
Université de Nice Sophia-Antipolis

Laboratoire J. A. Dieudonné
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Acknowledgements

If at this moment of my career I look back at what happened in the last few years, I see a long
list of people who came into my professional life and influenced it.

First of all I wish to thank Luigi Ambrosio: he has been my advisor since I was an under-
graduate student, he always supported me all along my career, and he continues to be for me
an important point of reference.

I then want to thank Albert Fathi and Cédric Villani: they both encouraged me first to come
to Lyon during my undergraduate studies, and then to do a joint PhD between the SNS Pisa
and the ENS Lyon. This has been for me a really good experience, both from the professional
and from the personal point of view. I’m also grateful to them for their continuous support.

Two other important persons in my academic formation are Francesco Maggi and Ludovic
Rifford: they are both great collaborators, and at the same time good friends.

I also thank Yann Brenier. I first met in Nice when I first came for a visit in 2006 while I
was working on Euler equations, and during all this time he has always been really kind and
accessible to discussions, both mathematical and not.

I finally thank Patrick Bernard and Laure Saint-Raymond for accepting being part of my
jury, Tristan Rivière both for having been referee of my dissertation and for being part of my
jury, and Stefano Bianchini and Luis Caffarelli for having accepted to act as referees.

The list should now go on for quite long, but a particular acknowledgement goes to Alberto
Abbondandolo, Giovanni Alberti and Antonio Corbo Esposito.

Finally I’m grateful to my family, that has always been present and has supported me in
all my decisions and choices, and I thank all my friends, from the ones that I know since many
years to the ones that I met much recently during my many travels, who all contributed to make
these last years of my life much happier.
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Introduction

The aim of this note is to present a part of the research I have done during and after my Phd.
The central argument of my research concerns the optimal transport problem and its applica-
tions, but I also worked on other subjects. Some of them, which I will describe here, are: the
study of variational models for the incompressible Euler equations, Mather’s theory, and some
generalization of the Diperna-Lions theory for ODEs with non-smooth vector fields. The note
is therefore structured in four independent parts.

In the first part, I will introduce the optimal transport problem, starting with some pre-
liminaries. In Sections 1.2 and 1.3 I will describe some recent results, which I studied in
[8, 10, 11, 17, 22, 24], concerning existence, uniqueness and properties of optimal transport
maps in a Riemannian and sub-Riemannian setting.

I will then focus on an important problem in this area, which consists in studying the
regularity of the optimal transport map. This is something I studied in [18, 25, 23]. In Section
1.4 I will state some of the obtained results. We will see in particular that there are some
unexpected connections between regularity properties of the transport map on Riemannian
manifolds, and the geometric structure of the manifold. As an example, as I showed with
Rifford in [23], studying the regularity of the optimal transport one can prove as a corollary a
convexity result on the cut-locus of the manifold.

We will then see some applications of the optimal transport, showing how one can apply
it to prove some refined version of functional inequalities: in Section 1.5 we will see that the
optimal transport allows to prove a sharpened isoperimetric inequality in Rn, a result I did in
[19] with Maggi and Pratelli. Moreover, always using the optimal transport, me and Ge were
recently able to prove isoperimetric-type inequalities on manifolds with constant curvature [16].

Finally in Section 1.6 I will show a variant of the optimal transport that I studied in [15],
and I called the “optimal partial transport problem”.

The second part concerns some variational methods introduced by Brenier for the study
of the incopressible Euler equations. These methods are based on a relaxation of Arnold’s
problem, which consists in looking at the Euler equations as geodesics in the space of volume
preserving diffeomorphism. After introducing the models, in Section 2.2 I will describe some
of the results obtained with Bernot and Santambrogio in [7], where we studied some particular
generalized solutions in two dimensions. Then Section 2.3 is focused on giving sufficient and nec-
essary conditions for being a generalized solution, a problem investigated with Ambrosio in [3, 4].
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8 Introduction

In the third part I will show a result obtained with Fathi and Rifford concerning the dimen-
sion of the quotient Aubry set [9]. Our results give a positive answer to Mather conjecture in
many cases (in particular in dimension at most 3). Moreover, as I will explain in Section 3.2,
this problem presents a deep connection with Sard Theorem, and this fact motivated a study I
did in [12] on generalizations of the Sard Theorem in Sobolev spaces (see Section 3.3).

Finally, in the fourth part I will describe some recent generalizations of the DiPerna-Lions
theory for non-smooth ODEs: we will see that one can develop a “weak” theory on existence
and uniqueness of martingale solutions for non-smooth SDEs, and moreover one can adapt the
finite dimensional techniques to the infinite dimensional case of an abstract Wiener space. This
part concerns the results obtained in [13, 5].



Chapter 1

The optimal transport problem

The optimal transport problem (whose origin goes back to Monge [68]) is nowadays formulated
in the following general form: given two probability measures µ and ν, defined on the measurable
spaces X and Y , find a measurable map T : X → Y with T]µ = ν, i.e.

ν(A) = µ
(
T−1(A)

) ∀A ⊂ Y measurable,

and in such a way that T minimizes the transportation cost. This last condition means
∫

X
c(x, T (x)) dµ(x) = min

S]µ=ν

{∫

X
c(x, S(x)) dµ(x)

}
,

where c : X×Y → R is some given cost function, and the minimum is taken over all measurable
maps S : X → Y with S]µ = ν. When the transport condition T]µ = ν is satisfied, we say that
T is a transport map, and if T minimizes also the cost we call it an optimal transport map.

Even in Euclidean spaces, with the cost c equal to the Euclidean distance or its square,
the problem of the existence of an optimal transport map is far from being trivial. Moreover,
it is easy to build examples where the Monge problem is ill-posed simply because there is no
transport map: this happens for instance when µ is a Dirac mass while ν is not. This means
that one needs some restrictions on the measures µ and ν.

The major advance on this problem is due to Kantorovitch, who proposed in [55], [56] a notion
of weak solution of the optimal transport problem. He suggested to look for plans instead of
transport maps, that is probability measures γ in X × Y whose marginals are µ and ν, i.e.

(πX)]γ = µ and (πY )]γ = ν,

where πX : X×Y → X and πY : X×Y → Y are the canonical projections. Denoting by Π(µ, ν)
the set of plans, the new minimization problem becomes

C(µ, ν) = min
γ∈Π(µ,ν)

{∫

M×M
c(x, y) dγ(x, y)

}
. (1.0.1)

If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal plan. Due to
the linearity of the constraint γ ∈ Π(µ, ν), it turns out that weak topologies can be used to
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10 CHAPTER 1. THE OPTIMAL TRANSPORT PROBLEM

provide existence of solutions to (1.0.1): this happens for instance whenever X and Y are Polish
spaces and c is lower semicontinuous. The connection between the formulation of Kantorovich
and that of Monge can be seen by noticing that any transport map T induces the plan defined
by (IdX ×T )]µ which is concentrated on the graph of T . Thus, the problem of showing existence
of optimal transport maps reduces to prove that an optimal transport plan is concentrated on
a graph. It is however clear, from what we already said, that no such result can be expected
without additional assumptions on the measures and on the cost.

1.1 Preliminary results

The first existence and uniqueness result is due to Brenier. In [37] he considers the case X =
Y = Rn, c(x, y) = |x− y|2, and he shows the following:

Theorem 1.1.1 Let µ and ν be two probability measures on Rn such that
∫

Rn

|x|2 dµ(x) +
∫

Rn

|y|2 dν(y) < +∞.

If µ is absolutely continuous with respect to L n, there exists a unique optimal transport map T .
Moreover T = ∇φ, with φ : Rn → R convex.

After this result, many researchers started to work on the problem, showing existence of
optimal maps with more general costs, both in a Euclidean setting, in the case of compact
manifolds, and in some particular classes on non-compact manifolds.

In particular, McCann was able to generalize Brenier’s theorem to compact manifolds [66]:

Theorem 1.1.2 Let (M, g) be a compact Riemannian manifold, take µ and ν two probability
measures on M , and consider the optimal transport problem from µ to ν with cost c(x, y) =
dg(x, y)2, where dg denotes the Riemannian distance on M . If µ is absolutely continuous with
respect to the volume measure, there exists a unique optimal transport map T . Moreover there
exists a function ϕ : M → R such that T (x) = expx(∇xϕ).

Few years later, Ambrosio and Rigot proved the first existence and uniqueness result on
optimal transport maps in a sub-Riemannian setting [29]. More precisely they consider the
Heisenberg group Hn, whose basis for the associated Lie Algebra of left-invariant vector fields is
given by

(
X,Y,T

)
=

(
X1, · · · ,Xn,Y1, · · · ,Yn,T

)
, where

Xk = ∂xk
+ 2yk∂t for k = 1, . . . , n

Yk = ∂yk
− 2xk∂t for k = 1, . . . , n

T = ∂t.

Then one has the following result:

Theorem 1.1.3 Let µ0 and µ1 be two Borel probability measures on Hn, where Hn denotes the
Heisenberg group. Assume that µ0 is absolutely continuous with respect to L 2n+1 and that

∫

Hn

dC(0H, x)2dµ0(x) +
∫

Hn

dC(0H, y)2dµ1(y) < +∞.
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Then there exists a unique optimal transport plan from µ0 to µ1. Moreover there exists a function
ϕ : Hn → R such that the optimal transport plan is concentrated on the graph of

T (x) := x · expH(−Xϕ(x)− iYϕ(x),−Tϕ(x)).

1.2 Riemannian manifolds

With the aim of generalizing McCann’s result to more general costs, and removing at the same
time the compactenss assumption, in a joint work with Albert Fathi [8], we study the optimal
transport problem on general non-compact manifolds with a “geometric” cost function:

c(x, y) := inf
γ(0)=x,γ(1)=y

∫ 1

0
L(γ(t), γ̇(t)) dt,

where L : TM → R is a Tonelli Lagrangian. In this general setting, without requiring any global
assumption on the manifold (say, a bound on the sectional curvature), we were able to prove
the following result:

Theorem 1.2.1 Let L be a Tonelli Lagrangian on the connected manifold M . Let µ, ν be
probability measures on M , with µ absolutely continuous with respect to volume measure, and
assume that the infimum in the Kantorovitch problem (1.0.1) with cost c is finite. Then there
exists a unique optimal transport map T : M → M . Moreover there exists a function ϕ : M → R
such that

T (x) = π∗ ◦ φH
t (x, d̃xϕ),

where π∗ : T ∗M → M is the canonical projection, φH
t is the Hamiltonian flow of the Hamiltonian

H associated to L, and d̃xϕ denotes the approximate differential1 of ϕ.

1.2.1 Weak regularity of the optimal transport map

To properly state the above result we needed to use the notion of approximate differential,
which is a “measure theoretical” notion of differentiability. Thus in the above statement we are
implicitly saying that the function ϕ is approximately differentiable a.e. As I showed in [11],
this result can be sharpened: let us consider for simplicity the case c(x, y) = 1

2d(x, y)2 (which
corresponds to the choice L(x, v) = 1

2 |v|2x). Then the optimal map is given by the formula
T (x) = expx(∇̃xϕ), where ∇̃xϕ denotes the approximate gradient of ϕ. As proved in [11],
the function ϕ is indeed twice approximate differentiable, so that we can define its approximate
hessian ∇̃2

xϕ. Thanks to this regularity property of ϕ, I could prove a change of variable formula,
and the approximate differentiability of the transport map:

1We recall that f : M → R has an approximate differential at x ∈ M if there exists a function h : M → R
differentiable at x such that the set {f = h} has density 1 at x with respect to the Lebesgue measure (this just
means that the density is 1 in charts). In this case, the approximate value of f at x is defined as f̃(x) = h(x),
and the approximate differential of f at x is defined as d̃xf = dxh.
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Theorem 1.2.2 Assume that µ = fvol, ν = gvol. There exists a subset E ⊂ M such that
µ(E) = 1 and, for each x ∈ E, Y (x) := d(expx)∇̃xϕ and H(x) := 1

2Hess d(·, T (x))2|z=x both
exist and we have

f(x) = g(T (x)) det[Y (x)(H(x) + ∇̃2
xϕ)] 6= 0.

Moreover the transport map is approximatively differentiable for µ-a.e. x, and its approximate
differential is given by the formula

d̃xT = Y (x)
(
H(x) + ∇̃2

xϕ
)
,

In particular, if A : [0 +∞) → R is a Borel function such that A(0) = 0, then
∫

M
A(g(y)) dvol(y) =

∫

E
A

(
f(x)
J(x)

)
J(x) dvol(x),

where J(x) := det[Y (x)(H(x) + ∇̃2
xϕ)] = det

(
d̃xT

)
(either both integrals are undefined or both

take the same value in R).

1.2.2 Displacement convexity

The importance of the above theorem (which generalizes to non-compact manifolds the results
in [44]) comes from the fact that it allows to study convexity properties of functionals along
Wasserstein geodesic.

To explain this fact, let us consider the family of maps Tt(x) := expx(t∇̃xϕ). Observe that
T0(x) = x and T1(x) = T (x), so that we can define a family of measures µt := (Tt)]µ going from
µ = µ0 to ν = µ1. By the results in [8, 11], we know that Tt coincides with the unique optimal
map pushing µ forward to µt, and that µt is absolutely continuous with respect to vol for any
t ∈ [0, 1], so that we can write νt = ρtvol. Moreover µt is the unique geodesic between µ and
ν with respect to the 2-Wasserstein distance (which is the square root of the optimal transport
cost functional, when the cost function c(x, y) coincides with the squared distance d(x, y)2).

We now want to consider the behavior of the functional

U(ρ) :=
∫

M
A(ρ(x)) dvol(x)

along the path t 7→ ρt. In Euclidean spaces, this path is called displacement interpolation and
the functional U is said to be displacement convex if

[0, 1] 3 t 7→ U(ρt) is convex for every ρ0, ρ1.

As shown by McCann [64, 65], sufficient condition for the displacement convexity of U in Rn is
that A : [0,+∞) → R ∪ {+∞} satisfies

(0, +∞) 3 s 7→ snA(s−n) is convex and nonincreasing, with A(0) = 0. (1.2.1)

Typical examples include the entropy A(ρ) = ρ log ρ and the Lq-norm A(ρ) = 1
q−1ρq for q ≥

(n− 1)/n.
Thanks to the (weak) regularity properties of the transport map stated above, I could prove

that the displacement convexity of U is still true on Ricci nonnegative manifolds under the
assumption (1.2.1) [11]:
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Theorem 1.2.3 If Ric ≥ 0 and A satisfies (1.2.1), then U is displacement convex.

In the above case, we have considered functional defined only on probability measures which
are absolutely continuous with respect to vol. The big advantage of this fact is that, in this
case, the curve µt we defined above is the unique Wasserstein geodesic between µ and ν. On
the other hand, if we do not make any absolute continuity assuptions, the Wasserstein geodesic
(which always exists) is in general not unique. One can therefore introduce two different notions
of dispacement convexity, a strong and a weak one: the strong notion consists in asking that a
functional defined in the space of probability measure on M is convex among all Wasserstein
geodesics connecting two measures µ and ν; the weak one is that, for all µ and ν, there is some
Wasserstein geodesic connecting them along which the functional is convex. The importance
of introducing a weaker notion comes from the fact that it is more stable under passage to the
limit, and so it is particularly suitable when one wants to recast lower bounds on the Ricci
curvature tensor in terms of displacement convexity properties of certain nonlinear functionals
[59, 73, 74]. However, as shown in collaboration with Cédric Villani, on Riemannian manifolds
these notions are equivalent [24].

1.3 Sub-Riemannian manifolds

A sub-Riemannian manifold is given by a triple (M, ∆, g) where M denotes a smooth complete
connected manifold of dimension n, ∆ is a smooth nonholonomic distribution of rank m < n on
M , and g is a Riemannian metric on M . We recall that a smooth distribution of rank m on M
is a rank m subbundle of TM . This means that, for every x ∈ M , there exist a neighborhood
Vx of x in M , and a m-tuple (fx

1 , . . . , fx
m) of smooth vector fields on Vx, linearly independent on

Vx, such that
∆(z) = Span {fx

1 (z), . . . , fx
m(z)} ∀z ∈ Vx.

One says that the m-tuple of vector fields (fx
1 , . . . , fx

m) represents locally the distribution ∆.
We assume that the distribution ∆ is nonholonomic, i.e. for every x ∈ M there is a m-tuple
(fx

1 , . . . , fx
m) of smooth vector fields on Vx which represents locally the distribution and such

that
Lie {fx

1 , . . . , fx
m} (z) = TzM ∀z ∈ Vx,

that is, such that the Lie algebra2 spanned by fx
1 , . . . , fx

m, is equal to the whole tangent space
TzM at every point z ∈ Vx. This Lie algebra property is often called Hörmander’s condition.

A curve γ : [0, 1] → M is called a horizontal path with respect to ∆ if it belongs to
W 1,2([0, 1], M) and satisfies

γ̇(t) ∈ ∆(γ(t)) for a.e. t ∈ [0, 1].
2We recall that, for any family F of smooth vector fields on M , the Lie algebra of vector fields generated by

F , denoted by Lie(F), is the smallest vector space S satisfying

[X, Y ] ⊂ S ∀X ∈ F , ∀Y ∈ S,

where [X, Y ] is the Lie bracket of X and Y .
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According to the classical Chow-Rashevsky Theorem, since the distribution is nonholonomic on
M , any two points of M can be joined by a horizontal path. That is, for every x, y ∈ M , there
is a horizontal path γ : [0, 1] → M such that γ(0) = x and γ(1) = y. The length of a path
γ ∈ Ω∆(x) is then defined by

lengthg(γ) :=
∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t))dt. (1.3.1)

The sub-Riemannian distance dSR(x, y) (also called Carnot-Carathéodory distance) between
two points x, y of M is the infimum over the lengths of the horizontal paths joining x and y.
According to the Chow-Rashevsky Theorem, since the distribution is nonholonomic on M , the
sub-Riemannian distance is finite and continuous on M ×M .

Assuming that (M,dSR) is complete, denote by T ∗M the cotangent bundle of M , by ω
the canonical symplectic form on T ∗M , and by π : T ∗M → M the canonical projection. The
sub-Riemannian Hamiltonian H : T ∗M → R which is canonically associated with the sub-
Riemannian structure is defined as follows: for every x ∈ M , the restriction of H to the fiber
T ∗xM is given by the nonnegative quadratic form

p 7−→ 1
2

max
{

p(v)2

gx(v, v)
| v ∈ ∆(x) \ {0}

}
. (1.3.2)

Let
−→
H denote the Hamiltonian vector field on T ∗M associated to H, that is ι−→

H
ω = −dH. A

normal extremal is an integral curve of
−→
H defined on [0, 1], i.e. a curve ψ(·) : [0, 1] → T ∗M

satisfying
ψ̇(t) =

−→
H (ψ(t)), ∀t ∈ [0, 1].

Note that the projection of a normal extremal is a horizontal path with respect to ∆. For every
x ∈ M , the exponential mapping with respect to x is defined by

expx : T ∗xM −→ M
p 7−→ ψ(1),

where ψ is the normal extremal such that ψ(0) = (x, p) in local coordinates. We observe that,
unlike the Riemannian setting, the sub-Riemannian exponential mapping with respect to x is
defined on the cotangent space at x.

1.3.1 Statement of the results

When one studies the optimal transport problem on sub-Riemannian manifolds with cost c(x, y) =
1
2dSR(x, y)2, the main difficulty one encounters comes from the fact that the sub-Riemannian
distance is singular along the diagonal D := {(x, y) ∈ M × M |x = y}. To deal with this
problem, in a joint work with Ludovic Rifford [22] we study the set of points which are in the
support of an optimal γ for the Kantorovitch problem (1.0.1), and we analyze separately points
on the diagonal and points outside the diagonal. Thanks to this refined analysis, we can prove
an existence and uniqueness result assuming only a semi-concavity property of the function d2

SR

in the complement of the diagonal (which is an assumption always satisfied in the Riemannian
case, and it holds true on many sub-Riemannian manifolds).
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Theorem 1.3.1 Let µ and ν be (compactly supported) probability measures, with µ absolutely
continuous with respect to vol. Assume that there exists an open set Ω ⊂ M × M such that
supp(µ× ν) ⊂ Ω, and d2

SR is locally semiconcave (resp. locally Lipschitz) on Ω \D. Then there
exists a function φ : M → R, and an open set A ⊂ M , such that φ is locally semiconcave inside
A, and the unique optimal transport map is given by

T (x) :=
{

expx(− dφ(x)) if x ∈ A,
x if x ∈ M \A.

We see that we can recover more or less the standard Riemannian result, simply splitting
the transport map in two sets suitably chosen. The key points with respect to previous results
in the sub-Riemannian setting are:

1) We do not make any assumption of regularity on the sub-Riemannian distance on the
diagonal (all previous results assumed at least the function d2

SR to be Lipschitz on the
diagonal, like in the Heisenberg group).

2) We can prove a “second order regularity” of the function φ appearing in the formula for
the transport map (recall indeed that semiconcave function are twice differentiable a.e.)

In particular, thanks to 2), we can prove a weak regularity property of the optimal transport
map, as in the Riemannian case. This allows for instance to write (for the first time, to our
knowledge) a weak formulation of Monge-Ampère equation in a sub-Riemannian setting:

Theorem 1.3.2 With the same assumption of Theorem 1.3.1, the optimal transport map is
differentiable µ-a.e. inside A, it is approximately differentiable at µ-a.e. x. Moreover

Y (x) := d(expx)−dφ(x) and H(x) :=
1
2
Hess dSR(·, T (x))2|z=x

exists for µ-a.e. x ∈ A, and the approximate differential of T is given by the formula

d̃xT =
{

Y (x)
(
H(x)−Hessφ(x)

)
if x ∈ A,

Id if x ∈ M \A,

where Id : TxM → TxM denotes the identity map.
Finally, assuming both µ and ν absolutely continuous with respect to the volume measure,

and denoting by f and g their respective density, the following Jacobian identity holds:

∣∣det
(
d̃xT

)∣∣ =
f(x)

g(T (x))
6= 0 µ-a.e. (1.3.3)

In particular φ satisfies in a weak sense the Monge-Ampère type equation

det
(
H(x)−Hessφ(x)

)
=

f(x)
|det(Y (x))|g(T (x))

for µ-a.e. x ∈ A.
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As another byproduct of our regularity result, we can prove the absolute continuity of Wasser-
stein geodesics. This fact was stated as an open problem in the case of the Heisenberg group
[29], and solved in the Heisenberg group and in Alexandrov spaces in a joint work with Nicolas
Juillet [17]:

Theorem 1.3.3 With the same assumption of Theorem 1.3.1, there exists a unique Wasserstein
geodesic (µt)t∈[0,1] joining µ = µ0 to ν = µ1, which is given by µt := (Tt)#µ for t ∈ [0, 1], with

Tt(x) :=
{

expx(−t dφ(x)) if x ∈ A,
x if x ∈ M \A.

Moreover, if Ω is totally geodesically convex, then µt is absolutely continuous for all t ∈ [0, 1).

1.4 Regularity of the optimal transport on Riemannian mani-
folds

Let (M, g) be a compact connected Riemannian manifold, let µ(dx) = f(x)vol(dx) and ν(dy) =
g(y)vol(dy) be probability measures on M , and consider the cost c(x, y) = 1

2d(x, y)2. Assume f
and g to be C∞ and strictly positive on M . A natural question is whether the optimal map T
is smooth or not.

To understand a bit the problem, we start from the Jacobian equation
∣∣det(dxT )

∣∣ =
f(x)volx

g(T (x))volT (x)
,

and the relation T (x) = expx

(∇ϕ(x)
)
. We now write a PDE for ϕ. Indeed, since

∇ϕ(x) +∇xc(x, T (x)) = 0,

differentiating with respect to x and using the Jacobian equation we get

det
(∇2ϕ(x) +∇2

xc
(
x, expx

(∇ϕ(x)
)))

=
f(x)volx

g(T (x))volT (x)

∣∣det(d∇ϕ(x) expx)
∣∣ =: h(x,∇ϕ(x)).

We see that ϕ solves a Monge-Ampère type equation with a perturbation ∇2
xc

(
x, expx

(∇ϕ(x)
))

which is of first order in ϕ. Unfortunately, for Monge-Ampère type equations lower order terms
do matter, and it turns out that it is exactly the term ∇2

xc
(
x, expx

(∇ϕ(x)
))

which can create
obstractions to the smoothness.

In [63], the authors found a mysterious forth-order conditions on the cost functions, which
turned out to be sufficient to prove regularity results. The idea was to differentiate twice the
above PDE for ϕ in order to get a linear PDE for the second derivatives of ϕ, and then try to
prove an a priori estimate. In this computation, one ends up at a certain moment with a term
which needs to have a sign in order to make the equation elliptic. This term is what now is
called the Ma-Trudinger-Wang tensor (in short MTW tensor):

S(x,y)(ξ, η) :=
3
2

∑

ijklrs

(cij,rc
r,scs,kl − cij,kl) ξiξjηkηl, ξ ∈ TxM, η ∈ TyM.
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In the above formula the cost function is evaluated at (x, y), and we used the notation cj = ∂c
∂xj ,

cjk = ∂2c
∂xj∂xk , ci,j = ∂2c

∂xi∂yj , ci,j = (ci,j)−1, and so on. The condition to impose on S(x,y)(ξ, η) is

S(x,y)(ξ, η) ≥ 0 whenever
∑

ij

ci,jξ
iηj = 0

(this is called the MTW condition).
As shown by Loeper [57], the MTW tensor satisfies the following remarkable identity:

S(x,x)(ξ, η) = −3
2

∂2

∂s2
|s=0

∂2

∂t2
|t=0F (t, s) = Sectx([ξ, η]),

where ξ, η ∈ TxM are two orthogonal unit vectors, F (t, s) := 1
2d

(
expx(tξ), expx(sη)

)2, and
Sectx([ξ, η]) denotes the sectional curvature of the plane generated by ξ and η. This fact shows
that the MTW tensor is a non-local version of the sectional curvature, and the MTW condition
implies non-negative sectional curvature. Loeper also showed that the MTW condition is indeed
a necessary condition for the regularity of the optimal map. In particular, regularity cannot hold
on manifolds which have a point x where the sectional curvature of a plane in TxM is negative.

In collaboration with Gregoire Loeper [18], I proved a regularity result in two dimension for
optimal maps under weak assumptions on the measures:

Theorem 1.4.1 Let (M, g) be a two-dimensional manifold. Assume that the MTW condition
holds, that f ≤ A and g ≥ a for some A, a > 0 on their respective support, and that the cost func-
tion c(x, y) is smooth on the set supp(µ) × supp(ν). Finally suppose that (expx)−1(supp(ν)) ⊂
TxM is convex for any x ∈ supp(µ). Then T is continuous.

We remark that this result is “local”, in the sense that the assumption that c is smooth on
supp(µ)× supp(ν) means that we stay away from the cut locus.

In the general case one has to deal with singularity of the cost function, which makes things
much more complicated. It turns out that the convexity of cut-loci is useful to prove regularity
and stability results. For this reason we give the following definition:

Definition 1.4.2 Given x ∈ M and v ∈ TxM we define the cut time as

tc(x, v) := inf {t > 0 | s 7→ expx(sv) is not minimizing between x and expx(tv)} .

We say that (M, g) satisfies CTIL (Convexity of the Tangent Injectivity Loci) if, for all x ∈ M ,
the set

TIL(x) := {tv ∈ TxM | 0 ≤ t < tc(x, v)} ⊂ TxM

is convex.

Combining (a strengthened version of) the MTW condition (called MTW(K, C)) with CTIL,
Loeper and Villani proved the continuity of the optimal map [58]:
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Theorem 1.4.3 Let (M, g) be a (compact) Riemannian manifold satisfying MTW(K, C) with
K > 0. Assume morever that all TIL(x) are uniformly convex, and let f and g be two probability
densities on M such that f ≤ A and g ≥ a for some A, a > 0. Then the optimal map is
continuous.

As noted in [58], it seems reasonable to conjecture that the MTW condition implies CTIL, so
that in general one should expect that regularity results hold assuming only the MTW condition.
This conjecture has been proved by Loeper and Villani [58] assuming that there is no focalization
at the cut locus (i.e., dtc(x,v)v expx is invertible for all x, v). However big complications arise
when one tries to prove this result in general, due to the complicated structure of the cut locus.

In [23], in collaboration with Ludovic Rifford, we studied the case of the perturbation of
the 2-sphere. First of all, we prove that perturbations of the standard sphere S2 ⊂ R3 satisfy a
variant of the MTW condition. Then we prove that this new condition actually implies CTIL.
Therefore we get the following:

Theorem 1.4.4 If (M, g) is a C4-perturbation of S2, then CTIL holds. Moreover, for any f
and g probability densities on M such that f ≤ A and g ≥ a for some A, a > 0, the optimal map
is continuous.

Thus we see that an interesting (and unexpected) feature appears in the study of the reg-
ularity issue: the MTW condition, although it was introduced as a necessary condition for the
regularity, turns out to be a geometric condition which gives new kind of geometric informations
on the manifolds. It would be therefore interesting to understand which manifolds satisfies the
MTW condition, and which geometric informations it implies. This is one of the subjects of my
present research.

1.5 The (anisotropic) isoperimetric inequality

The anisotropic isoperimetric inequality arises in connection with a natural generalization of the
Euclidean notion of perimeter. In dimension n ≥ 2, consider an open, bounded, convex set K
of Rn, containing the origin. Starting from K, define a weight function on directions through
the Euclidean scalar product

‖ν‖∗ := sup {x · ν : x ∈ K} , ν ∈ Sn−1,

where Sn−1 = {x ∈ Rn : |x| = 1}, and |x| is the Euclidean norm of x ∈ Rn. Let E be an open
subset of Rn, with smooth or polyhedral boundary ∂E oriented by its outer unit normal vector
νE , and let Hn−1 stand for the (n− 1)-dimensional Hausdorff measure on Rn. The anisotropic
perimeter of E is defined as

PK(E) :=
∫

∂E
‖νE(x)‖∗dHn−1(x). (1.5.1)

This notion of perimeter obeys the scaling law PK(λE) = λn−1PK(E), λ > 0, and it is invariant
under translations. However, at variance with the Euclidean perimeter, PK is not invariant by
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the action of O(n), or even of SO(n), and in fact it may even happen that PK(E) 6= PK(Rn \E),
provided K is not symmetric with respect to the origin. When K is the Euclidean unit ball
B = {x ∈ Rn : |x| < 1} of Rn, then ‖ν‖∗ = 1 for every ν ∈ Sn−1, and therefore PK(E) coincides
with the Euclidean perimeter of E.

Apart from its intrinsic geometric interest, the anisotropic perimeter PK arises as a model
for surface tension in the study of equilibrium configurations of solid crystals with sufficiently
small grains, and constitutes the basic model for surface energies in phase transitions. In the
former setting, one is naturally led to minimize PK(E) under a volume constraint. This is of
course equivalent to study the isoperimetric problem

inf
{

PK(E)
|E|(n−1)/n

: 0 < |E| < ∞
}

, (1.5.2)

where |E| is the Lebesgue measure of E. As conjectured by Wulff [75] back to 1901, the unique
minimizer (modulo the invariance group of the functional, that consists of translations and
scalings) is the set K itself. In particular the anisotropic isoperimetric inequality holds:

PK(E) ≥ n|K|1/n|E|(n−1)/n, if |E| < ∞. (1.5.3)

It was Dinghas [50] to show how to derive (1.5.3) from the Brunn-Minkowski inequality

|E + F |1/n ≥ |E|1/n + |F |1/n, ∀E, F ⊆ Rn. (1.5.4)

The formal argument is well known. Indeed, (1.5.4) implies that

|E + εK| − |E|
ε

≥ (|E|1/n + ε|K|1/n)n − |E|
ε

, ∀ ε > 0.

As ε → 0+, the right hand side converges to n|K|1/n|E|(n−1)/n, while, if E is regular enough,
the left hand side has PK(E) as its limit.

Gromov’s proof of the anisotropic isoperimetric inequality

Although Gromov’s proof [67] was originally based on the use of the Knothe map M between E
and K, his argument works with any other transport map having suitable structure properties,
like the Brenier map. This is a well-known, common feature of all the proofs of geometric-
functional inequalities based on mass transportation [45]. However it seems that, in the study
of stability, Brenier map is more efficient.

We now want to give the proof of the anisotropic isoperimetric inequality, without caring
about regularity issues.

Let us apply Theorem 1.1.1 to the measures µ = 1
|E|χE dx, ν = 1

|K|χK dy. Then we know
that there exists a transport map T which takes E into K and such that

det∇T =
|K|
|E| on E.
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Moreover T is the gradient of a convex function and has positive Jacobian, so ∇T (x) is a
symmetric and positive definite n× n matrix, with n-positive eigenvalues 0 < λk(x) ≤ λk+1(x),
1 ≤ k ≤ n− 1, such that

∇T (x) =
n∑

k=1

λk(x)ek(x)⊗ ek(x)

for a suitable orthonormal basis {ek(x)}n
k=1 of Rn. In particular

div T (x) =
n∑

i=1

λi(x),
(
det∇T (x)

)1/n =

(
n∏

i=1

λi(x)

)1/n

,

and the arithmetic-geometric mean inequality, applied to the λk’s, gives

div T (x) ≥ n
(
det∇T (x)

)1/n = n

( |K|
|E|

)1/n

. (1.5.5)

Let us now define, for every x ∈ Rn,

‖x‖ = inf{λ > 0 : λx /∈ K}.

Note that this quantity fails to define a norm only because, in general, ‖x‖ 6= ‖− x‖ (indeed, K
needs not to be symmetric with respect to the origin). Then, the set K can be characterized as

K = {x ∈ Rn : ‖x‖ < 1} , (1.5.6)

and ‖T‖ ≤ 1 on ∂E as T (x) ∈ K for x ∈ E. Moreover, by the definition of ‖ · ‖∗, we have

‖ν‖∗ = sup{x · ν : ‖x‖ = 1},

and therefore the following Cauchy-Schwarz type inequality holds:

x · y ≤ ‖x‖‖y‖∗ , ∀x, y ∈ Rn. (1.5.7)

Combining all together, and applying the Divergence Theorem, we get

PK(E) ≥
∫

∂E
‖T‖‖νE‖∗ dHn−1 ≥

∫

∂E
T · νE dHn−1

=
∫

E
div T (x) dx ≥ n

( |K|
|E|

)1/n ∫

E
dx = n|K|1/n|E|(n−1)/n,

and the isoperimetric inequality is proved.
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1.5.1 Stability of isoperimetric problems

A quantitative version of the anisotropic

Whenever 0 < |E| < ∞, we introduce the isoperimetric deficit of E,

δ(E) :=
PK(E)

n|K|1/n|E|(n−1)/n
− 1 .

This functional is invariant under translations, dilations and modifications on a set of measure
zero of E. Moreover, δ(E) = 0 if and only if, modulo these operations, E is equal to K (as
a consequence of the characterization of equality cases of isoperimetric inequality). Thus δ(E)
measures, in terms of the relative size of the perimeter and of the measure of E, the deviation of
E itself from being optimal in (1.5.3). The stability problem consists in quantitatively relating
this deviation to a more direct notion of distance from the family of optimal sets. To this end
we introduce the asymmetry index of E,

A(E) := inf
x∈Rn

{ |E∆(x + rK)|
|E| : rn|K| = |E|

}
,

where E∆F denotes the symmetric difference between the sets E and F . The asymmetry is
invariant under the same operations that leave the deficit unchanged. We look for constants C
and α, depending on n and K only, such that the following quantitative form of (1.5.3) holds
true:

PK(E) ≥ n|K|1/n|E|(n−1)/n

{
1 +

(
A(E)

C

)α}
, (1.5.8)

i.e. A(E) ≤ C δ(E)1/α. This problem has been thoroughly studied in the Euclidean case K = B,
starting from the two dimensional case, already considered by Bernstein [33] and Bonnesen [35].
They prove (1.5.8) with the exponent α = 2, that is optimal concerning the decay rate at zero of
the asymmetry in terms of the deficit. Concerning the higher dimensional case, it was recently
shown in [54] that (1.5.8) holds with the sharp exponent α = 2.

The main technique behind these proofs is to use quantitative symmetrization inequalities,
that of course reveal useful due to the complete symmetry of B. However, if K is a generic convex
set, then the study of uniqueness and stability for the corresponding isoperimetric inequality
requires the employment of different ideas. The first stability result for (1.5.3) is due to Esposito,
Fusco and Trombetti in [53] with some constant C = C(n,K) and for the exponent

α(2) =
9
2
, α(n) =

n(n + 1)
2

, n ≥ 3.

This remarkable result leaves however the space for a substantial improvement concerning the
decay rate at zero of the asymmetry index in terms of the isoperimetric deficit. In collaboration
with Francesco Maggi and Aldo Pratelli, we could indeed prove the result with the sharp decay
rate [19]:



22 CHAPTER 1. THE OPTIMAL TRANSPORT PROBLEM

Theorem 1.5.1 Let E be a set of finite perimeter with |E| < ∞, then

PK(E) ≥ n|K|1/n|E|(n−1)/n

{
1 +

(
A(E)
C0(n)

)2
}

,

or, equivalently,
A(E) ≤ C0(n)

√
δ(E),

with a constant C0(n) depending on the dimension only. Moreover C0(n) can be computed
explicitly, and we have C0(n) = 61 n7

(2−2(n−1)/n)3/2 .

The strategy of the proof is to carefully look at Gromov’s proof, and understand which infor-
mations can be recovered from each inequality which appears along the proof.

A refined Brunn-Minkowski inequality

As a corollary of this result, we could also prove a refined version of the Brunn-Minkowski on
convex sets: the Brunn-Minkowski inequality states that, given two sets E and F , one has

|E + F |1/n ≥ |E|1/n + |F |1/n.

It is well-known that, whenever E and F are open bounded convex sets, equality holds in the
Brunn-Minkowski inequality if and only if there exist r > 0 and x0 ∈ Rn such that E = x0 +rF .
One can use Theorem 1.5.1 to infer an optimal result concerning the stability problem with
respect to the relative asymmetry index of E and F , defined as

A(E,F ) = inf
x∈Rn

{ |E∆(x + rF )|
|E| : rn|F | = |E|

}
.

To this end, it is convenient to introduce the Brunn-Minkowski deficit of E and F ,

β(E, F ) :=
|E + F |1/n

|E|1/n + |F |1/n
− 1 ,

and the relative size factor of E and F , defined as

σ(E, F ) := max
{ |F |
|E| ,

|E|
|F |

}
.

Theorem 1.5.2 If E and F are open bounded convex sets, then

|E + F |1/n ≥ (|E|1/n + |F |1/n)

{
1 +

1
σ(E, F )1/n

(
A(E, F )

C(n)

)2
}

or, equivalently,

C(n)
√

β(E, F )σ(E, F )1/n ≥ A(E, F ).

An admissible value for C(n) is C(n) = 2C0(n), where C0(n) is the constant defined in Theo-
rem 1.5.1.

We remark that, as we showed in [19] by suitable examples, the decay rate of A in terms of
β and σ provided by the above theorem is sharp.
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An application to Cheeger sets

A Cheeger set E for an open subset Ω ⊂ Rn, n ≥ 2, is any minimizer of the variational problem

cm(Ω) := inf
{

P (E)
|E|m |E ⊂ Ω, 0 < |E| < ∞

}
.

In order to avoid trivial situations, it is assumed that Ω has finite measure and that the parameter
m satisfies the constraint

m >
n− 1

n
. (1.5.9)

An interesting question is how to provide lower bounds on cm(Ω) in terms of geometric properties
of Ω. The basic estimate in this direction is the Cheeger inequality,

|Ω|m−(n−1)/ncm(Ω) ≥ |B|m−(n−1)/ncm(B) , (1.5.10)

where B is the Euclidean unit ball. The bound is sharp, in the sense that equality holds in
(1.5.10) if and only if Ω = x0 + rB for some x0 ∈ Rn and r > 0. In [20] we strengthen this lower
bound in terms of the Fraenkel asymmetry of Ω

A(Ω) := inf
x∈Rn

{ |Ω∆Br(x)|
|E| : |Br| = |E|

}
,

Theorem 1.5.3 Let Ω be an open set in Rn, n ≥ 2, with |Ω| < ∞, and let m satisfy (1.5.9).
Then

|Ω|m−(n−1)/ncm(Ω) ≥ |B|m−(n−1)/ncm(B)

{
1 +

(
A(Ω)

C(n,m)

)2
}

,

where C(n,m) is a constant depending only on n and m. A possible value for C(m,n) is given
by

C(n,m) =
2

m− (n− 1)/n
+ C0(n),

where C0(n) is the constant defined in Theorem 1.5.1.

1.5.2 An isoperimetric-type inequality on constant curvature manifolds

In the case of a Riemannian manifold (M, g), one can try to mimic Gromov’s proof to obtain an
isoperimetric type inequality. However in this case things become extremely more complicated,
since many computations which are trivial on Rn involves second derivatives of the distance, and
so in particular Jacobi fields. In [16], in collaboration with Yuxin Ge, we succeeded in adapting
Gromov’s argument to the case of the sphere and the hyperbolic space.

More precisely, let Mn(K) denote the n-dimensional simply connected Riemannian manifold
with constant sectional curvature K ∈ R. Set c(x, y) := 1

2dg(x, y)2, where dg(x, y) is the geodesic
distance between x and y on M , and for K ∈ R define

GK(r) :=





(
(
√

Kr) cos(
√

Kr)

sin(
√

Kr)

)
if K > 0,

1 if K = 0,(
(
√
|K|r) cosh(

√
|K|r)

sinh(
√
|K|r)

)
if K < 0,
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`K(r) :=





√
Kr

sin(
√

Kr)
, if K > 0,

1, if K = 0,√
|K|r

sinh(
√
|K|r) , if K < 0.

We denote by ωn the volume of the unit ball in the Euclidean space Rn, and we fix N ∈ Mn(K)
(for example, the north pole of the sphere when K > 0, and define rx := dg(x,N)).

Our isoperimetric-type inequality can be read as follows:

Theorem 1.5.4 Let E ⊂ Mn(K) be set with finite perimeter such that d(·, N) : M → R is
smooth in a neighborhood of E . Then

∫

∂∗E
e(n−1)[GK(0)−GK(rx)]

∣∣∇x∇yc(x,N) · nx

∣∣ dσ(x)

≥ n ω1/n
n

(∫

E
en[GK(0)−GK(rx)]`K(rx) dvol(x)

)(n−1)/n

.

Furthermore equality holds if and only if E is a geodesic ball (centered at N if K 6= 0).

The assumption that d(·, N) : M → R is smooth in a neighborhood of E is always satisfied if
K ≤ 0, while for K > 0 it amounts to say that E is at positive distance from the point antipodal
to N .

Moreover, since for K ≤ 0 one has
∣∣∇x∇yc(x,N) ·nx

∣∣ ≤ 1 with equality when E is a geodesic
ball centered at N , we get the following

Corollary 1.5.5 If K ≤ 0, then
∫

∂∗E
e(n−1)[GK(0)−GK(rx)] dσ(x) ≥ nω1/n

n

(∫

E
en[GK(0)−GK(rx)]`K(rx) dvol(x)

)(n−1)/n

.

for all E ⊂ Mn(K) with finite perimeter. Furthermore equality holds if and only if E is a
geodesic ball (centered at N if K < 0).

The above inequalities, read on the tangent space TNM on sets Ẽ = (expN )−1(E) such that
∂Ẽ = {f(θ)θ | θ ∈ Sn−1} with f : Sn−1 → (0, +∞) smooth, give:

- if K > 0,

∫

Sn−1

e−(n−1)GK(f)
(sin(

√
Kf)√
K

)n−1

√
1 + `K(f)4

|∇f |2
f2

dH n−1

≥ (nωn)1/n

(∫

Sn−1

e−nGK(f)
(sin(

√
Kf)√
K

)n
dH n−1

)(n−1)/n

; (1.5.11)

- if K = 0,

∫

Sn−1

fn−1

√
1 +

|∇f |2
f2

dH n−1 ≥ (nωn)1/n

(∫

Sn−1

fn dH n−1

)(n−1)/n

; (1.5.12)
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- if K < 0,

∫

Sn−1

e−(n−1)GK(f)
(sinh(

√
|K|f)√
|K|

)n−1

√
1 + `K(f)4

|∇f |2
f2

dH n−1

≥ (nωn)1/n

(∫

Sn−1

e−nGK(f)
(sinh(

√
|K|f)√
|K|

)n
dH n−1

)(n−1)/n

. (1.5.13)

All these results show how optimal transport reveals to be an extremely powerful instrument
for (im)proving functional inequalities. One of my projects is to try to see how to apply these
strategy to other cases, for instance to improve log-Sobolev inequalities.

1.6 The optimal partial transport problem

The optimal partial transport problem is a variant of the classical optimal transport problem:
given two densities f and g, we want to transport a fraction m ∈ [0,min{‖f‖L1 , ‖g‖L1}] of
the mass of f onto g minimizing the transportation cost c(x, y) = |x − y|2. More precisely, let
f, g ∈ L1(Rn) be two nonnegative functions, and denote by Γ≤(f, g) the set of nonnegative Borel
measures on Rn×Rn whose first and second marginals are dominated by f and g respectively. Fix
a certain amount m ∈ [0, min{‖f‖L1 , ‖g‖L1}] which represents the mass one wants to transport,
and consider the following partial transport problem:

minimize C(γ) :=
∫

Rn×Rn

|x− y|2 dγ(x, y)

among all γ ∈ Γ≤(f, g) with
∫

dγ = m.
Using weak topologies, it is simple to prove existence of minimizers for any fixed amount

of mass m ∈ [0, min{‖f‖L1 , ‖g‖L1}]. We remark however that in general one cannot expect
uniqueness of minimizers: if m ≤ ∫

Rn f ∧ g, any γ supported on the diagonal {x = y} with
marginals dominated by f ∧ g is a minimizer with zero cost. To ensure uniqueness, in [43]
Caffarelli and McCann assume f and g to have disjoint supports. Under this assumption they
are able to prove (as in the classical Monge-Kantorovich problem) that there exists a (unique)
convex function ϕ such that the unique minimizer is concentrated on the graph of ∇ϕ. This
ϕ is also shown to solve in a weak sense a Monge-Ampère double obstacle problem. Then,
strengthening the disjointness assumption into the hypothesis on the existence of a hyperplane
separating the supports of the two measures, they can prove a semiconvexity result on the free
boundaries. Furthermore, under some classical regularity assumptions on the measures and on
their supports, local C1,α regularity of ϕ and on the free boundaries of the active regions is
shown.

In [15], I studied what happens if one removes the disjointness assumption. Although mini-
mizers are non-unique for m <

∫
Rn f ∧ g (but in this case the set of minimizers can be trivially

described), uniqueness holds for any m ≥ ∫
Rn f ∧ g. Moreover, exactly as in [43], the unique

minimizer is concentrated on the graph of the gradient of a convex function.
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Moreover, I showed that the marginals of the minimizers always dominate the common mass
f ∧ g (that is all the common mass is both source and target). This property, which has an
interest on its own, plays also a crucial role in the regularity of the free boundaries. Indeed,
I proved that the free boundary has zero Lebesgue measure under some mild assumptions on
the supports of the two densities, and as a consequence of this fact I could apply Caffarelli’s
regularity theory for the Monge-Ampère equation whenever the support of g is assumed to be
convex, and f and g are bounded away from zero and infinity on their respective support. This
allows to deduce local C0,α regularity of the transport map, and to prove that it extends to an
homeomorphism up to the boundary if both supports are assumed to be strictly convex.

On the other hand, in this situation where the supports of f and g can intersect, something
new happens: usually, assuming C∞ regularity on the density of f and g (together with some
convexity assumption on their supports), one can show that the transport map is C∞ too. In
our case, the C0,α

loc regularity is in some sense optimal: I constructed two C∞ densities on R,
supported on two bounded intervals and bounded away from zero on their supports, such that
the transport map is not C1.



Chapter 2

Variational methods for the Euler
equations

The velocity field of an incompressible fluid moving inside a smooth domain D ⊂ Rd is classically
represented by a time-dependent and divergence-free vector field u(t, x) which is parallel to the
boundary ∂D. The Euler equations for incompressible fluids describing the evolution of such a
velocity field u in terms of the pressure field p are





∂tu + (u · ∇)u = −∇p in [0, T ]×D,
div u = 0 in [0, T ]×D,
u · n = 0 on [0, T ]× ∂D.

(2.0.1)

If we assume that u is smooth, the trajectory of a particle initially at position x is obtained by
solving {

ġ(t, x) = u(t, g(t, x)),
g(0, x) = x.

Since u is divergence free, for each time t the map g(t, ·) : D → D is a measure-preserving
diffeomorphism of D (say g(t, ·) ∈ SDiff(D)), which means

g(t, ·)#L d
bD = L d

bD

where L d
bD denotes the Lebesgue measure inside D. Writing Euler equations in terms of g, we

get 



g̈(t, x) = −∇p (t, g(t, x)) in [0, T ]×D,
g(0, x) = x in D,
g(t, ·) ∈ SDiff(D) for t ∈ [0, T ].

(2.0.2)

2.1 Arnorld’s interpretation and Brenier’s relaxation

In [30], Arnold interpreted the equation above, and therefore (2.0.1), as a geodesic equation on
the space SDiff(D), viewed as an infinite-dimensional manifold with the metric inherited from

27
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the embedding in L2(D) and with tangent space corresponding to the divergence-free vector
fields. According to this interpretation, one can look for solutions of (2.0.2) by minimizing

∫ T

0

∫

D

1
2
|ġ(t, x)|2 dL d

bD(x) dt (2.1.1)

among all paths g(t, ·) : [0, T ] → SDiff(D) with g(0, ·) = f and g(T, ·) = h prescribed (typically,
by right invariance, f is taken as the identity map i). In this way the pressure field arises as a
Lagrange multiplier from the incompressibility constraint.

Although in the traditional approach to (2.0.1) the initial velocity is prescribed, while in
the minimization of (2.1.1) is not, this variational problem has an independent interest and
leads to deep mathematical questions, namely existence of relaxed solutions, gap phenomena,
and necessary and sufficient optimality conditions. Such problems have been investigated in a
joint work with Luigi Ambrosio [3]. We also remark that no existence result of distributional
solutions of (2.0.1) is known when d > 2 (the case d = 2 is different, thanks to the vorticity
formulation of (2.0.1)).

On the positive side, Ebin and Marsden proved in [52] that, when D is a smooth compact
manifold with no boundary, the minimization of (2.1.1) leads to a unique solution, corresponding
also to a solution to Euler equations, if f and h are sufficienly close in a suitable Sobolev norm.

On the negative side, Shnirelman proved in [71, 72] that when d ≥ 3 the infimum is not
attained in general, and that when d = 2 there exists h ∈ SDiff(D) which cannot be connected
to i by a path with finite action. These “negative” results motivate the study of relaxed versions
of Arnold’s problem.

The first relaxed version of Arnold’s minimization problem was introduced by Brenier in [36]:
he considered probability measures η in Ω(D), the space of continuous paths ω : [0, T ] → D,
and solved the variational problem

minimize AT (η) :=
∫

Ω(D)

∫ T

0

1
2
|ω̇(τ)|2 dτ dη(ω), (2.1.2)

with the constraints

(e0, eT )#η = (i, h)#L d
bD, (et)#η = L d

bD ∀ t ∈ [0, T ] (2.1.3)

(where et(ω) := ω(t) denote the evaluation maps at time t). Brenier called these η generalized
incompressible flows in [0, T ] between i and h. The existence of a minimizing η is a consequence
of the coercivity and lower semicontinuity of the action, provided that there exists at least a
generalized flow η with finite action (see [36]). This is the case for instance if D = [0, 1]d, or if
D is the unit ball B1(0) (as follows from the results in [36, 40] and by [3, Theorem 3.3]).

We observe that any sufficiently regular path g(t, ·) : [0, 1] → SDiff(D) induces a generalized
incompressible flow η = (Φg)#L d

bD, where Φg : D → Ω(D) is given by Φg(x) = g(·, x), but the
converse is far from being true: in the case of generalized flows, particles starting from different
points are allowed to cross at a later time, and particles starting from the same point are
allowed to split, which is of course forbidden by classical flows. Although this crossing/splitting
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phenomenon could seem strange, it arises naturally if one looks for example at the hydrodynamic
limit of the Euler equation. Indeed, the above model allows to describe the limits obtained by
solving the Euler equations in D× [0, ε] ⊂ Rd+1 and, after a suitable change of variable, letting
ε → 0 (see for instance [41]).

In [36], a consistency result was proved: smooth solutions to (2.0.1) are optimal even in the
larger class of the generalized incompressible flows, provided the pressure field p satisfies

T 2 sup
t∈[0,T ]

sup
x∈D

∇2
xp(t, x) ≤ π2Id (2.1.4)

(here Id denotes the identity matrix in Rd), and are the unique ones if the above inequality is
strict.

2.2 A study of generalized solutions in 2 dimensions

In [7], in collaboration with Marc Bernot and Filippo Santambrogio, we considered Problem
(2.1.2)-(2.1.3) in the particular cases where D = B1(0) or D is an annulus, in dimension 2.

If D = B1(0) ⊂ R2 is the unit ball, the following situation arises: an explicit solution of
Euler equations is given by the transformation g(t, x) = Rtx, where Rt : R2 → R2 denotes the
counterclockwise rotation of an angle t. Indeed the maps g(t, ·) : D → D are clearly measure
preserving, and moreover we have

g̈(t, x) = −g(t, x),

so that v(t, x) = ġ(t, y)|y=g−1(t,x) is a solution to the Euler equations with the pressure field
given by p(x) = |x|2/2 (so that ∇p(x) = x). Thus, thanks to (2.1.4) and by what we said above,
the generalized incompressible flow induced by g is optimal if T ≤ π, and is the unique one if
T < π. This implies in particular that there exists a unique minimizing geodesic from i to the
rotation RT if 0 < T < π. On the contrary, for T = π more than one optimal solution exists,
as both the clockwise and the counterclockwise rotation of an angle π are optimal (this shows
for instance that the upper bound (2.1.4) is sharp). Moreover, Brenier found in [36, Section 6]
an example of action-minimizing path η connecting i to −i in time π which is not induced by
a classical solution of the Euler equations (and it cannot be simply constructed using the two
opposite rotations):

∫

Ω(D)
ϕ(ω) dη(ω) :=

∫

D×Rd

ϕ
(
t 7→ x cos(t) + v sin(t)

)
dµ(x, v) ∀ϕ ∈ C(Ω),

with µ given by

µ(dx, dv) =
1

2π
√

1− |x|2
[
H 1

b{|v|=
√

1−|x|2}(dv)
]
⊗L 2

bD(dx).

What is interestingly shown by the solution constructed by Brenier is the following: when η is
of the form η = (Φg)#L d

bD for a certain map g, one can always recover g(t, ·) from η using the
identity

(e0, et)#η = (i, g(t, ·))#L d
bD, ∀ t ∈ [0, T ].
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In the example found by Brenier no such representation is possible (i.e. (e0, et)#η is not a
graph), which implies that the splitting of fluid paths starting at the same point is actually
possible for optimal flows (in this case, we will say that these flows are non-deterministic). We
moreover observe that this solution is in some sense the most isotropic: each particle starting
at a point x splits uniformly in all directions and reaches the point −x in time π. Due to this
isotropy, it was conjectured that this solution was an extremal point in the set of minimizing
geodesic [42]. However in [7] we showed that this is not the case: the decomposition of µ as the
sum of its clockwise and an anticlockwise components gives rise to two new geodesics which, in
addition to being non-deterministic, they induce two non-trivial stationary solutions to Euler
equations with a new “macroscopic” pressure field (see the discussion below). More in general,
in [7] we were able to construct and classify a large class of generalized solutions. Moreover all
the constructed solutions have the interesting feature of inducing stationary and non-stationary
solutions to Euler equations.

To explain this fact, we recall that, as shown by Brenier [38], there exists a “unique” gradient
of the pressure field p which satisfies the distributional relation

∇p(t, x) = −∂tvt(x)− div (v ⊗ vt(x)) . (2.2.1)

Here vt(x) is the “effective velocity”, defined by (et)#(ω̇(t)η) = vtL d
bD, and v ⊗ vt is the

quadratic effective velocity, defined by (et)#(ω̇(t)⊗ ω̇(t)η) = v ⊗ vtL d
bD (to define v and v ⊗ v,

one can use any minimizer η). The proof of this fact is based on the so-called dual least action
principle: if η is optimal, we have

AT (ν) ≥ AT (η) + 〈p, ρν − 1〉 (2.2.2)

for any measure ν in Ω(D) such that (e0, eT )#ν = (i, h)#L d
bD and ‖ρν − 1‖C1 ≤ 1/2. Here ρν

is the (absolutely continuous) density produced by the flow ν, defined by ρν(t, ·)L d
bD = (et)#ν.

In this way, the incompressibility constraint can be slightly relaxed and one can work with the
augmented functional (still minimized by η)

ν 7→ AT (ν)− 〈p, ρν − 1〉,
whose first variation leads to (2.2.1).

The fact that in general v ⊗ v 6= v ⊗ v shows that generalized solutions do not necessarily
induce classical solutions to the Euler equations. On the other hand, if the difference v ⊗ v−v⊗v
is a gradient, one indeed gets a solution to the Euler equations with a different pressure field
(what we called above “macroscopic” pressure field).

2.3 A second relaxed model and the optimality conditions

A few years later, Brenier introduced in [40] a new relaxed version of Arnold’s problem of a
mixed Eulerian-Lagrangian nature: the idea is to add to the Eulerian variable x a Lagrangian
one a representing, at least when f = i, the initial position of the particle; then, one minimizes
a functional of the Eulerian variables (density and velocity), depending also on a. Brenier’s
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motivation for looking at the new model was that this formalism allows to show much stronger
regularity results for the pressure field, namely ∂xip are locally finite measures in (0, T ) × D.
Let us assume D = Td, the d-dimensional torus. A first result achieved in [3] in collaboration
with Luigi Ambrosio was to show that this model is basically equivalent to the one described
before. This allows to show that the pressure fields of the two models (both arising via the
dual least action pronciple) are the same. Moreover, as I showed with Ambrosio in [4], the
pressure field of the second model is not only a distibution, but is indeed a function belonging
to the space L2

loc

(
(0, T ), BV (Td)

)
. We can therefore transfer the regularity informations on the

pressure field up to the Lagrangian model, thus obtaining the validity of (2.2.2) for a much
larger class of generalized flows ν. This is crucial for the study of the necessary and sufficient
optimality conditions for the geodesic problem (which strongly require that the pressure field p
is a function and not only a distribution).

To describe the conditions we found in [3], we first observe that by the Sobolev embed-
dings p ∈ L2

loc

(
(0, T );Ld/(d−1)(Td)

)
. Hence, taking into account that the pressure field in

(2.2.2) is uniquely determined up to additive time-dependent constants, we may assume that∫
Td p(t, ·) dL d = 0 for almost all t ∈ (0, T ).

The first elementary remark is that any integrable function q in (0, T )×Td with
∫
Td q(t, ·) dL d =

0 for almost all t ∈ (0, T ) provides us with a null-lagrangian for the geodesic problem, as the
incompressibility constraint gives

∫

Ω(Td)

∫ T

0
q(t, ω(t)) dt dν(ω) =

∫ T

0

∫

Td

q(t, x) dL d(x) dt = 0

for any generalized incompressible flow ν. Taking also the constraint (e0, eT )#ν = (i, h)#µ into
account, we get

AT (ν) = T

∫

Ω(Td)

(∫ T

0

1
2
|ω̇(t)|2 − q(t, ω) dt

)
dν(ω) ≥

∫

Td

cT
q (x, h(x)) dL d(x),

where cT
q (x, y) is the minimal cost associated with the Lagrangian T

∫ T
0

1
2 |ω̇(t)|2−q(t, ω) dt. Since

this lower bound depends only on h, we obtain that any η satisfying (2.1.3) and concentrated on
cq-minimal paths, for some q ∈ L1, is optimal, and δ

2(i, h) =
∫

cT
q (i, h) dL d. This is basically

the argument used by Brenier in [36] to show the minimality of smooth solutions to (2.0.1),
under assumption (2.1.4): indeed, this condition guarantees that solutions of ω̈(t) = −∇p(t, ω)
(i.e. stationary paths for the Lagrangian, with q = p) are also minimal.

We are able to show that basically this condition is necessary and sufficient for optimality
if the pressure field is globally integrable. However, since no global in time regularity result
for the pressure field is presently known, we have also been looking for necessary and sufficient
optimality conditions that don’t require the global integrability of the pressure field. Using the
regularity p ∈ L1

loc ((0, T );Lr(D)) for some r > 1, we show that any optimal η is concentrated
on locally minimizing paths for the Lagrangian

Lp(ω) :=
∫

1
2
|ω̇(t)|2 − p(t, ω) dt. (2.3.1)
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Since we need to integrate p along curves, this statement is not invariant under modifications of
p in negligible sets, and the choice of a specific representative p̄(t, x) := lim infε↓0 p(t, ·)∗φε(x) in
the Lebesgue equivalence class is needed. Moreover, the necessity of pointwise uniform estimates
on pε requires the integrability of Mp(t, x), the maximal function of p(t, ·) at x.

In addition, we identify a second necessary (and more hidden) optimality condition. In order
to state it, let us consider an interval [s, t] ⊂ (0, T ) and the cost function

cs,t
p (x, y) := inf

{∫ t

s

1
2
|ω̇(τ)|2 − p(τ, ω) dτ : ω(s) = x, ω(t) = y, Mp(τ, ω) ∈ L1(s, t)

}
(2.3.2)

(the assumption Mp(τ, ω) ∈ L1(s, t) is forced by technical reasons). Recall that, according to
the theory of optimal transportation, a probability measure λ in Td×Td is said to be c-optimal
if ∫

Td×Td

c(x, y) dλ′ ≥
∫

Td×Td

c(x, y) dλ

for any probability measure λ′ having the same marginals µ1, µ2 of λ. We shall also denote
Wc(µ1, µ2) the minimal value, i.e.

∫
Td×Td c dλ, with λ c-optimal. Now, let η be an optimal

generalized incompressible flow between i and h; according to the disintegration theorem, we
can represent η =

∫
ηa dL d

bD(a), with ηa concentrated on curves starting at a (and ending,

since our final conditions is deterministic, at h(a)), and consider the plans λs,t
a = (es, et)#ηa.

We show that

for all [s, t] ⊂ (0, T ), λs,t
a is cs,t

p -optimal for L d-a.e. a ∈ Td. (2.3.3)

Roughly speaking, this condition tells us that one has not only to move mass from x to y
achieving cs,t

p , but also to optimize the distribution of mass between time s and time t. In the
“deterministic” case when either (e0, es)#η or (e0, et)#η are induced by a transport map g, the
plan λs,t

a has δg(a) either as first or as second marginal, and therefore it is uniquely determined
by its marginals (it is indeed the product of them). This is the reason why condition (2.3.3)
does not show up in the deterministic case.

Finally, we show that the two conditions are also sufficient, even on general manifolds D: if,
for some r > 1 and q ∈ L1

loc ((0, T );Lr(D)), a generalized incompressible flow η concentrated on
locally minimizing curves for the Lagrangian Lq satisfies

for all [s, t] ⊂ (0, T ), λs,t
a is cs,t

q -optimal for L d
bD-a.e. a ∈ D,

then η is optimal in [0, T ], and q is the pressure field.
These results show a somehow unexpected connection between the variational theory of

incompressible flows and the theory developed by Bernard-Buffoni [32] of measures in the space
of action-minimizing curves; in this framework one can fit Mather’s theory as well as optimal
transportation problems on manifolds, with a geometric cost. In our case the only difference is
that the Lagrangian is possibly nonsmoooth (but hopefully not so bad), and not given a priori,
but generated by the problem itself. Our approach also yields a new variational characterization
of the pressure field, as a maximizer of the family of functionals (for [s, t] ⊂ (0, T ))

q 7→
∫

Td

Wcs,t
q

(ηs
a, γ

t
a) dL d(a), Mq ∈ L1

(
[s, t]× Td

)
,
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where ηs
a, γt

a are the marginals of λs,t
a .
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Chapter 3

Mather quotient and Sard Theorem

Let (M, g) be a smooth complete Riemannian manifold without boundary, and denote by d(x, y)
the Riemannian distance from x to y. For v ∈ TxM the norm ‖v‖x is given by gx(v, v)1/2, and
we also denote by ‖ · ‖x the dual norm on T ∗M .

We assume that H : T ∗M → R is a Hamiltonian of class Ck,α, with k ≥ 2, α ∈ [0, 1], which
satisfies the three following conditions:

(H1) C2-strict convexity: ∀(x, p) ∈ T ∗M , the second derivative along the fibers ∂2H
∂p2 (x, p) is

strictly positive definite;

(H2) uniform superlinearity: for every K ≥ 0 there exists a finite constant C(K) such that

H(x, p) ≥ K‖p‖x + C(K), ∀ (x, p) ∈ T ∗M ;

(H3) uniform boundedness in the fibers: for every R ≥ 0, we have

sup
x∈M

{H(x, p) | ‖p‖x ≤ R} < +∞.

By the Weak KAM Theorem it is known that, under the above conditions, there is c(H) ∈ R
such that the Hamilton-Jacobi equation

H(x, dxu) = c

admits a global viscosity solution u : M → R for c = c(H) and does not admit such solution
for c < c(H). In fact, for c < c(H), the Hamilton-Jacobi equation does not admit any viscosity
subsolution. Moreover, if M is assumed to be compact, then c(H) is the only value of c for which
the Hamilton-Jacobi equation above admits a viscosity solution. The constant c(H) is called
the critical value, or the Mañé critical value of H. In the sequel, a viscosity solution u : M → R
of H(x, dxu) = c(H) will be called a critical viscosity solution or a weak KAM solution, while
a viscosity subsolution u of H(x, dxu) = c(H) will be called a critical viscosity subsolution (or
critical subsolution if u is at least C1).

35
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The Lagrangian L : TM → R associated to the Hamiltonian H is defined by

∀(x, v) ∈ TM, L(x, v) = max
p∈T ∗x M

{p(v)−H(x, p)} .

Since H is of class Ck, with k ≥ 2, and satisfies the three conditions (H1)-(H3), it is well-known
that L is finite everywhere of class Ck, and is a Tonelli Lagrangian, i.e. satisfies the analogous
of conditions (H1)-(H3). Moreover, the Hamiltonian H can be recovered from L by

∀(x, p) ∈ T ∗xM, H(x, p) = max
v∈TxM

{p(v)− L(x, v)} .

Therefore the following inequality is always satisfied

p(v) ≤ L(x, v) + H(x, p).

This inequality is called the Fenchel inequality. Moreover, due to the strict convexity of L, we
have equality in the Fenchel inequality if and only if

(x, p) = L(x, v),

where L : TM → T ∗M denotes the Legendre transform defined as

L(x, v) =
(

x,
∂L

∂v
(x, v)

)
.

Under our assumption L is a diffeomorphism of class at least C1. We will denote by φL
t the

Euler-Lagrange flow of L, and by XL the vector field on TM that generates the flow φL
t . If

we denote by φH
t the Hamiltonian flow of H on T ∗M , then as is well-known this flow φH

t is
conjugate to φL

t by the Legendre transform L. Moreover, thanks to assumptions (H1)-(H3), the
flow φH

t (and so also φL
t ) is complete.

As done by Mather in [60], it is convenient to introduce for t > 0 fixed, the function ht :
M ×M → R defined by

ht(x, y) = inf
∫ t

0
L(γ(s), γ̇(s)) ds, ∀x, y ∈ M

where the infimum is taken over all the absolutely continuous paths γ : [0, t] → M with γ(0) = x
and γ(t) = y. The Peierls barrier is the function h : M ×M → R defined by

h(x, y) = lim inf
t→∞ {ht(x, y) + c(H)t} .

It is clear that this function satisfies for all t > 0

h(x, z) ≤ h(x, y) + ht(y, z) + c(H)t
h(x, z) ≤ ht(x, y) + c(H)t + h(y, z)
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for any x, y, z ∈ M , and therefore it also satisfies the triangle inequality

h(x, z) ≤ h(x, y) + h(y, z).

Moreover, given a weak KAM solution u, we have

u(y)− u(x) ≤ h(x, y), ∀x, y ∈ M.

In particular, we have h > −∞ everywhere. It follows, from the triangle inequality, that the
function h is either identically +∞ or it is finite everywhere. If M is compact, h is finite
everywhere. In addition, if h is finite, then for each x ∈ M the function hx(·) = h(x, ·) is a
critical viscosity solution. The projected Aubry set A is defined by

A = {x ∈ M | h(x, x) = 0}.
As done by Mather (see [60, page 1370]), one can symmetrize h to define the function δM :
M ×M → R by

∀x, y ∈ M, δM (x, y) = h(x, y) + h(y, x).

Since h satisfies the triangle inequality and h(x, x) ≥ 0 everywhere, the function δM is
symmetric, everywhere nonnegative and satisfies the triangle inequality. The restriction δM :
A × A → R is a genuine semi-distance on the projected Aubry set. We call this function δM

the Mather semi-distance (even when we consider it on M rather than on A). We define the
Mather quotient (AM , δM ) to be the metric space obtained by identifying two points x, y ∈ A if
their semi-distance δM (x, y) vanishes (we mention that this is set is also called quotient Aubry
set). When we consider δM on the quotient space AM we will call it the Mather distance.

3.1 The dimension of the Mather quotient

In [62], Mather formulated the following problem:

Mather’s Problem. If L is C∞, is the set AM totally disconnected for the topology of δM ,
i.e. is each connected component of AM reduced to a single point?

In [61], Mather brought a positive answer to that problem in low dimension. More precisely,
he proved that if M has dimension two, or if the Lagrangian is the kinetic energy associated to
a Riemannian metric on M in dimension ≤ 3, then the Mather quotient is totally disconnected.
Mather mentioned in [62, page 1668] that it would be even more interesting to be able to prove
that the Mather quotient has vanishing one-dimensional Hausdorff measure, because this implies
the upper semi-continuity of the mapping H 7→ A.

In [9], in a joint work with Albert Fathi and Ludovic, we were able to show that the vanishing
of the one-dimensional Hausdorff measure of the Mather quotient is satisfied under various
assumptions. Let us state our results.

Theorem 3.1.1 If dimM = 1, 2 and H of class C2 or dimM = 3 and H of class Ck,1 with
k ≥ 3, then the Mather quotient (AM , δM ) has vanishing one-dimensional Hausdorff measure.
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Above the projected Aubry A, there is a compact subset Ã ⊂ TM called the Aubry set.
The projection π : TM → M induces a homeomorphism π|Ã from Ã onto A (whose inverse is
Lipschitz by a theorem due to Mather). The Aubry set can be defined as the set of (x, v) ∈ TM
such that x ∈ A and v is the unique element in TxM such that dxu = ∂L

∂v (x, v) for any critical
viscosity subsolution u. The Aubry set is invariant under the Euler-Lagrange flow φL

t : TM →
TM . Therefore, for each x ∈ A, there is only one orbit of φL

t in Ã whose projection passes
through x. We define the stationary Aubry set Ã0 ⊂ Ã as the set of points in Ã which are fixed
points of the Euler-Lagrange flow φt(x, v), i.e.

Ã0 = {(x, v) ∈ Ã | ∀ t ∈ R, φL
t (x, v) = (x, v)}.

In fact it can be shown, that Ã0 is the intersection of Ã with the zero section of TM , i.e.
Ã0 = {(x, 0) | (x, 0) ∈ Ã}.

We define the projected stationary Aubry set A0 as the projection on M of Ã0, that is
A0 = {x | (x, 0) ∈ Ã}. At the very end of his paper [61], Mather noticed that the argument he
used in the case where L is a kinetic energy in dimension 3 proves the total disconnectedness of
the Mather quotient in dimension 3 as long as A0

M is empty. In fact, if we consider the restriction
of δM to A0, we have the following result on the quotient metric space (A0

M , δM ).

Theorem 3.1.2 Suppose that L is at least C2, and that the restriction x 7→ L(x, 0) of L to
the zero section of TM is of class Ck,1. Then (A0

M , δM ) has vanishing Hausdorff measure in
dimension 2 dim M/(k + 3). In particular, if k ≥ 2 dim M − 3 then H 1(A0

M , δM ) = 0, and if
x 7→ L(x, 0) is C∞ then (A0

M , δM ) has zero Hausdorff dimension.

As a corollary, we have the following result which was more or less already mentioned by
Mather in [62, §19 page 1722], and proved by Sorrentino [70].

Corollary 3.1.3 Assume that H is of class C2 and that its associated Lagrangian L satisfies
the following conditions:

1. ∀x ∈ M, minv∈TxM L(x, v) = L(x, 0);

2. the mapping x ∈ M 7→ L(x, 0) is of class Cl,1(M) with l ≥ 1.

If dimM = 1, 2, or dimM ≥ 3 and l ≥ 2 dim M − 3, then (AM , δM ) is totally disconnected. In
particular, if L(x, v) = 1

2‖v‖2
x − V (x), with V ∈ Cl,1(M) and l ≥ 2 dimM − 3 (V ∈ C2(M) if

dimM = 1, 2), then (AM , δM ) is totally disconnected.

Since A0 is the projection of the subset Ã0 ⊂ Ã consisting of points in Ã which are fixed
under the the Euler-Lagrange flow φL

t , it is natural to consider Ap the set of x ∈ A which are
projection of a point (x, v) ∈ Ã whose orbit under the the Euler-Lagrange flow φL

t is periodic
with strictly positive period. We call this set the projected periodic Aubry set. We have the
following result:

Theorem 3.1.4 If dimM ≥ 2 and H of class Ck,1 with k ≥ 2, then (Ap
M , δM ) has vanishing

Hausdorff measure in dimension 8 dimM/(k + 8). In particular, if k ≥ 8 dim M − 8 then
H 1(Ap

M , δM ) = 0, and if H is C∞ then (Ap
M , δM ) has zero Hausdorff dimension.
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In the case of compact surfaces, using the finiteness of exceptional minimal sets of flows, we
have:

Theorem 3.1.5 If M is a compact surface of class C∞ and H is of class C∞, then (AM , δM )
has zero Hausdorff dimension.

Finally, always in [9], we give some applications of our result in dynamic, whose Theorem
3.1.6 below is a corollary. If X is a Ck vector field on M , with k ≥ 2, the Mañé Lagrangian
LX : TM → R associated to X is defined by

LX(x, v) =
1
2
‖v −X(x)‖2

x, ∀(x, v) ∈ TM.

We will denote by AX the projected Aubry set of the Lagrangian LX . The following question
was raised by Albert Fathi (see http://www.aimath.org/WWN/dynpde/articles/html/20a/):

Problem. Let LX : TM → R be the Mañé Lagrangian associated to the Ck vector field X
(k ≥ 2) on the compact connected manifold M .

(1) Is the set of chain-recurrent points of the flow of X on M equal to the projected Aubry
set AX?

(2) Give a condition on the dynamics of X that insures that the only weak KAM solutions
are the constants.

The above theorems, together with the applications in dynamics we developed in [9, Section
6], give an answer to this question when dimM ≤ 3.

Theorem 3.1.6 Let X be a Ck vector field, with k ≥ 2, on the compact connected C∞ manifold
M . Assume that one of the conditions hold:

(1) The dimension of M is 1 or 2.

(2) The dimension of M is 3, and the vector field X never vanishes.

(3) The dimension of M is 3, and X is of class C3,1.

Then the projected Aubry set AX of the Mañé Lagrangian LX : TM → R associated to X is the
set of chain-recurrent points of the flow of X on M . Moreover, the constants are the only weak
KAM solutions for LX if and only if every point of M is chain-recurrent under the flow of X.

3.2 The connection with Sard Theorem

To explain in a simpler way the connection between the above problem and Sard Theorem, we
consider here the problem of proving that the Mather quotient is totally disconnected (we remark
that having vanishing 1-dimensional Hausdorff dimension implies the total disconnectedness).
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Let us call by SS1 the set of C1 critical viscosity subsolutions. The following representation
formula holds: for every x, y ∈ A,

δM (x, y) = max
u1,u2∈SS1

{(u1 − u2)(y)− (u1 − u2)(x)} .

We remark that, since on the projected Aubry set the gradients of all critical viscosity subsolu-
tions coincide, we have dx(u1 − u2) = 0 on A, that is A is contained in the set of critical points
of u1 − u2.

Assume now that we can prove the the difference of two critical viscosity subsolution satisfies
Sard Theorem, i.e. the set of critical values has zero Lebesgue measure. Consider two points
x, y ∈ A such that δM (x, y) > 0. By the above formula there exists two critical subsolutions u1

and u2 such that 0 < δM (x, y) = v(x)− v(y), with v := u1 − u2. Since v satisfies Sard Theorem
and A is contained in the set of critical points of v, we get L 1(v(A)) = 0. Therefore there
exists a value t0 ∈ R such that v(y) < t0 < v(x), which implies that x and y are in two different
connected components.

Thus we see that Mather’s problem can be reduced to prove a Sard Theorem on viscosity
subsolutions. Since critical subsolutions are in general not more regular than C1,1, one cannot
hope to apply just the classical Sard Theorem, but one has to use that u1 and u2 satisfy the
Hamilton Jacobi equation, and take advantage of the regularity of the Hamiltonian. This is
exactly what we did in [9].

3.3 A Sard Theorem in Sobolev spaces

During the study of Mather’s problem, since there was a deep connection with Sard Theorem, I
started to get interested in the proof of Sard Theorem and its generalization. Let me recall the
classical result:

Theorem 3.3.1 (Sard) Let Ω ⊂ Rn be open and let f : Ω → Rm be a Cn−m+1 function, with
n ≥ m (C1 if m > n). Then the set of critical values of f has L m-measure zero.

After that theorem, many generalizations have been proved and, at the same time, many
counterexamples have been found in the case of not sufficient regularity. In particular, in [31]
the same conclusion of the Morse-Sard Theorem has been proved under the only assumption of
a Cn−m,1 regularity, while in [49] only a Wn−m+1,p regularity, with p > n, is assumed. In [12]
I gave a simple proof of the result in [49]. Moreover, as the proof is independent of Theorem
3.3.1, my result implies the classical Morse-Sard Theorem:

Theorem 3.3.2 Let Ω ⊂ Rn be open and let f : Ω → Rm be a Wn−m+1,p
loc function, with

p > n ≥ m. Then the set of critical values of f has L m-measure zero.

We remark that Wn−m+1,p ↪→ Cn−m,α, with α = 1− n
p . However with the only assumption

of Cn−m,α regularity with α < 1 the result is false, and the key point is in fact the existence of
another weak derivative summable enough.



Chapter 4

DiPerna-Lions theory for
non-smooth ODEs

Recent research activity has been devoted to study transport equations with rough coefficients,
showing that a well-posedness result for the transport equation in a certain subclass of functions
allows to prove existence and uniqueness of a flow for the associated ODE. The first result in
this direction is due to DiPerna and P.-L.Lions [51], where the authors study the connection
between the transport equation and the associated ODE γ̇ = b(t, γ).

Their result can be informally stated as follows: existence and uniqueness for the transport
equation is equivalent to a sort of well-posedness of the ODE which says, roughly speaking, that
the ODE has a unique solution for L d-almost every initial condition. In that paper they also
show that the transport equation ∂tu +

∑
i bi∂iu = c is well-posed in L∞ if b = (b1, . . . , bn) is

Sobolev and satisfies suitable global conditions (including L∞-bounds on the spatial divergence),
which yields the well-posedness of the ODE.

In [26], using a slightly different philosophy, Ambrosio studied the connection between the
continuity equations ∂tu + div(bu) = c and the ODE γ̇ = b(t, γ). This different approach allows
him to develop the general theory of the so-called Regular Lagrangian Flows (see [27, Remark
31] for a detailed comparison with the DiPerna-Lions axiomatization), which relates existence
and uniqueness for the continuity equation with well-posedness of the ODE, without assuming
any regularity on the vector field b. Indeed, since the transport equation is in a conservative
form, it has a meaning in the sense of distributions even when b is only L∞loc and u is L1

loc. Thus,
as in the case of DiPerna-Lions, one shows that the continuity equation is equivalent to a sort of
well-posedness of the ODE. After having proved this, in [26] the well-posedness of the continuity
equations in L∞ is proved in the case of vector fields with BV regularity whose distributional
divergence belongs to L∞.

4.1 A review of DiPerna-Lions and Ambrosio’s theory

We now give a review of the theory. Since for the extentions to the stochastic case Ambrosio’s
framework seems to be more suitable, we will focus on the link between continuity equations

41
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and ODEs.
We recall that the continuity equation is an equation of the form

∂tµt + div(bµt) = 0,

and the associated ODE is {
Ẋ(t, x) = b(t,X(t, x)),
X(0, x) = 0.

Indeed, the classical theory for continuity equation with Lipschitz vector fields states that, if
b(t) is Lipschitz, then there exists a unique (measure-valued) solution of the PDE given by

µt := X(t)#µ0,

where X(t) denotes the (unique) flow of the ODE.
Thus, in the classical theory, solutions of the continuity equations move along characteristics

of the flow generated by b, and so the ODE gives information on the PDE. On the other hand,
if γ(t) satisfies γ̇(t) = b(t, γ(t)), then

µt := δγ(t)

solves the PDE with µ0 = δγ(0). From this remark one can easily deduce that uniqueness of
non-negative measure-valued solutions of the PDE implies uniqueness for the ODE.

On the other hand, the converse of this fact is also true. To show this, we need a representa-
tion formula for solution of the PDE. Let us denote by ΓT the space C([0, T ],Rd) of continuous
paths in Rd, and by M+(Rd) the set of non-negative finite measures on Rd. Moreover assume
for simplicity that b is bounded. Then the following holds [26]:

Theorem 4.1.1 Let µt be a solution of the PDE such that µt ∈M+(Rd) for any t ∈ [0, T ], with
µt(Rd) ≤ C for any t ∈ [0, T ]. Then there exists a measurable family of probability measures
{νx}x∈Rd on ΓT such that:

- νx is concentrated on integral curves of the ODE starting from x (at time 0) for µ0-a.e. x;

- the following representation formula holds:
∫

Rd

ϕdµt =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x).

From this result, it is not difficult to prove that uniqueness for the ODE implies uniqueness of
non-negative measure-valued solutions of the PDE.

The idea is now the following: by what we just said, one has that existence and uniqueness
for the PDE in M+(Rd) implies existence and uniqueness for the ODE (and viceversa). But in
order to have existence and uniqueness for the PDE in M+(Rd) one needs strong requirements
on b, for instance b(t) Lipschitz.

Thus the hope is that, under weaker assumptions on b, one can still prove an existence and
uniqueness result for the PDE in some smaller class, like L1(Rd) ∩ L∞(Rd), and from this one
would like to deduce existence and uniqueness for the ODE in the almost everywhere sense.
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This is exaclty what DiPerna-Lions and Ambrosio were able to do in [51, 26]. To state a
precise result, we need to introduce the concept of Regular Lagrangian Flows (RLF). The idea is
that, if there exists a flow which produces solutions in L1∩L∞, it cannot concentrate. Therefore
we expect that, if such a flow exists, it must be a RLF in the sense of the following definition:

Definition 4.1.2 We say that X(t, x) is a RLF (starting at time 0), if:

(i) for L d-a.e. x, X(·, x) is an integral curve of the ODE starting from x (at time 0);

(ii) there exists a nonnegative constant C such that, for any t ∈ [0, T ],

X(t)#L d ≤ CL d.

It is not hard to show that, because of condition (ii), this concept is indeed invariant under
modifications of b, and so it is appropriate to deal with vector fields belonging to Lp spaces.

As proved in [26], the following existence and uniqueness result for RLF holds:

Theorem 4.1.3 Assume that, for any µ0 ∈ L1(Rd) ∩ L∞(Rd) there exists a unique solution of
the PDE in L∞([0, T ], L1(Rd) ∩ L∞(Rd)). Then there exists a unique RLF. Moreover the RLF
is stable by smooth approximations.

The well-posedness of the PDE in L∞([0, T ], L1(Rd)∩L∞(Rd)) has been shown by DiPerna-
Lions [51] under the assumption

b ∈ W 1,p(Rd), [divb]− ∈ L∞(Rd),

and then generalized by Ambrosio [26] assuming only

b ∈ BV (Rd), divb ∈ L1(Rd), [divb]− ∈ L∞(Rd).

This theory presents still many open interesting questions, like to understand better whether
uniqueness holds under the above hypotheses in bigger classes like L∞([0, T ], L1(Rd)) (so that
the solution can be unbounded). Or at the level of the ODE to see whether, under one of the
above assumptions on the vector field, one can prove a statement like: there exists a set A ⊂ Rn,
with |A| = 0, such that for all x 6∈ A the solution of the ODE is unique. These are problems
that I would like to attack in the future.

4.2 The stochastic extension

In the stocastic case, the continuity equation becomes the Fokker-Planck equation

∂tµt +
∑

i

∂i(biµt)− 1
2

∑

ij

∂ij(aijµt) = 0,



44 CHAPTER 4. DIPERNA-LIONS THEORY FOR NON-SMOOTH ODES

and its associated SDE is
{

dX(t) = b(t,X(t))dt + σ(t,X(t)) dB(t),
X(0) = 0.

Here b : [0, T ]×Rd → Rd and σ : [0, T ]×Rd → L (Rr,Rd) are bounded, aij = (σσ∗)ij , and B is
an r-dimensional Brownian motion on a probability space (Ω,A,P).

Classical theory states that, if b(t), σ(t) are Lipschitz, then there exists a unique flow X(t) =
X(t, x, ω). Moreover there exists a unique solution of the PDE, which is given by the formula

∫
f(x) dµt(x) :=

∫
E[f(X(t, x, ω))] dµ0(x) ∀f ∈ Cc(Rd).

Since the PDE can see only the law of the process solving the SDE and not the process itself,
if we hope to deduce some information on the ODE from the PDE, one needs to introduce a
weaker concept of solution, the one of “martingale solution”. In this way we are able extend the
deterministic theory of RLF in the stochastic setting.

First of all, I could prove a representation formula for non-negative solutions of the PDE as
in the deterministic case [13]:

Theorem 4.2.1 Let µt be a solution of the PDE such that µt ∈M+(Rd) for any t ∈ [0, T ], with
µt(Rd) ≤ C for any t ∈ [0, T ]. Then there exists a measurable family of probability measures
{νx}x∈Rd on ΓT such that:

- νx is martingale solution of the ODE starting from x (at time 0) for µ0-a.e. x;

- the following representation formula holds:
∫

Rd

ϕdµt =
∫

Rd×ΓT

ϕ(γ(t)) dνx(γ) dµ0(x).

Then, I replaced the concept of Regular Lagrangian Flow by the one of Stochastic Lagrangian
Flow (SLF):

Definition 4.2.2 Given a measure µ0 = ρ0L d ∈ M+(Rd), with ρ0 ∈ L∞(Rd), we say that a
measurable family of probability measures {νx}x∈Rd on ΓT is a µ0-SLF (starting at time 0), if:

(i) for µ0-a.e. x, νx is a martingale solution of the SDE starting from x (at time 0);

(ii) there exists a nonnegative constant C such that, for any t ∈ [0, T ],

µt := (et)#

(∫
νx dµ0(x)

)
≤ CL d.

Finally, assuming well-posedness for the PDE in L1 ∩ L∞, I could prove existence and
uniqueness of the SLF [13] (in particular, the SLF is independent of the initial measure µ0):
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Theorem 4.2.3 Assume that, for any µ0 ∈ L1(Rd)∩L∞(Rd), there exists a unique solution of
the PDE in L∞([0, T ], L1(Rd) ∩ L∞(Rd)). Then there exists a unique SLF. Moreover the SLF
is stable by smooth approximations.

As I showed in [13], two non-trivial situations where the theory is applicable (i.e. when
the PDE is well-posed but no uniqueness result at the level of the SDE is known) are when
the diffusion coefficients are uniformly elliptic and Lipschitz in time, or when the noise is just
additive and the vector field is BV :

1. (a) aij , bi ∈ L∞([0, T ]× Rd) for i, j = 1, . . . , d;

(b)
∑

j ∂jaij ∈ L∞([0, T ]× Rd) for i = 1, . . . , d,

(c) ∂taij ∈ L∞([0, T ]× Rd) for i, j = 1, . . . , d;

(d) (
∑

i ∂ibi − 1
2

∑
ij ∂ijaij)− ∈ L∞([0, T ]× Rd);

(e) 〈ξ, a(t, x)ξ〉 ≥ α|ξ|2 ∀(t, x) ∈ [0, T ]× Rd, for some α > 0;

(f) a
1+|x|2 ∈ L2([0, T ]× Rd), b

1+|x| ∈ L2([0, T ]× Rd).

2. (a) aij , bi ∈ L∞([0, T ]× Rd) for i, j = 1, . . . , d;

(b) b ∈ L1([0, T ], BVloc(Rd,Rd)),
∑

i ∂ibi ∈ L1
loc([0, T ]× Rd);

(c) (
∑

i ∂ibi)− ∈ L1([0, T ], L∞(Rd)).

4.3 The infinite dimensional case

Let (E, ‖ · ‖) be a separable Banach space endowed with a centered Gaussian measure γ, and
denote by H ⊂ E the Cameron Martin space associated to (E, γ)1; in the finite-dimensional
theory (E = H = RN ) other reference measures γ could be considered as well (for instance the
Lebesgue measure). As in the finite dimensional case, we introduce the concept of regular flows:

Definition 4.3.1 Let b : (0, T )×E → E be a Borel vector field. If X : [0, T ]×E → E is Borel
and 1 ≤ r ≤ ∞, we say that X is a Lr-regular flow associated to b if the following two conditions
hold:

(i) for γ-a.e. x ∈ X the map t 7→ ‖b(t, X(t, x))‖ belongs to L1(0, T ) and

X(t, x) = x +
∫ t

0
b(τ,X(τ, x)) dτ ∀t ∈ [0, T ]. (4.3.1)

(ii) for all t ∈ [0, T ], X(t)#γ is absolutely continuous with respect to γ, with a density ρt in
Lr(γ), and supt∈[0,T ] ‖ρt‖Lr(γ) < ∞.

1We recall that H can be defined as

H :=

{∫

E

φ(x)x dγ(x) : φ ∈ L2(γ)

}
.
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In (4.3.1), the integral is understood in Bochner’s sense, namely

〈e∗, X(t, x)− x〉 =
∫ t

0
〈e∗, b(τ, X(τ, x))〉 dτ ∀e∗ ∈ E∗.

As before, using the theory of characteristics we want to link the ODE to the continuity equa-
tion. Moreover, we want to transfer well-posedness informations from the continuity equation
to the ODE, getting existence and uniqueness results of the Lr-regular b-flows under suitable
assumptions on b.

However in this case we have to take into account an intrinsic limitation of the theory of
Lr-regular b-flows that is typical of infinite-dimensional spaces: even if b(t, x) ≡ v were constant,
the flow map X(t, x) = x + tv would not leave γ quasi-invariant, unless v belongs to H. So,
from now on we shall assume that b takes its values in H (however, thanks to a suitable change
of variable, we were also able to treat some non H-valued vector fields, see [5] for more details).

We recall that H can be endowed with a canonical Hilbertian structure 〈·, ·〉H that makes
the inclusion of H in E compact; we fix an orthonormal basis (ei) of H and we shall denote by
bi the components of b relative to this basis (however, our result is independent of the choice of
(ei)).

With this choice of the range of b, whenever µt = utγ the equation can be written in the
weak sense as

d

dt

∫

E
ut dγ =

∫

E
〈bt,∇φ〉Hut dγ ∀φ ∈ Cyl(E, γ), (4.3.2)

where Cyl(E, γ) is a suitable space of cylindrical functions induced by (ei)2. Furthermore, a
Gaussian divergence operator divγc can be defined as the adjoint in L2(γ) of the gradient along
H: ∫

E
〈c,∇φ〉H dγ = −

∫

E
φ divγc dγ ∀φ ∈ Cyl(E, γ).

Another typical feature of our Gaussian framework is that L∞-bounds on divγ do not seem
natural, unlike those on the Euclidean divergence in RN when the reference measure is the
Lebesgue measure: indeed, even if b(t, x) = c(x), with c : RN → RN smooth and with bounded
derivatives, we have divγc = divc−〈c, x〉 which is unbounded, but exponentially integrable with
respect to γ.

The main result in this framework, proved in collaboration with Luigi Ambrosio in [5], is the
following:

Theorem 4.3.2 Let p, q > 1 and let b : (0, T )×E → H be satisfying:

(i) ‖bt‖H ∈ L1
(
(0, T );Lp(γ)

)
;

2We recall that φ : E → R is cylindrical if

φ(x) = ψ
(〈e∗1, x〉, . . . , 〈e∗N , x〉) (4.3.3)

for some integer N and some ψ ∈ C∞b (RN ), where C∞b (RN ) is the space of smooth functions in RN , bounded
together with all their derivatives.
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(ii) ∫ T

0

(∫

E
‖(∇bt)sym(x)‖q

HS dγ(x)
)1/q

dt < ∞, (4.3.4)

and divγbt ∈ L1
(
(0, T );Lq(γ)

)
;

(iii) exp(c[divγbt]−) ∈ L∞
(
(0, T );L1(γ)

)
for some c > 0.

If r := max{p′, q′} and c ≥ rT , then the Lr-regular flow exists and is unique in the following
sense: any two Lr-regular flows X and X̃ satisfy

X(·, x) = X̃(·, x) in [0, T ], for γ-a.e. x ∈ E.

Furthermore, X is Ls-regular for all s ∈ [1, c
T ] and the density ut of the law of X(t, ·) under γ

satisfies ∫
(ut)s dγ ≤

∥∥∥∥
∫

E
exp

(
Ts[divγbt]−

)
dγ

∥∥∥∥
L∞(0,T )

for all s ∈ [1,
c

T
].

In particular, if exp(c[divγbt]−) ∈ L∞
(
(0, T );L1(γ)

)
for all c > 0, then the Lr-regular flow exists

globally in time, and is Ls-regular for all s ∈ [1,∞).

We remark that, in the previous results in this setting by Cruzeiro [46, 47, 48], Peters [69],
and Bogachev and Wolf [34], the assumptions on the vector field were

‖b‖H ∈
⋂

p∈[1,∞)

Lp(γ),

exp(c‖∇b‖L(H,H)) ∈ L1(γ) for all c > 0,

exp(c|divγb|) ∈ L1(γ) for some c > 0.

Therefore the main difference between these results and our is that we replaced exponential
integrability of b and the operator norm of ∇b by p-integrability of b and q-integrability of the
Hilbert-Schmidt norm of (the symmetric part of) ∇bt. These hypotheses are in some sense closer
to the ones in the finite dimensional case, and so our result can really be seen as an extension
of the finite dimensional theory to an infinite dimensional setting.

A natural problem, on which I would like to work in the future, is to try to understand how
much this result is optimal, and whether it can be applied to prove “a.e. well-posedness” for
PDEs, looking at them as infinite dimensional ODEs.
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