwM) - QM)
and on morphisms F € C*°(M, N) by
CR(F):=F*
is called the de Rham chain complex functor.

Using Stoke’s theorem F.239 one can show the homotopy invariance of the de
Rham cohomology.

Proposition F.242. Let M be a smooth manifold. Fort € I definet; : M — M x I
by t;(x) := (x,t). Then there is a map

h: QKM x 1) —> QM)

such that
h(dw) + d (h(w)) = (] (@) — 5 (@).

Proof. Define h : QK(M x I) — Q¥=1(M) by

1
h(w)x 12/0 L;( (iXa)(x,t)) dt

where X(x 1) := (O, 8,|,). O

Theorem F.243 (The Poincaré Lemma). Letr M be a smooth manifold and v €
QK (M) be closed. Then for every x € M there exists a neighbourhood U of x such
that |y is exact.
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F.16 Principal Bundles

Definition F.244 (Principal Bundle). A fibre bundle 7 : P — M with fibre a Lie
group G is said to be a principal G-bundle, ift

(i) There exists a fibre-preserving free right action of G on P.
(i) There exists a bundle atlas such that each bundle chart ¢y : 771 (Uy) — G is
G -equivariant, that is, we have that

9a(p-8) = ¢u(p)g
forall p e 7' (Uy) and g € G.

Proposition F.245. The structure group of a principal G-bundle w : P — M is G,
acting via left translations.

A particular interesting example of a principal bundle is the following.

Proposition F.246 (The Frame Bundle). Let E — M be a vector bundle of rank
k. Forall x € M define

Fr(E,) := {isomorphisms RF — E.}.

Then
7w Fr(E) = | | Fr(Ex) > M
xeM

is a principal GL(k)-bundle. This bundle is called the frame bundle.

Proof. Let (Uy, ¢o)aca be a vector bundle atlas for E — M. For every o € A
define @, : 771 (Uy) — GL(k) by
Pa(x, A) := ¢¢¥|Ex oA.

Then
Pap (X)(A) = Palre(Ey) © PBlrc(EL)(A) = pap(x) 0 A

for all Uy, N Ug # @. Hence Fr(E) can be given the structure of a smooth manifold.
Define a right action
Fr(E) x GL(k) — Fr(E)

by
((x, A), T) = (x,Ao0T).

This action is obviously free and we have that
Ga ((x,4) - T) = Ga(x, AoT) = gu|g, o(A0T) = (pa|E,0A)0T = Fu(x, A)oT.

To each principal bundle one can associate a fibre bundle.
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Definition F.247. Let 7 : P — M be a principal G-bundle and suppose that there
is an effective action 6 : G x F — F on some smooth manifold F. Define an
equivalence relation ~ on P X F via

(p-g.v)~ (p.0(g.v))
forall p € P, g € G and v € F. Denote the quotient space by P x(g,g) F.

Theorem F.248. Let v : P — M be a principal G-bundle nd suppose that there is
an action 0 : G x F — F on some smooth manifold F. Then:

@ 7 : P xe F — M is a fibre bundle with fibre F and structure group G,
where

w[p.v]:=n(p).
(b) P is the principal bundle associated to P X (g g) F.

Lemma F.249. Let v : P — M be a principal G-bundle. Then G acts transitively
on the fibres.

Proof. Let x € M and p,q € P.. Thus there exists ¢, : 771 (Uy) — M such
that p,q € m~1(Uy). Suppose that there exists g € G such that p = ¢ - g. Then
equivariance yields

$a(P) = ¢alq - &) = 9a(q)g

which implies g = ¢4 (q) '@a(p) € G. |

Up to now we have never used the fact that the action is free. The next proposition
however makes use of it.

Proposition F.250. Letwv : P — M andn’ : P’ — M’ be two principal G -bundles.
Suppose @ : P — P’ is a principal bundle morphism along a diffeomorphism. Then
D is a diffeomorphism.

Proposition F.251. Let w : P — M be a principal G-bundle. Then w admits a
section if and only if P is trivial.

Proof. Suppose P is trivial, thatis P = M x G.Forany g € G,0 : M — M x G
defined by o (x) := (x, g) is a section.

Conversly, suppose that 7 admits a section. Then for each p € P, p and o (T[ ( p))
belong to the same fibre. Since the action of G on the fibres is transitive by lemma
F.249, we can define a map ¢ : P — G such that

p=o0(7(p))-e(p).

Then (7, @) is a principal G-bundle morphism along idps, and thus a diffeomorphism
by proposition F.251. O



172 F Review of Differential Topology

F.17 Connections on Principal Bundles

Definition F.252 (Bundle Valued Differential Form). Let 7 : £ — M be a vector
bundle. A bundle-valued differential k-form is defined to be a section of the bundle

A(T*M)® E — M.
The vector space of all such sections is denoted by Q¥ (M ; E)

Thus a bundle-valued differential k-form w € Q¥(M; E) is nothing more than
an alternating map

wy :TxyM x---xTyM — E,
N ————— ——
k

forall x e M.

Proposition F.253 (The Bundle-Valued Differential Form Criterion). There is a
natural C* (M )-module isomorphism between Q¥ (M ; E) and alternating C*°(M)-

multilinear maps
XM)x---xX(M) - T'(E).

k

Problems

F.254. Aim of this exercise is to show that S! is a Lie group under complex multi-
plication.

(a) We can endow S! with a different smooth atlas as follows: Construct two charts
with range a bounded interval in R2. Those are called angle coordinates.

(b) Show that complex multiplication in these coordinates is smooth.

(c) Show that complex inversion in these coordinates is smooth.

F.255. Prove proposition F.40.
F.256. Let M be a smooth manifold and X, Y € X(M). Show that
irx,y] = £x ciy —iy o £x.

F.257.

(a) Let M be a smooth manifold and suppose that there exist vector fields
X1,..., X, € X(M) such that (X1]x,..., Xu|x) is a basis for T,y M for ev-
ery x € M. Prove that the tangent bundle 7'M is trivial.

(b) Let G be a Lie group. Prove that TG = G x g in Man.



Appendix G
Review of Differential Geometry

An excellent introduction to the subject is given in [7].

G.1 Pseudo-Riemannian Manifolds

Definition G.1 (Pseudo-Riemannian Metric). Let M be a smooth manifold. A
pseudo-Riemannian metric on M is defined to be a symmetric covariant 2-tensor
field g € 7%2(M) which is nondegenerate at each point x € M, that is, we have
gx(v,w) =0forall w € TyM and some v € T,y M implies v = 0.

Definition G.2 (Pseudo-Riemannian Manifold). A Pseudo-Riemannian manifold
is defined to be a tuple (M, g) consisting of a smooth manifold M and a pseudo-
Riemannian metric g on M.

Remark G.3. The tangent-cotangent isomorphism from theorem 2.36 is also valid
for a pseudo-Riemannian manifold since the proof is only based on nondegeneracy
of a covariant 2-tensor field.

Proposition G.4 (Sylvester’s Law of Inertia). Let g be a nondegenerate symmetric
bilinear form on a finite-dimensional real vector space V. Then there exists a basis

(ﬁi)for V* such that

q= (:31)2 + -4 (ﬁr)2 — (,3'+1)2 e (Igr+S)2_

Moreover, the natural numbers r and s are independent on the choice of basis. Thus
the pair (r, s) is called the signature of q.

Example G.5 (Riemannian Manifolds). Riemannian manifolds are pseudo-Riemannian
manifolds (M, g) such that g, has signature (r,0) for all x € M.

Example G.6 (Lorentz Manifolds). Lorentz Manifolds are pseudo-Riemannian
manifolds (M, g) such that g, has signature (1, s) forall x € M.

173



174 G Review of Differential Geometry

G.2 Connections

Definition G.7 (Koszul Connection). Let 7 : E — M be a vector bundle. A
connection in E is a map

V:X(M)xT(E) — T'(E)

written (X, Y) — VxY such that:

(i) V is C°° (M )-linear in the first argument.
(ii) V is R-linear in the second argument.
(iii) The following Product rule holds:

Vx(fY) = fVxY + (Xf)Y

forall f € C®°(M).
Any section Vx Y is called the covariant derivative of Y in the direction X .
Definition G.8 (Connection Coefficients). Let 7 : E — M be a vector bundle and
V be a connection in E. Let (¢;) be a local frame on U € M. Then

Ve €j = Fl-kj ek
for some functions 'Y, € C%°(U). The family (Fl];) is called the connection coeffi-
cients of V with respect to the local frame (e;).

Remark G.9. There is an immediate transformation rule for the connection coeffi-
cients of a connection. Moreover, it can be seen that the connection coeflicients do
not transform like the component functions of a (1, 2)-tensor field due to an error
term coming from the product rule.

Exercise G.10. Establish the transformation law for connection coefficients with respect to another
local frame &; = A e; for some smooth functions 47 .

Proposition G.11. Let M be a smooth manifold and V a connection in TM . Then
for every X € X(M), there exists a unique tensor derivation
ﬁX . TM —> :TM
such that 5 5
Vx f = Xf and VxY = VxY
holds for all smooth functions f and vector fields Y .
Proof. Immediate by proposition F.187. O

Definition G.12 (Vector Field along a Curve). Let M be a smooth manifold and
y € C*®(J, M) apathin M where J C M is an interval. A vector field along y is
defined to be amap V € C*°(J, TM) such that V; € T,,;) M holds for all t € J.
The set of all vector fields along a curve y is denoted by X(y).
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Exercise G.13. Let M be a smooth manifold and y € C°°(J, M) acurve in M. Show that X ()
is a module over C°°(J).

Theorem G.14 (Covariant Derivative along a Curve). Let M be a smooth manifold
and V a connection in TM. For each curve y € C*®(J, M), there is a unique

operator
Dy 1 X(y) — X(y).

called the covariant derivative along y, such that

(i) Dy is R-linear.
(ii) The following Product rule holds:

Dy(fV) = f'V + fDyV

forall f e C*®(J). 5
(iii) If V € X(y) is extendible, then for every extension V of V we have that

DVV|[ = Vy’(t)i;-
forallt € J.

Proof. Letty € J and suppose (U, (xi)) is a chart about y(2p). Then for sufficiently
t € J sufficiently close to ¢y, we may write

; 0
Vz == V] (Z)— .
9x7 1y ey
We compute
D,V|, =V/(@) 9 +V/(t)D ( I )
t = —_— I
Y 8x./ »@) 14 8x.] ¢
V7(t) 9 + V)V ( 9 )‘
= _ 'O\ a7
ax7 |, vO\oxi )|,
= 1‘/1'(z)i + VI )P (t)Vy5,i 9
x/ ) 9xtlywy \ §xJ
V0 VO OTE ()
0! ’ 0k {1y
. . . ad
=(VFO+V 07 O (v©)) 55| -
( i )) 0k 1)
This shows existence and uniqueness. O

Definition G.15 (Acceleration of a Curve). Let M be a smooth manifold with a
connection V in TM . The acceleration of a curve y € C°°(J, M) is defined to be
the vector field D, y’ along y.
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Definition G.16 (Geodesic). Let M be a smooth manifold with connection V in
TM. A curve is said to be a geodesic, iff its acceleration vanishes.

More generally, we have the following definition.

Definition G.17 (Parallel Vector Field along a Curve). Let M be a smooth mani-
fold with connection V in TM . Suppose y € C*°(J, M) is a curve. Then a vector
field V € X(y) is said to be parallel along y, iff D,V = 0.

Theorem G.18 (Existence and Uniqueness of Parallel Transport). Ler M be a
smooth manifold with connection V. Given a curve y € C®(J, M), to € J and
v € Tyo) M, there exists a unique parallel vector field along y such that Vi, = v.

Definition G.19 (Parallel Transport). Let M be a smooth manifold and V a con-
nection on M. Forevery y € C*°(J, M) and t9,t; € J define a map
P 14

tol

TyeyM — TyepM

by P,J(’),1 (v) := V4, where V is the unique parallel vector field along y such that
Vi, = v whose existence is guaranteed by theorem G.18.

Theorem G.20 (Parallel Transport Determines Covariant Derivative). Let M
be a smooth manifold with connection V. Suppose y € C*(J, M) is a path and
V € X(y). Then for each ty € J we have that

P!,V =V,
DyVly = lim —Ao T
t1—>2o 1 —to
Corollary G.21 (Parallel Transport Determines the Connection). Let M be a
smooth manifold with connection V. Then forall X,Y € X(M) and x € M we have
that y
ProYyiy — Vs
h
where y € C*°(J, M) is a curve such that y(0) = x and y’(0) = X,.

VxY|x = lim
h—0

Theorem G.22 (Fundamental Theorem of Riemannian Geometry). Let (M, g)
be a pseudo-Riemannian manifold. Then there exists a unique connection V on M
with:

(i) CompaTIBILITY: Vg = 0.
(ii) TorsioN Free: VxY — Vy X — [X, Y] =O0forall X,Y € X(M).

This connection is called the Levi-Civita connection. Explicitely, the connection
coefficients in any chart are given by

1
Ty = 5&" (igjn + 080 — h1giy) - (G.1)

These connection coefficients are called the Christoffel symbols.
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Proposition G.23. Let (M, g) be a pseudo-Riemannian metric. Then
Lxg(Y.Z)=¢g(VyX.Z) + g (Y. VzX)
forevery X, Y, Z € X(M) where V denotes the Levi-Civita connection on M.
Proof. Since Vy is a tensor derivation, compatibility implies
0=(Vxg)(¥.Z) = Vxg(Y.Z) — g (VxY.Z) — g (Y. Vx Z).
Moreover, torsion-freeness implies
[X,Y]=VxY—VyX and [X,Z]=sz—VZX.
Thus we compute
(£xg)(Y.Z) =£xg(Y.Z) — g (£xY. Z) — g (Y. £x Z)
=X (g(Y.2))—g([X.Y].Z) — g (Y.[X. Z))
=Vxg(¥.Z) - ¢ (IX.Y].Z) —g (Y.[X. Z])
=g (VxY.Z) + ¢ (Y. VxZ) — g ([X.Y]. Z) — g (Y. [X, Z])
=g (VxY.Z) + g (Y.VxZ) — g (VxY.Z) + g (V¥ X. Z)

—g(Y.VxZ) + g (Y. VzX)
=g (VyX, Z) + g (Y, V2X).

|

Definition G.24 (The Exponential Map). Let (M, g) be a pseudo-Riemannian
manifold. Define & C TM by

& :={v e TM : vy, is defined on an interval containing 7 }
andexp: & > M by
expv = yy(1).

This map is called the exponential map.

Proposition G.25 (Properties of the Exponential Map). Let (M, g) be a pseudo-
Riemannian manifold.

(a) & C TM is open and contains the image of the zero section.
(b) For each v € TM, the geodesic y, is given by
yu(t) = exp(tv)

for all t such that either side is defined.
(c) The exponential map is smooth.
(d) For each x € M, D(exp,)o = idr, M.



178 G Review of Differential Geometry

Definition G.26 (Normal Coordinates). Let (M", g) be a pseudo-Riemannian
manifold. Let x € M. Then there exists a star-shaped neighbourhood V' of the
origin in Tx M and a neighbourhood U of x in M such thatexp, : V — U isa
diffeomorphism. Let (b;) be an orthonormal basis of Tx M with coordinate isomor-
phism B. Then

¢ := B~ o (exp, |V)_1 :U — R”
is called a normal coordinate chart about x .

Proposition G.27 (Properties of Normal Coordinates). Let (M", &) be a pseudo-
Riemannian manifold and let (U , (x? )) be any normal coordinate chart aboutx € M.

(a) The components Qf the metric are given by g;; = %£§;;.
(b) For every v = v* 8%i|x’ we have that
(@) = (tv', ... 00").

(c) The Christoffel symbols vanish at x.
(d) All first partial derivatives of g;; vanish at x.
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