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1 Introduction

The optimal transport problem has received the attention of many researchers
in the last two decades, and its popularity is still increasing. This is mainly
motivated by the discovery of unexpected connections between optimal trans-
port and problems in physics, geometry, partial differential equations, etc.
To give an example, consider the following geometric statement:

Let (Mk, gk, volk) be a sequence of smooth compact Riemannian mani-
folds with nonnegative Ricci curvature, converging in the measured Gromov-
Hausdorff sense to a smooth compact Riemannian manifold (M∞, g∞, vol∞).
Then (M∞, g∞) has nonnegative Ricci curvature.

At first sight, this statement may look surprising. Indeed the Gromov-
Hausdorff convergence is a very weak notion, so it may seem strange that it
can control lower bounds on the Ricci curvature, which a priori should de-
pend on second derivatives of the metric. However, optimal transport allows
recasting lower Ricci bounds in terms of much more robust inequalities (see
Theorem 4.1 below), and this fact is at the core of the proof of the above
result [8, 14, 15].

The present article briefly surveys the exciting and extremely active field
of optimal transport, with emphasis on the content and features of the book
under review.
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2 The optimal transport problem

The optimal transport problem (whose origin goes back to Monge [12]) is
nowadays formulated in the following general form: given two probability
measures µ and ν defined on measurable spaces X and Y , find a measurable
map T : X → Y with T#µ = ν (i.e., µ(T−1(A)) = ν(A) for any A ⊂ Y
measurable), and in such a way that T minimizes the transportation cost.
This last condition means∫

X
c(x, T (x)) dµ(x) = min

S]µ=ν

{∫
X

c(x, S(x)) dµ(x)
}

,

where c : X×Y → R is a given cost function. When the transport condition
T]µ = ν is satisfied, we say that T is a transport map, and if T also minimizes
the cost, we call it an optimal transport map.

The major advance on this problem is due to Kantorovich, who proposed
in [5, 6] a notion of weak solution of the optimal transport problem. He
suggested to look for plans instead of transport maps, that is probability
measures γ in X×Y whose first and second marginal are µ and ν respectively.
Denoting by Π(µ, ν) the set of plans, the new minimization problem becomes

min
γ∈Π(µ,ν)

{∫
X×Y

c(x, y) dγ(x, y)
}

. (1)

The problem of the existence and uniqueness of optimal maps when
the cost is the distance squared is now well understood: there are classical
results by Brenier in Euclidean spaces [1, 2] and by McCann on (compact)
Riemannian manifolds [11]. Roughly speaking, these results state that if the
source measure is absolutely continuous with respect to the Lebesgue (resp.
volume) measure, then the optimal transport map exists and is unique.
However, let us point out that, for many applications, not only it is im-
portant to know the existence and uniqueness of an optimal map but also
to have some information on its structure. For instance, in the Euclidean
case the optimal map is given by the gradient of a convex function, while
on a Riemannian manifold there exists a semiconvex function ϕ such that
T (x) = expx(∇ϕ(x)).

In Part 1 of the book under review, the author studies the problem
of existence and uniqueness for optimal maps in great generality, showing
general sufficient conditions on the cost functions which ensure that the
problem has a unique solution, when the source measure µ is absolutely
continuous.
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3 The Monge-Ampère equation and regularity of
optimal maps

To explain the link between optimal transport and the Monge-Ampère equa-
tion, let us consider the case µ(dx) = f(x)vol(dx) and ν(dy) = g(y)vol(dy)
on Riemannian manifolds, with cost given by c(x, y) = 1

2d(x, y)2. The con-
dition T#µ = ν formally gives

|det(DT (x))| =
f(x)

g(T (x))
.

Exploiting the relation T (x) = expx(∇ϕ(x)) recalled above, the above equa-
tion becomes a Monge-Ampère type equation for ϕ, which takes the form

det
(
D2ϕ(x) + A(x,∇ϕ(x))

)
= h(x,∇ϕ(x)), (2)

where A(x,∇ϕ(x)) = ∇2
xc

(
x, expx

(
∇ϕ(x)

))
, and h = h(x, p) depends on f ,

g, and the cost c. Assume f and g to be C∞ and strictly positive on M . A
natural question is whether the optimal map T is smooth or not.

In the case M = Rn, the above equation reduces to the classical Monge-
Ampère

det(D2φ(x)) =
f(x)

g(∇φ(x))
, φ(x) = ϕ(x) +

|x|2

2
, T (x) = ∇φ(x).

This problem has been solved by Caffarelli [3], who showed that the convex-
ity of the support of g is the natural geometric condition needed to prove
the global smoothness of φ (and thus of T ), when f and g are smooth and
bounded away from zero on their respective support.

In the general case, the presence of the term ∇2
xc

(
x, expx

(
∇ϕ(x)

))
in (2)

can create obstructions to the smoothness. In [9], the authors found a fourth-
order condition on the cost function, which turned out to be a sufficient and
necessary condition to prove regularity results. The idea was to differentiate
(2) twice in order to get a linear PDE for the second derivatives of ϕ, and
then try to show an a priori estimate on the L∞-norm of D2ϕ. In this
computation, one ends up at a certain stage with a term which needs to
have a sign in order to conclude the argument. This term is what now is
called the Ma-Trudinger-Wang tensor (in short MTW tensor):

S(x,y)(ξ, η) :=
3
2

∑
ijklrs

(cij,rc
r,scs,kl − cij,kl) ξiξjηkηl, ξ ∈ TxM, η ∈ TyM.
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In the above formula the cost function is evaluated at (x, y), and we used
the notation cj = ∂c

∂xj , cjk = ∂2c
∂xj∂xk , ci,j = ∂2c

∂xi∂yj , ci,j = (ci,j)−1, and so
on. The condition to impose on S(x,y)(ξ, η) is S(x,y)(ξ, η) ≥ 0 whenever∑

ij ci,jξ
iηj = 0 (this is called the MTW condition).

As shown by Loeper [7], the MTW tensor satisfies the following remark-
able identity: if ξ, η ∈ TxM are two orthogonal unit vectors, then

S(x,x)(ξ, η) = −3
2

∂2

∂s2
|s=0

∂2

∂t2
|t=0F (t, s) = Sectx([ξ, η]),

where F (t, s) := 1
2d

(
expx(tξ), expx(sη)

)2 and Sectx([ξ, η]) denotes the sec-
tional curvature of the plane generated by ξ and η. This fact shows that
the MTW tensor is a nonlocal version of the sectional curvature and the
MTW condition implies nonnegative sectional curvature. In Chapter 12 of
the book under review, the author gives a very good introduction to the reg-
ularity theory of optimal transport. However, since the book was completed
in 2008, it misses some of very recent developments linking the MTW tensor
with the geometry of the manifold (see for instance [4] for a recent account
on these results).

4 Displacement convexity and applications

When X = Y is geodesic space (i.e., a complete separable metric space such
that every couple of points can be joined by a minimizing geodesic), and
c(x, y) = d(x, y)2, the minimum value in (1) is denoted by W2(µ, ν)2, and
W2(µ, ν) is the so-called Wasserstein distance. It turns out that the space
P2(X) of probability measures with finite second moment, endowed with
the Wasserstein distance, is a geodesic space too. Now, given two measures
µ0, µ1 ∈ P2(X), let (µt)t∈[0,1] be a (constant-speed) geodesic joining µ0 to µ1.
Then the idea is that the behaviour of µt should capture some information on
the geometry of the underlying space. More precisely, let us fix a reference
measure ν on X, and consider for instance the following functionals on
P2(X):

HN : P2(X) → R, HN (µ) = −
∫

X
ρ1−1/N dν, µ = ρν + µs, µs ⊥ ν,

H∞ : P2(X) → R, H∞(µ) =
{ ∫

X ρ log(ρ) dν if µ = ρν,
+∞ otherwise.

When X = Rn, ν is the Lebesgue measure and N ≥ n, it was discovered
by McCann [10] that the above functionals are convex along Wasserstein
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geodesics (in short, displacement convex ). This fact was the starting point
for many applications, which we now describe briefly.

• Gradient flows. One of the main discoveries of Otto [13] was to under-
stand that many evolution equations can be interpreted as gradient flows in
the space P2(Rd) of some potential functional with respect to the Wasserstein
distance W2. For instance, the gradient flow of H∞ is the heat equation,
while the gradient flow of HN gives a porous-medium equation. Thanks
to the fact that these energy functionals are convex, such an interpretation
turns out to be extremely well-adapted to proving existence, uniqueness,
stability and asymptotic behavior for solutions.

• Geometric and functional inequalities. The displacement convexity is
also extremely useful in proving some geometric and functional inequalities.
As an example, given two open bounded sets A,B ⊂ Rn, choose µ0 = 1A

|A|
and µ1 = 1B

|B| . Then, the displacement convexity of Hn allows one to prove
easily the Brunn-Minkowski inequality:

|A + B|1/n ≥ |A|1/n + |B|1/n

(see [10] for more detail). One great advantage of such a proof is that it
relies only on the convexity of Hn, and for instance it can be immediately
extended to any Riemannian manifold on which Hn is displacement convex.

• Riemannian manifolds and Ricci curvature bounds. Understand-
ing whether the energy functionals HN and H∞ are displacement convex
on a Riemannian manifold when ν = vol was an important issue. The
combination of results of many authors can be summarized in the following
statement:

Theorem 4.1. Let (X, ν) = (M, vol), and let N ≥ dimM . Then HN (resp.
H∞) is displacement convex if and only if Ric ≥ 0.

This result was fundamental for two reasons: on the one hand, many
geometric results on Rn which one could prove by exploiting the displace-
ment convexity were extended to Riemannian manifolds with nonnegative
Ricci curvature. On the other hand, it showed that the convexity of cer-
tain energy functionals defined on the space of probability measures allowed
rewriting in a more robust way the inequality Ric ≥ 0 (and more generally
Ric ≥ K, K ∈ R). Thanks to the fact that the displacement convexity was
shown to be stable under passage to the limit under the Gromov-Hausdorff
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convergence of metric spaces [8, 14, 15], this was the starting point for Lott-
Villani and Sturm to give a meaning to Ric ≥ K on a metric measured space.

All these results are very well explained in the second and third parts of
the book.

5 Conclusions

The book under review is written by a leading expert who has made ex-
tensive and deep contributions to the subject in the last years. The book
is an in-depth, modern, clear exposition of the advanced theory of optimal
transport, and it tries to put together in a unified way almost all the recent
developments of the theory. Let me recall that the author already wrote an
excellent book on the subject few years ago [16], which could be considered
as a good starting point before studying the book under review, which treats
the subject in much more generality and develops many more different direc-
tions. On the other hand, the prerequisites assumed do not go much beyond
a first course in analysis, functional analysis, and Riemannian geometry, and
the proofs are entirely self-contained. This makes the book accessible to a
large audience, including graduate and postgraduate students. Moreover
the book is extremely well written and very pleasant to read. In particular,
before involved proofs the author first gives a sketch in order to explain the
main ideas, and whenever possible he also suggests that the reader skip the
proof at a first reading.

Each chapter is followed by notes that provide a short historical back-
ground, and some of them are also followed by an appendix which contains
some classical results of analysis or geometry which were used in the chap-
ter. Much attention is given to bibliographical and historical notes, and
many topics appear in this volume for the first time in book form, e.g., the
regularity theory for optimal transport maps or the use of optimal transport
to define Ricci curvature bounds on metric spaces.

I strongly recommend this excellent book to every researcher or graduate
student in the field of optimal transport. Naturally, it will also be of interest
to many mathematicians in different areas, who are simply interested in
having an overview of the subject.
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