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Introduction

Within Differential Geometry, a characteristic class is an isomorphism invariant of a
vector bundle, most often constructed via curvature and suitable polynomials. It assigns
a cohomology class to a vector bundle, used to distinguish non-isomorphic vector bundles
and thus help classify vector bundles over a given manifold. The theory of characteristic
classes yields some remarkable theorems, like the generalized Gauss-Bonnet Theorem,
sometimes also called the Chern-Gauss-Bonnet Theorem (Theorem 3.10 in this paper).

The Chern-Gauss-Bonnet Theorem can be generalized to the Atiyah-Singer index the-
orem, which relates the analytical index to the topological index of an elliptic differential
operator on a compact manifold, and finds many applications in theoretical physics (cf.
[Nak18]). Although we will not cover index theorems and applications in Physics in this
paper, these are main motivations to study characteristic classes.

In Chapter 1, we will study invariant polynomials and will find generators of the ring
of invariant polynomials. Thus, when computing characteristic classes, we can restrict to
these generators. Then, in Chapter 2, we will introduce connection and curvature matrices.
These are another fundamental ingredient to construct a characteristic class. In Chapter 3,
we will finally introduce characteristic classes. Pontrjagin, Euler and Chern classes are
important special cases of characteristic classes, also discussed in this section. Lastly, in

Chapter 4 we will motivate how the theory can be generalized to principal bundles.
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1 Invariant Polynomials

Characteristic classes are constructed via polynomials P(X) in the entries of a square
matrix X = [:v;] of indeterminates that are invariant under conjugation by invertible ma-
trices A, that is P(X) = P(A71X A). We therefore have to understand these polynomials

first, before studying characteristic classes.

1.1 Invariant Polynomials on gl(r, R)

We will start by showing some purely algebraic results about polynomials. For this,
let R be a ring (here we always mean a commutative and unitary ring, even if we just
write ring) and denote by R[X1,...,X,] = R[X] the polynomial ring in the variables
Xi,...,X, = X. Evaluating a polynomial P € R[X] at a tupel of elements r1,...,r, € R

defines the polynomial function

N

P:R" > R,yri,...,rn— P(ri,...,ry).

It is well known, that the map P — P is in general not injective. For example take
R = Z/2Z and the two distinct polynomials P = 0 and Q = X2 — X, for which P = Q.

However for infinite fields we have the following.

Theorem 1.1. Let F be an infinite field. Consider the polynomial ring F[X] in the
variables X over the field F. Then the map F[X] 3 P — P € Fun(F",F) is injective.

Proof. Note that P — Pisa ring homomorphism from the polynomial ring in n variables
to the ring of functions F" — F. We show that the kernel of this map is trivial. We do
so by induction over the number of variables n. For n = 1 let P be a polynomial in one
variable such that P = 0. Since F is infinite, this means that P has infinitely many roots
and therefore has to be the trivial polynomial. Now suppose, that the statement is true
for all polynomials up to (n — 1) variables. Let P be a polynomial of n variables such that

P is the zero function. We write

m
P(X1,..., Xn-1,Xn) = > Po(X1,..., Xn1)XE.
k=0

Then for fixed ay,...,an—1 € F, P(ay,...,an_1,2y,) is the zero function in , and there-
fore P(ay,...,an—1,X,) has to be the trivial polynomial in one variable, that is all the
coefficients Py (a1,...,a,_1) are zero. The point (a1, ...,a,_1) € F*~! was arbitrary, and

hence P, has to be the trivial function. By induction hypothesis, all the P ’s have to be
trivial polynomials, and hence » ", Pp(X1, ... , Xn—1)XE has to be trivial. O

We will use Theorem 1.1 to study polynomials that take a square matrix (as elements

of a Lie Algebra) as input and are invariant under the adjoint representation of the Lie
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group. However, we will give a more general definition of these invariant polynomials. This
generalization allows us to also generalize the theory of characteristic classes to principal
bundles, cf. Chapter 4.

Let V be a vector space of dimension n over a field F' and let V* be the dual vector
space. We denote by Sym”(V*) the k-th symmetric power of V* and call its elements
polynomials of degree k on V. Let ey, ..., e, be a basis of V with corresponding dual basis

el,...,e" of V*. We call a function f : V — F a polynomial of degree k on V, if f can be

f= > aE,

I=(iy,...ix)
1<i1 << <n

expressed as

where ¢! denotes the symmetrization of £’ - - - g,

Definition 1.2. Let G be a Lie group with corresponding Lie algebra g. Let f: g — R be
a polynomial on the real vector space g. We say that f is Ad(G)-invariant, if for all g € G
and all X e g

f((Ad(g)X) = f(X).

The Lie algebra of the matrix Lie group GL(r,R) is the space of all real r x r-matrices
gl(r,R) = R™". A polynomial P(X) on gl(r,R) is a polynomial in the entries of X = [x;],
an r X r-matrix with indeterminate entries. P(X) is Ad(GL(r,R))-invariant if for all
Ae GL(r,R)

P(X) = P(Ad(A™)X) = P(A"1XA).

Denote by Inv(gl(r,R)) the algebra of all Ad(GL(r,R))-invariant polynomials on gl(r, R).

If P(X)=P(A'XA) is true for all Ae GL(r,R) and real r x r-matrices X, that is it
is true as an equality of polynomial functions in Fun(R”Q,R), then Theorem 1.1 implies
that it is true as an equation of the polynomials, so P is Ad(GL(r,R))-invariant. For the
determinant this is clearly the case. For all real r x r-matrices X and all A € GL(r,R) we

have
det(A™ X A) = det(A) 1det(X)det(A) = det(X),

hence det(X) is an Ad(GL(r,R))-invariant polynomial on gl(r,R). Therefore, also the
characteristic polynomial ch_x () of any r x r-matrix (—X) is Ad(GL(r,R))-invariant
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Note that

det(\[+ X) = Z sgn(o) | |(AL+ X)ioi = Z X)Ark

€S, i=1

for some coefficient polynomials fx(X) on gl(r,R). Because the determinant is invariant

we have

Z Fe(X)NF = det(AI + X)
= det(A7Y (A + X)A)
_ Z fk IXA AT k
and hence f(X) = fr(A71XA) for all k by comparison of coefficients. That is, the
coefficient polynomials are also Ad(GL(r,R)-invariant. By the cyclic property of the

trace tr(ABC) = tr(BCA), we get that the trace polynomials ¥ (X) = tr(X*) are also
Ad(GL(r,R))-invariant.

Example 1.1. The constant coefficient of the characteristic polynomial ch_x(\) of the

r x r-matriz (—X) is just the determinant of X

fr(X) = det(X),

so in particular, the invariant polynomial det(X) can be written as a polynomial with
entries in f1(X),..., fr(X). Consider the 2 x 2-matix

T11 %12
X =
T2,1 X2

of indeterminate entries with determinant det(X) = x11222 — x12221. The first trace

polynomial is ¥1(X) = x11 + x22. For the second trace polynomial we compute

2
X2 T11 T T1,272,1 T1,171,2 + 1,222
= ) ,
T21%1,1 + 22721 2,1%1,2 + T3 9

s0 Xo(X) = 33%,1 + 221 2291 + x%Q. Observe that

det(X) = 3(E1(X))? - 555(X),

so the invariant polynomial det(X) (for a 2 x 2-matriz X ) can also be written as a polyno-
mial with entries in X1(X),Y2(X). The result holds true for r x r-matrices X and trace

polynomials up to order v for arbitrary r, but the computation gets very long.

In the next sections, we prove a generalization of this. Inv(gl(r,R) is generated by the
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coefficient polynomials f1(X),..., fr(X) or by the trace polynomials 3 (X),..., %, (X).
Then, in Example 1.2, we will use the developed theory to compute a polynomial in the

trace polynomials that equals the determinant of X for an r x r-matrix X for arbitrary r.

1.2 Generators of Inv(gl(r,C))

To find the generators of Inv(gl(r,R)), we first prove that Ad(GL(r,C))-invariant
polynomials on gl(r,C) are generated by the coefficient polynomials f;(X),..., fr(X) of
the characteristic polynomial det(Al + X). In the next section, we use this result to show

the real case
Inv(gl(r,R) = R[f1(X),..., fr(X)]

and use Newton’s identities to show that the trace polynomials 3;(X),..., %, (X) also
generate Inv(gl(r,R)).
Let P(X) be an Ad(GL(r,C)) invariant polynomial on gl(r,C). Then the restriction

of P to diagonal matrices

31
]S(tlv 7t7’) = P( )
by
defines a polynomial P in the variables t1,...,t,. Consider the permutation matrix
S=110 =S1eGL(r,C),

Ir—2)x(r—2)

then because P is invariant, we get

~

P(t1,ta,...,t,) = P(diag(ty,ta, ..., t.))
(S_ldiag(tlat% s 7t7“)S)
(diag(t27t17 s atT))

(

and similar for all other transpositions, and therefore for all permutations o € S;., so Pisa
symmetric polynomial. We denote by C[t1, ... ,tr]ST the algebra of symmetric polynomials
in the variables t1,...,t, and by Inv(gl(r,C)) the Ad(GL(r,C)) invariant polynomials on

gl(r,C).

Theorem 1.3. The map

¢ : Inv(gl(r,C)) — Clty, ..., t.]°"
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P(X) — P(ty,...,t;) = P(diag(ty, ..., 1)),

where diag(ti,...,t,) denotes the diagonal matriz with entries ti,...,t,, is a C-algebra

isomorphism.

For the proof we will need the following two lemmas.

Lemma 1.4. The set of diagonalizable complex r x r matrices is dense in C"*" = gl(r, C).
The proof can be found in the appendix of Tu’s book [Tul7, p. 312, proof of (1)].

Lemma 1.5 (Fundamental theorem of symmetric polynomials). For every symmetric
polynomial F(t1,...,t,) over a ring R there exists a unique polynomial G(uy,...,u,) over
R, such that F(ty,...,t,) = G(o1,...,0.), where

r
o9 =1, UlzZti, ngZtit]‘, 7Ur:1_[ti
=1

i<j i=1
are the elementary symmetric polynomials.

The proof is adapted from Prof. Dr. Richard Pinks lecture on algebra [Pin23, Thm. 7.3.8,
lecture from May 15 2023].

Proof. Every polynomial F' can uniquely be written as a finite sum

F =) Fy

d=0

where F,; are homogeneous polynomials of degree d. In the case where F' is symmetric, ev-
ery Fy is symmetric, so it suffices to prove the Lemma for symmetric F,;. If the statement
is correct, then G is isobaric with weight d, where u; has weight 4. This suggests that we de-

fineV := R[Ul, ceey ur]isobaric with weight d and W := R[th cee 7tr]symmetric and homogeneous of degree d»
¢q:V > W,G— G(o1,...,0.),

and prove that ¢4 is a module isomorphism. To show that this linear map is bijective, we

define an order on the monomials ' = t’f .-t in the following way
i>jre= I <pu<r:{Yv>p:i, =7, and i, > j,}.

Then the smallest monomial in ail ool s t’f+'”+i’" . t§2+"'+i* ~o-thr. We will use this
and induction to show bijectivity. For surjectivity, observe that ¢4(0) = 0, so assume
0 # F; e W, write Fy = Zaiti and let j be the minimal multiindex with a; # 0. By
symmetry of Fy; and minimality of j we must have j; = jo = -+ > j, (otherwise we could

switch two indices and get a smaller 7). This implies that there exists ¢ = (iy,...,4,) such
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that

j1:i1+---ir7 j2:i2+"'+ir7 jr:ir-

Now define G(uq,...,u,) = ajulf ---ulr | isobaric with weight
i+ gt iy = (i1 b i)+ (2 b)) b by = g1t e =d

and observe that
Fd(tl, o ,tr) — gbd(G) =F;— ajoil cee O’iT

r

does not contain the monomial ¢/, and because its the smallest monomial in Fj;, the result
does only contain bigger monomials. Since the number of multiindices j = (j1,...,Jr)

with Y’ j; = d is finite, by induction, we find finitely many G, ..., Gy such that
Fy— ¢a(G1) — ... — ¢a(Gr) = Fa — ¢a(G1 + ... + Gi) = 0,

that is, ¢4 is surjective. Injectivity is proven similar. Let G € ker(¢y) and write
G(ui,...,u;) = Y bju’, where the multiindices are so that i1 +2ip + - - +7i, = d. Assume
by contradiction that there is a b; # 0, and let j be the minimal multiindex with b; # 0.

Then for all ¢ # j in the sum we have i > j and therefore
(Zl++27‘,22++lr,,27‘) > (]1++jT7j2++ijva) = J7
hence for G we have

— ( i J1 j
G(o1,...,00) = mef o+ bjoyt ol
i#]

where in ), y bmil -+ o’ only monomials strictly bigger than ¢/ occur, and in bja{1 gl
the smallest monomial is t/. By hypothesis that G(o1,...,0.) = 0 we conclude that b; = 0.
This implies b; = 0 for all multiindices ¢ and therefore G = 0. This proves injectivity and

thus proves the lemma. ]

Proof of Theorem 1.3. Suppose ¢(P) = 0, that is the Ad(GL(r,C))- invariant polynomial
vanishes on all diagonal matrices X € gl(r, C), so by its invariance under conjugation by
A € GL(r,C) it vanishes on all diagonalizable matrices X € gl(r,C). By continuity, and
since diagonalizable matrices X € gl(r,C) are dense in gl(r,C), P = 0 as a polynomial
function on gl(r, C). By Theorem 1.1, P = 0 as an Ad(GL(r,C))- invariant polynomial on
gl(r,C), that is ker(¢) = 0.

Consider the characteristic polynomial of (—X) € gl(r,C))

P\(X) = ch_x(\) = det(\I + X) = 2 fe(X)A"F,
k=0
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then
(frX))NF = ¢(Pr(X))
k=0
t1 ty
— Py( ) = det(Al +
t, t,
=] JA+t)
i=1
- Z ( Z 'tik> )‘T_k
i )\T k
So by comparison of coefficients we observe ¢(fx(X)) = ox(t). Let F € C[ty,...,t,]%, so
we can write
F(tl,...,tr) = G(O’l,...,O'T).
Define P(X) = G(f1(X),..., fr(X)) in Inv(gl(r,C)), then
P(P(X)) = ¢(G(f1(X), ..., fr(X)))
= G(o(f1(X)), -, o(fr(X)))
=G(o1,...,00)
= F(t1,...,t),
so ¢ is also surjective. ]

The isomorphism ¢ gives us generators of Inv(gl(r,C)).

Theorem 1.6. Inv(gl(r,C)) as an algebra over C is generated by the coefficient polyno-

mials f1(X),..., fr(X) of the characteristic polynomial det(N\l + X)), that is

Inv(gl(r,C))=C[f1(X),..., fr(X)].
Proof. By the isomorphism ¢ in Theorem 1.3 and by Lemma 1.5 we have

2

Inv(gl(r,C)) = C[ty,...,t,]7 = Clo1(t),...,00(t)]

We will use this result to study the real case.

ClAX),.... (X)) O
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1.3 Generators of Inv(gl(r,R))

Proposition 1.7. A real homogeneous polynomial P(X) on gl(r,R) that is invariant under
congugation by GL(r,R) is invariant under conjugation by GL(r,C). Since the converse

1s trivial we have
Inv(gl(r,R)) = Inv(gl(r,C)) n RIX],

and we have the following inclusion

Inv(gl(r,R)) — Inv(gl(r,C)).

Proof. Suppose P(X) has degree k and A € GL(r,R). We have A~1 = de%:AA*, where A*

denotes the adjugate of A. By homogeneity and invariance we have
P(AXA*) = (detA)*P(AX A7) = (detA)FP(X),

q(A, X) := P(AX A*) — (detA)*P(X) = 0.

Now observe that ¢ is defined via A* instead of A™!, so the formula makes sense for all
A, X € C"™*". As a holomorphic function (polynomials are holomorphic) on C"™*" x C"*",
q has to be identically zero, since the roots of non-zero holomorphic functions are isolated,
and ¢ is identically zero on GL(r,R) x R"*". So for all (A, X) e GL(r,C) x C"™*"

A, X)=P(AXA™Y) — P(X). O

1
ety il

Theorem 1.8. The isomorphism ¢ : Inv(gl(r,C)) — C[ty,...,t,]° in Theorem 1.3 re-

stricts to an isomorphism of R-algebras

Proof. The inclusions R[ty,...,t,]% < C[t1,...,t,]° and Inv(gl(r,R)) < Inuv(gl(r,C))

give the commutative diagram

Inv(gl(r,C)) BN Clt1,... ]

] ]

Inv(gl(r,R)) —25 R[ty,. .., t]5"

¢ o 11 is injective, so @R is also injective.

Surjectivity of ¢g is shown in the same way as surjectivity of ¢. Let F € R[t1,...,t,]%.
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Again by Lemma 1.5, we can write
F(tla"'vtv’) = G(Ulv"'7gr)

for a unique real polynomial G. Define P(X) = G(f1(X),..., fr(X)) in Inv(gl(r,R)),
then

or(P(X)) = ¢r(G(f1(X), ..., [r(X))
= G(Pr(f1(X)), ..., or(fr(X)))
)

=G(o1,...,0,

= Flt1,...,t). O

Analogously to Theorem 1.6 we get

Theorem 1.9. Inv(gl(r,R)) as an algebra over R is generated by the coefficient polyno-
mials f1(X),..., fr(X) of the characteristic polynomial det(N\l — X)), that is

Ino(gl(r,R)) = R[A(X)...., fr(X)]

Proof. By the isomorphism ¢gr in Theorem 1.8 and by Lemma 1.5 we have

¢ 1.5 é

Inv(gl(r,R)) = R[t1,...,t]% £ R[o1(t),...,00(0)] = R[AA(X),..., [(X)]. O
Finally we want to prove that Inv(gl(r,R)) is not only generated by fi(X),..., fr(X)
over R, but also by the trace polynomials X1 (X),..., %, (X) over R. For this we consider

the power sums

.
sty .. ty) = th,
=1

which are symmetric polynomials in ¢1,...,¢.. An algebraic result relates the elementary
symmetric polynomials o1, ..., 0, to the power sums s1,...,s,. For each k > 1,
k—1 k _
Sk — 01Sk—1 + 02Sf—2 — -+ + + (—1) Ok—151 + (—1) ko = 0.

These are Newton’s identities. A proof can be found in [Tul7, Thm. B.14]. By induction
we find polynomials F} and G} such that

O'k:Fk(Sl,...,Sk), Sk:Gk(O'l,...,O'k),
hence, the power sums also generate the symmetric polynomials over R

R[s, ..., 5] = Rlow,...,00] = R[tr, ... t,]%". (1)
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Furthermore, the power sums correspond to the trace polynomials under the isomor-

phism ¢r

t1 th .
OR(S(X)) = Zi(X) = Si( ) = tr( ):thzsk,
tr th =1

”
By this observation, Theorem 1.8 and equation (1) we get the following.

Theorem 1.10. Inv(gl(r,R)) as an algebra over R is generated by the trace polynomials
Y1(X),...,20(X) of X, that is

Inv(gl(r,R)) = R[Z1(X), ..., =(X)].

To summarize Theorem 1.9 and Theorem 1.10 we just say, that every Ad GL(r,R)-
invariant polynomial on gl(r,R)) can be written as a polynomial in fi(X),..., f(X) or
as a polynomial in ¥;(X),..., %, (X).

At this point we understand enough about invariant polynomials to continue with Ex-

ample 1.1.

Example 1.2. Let again X be an r x r-matriz. The Ad(GL(r,R))-invariant polynomial
det(X) is given by the constant coefficient of the characteristic polynomial of (—X)

F(X) = det(X).

The isomorphism ¢r in Theorem 1.8 sends this to the r-th elementary symmetric polyno-
mial

¢r(det(X)) = ¢r(fr(X)) = or,

which in turn is related to the power sums by Newton’s identities
k—1 k _
Sk, — 01Sk—1 + 092Sf—2 — -+ + + (—1) Ok—151 + (—1) ko = 0.

Rewriting this yields

(_1 k+1

— (sk — 018}—1 — 028f—o + -+ + (—l)k_lak_181> )

o =
So inductively we get

g1 = 81 = Fl(Sl)

-1
o9 = 7(52 — s%) = Fy(s1, $2)

1 1 1,
= —8§3 — — + -5y = F , 89,
g3 383 28182 681 3(81 S9 83)
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04:F4(817"'784)

or = Fr(s1,...,5).

Now, using ¢r(Xk(X)) = si, we get a formula for the determinant of X in terms of the

trace polynomials

det(X) = f(X)
= ¢ (Pr(f+(X)))
= ‘z’ﬁl(ar)
= ¢I§1(Fr(81,...,sr))
= Fr(6g"(s1), -, 05 (s)
= F.(X1(X),...,2(X)).

So for example, in the case where

11 12 713
X =|z21 x22 23

31 T32 T33

1S a 3 X 3-matriz, we get

det(X) = Fy(1(X), 5(X), (X)) = 35(X) = 351 (X)D(X) + £ (X)°.

This can be checked by directly computing the determinant and the trace polynomials of

X.
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2 Prerequisites from Differential Geometry

A characteristic class is the cohomology class of P(2), where P(X) is an invariant
polynomial and 2 is the curvature form of a connection V on a vector bundle ¥ — M.
We will briefly review vector bundles and connections, then we will introduce connection
and curvature forms and discuss some important properties, that are needed to study
characteristic classes. From now on, M will denote a smooth manifold of dimension m.
That is a second countable Hausdorff topological space equipped with a maximal smooth
atlas !. The Hausdorff property and second countability ensure the existence of a partition
of unity subordinate to any open cover (see [Leel2, Thm. 2.23]). The existence of a

partition of unity then allows us to define a Riemannian metric on every smooth manifold.

2.1 Connections and Curvature

A vector bundle E — M is a family of vector spaces of same dimension, smoothly
parametrized over a base manifold M, so that each point in M has a corresponding vector

space attached to it. Let us recall the basic definitions.

Definition 2.1. A real vector bundle of rank r, denoted by @ : E — M, consists of a

smooth manifold E of dimension m + r and a smooth projection w: E — M, such that
i) for allpe M, the fiber E, = n~1({p}) is an r-dimensional real vector space, and

ii) for all p € M, there exists an open neighborhood U 3 p in M and a smooth diffeo-
morphism

Y Y U) - U xR,
such that g, : E; — {q} x R" is a linear isomorphism for all g € U.

A complex vector bundle is defined in the same way, but the fibers E), carry the structure
of an r-dimensional complex vector space. We will denote by I'(E) the space of smooth
sections of E, that is the space of all smooth functions s : M — FE, such that wos = id;.
Two simple examples for vector bundles are the trivial one M x R" and the tangent space

of a manifold T'M. The next step is to define a connection on a vector bundle.

Definition 2.2. Let m : E — M be a vector bundle over M. A connection on E is an

R-bilinear map
V:T(TM) xT'(E) - I'(E),(X,s) — V(X,s) = Vxs,

that satisfies

i) Vixs = fVxs, and

We want to avoid spaces that behave unexpectedly: The real line with two origins is not Hausdorff
and the space of uncountable copies of R™ is not second countable.
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ii) Vx(fs)=(Xf)s+ fVxs,
forall fe C*(M), X e(TM) and s e T'(E).

A connection on a complex vector bundle is defined the same way, except that it is C-
linear in the second argument. A connection on a complex vector bundle over a complex
manifolds is C-linear in both arguments.

Note that V is a local operator, that is it can be restricted to open subsets of M.
Analogously to the Riemann curvature tensor we define for any connection V on E the

multilinear map

R:T(TM)xT'(TM) xT'(E) - T'(E)
(X,Y,8) = R(X,Y)s:=VxVys - VyVxs - V[xy]s.

Let f € C*(M) be any smooth function on M, then

R(fX,Y)s =V;xVys—VyVyxs—Vrxy]s
= fVxVys = VyfVxs —Vyixy-vpxs
= fVxVys— fVyVxs = (Yf)Vxs— fVixy)s+ (Yf)Vxs
= fR(X,Y)s,

and similar for the second argument. Further

R(X,Y)fs =VxVyfs—VyVxfs—V[xyfs
=Vx(Yf)s+VxfVys =V, (Xf)s = VyfVxs—([X,Y]f)s = fV[xy]s
= (XY [f)s+ (Y[f)Vxs+ (Xf)Vys+ fVxVys
—(YXf)s— (Xf)Vys— (Y )Vxs— fVyVxs
— (XY f)s+(YX[f)s— fVixy)s
= fR(X,Y)s,

so R is tensorial in all three arguments and therefore R is also a local operator. We call
it the curvature tensor of the connection V (when V is the Levi-Civita connection on
TM — M, R is the Riemann curvature tensor). The curvature tensor is also defined for
complex vector bundles and is given by the same formula.

Now suppose that U < M is open and the rank r vector bundle F is trivial on U, that is
there is a frame ey, ..., e, for E on U. Then every section s on U can be written as a linear
combination a’e;. Here we used Einstein’s summation convention: We sum over repeated
indices: a'e; := >|_, a’e;. We will use this convention frequently. Let X € I'(TM)|y be a
smooth vector field on U. Then for every i € {1,...,7}, Vxe; defines a smooth section on

U, and therefore can be written as Vxe; = w!e;, where the coefficients w! = w!(X) are

C®-linear in X. Hence the coefficients define a matrix of differential 1-forms [wi ] on U.
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We will call this matrix w = [wf ] the connection matrix of the connection V relative to
the frame e, ..., e, on U. We can view w as a matrix-valued 1-form on M, i.e. a smooth
and alternating function w : I'(TM) — I'(GL(r,R)). Proceeding in the same manner, but
with a complex vector bundle, we get a matrix of complex valued 1-forms, which also can
be viewed as a matrix-valued 1-form w : I'(TM) — I'(GL(r,C)).

Similarly we define the curvature matrix of 2 of the connection V relative to the frame
€1,...,e, on U. Since R(X,Y )e; is alternating and C®-linear in X and Y, R(X,Y)e; =
Qi(X ,Y)e; defines a matrix of differential 2-forms Q = [QZ] on U. And for a complex
vector bundle we get a matrix of complex valued 2-forms. Of course, both of these can be
viewed as matrix-valued 2-forms Q : I'(T'"M) x I'(TM) — I'(GL(r,R)) or I'(GL(r,C)).

2.2 Properties of Connection and Curvature Matrices

By definition, the curvature tensor R is related to the connection V, so one might expect
that there is a relation between 2 and w. This is the content of the next theorem. To state

this, we define the wedge product A and exterior derivative d for matrices of differential

forms. For a (I, m)-matrix a = [a?] of differential r-forms and a (m,n)-matrix b = [b]] of

differential s forms, we define the (I, n)-matrix a A b of differential (r + s)-forms via
(a A b)] = aj A,
and the (I, m)-matrix da of differential (r 4+ 1) forms via
(da); = d(a}).

Proposition 2.3. For the wedge product and exterior derivative of matrices of differential

forms we have the basic algebraic results,
i) (a AD)T = (=1)"bT A a”
ii) If I = n, then tr(a A b) = (=1)"tr(b A a)
iit) If I = m, then d tr(a) = tr(da).
Proof. A short and direct computation. O

Theorem 2.4. Let m : E — M be a vector bundle of rank r and U < M a trivializing
open set with frame eq,...,e.. Let w and € be the connection and curvature matrix of V
relative to the frame ey, ..., e, on U respectively. Then we have the relation

k

I — 4. J
Q = dw; +wyp, AWy,

or, in matrix notation,
Q=dw+wAw.
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This is called the second structural equation. It is proved by direct computation ([Tul7,
Thm. 11.1]). There is also a first structural equation, but this is not of interest in this
work.

The connection and curvature matrices of a connection V on T'M relative to a frame
€1,...,en on a trivializing open subset U < M additionally satisfy the following relations

for any integer k > 1
i) (Second Bianchi identity) d2 = Q A w —w A Q,
ii) (Generalized second Bianchi identity) d(QF) = QF A w —w A QF.

There is a first Bianchi identity as well, but we will not need it. The second Bianchi

identity follows directly from the second structural equation

dQ =d(dw +w A w)
=ddw +dw Aw—w A dw
=Q-wArwAw—wA (Q—wAw)

=QAw—wA .

The generalized second Bianchi identity follows from the second Bianchi identity and by

induction: Assume the formula is correct for k — 1, then

d(QF) = d(QF 1 A Q)
— dOFL A Q4 (—1)2ETDQRL A d0
= (Qk_l /\w—w/\Qk_1> AQ+ QT A (QAw—wAQ)

=0 Aw—waAQF

Of course there is not just one frame ey,..., e, on a trivializing open subset U ¢ M
that we could choose to define connection and curvature matrices. Suppose €1, ...,€, is
another frame of £ on U. Then at each point p € U the two frames are related to each

other by multiplication with an invertible matrix a

Note that €; is smooth on U for all i € {1,...,r}, so the coefficients ag with respect to the
smooth frame eq, ..., e, have to be smooth on U, thus we get a matrix a = [a{] of smooth
functions on U. We may write each frame as row vectors € = [€1,...,€.], e = [e1,..., €]
and therefore in matrix notation

€= ea

as smooth functions of p on U. (We will interchangeably write e for the frame ey, ..., e,

and for the row vector [eg,...,e.]. The exact meaning will be clear from context.) This
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leads to the following change of basis formulae of connection and curvature matrices.

Theorem 2.5. Let m : E — M be a vector bundle of rank r and U < M a trivializing
open set with frames e and € such that € = ea for a matriz a of smooth functions on U.
Let w and & be the connection matrices of V relative to e and € and let Q and Q be the

curvature matrices of V relative to e and €, then
i) @ =a"lwa+a lda,
i) Q =a"'Qa.

A direct computation proves Theorem 2.5, see [Tul7, Thm 22.1] for a detailed proof.

We have seen that, on a trivializing set U < M with frame e, a connection V defines
an r x r matrix of 1-forms w, called the connection matrix. Conversely, assume that a
trivializing set U with frame e and an r x r matrix of 1-forms w are given. For a vector
field X € I(TU) and a section s € I'(E|y), s = s'e;, define

Vs = (X(sj) + s%uf(X)) e;. (2)

V* is clearly R-linear in X and s, since w and X are R-linear in X and s respectively.

Further we can compute for any C® function f und U

Vhas = (FX(57) + 5wl (£2)) ) ¢
= £ (X() + 5wl () ¢
— [Vis
Vifs = (X(f5) + fs'wl (X)) ¢
= X(f)s+ (X&) + sl (X)) ¢
=X(f)s+ fVs.

We have shown that V* defines a connection on U. It is an easy check, that the connection
matrix of V* is w. Thus, from now on, we will denote this connection just by V. Further
suppose that € is another frame of U such that € = ea for an invertible matrix a and
& = a 'wa+a~'da. Then Theorem 2.5 implies that the two (a priori) different connections
defined via (2) by w and @ coincide. Therefore, given a cover of M by trivializing subsets
{U;} with frames e; and r x r matrices of 1-forms w; such that pairwise on intersections
all these matrices satisfy i), we can define a connection on M with this data.

Given a smooth map f: N — M between two smooth manifolds, we can pull back the

connection matrices of a connection and use these to define a unique connection on the

pullback bundle.

Definition 2.6. Let w : E — M be a vector bundle over M and f: N — M be a smooth
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map between smooth manifolds. Define the total space
I (E) :={(n,e) e N x E[f(n) = 7(e)}

and endow it with the subspace topology. Then f*(E) together with the projection map
p: [*(E)— N,(n,e) — n defines a vector bundle over N, called the pullback bundle of E

by f.
[Tul7, Thm. 20.6] proves that p: f*(E) — N indeed defines a vector bundle.

Theorem 2.7. Let f: N — M be a smooth map between smooth manifolds. Let E — M
be a vector bundle over M with connection V on E, and denote by f*E — N the pullback
bundle over N. Let {Uy}q be an open cover of M with frames e, and connection matrices
wq relative to en. Then there exists a unique connection on f*E with connection matrices
[ (wq) relative to f*(eq).

Proof. Write eg = eqa for and invertible matrix a on UgnU,. Then f* (eg) = f* (eq) f*(a)
on f~1(Us nU,), and

¥ (wg) = f*(a  waa + o da)
= f*(a™ ") [*(wa) f* (@) + f*(a™")df*(a),

on f~1(UsnU,), that is f* (w,) satisfies i). Therefore, by the previous paragraph, it
induces a unique connection on the pullback bundle f*E with connection matrices f* (wq).
O

In the proof of the main theorem about characteristic classes (Theorem 3.1), we will
also need to work with differential forms that vary smoothly in time. Let {w;}; be a family

of smooth k-forms on M that varies smoothly with ¢. That is, locally
wp = Zaf(as,t)d:rl
I

for smooth functions aj(x,t) and increasing multi-indices I. For every p € M we define

TP 2 R
e \ar ), T att

b b
(J wtdt> :f wi pdt.
a P a

d
—wp = Z @(ac,t)dxf,
T

the map ¢ +— w;;, and

We also define for a < b

Locally, this is

ot
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[l

These definitions extend entry by entry to matrices of differential forms that depend

Jb aj(:c,t)dt) dat.

a

smoothly on a parameter t.

Proposition 2.8. Let w; and 1¢ be matrices of smooth forms on M that depend smoothly
ont. Then

i) If w is a square matriz, %(tr wy) = tr (%)
it) If w A T is defined, %(w/\T) =WATH+WAT.
iti) & (dw) = d (dw).

iv) §h dwydt = d ({] widt ).
Proof. Write wy = [w; (t)], then

d d dw! dwy
4 = L) = L) =t 2
g (T @) = gwi®) 2, a =t

To prove the second equation, write the entries of w and 7 in coordinates
, . I
wWi(t) =Y al (z,t)dx

I
Ti(t) = >V (x t)da
I

then
d % d %
a(w AT); = %Wk(t) A T]k(t)
d
= — Y al (z, )0F f(x, t)dat A dx?!
dt ) 75
1.J
= (dfﬁ’[(x, t)bij(x, t) + a};’l(:c, t)b;’?,J(x, t)> dat A dx?
1,J

= w,lg(t) A Tf(t) + w,i(t) A 7"}“(75)

;—i—(w/\i—)

=(WwAT) ;
For the third equation, compute again in coordinates
d . d . .
— (dwi(t)) = %dz aj r(z,t)dz
I

dt
d o
- dt ZZ @aﬂll(% t)dxk A da!
k I
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o 0
= ZZ ——al-’l(x,t)dazk A dat
— o ozk ot Y

Lastly,
b b o .
(J dwtdt> = ZZ (J aka}’f(w,t)dt) dz® A dx!
a J kI a OF
ZZ 0 <Jb ; k 1
= — a?’](x,t)dt) dz" A dx
i L gk \ J,

b
f a;",l(:c, t)dt) d:cl>

where we are allowed to interchange differentiation and integration, because the interval

[a,b] is compact and aj- ; is smooth. O

Everything we said above about the connection and curvature matrices and matrices
of differential forms, as well as about connections and the pullback of connections has a

direct translation to the complex case.

2.3 Metrics on a Vector Bundle

Later we will need more structure on the vector bundle £ — M. Let g be a map that
assigns to all p € M an inner product g(p)(-,-) : E, x E, — R on the fiber E, over p
in a smooth way. By smooth, we mean that for all smooth sections s,t : M — FE, the
map M 3 p — g(p) (s(p),t(p)) € R is smooth. Then we call g a Riemannian metric on E
and the tupel (E, g) a Riemannian bundle. The existence of such a Riemannian metric is
proved in the same way as in the case ' = T'M, using a partition of unity. Analogously
to the case £ = T'M, we say that a connection V on F is compatible with the metric g,
if for all vector fields X and for all sections s,t: M — E

Xg(s,t) = g(Vxs,t) + g(s, Vxt)

as functions M — R. As in the case ¥ = T'M, a metric connection exists. A proof can be
found in [Tul7, Ch. 10.5]. Similarly, in the complex case, a Hermitian metric is a map g
that assigns to all points p € M a complex inner product g(p) in a smooth way. That is,

g(p) satisfies
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i) g(p)(sp,sp) = 0, with equality if and only if s, = 0,

ii) g(p)(sp,tp) = g(p)(tp,sp) for all s,t e I'(E),
iii) g(p)(Asp+ptp, up) = Ag(p)(Sp, up)+1g(p)(tp, up) for all A, p € Cand all s, ¢, u € I'(E).

Existence of such a Hermitian metric is proved as in the real case via a partition of unity.
A complex vector bundle together with a Hermitian metric is called a Hermitian bundle.
A complex connection on a Hermitian bundle is compatible with the metric, if the same

property as in the real case is satisfied, that is
Xg(S,t) = Q(VXS,t) + g(sv VXt),

for any real tangent vector field X and all sections s,t € I'(E).
Now let eq,...,e, be an orthonormal frame on some open set U < M of the vector
bundle 7 : E — M. Then, for a metric connection V and a smooth vector field X over U,

we have for all 1 <+¢,7 <r

0= Xg(es, ej)
= g(Vxei, e;) + g(ei, Vxej)
= g(wf (X)ex, ¢j) + glei,wf (X)ex)
= w](X) + wj(X),

so w is skew symmetric. Thus, €2 is skew symmetric as well

Q; =dw§+w,i /\w;'f
d(~w]) + (~wf) A (=6})

= —dw] = (~w) A (~w)

— .

So in this case, we can view the connection form and the curvature form as matrix-valued

differential forms, where the matrix is skew symmetric. In the complex case, we have

_ =T
w=-w, Q=-0,

thus, the curvature and connection matrix are skew hermitian.
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3 Characteristic Classes

Finally, we can explain how the curvature of a connection V on a vector bundle £ — M,
together with an invariant polynomial P(X) defines a closed differential form P(€2). We
will also prove that the cohomology class [P(£2)] is independent of the connection V. This
is exactly the content of Theorem 3.1. This theorem immediately leads to the Chern-Weil
homomorphism (3). We will also look at characteristic classes from a more abstract point
of view and introduce Pontrjagin, Fuler and Chern classes, which are important special
cases of characteristic classes. Along this, we will state a generalization of the famous
Gauss-Bonnet theorem, which uses Euler classes. Lastly, we will compute the Chern class

of a simple example.

3.1 The Chern-Weil Homomorphism

Let E — M be a smooth vector bundle over M of rank r, and let V be a connection
on E. Let {Uy}a be a trivializing open cover and let e® = [ef,...,e%] be a frame of F
over U,. Denote by , the curvature matrix of V over U, relative to e®*. Now consider a
homogeneous invariant polynomial P(X) of degree k on gl(r,R). Then for all «, 5, P(Qq)
is a 2k-form on U, and on overlaps U, n Ug the two forms P(Q,) and P(Q3) coincide,
because of invariance of P and the change of basis formula for 2. Therefore, P and V
induce a global 2k-form P(£2).

Theorem 3.1. In the above setting, the global 2k-form P () is closed, and its cohomology
class in H? (M) is independent of the connection V.

Proof. Recall that we proved that the Ad GL(r,R)-invariant polynomials on gl(r,R) are
generated by the trace polynomials ¥1(X),..., %, (X). Therefore it suffices to prove the
theorem for the trace polynomials.

By Proposition 2.3 and the generalized second Bianchi identity we can compute

since QF is a matrix of differential forms of even degree 2k. This proves the first part of
the theorem.
Next, we consider two connections V?, V! on E. Given a frame e = ey, ..., e, of E on an

open set U, we denote by wp,w; and g, Q; the connection and curvature matrices of V°
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and V! relative to e. Observe that
Vti= (1 -tV + V!

defines a connection on E for every ¢ € [0, 1] and denote by w and €2 the connection and

curvature matrix of V¢ relative to e. For any smooth vector field X on U,

Viej = (1 -tV +1VX) ¢
= (1= t)(wo)} + t(w1)}) (X)es

shows that w = (1 — t)wp + twy varies smoothly with t. So by the structural equation,
Q=dw+wArw

also varies smoothly with t and we can differentiate the trace polynomials ¥ of €2

d d .
@Ek(ﬁ) = @tr(Q )

d
=tr [ —0QF
()
ZtI‘<Q/\Qk_1+QAQAQk_2+~"+Qk_1 /\Q)
— ktr (Q’H A Q)
by Proposition 2.8 and Proposition 2.3 because 2 is a matrix of 2-forms. Also by Proposi-

tion 2.8, the exterior derivative and taking the trace commute with the derivative in time,

so again by the structural equation

tr <Qk_1 A Q) = tr <Qk_1 A %(dw +w A w))

=tr(Qk_1 Adi+ QA G A w4+ QF /\w/\w)
=tr(Qk_1 Adir—w A QA G+ QFE /\w/\w>
— tr (57T A dio + (d2F1) A @)

—tr (d (0" A o))

Here, we also used the generalized second Bianchi identity and that w is a matrix of
1-forms. Integration over time yields
La

Se(h) — Xk(Qo) = fo %Ek(mdt
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=‘L1d(ktr(ﬂk1A(b>)
=dJ:ktr@ﬁ1Aw).

Note that under a change of frame € = ea, we have & = a~'wa, because a is independent

~

of time. Hence QF 1A% = a1 (Qk_l A w) a, and since the trace polynomials are invariant
under conjugation by invertible matrices, tr (Qkil A w) induces a global form. That is,
Y1) — Zk(Q0) = dgé k tr (2*~! A ) is a global equation, so the cohomology classes of
Yk (o) and X (1) coincide. O

The theorem shows that for any vector bundle £ — M of rank r, the map

cg : Inv(gl(r,R) - H*(M),

(3)
P(X) — [P()],

is a well-defined algebra homomorphism, called the Chern-Weil homomorphism.
Assume that F — M is a vector bundle, isomorphic to E. That is there exist smooth
maps ¢ : ' — F ¢ : F — E such that

i) the diagrams

E—2,F
ﬂEl lﬂF
M — M
id g
and
F—.E
”Fl lWE
M — M
id s
commute,

ii) ¢ and % restrict to linear maps ¢, : E, — F}, and 1, : F), - E, for all pe M,
iii) ot =idp and Y oy = idp.

Now let {Uy}q be a trivializing cover of M with frames e, for E and denote by w, the
connection matrices of a connection V¥ on F relative to e,. Then, id};(es) defines a frame
onidy; (Uy) = U, for F and the pullbacks id},(wq) = wq of the connection matrices, define
a connection V¥ on F with the same connection matrices as the connection V. Therefore,
the curvature matrices QF of VE and the curvature matrices Qf of V¥ coincide. Hence
for a homogeneous invariant polynomial P(X), we have P(Q¥) = P(QF). That is, the
cohomology class [P(2)] does only depend on the isomorphism class of the vector bundle

E — M. This leads us to the following more general definition of a characteristic class.
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Definition 3.2. A characteristic class on real vector bundles associates to each manifold

a map
{isomorphism classes of real
Cp o

} - H*(M)7

vector bundles over M

such that for any smooth map f : N — M between smooth manifolds and any vector
bundle E — M

en (f7E) = frem(E).

Denote by Vect, (M) the set of all isomorphism classes of rank r vector bundles over M.

Then the definition is equivalent to the commutativity of the diagram

Vect, (M) = H"(M)

| Jr

Vect,(N) =~ H"(N),

also called naturality property.

We will prove that the cohomology class [P(Q2)] is a characteristic class. That is,
the map that assigns the cohomology class [P(€2)] to a vector bundle E induces such a
commutative diagram, that is, it is natural. For this let £ — M be a vector bundle of rank
r over M with connection V¥ over E. Denote by wZ the connection matrices and by Q
the curvature matrices over frames e, for E. Let f : N — M be a smooth map between
smooth manifolds and denote by f*FE the pullback bundle over N. By Theorem 2.7 there
exists a unique connection V/*¥ on f*E with connection matrices f*(w,) relative to the

frames f*(eq). Hence, the curvature matrices Q2 ¥ relative to f*(eq) are

QL = df*(wa) + [*(wa) A f*(wa)
= [*(dwa + Wa A Wa)
= [*(922)
Therefore, since f* is a homomorphism, P (Qg*E) = P(f* (QE) = f*P (QE), or as a

diagram

E [P (QE)]
I |
FE s [PF)] — [1*P ()] — 7* [P (27)]

3.2 Pontrjagin Classes

We proved that the ring Inv(gl(r,R)) of invariant polynomials on gl(r,R) is generated
by the coefficients fi(X) of the characteristic polynomial of (—X). This motivates to
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study the characteristic classes of these polynomials. The characteristic classes associated
to these coefficient polynomials are called Pontrjagin classes.

For every vector bundle £ — M, there exist a Riemannian metric g and a connection
V that is compatible with g. As proved in Theorem 3.1 the cohomology class [P(Q2)]
is independent of the connection. Hence, without loss of generality, we can always use
the Riemannian structure and compute characteristic classes with a metric connection.
In this case, the curvature matrix €2 relative to an orthonormal frame eq,..., e, is skew-
symmetric Q; = —Qg, thus, the trace vanishes 0 = tr(Q2) = f1(2). For odd k, Q is also
skew-symmetric

Qk _ (_QT)k _ (_1)k(Qk)T _ _(Qk)T'

Therefore, for odd k
tr(QF) = 0.

Let P(X) be a homogeneous invariant polynomial on gl(r,R) with odd degree k. Since

Inv(gl(r,R)) is generated by the trace polynomials, we can write

Because P is homogeneous with odd degree, every monomial in () must contain a trace
polynomial ;(2) of odd degree j. But for odd j, we have ¥;(2) = tr(£2/) = 0, hence
P(Q2) = 0. Therefore f;(Q2) = 0 for odd j, because these polynomials are homogeneous

and invariant. Thus the ring of characteristic classes on E is generated by

[EZ(Q)L [24(9)]7 cee

or by

[f2(D)], [£1(D)], - -

Definition 3.3. The k-th Pontrjagin class pp(FE) of a vector bundle E — M is
i
pi(E) = [ka <2WQ>} e H*(M),

where the factor ﬁ is introduced to make other formulas sign free and ensure that pi(E)
1s represented by a form that gives an integer when integrated over any submanifold of M

of dimension 4k. This property is also called integrality.

By definition of the coefficient polynomials fi we have

det ([+ —Q) =1 —0 e £ (—0),
@ (1a) = (520) oo (520)
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so when we pass to cohomology

p(E) = [det (I + 22779>] =[]+ pa(E) + - + pz(E),

and we call the expression p(E) the total Pontrjagin class of E.
In the case when M is a 4m-dimensional compact oriented manifold, a monomial

Fa(G5 0 falgz Q) - forg) (57 )8! with degree
2<a2+a4+--~+aglgj) =4m,

can be integrated and the resulting number is called a Pontrjagin number of E. In the
case E = TM, these numbers are simply called Pontrjagin numbers of M.

For direct sums of vector bundles we have the following formula.

Theorem 3.4. If E' and E” are vector bundles over M, then
p(E'® E") = p(E")p(E"). (4)

The proof is a direct computation and can be found in [Tul7, Thm 24.6]. So, under
the assumption that a vector bundle £ — M is a direct product of two vector bundles

E = F @ P, the product formula yields an easy way of computing p(E).

3.3 Euler Classes

We will add more structure to our theory. Namely, we will consider an oriented Rieman-
nian vector bundle £ — M of rank r and polynomials that are invariant under actions that
respect this orientation. This will lead to a generalization of the well known Gauss-Bonnet
Theorem.

As for the tangent bundle, if there exists a nowhere vanishing section s € I'(A"E),
then we call E orientable. We then call two nowhere vanishing sections s,s’ € T'(A"E)
equivalent, if s’ = fs for a positive smooth function f. Then, the two resulting equivalence
classes are called orientations of . We have the following simple criterion for orientability
of E.

Proposition 3.5. A vector bundle E of rank r is orientable if and only if the line bundle
A"E is trivial.

Proof. If the line bundle A" E is trivial, i.e. it is diffeomorphic to M x R, then we can

define the nowhere vanishing section

s: M —MxR,p— (p,1).
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If there exists a nowhere vanishing section s € T'(A"F), then we can define
v :AN"E— M xR,z — (n(x),\(z)),

where A(x) is the unique real number such that x = s(n(x))A(z). Since s is nowhere
vanishing and = and s(7(z)) are both elements of A"E ) = R", there exists such a \(z)

and it is unique. The inverse of 1 is given by
LM xR — AE, (p,r) — s(p)r.

This can be checked by direct computation. Also, ¥ and ¥~ are smooth, because 7 and

s are. Hence, 9 is a diffeomorphism and A™FE is trivial. O

From now on, we assume that E is orientable and fix an orientation of E. Let n € I'(A"E)
be a nowhere vanishing form that represents this orientation. A frame [ej,...,e,| on an
open set U < M is said to be positively oriented, if e; A -+ A e, = fn|y for some
positive smooth function f on U. Now let us also fix a Riemannian metric ¢ on £ and
a connection V that is compatible with the metric. Restrict the computation of the
connection and curvature matrices to positively oriented orthonormal frames only. Then
for two such frames € and e on an open set U, that are related by a special orthogonal

matrix a : U — SO(r), € = ea, we have the basis change formula
QO =a'Qa.

Recall that the curvature matrix of a metric connection is skew symmetric Q; = —Qg

The space of all real skew symmetric 7 x r matrices is is the Lie algebra so(r). A poly-
“], where X is a matrix with

indeterminate entries that satisfy :c; = —z for all 1 < 4,5 < r. Denote by Inv(so(r))

nomial on so(r) is a polynomial in the entries of X = [z

the ring of SO(r)-invariant polynomials on so(r). As we did before, we want to find gen-
erators of Inv(so(r)). Since Ad GL(r,R)-invariant polynomials on gl(r,R) are also Ad
SO(r)-invariant polynomials on so(r), the trace polynomials are a subset of generators of
Inv(so(r)). We will show that for r even, we get an additional generator of Inv(so(r)),
called the Pfaffian. For r odd, the trace polynomials already generate Inv(so(r)). A proof
of this can be found in [KN69, Thm. XII. 2.7]. We will continue by studying the Pfaffian.

The Pfaffian is a square root of the determinant of an even dimensional skew symmetric
matrix. The existence follows from a basic theorem about skew symmetric matrices in
symplectic geometry (cf. [Can08, Thm. 1.1]). For this, let X be an r x r skew symmetric

matrix over a field F' and let V' be the vector space F". Define the bilinear form

b:V xV - F (x,y) — 2T Xy.
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This bilinear form is antisymmetric
b(x,y) = 2T Xy = (J:TXy)T =T XTe = —yT Xz = —b(y, z).

Define the subspace O := {v e V|b(v,-) = 0} < V and choose a basis (01, ...,0n) of O.

Let Uy < V be a complementary subspace of O. Then for any u; € Uy, we can find

wy € Uy such that b(up,w1) = 1 = —b(wy,u1). Set Uy := span{ui,w;} and Up :=
{w € Up|b(w,u) =0 for all u e U;}. Then we have Uy = U; @ U;. We can proceed by
induction and get a basis (u1,w1,...,Un, Wn,01,...,0,) of V with 2m + n = r. Now,

define the matrix
| I |

A=|u wi ... Un Wn 01 ... Op

So by changing the basis via A, the matrix that represents the bilinear form b is given by

S
S
ATXA = ,
0
0
with
0 1
S = .
-1 0
If b is nondegenerate, then O = {0} and
S
ATXA: = J2m7

moreover,
det(A)%det(X) = det(ATX A) = det(S)™ = 1
which implies
1
 det(A)?

det(X)

Note that #(Aﬁ € F, that is, det(X) is a perfect square in F. The following theorem

generalizes this result.

Theorem 3.6. Let X = [x;] be an even dimensional skew-symmetric matriz of indeter-
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minates. Then there exists a polynomial Q(X) € Z[:):E] such that
det(X) = Q(X)2
This polynomial Q(X) is unique up to the sign
det(X) = Q(X)? = (~Q(X))’

We define the Pfaffian of X to be the unique polynomial Pf(X), that satisfies det(X) =
Pf(X)? and the normalization condition Pf(Jo;,) = 1. A proof of Theorem 3.6 can be
found in [Tul7, Thm. 25.3].

Example 3.1. The determinant of the 4 x 4 skew-smmetric matrix

0 a b ¢
¥ = —a 0 d e
b —d 0 f
—c —e —f 0

s given by the polynomial
a’f? + b%e? + Ad® + 2acdf — 2abef — 2bcde = (af — be + cd)? = Q(X)?,

with Q(X) := af —be+cd. If we evaluate ata = f=1,b=c=d=e=0, we get X = Jy4
and Q(X) = 1. Hence by the normalization condition, the Pfaffian of X is

Proposition 3.7. For 2m x 2m matrices of indeterminates A = [aé] and X = [CL‘;] with

X skew-symmetric, we have
Pf(ATXA) = det(A)Pf(X)
as polynomials in Z[az-, x;]
Hence for A€ SO(r) and X € so(r) we have
Pf(AT'XA) = Pf(ATXA) = det(A)Pf(X) = Pf(X),

that is, Pf(X) € Inv(so(r)).

Proof. For the Pfaffian of the skew-symmetric matrix A7 X A we have

Pf(ATX A)? = det(AT X A) = det(A)?det(X) = det(A)?Pf(X)?,
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thus
Pf(ATX A) = +det(A)Pf(X).

Pf(ATX A) and det(A)Pf(X) are uniquely defined by A and X. Hence, either
Pf(ATXA) = +det(A)Pf(X),

or

Pf(ATXA) = —det(A)Pf(X),

is true for all such A and X and it suffices to evaluate at one particular A and one particular

X to determine the sign. For A =T and X = Ja,, we get
Pf(IT Jop1) = Pf(Jom) = 1 = det(1) P f(Jom).

So the sign is positive and the proposition follows. ]

We have shown that for an oriented Riemannian vector bundle F, of even rank r, with
connection V that is compatible with the metric, the Pfaffian of the skew-symmetric
curvature matrix €2 induces a global r-form on M. We denote this global form by P f(2).
This form is closed and its cohomology class is independent of the connection. For this,

see Chapter 4.4. We define the Euler class of the oriented Riemannian bundle E as

1

e(B) i= [P(5-9)].

Again, the factor % ensures integrality of the Euler class. The Euler class allows us to

formulate a generalized Gauss-Bonnet Theorem. Let us recall the classical result.

Theorem 3.8. Let M be a compact oriented 2-dimensional manifold embedded into R3.
Then

J KdS =2nx(M),
M

where x(M) denotes the Euler characteristic of M and SM KdS is the surface integral of

the Gaussian curvature.

Definition 3.9. The Euler characteristic of a compact topological manifold M is the al-

ternating sum of the Betti numbers

dim M . dim M _
X(M) = > (=1)'bi(M) = > (=1)'rk(H;(M)).
=0 1=0

Here, H;(M) denotes the i'th singular homology group of M.

The generalized result is the following.
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Theorem 3.10. Let M be a compact, oriented Riemannian manifold of even dimension
with a connection on the tangent bundle T'M that is compatible with the metric. Let
Pf(S2) be the Pfaffian of the curvature matrices relative to prositively oriented orthonormal

frames. Then

| Prig-o = xan.
M T

3.4 Chern Classes

The Chern Classes are the complex analogon of Pontrjagin classes. Let 7 : F —
M be a complex vector bundle of rank r with a connection V. Also let Q(X) be a
homogeneous Ad(GL(r,C))-invariant polynomial of degree k on gl(r,C). As in the real
case, this invariant polynomial induces a global complex valued 2k-form Q(€2), which is
closed and its cohomology class is independent of the connection. For this, see Chapter 4.4.
This leads to the definition of Chern Classes ¢;(E)

™

[det(l + ;Q)] =1+c(E)+-+c(B).

The Chern Classes ¢;(E) are natural and satisfy (4).

The top Chern class ¢,(E) = [det(5=€2)] may be identified with the Euler class ¢(E) of
E, when viewing FE as a real orientable vector bundle of rank 2r. Since E is orientable,
we may restrict to orthonormal frames when calculating 2, which yields that €2 is skew
hermitian

0=-0".

Skew hermitian matrices can be diagonalized by a unitary matrix A
iM
A10A = ,
iAr

where A1, ..., A, are real by the skew hermitian property. Hence det(i2) = (—1)" Ay -+ A

Then the associated real skew symmetric 2r x 2r-matrix is

0 -\
A0
Of .=

With Proposition 3.7, we can compute the Pfaffian

PF(OF) = P(BT(=0%)B) = det(B)Pf(~0F) = (~1)" Pf(~0%) = (~1)" M1 -+ Ar,
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where

is a 2r x 2r-matrix with determinant (—1)". Hence,

7

2T

er(E) — det( Q> S (S VO <1QR) _ ().

(2m)

3.5 The Tautological Line Bundle over CP*

In this section we will apply the theory to the tautological line bundle over the complex
projective line and compute its first Chern Class.
On C2\{0} define the equivalence relation ~ by

(21, 22) ~ A(z1, 22)

for all A € C\{0}. Denote the equivalence class of (z1,22) by [21 : z2]. Then the complex

projective line is the quotient space
CP' := C2\{0} /L = {[2 : 22]|(21, 22) € CA\{0}}

with the quotient topology. CP! is a 1-dimensional complex manifold. For this, define

z
Uy := {[21 : 22]|21 # 0} ¢1: U1 = C, [21232]H;i

2
Us :={[21 : 22]|22 # 0} ¢o: Uy — C,[21 :ZQ]HZ—;,

with inverse maps

¢ C - U,z [1:2]
¢yt i C — Uyyw > [w: 1].

Then {U;, ¢i}i—1,2 defines a holomorphic atlas on CP! with transition functions

_ 1
b2|vy A, © ¢1’U110U2 :C\{0} — C\{0}, 2 — 2

_ 1
B1luanta © b2l s OO} = C\{O}w >

For every point p = [21 : 23] € CP! define the line L, = {\(21, 22)|A € C} = C? and define
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the tautological line bundle as the total space
L:={(p,v)lpe CP' v e L,}

with projection map (p,v) — p. This defines a complex 1-dim vector bundle over CP*,
called the tautological line bundle.

For a 1-dimensional vector bundle like L, the curvature form €2 is a 1 x l-matrix of
2-forms, i.e. just a 2-form. Hence the Chern Class ¢1(L) is just a multiple of [2], which

follows directly from the formula

1+ca(L) = {det <I+ ;Q>]} =1+ z [©].

T 27

Thus, we just have to compute €2 to compute the first chern class

i
o7

C1 (L) [Q] .

L is a subbundle of the product vector bundle CP* x C? and therefore, the standard
hermitian metric on CP! x C? restricts to a hermitian metric & on L. To compute h in

local coordinates, consider the frames

() o)

of L over Uy and Us, defined using local coordinates z, w given by ¢ and ¢ respectively.

So, on Uy, h is given by the function
h(z) =14 22 =1+ |2)%,
and on Uy, h is given by
h(w) =1+ ww =1+ |w]?

z

1
On U; with frame s = ([1 s z], < )) , we can compute the connection matrix wy of the

metric connection. For this, let X = a% + b% be a tangent vector field over U;, where

a(z),b(z) are smooth complex functions on C. Write z = x + iy, for =,y real. Then

0 0
1 _
T¢;1(Z)(C]P’ = spang {(33:7 (3y} .
This implies a(z) = b(z). So by imposing metric compatibility of the connection V and

by the definition of the connection matrix V,s = w(X)s, we get

dh(s,s)(X) =01+ 2z)(X) + (1 + 22)(X)
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_ 0 0 _ 0 0
= Zdz (aaz + b&z) + zdz <aaz + baz>

(w1(X)s,8) + h(s,wi(X)s)
= (wl(X) + wl(X)) h(s, s).

Here we imposed metric compatibility of V in *. Rearranging this, yields

az + az
142z

wl(X) +w1(X) =

By [Kob87, Prop. 1.3.9 and Prop. 1.4.9], w can be chosen to be a (1,0) form. Thus,

B zdz
1427

w1

Since U, is just CP! minus a point, this extends uniquely to a 1-form w on the whole
manifold. In the same way, we can compute wo on Us and check that w; and wsy satisfy
Theorem 2.5.

Having computed w in coordinates on Ui, directly gives 2 on Ui, using the second

structural equation

DQ=dw+waAruw
B zdz
1+ |22

0 z 0 z
= ———d d ————dz nd
0z 1+ |22 =0 z+8§1+|z|2 @
1 2z

Zmd?AdZ—Wd?/\dZ

1
=~ dz ndz.
(1+]2p2 "%

Because U; is dense in CP', this fully determines the Chern Class.
1 1

ca(L) = %m[d? A dz].

Changing to polar coordinates z = re'? yields

dz A dz = e O (dr — irdf) A € (dr + irdf)
= 2irdr A db,
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and thus
r

ci(L) = T2

[dr A df].

Since U; is CP! minus one point, integrating over CP! is the same as integrating over

U; ~ C ~ R?
1 0 r 27Td0
L)y=—-= dr————— =—1.
Jom 1 ® =3 | e |,

We see that the first Chern Class is indeed integral.
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4 Generalization to Principal Bundles

In this chapter, we want to briefly motivate that the theory of connections on vector
bundles can be seen as a special case of the theory of connections on principal bundles.
We will just illustrate the main ideas and refer to [Tul7, Ch. 6] for the details. In this

chapter, G will denote a Lie group with associated Lie algebra g.

4.1 Principal Bundles

We say that a smooth map
w:MxG—>M

is a smooth right action of G on M, if for all xt € M and all g,h € G
i) ze = x and

ii) (zg)h = z(gh),

where we used the short notation zg := p(z, g). Aleft actionn : GxM — M is analogously
defined. The action is called free, if for every point x € M, the stabilizer Stab(x) is the
trivial subgroup {e} < G. A manifold M together with a left/right action of G on M is
called a left /right G-manifold. A map f: M — N between two right G-manifolds is called
right G-equivariant, if for all x € M and all g € G

f(zg) = f(x)g,

and similarly we define left G-invariant maps. If f : M — N for a right G-manifold M
and a left G-manifold N and for all x € M satisfies for all g € G

flzg) = g7 f(z) = f(x)g,

then we call f G-invariant and g~ 'p = pg defines a right action on N 3 p.

Let E, M, F be manifolds and 7 : £ — M be a smooth surjection. A local trivializa-
tion with fiber F for 7 is an open cover {U,} of M with a collection of fiber preserving
diffeomorphisms ¢y : 71 (U) — U x F for U € {U,}, such that the following diagram

commutes

Here, p : U x ' — U denotes the projection onto the first coordinate. A fiber bundle
with fiber F' is a smooth surjection 7 : £ — M with local trivializations with fiber F.
Let E — M be such a fiber bundle, then at each x € M, the fiber E, := 7 '({z}) is
diffeomorphic to F.
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A fiber bundle 7 : P — M with fiber G is called a principal G-bundle, if G acts smoothly
and freely on P on the right and the fiber preserving diffeomorphisms

ouU 27['71(U) —-UxG
are G-equivariant. Note that G acts from the right on U x G by

(xag)h = (l’,gh),

for x € M and g,h € G.

Example 4.1. The simplest example for a principal G-bundle is the product bundle M x G
with the right action (x,g)h = (x, gh).
4.2 The Frame Bundle of a Vector Bundle

Let V' be a real vector space of dimension r and denote by Fr(V) the set of all ordered
basis. Write an element v € Fr(V) as a row vector of vectors vy,...,v, € V

vi= v, ..., 00

Then, multiplication from the right by elements from GL(r,R) defines a free right action
on Fr(V). Fixing a v € Fr(V), this right action induces a bijection

¢y : GL(r,R) —> Fr(V), A — vA,

by the orbit-stabilizer theorem. Let {U, ¢y} be a smooth atlas on GL(r,R), then {¢,(U), Yyo
¢y s, ()} defines a smooth atlas on Fr(V), that makes ¢, a diffecomorphism. We say that
the bijection ¢, transfers the manifold structure from GL(r,R) to Fr(V). One can show
that this atlas is independent of the choice of v. We call Fr(V') together with this smooth
structure the frame manifold of V.

Doing this fiberwise for a rank r real vector bundle £ — M, defines the following
principal GL(r,R)-bundle. Define

Fr(E) = | | Fr(E,)
zeM

and the map
w: Fr(E) — M, Fr(Ey) — .

Then the local trivializations ¢ : E|y — U x R" induce bijections
dlu : Fr(E)|ly — U x Fr(R")

that transfer the manifold structure to F'r(E). This give 7 : F'r(E) — M the structure of
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a fiber bundle with fibers F'r(R") which is diffeomorphic to GL(r,R). One can check that
Fr(E) is indeed a principal GL(r, R)-bundle, which we call the frame bundle of E.

This procedure also works if we only consider frames with positive orientation (cf. Euler
Class), or complex vector bundles (cf. Chern Class). In these cases we get a principal

SL(r)-bundle or a principal GL(r, C)-bundle respectively.

4.3 Connections on Principal Bundles

A connection on a vector bundle can be described by a matrix-valued 1-form, the con-
nection form. For a principle G-bundle P — M, there exists a g-valued 1-form w on P that
generalizes the idea of a connection, called an Ehresmann connection. The generalization

of the curvature form is a g-valued 2-form on P given by
1
Q=dw+ g[w,w],

where [-, -] denotes the Lie-bracket on g.

Consider a vector bundle £ — M with connection V on E and the associated frame
bundle Fr(E) — M. In this case, there is a way to construct an Ehresmann connection
on Fr(E), using the connection V. This Ehresmann connection is called the Ehresmann
connection on Fr(E) determined by V. The two resulting connection forms and also the
two curvature forms are related to each other by the following theorem (cf. [Tul7, Thm.
29.10 and Thm. 30.2]).

Theorem 4.1. Let V be a connection on a vector bundle E — M, w the associated
Ehresmann connection determined by V and Q the curvature of the Frame bundle Fr(FE).
Then the connection matriz we and the curvature matrixz Q. relative to a frame e for B

over an open set U < M are given by the pullbacks

*
We =€ W

Q. =e*Q,
where e is viewed as a section e : U — Fr(E).

4.4 Characteristic Classes on Principal Bundles

Let P — M be a principal G-bundle for a Lie group G with Ehresmann connection w
and curvature (2. If we fix a basis ey, ..., e, on the Lie algebra g, the connection can be
written as the linear combination

Q= Qle;.
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Here the coefficients Q' are 2-forms. A real valued polynomial f of degree k on g can be

written as the linear combination
f=fre" e,

where the f; are real coefficients and ¢!, ..., " is the dual basis to eq,...,e,. Evaluating
f at Q then yields the 2k-form

FQ) = F1O7 Ao A Q0

which is independent of the basis ey, ..., e,.. To check this, let €1,..., €, be another basis

of g. That is there exists an invertible matrix a = [a{ ] such that

5 J
€; = ejai,

and with respect to this basis, we have the linear combination

= O = Ofe.gl
0 =Q%; = Qja;,

which yields 0 = Qiag . To compute the coefficients f7 in the ~ basis, we use ¥ = & a;‘?
and get
f = fI€Z1 R L
— fE gl .. SRk
fighag, - Erag
— gl gL Sk
frag, - -aje €
= fE .. gk,

hence fJ = ffa;i = ~a§‘;. Combining this, shows that f(2) is independent of the chosen

basis
FIQ A A Q= f (§j1a§-11> A A (ﬁjka;’;>
= frait - a@* QI A A QPR
1 Jk
= fr A A VR
The generalization of Theorem 3.1 to principal bundles is the following (cf. [Tul7, Thm.
32.2]).

Theorem 4.2. Let w: P — M be a principal G-bundle with connection w and curvature

Q and let f be an Ad(G)-invariant polynomial on g, then

i) There exists a 2k-form A on M such that f(Q2) is the pullback 7w A.

ii) A is closed.
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iii) [A] is independent of the connection w.

This allows us to define the Chern-Weil homomorphism for principal bundles

w: Inv(g) > H* (M)
f—[A], with f(Q) = 7*A.

Remark. Now we have two (a priori different) procedures of calculating characteristic
classes of a vector bundle. We can use the theory from Chapter 3, or we can associate
a frame bundle that respects the structure and use the theory from Chapter 4. It turns
out, that both procedures of calculating characteristic classes are equivalent. Therefore,
we don’t have to show by hand, that Euler and Chern classes are well defined. Instead,
we construct the associated frame bundle, that respects the given structure and then apply
Theorem 4.2 to conclude, that the characteristic class is well defined. For more details,
we refer to [Tul7, Ch. 32].
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