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Abstract. The Brunn-Minkowski inequality gives a lower bound on the Lebesgue mea-
sure of a sumset in terms of the measures of the individual sets. This inequality plays a
crucial role in the theory of convex bodies and has many interactions with isoperimetry
and functional analysis. Stability of optimizers of this inequality in one dimension is a
consequence of classical results in additive combinatorics. In this note we describe how
optimal transportation and analytic tools can be used to obtain quantitative stability
results in higher dimension.
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1. Introduction

Geometric and functional inequalities naturally appear in several problems in the
calculus of variations, partial differential equations, geometry, etc. Among the most
classical inequalities, we recall the isoperimetric (Isop) inequality, Sobolev (Sob)
and Gagliardo-Nirenberg (GN) inequalities, and the Brunn-Minkowski (BM) in-
equality.

Although different, all these inequalities are intimately related. Indeed it is
well-known that the following chain of implications holds:

(BM) ⇒ (Isop) ⇒ (Sob) ⇒ (GN). (1.1)

Let us introduce briefly all these inequalities and describe this connection.
The Brunn-Minkowski inequality deals with sum of sets: given A,B nonempty

subsets of Rn one defines A + B := {a + b : a ∈ A, b ∈ B}. Then (BM) gives a
sharp lower bound on the measure of A+B in terms of the measures of A and B:
more precisely,

(BM) |A+B|1/n ≥ |A|1/n + |B|1/n.

The isoperimetric inequality, instead, deals with boundary measure and volume:
if E ⊂ Rn is a smooth bounded set, its volume |E| is controlled by the perimeter
P (E):

(Isop) P (E) ≥ C(n)|E|(n−1)/n,
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where C(n) > 0 is an explicit dimensional constant.
Sobolev inequalities are a “generalization” of isoperimetric inequalities but they
concern functions instead of sets: they say that the gradient of a function in some
Lp norm controls some Lq norm of the function itself. More precisely, for any
u ∈ C∞c (Rn) and p < n,

(Sob) ‖∇u‖Lp(Rn) ≥ C(n, p)‖u‖Lq(Rn),

where q := np
n−p > p, and C(n, p) > 0 is an explicit constant depending only on n

and p.
Finally, Gagliardo-Nirenberg inequalities control a Lq norm of a function with a
weaker Lr norm of the function and the Lp norm of its gradient:

(GN) ‖∇u‖θLp(Rn)‖u‖
1−θ
Lr(Rn) ≥ C(n, p, r)‖u‖Lq(Rn),

where θ = θ(n, p, r) ∈ (0, 1), q = q(n, p, r) ∈
(
r, np
n−p

)
, and C(n, p, r) > 0 are

explicit constants depending only on n, p, and r.
We now explain the chain of implications (1.1).

• (BM) ⇒ (Isop). We apply (BM) to A = E and B = Bε(0) for some small
ε > 0. Then

|E +Bε(0)|1/n ≥ |E|1/n + |Bε(0)|1/n = |E|1/n + ε |B1(0)|1/n. (1.2)

On the other hand E + Bε(0) coincides with the ε-neighborhood of E, hence its
volume is approximately

|E +Bε(0)| = |E|+ ε P (E) + o(ε).

Inserting the above expression in (1.2), a Taylor expansion gives

|E|1/n + ε
1

n

P (E)

|E|(n−1)/n
+ o(ε) =

(
|E|+ ε P (E) + o(ε)

)1/n
≥ |E|1/n + ε |B1(0)|1/n,

that is
1

n

P (E)

|E|(n−1)/n
+
o(ε)

ε
≥ |B1(0)|1/n,

and letting ε→ 0 we obtain

1

n

P (E)

|E|(n−1)/n
≥ |B1(0)|1/n

as desired.

• (Isop)⇒ (Sob). The basic idea is that the perimeter of a set corresponds to
the mass of the gradient of the indicator function of a set E: more precisely, if 1E
denotes the indicator function of a set E, that is,

1E(x) =

{
1 if x ∈ E
0 if x 6∈ E,
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then

P (E) =

∫
Rn

|∇1E |.

This formula is not rigorous since ∇1E is zero a.e. (both inside and outside E)
while it gives a “Dirac mass” on the boundary of E, but it can be made precise
with the notions of sets of finite perimeter and of BV functions [28].

Now, to relate sets and functions, one applies the layer-cake formula: assuming
for simplicity u ≥ 0, u can be written as

u(x) =

∫ ∞
0

1{u>t}(x) dt, (1.3)

from which one deduces, by differentiation,

∇u =

∫ ∞
0

∇1{u>t} dt.

Although not completely obvious it is possible to show that the above identity still
holds when taking the moduli on the gradients, that is

|∇u| =
∫ ∞
0

|∇1{u>t}| dt,

so integrating this identity on Rn we obtain∫
Rn

|∇u| =
∫ ∞
0

(∫
Rn

|∇1{u>t}|
)
dt =

∫ ∞
0

P ({u > t}) dt

(see [28, Theorem 13.1] for a rigorous proof of the above identity, usually called
co-area formula). Applying now (Isop) to the sets {u > t} one obtains∫

Rn

|∇u| ≥ C(n)

∫ ∞
0

|{u > t}|(n−1/n) dt = C(n)

∫ ∞
0

‖1{u>t}‖L(n−1/n)(Rn) dt.

(1.4)
Recalling now that the norm of the integral is less than the integral of the norm,
from (1.3) we get

‖u‖L(n−1/n)(Rn) =

∥∥∥∥∫ ∞
0

1{u>t}(x) dt

∥∥∥∥
L(n−1/n)(Rn)

≤
∫ ∞
0

‖1{u>t}‖L(n−1/n)(Rn) dt,

that combined with (1.4) proves (Sob) when p = 1.
To prove the general case p ∈ [1, n), it suffices to apply first (Sob) with p = 1

to the function v := |u|γ with γ := p(n−1)
n−p , and then use Hölder inequality: indeed,

recalling that q = np
n−p , setting s := np−p

n−p we get

‖u‖Lq(Rn) =
∥∥|u|s∥∥1/s

Ln/(n−1)(Rn)
≤ C(n)1/s

∥∥|∇|u|s|∥∥1/s
L1(Rn)

≤ (sC(n))1/s
∥∥|∇u| |u|s−1∥∥1/s

L1(Rn)

≤ (sC(n))1/s‖∇u‖1/sLp(Rn)‖u‖
1−1/s
Lq(Rn),
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as desired.

• (Sob) ⇒ (GN). As in the last step of the previous argument, also this
implication is a consequence of Hölder inequality: more precisely, given any choice
of numbers r < q < s one applies Hölder inequality to get

‖u‖Lq(Rn) ≤ ‖u‖θLs(Rn)‖u‖
1−θ
Lr(Rn), for some θ = θ(r, q, s) ∈ (0, 1),

and then chooses s := np
n−p to control ‖u‖Ls(Rn) with ‖∇u‖Lp(Rn) using (Sob).

The discussion above shows how it is possible to derive some inequalities from
others, and that Brunn-Minkowski is at the basis of all of them. However, it
is interesting to point out that, although one inequality may imply another one,
the constants we obtained from the proofs may not be sharp. More precisely, in
the discussion above (BM) implied (Isop) with the sharp constant, and (Isop)
implied (Sob) for p = 1 with sharp constant again, but all the other implications
(based on Hölder inequality) are non-sharp.

The issue of the sharpness of a constant, as well as the characterization of
minimizers, is a classical and important question which is by now well understood
(at least for the class of inequalities we are considering). More recently, a lot of
attention has been given to the stability issue:

Suppose that a function almost attains the equality in one of the previous in-
equalities. Can we prove, if possible in some quantitative way, that such a function
is close (in some suitable sense) to one of the minimizers?

In the latest years several results have been obtained in this direction, showing
stability for isoperimetric inequalities [27, 22, 12, 17, 13], the Brunn-Minkowski
inequality on convex sets [23], Sobolev [11, 24, 15] and Gagliardo-Nirenberg in-
equalities [3, 15]. We notice that, apart from their own interest, this kind of results
have applications in the study of geometric problems (see for instance [20, 21, 9])
and can be used to obtain quantitative rates of convergence for diffusion equations
(see for instance [3]).

The aim of this note is to describe recent results on the stability of the Brunn-
Minkowski inequality [23, 18, 19]. As we shall see, the study of this problem
involves an interplay between linear structure, analysis, and affine-invariant geom-
etry of Euclidean spaces.

2. Sumsets and the Brunn-Minkowski inequality

Let A ⊂ Rn be a Borel set with |A| > 0. We define its semi-sum as

A+A

2
:=

{
a+ a′

2
: a, a′ ∈ A

}
.

Obviously A+A
2 ⊃ A, hence ∣∣∣∣A+A

2

∣∣∣∣ ≥ |A|.
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In addition it is not difficult to show that equality holds if and only if “A is convex”:
more precisely, a necessary and sufficient condition for equality is

|co(A) \A| = 0,

where co(A) denote the convex hull of A.
This result is a particular case of a more general inequality: the Brunn-Minkowski

inequality. Although we already introduced it in the previous section we restate it
here since, for convenience, we will write it in an equivalent form with a semisum
instead of a sum of sets.

Given A,B ⊂ Rn Borel sets, with |A|, |B| > 0, we define

A+B

2
:=

{
a+ b

2
: a ∈ A, b ∈ B

}
.

As we already mentioned in the introduction, the Brunn-Minkowski inequality
gives a control from below on the measure of A+B in terms of the measures of A
and B: ∣∣∣∣A+B

2

∣∣∣∣1/n ≥ |A|1/n + |B|1/n

2
. (2.1)

In addition, equality holds if and only if “A and B are homothetic convex sets”,
that is, there exist α, β > 0, v, w ∈ Rn, and K convex, such that

A ⊂ αK + v, |(αK + v) \A| = 0,

B ⊂ βK + w, |(βK + w) \B| = 0.

The main question we are interested in is the following: Are these results stable?
For instance, assume that ∣∣∣∣A+A

2

∣∣∣∣ = |A|+ ε

with ε � |A|. Is it true that A is close to its convex hull? Moreover, can we
quantify the closeness in terms of ε?

This same kind of question can also be asked for the Brunn-Minkowski inequal-
ity: Assume that (2.1) is almost an equality. Is it true that both A and B are
almost convex, and that actually they are close to the same convex set?

Let us notice that the latter question has two statements in it: we are wonder-
ing if:
- The error in the Brunn-Minkowski inequality controls how far A and B are from
their convex hulls (Convexity).
- The error in the Brunn-Minkowski inequality controls the difference between the
shapes of A and B (Homothety) .

The aim of this note is to address the questions raised above. We will proceed
by steps as follows: in Section 3 we will focus only on the (Homothety) issue.
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More precisely, we assume that A and B are already convex and we prove that, if
equality almost holds in (2.1), then A and B have almost the same shape. Then,
in Section 4 we will focus on the (Convexity) issue in the simpler case A = B,
and we shall prove that A is close to its convex hull. Finally, in Section 5 we will
deal with the general case.

3. Stability on convex sets

Let A,B be bounded convex set with 0 < λ ≤ |A|, |B| ≤ Λ, and

δ(A,B) :=

∣∣∣∣A+B

2

∣∣∣∣1/n − |A|1/n + |B|1/n

2
.

It follows from (2.1) that δ(A,B) ≥ 0, and we would like to show that δ(A,B)
controls some kind of “distance” between the shape of A and the one of B.

In order to compare A and B, we first want them to have the same volume.

Hence, we renormalize A so that it has the same measure of B: if γ := |B|1/n
|A|1/n then

|γA| = |B|.

We then define a “distance”1 between A and B as follows:

d(A,B) := min
x∈Rn

|B∆(x+ γA)|,

where
E∆F := (E \ F ) ∪ (F \ E).

The following result has been obtained in [22, Section 4] (see also [23]):

Theorem 3.1. Let A,B be bounded convex set with 0 < λ ≤ |A|, |B| ≤ Λ. There
exists C = C(n, λ,Λ) such that

d(A,B) ≤ C δ(A,B)1/2.

As observed in [22, Section 4], the exponent 1/2 is optimal and the constant C
is explicit.

Sketch of the proof. Notice that Theorem 3.1 contains as a corollary the validity
of the Brunn-Minkowski inequality on convex sets, as it implies in particular that
δ(A,B) ≥ 0. Hence, as a general principle, in order to hope for a stability estimate
to hold, we should at least be able to prove the easier inequality δ ≥ 0.

1Notice that d is not properly a distance since it is not symmetric. Still, it is a natural
geometric quantity which measures, up to translations, the L1-closeness between γA and B:
indeed, observe that an equivalent formulation for d is

d(A,B) := min
x∈Rn

1

2
‖1B − 1x+γA‖L1(Rn).



Quantitative stability results for the Brunn-Minkowski inequality 7

Thus, we will first show how optimal transportation can be used to prove the
Brunn-Minkowski inequality, and then we will explain how the same proof can be
exploited to obtain the desired stability result. We notice that a proof of (2.1)
using optimal transportation was first given in [29]. Here we follow the argument
given in [23] since (as we shall see in Step 2 below) it is particularly suitable to be
used to obtain a stability estimate.

Step 1: A proof of (2.1) via optimal transportation. We notice that
this part of the proof does not require A and B to be convex. Hence, we consider
A,B ⊂ Rn Borel with |A|, |B| > 0, and we define the probability measures

µ :=
1A(x)

|A|
dx, ν :=

1B(y)

|B|
dy.

Since µ is absolutely continuous with respect to the Lebesgue measure, Brenier’s
Theorem [1] ensures the existence of a convex function ϕ : Rn → R whose gradient
T := ∇ϕ sends µ onto ν:

T#µ = ν, i.e., µ(T−1(E)) = ν(E) for all E Borel.

It is easy to check that T satisfies (at least formally) the following properties:

(i) T (A) = B;

(ii) det(∇T ) = |B|/|A| = γn.

Indeed, (i) is a consequence of the fact that µ lives on A and ν on B.
For (ii) we observe that if χ : Rn → R denotes a test function, the condition

T#µ = ν gives ∫
Rn

χ(T (x))
1A(x)

|A|
dx =

∫
Rn

χ(y)
1B(y)

|B|
dy.

Now, assuming in addition that T is a diffeomorphism, we can set y = T (x) and
use the change of variable formula to obtain that the second integral is equal to∫

Rn

χ(T (x))
1B(T (x))

|B|
∣∣det(∇T (x))

∣∣ dx.
Hence, since T (A) = B, setting χ̂ := χ ◦ T we obtain

1

|A|

∫
A

χ̂(x) dx =
1

|B|

∫
B

χ̂(x)
∣∣det(∇T (x))

∣∣ dx,
so (ii) follows by the arbitrariness of χ̂ (or equivalently of χ).

We now define

Id+ T

2
(A) :=

{
a+ T (a)

2
: a ∈ A

}
.
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Then it follows by (i) that

Id+ T

2
(A) ⊂ A+B

2
,

from which we deduce that∣∣∣∣A+B

2

∣∣∣∣ ≥ ∣∣∣∣Id+ T

2
(A)

∣∣∣∣ =

∫
A

det

(
Id+∇T

2

)
=

1

2n

∫
A

det(Id+∇T ).

(3.1)

Up to now we never used that T is the gradient of a convex function. We now
exploit this: since T = ∇ϕ with ϕ convex, the eigenvalues λ1, . . . , λn of D2ϕ = ∇T
are nonnegative. Thus, using the inequality between AM-GM (arithmetic mean
and geometric mean), one can prove that

det(Id+∇T ) =

n∏
i=1

(1 + λi) ≥
(

1 +

( n∏
i=1

λi

)1/n)n
(2)
=
(

1 + (|B|/|A|)1/n
)n

.

Combining this inequality with (3.1) we finally obtain∣∣∣∣A+B

2

∣∣∣∣ ≥ 1

2n

∫
A

(
1 + (|B|/|A|)1/n

)n
=

(
|A|1/n + |B|1/n

2

)n
,

as desired. Notice that this argument is formal since a priori the transport map is
not smooth, but there are two possible ways of fixing this: if A and B are general
Borel set, then the above proof can be made rigorous by using some fine results
on BV functions and sets of finite perimeter, see [22]; if instead one only wants to
prove the result when A and B are convex, then one can rely on [2] to say that
the map T is actually smooth.

Step 2: The quantitative estimate. In the previous step we proved that
δ(A,B) ≥ 0 for any Borel sets A,B. We now want to control d(A,B) with δ(A,B)
when A and B are convex. The first observation is that, by the proof above (using
the same notation), we have

2nδ ≥
∫
A

[ n∏
i=1

(1 + λi)−
(

1 +
( n∏
i=1

λi

)1/n)n]
.

Notice that before we used AM-GM to say that the integrand in the right hand
side was nonnegative. Also, recall that equality holds in AM-GM if and only if all
numbers are equal. Hence, by an improved version of AM-GM which quantifies
the closeness of the numbers in terms of the error (see [22, Lemma 2.5]), we obtain
a precise quantitative form of the following rough statement:

δ � 1 ⇒ λi(x) ' λj(x) ∀ i, j, for mostx ∈ A.
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Since
∏n
i=1 λi(x) = |B|/|A| (by (ii)), we also deduce that

λi(x) ' γ ∀ i, for mostx ∈ A,

where γ = (|B|/|A|)1/n. Using now that ∇T = D2ϕ is a symmetric matrix, from
the fact that all its eigenvalues are close to γ we deduce that

∇T (x) ' γ Id for mostx ∈ A,

To be more precise, by carefully performing the above estimates, one can prove
that ∫

A

|∇T − γ Id| ≤ C δ(A,B)1/2.

We now want to use the estimate above on ∇(T−γ x) to obtain a bound on T−γ x.
For this, we wish to apply a trace inequality of the form

C

∫
A

|∇f | ≥ inf
c∈R

∫
∂A

|f − c| dσ ∀ f ∈ C∞(Rn),

where σ denotes the surface measure on ∂A. Since A is convex its boundary
is Lipschitz, so the above trace inequality holds and we can show that, up to a
translation,

C δ(A,B)1/2 ≥
∫
∂A

|T (x)− γ x| dσ.

In particular, since T (x) ∈ B for x ∈ A, we deduce that

C δ(A,B)1/2 ≥
∫
∂A

dist(x,B/γ) dσ. (3.2)

A simple geometric argument then shows that

C

∫
∂A

dist(x,B/γ) dσ ≥ |A \ (B/γ)| (3.3)

(see [23, Proof of Theorem 1, Step 4]). Since |A| = |B/γ| one observes that

|A \ (B/γ)| = |(B/γ) \A| = 1

2
|A∆(B/γ)|,

so the desired result follows from (3.2) and (3.3).

4. Stability when A = B

As we already mentioned before, the quantitative estimate in the proof of Theorem
3.1 works only if A and B are convex. There are several technical reasons why we
need this assumption, but there is also a simple way to see why one cannot hope
to use the above proof to solve the (Convexity) issue that we raised at the end
of Section 2.
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Indeed, assume that A = B. In that case the map T in the proof of Theorem
3.1 is simply the identity map, that is T (x) = x, and the argument given in the
first part of the proof is completely “empty”, in the sense that it does not introduce
any new information. In particular, the proof by optimal transportation does not
help in showing that δ(A,A) controls the distance between A and its convex hull.
Hence a completely new strategy is needed to address this issue.

4.1. The case n = 1. Already in the one dimensional case the problem is
far from being trivial. Up to rescale A we can always assume that |A| = 1. Define

δ1(A) := |A+A| − 2|A|.

It is easy to see that δ1(A) cannot control in general |co(A) \A|: indeed take

A := [0, 1/2] ∪ [L,L+ 1/2]

with L� 1. Then

A+A = [0, 1] ∪ [L,L+ 1] ∪ [2L, 2L+ 1],

which implies that δ1(A) = 1(= |A|) while |co(A) \ A| = L − 1/2 is arbitrarily
large. Luckily, as shown by the following theorem, this is essentially the only thing
that can go wrong.

Theorem 4.1. Let A ⊂ R be a measurable set with |A| = 1, and denote by co(A)
its convex hull. If δ1(A) < 1 then

|co(A) \A| ≤ δ1(A).

This theorem can be obtained as a corollary of a result of G. Freiman [25]
about the structure of additive subsets of Z. (See [26] or [31, Theorem 5.11] for
a statement and a proof.) However, it turns out that to prove of Theorem 4.1
one only needs weaker results. For convenience of the reader, instead of relying
on deep and intricate combinatorial results, we will give an elementary proof of
Theorem 4.1. Our proof is based on the simple observation that a subset of R can
be discretized to a subset of Z starting at 0 and ending at a prime number p. This
may look strange from an analytic point of view, but it considerably simplifies the
combinatorial aspects.

Sketch of the proof of Theorem 4.1. The proof consists of three steps:
- first, one proves a Brunn-Minkowski type inequality in Zp = Z/pZ;
- then, we show a simple case of the so-called Freiman’s 3k − 3 Theorem;
- finally, an approximation argument proves the theorem on R.

We give here a sketch of the proof, referring to [18, Section 2] for more details.
Note that, in the discrete setting, |A| will always denote the cardinality of the set A.

Step 1: Cauchy-Davenport inequality. If ∅ 6= A,B ⊂ Zp with p prime,
then |A+B| ≥ min{|A|+ |B| − 1, p}.
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The proof is by induction on the size of |B|, the case |B| = 1 being trivial.
To perform the induction, it is useful to define the e-transform of A and B: given
e ∈ A−B, define

A(e) := A ∪ (B + e), B(e) := B ∩ (A− e).

Notice that

A(e) +B(e) ⊂ A+B, |A(e)|+ |B(e)| = |A|+ |B| (4.1)

We now consider two cases:
Case 1: there exists e ∈ A−B such that |Be| < |B|. Then by the inductive step

|A(e) +B(e)| ≥ min{|A(e)|+ |B(e)| − 1, p},

and we conclude by (4.1).
Case 2: |Be| = |B| for any e ∈ A−B. This means that B(e) = B for any e ∈ A−B,
which implies that B + e ⊂ A for any e ∈ A − B, that is A + B − B ⊂ A. Thus
B − B is contained inside to the subgroup Sym1(A) := {h ∈ Zp : A + h = A}.
Since |B| > 1 and the only subgroups of Zp are {0} and Zp, this means that
Sym1(A) = Zp. This implies that A = Zp, so the result is trivially true since
|A+B| ≥ |A| = p.

Step 2: Freiman’s 3k − 3 Theorem. Let A be a finite nonempty subset of
Z with min(A) = 0 and max(A) = p, with p prime. Assume that |A+A| − 2|A| <
|A| − 3. Then |{0, . . . , p} \A| ≤ |A+A| − 2|A|+ 1.

Before proving this result, we notice that in Step 3 we will apply it to sets with
very high cardinality. Hence, if we forget about the terms −3 and +1, the above
statement says the following: if δ1(A) < |A| then |{0, . . . , p} \ A| ≤ δ1(A). Notice
that this statement is exactly what we wanted, if one thinks that {0, . . . , p} is the
“convex hull” of A in this discrete setting.

To prove this step, let φp : Z → Zp denote the canonical quotient map. We
have {

A+A ⊃ A ∪ (A+ p)
φp(A) = φp(A+ p)

⇒ |φp(A+A)| ≤ |A+A| − |A|,

hence
|φp(A+A)| < 2|A| − 3 = 2|φp(A)| − 1

(observe that |φp(A)| = |A| − 1). Thus, by Step 1,

|φp(A+A)| = p,

which implies
p ≤ |A+A| − |A|,

as desired.

Step 3: The discretization argument. We now prove the theorem. We first
notice that, by approximation, it suffices to prove the result when A is compact.
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Without loss of generality assume co(A) = [0,M ]. We then approximate A
with sets Ak of the form

Ak :=
⋃

j : Ik,j∩A6=∅

Ik,j , Ik,j :=

[
jM

pk + 1
,

(j + 1)M

pk + 1

]
,

where pk is a sequence of prime numbers with pk → +∞. Then, we define

Bk := {j ∈ Z : Ik,j ⊂ Ak} ⊂ Z.

Thanks to the assumption δ1(A) < |A| it is easy to check that Bk satisfies the
assumptions of Step 2 for k large enough. Hence, it follows by Step 2 that

|{0, . . . , pk} \Bk| ≤ |Bk +Bk| − 2|Bk|+ 1,

that rewritten in terms of Ak gives

|[0,M ] \Ak| ≤ δ1(Ak) +
1

pk + 1
.

Letting k →∞ concludes the proof.

4.2. The case n ≥ 2. Let us define the deficit of A as

δ(A) :=

∣∣ 1
2 (A+A)

∣∣
|A|

− 1 =
|A+A|
|2A|

− 1.

In the previous section we showed how to obtain a precise stability result in one
dimension by translating it into a problem on Z. The main result in [18] is a
quantitative stability result in arbitrary dimension, showing that a power of δ(A)
dominates the measure of the difference between A and its convex hull co(A).

Theorem 4.2. Let n ≥ 2. There exist computable dimensional constants δn, cn >
0 such that if A ⊂ Rn is a measurable set of positive measure with δ(A) ≤ δn, then

δ(A)αn ≥ cn
| co(A) \A|
|A|

, αn :=
1

8 · 16n−2n!(n− 1)!
.

Sketch of the proof. Let Hk denote the k-dimensional Hausdorff measure on Rn,
denote by (y, t) ∈ Rn−1×R a point in Rn, and let π : Rn → Rn−1 be the canonical
projection π(y, t) := y. Given E ⊂ Rn and y ∈ Rn−1, we use the notation

Ey := E ∩ π−1(y).

We say that E is t-convex if Ey is a segment for every y ∈ π(E).
Our proof is by induction on n, the case n = 1 being true by Theorem 4.1. As a

preliminary observation we notice that if L : Rn → Rn is an affine transformation
with detL = 1, then δ(A) = δ(L(A)) and | co(A) \A| = | co(L(A)) \ L(A)|. Hence
it is enough to prove the theorem for L(A). This simple remark will be extremely
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useful, as it will allow us to reduce to the case when A is bounded (see Step 3
below).

Step 1. The first argument consists in combining Theorem 4.1 with a Fubini’s
type argument to show that, for most y ∈ π(A), the set Ay ⊂ {y} × R is close to
its convex hull. Since this part is elementary and also it will be useful to explain
one of the main differences with the case A 6= B, we detail it.

By Fubini

δ(A) =
∣∣ 1
2 (A+A)

∣∣− |A| = ∫
Rn−1

H1
((

1
2 (A+A)

)
y

)
−H1(Ay) dy,

hence, since 1
2 (Ay +Ay) ⊂

(
1
2 (A+A)

)
y
, we deduce

δ(A) ≥
∫
Rn−1

H1
(

1
2 (Ay +Ay)

)
−H1(Ay) dy.

We now distinguish between two cases, depending whether we can apply Theorem
4.1 or not:
- y is good if H1

(
1
2 (Ay +Ay)

)
−H1(Ay) ≤ H1(Ay)/2.

- y is bad if H1
(
1
2 (Ay +Ay)

)
−H1(Ay) ≥ H1(Ay)/2.

Notice that if y is “good” we can apply Theorem 4.1 to Ay, while in the “bad”
case H1

(
1
2 (Ay +Ay)

)
−H1(Ay) trivially controls H1(Ay), therefore

δ(A) ≥
∫
y good

H1
(
co(Ay) \Ay

)
dy

+

∫
y bad

H1
(
Ay
)
/2 dy.

From this estimate we deduce that A is (quantitatively) close to the t-convex set

A′ :=
⋃

y good

co(Ay).

Now, applying the inductive hypothesis with n− 1, an argument similar to the
one above shows that

Es0 := {y ∈ Rn−1 : H1(Ay) > s0}

is close to its convex hull for some small s0 > 0. Using this fact we prove that, for
s0 small enough, A is close to the t-convex set

A∗ :=
⋃

y∈Es0

co(Ay).
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Step 2. Define co(Ay) = {y} × [a(y), b(y)]. A careful analysis based on the
assumption that δ(A) is small shows that the midpoint c(y) := (a(y) + b(y))/2 of
A∗y have bounded second differences as a function of y: more precisely,

|c(y′) + c(y′′)− 2c(y)| ≤ 6 ∀ y, y′, y′′ ∈ Es0 , y =
y′ + y′′

2
.

Step 3. As mentioned before, it is enough to prove the result for L(A) instead
of A, where L : Rn → Rn is a measure preserving affine transformation. We show
here that we can find a map L such that L(A∗) is bounded.

Using the above bound for c, we prove that c is at bounded distance from an
affine function `. In addition, since π(A∗) = Es0 and Es0 is close to its convex
hull (by Step 1), a classical result in convex geometry (called John’s Lemma) states
that we can find a measure preserving affine transformation T : Rn−1 → Rn−1 such
that T (co(Es0)) is bounded. Hence, up to applying the affine measure-preserving
transformation

L(y, t) := (Ty, t− `(Ty)),

A∗ is bounded.

Step 4. We want to show that A∗ is close to a convex set. For this, we need to
prove a statement of the following form (the exact form of the statement proved
in [18] is more involved):

Assume that

f(y′) + f(y′′)

2
≤ f(y) + γ ∀ y, y′, y′′ ∈ E, y =

y′ + y′′

2
,

|f | ≤ 1, | co(E) \ E| ≤ γ

for some E ⊂ Rn−1, γ � 1. Then there exist C,α > 0 such that∫
E

|f − F | ≤ Cγα, for some function F : Rn−1 → R concave.

Recalling that co(Ay) = {y}× [a(y), b(y)], the above statement applied to f = b
and f = −a shows that A∗ (hence also A) is quantitatively close to a convex set.

Step 5. By a simple geometric argument we prove that the convex set obtained
in Step 4 can be assumed to be the convex hull of A, concluding the proof.

5. Stability when A 6= B

As in the case A = B, when n = 1 a sharp stability result holds as a consequence
of classical theorems in additive combinatorics (an elementary proof of this result
can be given using Kemperman’s theorem [7, 8]):
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Theorem 5.1. Let A,B ⊂ R be measurable sets. If |A + B| < |A| + |B| + δ for
some δ ≤ min{|A|, |B|}, then there exist two intervals I, J ⊂ R such that A ⊂ I,
B ⊂ J , |I \A| ≤ δ, and |J \B| ≤ δ.

Concerning the higher dimensional case, in [5, 6] M. Christ proved a qualitative
stability result for (2.1), namely, if |A + B|1/n is close to |A|1/n + |B|1/n then A
and B are close to homothetic convex sets.

The main result in [19] is a quantitative version of Christ’s result. After dilating
A and B appropriately, we can assume |A| = |B| = 1 while replacing the semisum
(A+B)/2 by a convex combination S := tA+ (1− t)B with t ∈ (0, 1). It follows
by (2.1) that |S| = 1 + δ for some δ ≥ 0. Since our proof is by induction on the
dimension, it will be convenient to allow the measures of |A| and |B| not to be
exactly equal, but just close in terms of δ. The main result of [19] shows that
the measure of the difference between the sets A and B and their convex hull is
bounded by a power δε, confirming a conjecture of Christ [5].

Theorem 5.2. Let A,B be measurable subsets of Rn with n ≥ 2, and define
S := tA + (1 − t)B for some t ∈ [τ, 1 − τ ], 0 < τ ≤ 1/2. There are computable
dimensional constants Nn and computable functions Mn(τ), εn(τ) > 0 such that if∣∣|A| − 1

∣∣+
∣∣|B| − 1

∣∣+
∣∣|S| − 1

∣∣ ≤ δ (5.1)

for some δ ≤ e−Mn(τ), then there exists a convex set K ⊂ Rn such that, up to a
translation,

A,B ⊂ K and |K \A|+ |K \B| ≤ τ−Nnδεn(τ).

Explicitly, we may take

Mn(τ) =
23

n+2

n3
n | log τ |3n

τ3n
, εn(τ) =

τ3
n

23n+1n3n | log τ |3n
.

Sketch of the proof. For convenience we reintroduce some of the notation, although
identical to the one in the proof of Theorem 4.2.

Let Hk denote k-dimensional Hausdorff measure on Rn, denote by x = (y, s) ∈
Rn−1×R a point in Rn, and π : Rn → Rn−1 and π̄ : Rn → R denote the canonical
projections, i.e.,

π(y, s) := y and π̄(y, s) := s.

Given a compact set E ⊂ Rn, y ∈ Rn−1, and λ > 0, we use the notation

Ey := E ∩ π−1(y) ⊂ {y} × R, E(s) := E ∩ π̄−1(s) ⊂ Rn−1 × {s},

E(λ) :=
{
y ∈ Rn−1 : H1(Ey) > λ

}
.

Following Christ [6], we consider different symmetrizations:
We define the Schwarz symmetrization E∗ of E as follows. For each t ∈ R,

- If Hn−1
(
E(s)

)
> 0, then E∗(s) is the closed disk centered at 0 ∈ Rn−1 with

the same measure.
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- If Hn−1
(
E(s)

)
= 0, then E∗(s) is empty.

We define the Steiner symmetrization E? of E so that for each y ∈ Rn−1, the set
E?y is empty if H1(Ey) = 0; otherwise it is the closed interval of length H1(Ey)

centered at 0 ∈ R. Finally, we define E\ := (E?)∗.

The proof of Theorem 5.2 is very elaborate, combining the techniques of M.
Christ with those developed by the present authors in [18] (where we proved Theo-
rem 5.2 in the special case A = B and t = 1/2), as well as several new ideas. Before
describing the proof, we begin by showing one of the differences with respect to
the case A = B.

Let us try to repeat Step 1 in the proof of Theorem 4.2: arguing in the very
same way as we did there, one would obtain∣∣ 1

2 (A+B)
∣∣− |A|+ |B|

2
=

∫
Rn−1

H1
((

1
2 (A+B)

)
y

)
− H

1(Ay)+H1(By)
2 dy

≥
∫
Rn−1

H1
(

1
2 (Ay +By)

)
− H

1(Ay)+H1(By)
2 dy

≥ 0.

However the above inequality is false when n ≥ 2, as one can immediately check
by taking A = B1(0) and B = {0}, so that 1

2 (A + B) = B1/2(0). The mistake
in the above argument is the following: in the last inequality we applied the one
dimensional Brunn-Minkowski inequality

H1
(

1
2 (Ay +By)

)
− H

1(Ay)+H1(By)
2 ≥ 0,

but the latter is true only when both Ay and By are nonempty (since the semisum
of any set with the empty set is the empty set).

As we shall see, this is just the first of several new issues that arise in the
stability proof when A 6= B. We now give a detailed description of the proof of
the theorem.

Case 1: A = A\ and B = B\. First we prove the theorem in the special case
A = A\ and B = B\. In this case we have that

Ay = {y} × [−a(y), a(y)] and By = {y} × [−b(y), b(y)],

for some functions a, b : Rn−1 → R+, and it is easy to show that a and b satisfy
the “3-point concavity inequality”

ta(y′) + (1− t)b(y′′) ≤ [ta+ (1− t)b](y) + δ1/4 (5.2)

whenever y′, y′′, and y := ty′+(1− t)y′′ belong to a large subset F of π(A)∩π(B).
From this 3-point inequality and an elementary argument we show that a satisfies
the “4-point concavity inequality”

a(y1) + a(y2) ≤ a(y′12) + a(y′′12) +
2

t
δ1/4 (5.3)
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with y′12 := t′y1+(1−t′)y2, y′′12 := t′′y1+(1−t′′)y2, t′ := 1
2−t , t

′′ := 1−t′, provided
all four points belong to F . (The analogous inequality for b involves a different set
of four points.)

Using this inequality and a variant of the argument in Step 4 of the proof of
Theorem 4.2, we deduce that a is quantitatively close in L1 to a concave function.

Once we know that a (and analogously b) is L1-close to a concave function, we
deduce that both A and B are L1-close to convex sets KA and KB respectively,
and we would like to say that these convex sets are nearly the same. This is demon-
strated by first showing that S is close to tKA+(1− t)KB , then applying Theorem
3.1 to deduce that KA and KB are almost homothetic, and then constructing a
convex set K close to A and B and containing both of them.

This concludes the proof of Theorem 4.2 in the case A = A\ and B = B\.

Case 2: The general case. We now consider the general case, which we
prove in several steps, culminating in induction on dimension.

Step 1. This first step is very close to the argument used by M. Christ in [6],
although our analysis is more elaborate since we have to quantify every estimate.

Given A, B, and S, as in the theorem, we consider their symmetrizations A\,
B\, and S\, and apply Case 1 above to deduce that A\ and B\ are close to the
same convex set. This information combined with a lemma of Christ allows us
to deduce that functions y 7→ H1(Ay) and y 7→ H1(By) are almost equiparti-
tioned (that is, the measure of their level sets A(λ) and B(λ) are very close). This
fact combined with a Fubini argument yields that, for most levels λ, A(λ) and
B(λ) are almost optimal for the (n− 1)-dimensional Brunn-Minkowski inequality.
Thus, by the inductive step, we can find a level λ̄ ∼ δζ (ζ > 0) such that we can
apply the inductive hypothesis to A(λ̄) and B(λ̄). Consequently, after removing
sets of small measure both from A and B and translating in y, we deduce that
π(A), π(B) ⊂ Rn−1 are close to the same convex set.

Step 2. This step is the analogue of Step 1 in the proof of Theorem 4.2: we
apply a Fubini argument and Theorem 5.1 to most of the sets Ay and By for
y ∈ A(λ̄) ∩ B(λ̄) to deduce that they are close to their convex hulls. Note, how-
ever, that to apply Fubini and Theorem 5.1 it is crucial that, thanks to Step 1,
we found a set in Rn−1 onto which both A and B project almost fully. Indeed, as
we already mentioned at the beginning of the proof, to say that H1(Ay + By) ≥
H1(Ay) +H1(By) it is necessary to know that both Ay and By are nonempty, as
otherwise the inequality would be false.

Step 3. To understand the properties of the barycenter of Ay and By (in
analogy with Step 2 in the proof of Theorem 4.2), we consider the “upper” (resp.
“lower”) profile of A and B, that is the functions a+(y) := max{t ∈ R : t ∈ Ay}
(resp. a−(y) := min{t ∈ R : t ∈ Ay}) and b+(y) := max{t ∈ R : t ∈ By} (resp.
b−(y) := min{t ∈ R : t ∈ By}). With this notation we obtain a 3-point concavity
inequality as in (5.2) for a+ and b+ (and the analogous one but with opposite signs
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for a− and b−). This inequality allows us to say that the barycenter of Ay satisfies
the 4-point inequality (5.3) both from above and from below, and from this infor-
mation we can deduce that, as a function of y, the barycenter of Ay (resp. By) is
at bounded distance from a linear function. It follows that the barycenters of S̄y
are at bounded distance from a linear function for a set S̄ which is almost of full
measure inside S. Then a variation of Step 3 in the proof of Theorem 4.2 allows us
to show that, after an affine measure preserving transformation, S̄ is universally
bounded, that is, bounded in diameter by a constant of the form Cnτ

−Mn where
Cn and Mn are dimensional constants.

Step 4. By a relatively easy argument we find sets A∼ and B∼ of the form

A∼ =
⋃
y∈F
{y} × [aA(y), bA(y)] B∼ =

⋃
y∈F
{y} × [aB(y), bB(y)]

which are close to A and B, respectively, and are universally bounded.

Step 5. This is a crucial step: we want to show that A∼ and B∼ are close to
convex sets. As in the case A = A\ and B = B\, we would like to deduce that bA

and bB (resp. aA and aB) are L1-close to concave (resp. convex) functions.

The main issue for proving this is to show first that the level sets of bA and bB

are close to their convex hulls. To deduce this we wish to prove that most slices of
A∼ and B∼ are nearly optimal in the Brunn-Minkowski inequality in dimension
n− 1 and invoke the inductive hypothesis. We achieve this by introducing a new
inductive proof of the Brunn-Minkowski inequality, based on combining the validity
of Brunn-Minkowski in dimension n− 1 with 1-dimensional optimal transport.

An examination of this new proof of the Brunn-Minkowski inequality in the
situation near equality shows that if A and B are almost optimal for the Brunn-
Minkowski inequality in dimension n, then for most levels s, the slices A(s) and
B(T (s)) have comparable (n − 1)-measure, where T is the 1-dimensional optimal
transport map, and this pair of sets is almost optimal for the Brunn-Minkowski
inequality in dimension n−1. In particular, we can apply the inductive hypothesis
to deduce that most (n− 1)-dimensional slices are close to their convex hulls.

In this way, we end up proving that A∼ and B∼ are close to convex sets, as
desired.

Step 6. Since A∼ and B∼ are close to A and B respectively, as in the case
A = A\ and B = B\ we find a convex set K close to A and B and containing both
of them.

Step 7. Tracking down the exponents in the proof, we provide an explicit
lower (resp. upper) bound on εn(τ) (resp. Mn(τ)), which concludes the proof of
the theorem.
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6. Concluding remarks

In this note we have seen three substantially different methods to obtain stability
results: the proof of Theorem 3.1 relies on optimal transportation techniques, the
one of Theorem 4.1 is based on additive combinatorics’ arguments, while Theorems
4.2 and 5.2 involve an interplay between measure theory, analysis, and affine-
invariant geometry. While Theorem 4.1 is sharp, Theorems 3.1, 4.2, and 5.2 still
leave space for improvements.

First of all, in the statement of Theorem 3.1 it would be interesting to find
a sharp dependence on the constant C with respect to the parameters n, λ, and
Λ: if for instance λ and Λ are comparable (that is, A and B have comparable
volumes) then the proof in [23] provides the estimate of the form C(n) ≈ An

for some universal constant A > 1, while [22] improves it to a polynomial bound
C(n) ≈ n17/2. As later shown in [30], a careful examination of the methods
presented in [22, 23] permits to improve the constant and get a (still non-sharp)
bound C(n) ≈ n7/2.

Concerning Theorems 4.2 and 5.2, there are even more fundament questions.
For instance, notice that the exponents αn and βn(τ) depend on the dimension, and
it looks very plausible to us that they are both non-sharp. An important question
in this direction would be to improve our exponents and, if possible, understand
what the sharp exponents should be.

Let us conclude by pointing out that improving the exponent in a stability
estimate is not a merely academic question. For instance, the exponent in the
stability estimate for the Gagliardo-Nirenberg inequality used in [3] is related to the
rate of convergence to the stationary states for solutions of the critical Keller-Segel
equation, so a better exponent would give a faster rate. Even more surprisingly,
the results in [9] rely in a crucial way on the sharpness of the exponent in the
stability estimate for the isoperimetric inequality found in [27, 22].

It is our belief that this line of research will continue growing in the next years,
producing new and powerful stability results.
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