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Introduction

Within Di!erential Geometry, a characteristic class is an isomorphism invariant of a

vector bundle, most often constructed via curvature and suitable polynomials. It assigns

a cohomology class to a vector bundle, used to distinguish non-isomorphic vector bundles

and thus help classify vector bundles over a given manifold. The theory of characteristic

classes yields some remarkable theorems, like the generalized Gauss-Bonnet Theorem,

sometimes also called the Chern-Gauss-Bonnet Theorem (Theorem 3.10 in this paper).

The Chern-Gauss-Bonnet Theorem can be generalized to the Atiyah-Singer index the-

orem, which relates the analytical index to the topological index of an elliptic di!erential

operator on a compact manifold, and finds many applications in theoretical physics (cf.

[Nak18]). Although we will not cover index theorems and applications in Physics in this

paper, these are main motivations to study characteristic classes.

In Chapter 1, we will study invariant polynomials and will find generators of the ring

of invariant polynomials. Thus, when computing characteristic classes, we can restrict to

these generators. Then, in Chapter 2, we will introduce connection and curvature matrices.

These are another fundamental ingredient to construct a characteristic class. In Chapter 3,

we will finally introduce characteristic classes. Pontrjagin, Euler and Chern classes are

important special cases of characteristic classes, also discussed in this section. Lastly, in

Chapter 4 we will motivate how the theory can be generalized to principal bundles.
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1

1 Invariant Polynomials

Characteristic classes are constructed via polynomials P pXq in the entries of a square

matrix X “ rxijs of indeterminates that are invariant under conjugation by invertible ma-

trices A, that is P pXq “ P pA´1XAq. We therefore have to understand these polynomials

first, before studying characteristic classes.

1.1 Invariant Polynomials on glpr,Rq
We will start by showing some purely algebraic results about polynomials. For this,

let R be a ring (here we always mean a commutative and unitary ring, even if we just

write ring) and denote by RrX1, . . . , Xns “ RrXs the polynomial ring in the variables

X1, . . . , Xn “ X. Evaluating a polynomial P P RrXs at a tupel of elements r1, . . . , rn P R

defines the polynomial function

P̂ : Rn Ñ R, r1, . . . , rn !Ñ P pr1, . . . , rnq.

It is well known, that the map P !Ñ P̂ is in general not injective. For example take

R “ Z{2Z and the two distinct polynomials P “ 0 and Q “ X2 ´ X, for which P̂ “ Q̂.

However for infinite fields we have the following.

Theorem 1.1. Let F be an infinite field. Consider the polynomial ring FrXs in the

variables X over the field F. Then the map FrXs Q P !Ñ P̂ P FunpFn,Fq is injective.

Proof. Note that P !Ñ P̂ is a ring homomorphism from the polynomial ring in n variables

to the ring of functions Fn Ñ F. We show that the kernel of this map is trivial. We do

so by induction over the number of variables n. For n “ 1 let P be a polynomial in one

variable such that P̂ “ 0. Since F is infinite, this means that P has infinitely many roots

and therefore has to be the trivial polynomial. Now suppose, that the statement is true

for all polynomials up to pn´1q variables. Let P be a polynomial of n variables such that

P̂ is the zero function. We write

P pX1, . . . , Xn´1, Xnq “
mÿ

k“0

PkpX1, . . . , Xn´1qXk
n.

Then for fixed a1, . . . , an´1 P F, P̂ pa1, . . . , an´1, xnq is the zero function in xn and there-

fore P pa1, . . . , an´1, Xnq has to be the trivial polynomial in one variable, that is all the

coe”cients Pkpa1, . . . , an´1q are zero. The point pa1, . . . , an´1q P Fn´1 was arbitrary, and

hence P̂k has to be the trivial function. By induction hypothesis, all the Pk
1s have to be

trivial polynomials, and hence
!m

k“0 PkpX1, . . . , Xn´1qXk
n has to be trivial.

We will use Theorem 1.1 to study polynomials that take a square matrix (as elements

of a Lie Algebra) as input and are invariant under the adjoint representation of the Lie
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group. However, we will give a more general definition of these invariant polynomials. This

generalization allows us to also generalize the theory of characteristic classes to principal

bundles, cf. Chapter 4.

Let V be a vector space of dimension n over a field F and let V ‹ be the dual vector

space. We denote by SymkpV ‹q the k-th symmetric power of V ‹ and call its elements

polynomials of degree k on V . Let e1, . . . , en be a basis of V with corresponding dual basis

ω1, . . . , ωn of V ‹. We call a function f : V Ñ F a polynomial of degree k on V , if f can be

expressed as

f “
ÿ

I“pi1,...,ikq
1!i1!¨¨¨!ik!n

aIω
I ,

where ωI denotes the symmetrization of ωi1 ¨ ¨ ¨ ωik .

Definition 1.2. Let G be a Lie group with corresponding Lie algebra g. Let f : g Ñ R be

a polynomial on the real vector space g. We say that f is AdpGq-invariant, if for all g P G

and all X P g

fppAdpgqXq “ fpXq.

The Lie algebra of the matrix Lie group GLpr,Rq is the space of all real r ˆ r-matrices

glpr,Rq “ Rrˆr. A polynomial P pXq on glpr,Rq is a polynomial in the entries of X “ rxijs,
an r ˆ r-matrix with indeterminate entries. P pXq is AdpGLpr,Rqq-invariant if for all

A P GLpr,Rq
P pXq “ P pAdpA´1qXq “ P pA´1XAq.

Denote by Invpglpr,Rqq the algebra of all AdpGLpr,Rqq-invariant polynomials on glpr,Rq.
If P pXq “ P pA´1XAq is true for all A P GLpr,Rq and real r ˆ r-matrices X, that is it

is true as an equality of polynomial functions in FunpRr2 ,Rq, then Theorem 1.1 implies

that it is true as an equation of the polynomials, so P is AdpGLpr,Rqq-invariant. For the
determinant this is clearly the case. For all real r ˆ r-matrices X and all A P GLpr,Rq we

have

detpA´1XAq “ detpAq´1detpXqdetpAq “ detpXq,

hence detpXq is an AdpGLpr,Rqq-invariant polynomial on glpr,Rq. Therefore, also the

characteristic polynomial ch´Xpεq of any r ˆ r-matrix p´Xq is AdpGLpr,Rqq-invariant

ch´Xpεq “ detpεI ´ Xq
“ detpA´1pεI ´ XqAq
“ detpA´1εIA ´ A´1XAq
“ detpεI ´ A´1XAq
“ chA´1p´XqApεq.
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Note that

detpεI ` Xq “
ÿ

ωPSr

sgnpϑq
r"

i“1

pεI ` Xqi,ωi “
rÿ

k“0

fkpXqεr´k

for some coe”cient polynomials fkpXq on glpr,Rq. Because the determinant is invariant

we have

rÿ

k“0

fkpXqεr´k “ detpεI ` Xq

“ detpA´1pεI ` XqAq

“
rÿ

k“0

fkpA´1XAqεr´k

and hence fkpXq “ fkpA´1XAq for all k by comparison of coe”cients. That is, the

coe”cient polynomials are also AdpGLpr,Rq-invariant. By the cyclic property of the

trace trpABCq “ trpBCAq, we get that the trace polynomials #kpXq “ trpXkq are also

AdpGLpr,Rqq-invariant.

Example 1.1. The constant coe!cient of the characteristic polynomial ch´Xpεq of the

r ˆ r-matrix p´Xq is just the determinant of X

frpXq “ detpXq,

so in particular, the invariant polynomial detpXq can be written as a polynomial with

entries in f1pXq, . . . , frpXq. Consider the 2 ˆ 2-matix

X “
˜
x1,1 x1,2

x2,1 x2,2

¸

of indeterminate entries with determinant detpXq “ x1,1x2,2 ´ x1,2x2,1. The first trace

polynomial is #1pXq “ x1,1 ` x2,2. For the second trace polynomial we compute

X2 “
˜

x21,1 ` x1,2x2,1 x1,1x1,2 ` x1,2x2,2

x2,1x1,1 ` x2,2x2,1 x2,1x1,2 ` x22,2

¸
,

so #2pXq “ x21,1 ` 2x1,2x2,1 ` x22,2. Observe that

detpXq “ 1

2
p#1pXqq2 ´ 1

2
#2pXq,

so the invariant polynomial detpXq (for a 2ˆ2-matrix X) can also be written as a polyno-

mial with entries in #1pXq,#2pXq. The result holds true for r ˆ r-matrices X and trace

polynomials up to order r for arbitrary r, but the computation gets very long.

In the next sections, we prove a generalization of this. Invpglpr,Rq is generated by the
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coe”cient polynomials f1pXq, . . . , frpXq or by the trace polynomials #1pXq, . . . ,#rpXq.
Then, in Example 1.2, we will use the developed theory to compute a polynomial in the

trace polynomials that equals the determinant of X for an r ˆ r-matrix X for arbitrary r.

1.2 Generators of Invpglpr,Cqq
To find the generators of Invpglpr,Rqq, we first prove that AdpGLpr,Cqq-invariant

polynomials on glpr,Cq are generated by the coe”cient polynomials f1pXq, . . . , fkpXq of

the characteristic polynomial detpεI ` Xq. In the next section, we use this result to show

the real case

Invpglpr,Rq “ Rrf1pXq, . . . , frpXqs

and use Newton’s identities to show that the trace polynomials #1pXq, . . . ,#rpXq also

generate Invpglpr,Rqq.
Let P pXq be an AdpGLpr,Cqq invariant polynomial on glpr,Cq. Then the restriction

of P to diagonal matrices

rP pt1, . . . , trq “ P p

¨

˚̊
˝

t1
. . .

tr

˛

‹‹‚q

defines a polynomial rP in the variables t1, . . . , tr. Consider the permutation matrix

S “

¨

˚̋
0 1

1 0

Ipr´2qˆpr´2q

˛

‹‚“ S´1 P GLpr,Cq,

then because P is invariant, we get

rP pt1, t2, . . . , trq “ P pdiagpt1, t2, . . . , trqq
“ P pS´1diagpt1, t2, . . . , trqSq
“ P pdiagpt2, t1, . . . , trqq
“ rP pt2, t1, . . . , trq

and similar for all other transpositions, and therefore for all permutations ϑ P Sr, so rP is a

symmetric polynomial. We denote by Crt1, . . . , trsSr the algebra of symmetric polynomials

in the variables t1, . . . , tr and by Invpglpr,Cqq the AdpGLpr,Cqq invariant polynomials on

glpr,Cq.

Theorem 1.3. The map

ϖ : Invpglpr,Cqq Ñ Crt1, . . . , trsSr
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P pXq !Ñ rP pt1, . . . , trq :“ P pdiagpt1, . . . , trqq ,

where diagpt1, . . . , trq denotes the diagonal matrix with entries t1, . . . , tr, is a C-algebra
isomorphism.

For the proof we will need the following two lemmas.

Lemma 1.4. The set of diagonalizable complex rˆr matrices is dense in Crˆr “ glpr,Cq.

The proof can be found in the appendix of Tu’s book [Tu17, p. 312, proof of (1)].

Lemma 1.5 (Fundamental theorem of symmetric polynomials). For every symmetric

polynomial F pt1, . . . , trq over a ring R there exists a unique polynomial Gpu1, . . . , urq over

R, such that F pt1, . . . , trq “ Gpϑ1, . . . ,ϑrq, where

ϑ0 “ 1, ϑ1 “
rÿ

i“1

ti, ϑ2 “
ÿ

i"j

titj , . . . ,ϑr “
r"

i“1

ti

are the elementary symmetric polynomials.

The proof is adapted from Prof. Dr. Richard Pinks lecture on algebra [Pin23, Thm. 7.3.8,

lecture from May 15 2023].

Proof. Every polynomial F can uniquely be written as a finite sum

F “
ÿ

d#0

Fd,

where Fd are homogeneous polynomials of degree d. In the case where F is symmetric, ev-

ery Fd is symmetric, so it su”ces to prove the Lemma for symmetric Fd. If the statement

is correct, then G is isobaric with weight d, where ui has weight i. This suggests that we de-

fine V :“ Rru1, . . . , ursisobaric with weight d andW :“ Rrt1, . . . , trssymmetric and homogeneous of degree d,

ϖd : V Ñ W,G !Ñ Gpϑ1, . . . ,ϑrq,

and prove that ϖd is a module isomorphism. To show that this linear map is bijective, we

define an order on the monomials ti “ ti11 ¨ ¨ ¨ tirr in the following way

i " j : #ñ D1 $ µ $ r : t@ϱ " µ : iε “ jε and iµ " jµu.

Then the smallest monomial in ϑi1
1 ¨ ¨ ¨ϑir

r is ti1`¨¨¨`ir
1 ¨ ti2`¨¨¨`ir

2 ¨ ¨ ¨ tirr . We will use this

and induction to show bijectivity. For surjectivity, observe that ϖdp0q “ 0, so assume

0 ‰ Fd P W , write Fd “ !
aiti and let j be the minimal multiindex with aj ‰ 0. By

symmetry of Fd and minimality of j we must have j1 % j2 % ¨ ¨ ¨ % jr (otherwise we could

switch two indices and get a smaller j). This implies that there exists i “ pi1, . . . , irq such
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that

j1 “ i1 ` . . . ir, j2 “ i2 ` ¨ ¨ ¨ ` ir, jr “ ir.

Now define Gpu1, . . . , urq “ aju
i1
1 ¨ ¨ ¨uirr , isobaric with weight

i1 ` 2i2 ` ¨ ¨ ¨ ` rir “ pi1 ` ¨ ¨ ¨ ` irq ` pi2 ` ¨ ¨ ¨ ` irq ` ¨ ¨ ¨ ` ir “ j1 ` ¨ ¨ ¨ ` jr “ d

and observe that

Fdpt1, . . . , trq ´ ϖdpGq “ Fd ´ ajϑ
i1
1 ¨ ¨ ¨ϑir

r

does not contain the monomial tj , and because its the smallest monomial in Fd, the result

does only contain bigger monomials. Since the number of multiindices j “ pj1, . . . , jrq
with

!
ji “ d is finite, by induction, we find finitely many G1, . . . , Gk such that

Fd ´ ϖdpG1q ´ . . . ´ ϖdpGkq “ Fd ´ ϖdpG1 ` . . . ` Gkq “ 0,

that is, ϖd is surjective. Injectivity is proven similar. Let G P kerpϖdq and write

Gpu1, . . . , urq “ !
biui, where the multiindices are so that i1 `2i2 ` ¨ ¨ ¨ ` rir “ d. Assume

by contradiction that there is a bi ‰ 0, and let j be the minimal multiindex with bj ‰ 0.

Then for all i ‰ j in the sum we have i " j and therefore

pi1 ` ¨ ¨ ¨ ` ir, i2 ` ¨ ¨ ¨ ` ir, . . . , irq " pj1 ` ¨ ¨ ¨ ` jr, j2 ` ¨ ¨ ¨ ` jr, . . . , jrq :“ J,

hence for G we have

Gpϑ1, . . . ,ϑrq “
ÿ

i‰j

biϑ
i1
1 ¨ ¨ ¨ϑir

r ` bjϑ
j1
1 ¨ ¨ ¨ϑjr

r ,

where in
!

i‰j biϑ
i1
1 ¨ ¨ ¨ϑir

r only monomials strictly bigger than tJ occur, and in bjϑ
j1
1 ¨ ¨ ¨ϑjr

r

the smallest monomial is tJ . By hypothesis thatGpϑ1, . . . ,ϑrq “ 0 we conclude that bj “ 0.

This implies bi “ 0 for all multiindices i and therefore G “ 0. This proves injectivity and

thus proves the lemma.

Proof of Theorem 1.3. Suppose ϖpP q “ 0, that is the AdpGLpr,Cqq- invariant polynomial

vanishes on all diagonal matrices X P glpr,Cq, so by its invariance under conjugation by

A P GLpr,Cq it vanishes on all diagonalizable matrices X P glpr,Cq. By continuity, and

since diagonalizable matrices X P glpr,Cq are dense in glpr,Cq, P “ 0 as a polynomial

function on glpr,Cq. By Theorem 1.1, P “ 0 as an AdpGLpr,Cqq- invariant polynomial on

glpr,Cq, that is kerpϖq “ 0.

Consider the characteristic polynomial of p´Xq P glpr,Cqq

PϑpXq “ ch´Xpεq “ detpεI ` Xq “
rÿ

k“0

fkpXqεr´k,
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then

rÿ

k“0

ϖpfkpXqqεr´k “ ϖpPϑpXqq

“ Pϑp

¨

˚̊
˝

t1
. . .

tr

˛

‹‹‚q “ detpεI `

¨

˚̊
˝

t1
. . .

tr

˛

‹‹‚q

“
r"

i“1

pε ` tiq

“
rÿ

k“0

˜
ÿ

i1"¨¨¨"ik

ti1 ¨ ¨ ¨ tik
¸
εr´k

“
rÿ

k“0

ϑkptqεr´k.

So by comparison of coe”cients we observe ϖpfkpXqq “ ϑkptq. Let F P Crt1, . . . , trsSr , so

we can write

F pt1, . . . , trq “ Gpϑ1, . . . ,ϑrq.

Define P pXq “ Gpf1pXq, . . . , frpXqq in Invpglpr,Cqq, then

ϖpP pXqq “ ϖpGpf1pXq, . . . , frpXqqq
“ Gpϖpf1pXqq, . . . ,ϖpfrpXqqq
“ Gpϑ1, . . . ,ϑrq
“ F pt1, . . . , trq,

so ϖ is also surjective.

The isomorphism ϖ gives us generators of Invpglpr,Cqq.

Theorem 1.6. Invpglpr,Cqq as an algebra over C is generated by the coe!cient polyno-

mials f1pXq, . . . , frpXq of the characteristic polynomial detpεI ` Xq, that is

Invpglpr,Cqqr“Crf1pXq, . . . , frpXqs.

Proof. By the isomorphism ϖ in Theorem 1.3 and by Lemma 1.5 we have

Invpglpr,Cqq ϖ– Crt1, . . . , trsSr
1.5– Crϑ1ptq, . . . ,ϑrptqs ϖ– Crf1pXq, . . . , frpXqs.

We will use this result to study the real case.
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1.3 Generators of Invpglpr,Rqq
Proposition 1.7. A real homogeneous polynomial P pXq on glpr,Rq that is invariant under
conjugation by GLpr,Rq is invariant under conjugation by GLpr,Cq. Since the converse

is trivial we have

Invpglpr,Rqq “ Invpglpr,Cqq X RrXs,

and we have the following inclusion

Invpglpr,Rqq ãÑ Invpglpr,Cqq.

Proof. Suppose P pXq has degree k and A P GLpr,Rq. We have A´1 “ 1
detAA

‹, where A‹

denotes the adjugate of A. By homogeneity and invariance we have

P pAXA‹q “ pdetAqkP pAXA´1q “ pdetAqkP pXq,

or

qpA,Xq :“ P pAXA‹q ´ pdetAqkP pXq “ 0.

Now observe that q is defined via A‹ instead of A´1, so the formula makes sense for all

A,X P Crˆr. As a holomorphic function (polynomials are holomorphic) on Crˆr ˆ Crˆr,

q has to be identically zero, since the roots of non-zero holomorphic functions are isolated,

and q is identically zero on GLpr,Rq ˆ Rrˆr. So for all pA,Xq P GLpr,Cq ˆ Crˆr

0 “ 1

pdetAqk qpA,Xq “ P pAXA´1q ´ P pXq.

Theorem 1.8. The isomorphism ϖ : Invpglpr,Cqq Ñ Crt1, . . . , trsSr in Theorem 1.3 re-

stricts to an isomorphism of R-algebras

ϖR : Invpglpr,Rqq Ñ Rrt1, . . . , trsSr

P pXq !Ñ rP pt1, . . . , trq.

Proof. The inclusions Rrt1, . . . , trsSr ãÑ Crt1, . . . , trsSr and Invpglpr,Rqq ãÑ Invpglpr,Cqq
give the commutative diagram

Invpglpr,Cqq Crt1, . . . , trsSr

Invpglpr,Rqq Rrt1, . . . , trsSr .

ϖ

ϖR

ϱ1 ϱ2

ϖ ˝ ς1 is injective, so ϖR is also injective.

Surjectivity of ϖR is shown in the same way as surjectivity of ϖ. Let F P Rrt1, . . . , trsSr .
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Again by Lemma 1.5, we can write

F pt1, . . . , trq “ Gpϑ1, . . . ,ϑrq

for a unique real polynomial G. Define P pXq “ Gpf1pXq, . . . , frpXqq in Invpglpr,Rqq,
then

ϖRpP pXqq “ ϖRpGpf1pXq, . . . , frpXqq
“ GpϖRpf1pXqq, . . . ,ϖRpfrpXqqq
“ Gpϑ1, . . . ,ϑrq
“ F pt1, . . . , trq.

Analogously to Theorem 1.6 we get

Theorem 1.9. Invpglpr,Rqq as an algebra over R is generated by the coe!cient polyno-

mials f1pXq, . . . , frpXq of the characteristic polynomial detpεI ´ Xq, that is

Invpglpr,Rqq “ Rrf1pXq, . . . , frpXqs.

Proof. By the isomorphism ϖR in Theorem 1.8 and by Lemma 1.5 we have

Invpglpr,Rqq ϖR– Rrt1, . . . , trsSr
1.5– Rrϑ1ptq, . . . ,ϑrptqs ϖR– Rrf1pXq, . . . , frpXqs.

Finally we want to prove that Invpglpr,Rqq is not only generated by f1pXq, . . . , frpXq
over R, but also by the trace polynomials #1pXq, . . . ,#rpXq over R. For this we consider

the power sums

skpt1, . . . , trq “
rÿ

i“1

tki ,

which are symmetric polynomials in t1, . . . , tr. An algebraic result relates the elementary

symmetric polynomials ϑ1, . . . ,ϑr to the power sums s1, . . . , sr. For each k % 1,

sk ´ ϑ1sk´1 ` ϑ2sk´2 ´ ¨ ¨ ¨ ` p´1qk´1ϑk´1s1 ` p´1qkkϑk “ 0.

These are Newton’s identities. A proof can be found in [Tu17, Thm. B.14]. By induction

we find polynomials Fk and Gk such that

ϑk “ Fkps1, . . . , skq, sk “ Gkpϑ1, . . . ,ϑkq,

hence, the power sums also generate the symmetric polynomials over R

Rrs1, . . . , srs “ Rrϑ1, . . . ,ϑrs “ Rrt1, . . . , trsSr . (1)
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Furthermore, the power sums correspond to the trace polynomials under the isomor-

phism ϖR

ϖRp#kpXqq “ ##kpXq “ #kp

¨

˚̊
˝

t1
. . .

tr

˛

‹‹‚q “ trp

¨

˚̊
˝

tk1
. . .

tkr

˛

‹‹‚q “
rÿ

i“1

tki “ sk.

By this observation, Theorem 1.8 and equation (1) we get the following.

Theorem 1.10. Invpglpr,Rqq as an algebra over R is generated by the trace polynomials

#1pXq, . . . ,#rpXq of X, that is

Invpglpr,Rqq “ Rr#1pXq, . . . ,#rpXqs.

To summarize Theorem 1.9 and Theorem 1.10 we just say, that every Ad GLpr,Rq-
invariant polynomial on glpr,Rqq can be written as a polynomial in f1pXq, . . . , frpXq or

as a polynomial in #1pXq, . . . ,#rpXq.
At this point we understand enough about invariant polynomials to continue with Ex-

ample 1.1.

Example 1.2. Let again X be an r ˆ r-matrix. The AdpGLpr,Rqq-invariant polynomial

detpXq is given by the constant coe!cient of the characteristic polynomial of p´Xq

frpXq “ detpXq.

The isomorphism ϖR in Theorem 1.8 sends this to the r-th elementary symmetric polyno-

mial

ϖRpdetpXqq “ ϖRpfrpXqq “ ϑr,

which in turn is related to the power sums by Newton’s identities

sk ´ ϑ1sk´1 ` ϑ2sk´2 ´ ¨ ¨ ¨ ` p´1qk´1ϑk´1s1 ` p´1qkkϑk “ 0.

Rewriting this yields

ϑk “ p´1qk`1

k

´
sk ´ ϑ1sk´1 ´ ϑ2sk´2 ` ¨ ¨ ¨ ` p´1qk´1ϑk´1s1

¯
.

So inductively we get

ϑ1 “ s1 “ F1ps1q

ϑ2 “ ´1

2
ps2 ´ s21q “ F2ps1, s2q

ϑ3 “ 1

3
s3 ´ 1

2
s1s2 ` 1

6
s31 “ F3ps1, s2, s3q
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ϑ4 “ F4ps1, . . . , s4q
...

ϑr “ Frps1, . . . , srq.

Now, using ϖRp#kpXqq “ sk, we get a formula for the determinant of X in terms of the

trace polynomials

detpXq “ frpXq
“ ϖ´1

R pϖRpfrpXqqq
“ ϖ´1

R pϑrq
“ ϖ´1

R pFrps1, . . . , srqq
“ Frpϖ´1

R ps1q, . . . ,ϖ´1
R psrqq

“ Frp#1pXq, . . . ,#rpXqq.

So for example, in the case where

X “

¨

˚̋
x1,1 x1,2 x1,3

x2,1 x2,2 x2,3

x3,1 x3,2 x3,3

˛

‹‚

is a 3 ˆ 3-matrix, we get

detpXq “ F3p#1pXq,#2pXq,#3pXqq “ 1

3
#3pXq ´ 1

2
#1pXq#2pXq ` 1

6
#1pXq3.

This can be checked by directly computing the determinant and the trace polynomials of

X.
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2 Prerequisites from Di!erential Geometry

A characteristic class is the cohomology class of P p$q, where P pXq is an invariant

polynomial and $ is the curvature form of a connection → on a vector bundle E Ñ M .

We will briefly review vector bundles and connections, then we will introduce connection

and curvature forms and discuss some important properties, that are needed to study

characteristic classes. From now on, M will denote a smooth manifold of dimension m.

That is a second countable Hausdor! topological space equipped with a maximal smooth

atlas 1. The Hausdor! property and second countability ensure the existence of a partition

of unity subordinate to any open cover (see [Lee12, Thm. 2.23]). The existence of a

partition of unity then allows us to define a Riemannian metric on every smooth manifold.

2.1 Connections and Curvature

A vector bundle E Ñ M is a family of vector spaces of same dimension, smoothly

parametrized over a base manifold M , so that each point in M has a corresponding vector

space attached to it. Let us recall the basic definitions.

Definition 2.1. A real vector bundle of rank r, denoted by φ : E Ñ M , consists of a

smooth manifold E of dimension m ` r and a smooth projection φ : E Ñ M , such that

i) for all p P M , the fiber Ep “ φ´1ptpuq is an r-dimensional real vector space, and

ii) for all p P M , there exists an open neighborhood U Q p in M and a smooth di”eo-

morphism

↼ : φ´1pUq Ñ U ˆ Rr,

such that ↼Eq : Eq Ñ tqu ˆ Rr is a linear isomorphism for all q P U .

A complex vector bundle is defined in the same way, but the fibers Ep carry the structure

of an r-dimensional complex vector space. We will denote by %pEq the space of smooth

sections of E, that is the space of all smooth functions s : M Ñ E, such that φ ˝ s “ idM .

Two simple examples for vector bundles are the trivial one M ˆRr and the tangent space

of a manifold TM . The next step is to define a connection on a vector bundle.

Definition 2.2. Let φ : E Ñ M be a vector bundle over M . A connection on E is an

R-bilinear map

→ : %pTMq ˆ %pEq Ñ %pEq, pX, sq !Ñ →pX, sq “ →Xs,

that satisfies

i) →fXs “ f→Xs, and

1
We want to avoid spaces that behave unexpectedly: The real line with two origins is not Hausdor!

and the space of uncountable copies of Rn
is not second countable.
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ii) →Xpfsq “ pXfqs ` f→Xs,

for all f P C8pMq, X P %pTMq and s P %pEq.
A connection on a complex vector bundle is defined the same way, except that it is C-
linear in the second argument. A connection on a complex vector bundle over a complex

manifolds is C-linear in both arguments.

Note that → is a local operator, that is it can be restricted to open subsets of M .

Analogously to the Riemann curvature tensor we define for any connection → on E the

multilinear map

R : %pTMq ˆ %pTMq ˆ %pEq Ñ %pEq
pX,Y, sq !Ñ RpX,Y qs :“ →X→Y s ´ →Y →Xs ´ →rX,Y ss.

Let f P C8pMq be any smooth function on M , then

RpfX, Y qs “ →fX→Y s ´ →Y →fXs ´ →rfX,Y ss

“ f→X→Y s ´ →Y f→Xs ´ →f rX,Y s´pY fqXs

“ f→X→Y s ´ f→Y →Xs ´ pY fq→Xs ´ f→rX,Y ss ` pY fq→Xs

“ fRpX,Y qs,

and similar for the second argument. Further

RpX,Y qfs “ →X→Y fs ´ →Y →Xfs ´ →rX,Y sfs

“ →XpY fqs ` →Xf→Y s ´ →ypXfqs ´ →Y f→Xs ´ prX,Y sfqs ´ f→rX,Y ss

“ pXY fqs ` pY fq→Xs ` pXfq→Y s ` f→X→Y s

´ pY Xfqs ´ pXfq→Y s ´ pY fq→Xs ´ f→Y →Xs

´ pXY fqs ` pY Xfqs ´ f→rX,Y ss

“ fRpX,Y qs,

so R is tensorial in all three arguments and therefore R is also a local operator. We call

it the curvature tensor of the connection → (when → is the Levi-Civita connection on

TM Ñ M , R is the Riemann curvature tensor). The curvature tensor is also defined for

complex vector bundles and is given by the same formula.

Now suppose that U & M is open and the rank r vector bundle E is trivial on U , that is

there is a frame e1, . . . , er for E on U. Then every section s on U can be written as a linear

combination aiei. Here we used Einstein’s summation convention: We sum over repeated

indices: aiei :“
!r

i“1 a
iei. We will use this convention frequently. Let X P %pTMq|U be a

smooth vector field on U . Then for every i P t1, . . . , ru, →Xei defines a smooth section on

U , and therefore can be written as →Xei “ ↽j
i ej , where the coe”cients ↽j

i “ ↽j
i pXq are

C8-linear in X. Hence the coe”cients define a matrix of di!erential 1-forms r↽j
i s on U .
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We will call this matrix ↽ “ r↽j
i s the connection matrix of the connection → relative to

the frame e1, . . . , er on U . We can view ↽ as a matrix-valued 1-form on M , i.e. a smooth

and alternating function ↽ : %pTMq Ñ %pGLpr,Rqq. Proceeding in the same manner, but

with a complex vector bundle, we get a matrix of complex valued 1-forms, which also can

be viewed as a matrix-valued 1-form ↽ : %pTMq Ñ %pGLpr,Cqq.
Similarly we define the curvature matrix of $ of the connection → relative to the frame

e1, . . . , er on U . Since RpX,Y qei is alternating and C8-linear in X and Y , RpX,Y qei “
$j
i pX,Y qej defines a matrix of di!erential 2-forms $ “ r$j

i s on U . And for a complex

vector bundle we get a matrix of complex valued 2-forms. Of course, both of these can be

viewed as matrix-valued 2-forms $ : %pTMq ˆ %pTMq Ñ %pGLpr,Rqq or %pGLpr,Cqq.

2.2 Properties of Connection and Curvature Matrices

By definition, the curvature tensor R is related to the connection →, so one might expect

that there is a relation between $ and ↽. This is the content of the next theorem. To state

this, we define the wedge product ^ and exterior derivative d for matrices of di!erential

forms. For a pl,mq-matrix a “ raji s of di!erential r-forms and a pm,nq-matrix b “ rbji s of
di!erential s forms, we define the pl, nq-matrix a ^ b of di!erential pr ` sq-forms via

pa ^ bqji “ ajk ^ bki ,

and the pl,mq-matrix da of di!erential pr ` 1q forms via

pdaqji “ dpaji q.

Proposition 2.3. For the wedge product and exterior derivative of matrices of di”erential

forms we have the basic algebraic results,

i) pa ^ bqT “ p´1qrsbT ^ aT

ii) If l “ n, then trpa ^ bq “ p´1qrstrpb ^ aq

iii) If l “ m, then d tr(a) = tr(da).

Proof. A short and direct computation.

Theorem 2.4. Let φ : E Ñ M be a vector bundle of rank r and U & M a trivializing

open set with frame e1, . . . , er. Let ↽ and $ be the connection and curvature matrix of →
relative to the frame e1, . . . , er on U respectively. Then we have the relation

$j
i “ d↽j

i ` ↽j
k ^ ↽k

i ,

or, in matrix notation,

$ “ d↽ ` ↽ ^ ↽.
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This is called the second structural equation. It is proved by direct computation ([Tu17,

Thm. 11.1]). There is also a first structural equation, but this is not of interest in this

work.

The connection and curvature matrices of a connection → on TM relative to a frame

e1, . . . , em on a trivializing open subset U & M additionally satisfy the following relations

for any integer k % 1

i) (Second Bianchi identity) d$ “ $ ^ ↽ ´ ↽ ^ $,

ii) (Generalized second Bianchi identity) dp$kq “ $k ^ ↽ ´ ↽ ^ $k.

There is a first Bianchi identity as well, but we will not need it. The second Bianchi

identity follows directly from the second structural equation

d$ “ d pd↽ ` ↽ ^ ↽q
“ dd↽ ` dw ^ ↽ ´ ↽ ^ d↽

“ p$ ´ ↽ ^ ↽q ^ ↽ ´ ↽ ^ p$ ´ ↽ ^ ↽q
“ $ ^ ↽ ´ ↽ ^ $.

The generalized second Bianchi identity follows from the second Bianchi identity and by

induction: Assume the formula is correct for k ´ 1, then

dp$kq “ dp$k´1 ^ $q
“ d$k´1 ^ $ ` p´1q2pk´1q$k´1 ^ d$

“
´
$k´1 ^ ↽ ´ ↽ ^ $k´1

¯
^ $ ` $k´1 ^ p$ ^ ↽ ´ ↽ ^ $q

“ $k ^ ↽ ´ ↽ ^ $k.

Of course there is not just one frame e1, . . . , er on a trivializing open subset U & M

that we could choose to define connection and curvature matrices. Suppose re1, . . . , rer is

another frame of E on U . Then at each point p P U the two frames are related to each

other by multiplication with an invertible matrix a

reippq “ ejppqaji ppq.

Note that rei is smooth on U for all i P t1, . . . , ru, so the coe”cients aji with respect to the

smooth frame e1, . . . , er have to be smooth on U , thus we get a matrix a “ raji s of smooth

functions on U . We may write each frame as row vectors re “ rre1, . . . , rers, e “ re1, . . . , ers
and therefore in matrix notation

re “ ea

as smooth functions of p on U . (We will interchangeably write e for the frame e1, . . . , er

and for the row vector re1, . . . , ers. The exact meaning will be clear from context.) This
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leads to the following change of basis formulae of connection and curvature matrices.

Theorem 2.5. Let φ : E Ñ M be a vector bundle of rank r and U & M a trivializing

open set with frames e and re such that re “ ea for a matrix a of smooth functions on U .

Let ↽ and r↽ be the connection matrices of → relative to e and re and let $ and r$ be the

curvature matrices of → relative to e and re, then

i) r↽ “ a´1↽a ` a´1da,

ii) r$ “ a´1$a.

A direct computation proves Theorem 2.5, see [Tu17, Thm 22.1] for a detailed proof.

We have seen that, on a trivializing set U & M with frame e, a connection → defines

an r ˆ r matrix of 1-forms ↽, called the connection matrix. Conversely, assume that a

trivializing set U with frame e and an r ˆ r matrix of 1-forms ↽ are given. For a vector

field X P %pTUq and a section s P %pE|U q, s “ sjej , define

→‹
Xs :“

´
Xpsjq ` si↽j

i pXq
¯
ej . (2)

→‹ is clearly R-linear in X and s, since ↽ and X are R-linear in X and s respectively.

Further we can compute for any C8 function f und U

→‹
fxs “

´
fXpsjq ` si↽j

i pfXqq
¯
ej

“ f
´
Xpsjq ` si↽j

i pXq
¯
ej

“ f→‹
Xs

→‹
Xfs “

´
Xpfsjq ` fsi↽j

i pXq
¯
ej

“ Xpfqs ` f
´
Xpsjq ` si↽j

i pXq
¯
ej

“ Xpfqs ` f→‹
Xs.

We have shown that →‹ defines a connection on U . It is an easy check, that the connection

matrix of →‹ is ↽. Thus, from now on, we will denote this connection just by →. Further

suppose that re is another frame of U such that re “ ea for an invertible matrix a and

r↽ “ a´1↽a`a´1da. Then Theorem 2.5 implies that the two (a priori) di!erent connections

defined via (2) by ↽ and r↽ coincide. Therefore, given a cover of M by trivializing subsets

tUiu with frames ei and r ˆ r matrices of 1-forms ↽i such that pairwise on intersections

all these matrices satisfy i), we can define a connection on M with this data.

Given a smooth map f : N Ñ M between two smooth manifolds, we can pull back the

connection matrices of a connection and use these to define a unique connection on the

pullback bundle.

Definition 2.6. Let φ : E Ñ M be a vector bundle over M and f : N Ñ M be a smooth
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map between smooth manifolds. Define the total space

f‹pEq :“ tpn, eq P N ˆ E|fpnq “ φpequ

and endow it with the subspace topology. Then f‹pEq together with the projection map

⇀ : f‹pEq Ñ N, pn, eq !Ñ n defines a vector bundle over N , called the pullback bundle of E

by f .

[Tu17, Thm. 20.6] proves that ⇀ : f‹pEq Ñ N indeed defines a vector bundle.

Theorem 2.7. Let f : N Ñ M be a smooth map between smooth manifolds. Let E Ñ M

be a vector bundle over M with connection → on E, and denote by f‹E Ñ N the pullback

bundle over N . Let tUςuς be an open cover of M with frames eς and connection matrices

↽ς relative to eς. Then there exists a unique connection on f‹E with connection matrices

f‹p↽ςq relative to f‹peςq.

Proof. Write eφ “ eςa for and invertible matrix a on UφXUς. Then f‹ peφq “ f‹ peςq f‹paq
on f´1 pUφ X Uςq, and

f‹ p↽φq “ f‹pa´1↽ςa ` a´1daq
“ f‹pa´1qf‹p↽ςqf‹paq ` f‹pa´1qdf‹paq,

on f´1 pUφ X Uςq, that is f‹ p↽ςq satisfies i). Therefore, by the previous paragraph, it

induces a unique connection on the pullback bundle f‹E with connection matrices f‹ p↽ςq.

In the proof of the main theorem about characteristic classes (Theorem 3.1), we will

also need to work with di!erential forms that vary smoothly in time. Let t↽tut be a family

of smooth k-forms on M that varies smoothly with t. That is, locally

↽t “
ÿ

I

aIpx, tqdxI

for smooth functions aIpx, tq and increasing multi-indices I. For every p P M we define

the map t !Ñ ↽t,p and

9↽t,p “
ˆ
d↽t

dt

˙

p

“ d

dt
↽t,p.

We also define for a ’ b ˆ$ b

a
↽tdt

˙

p

“
$ b

a
↽t,pdt.

Locally, this is

d

dt
↽t “

ÿ

I

BaI
Bt px, tqdxI ,
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$ b

a
↽tdt “

ÿ

I

ˆ$ b

a
aIpx, tqdt

˙
dxI .

These definitions extend entry by entry to matrices of di!erential forms that depend

smoothly on a parameter t.

Proposition 2.8. Let ↽t and ⇁t be matrices of smooth forms on M that depend smoothly

on t. Then

i) If ↽ is a square matrix, d
dtptr ↽tq “ tr

`
d↼t
dt

˘
.

ii) If ↽ ^ ⇁ is defined, d
dtp↽ ^ ⇁q “ 9↽ ^ ⇁ ` ↽ ^ 9⇁ .

iii) d
dtpd↽q “ d

`
d
dt↽

˘
.

iv)
%b
a d↽tdt “ d

´%b
a ↽tdt

¯
.

Proof. Write ↽t “ r↽i
jptqs, then

d

dt
ptr ↽tq “ d

dt
↽i
iptq “

ÿ d↽i
i

dt
ptq “ tr

d↽t

dt
.

To prove the second equation, write the entries of ↽ and ⇁ in coordinates

↽i
jptq “

ÿ

I

aij,Ipx, tqdxI

⇁ ijptq “
ÿ

I

bij,Ipx, tqdxI ,

then

d

dt
p↽ ^ ⇁qij “ d

dt
↽i
kptq ^ ⇁kj ptq

“ d

dt

ÿ

I,J

aik,Ipx, tqbkj,Jpx, tqdxI ^ dxJ

“
ÿ

I,J

´
9aik,Ipx, tqbkj,Jpx, tq ` aik,Ipx, tq9bkj,Jpx, tq

¯
dxI ^ dxJ

“ 9↽i
kptq ^ ⇁kj ptq ` ↽i

kptq ^ 9⇁kj ptq
“ p 9↽ ^ ⇁qij ` p↽ ^ 9⇁qij .

For the third equation, compute again in coordinates

d

dt

`
d↽i

jptq
˘

“ d

dt
d

ÿ

I

aij,Ipx, tqdxI

“ d

dt

ÿ

k

ÿ

I

B
Bxk a

i
j,Ipx, tqdxk ^ dxI
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“
ÿ

k

ÿ

I

B
Bxk

B
Bta

i
j,Ipx, tqdxk ^ dxI

“ d

ˆ
d

dt
↽i
jptq

˙
.

Lastly,

ˆ$ b

a
d↽tdt

˙i

j

“
ÿ

k

ÿ

I

ˆ$ b

a

B
Bxk a

i
j,Ipx, tqdt

˙
dxk ^ dxI

“
ÿ

k

ÿ

I

B
Bxk

ˆ$ b

a
aij,Ipx, tqdt

˙
dxk ^ dxI

“ d

˜
ÿ

I

ˆ$ b

a
aij,Ipx, tqdt

˙
dxI

¸

“ d

ˆ$ b

a
↽tdt

˙i

j

“
ˆ
d

$ b

a
↽tdt

˙i

j

,

where we are allowed to interchange di!erentiation and integration, because the interval

ra, bs is compact and aij,I is smooth.

Everything we said above about the connection and curvature matrices and matrices

of di!erential forms, as well as about connections and the pullback of connections has a

direct translation to the complex case.

2.3 Metrics on a Vector Bundle

Later we will need more structure on the vector bundle E Ñ M . Let g be a map that

assigns to all p P M an inner product gppqp¨, ¨q : Ep ˆ Ep Ñ R on the fiber Ep over p

in a smooth way. By smooth, we mean that for all smooth sections s, t : M Ñ E, the

map M Q p !Ñ gppq psppq, tppqq P R is smooth. Then we call g a Riemannian metric on E

and the tupel pE, gq a Riemannian bundle. The existence of such a Riemannian metric is

proved in the same way as in the case E “ TM , using a partition of unity. Analogously

to the case E “ TM , we say that a connection → on E is compatible with the metric g,

if for all vector fields X and for all sections s, t : M Ñ E

Xgps, tq “ gp→Xs, tq ` gps,→Xtq

as functions M Ñ R. As in the case E “ TM , a metric connection exists. A proof can be

found in [Tu17, Ch. 10.5]. Similarly, in the complex case, a Hermitian metric is a map g

that assigns to all points p P M a complex inner product gppq in a smooth way. That is,

gppq satisfies
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i) gppqpsp, spq % 0, with equality if and only if sp “ 0,

ii) gppqpsp, tpq “ gppqptp, spq for all s, t P %pEq,

iii) gppqpεsp`µtp, upq “ εgppqpsp, upq`µgppqptp, upq for all ε, µ P C and all s, t, u P %pEq.

Existence of such a Hermitian metric is proved as in the real case via a partition of unity.

A complex vector bundle together with a Hermitian metric is called a Hermitian bundle.

A complex connection on a Hermitian bundle is compatible with the metric, if the same

property as in the real case is satisfied, that is

Xgps, tq “ gp→Xs, tq ` gps,→Xtq,

for any real tangent vector field X and all sections s, t P %pEq.
Now let e1, . . . , er be an orthonormal frame on some open set U & M of the vector

bundle φ : E Ñ M . Then, for a metric connection → and a smooth vector field X over U ,

we have for all 1 $ i, j $ r

0 “ Xgpei, ejq
“ gp→Xei, ejq ` gpei,→Xejq
“ gp↽k

i pXqek, ejq ` gpei,↽k
j pXqekq

“ ↽j
i pXq ` ↽i

jpXq,

so ↽ is skew symmetric. Thus, $ is skew symmetric as well

$i
j “ d↽i

j ` ↽i
k ^ ↽k

j

“ dp´↽j
i q ` p´↽k

i q ^ p´↽j
kq

“ ´d↽j
i ´ p´↽j

kq ^ p´↽k
i q

“ ´$j
i .

So in this case, we can view the connection form and the curvature form as matrix-valued

di!erential forms, where the matrix is skew symmetric. In the complex case, we have

↽ “ ´↽T , $ “ ´$
T
,

thus, the curvature and connection matrix are skew hermitian.
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3 Characteristic Classes

Finally, we can explain how the curvature of a connection → on a vector bundle E Ñ M ,

together with an invariant polynomial P pXq defines a closed di!erential form P p$q. We

will also prove that the cohomology class rP p$qs is independent of the connection →. This

is exactly the content of Theorem 3.1. This theorem immediately leads to the Chern-Weil

homomorphism (3). We will also look at characteristic classes from a more abstract point

of view and introduce Pontrjagin, Euler and Chern classes, which are important special

cases of characteristic classes. Along this, we will state a generalization of the famous

Gauss-Bonnet theorem, which uses Euler classes. Lastly, we will compute the Chern class

of a simple example.

3.1 The Chern-Weil Homomorphism

Let E Ñ M be a smooth vector bundle over M of rank r, and let → be a connection

on E. Let tUςuς be a trivializing open cover and let eς “ reς1 , . . . , eςr s be a frame of E

over Uς. Denote by $ς the curvature matrix of → over Uς relative to eς. Now consider a

homogeneous invariant polynomial P pXq of degree k on glpr,Rq. Then for all α,β, P p$ςq
is a 2k-form on Uς and on overlaps Uς X Uφ the two forms P p$ςq and P p$φq coincide,

because of invariance of P and the change of basis formula for $. Therefore, P and →
induce a global 2k-form P p$q.

Theorem 3.1. In the above setting, the global 2k-form P p$q is closed, and its cohomology

class in H2kpMq is independent of the connection →.

Proof. Recall that we proved that the Ad GLpr,Rq-invariant polynomials on glpr,Rq are

generated by the trace polynomials #1pXq, . . . ,#rpXq. Therefore it su”ces to prove the

theorem for the trace polynomials.

By Proposition 2.3 and the generalized second Bianchi identity we can compute

d trp$kq “ trpd$kq
“ trp$k ^ ↽ ´ ↽ ^ $kq
“ trp$k ^ ↽q ´ trp↽ ^ $kq
“ trp$k ^ ↽q ´ p´1q2ktrp$k ^ ↽q
“ 0,

since $k is a matrix of di!erential forms of even degree 2k. This proves the first part of

the theorem.

Next, we consider two connections →0,→1 on E. Given a frame e “ e1, . . . , er of E on an

open set U , we denote by ↽0,↽1 and $0,$1 the connection and curvature matrices of →0
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and →1 relative to e. Observe that

→t :“ p1 ´ tq→0 ` t→1

defines a connection on E for every t P r0, 1s and denote by ↽ and $ the connection and

curvature matrix of →t relative to e. For any smooth vector field X on U ,

→t
Xej “

`
p1 ´ tq→0

X ` t→1
X

˘
ej

“
`
p1 ´ tqp↽0qij ` tp↽1qij

˘
pXqei

shows that ↽ “ p1 ´ tq↽0 ` t↽1 varies smoothly with t. So by the structural equation,

$ “ d↽ ` ↽ ^ ↽

also varies smoothly with t and we can di!erentiate the trace polynomials #k of $

d

dt
#kp$q “ d

dt
trp$kq

“ tr

ˆ
d

dt
$k

˙

“ tr
´

9$ ^ $k´1 ` $ ^ 9$ ^ $k´2` ¨ ¨ ¨ ` $k´1 ^ 9$
¯

“ k tr
´
$k´1 ^ 9$

¯

by Proposition 2.8 and Proposition 2.3 because $ is a matrix of 2-forms. Also by Proposi-

tion 2.8, the exterior derivative and taking the trace commute with the derivative in time,

so again by the structural equation

tr
´
$k´1 ^ 9$

¯
“ tr

ˆ
$k´1 ^ d

dt
pd↽ ` ↽ ^ ↽q

˙

“ tr
´
$k´1 ^ d 9↽ ` $k´1 ^ 9↽ ^ ↽ ` $k´1 ^ ↽ ^ 9↽

¯

“ tr
´
$k´1 ^ d 9↽ ´ ↽ ^ $k´1 ^ 9↽ ` $k´1 ^ ↽ ^ 9↽

¯

“ tr
´
$k´1 ^ d 9↽ `

´
d$k´1

¯
^ 9↽

¯

“ tr
´
d

´
$k´1 ^ 9↽

¯¯

“ d
´
tr

´
$k´1 ^ 9↽

¯¯
.

Here, we also used the generalized second Bianchi identity and that ↽ is a matrix of

1-forms. Integration over time yields

#kp$1q ´ #kp$0q “
$ 1

0

d

dt
#kp$qdt
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“
$ 1

0
d

´
k tr

´
$k´1 ^ 9↽

¯¯

“ d

$ 1

0
k tr

´
$k´1 ^ 9↽

¯
.

Note that under a change of frame re “ ea, we have 9r↽ “ a´1 9↽a, because a is independent

of time. Hence r$k´1^ 9r↽ “ a´1
`
$k´1 ^ 9↽

˘
a, and since the trace polynomials are invariant

under conjugation by invertible matrices, tr
`
$k´1 ^ 9↽

˘
induces a global form. That is,

#kp$1q ´#kp$0q “ d
%1
0 k tr

`
$k´1 ^ 9↽

˘
is a global equation, so the cohomology classes of

#kp$0q and #kp$1q coincide.

The theorem shows that for any vector bundle E Ñ M of rank r, the map

cE : Invpglpr,Rq Ñ H‹pMq,
P pXq !Ñ rP p$qs,

(3)

is a well-defined algebra homomorphism, called the Chern-Weil homomorphism.

Assume that F Ñ M is a vector bundle, isomorphic to E. That is there exist smooth

maps ▷ : E Ñ F , ↼ : F Ñ E such that

i) the diagrams

E F

M M

↽

⇀E ⇀F

idM

and

F E

M M

⇁

⇀F ⇀E

idM

commute,

ii) ▷ and ↼ restrict to linear maps ▷p : Ep Ñ Fp and ↼p : Fp Ñ Ep for all p P M ,

iii) ▷ ˝ ↼ “ idF and ↼ ˝ ▷ “ idE .

Now let tUςuς be a trivializing cover of M with frames eς for E and denote by ↽ς the

connection matrices of a connection→E on E relative to eς. Then, id‹
M peςq defines a frame

on id´1
M pUςq “ Uς for F and the pullbacks id‹

M p↽ςq “ ↽ς of the connection matrices, define

a connection→F on F with the same connection matrices as the connection→E . Therefore,

the curvature matrices $E
ς of →E and the curvature matrices $F

ς of →F coincide. Hence

for a homogeneous invariant polynomial P pXq, we have P p$Eq “ P p$F q. That is, the

cohomology class rP p$qs does only depend on the isomorphism class of the vector bundle

E Ñ M . This leads us to the following more general definition of a characteristic class.
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Definition 3.2. A characteristic class on real vector bundles associates to each manifold

a map

cM :

#
isomorphism classes of real

vector bundles over M

+
Ñ H‹pMq,

such that for any smooth map f : N Ñ M between smooth manifolds and any vector

bundle E Ñ M

cN pf‹Eq “ f‹cM pEq.

Denote by V ectrpMq the set of all isomorphism classes of rank r vector bundles over M .

Then the definition is equivalent to the commutativity of the diagram

V ectrpMq HrpMq

V ectrpNq HrpNq,

cM

f‹ f‹

cN

also called naturality property.

We will prove that the cohomology class rP p$qs is a characteristic class. That is,

the map that assigns the cohomology class rP p$qs to a vector bundle E induces such a

commutative diagram, that is, it is natural. For this let E Ñ M be a vector bundle of rank

r over M with connection →E over E. Denote by ↽E
ς the connection matrices and by $E

ς

the curvature matrices over frames eς for E. Let f : N Ñ M be a smooth map between

smooth manifolds and denote by f‹E the pullback bundle over N . By Theorem 2.7 there

exists a unique connection →f‹E on f‹E with connection matrices f‹p↽ςq relative to the

frames f‹peςq. Hence, the curvature matrices $f‹E
ς relative to f‹peςq are

$f‹E
ς “ df‹p↽ςq ` f‹p↽ςq ^ f‹p↽ςq

“ f‹pd↽ς ` ↽ς ^ ↽ςq
“ f‹p$E

ς q.

Therefore, since f‹ is a homomorphism, P
´
$f‹E
ς

¯
“ P pf‹ `

$E
ς

˘
“ f‹P

`
$E
ς

˘
, or as a

diagram

E
“
P

`
$E

˘‰

f‹E
“
P

`
$f‹E˘‰ “

f‹P
`
$E

˘‰
f‹ “

P
`
$E

˘‰

3.2 Pontrjagin Classes

We proved that the ring Invpglpr,Rqq of invariant polynomials on glpr,Rq is generated

by the coe”cients fkpXq of the characteristic polynomial of p´Xq. This motivates to
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study the characteristic classes of these polynomials. The characteristic classes associated

to these coe”cient polynomials are called Pontrjagin classes.

For every vector bundle E Ñ M , there exist a Riemannian metric g and a connection

→ that is compatible with g. As proved in Theorem 3.1 the cohomology class rP p$qs
is independent of the connection. Hence, without loss of generality, we can always use

the Riemannian structure and compute characteristic classes with a metric connection.

In this case, the curvature matrix $ relative to an orthonormal frame e1, . . . , er is skew-

symmetric $i
j “ ´$j

i , thus, the trace vanishes 0 “ trp$q “ f1p$q. For odd k, $k is also

skew-symmetric

$k “ p´$T qk “ p´1qkp$kqT “ ´p$kqT .

Therefore, for odd k

trp$kq “ 0.

Let P pXq be a homogeneous invariant polynomial on glpr,Rq with odd degree k. Since

Invpglpr,Rqq is generated by the trace polynomials, we can write

P p$q “ Qp#1p$q, . . . ,#rp$qq.

Because P is homogeneous with odd degree, every monomial in Q must contain a trace

polynomial #jp$q of odd degree j. But for odd j, we have #jp$q “ trp$jq “ 0, hence

P p$q “ 0. Therefore fjp$q “ 0 for odd j, because these polynomials are homogeneous

and invariant. Thus the ring of characteristic classes on E is generated by

r#2p$qs, r#4p$qs, . . .

or by

rf2p$qs, rf4p$qs, . . .

Definition 3.3. The k-th Pontrjagin class pkpEq of a vector bundle E Ñ M is

pkpEq “
„
f2k

ˆ
i

2φ
$

˙&
P H4kpMq,

where the factor i
2⇀ is introduced to make other formulas sign free and ensure that pkpEq

is represented by a form that gives an integer when integrated over any submanifold of M

of dimension 4k. This property is also called integrality.

By definition of the coe”cient polynomials fk we have

det

ˆ
I ` i

2φ
$

˙
“ 1 ` f1

ˆ
i

2φ
$

˙
` ¨ ¨ ¨ ` fr

ˆ
i

2φ
$

˙
,
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so when we pass to cohomology

ppEq :“
„
det

ˆ
I ` i

2φ
$

˙&
“ r1s ` p1pEq ` ¨ ¨ ¨ ` pt r2 upEq,

and we call the expression ppEq the total Pontrjagin class of E.

In the case when M is a 4m-dimensional compact oriented manifold, a monomial

f2p i
2⇀$qa2f4p i

2⇀$qa4 ¨ ¨ ¨ f2t r2 up i
2⇀$qa2t r2 u with degree

2
´
a2 ` a4 ` ¨ ¨ ¨ ` a2t r2 u

¯
“ 4m,

can be integrated and the resulting number is called a Pontrjagin number of E. In the

case E “ TM , these numbers are simply called Pontrjagin numbers of M .

For direct sums of vector bundles we have the following formula.

Theorem 3.4. If E1 and E2 are vector bundles over M , then

ppE1 ‘ E2q “ ppE1qppE2q. (4)

The proof is a direct computation and can be found in [Tu17, Thm 24.6]. So, under

the assumption that a vector bundle E Ñ M is a direct product of two vector bundles

E “ F ‘ P , the product formula yields an easy way of computing ppEq.

3.3 Euler Classes

We will add more structure to our theory. Namely, we will consider an oriented Rieman-

nian vector bundle E Ñ M of rank r and polynomials that are invariant under actions that

respect this orientation. This will lead to a generalization of the well known Gauss-Bonnet

Theorem.

As for the tangent bundle, if there exists a nowhere vanishing section s P %p&rEq,
then we call E orientable. We then call two nowhere vanishing sections s, s1 P %p&rEq
equivalent, if s1 “ fs for a positive smooth function f . Then, the two resulting equivalence

classes are called orientations of E. We have the following simple criterion for orientability

of E.

Proposition 3.5. A vector bundle E of rank r is orientable if and only if the line bundle

&rE is trivial.

Proof. If the line bundle &rE is trivial, i.e. it is di!eomorphic to M ˆ R, then we can

define the nowhere vanishing section

s : M Ñ M ˆ R, p !Ñ pp, 1q.
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If there exists a nowhere vanishing section s P %p&rEq, then we can define

↼ : &rE Ñ M ˆ R, x !Ñ pφpxq,εpxqq,

where εpxq is the unique real number such that x “ spφpxqqεpxq. Since s is nowhere

vanishing and x and spφpxqq are both elements of &rE⇀pxq – Rr, there exists such a εpxq
and it is unique. The inverse of ↼ is given by

↼´1 : M ˆ R Ñ &rE, pp, rq !Ñ sppqr.

This can be checked by direct computation. Also, ↼ and ↼´1 are smooth, because φ and

s are. Hence, ↼ is a di!eomorphism and &rE is trivial.

From now on, we assume that E is orientable and fix an orientation of E. Let ◁ P %p&rEq
be a nowhere vanishing form that represents this orientation. A frame re1, . . . , ers on an

open set U & M is said to be positively oriented, if e1 ^ ¨ ¨ ¨ ^ er “ f◁|U for some

positive smooth function f on U . Now let us also fix a Riemannian metric g on E and

a connection → that is compatible with the metric. Restrict the computation of the

connection and curvature matrices to positively oriented orthonormal frames only. Then

for two such frames re and e on an open set U , that are related by a special orthogonal

matrix a : U Ñ SOprq, re “ ea, we have the basis change formula

r$ “ a´1$a.

Recall that the curvature matrix of a metric connection is skew symmetric $i
j “ ´$j

i .

The space of all real skew symmetric r ˆ r matrices is is the Lie algebra soprq. A poly-

nomial on soprq is a polynomial in the entries of X “ rxijs, where X is a matrix with

indeterminate entries that satisfy xij “ ´xji for all 1 $ i, j $ r. Denote by Invpsoprqq
the ring of SOprq-invariant polynomials on soprq. As we did before, we want to find gen-

erators of Invpsoprqq. Since Ad GLpr,Rq-invariant polynomials on glpr,Rq are also Ad

SOprq-invariant polynomials on soprq, the trace polynomials are a subset of generators of

Invpsoprqq. We will show that for r even, we get an additional generator of Invpsoprqq,
called the Pfa”an. For r odd, the trace polynomials already generate Invpsoprqq. A proof

of this can be found in [KN69, Thm. XII. 2.7]. We will continue by studying the Pfa”an.

The Pfa”an is a square root of the determinant of an even dimensional skew symmetric

matrix. The existence follows from a basic theorem about skew symmetric matrices in

symplectic geometry (cf. [Can08, Thm. 1.1]). For this, let X be an r ˆ r skew symmetric

matrix over a field F and let V be the vector space F r. Define the bilinear form

b : V ˆ V Ñ F, px, yq !Ñ xTXy.
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This bilinear form is antisymmetric

bpx, yq “ xTXy “
`
xTXy

˘T “ yTXTx “ ´yTXx “ ´bpy, xq.

Define the subspace O :“ tv P V |bpv, ¨q “ 0u & V and choose a basis po1, . . . , omq of O.

Let U0 & V be a complementary subspace of O. Then for any u1 P U0, we can find

w1 P U0 such that bpu1, w1q “ 1 “ ´bpw1, u1q. Set U1 :“ spantu1, w1u and U1 :“
tw P U0|bpw, uq “ 0 for all u P U1u. Then we have U0 “ U1 ‘ U1. We can proceed by

induction and get a basis pu1, w1, . . . , um, wm, o1, . . . , onq of V with 2m ` n “ r. Now,

define the matrix

A :“

¨

˚̋
| | | | | |
u1 w1 . . . um wm o1 . . . on

| | | | | |

˛

‹‚.

So by changing the basis via A, the matrix that represents the bilinear form b is given by

ATXA “

¨

˚̊
˚̊
˚̊
˚̊
˚̊
˝

S
. . .

S

0
. . .

0

˛

‹‹‹‹‹‹‹‹‹‹‚

,

with

S “
˜

0 1

´1 0

¸
.

If b is nondegenerate, then O “ t0u and

ATXA “

¨

˚̊
˝

S
. . .

S

˛

‹‹‚“: J2m,

moreover,

detpAq2detpXq “ detpATXAq “ detpSqm “ 1

which implies

detpXq “ 1

detpAq2 .

Note that 1
detpAq P F , that is, detpXq is a perfect square in F . The following theorem

generalizes this result.

Theorem 3.6. Let X “ rxijs be an even dimensional skew-symmetric matrix of indeter-
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minates. Then there exists a polynomial QpXq P Zrxijs such that

detpXq “ QpXq2.

This polynomial QpXq is unique up to the sign

detpXq “ QpXq2 “ p´QpXqq2

We define the Pfa”an of X to be the unique polynomial PfpXq, that satisfies detpXq “
PfpXq2 and the normalization condition PfpJ2mq “ 1. A proof of Theorem 3.6 can be

found in [Tu17, Thm. 25.3].

Example 3.1. The determinant of the 4 ˆ 4 skew-smmetric matrix

X “

¨

˚̊
˚̊
˝

0 a b c

´a 0 d e

´b ´d 0 f

´c ´e ´f 0

˛

‹‹‹‹‚

is given by the polynomial

a2f2 ` b2e2 ` c2d2 ` 2acdf ´ 2abef ´ 2bcde “ paf ´ be ` cdq2 “ QpXq2,

with QpXq :“ af ´ be` cd. If we evaluate at a “ f “ 1, b “ c “ d “ e “ 0, we get X “ J4

and QpXq “ 1. Hence by the normalization condition, the Pfa!an of X is

PfpXq “ QpXq.

Proposition 3.7. For 2m ˆ 2m matrices of indeterminates A “ raijs and X “ rxijs with

X skew-symmetric, we have

PfpATXAq “ detpAqPfpXq

as polynomials in Zraij , xijs.

Hence for A P SOprq and X P soprq we have

PfpA´1XAq “ PfpATXAq “ detpAqPfpXq “ PfpXq,

that is, PfpXq P Invpsoprqq.

Proof. For the Pfa”an of the skew-symmetric matrix ATXA we have

PfpATXAq2 “ detpATXAq “ detpAq2detpXq “ detpAq2PfpXq2,
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thus

PfpATXAq “ ˘detpAqPfpXq.

PfpATXAq and detpAqPfpXq are uniquely defined by A and X. Hence, either

PfpATXAq “ `detpAqPfpXq,

or

PfpATXAq “ ´detpAqPfpXq,

is true for all such A andX and it su”ces to evaluate at one particular A and one particular

X to determine the sign. For A “ I and X “ J2m we get

PfpITJ2mIq “ PfpJ2mq “ 1 “ detpIqPfpJ2mq.

So the sign is positive and the proposition follows.

We have shown that for an oriented Riemannian vector bundle E, of even rank r, with

connection → that is compatible with the metric, the Pfa”an of the skew-symmetric

curvature matrix $ induces a global r-form on M . We denote this global form by Pfp$q.
This form is closed and its cohomology class is independent of the connection. For this,

see Chapter 4.4. We define the Euler class of the oriented Riemannian bundle E as

epEq :“ rPfp 1

2φ
$qs.

Again, the factor 1
2⇀ ensures integrality of the Euler class. The Euler class allows us to

formulate a generalized Gauss-Bonnet Theorem. Let us recall the classical result.

Theorem 3.8. Let M be a compact oriented 2-dimensional manifold embedded into R3.

Then $

M
KdS “ 2φ0pMq,

where 0pMq denotes the Euler characteristic of M and
%
M KdS is the surface integral of

the Gaussian curvature.

Definition 3.9. The Euler characteristic of a compact topological manifold M is the al-

ternating sum of the Betti numbers

0pMq “
dim Mÿ

i“0

p´1qibipMq “
dim Mÿ

i“0

p´1qirkpHipMqq.

Here, HipMq denotes the i1th singular homology group of M .

The generalized result is the following.
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Theorem 3.10. Let M be a compact, oriented Riemannian manifold of even dimension

with a connection on the tangent bundle TM that is compatible with the metric. Let

Pfp$q be the Pfa!an of the curvature matrices relative to prositively oriented orthonormal

frames. Then $

M
Pfp 1

2φ
$q “ 0pMq.

3.4 Chern Classes

The Chern Classes are the complex analogon of Pontrjagin classes. Let φ : E Ñ
M be a complex vector bundle of rank r with a connection →. Also let QpXq be a

homogeneous AdpGLpr,Cqq-invariant polynomial of degree k on glpr,Cq. As in the real

case, this invariant polynomial induces a global complex valued 2k-form Qp$q, which is

closed and its cohomology class is independent of the connection. For this, see Chapter 4.4.

This leads to the definition of Chern Classes cipEq
„
detpI ` i

2φ
$q

&
“ 1 ` c1pEq ` ¨ ¨ ¨ ` crpEq.

The Chern Classes cipEq are natural and satisfy (4).

The top Chern class crpEq “
“
detp i

2⇀$q
‰
may be identified with the Euler class cpEq of

E, when viewing E as a real orientable vector bundle of rank 2r. Since E is orientable,

we may restrict to orthonormal frames when calculating $, which yields that $ is skew

hermitian

$ “ ´$
T
.

Skew hermitian matrices can be diagonalized by a unitary matrix A

A´1$A “

¨

˚̊
˝

iε1

. . .

iεr

˛

‹‹‚,

where ε1, . . . ,εr are real by the skew hermitian property. Hence detpi$q “ p´1qrε1 ¨ ¨ ¨εr.

Then the associated real skew symmetric 2r ˆ 2r-matrix is

$R :“

¨

˚̊
˚̊
˚̊
˚̋

0 ´ε1

ε1 0
. . .

0 ´εr

εr 0

˛

‹‹‹‹‹‹‹‚

.

With Proposition 3.7, we can compute the Pfa”an

Pfp$Rq “ PfpBT p´$RqBq “ detpBqPfp´$Rq “ p´1qrPfp´$Rq “ p´1qrε1 ¨ ¨ ¨εr,
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where

B “

¨

˚̊
˚̊
˚̊
˚̋

0 1

1 0
. . .

0 1

1 0

˛

‹‹‹‹‹‹‹‚

is a 2r ˆ 2r-matrix with determinant p´1qr. Hence,

crpEq “ det

ˆ
i

2φ
$

˙
“ 1

p2φqr p´1qrε1 ¨ ¨ ¨εr “ Pf

ˆ
1

2φ
$R

˙
“ epEq.

3.5 The Tautological Line Bundle over CP1

In this section we will apply the theory to the tautological line bundle over the complex

projective line and compute its first Chern Class.

On C2zt0u define the equivalence relation „ by

pz1, z2q „ εpz1, z2q

for all ε P Czt0u. Denote the equivalence class of pz1, z2q by rz1 : z2s. Then the complex

projective line is the quotient space

CP1 :“ C2zt0u {„ “
’

rz1 : z2s|pz1, z2q P C2zt0u
(

with the quotient topology. CP1 is a 1-dimensional complex manifold. For this, define

U1 :“ trz1 : z2s|z1 ‰ 0u ϖ1 : U1 Ñ C, rz1 : z2s !Ñ z2
z1

U2 :“ trz1 : z2s|z2 ‰ 0u ϖ2 : U2 Ñ C, rz1 : z2s !Ñ z1
z2

,

with inverse maps

ϖ´1
1 : C Ñ U1, z !Ñ r1 : zs

ϖ´1
2 : C Ñ U2, w !Ñ rw : 1s.

Then tUi,ϖiui“1,2 defines a holomorphic atlas on CP1 with transition functions

ϖ2|U1XU2 ˝ ϖ1|´1
U1XU2

: Czt0u Ñ Czt0u, z !Ñ 1

z
,

ϖ1|U1XU2 ˝ ϖ2|´1
U1XU2

: Czt0u Ñ Czt0u, w !Ñ 1

w
.

For every point p “ rz1 : z2s P CP1 define the line Lp “ tεpz1, z2q|ε P Cu & C2 and define
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the tautological line bundle as the total space

L :“ tpp, vq|p P CP1, v P Lpu

with projection map pp, vq !Ñ p. This defines a complex 1-dim vector bundle over CP1,

called the tautological line bundle.

For a 1-dimensional vector bundle like L, the curvature form $ is a 1 ˆ 1-matrix of

2-forms, i.e. just a 2-form. Hence the Chern Class c1pLq is just a multiple of r$s, which
follows directly from the formula

1 ` c1pLq “
„
det

ˆ
I ` i

2φ
$

˙
s
&

“ 1 ` i

2φ
r$s .

Thus, we just have to compute $ to compute the first chern class

c1pLq “ i

2φ
r$s.

L is a subbundle of the product vector bundle CP1 ˆ C2 and therefore, the standard

hermitian metric on CP1 ˆ C2 restricts to a hermitian metric h on L. To compute h in

local coordinates, consider the frames

˜
r1 : zs,

˜
1

z

¸¸
, and

˜
rw : 1s,

˜
w

1

¸¸

of L over U1 and U2, defined using local coordinates z, w given by ϖ1 and ϖ2 respectively.

So, on U1, h is given by the function

hpzq “ 1 ` zz “ 1 ` |z|2,

and on U2, h is given by

hpwq “ 1 ` ww “ 1 ` |w|2.

On U1 with frame s “
˜

r1 : zs,
˜
1

z

¸¸
, we can compute the connection matrix ↽1 of the

metric connection. For this, let X “ a B
Bz ` b B

Bz be a tangent vector field over U1, where

apzq, bpzq are smooth complex functions on C. Write z “ x ` iy, for x, y real. Then

Tϖ´1
1 pzqCP

1 “ spanR

" B
Bx,

B
By

*
.

This implies apzq “ bpzq. So by imposing metric compatibility of the connection → and

by the definition of the connection matrix →xs “ ↽pXqs, we get

dhps, sqpXq “ Bp1 ` zzqpXq ` Bp1 ` zzqpXq
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“ zdz

ˆ
a

B
Bz ` b

B
Bz

˙
` zdz

ˆ
a

B
Bz ` b

B
Bz

˙

“ az ` bz

“ az ` az
‹“ hp→Xs, sq ` hps,→Xsq
“ hp↽1pXqs, sq ` hps,↽1pXqsq
“

´
↽1pXq ` ↽1pXq

¯
hps, sq.

Here we imposed metric compatibility of → in ‹. Rearranging this, yields

↽1pXq ` ↽1pXq “ az ` az

1 ` zz
.

By [Kob87, Prop. 1.3.9 and Prop. 1.4.9], ↽ can be chosen to be a p1, 0q form. Thus,

↽1 “ zdz

1 ` zz
.

Since U1 is just CP1 minus a point, this extends uniquely to a 1-form ↽ on the whole

manifold. In the same way, we can compute ↽2 on U2 and check that ↽1 and ↽2 satisfy

Theorem 2.5.

Having computed ↽ in coordinates on U1, directly gives $ on U1, using the second

structural equation

$ “ d↽ ` ↽ ^ ↽

“ d
zdz

1 ` |z|2

“ B
Bz

z

1 ` |z|2dz ^ dz ` B
Bz

z

1 ` |z|2dz ^ dz

“ 1

1 ` |z|2dz ^ dz ´ zz

p1 ` |z|2q2dz ^ dz

“ 1

p1 ` |z|2q2dz ^ dz.

Because U1 is dense in CP1, this fully determines the Chern Class.

c1pLq “ i

2φ

1

p1 ` |z|2q2 rdz ^ dzs.

Changing to polar coordinates z “ reiθ yields

dz ^ dz “ e´iθpdr ´ ird1q ^ eiθpdr ` ird1q
“ 2irdr ^ d1,
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and thus

c1pLq “ ´ r

φp1 ` r2q2 rdr ^ d1s.

Since U1 is CP1 minus one point, integrating over CP1 is the same as integrating over

U1 – C – R2
$

CP1
c1pLq “ ´ 1

φ

$ 8

0
dr

r

p1 ` r2q2
$ 2⇀

0
d1 “ ´1.

We see that the first Chern Class is indeed integral.
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4 Generalization to Principal Bundles

In this chapter, we want to briefly motivate that the theory of connections on vector

bundles can be seen as a special case of the theory of connections on principal bundles.

We will just illustrate the main ideas and refer to [Tu17, Ch. 6] for the details. In this

chapter, G will denote a Lie group with associated Lie algebra g.

4.1 Principal Bundles

We say that a smooth map

µ : M ˆ G Ñ M

is a smooth right action of G on M , if for all x P M and all g, h P G

i) xe “ x and

ii) pxgqh “ xpghq,

where we used the short notation xg :“ µpx, gq. A left action ◁ : GˆM Ñ M is analogously

defined. The action is called free, if for every point x P M , the stabilizer Stabpxq is the

trivial subgroup teu ’ G. A manifold M together with a left/right action of G on M is

called a left/right G-manifold. A map f : M Ñ N between two right G-manifolds is called

right G-equivariant, if for all x P M and all g P G

fpxgq “ fpxqg,

and similarly we define left G-invariant maps. If f : M Ñ N for a right G-manifold M

and a left G-manifold N and for all x P M satisfies for all g P G

fpxgq “ g´1fpxq “: fpxqg,

then we call f G-invariant and g´1p “ pg defines a right action on N Q p.

Let E,M,F be manifolds and φ : E Ñ M be a smooth surjection. A local trivializa-

tion with fiber F for φ is an open cover tUςu of M with a collection of fiber preserving

di!eomorphisms ϖU : φ´1pUq Ñ U ˆ F for U P tUςu, such that the following diagram

commutes

φ´1pUq U ˆ F

U

⇀

ϖU

ρ .

Here, ⇀ : U ˆ F Ñ U denotes the projection onto the first coordinate. A fiber bundle

with fiber F is a smooth surjection φ : E Ñ M with local trivializations with fiber F .

Let E Ñ M be such a fiber bundle, then at each x P M , the fiber Ex :“ φ´1ptxuq is

di!eomorphic to F .
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A fiber bundle φ : P Ñ M with fiber G is called a principal G-bundle, if G acts smoothly

and freely on P on the right and the fiber preserving di!eomorphisms

ϖU : φ´1pUq Ñ U ˆ G

are G-equivariant. Note that G acts from the right on U ˆ G by

px, gqh “ px, ghq,

for x P M and g, h P G.

Example 4.1. The simplest example for a principal G-bundle is the product bundle MˆG

with the right action px, gqh “ px, ghq.

4.2 The Frame Bundle of a Vector Bundle

Let V be a real vector space of dimension r and denote by FrpV q the set of all ordered

basis. Write an element v P FrpV q as a row vector of vectors v1, . . . , vr P V

v :“ rv1, . . . , vrs.

Then, multiplication from the right by elements from GLpr,Rq defines a free right action

on FrpV q. Fixing a v P FrpV q, this right action induces a bijection

ϖv : GLpr,Rq Ñ FrpV q, A !Ñ vA,

by the orbit-stabilizer theorem. Let tU,↼Uu be a smooth atlas onGLpr,Rq, then tϖvpUq,↼U˝
ϖ´1
v |ϖvpUqu defines a smooth atlas on FrpV q, that makes ϖv a di!eomorphism. We say that

the bijection ϖv transfers the manifold structure from GLpr,Rq to FrpV q. One can show

that this atlas is independent of the choice of v. We call FrpV q together with this smooth

structure the frame manifold of V .

Doing this fiberwise for a rank r real vector bundle E Ñ M , defines the following

principal GLpr,Rq-bundle. Define

FrpEq “
(

xPM
FrpExq

and the map

φ : FrpEq Ñ M,FrpExq !Ñ x.

Then the local trivializations ϖU : E|U Ñ U ˆ Rr induce bijections

)ϖ|U : FrpEq|U Ñ U ˆ FrpRrq

that transfer the manifold structure to FrpEq. This give φ : FrpEq Ñ M the structure of
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a fiber bundle with fibers FrpRrq which is di!eomorphic to GLpr,Rq. One can check that

FrpEq is indeed a principal GLpr,Rq-bundle, which we call the frame bundle of E.

This procedure also works if we only consider frames with positive orientation (cf. Euler

Class), or complex vector bundles (cf. Chern Class). In these cases we get a principal

SLprq-bundle or a principal GLpr,Cq-bundle respectively.

4.3 Connections on Principal Bundles

A connection on a vector bundle can be described by a matrix-valued 1-form, the con-

nection form. For a principle G-bundle P Ñ M , there exists a g-valued 1-form ↽ on P that

generalizes the idea of a connection, called an Ehresmann connection. The generalization

of the curvature form is a g-valued 2-form on P given by

$ “ d↽ ` 1

2
r↽,↽s,

where r¨, ¨s denotes the Lie-bracket on g.

Consider a vector bundle E Ñ M with connection → on E and the associated frame

bundle FrpEq Ñ M . In this case, there is a way to construct an Ehresmann connection

on FrpEq, using the connection →. This Ehresmann connection is called the Ehresmann

connection on FrpEq determined by →. The two resulting connection forms and also the

two curvature forms are related to each other by the following theorem (cf. [Tu17, Thm.

29.10 and Thm. 30.2]).

Theorem 4.1. Let → be a connection on a vector bundle E Ñ M , ↽ the associated

Ehresmann connection determined by → and $ the curvature of the Frame bundle FrpEq.
Then the connection matrix ↽e and the curvature matrix $e relative to a frame e for E

over an open set U & M are given by the pullbacks

↽e “ e‹↽

$e “ e‹$,

where e is viewed as a section e : U Ñ FrpEq.

4.4 Characteristic Classes on Principal Bundles

Let P Ñ M be a principal G-bundle for a Lie group G with Ehresmann connection ↽

and curvature $. If we fix a basis e1, . . . , er on the Lie algebra g, the connection can be

written as the linear combination

$ “ $iei.
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Here the coe”cients $i are 2-forms. A real valued polynomial f of degree k on g can be

written as the linear combination

f “ fIω
i1 ¨ ¨ ¨ ωik ,

where the fI are real coe”cients and ω1, . . . , ωr is the dual basis to e1, . . . , er. Evaluating

f at $ then yields the 2k-form

fp$q “ fI$
i1 ^ ¨ ¨ ¨ ^ $ik ,

which is independent of the basis e1, . . . , er. To check this, let re1, . . . , rer be another basis

of g. That is there exists an invertible matrix a “ raji s such that

rei “ eja
j
i ,

and with respect to this basis, we have the linear combination

$ “ r$irei “ r$ieja
j
i ,

which yields $j “ r$iaji . To compute the coe”cients rfI in the r basis, we use ωk “ rωjakj
and get

f “ fIω
i1 ¨ ¨ ¨ ωik

“ fIrωj1ai1j1 ¨ ¨ ¨ rωjkaikjk
“ fIa

i1
j1

¨ ¨ ¨ aikjk rωj1 ¨ ¨ ¨ rωjk

“ rfJrωj1 ¨ ¨ ¨ rωjk ,

hence rfJ “ fIa
i1
j1

¨ ¨ ¨ aikjk . Combining this, shows that fp$q is independent of the chosen

basis

fI$
i1 ^ ¨ ¨ ¨ ^ $ik “ fI

´
r$j1ai1j1

¯
^ ¨ ¨ ¨ ^

´
r$jkaikjk

¯

“ fIa
i1
j1

¨ ¨ ¨ aikjk r$j1 ^ ¨ ¨ ¨ ^ r$jk

“ fJ r$j1 ^ ¨ ¨ ¨ ^ r$jk .

The generalization of Theorem 3.1 to principal bundles is the following (cf. [Tu17, Thm.

32.2]).

Theorem 4.2. Let φ : P Ñ M be a principal G-bundle with connection ↽ and curvature

$ and let f be an AdpGq-invariant polynomial on g, then

i) There exists a 2k-form & on M such that fp$q is the pullback φ‹&.

ii) & is closed.
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iii) r&s is independent of the connection ↽.

This allows us to define the Chern-Weil homomorphism for principal bundles

w : Invpgq Ñ H‹pMq
f !Ñ r&s, with fp$q “ φ‹&.

Remark. Now we have two (a priori di”erent) procedures of calculating characteristic

classes of a vector bundle. We can use the theory from Chapter 3, or we can associate

a frame bundle that respects the structure and use the theory from Chapter 4. It turns

out, that both procedures of calculating characteristic classes are equivalent. Therefore,

we don’t have to show by hand, that Euler and Chern classes are well defined. Instead,

we construct the associated frame bundle, that respects the given structure and then apply

Theorem 4.2 to conclude, that the characteristic class is well defined. For more details,

we refer to [Tu17, Ch. 32].
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