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1 Introduction

The following semester project covers some aspects of Morse theory. The work is divided
in three sections:
Section 1 introduces the basics of Morse theory. Following Milnor’s book we introduce
Morse functions, show their basic properties and prove that critical points of Morse func-
tions determine the homotopy type of closed manifolds. We also prove Morse inequalities
and conclude the section by showing that not only Morse functions exist on any closed
manifold, but they are actually dense.
Section 2 introduces a class of manifolds often considered in symplectic geometry due
to the nice properties of its objects: toric symplectic manifolds. We will briefly explain
how toric symplectic manifolds can be completely described in terms of so-called Delzant
polytopes, which are constructed via the moment map. The polytope associated to a toric
symplectic manifold M is a considerably easier object to study and this will become ap-
parent in section 3.
In the final section we combine Morse theory and toric symplectic manifolds. We use
the moment map coming from the Hamiltonian action to produce interesting Morse func-
tions and use the results from section 1 to obtain information about the structure of the
homology ring.
The idea of using the moment map as a Morse function originally appeared in T. Frankel’s
work ”Fixed points and torsion on Kähler manifolds”, where a broader class of functions
(admitting critical, non-degenerate submanifolds) was considered.
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2 Morse theory

In this chapter we introduce Morse functions and use Morse theory to prove that mani-
folds can be obtained as CW complexes. We then show standard Morse inequalities and
finally prove that Morse functions are generic. We closely follow Milnor’s book [Mil].

2.1 Basics and main results

Definition 2.1. For a smooth function f : M → R where M is a smooth manifold, a
point x ∈ M is said to be a critical point if Df(x) : TxM → Tf(x)R = 0. The value
f(x) is called a critical value.

Definition 2.2. Associated to a critical point x of f we define the Hessian of f at x by

Hf (v, w)(x) = X(Y (f))(x)

where v, w ∈ TxM andX, Y are arbitrary vector fields onM satisfyingX(x) = v and Y (x) =

w.

The Hessian is symmetric since

X(Y (f))(x)− Y (X(f))(x) = [X, Y ](f)(x) = df(x)[X, Y ] = 0

(using that x is a critical point) and since X(f)(x) is independent of the choice of X , it
is a well-defined symmetric bilinear form. Notice that with a choice of basis for TxM the
Hessian can be represented by the matrix ( ∂

2f
∂i∂j

)ij .

Definition 2.3. A critical point x of f : M → R is called non-degenerate if the Hessian
Hf (x) is non-degenerate as a bilinear form.

Definition 2.4. The index of a bilinear formH on a vector space V is the maximal n such
that there exists a subspace W ⊂ V of dimension n with H|V being negative definite.
The nullity ofH is the dimension of the subspace {v ∈ V | H(v, w) = 0 for all w ∈ V }.

The nullity of Hf (x) in the setting above will be simply denoted by the nullity of f
at x. We start by showing that the function around non-degenerate critical points can be
described in terms of a special coordinate system:

Lemma 2.1 (Lemma of Morse). Let x be a non-degenerate critical point for f . There
exists a chart ϕ on a neighborhood U of x, ϕ(x) = 0 and

f(y) = f(x)− (y1)2 − ...− (yλ)2 + (yλ+1)2 + ...+ (yn)2
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where λ denotes the index of f at x.

Remark. Consider the following picture to see an example of critical points with different
indices. In case 1, the index is 2, in case 2 the index in 1 and in the last image, the index
is 0.

Proof. As a first step, notice that if such ϕ exists, then in the basis of TxM associated to
the chart, the Hessian is represented by(

−2 · 1λ 0

0 2 · 1n−λ

)
.

It follows that the index of f at x must be at least λ and since the Hessian is positive
definite on the complementary subspace, the index has to be equal to λ. Here we use that
the index of a quadratic form is preserved by pull-backs. In order to show existence of
such chart, let us start by picking an arbitrary coordinate system with (x) = 0. Consider

f(x1, ..., xn) = f(0) +
∑
i

xi

∫ 1

0

∂f

∂xi
(tx1, ..., txn)

= f(0) +
n∑
i=1

xi

n∑
j=1

∫ 1

0

∫ 1

0

xj
∂

∂xj

∂f

∂xi
(tsx1, ..., tsxn)

= f(0) +
n∑

i,j=i

xixjhij(x
1, ..., xn)
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for appropriate smooth functionshij which we can assume w.l.o.g. to be symmetric (hij =

hji). Notice moreover that by definition of hij ,

hij(0) =
∂2f

∂xi∂xj
(0, ..., 0)

which is non-degenerate by assumption.
To conclude it remains to diagonalize the quadratic form in a neighborhood of 0. By the
Principal Axes Theorem there exists an orthogonal transformation Q ∈ Matn(R) such
that for coordinates (z) = QT (y),

f(y1, ..., yn) = f(0) + λ1(z
1)2 + ...+ λn(zn)2

for the eigenvalues λ of the quadratic form. Notice that in this notation Q depends on the
point (y). Re-scaling the coordinates (z) by these eigenvalues, i.e.

(z′) = D ·QT (y)

D = diag(|λ1|−1, ..., |λn|−1)

we obtain

f(z′) = f(x)− (z′1)2 − ...− (z′λ)2 + (z′λ+1)2 + ...+ (z′n)2.

The matrix D is well-defined in a neighborhood of 0 by the non-degeneracy assumption.
This concludes the proof.

Corollary 2.1.1. Non-degenerate critical points are isolated and Morse functions on
compact manifolds have at most finitely many critical points.

Definition 2.5. Let M be a smooth manifold and f : M → R be a smooth function. We
denote by Ma the subset {f ≤ a}.

Critical points of Morse functions f : M → R can be used to understand the topology
of the manifold. Roughly speaking, at critical values of f the homotopy type of Ma

(where a is a critical value) changes by attaching a cell of dimension equal to the index
of the critical point.

Theorem 2.2. Let f ∈ C∞(M,R) and a < b ∈ R. If the set f−1([a, b]) is compact
and contains no critical points of f , then Ma is diffeomorphic to M b and the inclusion
Ma ↪→M b is a deformation retract.
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Remark. One could consider the height function on a surface of genus two as depicted
above. The function is Morse and, as long as we stay away from the critical points, sub-
level sets are deformation retracts of each other.

The main idea in the proof will be to let the points flow along the gradient of f , as shown
by the red arrows.

Proof. Endow M with an arbitrary Riemannian metric g and define

p(x) = ρ(x)
1

g(∇f(x),∇f(x))

where ρ is a smooth function taking values 1 on f−1([a, b]) and vanishing outside a com-
pact set (which we assume small enough for the expression to be well-defined).
Define the vector field

X(x) = p(x)∇f(x),
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and denote by ϕ : R×M →M its flow which is complete sinceX has compact support.
Consider the values of the function along the flow:

d

dt

∣∣∣∣
t=t0

f(ϕt(x)) = Df(ϕt0(x))[X(ϕt0(x))] = ρ(ϕt0(x)).

It follows that ϕb−a(Ma) = M b, thus proving that Ma and M b are diffeomorphic. It
remains to show that Ma is a deformation retract of M b. Consider the map

F : M b × I →M

F (x, t) =

ϕt(a−f(x))(x) if f(x) ≥ a

x otherwise .

Then F is smooth, F (x, 0) = x and F (x, 1) ∈Ma and F (y, 1) = y for all y ∈Ma.

Remark. The compactness assumption cannot be omitted. Indeed, removing single points
from the example above provides a counterexample.

Theorem 2.3. Let f : M → R be a smooth function and let x be a non-degenerate
critical point of index λ. If for some ε > 0 the set f−1([f(x) − ε, f(x) + ε]) is compact
and only contains the critical point x, then M f(x)+δ has the homotopy type of M f(x)−δ

with a λ-cell attached for all sufficiently small δ.

Proof. Let us start by choosing a coordinate system as in Lemma 2.1. In these coordinates
the critical point x ∈M corresponds to (0, ..., 0) and the function f takes the form

f(y) = f(x)− (y1)2 − ...− (yλ)2 + (yλ+1)2 + ...+ (yn)2. (1)

Assume that for some ε > 0 the set f−1([f(x) − ε, f(x) + ε]) is compact and contains
no other critical points. Up to choosing a smaller ε, we can assume that the chart coming
from Lemma 2.1, ϕ : U ⊂ M → V ⊂ Rn satisfies1 B2ε(0) ⊂ ϕ(U). We define the
embedded λ-cell

Cλ = {y ∈ U | (y1)2 + ...+ (yλ)2 ≤ ε and yλ+1 = ... = yn = 0}.

One could think of this cell as the ”downward-pointing piece” around the critical point
x, as sketched in the picture below.

1Br(x) denotes the closed ball of radius r around x.
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Combining this with (1), we obtain ∂Cf(x)−ε
λ = ∂Cλ so that Cλ is attached to M f(x)−ε.

Claim 1: M f(x)−ε ∪Cλ is a deformation retract of M f(x)+ε. To prove the claim we want
to apply Theorem 2.2 to a suitably chosen function g.
We start by defining a smooth function

µ : R→ R≥0,

satisfying 
µ(0) > ε,

µ(x) = 0 for all x ≥ 2ε,

−1 < µ′(x) ≤ 0 for all x ∈ R.

To define g, set

g =

g(y) = f(y) for all y /∈ U

f(y)− µ
(
(y1)2 + ...+ (yλ)2 + 2(yλ+1)2 + ...+ 2(yn)2

)
for y ∈ U

In order to make the notation more transparent, we also define

ξ, η : U → R

ξ(y) = (y1)2 + ...+ (yλ)2

η(y) = (yλ+1)2 + ...+ (yn)2

and rewrite the functions f, g as

f(y) = f(x)− ξ(y) + η(y)

g(y) = f(x)− ξ(y) + η(y)− µ(ξ(y) + 2η(y)).

It follows immediately from the definition ofµ that the two functions f and g agree outside
a neighborhood O of the critical point x corresponding to a 2ε ball in the chart ϕ.
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Claim 2: {g−1((−∞, f(x) + ε])} = {f−1((−∞, f(x) + ε])} = M f(x)+ε.
In order to see this, we start by noticing that g = f outside {ξ + 2η ≤ 2ε}. On the
complement of this region, g ≤ f ≤ c+ ε.
Claim 3: g and f have the same critical points.
In the region {ξ + 2η ≤ 2ε} we can compute the differential

dg =
∂g

∂ξ
dξ +

∂g

∂η
dη = (−1− µ′(ξ + 2η))dξ + (1− 2µ′(ξ − 2η))dη

by the assumption on µ′, this can only be zero if dη = 0, i.e. the only critical point in this
region is the origin. It follows from Claim 2 and g ≤ f that g−1([f(x)− ε, f(x) + ε]) can
only contain x as a critical point, but g(x) < f(x) − ε so that g−1([f(x) − ε, f(x) + ε])

does not contain critical points. This enables us to invoke Theorem 2.2 and obtain:
Claim 4: g−1((−∞, f(x)−ε]) is a deformation retract of g−1((−∞, f(x)+ε]) =M f(x)+ε.

We introduce the notation

H = g−1((−∞, f(x)− ε])−M f(x)−ε

so that we can write
g−1((−∞, f(x)− ε]) = M f(x)−ε ∪H

(H is sometimes referred to as a handle). Notice that the λ-cell Cλ introduced above can
now be described by the more concise equationsCλ = {y ∈ U | ξ(y) ≤ ε and η(y) = 0}.

Claim 5: Cλ ⊂ H . Indeed, g(y) ≤ g(x) < f(x)−ε for all y ∈ U but f(y) ≥ f(x)−ε
for all y ∈ Cλ by definition of the cell combined with equation (1).

To conclude the proof of the theorem we show the following,
Claim 6:M f(x)−ε ∪ Cλ is a deformation retract of M f(x)−ε ∪ H which, combined with
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Claim 4 yields that the homotopy type of M f(x)+ε is the one obtained from M f(x)−ε by
attaching a λ-cell. We need to distinguish between three different cases:

F (y, t) =



id outside of U

(y1, ..., yλ, tyλ+1, ..., tyn) if ξ(y) ≤ ε

(y1, ..., yλ, cty
λ+1, ..., cty

n) if ε ≤ ξ ≤ η + ε where ct = t+ (1− t)
√

ξ−ε
η

id if η + ε ≤ ξ

.

This concludes the proof.

Theorem 2.3 can be used to prove the following result:

Theorem 2.4. Let f : M → R be a smooth function with no degenerate critical points
and assume that Ma is compact for all a ∈ R. Then M is homotopy equivalent to a
CW-complex with one cell of dimension λ for each critical point of dimension λ.

Another related result relating the critical points of Morse functions to the topology
of the domain is the following result by Reeb.

Theorem 2.5 (Reeb). Let f : M → R be a smooth function on a compact manifold
such that f has exactly two critical points, both of them non-degenerate. Then M is
homeomorphic to a sphere.

Proof. By compactness of M the two critical points must be the minimum and the max-
imum which can be assumed to satisfy f(xmax) = 1 and f(xmin) = 0 by re-scaling and
translating. By Lemma 2.1 the indices must be 0 and n respectively and by Theorem 2.3

f−1([0, ε]) = {y | ((y1)2 + ...+ (yn)2) ∈ [0, ε]}

f−1([1− ε, ε]) = {y | 1− ((y1)2 + ...+ (yn)2) ∈ [1− ε, 1]}

are both homeomorphic to closed n-cells.It follows from Theorem 2.3 thatM is the union
of two n-cells attached along their boundaries and therefore homeomorphic to the sphere.
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2.2 Morse inequalities

Morse inequalities allow us to understand the homology rings of a given space M using
the critical points of Morse functions f : M → R.

Definition 2.6. A function S is called subadditive if

S(X,Z) ≤ S(X, Y ) + S(Y, Z)

for all ⊂ Y ⊂ Z. The function is called additive if equality holds, i.e.

S(X,Z) = S(X, Y ) + S(Y, Z).

Remark. Subadditive functions we are interested include

Rn(X, Y ) = rank(Hn(X, Y ;F))

for any dimension n ∈ N and field F. The subadditivity can be seen using the long exact
sequence of the tuple (X, Y, Z)

...→ Hn(Y, Z)→ Hn(X,Z)→ Hn(X, Y )→ ...

The Euler characteristic is additive.

Lemma 2.6. Let S be subadditive and X0 ⊂ X1 ⊂ ... ⊂ Xn. Then S(Xn, X0) ≤∑n
i=1 S(Xi, Xi−1). Equality holds for additive functions.

Proof. We proceed by induction, n = 2 being true by definition. Assume the result holds
for n− 1. Then S(Xn, X0) ≤ S(Xn−1, X0) + S(Xn, Xn−1) ≤

∑n
i=1 S(Xi, Xi−1).

Definition 2.7. A Morse function f is said to be perfect if the inequalities in Theorem
2.7 are all equalities.

Let f : M → R be a smooth function with isolated non-degenerate critical points.
Let a1 < ... < ak be such that M = Mai contains i critical points and Mak . Then

H∗(M
ai ,Mai−1) = H∗(M

ai−1 ∪ Cλi ,Mai−1)
excision

= H∗(Cλi , ∂Cλi) =

F if λi 6= 0

0 otherwise
(2)

where λi denotes the index of the critical point contained in Mai −Mai−1 .

Theorem 2.7 (Weak Morse inequalities). Let Nλ denote the number of critical points of
index λ of any smooth function f : M → R, where M is a compact manifold and the
critical points of f are non-degenerate. Then

Rλ(M) ≤ Nλ (3)
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∑
(−1)λRλ(M) =

∑
(−1)λNλ. (4)

Proof. Using equation (2) together with Lemma 2.6 and the increasing sequence ∅ =

Ma0 ⊂Ma1 ⊂ ... ⊂Mak = M ,

Rλ(M) ≤
n∑
i=1

Rλ(M
ai ,Mai−1)

(2)
= Nλ.

To prove equality (4) we use the Euler characteristic together with Lemma 2.6,

χ(M) =
n∑
i=1

χ(Mai ,Mai−1) =
n∑
i=1

(−1)λNλ.

In the setting of Theorem 2.7, we can prove stronger inequalities. We define

Sλ(X, Y ) = Rλ(X, Y )−Rλ−1(X, Y ) +Rλ−2(X, Y )− ...±R0(X, Y ).

Theorem 2.8 (Morse inequality).

Sλ(M) ≤
k∑
i=1

Sλ(M) (5)

Rλ(M)−Rλ−1(M) + ...±R0(M) ≤ Nλ −Nλ−1 + ...±N0 (6)

Proof. Apply Lemma 2.9 to the increasing sequence

∅ ⊂Ma1 ⊂ ... ⊂Mak

Lemma 2.9. The function Sλ is subadditive.

Proof. Consider an exact sequence

...
φ1−→ A

φ2−→ B
φ3−→ C → ...

and notice that rank(φ1) + rank(φ2) = rank(A). We can inductively use this equality to
obtain

rank(φ1) = rank(A)−rank(φ2) = ... = rank(A)−rank(B)+rank(C)−rank(D) ≥ 0.

Applying this to ∂ : Hλ+1(X, Y )→ Hλ(Y, Z),

rank(∂) = Rλ(Y, Z)−Rλ(X,Z) +Rλ(X, Y )−Rλ−1(Y, Z) + ... ≥ 0.
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In other words Sλ(Y, Z)− Sλ(X,Z) + Sλ(X, Y ) ≥ 0.

Algebraic manipulations of these inequalities allow us to prove the following result:

Corollary 2.9.1. If Nλ+1 = Nλ−1 = 0 then Rλ = Nλ and Rλ+1 = Rλ−1.
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2.3 Critical points of Morse functions and orientability

Let S be a closed surface. If S is non-orientable, it can be decomposed into a connected
sum of real projective planes RP2. As a concrete example, one can show that the Klein
bottle is homeomorphic to RP2#RP2. Following exercise 3.3.6a in [Hat], we know that
the first homology of the connected sum can be computed as follows:

H1(M1#M2;Z) ∼= (H1(M1;Z)⊕H1(M2;Z))∗

where we denote by ∗ the operation of replacing one of the torsion factors Z2 by the free
abelian group Z. In particular, for any surface S containing at least two projective planes
in their direct sum decomposition, the rank of H1(S;Z) is at least one. Combining this
information with Theorem 2.7, more precisely with the inequality

R1(S) ≤ N1,

we conclude that any Morse function on S must have at least one critical point of index 1
(moreover since we assume S to be compact we also have a maximum and a minimum,
i.e. critical points of index 2 and 0 respectively).
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2.4 Existence of Morse functions

So far, the main examples of Morse functions have been so called height functions. As
we will see, there is an abundance of functions whose critical points are non-degenerate.
The first step consists of finding Morse functions for submanifolds of the Euclidean space.
We follow section 1.2 of [AD].

Proposition 2.10. Let M ⊂ Rn be a submanifold. For almost every point p ∈ Rn the
function

fp : M → R

x 7→ ||x− p||2

is a Morse function.

Proof. The differential of fp at the point x is the map

v ∈ TxM 7→ 〈2(x− p), v〉,

which vanishes if and only if the tangent space at x is orthogonal to the vector x− p.
Consider the Hessian (in local normal coordinates)

∂2fp
∂ui∂uj

= 2
( ∂x
∂ui
· ∂x
∂uj

+ (x− p) · ∂2x

∂ui∂uj

)
. (7)

Non-degenerate critical points correspond to points x having tangent space orthogonal to
p− x as well as non-degenerate Hessian.
In order to show that fp is Morse (the critical points are non-degenerate), for almost every
p, we express the points p for which this is not the case in terms of critical values of a
smooth enough function. Once we have this characterization, we can conclude by apply-
ing Sard’s Theorem.
Consider the normal bundle

N ⊂M × Rn

and the map
E : N → N

(x, v) 7→ x+ v.

We claim that critical values of E coincide with values p ∈ Rn for which the matrix (7)
is not invertible.
TO prove the claim, pick local coordinates for N , such that the coordinates induced on
TN satisfy the following condition: if We denote by ui coordinates on M and by ti

coordinates on Rn, then
∀i, j〈 ∂

∂ui
, vj〉 = 0

16



where vj = ∂
∂tj

.
The matrix representing the differential of E in the basis induced on the tangent bundle
takes the form ( ∂x

∂ui
· ∂x
∂uj

)
−
∑
k

vk ·
∂2x

∂ui∂uj
.

This shows that the non-degeneracy of the Hessian for the critical points of fp is equivalent
to p being a critical value for E, which concludes the proof.

We can now approximate arbitrary smooth functions by Morse function.

Theorem 2.11. Let M be a compact manifold. Then Morse functions are dense in the
space of smooth functions C∞(M) (endowed with the compact-open topology).

Proof. Let f be a smooth function on M . Let ι : M → RN be an embedding of M into
some Euclidean space. Define a new embedding h into a space of higher dimension by

h(x) = (f(x), ι(x)) ∈ RN+1.

By Proposition 2.10 for almost every p = (−c+ ε1, ..., εN+1) the function fp is Morse. If
this is the case, the function

g(x) =
1

2c
(fp(x)− c2)

is Morse too. Moreover,

g(x) = f(x) +
1

2c
(f(x)2 +

N∑
i=1

ιi(x)2)− 1

c
(ε1f(x) +

N+1∑
i=1

εi+1ιi) +
N+1∑
i=2

ε2i − ε1,

which shows that we can choose g arbitrarily closed to f in the compact-open topology.
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3 Toric symplectic manifolds

In this section we introduce Hamiltonian actions, prove some of their properties and then
concentrate on Hamiltonian toric actions. These enable us to define toric symplectic
manifolds and explain how they can be classified by so-called Delzant polytopes. The
main reference for this section is Part B of [ACL].

Definition 3.1. An action ψ : G×M →M on a symplectic manifold (M,ω) is called a
Hamiltonian action if there exists a moment map µ : M → g∗ satisfying the following
conditions:

1. for each X ∈ g, dµX = ω(X#, ·), where µX(p) := µ(p)(X) and X# is the vector
field on M associated to the one-parameter subgroup {exp(tX) ∈ G},

2. µ is equivariant with respect to the action ψ and the coadjoint action Ad∗ of G on
g∗, i.e.

µ ◦ ψg = Ad∗g ◦ µ for all g ∈ G.

Remark. Let XH be a Hamiltonian vector field, dH = ω(XH , ·). Let ψ : R→ Diff(M)

be the action generated by the flow of the vector field, i.e. t 7→ θt. Let e be the canonical
generator of the lie algebra of R. Then

e#(f)(p) =
d

dt

∣∣∣∣
t=0

f(exp(te) · p) =
d

dt

∣∣∣∣
t=0

f(θt(p)) = XH(p)(f),

ie#ω = iXHω = dH
!

= dµ.

To show that H is a moment map for the action it remains to check equivariance. Notice
that the adjoint action is trivial on any abelian Lie group and it therefore suffices to check
that the moment map is invariant with respect to the action, i.e. µ ◦ψg = µ. This is clear
in our case, since

d

dt

∣∣∣∣
t=0

(H(θt(p))) = dH(XH)(p) = ω(XH , XH)(p) = 0.

Remark. The moment map is uniquely determined up to a constant.

It is important to point out that in the higher dimensional case, the definition of Hamil-
tonian action is not merely requiring to have Hamiltonian vector fields in every direction,
but additionally requiring these actions to be compatible with each other.
Consider the following example:
Let R2 act on (R2, ωstd) by translations, i.e.

(g, x) 7→ x+ g.
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The action of every one-dimensional group of R2 is Hamiltonian, but the action is tran-
sitive and if a moment map existed, it would have to be constant.
We call this type of action a weakly Hamiltonian action.

Theorem 3.1. Let (M,ω) be a compact connected symplectic manifold and let Tm be an
m-torus. Suppose ψ : Tm → Sympl(M,ω) is a Hamiltonian action with moment map
µ. Then:

1. the levels of µ are connected,

2. the image of µ is convex,

3. the image of µ is the closed convex hull of the images of the fixed points of the action.

Definition 3.2. The image µ(M) is called the moment polytope.

Definition 3.3. An action of a groupG on a manifoldM is said to be effective if the map
ψ : G→ Diff(M) is injective.

Remark. For a smooth effective action of a k-dimensional group on a smooth manifold
M there exist at least one orbit of dimension k.

Theorem 3.2. Let (M,ω,Tm, µ) be an effective Hamiltonian action on a symplectic man-
ifold. If the action is effective, then dim(M) ≥ 2m.

Proof. By definition of the moment map, for any p ∈M

ker(dµ(p)) = (TpO)⊥,

where ⊥ denotes the symplectic orthogonal complement and O denotes the orbit of the
action containing p.
Since the action is assumed to be effective, there exists at least one m-dimensional orbit,
which is also an isotropic submanifold. It follows that dim(M) ≥ 2m.

Definition 3.4. A symplectic toric manifold is a compact symplectic manifold (M2n, ω)

equipped with an effective Hamiltonian action of a torusTn with a choice of moment map
µ.

Definition 3.5. Two symplectic toric manifolds are equivalent if there exists an isomor-
phism λ : T1 → T2 and a λ-equivariant symplectomorphism ϕ : M1 → M2 such that
µ1 = µ2 ◦ ϕ.
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3.1 Example

A possible example of a symplectic toric manifold is the 2-sphere (S2, ωstd = dθ ∧ dh)

endowed with the Hamiltonian action of S1

eit · (θ, h) = (θ + t, h).

The 1-torus (circle) acts by rotations and the two poles are fixed points of the action.
The moment maps is given by the height function (up to a constant) and it is clear that
the image of the moment map is the closed convex hull of the images of the fixed points
(marked in red).
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3.2 Delzant’s theorem

In this final chapter we combine Morse theory and symplectic toric manifolds: we show
that it is possible to use the moment map coming from the Hamiltonian action as a Morse
function (or rather an appropriately chosen component of the moment map) to obtain a
complete descripion of the homology ring. As we will see, the Morse function in ques-
tion is perfect The polytope [0, 1] spanned by the red fixed points in Example 3.1 can be
generalized to arbitrary symplectic toric manifolds. The associated polytopes can be used
to classify symplectic toric manifolds.

Definition 3.6. A Delzant polytope ∆ in Rn is a polytope satisfying:

1. simplicity: there are n edges meeting at each vertex

2. rationality: the edges meeting at vertex p are rational, i.e. each edge is of the form
p+ tui for some ui ∈ Zn

3. smoothness for each vertex p the corresponding ui can be chosen to be a Z basis for
Zn.

Theorem 3.3 (Delzant). Toric manifolds are classified by Delzant polytopes. There is a
bijective correspondence

{toric manifolds} ↔ {Delzant polytopes}

(M,ω,Tn, µ) 7→ µ(M).
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4 Homology of symplectic toric manifolds

In this section we use the moment map µ to obtain Morse functions on the toric symplectic
manifold M that we are considering. This can be done by choosing a suitable direction
of the moment map. As a result, it is possible to apply Morse inequalities as well as other
results from section 1 to understand the homology ring of M .

4.1 Equivariant Darboux theorem

As a first step we prove the equivariant version of Darboux’s Theorem, which will allow
us to locally describe Hamiltonian actions around fixed points.

Theorem 4.1 (Equivariant Darboux). Let (M2n, ω) be a symplectic manifold with a sym-
plectic action of a compact Lie groupG and let q ∈M be a fixed point. Then there exists
aG-invariant chart (U, x1, ..., xn, yi, ...,y n) centered at q andG-equivariant with respect
to a linear action of G on R2n such that

ω|U =
n∑
k=1

dxk ∧ dyk.

The result above can be obtained as a Corollary of the following Theorem:

Theorem 4.2 (Theorem 3.2, [DHJH]). Let N ⊂ M be a submanifold of a symplectic
manifold (M2n, ω). Let ω0, ω1 ∈ Ω2(M) be two closed 2-forms on M satisfying ω0|N =

ω1|N . Then there exists a neighborhood U of N and a diffeomorphism f : U → U such
that

1. f |N = id

2. f ∗ω1 = ω0

Moreover, if ψ : G×M → M is an action on M by a compact Lie group G preserving
N,ω0 and ω1, then f can be chosen to be equivariant, i.e.

f ◦ ψg = ψg ◦ f for all g ∈ G.

Proof. Consider the closed forms

ωt = (1− t)ω0 + tω1.
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Claim 1: there exists a 1-form β on a neighborhood U of N such that dβ = ω0 − ω1.
Proof of claim: If N is contained in a contractible neighborhood, the claim is true (for
example when N consists of a single point). Otherwise, choose a family of equivariant
maps ϕT : U → U satisfying

1. ϕt|N = id

2. ϕ0 : U → N

3. ϕ1 = id

Pick a tubular neighborhood for N , V ⊂ ν(N), where ν(N) denotes the normal bundle
of N in TM . Then

φt : X → N

(p, v) 7→ tv

is a deformation retract of N . For any differential form η on M we have

φ∗1η − φ∗0η =

∫ 1

0

d

dt
(φ∗tη)dt

=

∫ 1

0

φ∗t (Lξtη)

=

∫ 1

0

φ∗t (dιξtη + ιξtdη)dt

Setting η = ω0 − ω1, dη = 0 implies that

η = d

∫ 1

0

φ∗t (ιξtη)dt.

Notice that η|N = 0 so that we can assume w.l.o.g.

βY = 0

for some neighborhood Y ⊂ N . In particular, ωt|Y is non-degenerate for all t ∈ [0, 1]

and therefore this family of closed forms is non-degenerate on a small neighborhood of
N .

We can therefore find a well-defined time-dependent vector field

ιXtωt = β

and since β can be chosen to be G- invariant, so does Xt. Te isotopy generated by the
vector fields Xt,

d

dt
ft = Xt ◦ ft

23



f0 = id

are G-equivariant by equivariance of the Xt’s. Moreover,

f ∗1ω1 − ω0 =

∫ 1

0

d

dt
(f ∗t ωt)dt

=

∫ 1

0

f ∗t (dβ + ω1 − ω0)dt

= 0.

This concludes the proof.

Proof. In order to prove Theorem 4.1 consider the special case of a fixed point q ∈ M

and let V ⊂ TqM be diffeomorphic to a neighborhood U of q. Endow the tangent space
with the canonical symplectic form ω0. Since q is a fixed point of the symplectic action,
G also acts linearly on TqM via

g 7→ Dψg(q).

Applying Theorem 4.2 to the symplectic manifold U ⊂ M , the submanifold q and the
symplectic forms ω|U and σ∗ω0, we obtain a neighborhood U ′ of q with the desired prop-
erties.

For the action of a torus, we have a weight-space decomposition around every fixed
point q:

Theorem 4.3. Let (M2n, ω,Tm, µ) be a Hamiltonian action on a symplectic space and
let q ∈M be a fixed point. Then there exists a chart (U, x1, ..., xn, y1, ..., yn) centered at
q and weights λ1, ..., λn ∈ Zm such that

1. ω|U =
∑n

k=1 dxk ∧ dyk, and

2. µ|U = µ(q)− 1
2

∑n
k=1 λ

k(x2k + y2k).

Proof. By Theorem 4.1 it suffices to understand the moment map for a linear Hamiltonian
action on a standard symplectic vector space. W.l.o.g. identify TqM with (R2n, ωstd) and
let ψ be a linear Hamiltonian action of Tm on (R2n, ωstd).
We have a decomposition in 2-dimensional weight spaces

R2n = ⊕Vk,

Vk = {v ∈ R2n | ψg(v) = χk(g)v = e2πλkgv}
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for some λk ∈ Zm. Choose a basis

{x1, ..., xn, y1, ..., yn}

such that
{xk, yk}

is a real basis for Vk. To conclude the proof we show that the moment map µ : R2n → Rm

restricted to the weight space Vk is given by

µ : Vk → Rm

v 7→ λk · (x2k + y2k) ∈ Rm.

Indeed, for the standard basis {e1, ..., em} of Rm, the vector field associated to the action
and the vector ei is

e#i = λi(
∂

∂xk
+

∂

∂yk
).

Finally, we use the definition of the moment map to obtain

dµei = −
n∑
k=1

λk(dxk + dyk)

for an appropriate basis {x1, ..., xn, y1, ..., yn} of R2n. By Theorem 4.1 this concludes the
proof.
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4.2 Moment map as a Morse function

The moment map associated to a symplectic toric manifold M can be used to define a
variety of Morse functions on M , which in turn allow us to study the homology ring of
M via Morse inequalities.
Let (M,ω,Tn, µ) be a 2n-dimensional symplectic toric manifold. Choose a generic di-
rection X in Rn whose components are independent over Q. Then

1. the subgroup generated by X is dense in Tn

2. X is not parallel to the facets of the moment polytope

3. the vertices of the moment polytope have different projections along X .

Define
µX = 〈µ,X〉 : M → R,

the component of µ along X .

Theorem 4.4. Let (M,ω,Tn, µ) be a symplectic toric manifold and let X ∈ Rn have
components independent over Q. Then the degree 2k homology group of M has dimen-
sion equal to the number of vertices of the moment polytope where there are exactly k
edge vectors pointing up relative to the projection along X . All odd-degree homology
groups vanish.
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Proof. By Theorem 4.3 for any fixed point of the Hamiltonian action q ∈M there exists
a chart (U, x1, ..., xn, y1, ..., yn) and weights λ1, ..., λn ∈ Zn such that

µX |U = µX(q)− 1

2

n∑
k=1

〈λk, X〉(x2k + y2k).

Notice that since the components ofX are independent over Q and the action is effective,
all coefficients 〈λk, X〉 must be non-zero.
The critical point q of µX is therefore non-degenerate and the index is equal to

2 ·#{k such that − 〈λk, X〉 < 0}.

Geometrically speaking, these −λk’s are exactly the edges of the polytope that point up-
wards when projected onto the subgroup generated by X (the scalar product with X is
positive).
Notice that each critical point has even index and the function µX is therefore a perfect
Morse function. The Theorem follows.
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4.2.1 Example

Let us give a concrete example of how to apply Theorem 4.4.
Consider (CP 2, ωFS) with the T2 action

(eiθ1,e
iθ2 ) · [z0 : z1 : z2] 7→ [z0 : eiθ1z1 : eiθ2z2]

and associated moment map

µ([z0 : z1 : z2]) = −1

2

( |z1|2

|z0|2 + |z1|2 + |z2|2
,

|z2|2

|z0|2 + |z1|2 + |z2|2
)
.

The image above shows the moment polytope associated to this Hamiltonian toric action.
The vertices correspond to the fixed points [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1].
By Theorem 4.4 it suffices to project the moment map onto some irrational direction and
consider the direction of the edges of the polytope to compute the homology of CP 2.
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Indeed, the three critical points of µX have index 0,1 and 2 respectively and hence

H0(CP 2) = R,

H2(CP 2) = R,

H4(CP 2) = R,

Hodd(CP 2) = 0

as we expected.
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