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Abstract

In this semester paper, we give definitions and examples of contact
manifolds, open book decompositions, and symplectic fillings. We start
by introducing contact manifolds and related concepts. We discuss the
existence of contact structure, tight versus overtwisted dichotomy, and
classification of overtwisted contact structures. Then, we investigate
open book decompositions of contact manifolds and discuss the Giroux
correspondence between open book decompositions and contact struc-
tures on 3-manifolds. Lastly, we discuss various types of symplectic
fillings of contact manifolds and their connection to the topology of
contact manifolds.
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Chapter 1

Introduction to Contact Manifolds

In this chapter, we introduce contact manifolds and related notions and
explain some basic results and constructions about them.

In the first section, we will define contact and symplectic manifolds, their
special submanifolds, and the vector fields on them. In Section 1.2, we
prove the theorems of Gray [28] and Pfaff using Moser’s Trick. These results
describe the deformations of contact structures and their local forms. In
Section 1.3, we define the characteristic foliation of a surface in a contact
3-manifold. That is, the singular foliation defined on a surface by the contact
structure of the ambient manifold which gives information about the contact
structure near the surface. In Section 1.4, we consider knots and their
invariants in contact 3-manifolds. Lastly, in Section 1.5, we first consider the
results of Martinet [35] and [34] about the existence of contact structures. We
also introduce the fundamental dichotomy of tightness vs overtwistedness of
contact structures and describe the classification of overtwisted structures on
contact 3-manifolds by Eliashberg [8].

1.1 Basic Definitions and Examples

We start with the definitions of contact and symplectic manifolds.

Definition 1.1 Let M be a smooth manifold of dimension (2n+1), for n ≥ 0. A
contact structure on M is a maximally nonintegrable hyperplane field ξ ⊂ TM.
That is, locally ξ = ker α for a 1-form α ∈ Ω1(M), with α ∧ (dα)n 6= 0. Such
a 1-form α on M is called a contact 1-form. The pair (M, ξ) is called a contact
manifold.

Observe that, if α is a contact 1-form on M, then gα, where g : M→ R− {0}
is a nonvanishing function, is also a contact form defining the same contact
structure.
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1.1. Basic Definitions and Examples

Unless otherwise stated, we will assume the contact structures are defined
globally by a contact 1-form. This is the case precisely when TM/ξ is a
trivial line bundle, that is, when ξ is coorientable. Not all contact structures
are coorientable. For an example of a non-coorientable contact structure on
Rn+1 ×RPn+1, see [22, Lemma 1.1.1 and Example 2.1.11].

Definition 1.2 A 2-form ω on a smooth manifold X is a symplectic form if

1. ω is closed (that is, dω = 0) and,

2. ω is nondegenerate for all p ∈ X (that is, at every point p ∈ X, for any
nonzero tangent vector v ∈ TpX, there is w ∈ TpX such that ωp(v, w) 6= 0).

The pair (X, ω) is called a symplectic manifold.

By the nondegeneracy condition, a symplectic manifold is necessarily of even
dimension. If (X, ω) is a symplectic 2n-manifold, we can reformulate the
nondegeneracy condition for ω as ωn 6= 0. Thus, a symplectic form defines
an orientation on X.

For a contact manifold (M, ξ = ker α) of dimension 2n + 1, we can also
restate the nonintegrability condition α ∧ (dα)n 6= 0 as dα|ξ is nondegenerate.

By the contact condition, if α is a contact form, α ∧ (dα)n is a volume form,
then a contact manifold M is necessarily orientable. In addition, if n is odd,
the sign of α ∧ (dα)n only depends on the contact structure ξ = ker α. In this
case, given an orientation on M, we can talk about a positive contact struc-
ture (respectively a negative contact structure) if α ∧ (dα)n > 0 (respectively
α ∧ (dα)n < 0) on oriented frames.

Contact and symplectic manifolds are usually viewed as odd and even
dimensional analogues of each other. We will investigate this relation to
some extent in the following chapters.

For further properties and discussions about symplectic manifolds, one can
consult [6] and [39].

Now we will give some non-examples and examples of contact manifolds:

Example 1.3 By the previous discussions, non-orientable manifolds cannot be en-
dowed with contact structures.

Example 1.4 Consider a 1-manifold M. Then, any nonvanishing 1-form on α
satisfies α ∧ (dα)0 = α 6= 0. So, α is a contact form. Since α is nonvanishing, the
contact structure ξ = ker α is the zero section of the tangent bundle TM of M.

Example 1.5 We will define several contact structures on R2n+1 with coordinates
{(x1, y1, . . . , xn, yn, z)} for n ≥ 1:
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1.1. Basic Definitions and Examples

First, consider the 1-form

α1 = dz +
n

∑
i=1

xidyi

We have,

α1 ∧ (dα1)
n = (dz +

n

∑
i=1

xidyi) ∧ (
n

∑
i=1

dxi ∧ dyi)
n

= n!dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

The form dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn is a volume form on R2n+1, thus

α ∧ dαn 6= 0

Therefore, α1 is a global contact 1-form on R2n+1 that defines a contact structure

ξ1 = ker α1 = span{ ∂

∂x1
, . . . ,

∂

∂xn
, x1

∂

∂z
− ∂

∂y1
, . . . , xn

∂

∂z
− ∂

∂yn
}

and we get the contact manifold (R2n+1, ξ1 = ker α1). For the case 2n + 1 = 3,
Figure 1.1 describes this contact structure.

Figure 1.1: The contact structure ξ1 = ker(dz + ∑n
i=1 xidyi), [12].

Similarly, the 1-form

α2 = dz−
n

∑
i=1

yidxi

defines a contact manifold (R2n+1, ξ2 = ker α2).

Lastly, consider the 1-form

α3 = dz +
n

∑
i=1

xidyi − yidxi = dz +
n

∑
i=1

r2
i dϕi

3



1.1. Basic Definitions and Examples

where (ri, ϕi) are the polar coordinates on respective (xi, yi) planes. Then,

α3 ∧ (dα3)
n = 2nn!dz ∧ dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn 6= 0

Thus, α3 defines a contact structure

ξ3 = span{x1
∂

∂z
− ∂

∂y1
, . . . , xn

∂

∂z
− ∂

∂yn
, y1

∂

∂z
+

∂

∂x1
, . . . , yn

∂

∂z
+

∂

∂xn
}

and we get a contact manifold (R2n+1, ξ3 = ker α3).

Example 1.6 By the same argument for α3 described above, the solid torus S1 ×D2

with coordinates (θ, (r, ϕ)) is a contact manifold with the contact structure defined
by the form

α = dθ + r2dϕ

This can be viewed as (R3, α) wrapped around the z-axis, and restricted to the solid
torus.

Example 1.7 Consider R3 with cylindrical coordinates {(r, θ, z)}. and the 1-form

αot = cos rdz + r sin rdθ

We have

αot ∧ dαot = (1 +
sin r cos r

r
)rdr ∧ dθ ∧ dz

= (1 +
sin r cos r

r
)dVol

Thus, by extending sin r
r smoothly by 1 where r = 0 to adress differentiability of of

cos r sin r
r , we see that αot ∧ dαot 6= 0 and αot defines a contact structure

ξot = ker αot = span{ ∂

∂r
, r tan r

∂

∂z
− ∂

∂θ
}

called the standard overtwisted contact structure on R3. See Figure 1.2 for
this contact structure. We will talk more about ”overtwisted” contact structures in
Sections 1.3 and 1.5.2.

Example 1.8 Consider the unit sphere S2n+1 ⊂ R2n+2, and the 1-form

αS2n+1 =
n+1

∑
i=1

xidyi − yidxi

where we use the coordinates {(x1, y1, . . . , xn, yn, xn+1, yn+1)} for R2n+2.

Considering r2 = ∑n+1
i=1 x2

i + y2
i where r is the radial coordinate on R2n+2, we get

rdr ∧ αS2n+1 ∧ (dαS2n+1)n 6= 0 for r 6= 0. Thus, since S2n+1 ⊂ R2n+2 is the level
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1.1. Basic Definitions and Examples

Figure 1.2: The contact structure ξot, [22].

set r = 1, the 1-form αS2n+1 ∧ (dαS2n+1)n is nonzero when restricted to the sphere.
The contact structure ξS2n+1 = ker αS2n+1 on S2n+1 is called the standard contact
structure on S2n+1

Here is an other description of this contact structure on S2n+1: Consider the smooth
map f : Rn → R given by

f (x1, y1, . . . , xn, yn, xn+1, yn+1) =
n+1

∑
i=1

x2
i + y2

i

Then, S2n+1 = f−1(1) and

TpS2n+1 = kerd fp

= ker(2x1dx1 + 2y1dy1 + · · ·+ 2xn+1dxn+1 + 2yn+1dyn+1)

for p = (x1, y1, . . . , xn, yn, xn+1, yn+1) ∈ S2n+1. We identify R2n+2 with Cn+1

to get a complex structure J on each tangent space, that is a linear map such that
J ∂

∂xi
= ∂

∂yi
and J ∂

∂yi
= − ∂

∂xi
for all i = 1, . . . , n + 1.

One can then check that the contact form is αS2n+1 = − 1
2 d f ◦ J|S2n+1 and the contact

structure is (ξS2n+1)p = TpS2n+1 ∩ J(TpS2n+1) at each point p ∈ S2n+1.

Example 1.9 Consider the 3-torus T3 = R3/Z3. Then for each positive integer n,
the 1-form αn = sin(2πnz)dx + cos(2πnz)dy induces a contact structure on T3.
Contact structure is given by

ξn = span{ ∂

∂z
, cos(2πnz)

∂

∂x
− sin(2πnz)

∂

∂y
}

The circle x = y = constant is tangent to ξ and on this circle ξ makes n full twists.
See Figure 1.3.

Now we introduce the diffeomorphisms between contact manifolds that
respect the contact structures.
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1.1. Basic Definitions and Examples

Figure 1.3: The contact structure on 3-torus

Definition 1.10 Two contact manifolds (M1, ξ1) and (M2, ξ2) are called contac-
tomorphic if there is a diffeomorphism f : M1 → M2 such that f∗ : TM1 → TM2
maps ξ1 to ξ2, that is f∗(ξ1) = ξ2. Such an f is called a contactomorphism.
Equivalently, there exists a nowhere zero function λ : M1 → R− {0} such that
f ∗(α2) = λα1 where αi is a contact form defining ξi for i = 1, 2.

A contactomorphism is called strict when it preserves the contact structure. That is,
when f ∗(α2) = α1.

Two contact structures ξ1 and ξ2 on M are isotopic if there is a contactomorphism
f : (M, ξ1)→ (M, ξ2) isotopic to identity.

Example 1.11 Three contact structures on R2n+1 described in Example 1.5 are all
contactomorphic. The contact structures ξ1 and ξ2 are related by a rotation about
the z-axis, and the structures ξ1 and ξ3 are related by the map

(R2n+1, ξ1)→ (R2n+1, ξ3)

defined as

(x1, y1, . . . , xn, yn, z) 7→

(
(x1 + y1)

2
,
(y1 − x1)

2
, . . . ,

(xn + yn)

2
,
(yn − xn)

2
, z + ∑ xiyi

2
)

Any of these structures is called the standard contact structure ξst on R2n+1

Example 1.12 The contact manifold (S2n+1 − {p}, ξS2n+1 |S2n+1−{p}) described in
Example 1.8 is contactomorphic to R2n+1 with its standard contact structure (see [22]
and [21] for constructions of contactomorphisms based on stereographic projection
or maps of complex domains). This contactomorphism justifies calling both of these
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1.1. Basic Definitions and Examples

contact structures ”standard”. Accordingly, we sometimes also use ξst to denote the
standard contact structure on S2n+1.

We will also need to define some special submanifolds of contact manifolds:

Definition 1.13 Let (M, ξ) be a contact manifold of dimension 2n+1 for n ≥ 0.

A submanifold N1 ⊂ M with a contact structure ξ1 is called a contact submanifold
if TN1 ∩ ξ|N1 = ξ1.

A submanifold N2 is called an isotropic submanifold if TpN2 ⊂ ξp for all p ∈ N2.

A submanifold N3 is called a Legendrian submanifold if it is isotropic and of
dimension n.

By nondegeneracy of dα|ξ , an isotropic submanifold is necessarily of dimen-
sion at most n. Thus, Legendrian submanifolds are isotropic submanifolds of
maximal dimension.

In dimension 2n + 1 = 3, closed Legendrian submanifolds N are 1- dimen-
sional. Hence, N ∼= S1. We call these Legendrian knots. We will discuss
more about Legendrian knots later.

We can also define an important type of submanifolds of symplectic mani-
folds:

Definition 1.14 Let (X, ω) be a symplectic manifold. A submanifold Y ⊂ X is
called a Lagrangian submanifold if ωp|TpY = 0 and dim TpY = 1

2 dim Tp M for
all p ∈ Y.

By nondegeneracy of ω, Lagrangian submanifolds are the submanifolds
Y ⊂ X of maximal dimension such that ωp|TpY = 0 for all p ∈ Y.

1.1.1 Contact, Reeb, and Liouville Vector Fields

Now, we will define some vector fields defined on contact and symplectic
manifolds that will be of special importance in the following discussions.

Let (M, ξ = ker α) be a contact manifold of dimension 2n + 1. Since dα is
nondegenerate on ξ by the nonintegrability condition, its kernel defines a
unique line field, that is a unique vector field R on M up to scaling which
satisfies α(R) 6= 0. If we normalize R by the condition α(R) = 1, we get a
unique vector field associated to a contact form α:

Definition 1.15 Let (M, ξ = ker α) be a contact manifold. The Reeb vector field
Rα is the unique vector field defined by the equations:

1. dα(Rα,−) ≡ 0

2. α(Rα) = 1

7



1.1. Basic Definitions and Examples

We also have the notion of vector fields on (M, ξ = ker α) that preserve the
contact structure:

Definition 1.16 Let (M, ξ = ker α) be a contact manifold. A vector field v on M
is a contact vector field if its flow ϕt is a contactomorphism, that is (ϕt)∗ξ = ξ,
for all t. Equivalently, a vector field v is a contact vector field if Lvα = gα for some
function g : M→ R.

We have LRα = iRα dα + d(α(Rα)) = 0. So the Reeb vector field associated to
a contact form is in particular a contact vector field.

Remark 1.17 While contact vector fields are associated to contact structures, Reeb
vector fields are associated to contact forms. In general, Reeb vector fields that are
associated to contact forms that define the same contact structure might be distinct.

Here are some examples of the Reeb vector fields on the contact manifolds
we defined in previous examples:

Example 1.18 For the standard contact structure α1 described in Example 1.5, the
Reeb vector field is ∂

∂z . Indeed,

α1(
∂

∂z
) = (dz +

n

∑
i=1

xidyi)(
∂

∂z
) = 1

and

dα1(
∂

∂z
,−) = (

n

∑
i=1

dxi ∧ dyi)(
∂

∂z
,−) = 0

The flow of this vector field is translation along z-coordinate, which preserves the
contact structure.

Example 1.19 For the standard overtwisted contact structure αot described in
Example 1.7, the Reeb vector field is

1
(r sin r + (1 + r cot r) cos r)

∂

∂θ
+

(1 + r cot r)
(r sin r + (1 + r cot r) cos r)

∂

∂r

Example 1.20 For the standard contact structure αS2n+1 on the unit sphere described
in Example 1.8, the Reeb vector field is

n+1

∑
i=1

(xi
∂

∂yi
− yi

∂

∂xi
)

Lastly, we will define Liouville vector fields on symplectic manifolds.

Definition 1.21 Let (X, ω) be a symplectic manifold. A vector field u on X is a
Liouville vector field if the Lie derivative along u preserves the symplectic form,
that is, Luω = ω.

8



1.1. Basic Definitions and Examples

Lemma 1.22 Let (X, ω) be a symplectic manifold of dimension 2n + 2 and vector
field u on X be a Liouville vector field. Then, α = iuω = ω(u,−) is a contact form
when restricted to any hypersurface M transverse to u.

Proof By Cartan’s formula for the Lie derivative, we have

ω = Luω = iudω + d(ω(u,−)) = d(ω(u,−))

because dω = 0. Therefore,

α ∧ dαn = iuω ∧ d(ω(u,−))n

= iuω ∧ωn

= (n)−1iu(ω
n+1)

Thus, by nondegenerecy of ω, if M is transverse to u, then α ∧ dαn 6= 0. �

Such a hypersurface M is called of contact type.

Example 1.23 Let (M, ξ = kerα) be a contact manifold of dimension 2n-1 for
n ≥ 1. Define X = R×M and ω = d(etα) where t is the R coordinate.

The pair (X, ω) is a symplectic manifold, called the symplectization of M. The
’vertical’ vector field ∂

∂t is a Liouville vector field.

The submanifold L is a Legendrian submanifold of M if and only if R× L is a
Lagrangian submanifold of X.

The notion of a Liouville vector field gives another description of the standard
contact structure described in Example 1.8

Example 1.24 Consider R2n+2 with coordinates (x1, y1, . . . , xn+1, yn+1) and the
standard symplectic structure, that is

ωst =
n+1

∑
i=1

dxi ∧ dyi

Consider the radial vector field vector field

u = r
∂

∂r
=

n+1

∑
i=1

xi
∂

∂xi
+ yi

∂

∂yi

One can see by direct computation that u is a Liouville vector field on R2n+2 and
transverse to the unit sphere S2n+1. Thus, S2n+1 is a hypersurface of contact type in
R2n+2 with the contact form

iuωst =
n+1

∑
i=1

xidyi − yidxi = αS2n+1

that is with the standard contact structure on S2n+1.

9



1.2. Moser’s Trick, Gray’s Stability Theorem and Darboux Theorem

1.2 Moser’s Trick, Gray’s Stability Theorem and Dar-
boux Theorem

In this section, we prove Gray’s stability theorem, which says that any smooth
family of contact forms on a manifold can be connected through an isotopy
of the manifold, and Darboux’s theorem for contact manifolds, which shows
that all contact structures locally look like the standard contact structure ξst
on R2n+1.

First we start with a lemma concerning families of differential forms:

Lemma 1.25 For t ∈ [0, 1], let ωt be a smooth family of differential k–forms on a
manifold M and (ψt : M→ M)t∈[0,1] be an isotopy. Define a family of vector fields
Xt on M so that ψt is the flow of Xt, Then

d
dt
(ψ∗t ωt) = ψ∗t (

d
dt

ωt + LXt ωt)

Proof For a differential form ω on M, we have

d
dt
(ψ∗t ω) = ψ∗t (LXt ω)

From this, we compute

d
dt
(ψ∗t ωt) = lim

h→0

ψ∗t+hωt+h − ψ∗t ωt

h

= lim
h→0

ψ∗t+hωt+h − ψ∗t+hωt + ψ∗t+hωt − ψ∗t ωt

h

= lim
h→0

ψ∗t+h(
ωt+h −ωt

h
) + lim

h→0

ψ∗t+hωt − ψ∗t ωt

h

= ψ∗t (
d
dt

ωt + LXt ωt) �

Now we are ready to prove Gray’s stability theorem, the contact analogue of
Moser’s stability theorem concerning symplectic structures (see [6]). Notably,
in contrast to Moser’s theorem, Gray’s theorem does not have a cohomological
condition.

We will use a technique called Moser’s trick for the proof. Rougly, we
will assume an isotopy (ϕt)t∈[0,1] is induced by a time dependent vector field
(Xt)t∈[0,1] and we will find conditions on (Xt)t∈[0,1]. Then by integrating Xt on
the closed manifold M, we get the desired isotopy (ϕt)t∈[0,1]. This technique
will be used to construct and extend isotopies with various properties.

Theorem 1.26 (Gray [28]) Let (ξt)t∈[0,1], be a smooth family of contact structures
on a closed manifold M . Then, there is an isotopy (ϕt)t∈[0,1] of M such that

(ϕt)∗(ξ0) = ξt

10



1.2. Moser’s Trick, Gray’s Stability Theorem and Darboux Theorem

for all t ∈ [0, 1].

Proof Suppose we have the isotopy ϕt and it is induced as the flow of the
time-dependent vector field Xt

The condition (ϕt)∗(ξ0) = ξt can be restated as

(ϕt)
∗(αt) = λtα0

where λt is a positive function on M and ξt = ker αt for all t. By differentiating
we get

ϕ∗t (
d
dt

αt + LXt αt) =
d
dt
(λt)α0 =

d
dt (λt)

λt
(ϕt)

∗(αt)

by the previous lemma. Using Cartan’s formula for the Lie derivative and
setting µt =

d
dt (log λt) ◦ ϕ−1

t we get

ϕ∗t (
d
dt

αt + d(αt(Xt)) + iXt dαt) = ϕ∗t (µtαt)

Therefore, a vector field Xt ∈ ξt = ker αt solves this equation provided that

d
dt

αt + iXt dαt = µtαt

Take the Reeb vector field Rαt of αt and evaluate to define the function µt as

d
dt

αt(Rαt) = µt

From these conditions and the nondegeneracy of dαt, we can uniquely find
Xt ∈ ξt = ker αt and integrate it to get the desired isotopy (ϕt)t∈[0,1]. �

Remark 1.27 Original proof of this theorem in [28] by Gray used deformation
theory.

We will again use Moser’s trick to prove the contact version of Darboux’s
theorem (also known as Pfaff’s Theorem):

Theorem 1.28 (Pfaff’s Theorem) Every contact manifold (M, ξ = kerα) of di-
mension 2n+1 locally looks like (R2n+1, ξst = ker αst). That is, for all p ∈ M there
exist open neighbourhoods U of p, V of 0, and a contactomorphism ϕ : (U, ξ) →
(V, ξst), with ϕ(p) = 0.

Proof Let (x1, y1, . . . , xn, yn, z) be the local coordinates on M around p such
that α( ∂

∂z ) = 1, dα( ∂
∂z ,−) = 0, ∂

∂xi
, ∂

∂yi
∈ ker α, and dα = ∑ dxi ∧ dyi. This is

possible by the contact condition.

Recall that αst = dz + ∑ xidyi and consider the family

αt = (1− t)αst + tα

11



1.3. Characteristic Foliation of a Surface

for t ∈ [0, 1] on R2n+1. By our choice of coordinates, αt and dαt agree with α
at 0. Hence, αt are contact forms in a neighbourhood of 0.

Now, we will use Moser’s trick and the previous notation. By differentiating
(ϕt)∗(αt) = αst we get

ϕ∗t (
d
dt

αt + LXt αt) = 0

so Xt needs to satisfy

d
dt

αt + d(αt(Xt)) + iXt dαt = 0

Writing Xt = htRt + Yt where Rt is the Reeb field of αt, Yt ∈ ker αt, and ht is
a family of smooth functions on M. Plugging Rt in, we get

d
dt

αt(Rt) + dht(Rt) = 0

From this we can find a family of functions ht by integration. Since d
dt αt = 0

at 0, we may also assume ht(0) = 0 and dht|0 = 0.

Once ht is chosen, Yt and Xt can be found in a neighbourhood of 0. By the
assumptions on ht, we have Xt(0) = 0 for all t.

When we integrate Xt, we get the desired isotopy ϕt that fixes 0 of R2n+1,
defined around a neighbourhood of origin. This gives the desired local
diffeomorphism by composing ϕ1 with local coordinate maps. �

Remark 1.29 Observe that, for the proof of Darboux’s theorem we use the equation
(ϕt)∗(αt) = αst, that is we find an isotopy that connects contact forms. On the
other hand, for Gray’s theorem we use the equation (ϕt)∗(ξ1) = ξ2, that is we find
an isotopy that connects contact structures. In general, one cannot find an isotopy
such that (ϕt)∗(α2) = α1 in Gray’s theorem. One can see this using Reeb vector
fields, see [22, Example 2.2.5].

By Darboux’s Theorem, contact manifolds of the same dimension are all
locally contactomorphic. That is, there are no local invariants of contact
manifolds. This is in contrast to Riemannian geometry, where there exist
local invariants such as curvature.

1.3 Characteristic Foliation of a Surface

Let (M, ξ) be a contact 3-manifold. Let Σ be an oriented surface in (M, ξ).
At each point x ∈ Σ consider the subspace lx = TxΣ ∩ ξx. We call the points
x such that lx = Tx M singular points. By integrating we get a singular
foliation Σξ , that is the disjoint union of singular points and 1- manifolds
called leaves that are tangent to lx at x. This singular foliation Σξ is called
the characteristic foliation of Σ.
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1.3. Characteristic Foliation of a Surface

Example 1.30 Consider the unit sphere S2 in (R4, ξ3) described in Example 1.5.
Only singular points are (0, 0,±1) and away from singular points the characteristic
foliation is defined by the vector field (y− xz) ∂

∂x − (x + yz) ∂
∂y + (x2 + y2) ∂

∂z

Figure 1.4: The characteristic foliation on the sphere, [12].

This foliation can be visualized as spirals connecting north and south poles, as in
Figure 1.4

Example 1.31 Consider the disk D of radius π on (r, θ) plane in (R3, ξot) described
in Example 1.7. Then the center of the disk and every point at the boundary is
singular since contact planes are horizontal. The leaves are segments joining the
center to the boundary. If we push the interior of D slightly in the z direction, the
contact planes no longer coincide with the tangent planes on the boundary and the
boundary becomes a leaf of the foliation. In this case, the characteristic foliation
becomes a singular point at the center, boundary as a leaf, and spirals from the center
approaching the boundary. See figure 1.5

Figure 1.5: Overtwisted disks, [12].

Either of these disks with its characteristic foliation is called an overtwisted disk.

In general, any surface may be perturbed by a C∞-small isotopy so that the
singularities of the characteristic foliation are ’generic’, that is one of the

13



1.4. Knots in Contact 3-Manifolds

types described in Figure 1.6.

Figure 1.6: Generic singularities, [12]

The characteristic foliation on a surface determines the contact structure in a
neighborhood of the surface. More precisely, we have

Theorem 1.32 Let (Mi, ξi) be contact 3-manifolds and Σi be a closed surfaces in Mi
for i = 0, 1. If there is a diffeomorphism f : Σ0 → Σ1 that preserves the characteristic
foliation, that is f ((Σ0)ξ0) = (Σ1)ξ1 , then f may be extended to a contactomorphism
in some neighborhood of (Σ0)ξ0 . Moreover, if f was already defined on a neighborhood
of Σ0, f is isotopic to a contactomorphism in some (possibly) smaller neighborhood.

This theorem is proved by Moser’s trick. See Theorem 2.39 in [21] for further
details.

1.4 Knots in Contact 3-Manifolds

We will consider 1-dimensional submanifolds, namely knots in contact 3-
manifolds (M, ξ).

Definition 1.33 Let (M, ξ) be a contact 3-manifold. Then, a knot γ : S1 → M is
called a Legendrian knot if γ(S1) is tangent to ξ at every point of γ(S1) ⊂ M.
That is, if γ(S1) is a Legendarian submanifold of M.

A knot γ : S1 → M is called a transverse knot if γ(S1) is transverse to ξ at every
point of γ(S1) ⊂ M.

If ξ = ker α, we can restate the conditions equivalently as α(γ̇) = 0 for a
Legendrian knot, and α(γ̇) 6= 0 for a transverse knot, where γ̇ is the tangent
vector to γ. We call γ positively transverse (resp. negatively transverse) if
α(γ̇) > 0 (resp. α(γ̇) < 0).

Usually, we will not distinguish between a knot and its image. Also, we will
mostly discuss knots in (R3, ker(dz + xdy)). The front projection of a knot
is the projection of the knot to yz-plane.

Suppose γ is a Legendrian knot in (R3, ξ = ker αst) where α = dz + xdy.
Then we have the condition x = − dz

dy by the condition α(γ̇) = 0 and γ can
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1.4. Knots in Contact 3-Manifolds

be determined completely from its front projection by integrating. Moreover,
the front projection of a Legendrian knot satisfies:

• There are no vertical tangencies, instead there are cusps when the
tangency changes directions in the y-direction, and

• at all the crossings, the strand of γ with the smaller slope lies in front
of the strand with the larger slope.

That is, the front projection looks like Figure 1.7.

Figure 1.7: Front projections of some Legendrian knots, [12].

Conversely, a curve on the yz-plane that satisfy these conditions can be lifted
to a Legendrian knot. Thus, approximating the front projection of any knot
in Rn by ”zig-zags” as in Figure 1.8, we get

Proposition 1.34 Let γ be a knot in (R3, ξst). Then γ can be C0-approximated by
a Legendrian knot isotopic to γ.

Figure 1.8: Approximation by a Legendrian knot, [22].

By similar arguments, and approximating by ”loops” on the xy-plane, instead
of ”zig-zags” on yz-plane, we get

Proposition 1.35 Let γ be a knot in (R3, ξst). Then γ can be C0-approximated by
a transverse knot isotopic to γ.

For more details, see [22].
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1.4. Knots in Contact 3-Manifolds

Figure 1.9: Approximation by a transverse knot, [22].

1.4.1 The Classical Invariants of Knots in Contact 3-Manifolds

Now we will define some invariants of Legendrian and transverse knots in
contact 3-manifolds.

First, let γ be a Legendrian knot and assume it bounds a surface Σ 1. Let v
be a vector field along γ transverse to ξ and let γ′ be the knot obtained by
pushing γ along v. Now, the Thurston-Bennequin invariant tb(γ) of γ is
the linking number of γ and γ′, that is the signed intersection of γ′ with Σ.

For the second invariant of a Legendrian knot, let γ be an oriented Legendrian
knot. Trivialize ξst along γ. the rotation number r(γ) of γ is the winding
number of γ with respect to this trivialization.

Lastly, we will define an invariant of a transverse knot. let γ be a transverse
knot. Trivialize ξst along γ by a vector field u along γ, and γ′ be the knot
obtained by pushing γ along u. Then, the self-linking number sl(γ) of γ is
the linking number of γ and γ′.

These invariants can be computed from the front projections of a knot and
they are useful to classify such knots to some extent (see [22]).

Moreover, these invariants describe some properties of the underlying con-
tact structure, as one can see while discussing convex surfaces in contact
manifolds.

1Let γ be a nullhomologous knot in an oriented 3–manifold. An embedded connected,
compact, orientable surface Σ with boundary ∂Σ = γ is called a Seifert surface for γ.
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1.5 Contact Structures on 3-Manifolds

In this section, we will state some results about the existence and classification
of contact structures on 3-manifolds, and we will introduce the tight vs.
overtwisted dichotomy in contact 3-manifolds. Unless otherwise stated, we
will consider closed, orientable 3-manifolds and positive contact structures,
that is α ∧ dα > 0.

1.5.1 Existence of Contact Structures on 3-Manifolds

The main existence result is due to Martinet [35] and Lutz [34]:

Theorem 1.36 Every closed, orientable 3-manifold admits a contact structure in
each homotopy class of 2-plane fields.

There are several proofs of the existence part of this theorem. One due
to Thurston and Winkelnkemper [45], uses open book decompositions of
3-manifolds. We will discuss that proof more in-depth in Chapter 2.

The original proof of existence by Martinet uses a surgery description of
3-manifolds due to Lickorish [33] and Wallace [46]: every closed, orientable
3-manifold can be obtained from S3 by Dehn surgery, that is, by removing
a solid torus and gluing it back by a diffeomorphism of its boundary. One
proves that given a contact structure near the boundary of a solid torus,
one can extend it to the whole solid torus by finding a suitable contact
form α = h1(r)dθ + h1(r)dϕ modeled after the one described in Example 1.6.
Therefore, starting with S3 and a contact structure on it, we can perform
Dehn surgery along transverse knots to get the desired manifolds and endow
the resulting 3-manifolds with contact structures.

By using the so-called Lutz twists, a topologically trivial Dehn surgery, we
may produce a new contact structure on a given manifold, possibly not
homotopic (as plane fields) to the one we started with. We show that by Lutz
twists, we obtain contact structures in each homotopy class of plane fields.

The full details of this proof can be found in [22, Chapter 4].

1.5.2 Tightness and Overtwistedness

In this section, we will define tight and overtwisted contact 3-manifolds.
Tightness versus overtwistedness is a fundamental dichotomy of contact
manifolds. While overtwisted structures are ”relatively easy to find” in the
sense we will discuss in the next subsection, not all 3-manifolds can have a
tight contact structure (see [17]).

Definition 1.37 A contact 3-manifold (M, ξ) is overtwisted if it contains an
overwisted disk. That is, if there is an embedded disk in M whose characteristic
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foliation is homeomorphic to the characteristic foliation of an overtwisted disk (the
characteristic foliations described in Example 1.31). Otherwise, it is tight.

Figure 1.10 shows the disk of radius π that is the overtwisted disk in the
standard overtwisted structure ξot on R3.

Figure 1.10: Overtwisted disk in (R3, ξot), [37].

The existence of a tight contact structure gives information about the proper-
ties of the contact manifold. We will give some conditions and consequences
of tightness related to convexity and symplectic fillings in the following
chapters.

In the meantime, we will give some examples of tight and overtwisted contact
structures.

Example 1.38 By definition, the standard overtwisted structure defined in Example
1.7 on R3 is overtwisted.

Example 1.39 The standard contact structure on S3 defined in Example 1.8 is tight.
In fact, Eliashberg proved that the standard structure on S3 is the unique tight
structure on S3 up to isotopy.

Example 1.40 For each n, the contact structure

(T3, ξn = ker(sin(2πnz)dx + cos(2πnz)dy))

defined in Example 1.9 is a distinct tight structure.

1.5.3 Classification of Overtwisted Contact Structures

Let (M, ξ = ker α) be a contact manifold. In fact, by a Lutz twist in M, one
can always obtain an overtwisted contact structure ξ ′ homotopic to ξ. See
[22] for details. Therefore, every homotopy class of plane fields M contains
an overtwisted contact structure.
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1.5. Contact Structures on 3-Manifolds

Eliashberg gave a much stronger classification of overtwisted contact struc-
tures in [8] that reads as follows:

Let Contot(M, D) be the set of cooriented, positive, overtwisted contact struc-
tures ξ on M such that the characteristic foliations on an overtwisted disk
D agree. Also let Distr(M, D) be the set of cooriented plane fields that are
tangent (with matching orientations) to D at the center. Consider both spaces
with C∞ topology.

Theorem 1.41 ([8]) The inclusion of

i : Contot(M, D)→ Distr(M, D)

is a weak homotopy equivalence.

Remark 1.42 The spaces Contot(M, D), Distr(M, D) have homotopy types of CW-
complexes. Thus, the inclusion is a homotopy equivalence by Whitehead theorem.

By considering path components of Contot(M, D) and Distr(M, D), as a
corollary we have:

Corollary 1.43 ([8]) Two overtwisted contact structures on a contact manifold
(M, ξ = ker α) are isotopic if and only if they are homotopic as oriented 2-plane
fields. Moreover, every homotopy class of oriented 2-plane fields on M contains an
overtwisted contact structure.

The existence and classification of overtwisted contact structures in higher
dimensions is due to Eliashberg, Borman, and Murphy [3].

On the other hand, there is no complete classification of tight contact struc-
tures on contact 3-manifolds. However, there are classifications of tight
structures on certain families of 3-manifolds (for example, see [30], [31]).
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Chapter 2

Open Book Decompositions

In this chapter, we introduce open book decompositions of contact manifolds.
The topological notion of open book decompositions of manifolds gives us
tools to investigate contact manifolds through the concept of an open book
supporting a contact structure.

In Section 2.1, we introduce open book decompositions of manifolds and
ways to obtain other open book decompositions from given ones. Namely,
Murasugi sums and stabilizations. In Section 2.2, we consider the relationship
between contact 3-manifolds and open book decomposition. We define
open book decompositions supporting a contact structure and prove the
result of Thurston and Winkelnkemper [45] about the existence of contact
structures adapted to open book decompositions of 3-manifolds. Then, we
sketch the proofs of the results of Giroux [27] about the existence of open
book decompositions supporting a given contact structure. When combined,
these results give the celebrated Giroux correspondence between open book
decompositions and contact structures on 3-manifolds. Lastly, we mention
the analogous higher dimensional result due to Giroux and Mohsen [27].

2.1 Open Book Decompositions of 3-Manifolds

In this section, we will consider the topological notion of ”open books” and
related constructions that we will use to investigate manifolds.

Definition 2.1 An open book decomposition of a closed, oriented smooth n-
manifold M is a pair (B, π) where:

• B is a codimension 2 submanifold of M,

• π : M− B→ S1 is a smooth fibration, such that on a tubular neighborhood
B× D2 ⊆ M of B = B× {0}, the map π restricts to angular coordinates on
D2
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2.1. Open Book Decompositions of 3-Manifolds

The closures of fibers of π are called pages. The submanifold B is called the binding.

We will consider closed, oriented 3-manifolds unless otherwise stated. In
this case, B is an oriented link, and the page π−1(θ) is a compact oriented
surface Σθ = Σ in M with boundary ∂Σθ = B for any θ ∈ S1. Going forward,
we will interchangeably use the closures of fibers, and the fibers themselves
for the pages.

As a related notion, we can define abstract open books using the information
about the page.

Definition 2.2 An abstract open book is a pair (Σ, ϕ) where:

• Σ is a manifold with nonempty boundary,

• ϕ : Σ → Σ is a diffeomorphism that is identity in a neighborhood of the
boundary ∂Σ

The map ϕ is called the monodromy.

Given an abstract open book (Σ, ϕ) where Σ is a 2-manifold, we define a
3-manifold Mϕ as follows:

Mϕ = Σϕ ∪id∂Σ (∂Σ× D2)

∼= Σϕ ∪ψ (ä
|∂Σ|

S1 × D2)

where |∂Σ| is the number of components of ∂Σ, and

Σϕ = Σ× [0, 1]/(x, 1) ∼ (ϕ(x), 0)

That is, Σϕ is the mapping torus of ϕ. The gluing map identifies the boundary
of the mapping torus ∂Σϕ = ∂Σ× S1 with the boundaries of the solid tori
∂(∂Σ×D2) = ∂Σ× ∂D2 ∼= ä|∂Σ| S1×D2. We denote the union ä|∂Σ| S1×{0}
of the cores of solid tori ä|∂Σ| S1 × D2 by Bϕ.

Also, define a map πϕ : Mϕ − Bϕ → S1 ∼= R/2πZ by

πϕ([x, θ]) = [θ]

for [x, θ] ∈ Σϕ and
πϕ(θ, eiρ) = [ρ]

for (θ, eiρ) ∈ S1 × D2 ⊂ ∂Σ× D2.

Two abstract open book decompositions (Σ1, ϕ1) and (Σ2, ϕ2) are called
equivalent if there is a diffeomorphism h : Σ1 → Σ2 such that h ◦ ϕ1 = ϕ2 ◦ h.

We will state the following lemma that can be deduced from the constructions
above, which gives the relationship between open book decompositions and
abstract open books:
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Lemma 2.3 Using the notation above, we have the following facts about open books
and abstract open books:

1. Equivalent abstract open books give diffeomorphic 3-manifolds.

2. An abstract open book determines Mϕ and an open book (Bϕ, πϕ) up to
diffeomorphism.

3. Conversely, an open book decomposition (B, π) of M gives an abstract open
book (Σπ, ϕπ) such that (Mϕπ , Bϕπ ) is diffeomorphic to (M, B).

Because of this lemma, we usually will not differentiate between a (non-
abstract) open book decompositions of a 3-manifold M and the corresponding
abstract open books. However, observe that when discussing open books
we can discuss the binding and pages up to isotopy in M, whereas when
discussing abstract open books we can only discuss them up to diffeomorphism.

Due to the following result of Alexander [2], open book decompositions give
us a general way to investigate 3-manifolds.

Theorem 2.4 Every closed, oriented 3-manifold has an open book decomposition.

There are several proofs of this result, some of which can be found in [13],
[22], [44].

Remark 2.5 The proof given in [44] also shows that the decomposition can be
produced so that pages are genus 0 surfaces, i.e. planar surfaces. A brief discussion
on these open books can be found in Section 2.2.2.

Here are some examples of open book decomposition of S3 ⊂ C2 ∼= R4 with
coordinates (z1, z2) = (r1eθ1 , r2eθ2) = (x1 + iy1, x2 + iy2) used interchange-
ably:

Example 2.6 Let U = {z1 = 0} ⊂ S3 be the unknot in S3. We have the fibration
πU : S3 − U → S1 given by πU(z1, z2) = z1/|z1| or in polar coordinates by
πU(r1eθ1 , r2eθ2) = θ1. We have the pages as

π−1
U (θ) = {|z2| < 1, z1 =

√
1− |z2|2eiθ} ∼= D2

This fibration can be visualized as in Figure 2.1.

Example 2.7 Define

H+ = {(z1, z2) ∈ S3 : z1z2 = 0} ⊂ S3

and
H− = {(z1, z2) ∈ S3 : z1z2 = 0} ⊂ S3

These subsets are called positive and negative Hopf links respectively.
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Figure 2.1: The 3–sphere with the open book decomposition (U, πU), [22].

We have the fibrations π± : S3− H± → S1 given by π+(z1, z2) = z1z2/|z1z2| and
π−(z1, z2) = z1z2/|z1z2| or in polar coordinates by π±(r1eθ1 , r2eθ2) = θ1 ± θ2.
We have the pages for H+ as

π−1(θ) = {(
√

1− r2
1ei(θ−ρ), r1eiρ)} ∼= [0, 1]× S1

and similarly for H− as

π−1(θ) = {(
√

1− r2
1ei(θ+ρ), r1eiρ)} ∼= [0, 1]× S1

This fibration gives another open book decomposition of S3 with binding H± and
pages as in Figure 2.2.

Figure 2.2: The pages in the open book decomposition of S3 with binding H±, [42].

Remark 2.8 The Examples 2.6 and 2.7 can be generalized using the notion of a
”Milnor fibration” to give other open book decompositions of S3. See [13] and [40]
for details.

Now, we will define ways to obtain new open books from given open books:
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Definition 2.9 Given two abstract open books (Σi, ϕi), i = 0, 1, let ci be an arc
properly embedded in Σi and Ri a rectangular neighborhood of ci, Ri = ci × [−1, 1].
The Murasugi sum of (Σ0, ϕ0) and (Σ1, ϕ1) is the open book (Σ0, ϕ0) ? (Σ1, ϕ1)
with page Σ0 ? Σ1 = Σ0 ∪R1=R2 Σ1, where R0 and R1 are identified so that c0 ×
{−1, 1} = (∂c1)× [−1, 1], and the monodromy ϕ0 ◦ ϕ1.

One can view the Murasugi sum as in Figure 2.3

Figure 2.3: Murasugi sum of the pages of an open book.

The following result due to Gabai [19] relates connected sums and Murasugi
sums. See [13] for a proof sketch.

Proposition 2.10 M(Σ0,ϕ0)?(Σ1,ϕ1) is diffeomorphic to M(Σ0,ϕ0)#M(Σ1,ϕ1)

To define stabilizations, first we will define Dehn twists which we previously
mentioned in Section 1.5.1. Given an embedded closed curve c in an oriented
surface Σ let N = c× [0, 1] be a neighborhood (oriented as a product con-
sistently with Σ) of the curve. We then define the right-handed Dehn twist
along c, denoted Dc , to be the diffeomorphism of Σ that is the identity on
Σ− N and is given by (θ, t)→ (θ + 2πt, t) on N , where θ is the coordinate
on c = S1 and t is the coordinate on [0, 1]. The left-handed Dehn twist along
c is defined to be D−1

c .

Definition 2.11 A positive (resp. negative) stabilization of an abstract open
book (Σ, ϕ) is the open book

1. with page Σ′ = Σ∪ 1-handle, and

2. monodromy ϕ′ = ϕ ◦ D where D is a right- (resp. left-) handed Dehn twist
along a curve c in Σ′ that intersects the co-core of the 1-handle exactly one
time.

We denote this stabilization by S(a,±)(Σ, ϕ) where a = c ∩ Σ and ± refers to the
positivity or negativity of the stabilization. (We omit the curve a if it is unimportant
in a given context.)
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Stabilizations of an open book can be visualized as in Figure 2.4.

Figure 2.4: The stabilization of an open book, [36].

The stabilization operations are related to Murasugi sums by the following
result:

Proposition 2.12 The positive (resp. negative) stabilization of an open book is the
Murasugi sum with (H+, π+) (resp. (H−, π−)) defined in Example 2.7. That is,

S±(Σ, ϕ) = (Σ, ϕ) ? (H±, π±)

Using Propositions 2.10 and, 2.12, we get:

Proposition 2.13 MS±(Σ,ϕ)
∼= M(Σ,ϕ)

Thus, stabilizations give us a way to obtain new open book decompositions
of a 3-manifold M from a given open book decomposition.

2.2 Contact Structures and Open Book Decompositions
of 3-Manifolds

Given an open book decomposition (B, π) of a 3-manifold M, we can define
contact structures that are ”compatible with” the open book decomposition
(B, π) as follows:

Definition 2.14 A contact structure ξ on M is supported by (or adapted to)
an open book decomposition (B, π) of M if ξ can be isotoped through contact
structures so that there is a contact 1-form α for ξ such that

1. dα is a positive area form on each page Σθ of the open book, and

2. α > 0 on B.
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Here are some examples of contact structures supported by open books:

Example 2.15 Consider the standard contact structure on the sphere:

(S3, ξ = ker α)

where α = (r2
1dθ1 + r2

2dθ2)

The open book decomposition from Example 2.6 supports ξ:

On the binding U = {r1 = 0}, the tangent is ∂
∂θ2

, so α( ∂
∂θ2

) > 0.

Moreover, we can parametrize the page π−1
U (θ1) by D2 with coordinates (r, θ) as

f (r, θ) = (
√

1− r2, θ1, r, θ)

Thus, we have d f ∗(α) = 2rdrdθ which is a positive volume form on D2, so dα is a
positive volume form on pages

Example 2.16 Again, consider the standard contact structure on the sphere. The
open book decomposition H+ from Example 2.7 supports ξ:

On the binding H+, the tangent is ∂
∂θ1

on one component and ∂
∂θ2

on the other, so
α > 0 on H+.

Moreover, we can parametrize the page π−1
+ (ρ) by (0, 1)× S1 with coordinates (s, θ)

as
f (s, θ) = (

√
1− s2, θ − ρ, s, ρ)

Thus, we have d f ∗(α) = 4sdsdθ which is a positive volume form on (0, 1)× S1, so
dα is a positive volume form on pages.

On the other hand, for the open book decomposition (H−, π−), dα is a negative
volume form. Thus (S3, ξ = ker α) is not supported by (H−, π−).

Now, we prove the theorem of Thurston and Winkelnkemper [45] that we
mentioned in Section 1.5, concerning the existence of contact structures
adapted to open books.

Theorem 2.17 Every open book decomposition (Σ, ϕ) supports a contact structure
ξϕ = ker αϕ on Mϕ.

Proof We will first define a contact form αK on Σϕ. For ease of notation,
assume ∂Σ is connected, and hence ∂Σ ∼= S1, with coordinates θ1 ∈ S1. Let t
be the collar parameter for a collar neighbourhood [0, 1]× S1 of ∂Σ in Σ.

Consider the set S of 1-forms λ on Σ such that

1. λ = (1− t)dθ1 near ∂Σ,

2. dλ is a volume form on Σ.
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It can be checked by computation that S is a convex set and if λ ∈ S, then
ϕ∗λ is also in S. Therefore, if S is nonempty, then we can define a 1-form

λ[0,1]×Σ = (1− s)λ + sϕ∗λ

on [0, 1]×Σ where we denote the first component by s, such that its restriction
to each Σ ∼= {s} × Σ is again in S. Then, for sufficiently large K,

αK = λ[0,1]×Σ + Kdt

becomes a contact form, and it descends to a contact form on Σϕ.

Now to show that S is nonempty, let λ1 be any 1-form on Σ satisfying the
conditions 1 and 2 near ∂Σ. Also, let ω be a volume form on Σ with total
volume 2π. Then,∫

Σ
ω− dλ1 =

∫
Σ

ω−
∫

Σ
dλ1 = 2π −

∫
S1

λ1 = 2π − 2π = 0

Hence, there exists a 1-form λ which vanishes near the boundary, such that
dλ = ω− dλ1. Then, λ + λ1 is a form in S. Therefore, S is nonempty and we
can indeed define a contact form αK on Σϕ.

Now, we will extend αK to ∂Σ× D2. Use coordinates (r, θ2) on D2 ⊂ R2.

The manifold Mϕ can be represented as Mϕ = Σϕ ∪ψ (∂Σ× D2
2) , where D2

R
is the disk of radius R. With this setup, we can identify the gluing map ψ
with

ψ(t, θ1, θ2) = (θ1, r = 1 + t, θ2)

where (t, θ1, θ2) ∈ [0, 1]× ∂Σ× S1 is in the mapping torus of a collar neighbor-
hood [0, 1]× ∂Σ, and (θ1, r = 1 + t, θ2) ∈ ∂Σ× (D2

2 − D2) where we identify
∂Σ× (D2

2 − D2) with ∂Σ× [1, 2]× S1.

With this map defined near the boundary, we can extend αK near the bound-
ary of ∂Σ× D2

2 as rdθ1 + Kdθ2. On the other hand, near the core ∂Σ× {0} of
∂Σ× D2

2, the form dθ1 + r2dθ2 defines a contact form.

Define αϕ = h1(r)dθ1 + h2(r)dθ2 on S1×D2 with coordinates (θ1, r, θ2). If the
functions h1, h2 satisfy

1. h1 = 1 and h2 = r2 near the core ∂Σ× {0} of ∂Σ× D2
2,

2. h1(r) = r and h2(r) = K for r ∈ [1, 2],

3. (h1(r), h2(r)) is never parallel to (h′1(r), h′2(r)) for r 6= 0,

then αϕ defines a contact form on S1 × D2 that agrees with αK on the bound-
ary. Such a pair of functions can be found. The figure 2.5 describes such
(h1(r), h2(r)).

Therefore, we get a contact form αϕ defined on Mϕ that defines a contact
structure supported by the open book decomposition (Σ, ϕ). �
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2.2. Contact Structures and Open Book Decompositions of 3-Manifolds

Figure 2.5: Extension of the contact structure to the solid torus

Combined with Theorem 2.4, Theorem 2.17 gives a proof of the fact that
every closed orientable 3-manifold admits a contact structure.

In fact, due to the following result of Giroux [27], the open book decomposi-
tion defines a unique contact structure up to isotopy.

Theorem 2.18 Two contact structures ξi for i = 1, 2 on M, supported by the same
open book (B, π) are isotopic.

Proof Let ∂Σ × D2
2 be a neighborhood of the binding with coordinates

(θ1, r, θ2) on each component, as in the previous proof. Since contact struc-
tures ξi = ker αi are supported by the contact structure (B, π), we have
αi(

∂
∂θ1

) > 0. Let h be a function such that h(0) = 0, h′ ≥ 0, h(r) = r2 near
r = 0, and h = 1 outside ∂Σ× D2

1.

Observe that with such a function h, we have:

• αi ∧ dαi > 0 by the contact condition,

• h(r)dθ2 ∧ dαi ≥ 0 since dαi is an area form on pages,

• h′(r)αi ∧ dr ∧ dθ2 ≥ 0 since dr ∧ dθ2 vanishes on ∂
∂θ1

while αi(
∂

∂θ1
) > 0.

Therefore if we define
αi,R = αi + Rh(r)dθ2

for R ∈ R>0, we get

αi,R ∧ dαi,R = αi ∧ dαi + Rh(r)dθ2 ∧ dαi + Rh′(r)αi ∧ dr ∧ dθ2 > 0

That is, αi,R is a contact form for any R and i = 0, 1.

Then, for sufficiently large R, the forms (1− t)α0,R + tα1,R for t ∈ [0, 1] are
contact forms, and define the isotopy between ξ0 and ξ1. �
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By this theorem, we may denote any contact structure that is supported by
the open book (Σ, ϕ) or (B, π) by ξ(Σ,ϕ) or ξ(B,π) .

From the proofs of Proposition 2.10 and Theorem 2.17, it also follows that:

Proposition 2.19 We have ξ(Σ0,ϕ0)?(Σ1,ϕ1) = ξ(Σ0,ϕ0)#ξ(Σ1,ϕ1)

Note that, this equivalence is up to isotopy by the previous theorem.

Then, because of the Example 2.16, we have:

Theorem 2.20 Let (Σ, ϕ) be an open book and a ⊂ Σ any properly embedded arc.
Then

MS(±,a)(Σ,ϕ) is diffeomorphic to M(Σ,ϕ)

and,
ξS(+,a)(Σ,ϕ) is isotopic to ξ(Σ,ϕ)

On the other hand, again by Example 2.16, ξS(−,a)(Σ,ϕ) is not isotopic to ξ(Σ,ϕ).

2.2.1 Giroux Correspondence

In Theorem 2.17, we proved that every open book decomposition (B, π) of a
compact, oriented 3-manifold M supports a contact structure ξ = ker α. In
this section, we sketch the proof of the converse.

Theorem 2.21 (Giroux [27]) Every oriented contact structure ξ on a closed ori-
ented 3–manifold M is supported by an open book decomposition.

The proof relies on the theory of convex surfaces. For an overview of convex
surfaces and references, see the appendix.

For the discussion of the proof, we start with a definition and a lemma about
cell decompositions of contact 3-manifolds:

Definition 2.22 A contact cell decomposition of a contact 3–manifold

(M, ξ = ker α)

is a finite CW-decomposition of M such that

1. the 1-skeleton is a Legendrian graph, that is every 1-cell is a Legendrian curve
in M,

2. each 2-cell D satisfies tb(∂D) = −1, i.e., the contact planes twist negatively
once along ∂D with respect to the surface D, and

3. ξ is tight when restricted to each 3− cell

Lemma 2.23 Every closed contact 3-manifold (M, ξ) has a contact cell decomposi-
tion.
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2.2. Contact Structures and Open Book Decompositions of 3-Manifolds

Proof We can cover M by finitely many Darboux balls such that 1-skeleton
can be isotoped to a Legendrian graph and every 3-cell is contained in a
Darboux ball. Since the standard contact structure on R3 is tight, restrictions
to 3-cells are tight as desired. Lastly, we can perturb any 2-cell to assume it is
convex and use the Legendrian Realization Principle (see the appendix) to
get the 2-skeleton with desired properties by subdividing with Legendrian
curves if necessary. �

Now we define the ribbon of the 1-skeleton, which will be used to construct
the open book.

Definition 2.24 Let G be the 1-skeleton of a contact cell decomposition of (M, ξ).
The ribbon R (or RG) of G is a compactly embedded surface in M such that

• R retracts onto G,

• TpR = ξP for all p ∈ G, and,

• TpR 6= ξP for p ∈ R− G.

The 1-skeleton G of a contact cell decomposition of (M, ξ) has a ribbon R.
Let B = ∂R. By the definition of a ribbon, B is a transverse link in M.

To prove Theorem 2.21, it is enough to show that B is the binding of an open
book decomposition that supports the contact structure ξ.

Since B is a transverse link, each component of B has a neighborhood N(B)
contactomorphic to (R3, ker(dz + r2dθ))/(r, θ, z) ∼ (r, θ, z + 1).

We define:

• X(B) = M− N(B)

• RX = R ∩ X(B)

• N(R) ∼= RX × [−δ, δ] a neighbourhood of RX such that ∂RX × {pt}
corresponds to a line in N(B) with constant θ value.

• X(R) = X(B)− N(R)

Idea is to define the open book with pages R. For this, one shows that X(R)
is diffeomorphic to RX × [−1, 1]. Then, X(B) can be obtained by identifying
RX × {±1} with RX × {±δ}. This gives a fibration over S1 with fiber RX,
and this fibration can be extended to a fibration of N(B)− B, so that the
boundary of fibers is B and the closure of the fibers is R.

To prove this, we write ∂X(R) = A ∪ F with A = ∂X(R) ∩ N(B) (that is, the
”outside part” of N(B), which constitutes an annulus for each component
of B) and F = F+ ∪ F− where F± is identified with RX × {±δ}. The surface
∂X(R) is a convex surface after appropriate edge roundings with dividing
set Γ∂X(R) equal to cores of annuli in A, and such that F± ⊂ (∂X(R))±
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Let D1, . . . , Dk be the 2-cells in the contact cell decomposition of M. Since
the ribbon R twists with the contact structure and tb(∂Di) = −1, the curve B
intersects Di exactly twice for all i. Let D′i = Di ∩ X(R), then D′i intersects
the boundary region A in exactly two arcs that connect different boundary
components of A.

Moreover, X(R) cut along D′i is a disjoint union of balls contained in 3-cells
which are diffeomorphic to D2 × [−1, 1], where ∂D2 × [−1, 1] correspond to
A ⊂ X(R) and D2 × {−1, 1} correspond to F ⊂ X(R). Then, we can glue
back these balls to obtain X(R) showing it is diffeomorphic to RX × [−1, 1]
as desired.

Thus B is indeed the binding of an open book decomposition of M with
pages R. For more in-depth description of how cutting and gluing these
spaces work, see [32].

Now it remains to show that this open book supports ξ = ker α. For this, we
use the following lemma:

Lemma 2.25 Let (B, π) be an open book decomposition of (M, ξ = ker α). If there
exists a Reeb vector field X on M, such that X is positively tangent to B and X is
positively transverse to pages, then (B, π) supports ξ.

Proof The existence of such an X shows that on B, the contact form is
α > 0 since α(X) = 1 and positive tangency shows tangent vectors to B
are positive multiples of X. Moreover, if X is transverse to pages, we have
dα = iXα ∧ dα > 0 on pages by the condition dα(X,−). �

The desired Reeb vector field is constructed as follows:

First, use N(B) = (R3, ker(dz + r2dθ))/(r, θ, z) ∼ (r, θ, z + 1) of the neighbor-
hood of B to define a Reeb vector field that is positively tangent to B and
transverse to the pages in this neighborhood.

Now this defines a Reeb field in the neighborhood ∂RX which can be extended
to a transverse vector field RX and this vector field can be used to construct
the neighborhood N(R) ∼= RX × [−δ, δ]. Therefore we can define the desired
Reeb field R on ∂(N(B) ∪ N(R)).

The Reeb vector field R is defined in a neighborhood of ∂X(R), which is a
convex surface as observed above. This allows us to first define the desired
Reeb vector field on a tubular neighborhood of ∂X(R), and then on the whole
X(R). Thus, we get the desired Reeb vector field R defined on whole M,
proving that ξ is supported by the open book decomposition we constructed
by the lemma.

For more details on the construction of the desired Reeb vector field, see [13].

Actually, one can prove the following theorem that is also due to Giroux [27]:
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Theorem 2.26 Two open books supporting the same contact manifold (M, ξ) are
related by positive stabilizations.

The proof of this result is similar to the proof of Theorem 2.21, see [13] for
details.

Now, we can combine Theorems 2.17, 2.18, 2.21, and 2.26 to get the Giroux
correspondence between contact structures on 3-manifolds and open book
decompositions:

Theorem 2.27 (Giroux [27]) Let M be a closed, oriented 3-manifold. Then there is
a one-to-one correspondence between

{oriented contact structures ξ on M up to isotopy}

and
{open book decompositions of M up to positive stabilization}

The open book decomposition supporting a contact manifold (M, ξ) also
encodes information about the tightness:

Theorem 2.28 A contact 3-manifold (M, ξ) is overtwisted if and only if it is
supported by an open book decomposition which is a negative stabilization of another
open book decomposition.

The proof uses the classification of overtwisted contact structures, Theorem
1.41. See [42] for the proof.

2.2.2 Planar Open Books

Definition 2.29 An open book decomposition (Σ, ϕ) of a 3-manifold M is called
planar if its pages have zero genus.

Recall that in Remark 2.5, we mentioned every closed, oriented 3-manifold
admits a planar open book decomposition. However, if (M, ξ) is a contact 3-
manifold with the contact structure ξ supported by the open book (Σ, ϕ), then
the page Σ of the open book is not necessarily planar. Therefore, we can ask
which contact structures are supported by planar open book decompositions.

As a partial answer to this question, we have the following result due to
Etnyre:

Theorem 2.30 (Etnyre [14]) Any overtwisted contact structure on a closed 3–man-
ifold is supported by a planar open book decomposition.

For some tight contact structures on contact manifolds, there are also some
conditions for having a planar open book decomposition. We will discuss
some of these conditions related to symplectic fillings in the next chapter.
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2.3 Higher Dimensions

For contact manifolds (M, ξ = ker α) of arbitrary odd dimension 2n + 1 for
n > 1, we can generalize the notion of a contact structure supported by an
open book (Σ, ϕ):

Definition 2.31 A contact structure ξ = ker α on M is said to be supported by an
open book (B, π) if it has the following properties:

• α induces a contact form on B;

• dα induces a symplectic form on each fiber X of π;

• The orientation on B defined by the contact form α coincides with its orientation
as the boundary of the symplectic manifold (X, dα).

For higher dimensional contact manifolds, Giroux and Mohsen (see [27])
proved the generalization of Theorem 2.21:

Theorem 2.32 Any contact structure on a closed manifold M is supported by an
open book, each fiber of which is a Weinstein manifold.

A Weinstein manifold is a quadruple (X, ω = dλ, Z, ϕ) where (X, dλ) is an
open exact symplectic manifold, Z is a Liouville vector field on X pointing
outwards, ϕ is a Morse function that is proper and bounded for which Z is
gradient-like, and ∂X is a regular level set of ϕ.

We will not define ”gradient-like” precisely. However, it essentially means
that dϕ(Z) > 0 away from critical points, and its decay is controlled near the
critical points. See [39] for the details about Weinstein manifolds.

We will also encounter Weinstein manifolds in the next chapter in the context
of symplectic fillings.
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Chapter 3

Symplectic Fillings

In the first chapter, we described contact and symplectic manifolds as odd and
even dimensional counterparts of each other. Symplectic fillings (and more
generally symplectic cobordisms) give us a tool to investigate this connection
and understand the properties of contact manifolds using symplectic tools.

In this chapter, we start by defining various types of symplectic fillings of
contact manifolds. In Section 3.2, we discuss the differences between these
various types of fillings. Then, in Section 3.3, we describe the relationship
between the tightness of a contact manifold and its fillability. Finally, in the
last section, we define the Lefschetz fibrations and open book decompositions
induced by them, which gives information about the planarity and fillability
of an open book supporting a contact structure.

3.1 Symplectic Fillings of Contact Manifolds

Let us start with the definition of symplectic fillings:

Definition 3.1 Let (M, ξ = ker α) be a contact manifold of dimension 2n− 1 for
n ≥ 1, where M and ξ are oriented by the forms α∧ dαn−1 and dαn−1|ξ respectively.

1. In the case that 2n-1 = 3, a compact symplectic 4-manifold (X, ω) is called
a weak symplectic filling of (M, ξ) if ∂X = M as oriented manifolds and
ω|ξ > 0.

2. A compact symplectic 2n-manifold (X, ω) is called a strong symplectic
filling of (M, ξ) if ∂X = M as oriented manifolds and there is a Liouville
vector field Y defined near ∂X, pointing outwards along ∂X, and satisfying
ξ = ker(iYω|TM).

If the vector field Y extends to a global Liouville vector field (equivalently, if
the 1-form iYω extends to a global primitive of ω on X), then we call (X, ω)
an exact symplectic filling of (M, ξ)
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3.1. Symplectic Fillings of Contact Manifolds

For the purposes of this paper, we omitted the definition of weak symplectic
fillings in higher dimensions. See [38] for details.

By definition, every exact symplectic filling is a strong symplectic filling.
Also, observe that, when Y is a Liouville vector field, the 1- form iYω|ξ is a
contact form defining ξ and

ω|ξ = LYω|ξ = diYω|ξ + iYdω|ξ = diYω|ξ

Therefore, by the contact condition, we have ω|ξ > 0. Hence, a strong
symplectic filling is automatically a weak symplectic filling in dimension 3.

Admitting a strong symplectic filling determines the contact structure up to
isotopy by Gray’s theorem:

Lemma 3.2 If (X, ω) is a strong filling of (M, ξ0) and (M, ξ1), then the contact
structures ξ0 and ξ1 are isotopic.

Proof Let Yi be the Liouville vector field corresponding to ξ near ∂X = M for
i = 0, 1. Then, Yt = (1− t)Y0 + Y1 is a Liouville vector field for all t ∈ [0, 1]
and iYt ω is a homotopy of contact forms. Therefore, ξ0 and ξ1 are isotopic by
Gray’s Stability Theorem. �

Here are some examples of symplectic fillings of contact manifolds:

Example 3.3 By Example 1.24, the symplectic manifold (D4, ωst|D4) where ωst is
the standard symplectic structure on R4, is an exact symplectic filling of (S3, ξst).

In fact, this is the unique symplectic filling of (S3, ξst) (up to symplectic deformation
equivalence and blow-up). One proof of this fact that can be found in [1] uses
Lefschetz fibrations that will be defined in the last section.

Example 3.4 As observed by Giroux in [26], the manifold T2 × D2 with a product
symplectic structure can be viewed as the weak symplectic filling of each contact
manifold (T3, ξn) described in Example 1.9.

In fact, Giroux also showed that each ξn is distinct. Thus, (T3, ξn) show that the
immediate analogue of Lemma 3.2 for weak symplectic fillings do not hold.

A related notion to symplectic fillings is the notion of symplectic cobordisms.
Recall that a cobordism is a triple (X, M0, M1) of compact oriented manifolds
(possibly empty), where ∂X ∼= M0 ä M1 as oriented manifolds. In this
case, we call M0 and M1 cobordant and X a cobordism from M0 to M1.
Being cobordant defines an equivalence relation: reflexivity is obtained by
considering the manifold X = [0, 1]×M, symmetry is obtained by reversing
the orientation of X, and transitivity is given by gluing cobordisms.

Now we can define symplectic cobordisms:
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Definition 3.5 Let (M±, ξ±) be closed contact manifolds of dimension 2n-1 for
n ≥ 1, with cooriented contact structures, which induce the orientation of the
respective manifold. A strong symplectic cobordism from (M−, ξ−) to (M+, ξ+)
is a compact 2n-dimensional symplectic manifold (X, ω), oriented by the volume
form ωn, such that the following conditions hold:

• The oriented boundary of X equals ∂X = M+ ä−M−, where −M− stands
for M− with reversed orientation.

• In a neighbourhood of ∂X, there is a Liouville vector field Y for ω, transverse
to the boundary and pointing outwards along M+, inwards along M−.

• The 1–form iYω restricts to M± as a contact form for ξ±.

We call M+ the convex boundary of the cobordism W and M− the concave
boundary.

If the vector field Y extends to a global Liouville vector field (equivalently, if the
1-form iYω extends to a global primitive of ω on X), then we call (X, ω) an exact
symplectic cobordism from (M−, ξ−) to (M+, ξ+).

Example 3.6 A strong (resp. exact) symplectic filling (X, ω) of a contact manifold
(M, ξ) is a strong (resp. exact) symplectic cobordism from the empty set to (M, ξ)

We can similarly define a strong concave filling (X, ω) of a contact manifold
(M, ξ) as a strong symplectic cobordism from (M, ξ) to the empty set. (By Stokes’
theorem, there are no exact concave fillings in this sense.)

Example 3.7 Similar to symplectization defined in Example 1.23, the symplectic
manifold ([0, 1]×M, d(etα)) is an exact symplectic cobordism from (M, ξ = ker α)
to itself.

Using the Lioville vector field we can define a symplectic collar neighborhood
of the boundary. Similarly to the topological cobordisms, we can glue
symplectic cobordisms together using this collar neighborhood:

Proposition 3.8 Let (X−, ω−) be a symplectic cobordism from the contact man-
ifold (M−, ξ−) to (M, ξ), and (X+, ω+) a symplectic cobordisms from (M, ξ) to
(M+, ξ+). Then there is a symplectic cobordism from (M−, ξ−) to (M+, ξ+), which
is topologically given by gluing X− and X+ along M.

See [22] for a proof.

Remark 3.9 The relation of being symplectically cobordant is reflexive and transitive
by the previous example and proposition. However, in contrast with topological
cobordisms, because of the orientations being induced by contact and symplectic
structures, it is not always symmetric.

As an example, due to the results of Etnyre, Honda [18] and Gay [20] every contact
manifold has a strong concave filling. See [13] for a proof. On the other hand in the
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following sections, we will see that not every contact manifold can admit a strong
symplectic filling.

Before closing this section, we also mention two more types of fillings:

Definition 3.10 Let (M, ξ = ker α) be a contact manifold of dimension 2n− 1, for
n ≥ 1, where M and ξ are oriented by the forms α∧ dαn−1 and dαn−1|ξ respectively.

• A Weinstein filling of (M, ξ) is an exact filling (X, ω = dλ) of (M, ξ) for
which the global Liouville vector field Y is gradient-like (see Section 2.2.2)
with respect to a Morse function ϕ : X → R that is locally constant at the
boundary.

• A Weinstein filling (X, ω = dλ, ϕ) is called a Stein filling if it carries an
complex structure J that is compatible with ω and satisfies λ = −dϕ ◦ J.

For the definition of compatible complex structures, see [6], [39] for details.
For precise definitions and equivalent conditions for Stein and Weinstein
fillings see [22], [42], and [7].

Due to the following result of Giroux [27], Stein fillability of a contact 3-
manifold (M, ξ) is completely determined by the open book decomposition
of (M, ξ):

Theorem 3.11 A contact 3-manifold (M, ξ) is Stein fillable if and only if there
is an open book decomposition for (M, ξ) whose monodromy can be written as a
composition of right-handed Dehn twists.

There are various proofs of this result. For a proof using handlebody decom-
positions of Stein manifolds, see [13]. For a proof using Lefschetz fibrations,
see [42].

3.2 Types of Fillings of Contact Manifolds

By the Definitions 3.1, 3.10, and the definition of weak symplectic fillings in
higher dimensions, we have the chain of inclusions:

{weakly} ⊃ {strongly} ⊃ {exactly} ⊃ {Weinstein} ⊃ {Stein}

One can ask whether these inclusions are proper. In this section, we will
discuss the results in this direction.

First, we will consider the inclusion {weakly fillable} ⊃ {strongly fillable}.

In dimension 3, we already mentioned the observation of Giroux that (T3, ξn)
admit weak symplectic fillings for all n ∈ N. On the other hand, in [10],
Eliashberg showed that only (T3, ξ1) admits a strong symplectic filling. There-
fore, (T3, ξn) for n ≥ 2 provide examples of contact manifolds that are weakly
but not strongly fillable.
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In higher dimensions, by using the argument of ”Giroux Torsion” and a
generalization of the open book construction, Massot, Niederkrüger, and
Wendl showed in [38] that for certain manifolds M, manifolds of the form
M × T2 can be endowed with distinct contact structures ξn for all n ∈ N,
such that only ξ1 is strongly fillable. On the other hand, in dimension 5, all
ξn are weakly fillable.

Therefore, in dimensions 3 and 5, strongly fillable contact manifolds are a
proper subset of weakly fillable contact manifolds.

Now, we will discuss the inclusion {strongly fillable} ⊃ {exactly fillable}.

In dimension 3, in [23], Ghiggini showed that for each even integer n ≥ 2, the
Seifert fibered 3-manifold −Σ(2, 3, 6n + 5) admits a contact structure that is
strongly but not exactly fillable. During the course of the proof, Ghiggini uses
Ozsváth–Szabó invariants, which are Floer theoretic invariants of contact
3-manifolds constructed in [43] using the open book decomposition of contact
manifolds.

In higher dimensions, a recent result of Zhou [24] shows that for every n ≥ 3,
there exists a 2n− 1 dimensional contact manifold which is strongly fillable
but not exactly fillable. This shows that in all dimensions exactly fillable
contact manifolds are a proper subset of strongly fillable contact manifolds.

Due to the work of Eliashberg and Cieliebak from [7], we actually have

{Weinstein fillable} = {Stein fillable}

So lastly, we will consider the inclusion {strongly fillable} ⊃ {Stein fillable}.
In dimension 3, Bowden [4] showed that for all even n ≥ 2, there exists a
contact structure η on Σ(2, 3, 6n + 5) such that the contact connected sum

(Σ(2, 3, 6n + 5), η)#(−Σ(2, 3, 6n + 5), η0)

where η0 is the contact structure constructed in [23], is exactly but not
Stein fillable. In higher dimensions, Bowden, Crowley, and Stipsicz [5]
showed that at every odd dimension greater than 3, there are exactly fill-
able contact manifolds that are not Stein fillable. Therefore, the inclusion
{strongly fillable} ⊃ {Stein fillable} is known to be proper in all dimensions.

As a summary, we have the chain of inclusions:

{weakly} ⊃ {strongly} ⊃ {exactly} ⊃ {Weinstein} = {Stein}

where all inclusions except {weakly} ⊃ {strongly} in dimensions higher
than 5, are known to be proper.
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3.3 Tightness and Symplectic Fillings

As mentioned previously in Section 1.5.2, tightness of a contact 3-manifold
(M, ξ) is related to the existence of a symplectic filling (X, ω) of (M, ξ).

One of the main results in this direction is:

Theorem 3.12 (Eliashberg [9], Gromov [29]) A contact 3-manifold (M, ξ) that
admits a weak symplectic filling is tight.

The original proof of this theorem uses techniques related to complex struc-
tures on manifolds. A sketch can be found in [32].

An alternative argument that can be found in [42] uses the techniques of
contact surgery and Seiberg-Witten theory.

An analogous theorem for higher dimensions is proved by Niederkrüger in
[41] for higher dimensions.

With this result we can prove the tightness of the standard contact structures
on S3 and on R3 that we mentioned in Section 1.5.2:

Example 3.13 By Example 3.3, (S3, ξst) is tight. Any open subset of a tight contact
3–manifold is again tight. Therefore, (R3, ξst) ∼= (S3 − {p}, ξst) is also tight.

Example 3.14 By Example 3.4, (T3, ξn) is tight for all n ∈ N as mentioned in
Example 1.40.

However, the converse of the theorem of Eliashberg and Gromov does not
hold. That is, there are contact 3-manifolds (M, ξ) where ξ is tight but there
are no symplectic fillings of M. The first examples of such contact manifolds
are due to Etnyre and Honda, and found in [16]. More examples and tools
for systematic constructions of such examples can be found in [42]. Therefore,
we have the strict inclusion

{tight} ) {weakly fillable}

There is also a relationship between overtwistedness and symplectic cobor-
disms. Overtwisted contact structures are ”minimal” for exact cobordisms in
the following sense:

Theorem 3.15 If (M−, ξ−) and (M+, ξ+) are closed nonempty contact manifolds
of the same dimension and ξ− is overtwisted, then there exists an exact cobordism
from (M−, ξ−) to (M+, ξ+).

The 3-dimensional case of this theorem is due to Etnyre and Honda [18], and
is actually proved for ”Stein cobordisms” which can be defined analogously.
The higher dimensional version of this theorem is due to Murphy and
Eliashberg [11].

39



3.4. Lefschetz Fibrations and Open Books

3.4 Lefschetz Fibrations and Open Books

In this section, we define Lefschetz fibrations which give us some tools to
investigate symplectic fillings and open book decompositions of contact man-
ifolds. We will follow the exposition of the survey [1]. For other constructions
and definitions related to Lefschetz fibrations, see [42].

Definition 3.16 A Lefschetz fibration on a 2n-dimensional manifold X with
boundary and corners is a surjective map f : X → D2, where D2 is a 2-disk, with
finitely many nondegenerate critical points all of which lie in the interior of X.

Near each critical point, one can choose complex coordinates (z1, . . . , zn) such
that in these coordinates

f (z1, . . . , zn) = z2
1 + · · ·+ z2

n

Away from critical values, f is a trivial fibration.

If the total space X is a symplectic manifold, for f : X → D2 to be a
symplectic Lefschetz fibration we require:

• the generic fibers to be (2n− 2)-dimensional symplectic submanifolds
(that is, the restriction of the symplectic form to the fibers is non-
degenerate) with boundaries away from critical points, and

• at the critical points the coordinates in which f looks locally like a com-
plex Morse function are chosen to be holomorphic for some compatible
almost complex structure.

We can write the boundary ∂X as the union

∂X = ∂vX ∪ ∂hX

where ∂vX = f−1(∂D2) and ∂hX =
⋃

z∈D2 ∂ f−1(z).

Observe that, since there are no critical values of f on S1 = ∂D2, the vertical
boundary ∂vX is smoothly fibered over S1. That is, ∂vX is the mapping torus
of the fiber f−1(z) over z ∈ ∂D2 for some monodromy map.

On the other hand, the horizontal boundary ∂hX is diffeomorphic to a
disjoint union of the boundaries of fibers, that are fibered by D2.

With these observations, after appropriate smoothings, the boundary ∂X
induces an open book decomposition of ∂X where the pages are obtained
from the fibers of the vertical boundary ∂vX, and the binding is the central
fiber ∂ f−1(0) of the horizontal boundary ∂hX.

The monodromy of the open book induced by a Lefschetz fibration is com-
pletely determined by the critical points of the fibration. If the Lefschetz
fibration has no critical points, then the monodromy of the induced open
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book is trivial. On the other hand, if there are critical points, then the
monodromy is nontrivial. See [42] for the construction of the monodromy.

The following result due to Wendl gives a connection between symplectic
fillings of planar contact 3-manifolds and Lefschetz fibrations:

Theorem 3.17 (Wendl [47]) Let (M, ξ) be a contact manifold that is supported by
a planar open book decomposition (B, π). Then, every strong symplectic filling X of
M admits a symplectic Lefschetz fibration f : X → D2 that induces the open book
decomposition (B, π).

As a corollary, Wendl shows that for planar contact manifolds, Stein and
strong fillability is equivalent:

Corollary 3.18 Strongly fillable contact manifolds that are supported by planar
open books are Stein fillable.

For higher dimensional contact manifolds, a generalization of planarity, called
iterated planarity is also related to Lefschetz fibrations. For more references
and results related to this relationship, see [1].
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Appendix A

Convex Surfaces

Convex surfaces are introduced by Giroux and are central in the study of
contact manifolds. In this appendix, we will introduce the basic definitions
and properties related to convex surfaces in contact manifolds, mostly with-
out proof. For detailed information about convex surfaces, see [15], [32], and
[25].

Definition A.1 Let Σ be a surface in a contact 3-manifold (M, ξ) that is either
closed or compact with Legendrian boundary.

The surface Σ is called convex if there is a contact vector field v on M that is
transverse to Σ.

For a convex surface Σ with a transverse contact vector field v, the set

ΓΣ = {x ∈ Σ : v(x) ∈ ξx}

is called the dividing set of Σ.

Throughout our discussion of convex surfaces, we will only consider contact
3-manifolds (M, ξ).

Note that, if v is a contact vector field, then −v is also a contact vector field.
So there is no distinguished side of Σ, and there is no concavity present in
the usual sense.

Here is an example of a convex surface in R3:

Example A.2 Consider standard contact structure on R3, that is

(R3, ξ = ker(dz + xdy− ydx))

42



The vector field v = x ∂
∂x + y ∂

∂y + 2z ∂
∂z is a contact vector field since

Lv(dz + xdy− ydx) = iv(d(dz + xdy− ydx)) + d(iv(dz + xdy− ydx))
= iv(2dx ∧ dy) + d(2z + xy− xy)
= 2xdy− 2ydx + 2dz
= 2(dz + xdy− ydx)

The vector field v is transverse to S2, thus S2 ⊂ R3 is a convex surface.

The dividing set of S2 is

ΓS2 = {(x, y, z) ∈ S2 : v(x, y, z) ∈ ξ(x,y,z)}
= {(x, y, z) ∈ S2 : (dz + xdy− ydx)(v(x, y, z)) = 0}
= {(x, y, z) ∈ S2 : 2z = 0}
= {(x, y, z) ∈ S2 : z = 0}

That is the equator circle of S2.

We can equivalently define convex surfaces as surfaces with a tubular neigh-
borhood in which the contact structure is vertically invariant:

Lemma A.3 A surface Σ ⊂ (M, ξ = ker α) is convex with the transverse vector
field v if and only if it has a neighborhood N ∼= Σ×R such that ξ is invariant in
the R direction, that is, under the flow of ∂

∂t where t is the coordinate on R. With
this identification, the vector field v can be identified with ∂

∂t . In the neighborhood
N ∼= Σ×R the contact 1-form a can be written as f dt + β, where f : Σ→ R is a
function and β is a 1-form on Σ.

Using the notation of this result, we can write the dividing set as

ΓΣ = {x ∈ Σ : f (x) = 0}

With this notation, the characteristic foliation on Σ is given by integrating
ker β.

Proposition A.4 The dividing set ΓΣ of a convex surface Σ has the following
properties

1. ΓΣ is nonempty,

2. ΓΣ is a multi-curve on Σ, that is a properly embedded smooth 1-manifold,

3. ΓΣ is transverse to the characteristic foliation Σξ of Σ,

4. Σ− ΓΣ = Σ+ ä Σ− where Σ+ ⊂ Σ (resp. Σ− ⊂ Σ) is the set of points x
where the normal orientation to Σ given by v(x) agrees with (resp. is opposite
to) the normal orientation to ξx. Then, as we cross ΓΣ (once, transversely), we
move from Σ± to Σ∓,
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5. there is a vector field w and volume form Ω on Σ such that

a) w directs Σξ (i.e. w is tangent to Σξ where it is nonsingular and is zero
where it is singular),

b) the flow of w expands Ω on Σ+ and contracts Ω on Σ−,

c) w points out of Σ+.

Proof We write α = f dt + dβ as in Lemma A.3. In this case, the contact
condition becomes

( f dt + β) ∧ (d f ∧ dt + dβ) = β ∧ d f ∧ dt + f dt ∧ dβ > 0

. We will prove the first 4 statements.

1. Assume ΓΣ is empty. Then f (x) 6= 0 on Σ and we can divide by f
to use the contact form α′ = dt + β/ f . Then by the contact condition
d(β/ f ) > 0.

We have ∫
Σ

dα′ =
∫

∂Σ
α′ = 0

since ∂Σ is empty or Legendrian. On the other hand,∫
Σ

dα′ =
∫

Σ
d(β/ f ) > 0

which gives a contradiction. Hence, ΓΣ is nonempty.

2. By the contact condition, if f (x) = 0, then d fx 6= 0. Thus, 0 is a regular
value and f−1(0) = ΓΣ is a properly embedded smooth 1-manifold.

3. The characteristic foliation is given by ker β and the tangent space of
ΓΣ is given by ker d f . However, by the contact condition, β ∧ d f > 0 on
Σ. So if u ∈ ker d f ∩ ker β, then u = 0. Therefore, ΓΣ and Σξ intersect
transversely.

4. The normal orientation to Σ is given by ∂
∂t , Then

Σ+ = α(
∂

∂t
) = f > 0

and
Σ− = α(

∂

∂t
) = f < 0

and since 0 is a regular value, sign changes when passing through ΓΣ.

For the proof of 5, see [22] or [12]. �

The above properties can be taken as a definition for a multi-curve that
”divides” a characteristic foliation on a surface:

44



Definition A.5 Let Γ be a multi-curve on Σ and let F be a singular foliation on Σ.
The multi-curve Γ is said to divide F if

1. Γ is transverse to the F ,

2. Σ− Γ = Σ+ ä Σ−,

3. there is a vector field w and volume form Ω on Σ such that

a) w is directs F ,

b) the flow of w expands Ω on Σ+ and contracts Ω on Σ−,

c) w points out of Σ+.

By the following propositions, we see that the convex surfaces are ”generic”
in contact manifolds:

Proposition A.6 Any closed surface Σ in a contact manifold (M, ξ) is C∞-close to
a convex surface. Any surface Σ with Legendrian boundary satisfying tb(l) ≤ 0 for
all boundary components l ⊂ ∂Σ may be C0 small perturbed near the boundary and
then C∞-small perturbed on the interior so as to become convex.

Proposition A.7 If Σ is convex in (M, ξ), and F is any other foliation divided by
ΓΣ then there is an isotopy, through convex surfaces, of Σ to Σ′ so that Σ′ξ = F .

See [15] for the full proofs of these propositions.

The following results due to Honda (see [30], [31]), are important in the proof
of the Giroux correspondence (Theorem 2.27), and in general for cutting and
gluing contact manifolds:

Proposition A.8 If c is a properly embedded arc or a closed curve on Σ, a convex
surface, and all components of Σ − c contain some component of ΓΣ − c then Γ
may be isotoped through convex surfaces so that c is Legendrian. This is called
Legendrian realization principle.

Proposition A.9 If Σ1 and Σ2 are convex surfaces, ∂Σ1 = ∂Σ2, and the surfaces
meet transversely, then the dividing curves interlace as shown in Figure A.1, and
we can round the corner to get a single smooth convex surface with dividing curves
shown in Figure A.1.

Figure A.1: Two convex surfaces meeting transversely and rounding of the edges.
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Lastly, by the following proposition, convex surfaces and dividing curves in
a contact manifold tell us about the tightness of the contact structure in a
neighborhood of a convex surface.

Theorem A.10 (Giroux Tightness Criterion) Let Σ be a convex surface in a
contact manifold (M, ξ). A vertically invariant neighborhood of Σ is tight if and
only if either Σ 6= S2 and ΓΣ contains no contractible curves, or Σ = S2 and ΓΣ is
connected.

The proof uses Legendrian Realization Principle.
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