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Abstract. We introduce a novel capacity measure 2sED for statistical models based on the
effective dimension. The new quantity provably bounds the generalization error under mild
assumptions on the model. Furthermore, simulations on standard data sets and popular model
architectures show that 2sED correlates well with the training error. For Markovian models, we
show how to efficiently approximate 2sED from below through a layerwise iterative approach,
which allows us to tackle deep learning models with a large number of parameters. Simulation
results suggest that the approximation is good for different prominent models and data sets.

1. Introduction

Deep learning models are achieving outstanding performances in solving several complex tasks
such as image classification problems, object detection [KSH12, LBH15] and natural language
processing [BMR+20]. The reason for the vast success of deep neural networks (DNNs) is
mainly due to the technological achievements that have made possible to set up and train
parametric models defined by a huge number of parameters (typically, much larger than the
cardinality of the training datasets) [ZBH+21]. Over-parametrized regimes make DNNs able
to extract valuable information from data. Quite surprisingly, and despite the fact that an
abundance of parameters could in principle give rise to over-fitting problems, DNNs typically
exhibit impressive generalization capabilities after training [ZBH+21, NTS14]. As the demand
of computational resources and training time increases with the number of parameters, the trial-
and-error procedures that are typically adopted for selecting the most appropriate models for
a given task become extremely expensive, or even impractical, when the number of parameters
is huge.

Finding appropriate complexity measures for deep learning models can help in understanding
and quantifying their generalization capabilities. Hereafter we propose some essential features
that, ideally, should characterize a complexity measure for parametric models:

(P1) it should provide pre-training information consistent with post-training performances;
(P2) its computation should be more efficient and scalable in comparison with a full training

& validation process;
(P3) in the case of a feedforward-type model, it should be “modular”, i.e., computable in

some iterative fashion1;

Notions of complexity measures have appeared in the context of machine learning, with early
studies focusing, e.g., on the complexity of decision tree models [BFSO84] and logistic regression
models [CSMV99,KST08,BMR19].

From the perspective of statistical learning theory, the Vapnik-Chervonenkis dimension, com-
monly called VC dimension [Vap99], is an established complexity measure defined in term of the
largest number of points that can be shattered by a class of functions [HFT09]. This complex-
ity dimension has been used to establish data-independent generalization bounds for statistical
models [SSBD14,PL20].
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1Here we are referring to the typical structure of a feedforward-type model, which is a composition of para-

metric layer maps.
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Other notions of model complexity, specifically designed for deep learning models, have been
more recently proposed, with the aim of quantifying the expressivity of a DNN [MPCB14,
RPK+17,LPRS19,HCP+21].

There is, however, a supported evidence that data-independent generalization bound are not
universally effective [BM02, KMNR95]. For this reason, data-dependent notions of complexity
have also been introduced, like the Rademacher complexity and the Gaussian complexity. These
notions of complexity evaluate the expected noise-fitting-ability of a function class over all data
sets drawn according to an unknown data distribution. By means of such data-dependent
complexity measures, one obtains generalization bounds that are considerably better than those
involving the VC dimension [BM02, PL20, SSBD14]. In any case, computing or estimating the
VC dimension, or the Rademacher complexity, is generally a challenging task, feasible only
under strong model constraints. Some tight approximations and bounds have been obtained in
some specific cases, however they are not general enough to be applicable to complex models like
modern deep neural networks [BHLM19,BM02,VLLC94]. With the aim to provide more easily
computable notions of complexity, other definitions have been considered based on the minimum
description length (MDL) and on the notion of stochastic complexity [Grü07,Ris97,BMR19].

Other complexity measures of more geometric flavour have been defined in terms of the Fisher
information associated with the statistical model [Ris96]. More recently, [BFGM20, ASZ+21]
propose a notion of effective dimension, that is, a box-covering dimension related to the number
of “Fisher boxes” of a given size that are needed to cover the parameter space. The size of such
boxes represents a ”scale” at which the model is analysed. Under suitable regularity assumptions
on the statistical model and on the loss functional, the generalization error (i.e., the gap between
the population error and the empirical error) can be controlled by an expression involving the
effective dimension computed with respect to an explicit scale parameter, that depends on the
number of samples defining the empirical error. One of the main challenges in the computation
of the effective dimension is to determine the eigenvalues of the Fisher information matrix.
Note that, for high-dimensional models, even the storage of the Fisher information becomes
impractical, despite sophisticated approximation methods such as K-FAC [MG15].

This work proposes and studies variants of the original effective dimension. Our aim is to
address some issues that affect the previous definitions. On the one hand, the generalization
bounds proved in [ASZ+21] (see also [ASFW21]) require strong regularity assumptions on the
statistical model. Specifically, the logarithm of the Fisher information matrix is required to
be Lipschitz, and in particular its eigenvalues cannot become too small, hence this assumption
excludes the case of over-parametrized models [KAA19]. On the other hand, the original defini-
tion requires a global computation for the statistical model as a whole, hence it does not satisfy
properties (P2) and (P3).

Our starting point is the definition of the following, two-scale effective dimension (2sED)

(1) dζ(ε) = ζd+ (1− ζ)

log

 
Θ

det

(
Id + εζ−1

√
F̂ (ϑ)

)
dϑ

| log εζ−1|
,

where F̂ (ϑ) denotes the normalized Fisher information matrix (see Section 2) and
ffl

Θ f(ϑ)dϑ =
1
VΘ

´
Θ f(ϑ)dϑ, with VΘ =

´
Θ dϑ. Two parameters show up in the above definition: a micro-scale

ε > 0 and an exponent ζ ∈ [0, 1) defining a meso-scale δ = εζ . The micro-scale is related to the
size of Fisher boxes (defined in (19)) that are used to cover a component of the parameter space,
while the meso-scale εζ represents the size of the components of a partition of the parameter
space, that needs to be fixed in order to localise and adapt the micro-scale covering. Note
that when ζ = 0 we essentially obtain the effective dimension of [ASZ+21], up to a slight
technical difference due to the presence of the square root of the renormalized Fisher matrix
F̂ . More generally, the 2sED is a convex combination of the dimension of the parameter space
and the effective dimension. Our main theoretical result is Theorem 4.1, which establishes a
generalization bound explicitly dependent upon the cardinality of the dataset and the 2sED.
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We stress that the proof of this result requires considerably weaker regularity assumptions than
those of [ASZ+21, Theorem 1], which is relevant for various models that are considered in
practice.

The 2sED defined in (1) depends on the eigenvalues of the Fisher information matrix and
hence is not straightforward to evaluate efficiently for large models with many parameters. Fur-
thermore we need to average the determinant of these eigenvalues over the full parameter space
which requires computing a high-dimensional integral. To overcome this problem, we introduce
a modular version of dζ(ε), that is specifically tailored for Markovian models, which can be
though of as stochastic generalizations of feedforward DNNs. This new quantity, called lower
2sED and denoted by dζ(ε), provides a lower bound for dζ(ε). It is obtained by exploiting
the concavity property of the logarithm, and has the advantage of being computed sequentially
layer-by-layer, thanks to the block structure of the Fisher information matrix of a Markovian
model. As a result, the computational cost required to evaluate dζ(ε) is drastically reduced
compared to that of dζ(ε). Moreover, the need to store the full Fisher information matrix is
eliminated, since only the i-th layer block of the matrix needs an iterative evaluation. Conse-
quently, the lower 2sED dζ(ε) satisfies (P3) and therefore can be computed for models that are

more complex (deeper) than those considered in [ASZ+21].
We finally present numerical simulations based on Monte Carlo approximations of d0 for

various models and datasets. The experiments remarkably confirm properties (P1), (P2), and
(P3). Concerning (P2) and (P3), these are satisfied by the approximation of d0, thanks to
the analytical properties of d0. Moreover, we have observed a systematic correlation between
the approximations of d0 and d0, thus they provide the same comparative information about
models. Finally, we have an experimental evidence that the post-training performances of a
given parametric model are strongly correlated to higher values of d0, which is an experimental
confirmation of (P1).

To summarize, we present a new capacity measure called 2sED that

(i) provably bounds the generalization error under mild assumptions on the model (see
Theorem 4.1), providing non-vacuous estimates on the generalization error in the under-
parametrized regime;

(ii) correlates well with the training error for popular models and data sets (see Section 6);
(iii) can be approximated efficiently for Markovian models, which allows us to compute it

for deep neural networks that have a large number of parameters (see Sections 5 and 6);
(iv) satisfies properties (P1)–(P3).

2. Preliminaries

Take X ⊂ Rdin and Y ⊂ Rdout nonempty Borel sets, and denote by (X,Y ) ∈ X × Y
a pair of random vectors with (unknown) joint probability distribution p = p(x, y). Let
(X1, Y1), . . . , (XN , YN ) be i.i.d. copies of (X,Y ). A dataset D := {(xi, yi) : i = 1, . . . , N}
is understood as a realization of the N random pairs considered before. A statistical model on
the sample space X × Y is a collection

MΘ(X ,Y) := {pϑ : ϑ ∈ Θ} ,
where pϑ = pϑ(x, y) is a joint probability distribution on X × Y for each ϑ ∈ Θ, and Θ ⊆ Rd
is a bounded domain called parameter space. In order to stress the functional relation between
the input x and the output y, it is customary to assume pϑ of the form:

pϑ(x, y) = pϑ(y|x) p(x) ,

where pϑ(y|x) is a parametric conditional probability, and p(x) denotes the marginal of the
unknown distribution p(x, y) on X (with a slight abuse of notation). We will also assume that
the parameter space Θ is equipped with a probability measure, that we do not formally specify
(just to fix the ideas, one could take the uniform probability, i.e., the normalized Lebesgue
measure restricted to Θ). Consequently, we will denote as Eϑ the expectation with respect to
this measure.
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Under the hypothesis that the log-likelihood of the model is differentiable with respect to
ϑ for p-a.e. x (in principle we should also require summability with respect to p, and could
consider a weak L2-derivative with respect to ϑ) we define the Fisher information matrix as:

(2) F (ϑ) := E(x,y)∼pϑ [(∇ϑ log pϑ(x, y))⊗ (∇ϑ log pϑ(x, y))] ,

where by a⊗ b we mean a · bT (with the convention that a and b are column vectors). In other
words, the Fisher information matrix is the expectation of the orthogonal projector onto the
direction of the gradient of the log-likelihood, scaled by the squared norm of that gradient. It
is a symmetric and positive semidefinite d× d matrix. Its empirical version is:

FN (ϑ) =
1

N

N∑
i=1

(∇ϑ log pϑ(Xi, Yi)))⊗ (∇ϑ log pϑ(Xi, Yi))

for some (X1, Y1), . . . , (XN , YN )
i.i.d.∼ pϑ.

For each ϑ ∈ Θ, we define the pointed Fisher norm of a (tangent) vector v ∈ Rd as

‖v‖ϑ :=
√
〈F (ϑ)v, v〉 .

If F (ϑ) is smooth and positive-definite, then 〈F (ϑ)u, v〉 defines a Riemannian metric on the
parameter space Θ, that from now on will be called Fisher metric (we shall adopt the same
terminology also when the metric is degenerate). In general, the Fisher metric can be considered
as the pull-back of a (possibly degenerate) Riemannian metric on MΘ(X ,Y) [LPRS19].

We conveniently introduce some terminology and a few definitions concerning d×d symmetric
matrices and matrix fields. We denote by Sd+(R) the set of real d × d symmetric and positive

semidefinite matrices. Given β > 0 and A ∈ Sd+(R), we define Aβ as the matrix obtained from
A by replacing all the eigenvalues of A smaller than β with β, that is, if we write

A =

d∑
i=1

λiui ⊗ ui ,

where {ui}di=1 is the spectral basis of A, then

(3) Aβ :=
d∑
i=1

max
(
λi, β

)
ui ⊗ ui .

Let A ∈ Sd+(R), then for any v ∈ Rd we set

(4) [v]A := max
i=1,...,d

√
λi|〈v, ui〉| ,

where λi and ui are, respectively, the i-th eigenvalue and the corresponding eigenvector of A.
We say that a matrix field A : Θ→ Sd+(R) is L-Lipschitz if it can be written as

A(ϑ) =
d∑
i=1

λi(ϑ)ui(ϑ)⊗ ui(ϑ) ,

where {ui}di=1 is an orthonormal frame, and ui, λi are L-Lipschitz for all i.

Some further terminology must be recalled before discussing the generalization bounds. Given
a loss function L, i.e., a continuous function L : [0,+∞) × [0,+∞) → [0,+∞) such that
L(a, b) = 0 if and only if a = b, we define the population risk

R(ϑ) := E(x,y)∼p[L(pϑ(y|x), p(y|x))],

and the empirical risk

Rn(ϑ) :=
1

n

n∑
i=1

L(pϑ(Yi|Xi), p(Yi|Xi)) ,
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where (Xi, Yi)
i.i.d.∼ p, i = 1, . . . , n. Then, the generalization error is defined as

(5) ‖R−Rn‖∞ = sup
ϑ∈Θ

|R(ϑ)−Rn(ϑ)| .

3. The two-scale effective dimension

Here we consider a notion of complexity for a statistical model MΘ, that depends on the
properties of the Fisher metric on the parameter space. Given 0 < ε < 1 and 0 ≤ ζ < 1, we
define the two-scale effective dimension (or simply 2sED) as

(6) dζ(ε) = ζd+ (1− ζ)
logEϑ

[
det
(
Id + εζ−1F̂ (ϑ)

1
2

)]
| log(εζ−1)|

,

where

F̂ (ϑ) :=


d

Eϑ[TrF (ϑ)]F (ϑ) if Eϑ[TrF (ϑ)] > 0

0 otherwise

is the normalized Fisher information matrix, so that whenever the statistical model is not trivial
(i.e. not constant with respect to ϑ) the expectation of the trace of F̂ satisfies

Eϑ[Tr F̂ (ϑ)] = d .

Note that dζ(ε) is the convex combination of the dimension d of the parameter space with a
slight variant of the effective dimension studied in [ASZ+21], which is obtained in the special
case ζ = 0.

Remark 3.1. The effective dimension dζ(ε) can be shown to converge to ζd + (1 − ζ)r̂ as

ε → 0, where r̂ := maxϑ∈Θ rank(F̂ (ϑ)), see Proposition A.1. The proof follows the strategy
of [ASZ+21, Remark 1], and is presented in Appendix A for completeness.

Example 3.2 (1D Gaussians with fixed variance σ2). Let us consider the statistical model

MΘ :=

{
pϑ(y|x) =

1√
2πσ2

e−
(y−fϑ(x))2

2σ2 : ϑ = [0, 1]

}
,

where fϑ : R→ R is a given parametric function. Let p(x, y) = p(y|x)p(x) be an unknown joint
probability distribution. Since

∂ϑ log pϑ(y|x) =
(y − fϑ(x))

σ2
∂ϑfϑ(x) ,

one obtains

F (ϑ) = E(x,y)∼pϑ

[(
∂ϑ log pϑ(y|x)

)2]
= Ex∼p

[
(∂ϑfϑ(x))2 Ey∼pϑ(·|x)

[
(y − fϑ(x))2

σ4

]]
=

1

σ2
Ex∼p

[
(∂ϑfϑ(x))2

]
for all ϑ ∈ Θ. The normalized Fisher information matrix is then:

F̂ (ϑ) =
1

Eϑ
[
Ex∼p

[
(∂ϑfϑ(x))2

]]Ex∼p [(∂ϑfϑ(x))2
]
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Hence we get

dζ(ε) = ζ + (1− ζ)

log Eϑ

(
1 + ε−1

√
Ex∼p[(∂ϑfϑ(x))2]√

Eϑ[Ex∼p[(∂ϑfϑ(x))2]]

)
| log ε|

= ζ + (1− ζ)

log

(
1 + ε−1

Eϑ
[√

Ex∼p[(∂ϑfϑ(x))2]
]

√
Eϑ[Ex∼p[(∂ϑfϑ(x))2]]

)
| log ε|

.

Note that by Jensen’s inequality we obtain

(7) dζ(ε) ≤ ζ + (1− ζ)
log
(
1 + ε−1

)
| log ε|

→ 1 as ε→ 0 .

Let us consider now the simpler case of a linear model fϑ(x) = ϑx. In this case we have

F̂ (ϑ) =
1

Eϑ
[
Ex∼p(x) [x2]

]Ex∼p(x)

[
x2
]

= 1

for all ϑ ∈ Θ. Therefore, the 2sED of the one-dimensional linear model is

dζ(ε) = ζ + (1− ζ)
log(1 + ε−1)

| log ε|
= 1 + (1− ζ)

log(1 + ε)

| log ε|
,

hence it saturates the upper bound (7) and converges to 1 as ε→ 0, in accordance with Remark
3.1. Therefore, when d = 1, linear models reach the highest possible effective dimension.

4. Generalization bounds

It is known that the Fisher information of a statistical model degenerates asymptotically
with the number of parameters [KAA19]. This suggests that, in the case of a large (over-
parametrized) model, like a deep neural network with high-dimensional layers, the corresponding
Fisher information matrix F (ϑ) should have a lot of small (or possibly zero) eigenvalues. For
this reason, in Theorem 4.1 below we will not require the Lipschitz regularity of log(F (ϑ)),
as done in [ASZ+21, Theorem 1], because this assumption would imply uniform positive lower

bounds on the eigenvalue of F (ϑ). Without loss of generality, we directly assume F = F̂ and
Θ = [0, 1]d, as this can be enforced by a suitable scaling of the model.

We list below a set of hypotheses, that will be required in the generalization bounds:

(i) the map ϑ 7→ pϑ(y|x) is of class C1,1 uniformly in (x, y);
(ii) there exist two constants 0 < α1 ≤ α2 such that

α1 ≤ p(x, y), pϑ(x, y) ≤ α2

for all x ∈ X , y ∈ Y, ϑ ∈ Θ;
(iii) the Fisher matrix F (ϑ) is L-Lipschitz and its eigenvalues are smaller than µ (for some

fixed µ > 0);
(iv) the loss function L is bounded by 2b and is Λ-Lipschitz, for some b,Λ > 0;
(v) the meso-scale parameter ζ satisfies ζ ∈ [2

3 , 1).

Some comments about the previous properties are in order. First, property (i) is a mild
regularity assumption on the model. Property (ii) prevents degeneration of both probability
densities p(x, y) and pϑ(x, y). The L-Lipschitz property (iii) corresponds to the existence of
a L-Lipschitz spectral frame, such that the corresponding eigenvalues are also L-Lipschitz as
functions of ϑ (this assumption is crucial to compare the pointed Fisher norm computed in
different ϑ ∈ Θ). Lipschitz regularity and boundedness of the loss function L (property (iv))
are standard assumptions (see, e.g., [LG23]). Finally, property (v) is structurally needed in the
proof of the generalization bound (Theorem 4.1).
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Theorem 4.1. Let us assume (i)–(v). Then, there exist explicit constants C,H,K, n0 > 02

such that for any γ ∈ (0, 1], n ≥ n0, and εn =
(

logn
γn

)3/8
, we obtain

(8) IP

(
sup
ϑ∈Θ
|R(ϑ)−Rn(ϑ)| ≥ Cεn

)
≤ Hε−dζ(εn)

n n
−K
γ .

The proof of Theorem 4.1 is given in Appendix B.

Remark 4.2. The above result implies the existence of γ0 > 0 such that, for 0 < γ < γ0, the
right hand side of (8) vanishes as n→∞. The upper bound γ0 is explicit and depends only on
the dimension d and on the properties of the model, see (31). By choosing γ as above, the right-
hand side of (8) gives an explicit upper bound of the generalization error, that is non-vacuous
also for finite n (even though this can be granted only in the under-parametrized regime, i.e. for
n large enough).

5. The Effective Dimension of a Markovian Model

Markovian models are a family of probabilistic models characterized by a sequential, feed-
forward-type structure, see the Markovian property stated below.

Let us consider an integer L ≥ 2, a probability space (Ω,F ,P), and a random vector Xj :
Ω→ Xj for j = 0, . . . , L. Given a parameter space Θ = Θ1 × · · · ×ΘL, a parametric statistical
modelMΘ(X0, . . . ,XL) satisfies the Markovian property if and only if for each pϑ(x0, . . . , xL) ∈
MΘ(X0, . . . ,XL) and for each ϑ = (ϑ1, . . . , ϑL) ∈ Θ = Θ1 × · · · ×ΘL we have:

(9) pϑ(x0, . . . , xL) = p(x0)pϑ1(x1|x0) · · · pϑL(xL|xL−1)

where ϑ1, . . . , ϑL are the parameters associated to the model’s distribution of X1, . . . , XL re-
spectively. Many well-known and commonly used neural network architectures, such as feed-
forward neural networks, can be interpreted as Markovian models with concentrated, Dirac-type
probability distributions. A specific evaluation of the effective dimension of these models seems
therefore particularly interesting. Exploiting the Markovian property, for j = 1, . . . , L we define

F (ϑj |xj−1) :=

ˆ
Xj
∇ϑj log pϑj (xj |xj−1)⊗∇ϑj log pϑj (xj |xj−1) pϑj (dxj |xj−1)

and

Fj := Fj(ϑ1, . . . , ϑj) := Ex0Ex1|x0
· · ·Exj−1|xj−2

[F (ϑj |xj−1)] ,

where by Ex0 and Exj |xj−1
we denote the (conditional) expectations with respect to p(x0) and

pϑj (xj |xj−1), respectively. Clearly Fj is a symmetric and positive semidefinite dj × dj matrix
(where dj is the dimension of Θj) and represents the j-th block of the Fisher information matrix

(10) F (ϑ) =


F1(ϑ1) 0 · · · 0

0 F2(ϑ1, ϑ2)
...

...
. . .

...
0 · · · · · · FL(ϑ1, . . . , ϑL)

 .

We recall that the two-scale effective dimension (2sED) is

dζ(ε) = ζd+
1− ζ
| log ε|

log

 
Θ1

· · ·
 

ΘL

L∏
j=1

det
(
Ij + ε−1Fj(ϑ1, . . . , ϑj)

1
2

)
dϑ1 · · · dϑm ,(11)

where Ij denotes the dj × dj identity matrix. Since Fj depends on all the parameters of the
previous blocks, it is not possible to directly factorize the multiple integral in (11). Nevertheless,
one obtains a more easily computable lower bound of dζ(ε), called lower 2sED, by a single

2the constants can be computed/estimated in terms of the assumptions.
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application of Jensen’s inequality as hereafter described. Let dmζ (ε) be the 2sED associated
with the composition of the first m layers, m ≥ 2. Then:

dmζ (ε)− dm−1
ζ (ε)

=
1− ζ
| log ε|

log

(
1

Φm(Θ̂m)

ˆ
Θ̂m

 
Θm

det(Im + ε−1Fm(ϑ1, . . . , ϑm)
1
2 )dϑm Φm(dϑ1, . . . , dϑm−1)

)

≥ 1− ζ
| log ε|

 
Θ̂m

 
Θm

log det(Im + ε−1Fm(ϑ1, . . . , ϑm)
1
2 )dϑmΦm(dϑ1, . . . , dϑm−1) ,

where we have set

Θ̂m := Θ1 × · · · ×Θm−1

Φm(dϑ1, . . . , dϑm−1) :=
1∏m−1

j=1 |Θj |

m−1∏
j=1

det
(
Ij + ε−1Fj(ϑ1, . . . , ϑj)

1
2

)
dϑ1 · · · dϑm−1 .

Now, a lower bound of dmζ (ε) can be iteratively defined for m = 1, . . . , L as follows:

d1
ζ(ε) = ζd+

1− ζ
| log ε|

log

 
Θ1

det(I1 + ε−1F1(ϑ1)
1
2 ) dϑ1

d2
ζ(ε) = d1

ζ(ε) +
1− ζ
| log ε|

 
Θ̂2

 
Θ2

log det(I2 + ε−1F2(ϑ1, ϑ2)
1
2 ) dϑ2 Φ2(dϑ1)

...

dmζ (ε) = dm−1
ζ (ε)+

1− ζ
| log ε|

 
Θ̂m

 
Θm

log det(Im+ε−1Fm(ϑ1, . . . , ϑm)
1
2 ) dϑm Φm(dϑ1, . . . , dϑm−1) .

(12)

From now on we set dζ = dLζ and call it the lower effective dimension of the Markovian model
MΘ.

6. Experiments

In this section, we present experimental evidence that the post-training performance of given
parametric models is related both with 2sED (6) and the lower 2sED (12). We compute dζ
and dζ of different feed-forward neural networks (FNN) such as convolutional neural networks
(CNN) and multi-layer perceptron (MLP). The feed-forward neural network choice is justified
by their architecture characterised by a Markovian dependency structure. Indeed, the flow of
information in FNN is unidirectional from input to output, making them representable with
a finite acyclic graph. We evaluate dζ and dζ on real-world datasets, including Covertype
dataset [Bla98], MNIST dataset [Den12], and CIFAR10 [KNH].

To simplify notation and enhance readability, we denote with ”MLP N0-N1-. . . -Nn” a MLP
with n linear layers , each with a width of Ni for i = 0, . . . , N , followed by ReLU activation
functions on all layers except the final layer n. If we denote with W i ∈ RNi×Ni−1 the parameters
of the i-th layer, we can describe ”MLP N0-N1-. . . -Nn” through n blocks of operations defined
as Oi(·) = ReLU(W i·) for i = 1, . . . , n. Similarly, ”CNN N0-N1-. . . -Nn1 |L1-. . . -Ln2” refers
to a convolutional neural network with n1 convolutional blocks each one of kernel size Ni for
i = 1, . . . , N1 followed by a flattening layer and n2 MLP blocks of width Li for i = 1, . . . , n2.
Within each convolutional block, the operations of convolution, batch normalization, ReLU
activation, and max pooling are performed sequentially. Moreover, the flattening operation is
executed by applying a common convolutional kernel to all the channels of the last convolutional
layer. Hence, given the input A ∈ RNc×k×k the flattening operation FlatK : RNc×k×k → RNc is
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defined as follows:

[FlatK(A)]l := Al:: ? K =

k∑
i=1

k∑
j=1

Al,i,jKi,j l = 1, . . . , Nc ,

where Al:: denotes the Rk×k obtained by fixing the first dimension at index l and K is a k × k
convolutional kernel which is a parametric matrix in applications. This approach effectively
reduce the number of parameters allowing us to compute the effective dimension in reasonable
time.

In applications, the core architectures of many deep learning models is deterministic, and the
stochasticity is usually introduced in the training pipeline rather than in the model itself. This
makes deep learning models, like MLPs and CNNs, incompatible with our setting. Therefore,
we approximate deterministic feed-forward neural networks with stochastic variants, where the
output of each block is Gaussian with mean the current block deterministic output and a small
fixed variance σ2. In other words, if N is the number of blocks, the output of the i-th block Oσi
is given by

Oσi = Oi + ν ∼ N (Oi, σ
2I) ,

where Oi is the deterministic output of the i-th block, ν ∼ N (0, σ2).
For all the subsequent experiments, we will specifically focus on the computation of 2sED

and lower-2sED for ζ = 0 and considering the empirical Fisher information matrix F̂N . To
empirically validate the lower 2sED, we compute d0 and d0 for different stochastic perturbations
of feed-forward neural networks, also varying the covering radius ε. We keep constant both the
100 samples used to estimate F̂N and the 100 parametrizations employed for estimating the
integrals appearing in (6) and (12). The results are visualized in Figure 1.
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Figure 1. In this figures the difference between 2sED and lower 2sED cannot be ap-
preciated, which means that the second is a tight lower bound of the first. In plot
(a), the lower 2sED and 2sED of MLP 54-16-7 using 100 Covertype samples and 100
parametrizations. Plot (b) shows the lower 2sED and the 2sED of CNN 7-5|10-50-34-10
using 100 MNIST samples and 100 parametrizations.

Notably, the lower bound is sharp in both the MLP and the CNN case suggesting the conclu-
sions regarding model complexity obtained using dζ(ε) are equivalent to those obtained when
considering dζ(ε) for all covering radius ε. It is also worth to notice that lower 2sED exhibits
a sequential form, reducing the computational demands when investigating how the model’s
complexity changes by modifying only its final components.

We study now the impact of variance σ2 on 2sED and lower 2sED. We vary the values of σ2

while computing the dζ and dζ for different models on Covertype and MNIST dataset. As before,
we fix the data and the parametrizations used to estimate the integrals to avoid discrepancies
stemming from these estimations. The results in Figure 3 show that the impact of σ2 on dζ and
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dζ is negligible. This observation ensures the meaningfulness of 2sED, and lower 2sED, when
considering real deep learning models as the limit of our stochastic version with σ2 → 0.

Monte Carlo integration is crucial in the estimation of both the Fisher information matrix
and the integral within Θ appearing in (6). To ensure the reliability of our results, we conduct
a robustness analysis of the lower 2sED with respect to variations in the number of samples
and parameterizations employed for integrals estimation. In particular, the 2sED is computed
for three different models on Covertype, MNIST and Cifar10 dataset. Figure 4 confirms the
stability of the lower 2sED plots with respect to the number of points used in the Monte Carlo
approximation. Indeed, even if the value of the lower 2sED vary together with the number of
estimation points, the conclusions remain consistent.

Finally, we test the relationship between the lower 2sED and the loss minimization. We
expect that models with higher values of the lower 2sED can achieve higher accuracy after
training. Furthermore, it is crucial to gain a deeper understanding of the role played by the
covering radius, denoted as ε, in the 2sED definition. We compute the lower 2sED for three
different models with similar dimension on CIFAR10 and Covertype dataset. The dimension of
these models is reported in Table 1.

Model Number of Parameters

MLP 54-16-7 976
MLP 54-13-11-9-7 1007
MLP 54-10-2-10-25-7 1005
CNN 7-5|10-50-34-10 4493
CNN 3-5-3-6|10-50-34-10 10034
CNN 3-6-5-3|10-50-34-10 10041

Table 1. Number of model’s parameters

MLP 54-10-2-10-25-7 is characterized by a bottleneck structure in the middle of its architec-
ture. A loss of information due to this bottleneck is therefore expected as data are mapped
into a significantly lower dimensional space. Consequently, the expressiveness of this model is
expected to be lower compared to the other two models, even though it is bigger than MLP
54-16-7 in terms of number of parameters. In Figure 2, this expected behaviour is effectively
captured by the lower 2sE, as indicated by the lower position of the red curve in comparison to
the other two curves. Furthermore the position of the curves change varying the covering radius
ε. Indeed, the blue curve remains above the other two curves up to a certain scale, suggesting
that the MLP 54-16-7 model exhibits greater expressiveness within this range of ε. Conversely,
for smaller values of ε, MLP 54-13-11-9-7 appears to be more expressive. This behaviour is
empirically validated by the experiments. In plot (c), we observe the training loss curve for the
three models when trained with only 10000 data. In this scenario, the blue model achieves a
lower training loss minimum compared to the other two models, and the shapes of these curves
mirror the lower 2dED plots for a small ε.
Increasing the number of training data to 500000, MLP 54-13-11-9-7 is the one achieving the
lower training loss. The empirical correlation between training losses and lower 2sED under-
scores the capacity of 2sED as a reliable measure for describing the training capabilities of
neural networks. We conducted additional experiments, manipulating the number of training
data points. The outcomes align consistently with the previously described results. This fur-
ther confirms its effectiveness as a capacity metric. Other experiments in this direction are
performed on the CIFAR10 dataset and the results are reported in Figure 2. We also conducted
experiments on MNIST dataset with varying batch sizes, as illustrated in Figure 5 providing
additional empirical evidence that supports our findings.
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Figure 2. This pictures highlight the relation between the lower 2sED (Figure (a))
and the training loss curves of three MLPS (Figure (c) and Figure (d)). In particular,
it also shows that we should consider covering radius ε based on the number of training
data as suggested by Theorem 4.1. The same experiment is performed for two different
CNNs (Figure (b), Figure (e), Figure (f)).
(a) Estimated lower 2sED of MLPs using 100 Covertype samples and 100 parametriza-
tions; (b) Estimated lower 2sED of CNNs using 100 CIFAR10 samples and 100
parametrizations; (c) Training loss plots of MLPs on 10000 Covertype samples using
Adam with learning rate 1e−3 and a batch size 64 (d) Training loss plots of CNNs on
CIFAR10 with Adam optimizer with learning rate 1e−3 and a batch size 512; e Training
loss plot of MLPs on 100000 Covertype samples using same optimization algorithm as
(c);(f) Training loss plots of CNNs on augmented CIFAR10 (double the original size)
with optimization strategy as in (e);
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Appendix A. Asymptotic property of dζ(ε)

In this section, we prove the following result.

Proposition A.1. Let r̂ denote the maximum rank of the Fisher matrix F̂ (ϑ) and let µ > 0

be an upper bound for all the eigenvalues of F̂ (ϑ), for all ϑ ∈ Θ. Then, for all ζ ∈ [0, 1) and
0 < ε < 1 we have

(13) dζ(ε) ≤ ζd+ r̂

(
1− ζ +

log(1 + µ1/2)

| log ε|

)
and, moreover,

lim
ε→0

dζ(ε) = ζd+ (1− ζ)r̂ .

Proof. Let us fix ζ, ε as above. Denoting by rϑ the rank of F̂ (ϑ), we have:

dζ(ε) = ζd+
log

ffl
Θ det(Idd + εζ−1F̂ 1/2(ϑ)) dϑ

| log ε|

= ζd+
log

ffl
Θ

∏rϑ
i=1(1 + εζ−1λ

1/2
i (ϑ)) dϑ

| log ε|

≤ ζd+ log

ffl
Θ ε

(ζ−1)rϑ
∏rϑ
i=1(1 + λ

1/2
i (ϑ)) dϑ

| log ε|

≤ ζd+
log ε(ζ−1)r̂

| log ε|
+

log
ffl

Θ

∏rϑ
i=1(1 + λ

1/2
i (ϑ)) dϑ

| log ε|
,

where λi(ϑ) are the nonzero eigenvalues of F̂ (ϑ). Notice that log
ffl

Θ

∏rϑ
i=1(1 + λ

1/2
i (ϑ)) dϑ is

finite. Indeed, 0 ≤ λi(ϑ) ≤ µ by assumption. Then it holds

1 ≤
rϑ∏
i=1

(1 + λ
1/2
i (ϑ)) ≤ (1 + µ1/2)r̂ .

This implies that

1 ≤
 

Θ

rϑ∏
i=1

(1 + λ
1/2
i (ϑ)) ≤ (1 + µ1/2)r̂

and therefore (13). We thus conclude that

(14) lim
ε→0

dζ(ε) ≤ ζd+ (1− ζ)r̂ .

To see the other inequality, let us consider A := {ϑ ∈ Θ : rϑ = r̂}. Notice that A ⊂ Θ and
hence |A| <∞. Also, by continuity of the Fisher matrix, the set A has positive measure. Then,
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we have

dζ(ε) = ζd+
log

ffl
Θ det(Idd + εζ−1F̂

1
2 (ϑ)) dϑ

| log ε|

≥ ζd+
log

ffl
A det(Idd + εζ−1F̂

1
2 (ϑ)) dϑ

| log ε|

= ζd+
log

ffl
A det(Iddϑ + εζ−1F̂

1
2

0 (ϑ)) dϑ

| log ε|
,

where dϑ is the number of non-zero eigenvalues of F̂ (ϑ) and F̂0(ϑ) is the diagonal dϑ × dϑ
containing only the dϑ non-zero eigenvalues of F̂ (ϑ) for all ϑ ∈ Θ. This yields

dζ(ε) ≥ ζd+
log

ffl
A det(Idd) + det(εζ−1F̂

1
2

0 (ϑ)) dϑ

| log ε|

= ζd+
log |A|
| log ε|

+
log

ffl
A
∏r̂
i=1 ε

ζ−1λ
1
2
i (ϑ) dϑ

| log ε|

= ζd+
log |A|
| log ε|

+
log

ffl
A
∏r̂
i=1 ε

ζ−1λ
1
2
i (ϑ) dϑ

| log ε|

= ζd+ r̂(ζ − 1)
log ε

| log ε|
+

log
ffl
A λ

1
2
i (ϑ) dϑ

| log ε|

= ζd+ r̂(1− ζ) +
log

ffl
A λ

1
2
i (ϑ) dϑ

| log ε|
.

Notice now that since λi(ϑ) 6= 0 for all ϑ ∈ Θ, it holds that log
ffl
A λ

1
2
i (ϑ) dϑ <∞ and so:

lim
ε→0

log
ffl
A λ

1
2
i (ϑ) dϑ

| log ε|
= 0 .

Therefore

(15) lim
ε→0

dζ(ε) ≥ ζd+ r̂(1− ζ) .

Combining (14) and (15), we conclude

lim
ε→0

dζ(ε) = ζd+ r̂(1− ζ) .

�

Appendix B. Proof of the generalization bound

In this section we prove Theorem 4.1. We start with a preliminary lemma (see Section 2 for
the notation).

Lemma B.1. Let A : Θ→ Sd+(R) be a Lipschitz tensor field. Then for all β > 0, v ∈ Rd, and
ϑ1, ϑ2 ∈ Θ, one has

(16)
∣∣∣[v]2Aβ(ϑ1) − [v]2Aβ(ϑ2)

∣∣∣ ≤ ωβ(|ϑ1 − ϑ2|)[v]2Aβ(ϑ1) ,

where

(17) ωβ(t) =
(2µ+ 1)L

β
t .
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Proof. Set

G(ϑ) := [v]2Aβ(ϑ) and λi,β(ϑ) := max(λi(ϑ), β) .

For all ϑ1, ϑ2 ∈ Θ, we have

(18) |λi,β(ϑ1)− λi,β(ϑ2)| ≤ |λi(ϑ1)− λi(ϑ2)| ,

hence

|G(ϑ1)−G(ϑ2)| =
∣∣∣∣max
i=1...d

λi,β(ϑ1)〈v, ui(ϑ1)〉2 − max
i=1...d

λi,β(ϑ2)〈v, ui(ϑ2)〉2
∣∣∣∣

≤ max
i=1...d

∣∣λi,β(ϑ1)〈v, ui(ϑ1)〉2 − λi,β(ϑ2)〈v, ui(ϑ2)〉2
∣∣

= max
i=1...d

∣∣(λi,β(ϑ1)− λi,β(ϑ2)
)
〈v, ui(ϑ1)〉2

+λi,β(ϑ2)〈v, ui(ϑ1) + ui(ϑ2)〉〈v, ui(ϑ1)− ui(ϑ2)〉|
≤ |v|2 max

i=1...d

(
|λi,β(ϑ1)− λi,β(ϑ2)| |ui(ϑ1)|2

+λi,β(ϑ2)|ui(ϑ1) + ui(ϑ2)| |ui(ϑ1)− ui(ϑ2)|)
≤ |v|2 max

i=1...d

(
|λi(ϑ1)− λi(ϑ2)| |ui(ϑ1)|2 + 2λi,β(ϑ2)|ui(ϑ1)− ui(ϑ2)|

)
=

(2µ+ 1)L|ϑ1 − ϑ2|
β

β|v|2

≤ ωβ(|ϑ1 − ϑ2|)[v]2Aβ(ϑ1) ,

and the proof is concluded. �

The Fisher box centered in ϑ0 ∈ Θ of radius ε > 0 is defined as:

(19) Boxε(ϑ0) :=
{
ϑ ∈ Θ : [ϑ− ϑ0]F (ϑ0) < ε

}
.

Lemma B.2. Let 0 < ε < 1, ζ ∈ [2
3 , 1), Θ = [0, 1]d, and assume that the Fisher matrix F (ϑ)

is L-Lipschitz and that λi(ϑ) ≤ µ for all i = 1, . . . , d and for all ϑ ∈ Θ. Then, F admits an

L-Lipschitz extension to the whole Rd, and Θ can be covered by Cd ε
−dζ(ε) Fisher boxes of radius

ε, where dζ(ε) is as in (6), and Cd is a dimensional constant.

Proof. The fact that any L-Lipschitz mapping from a subset of Rd into Rm admits an L-
Lipschitz extension to the whole Rd is classically known as Kirszbraun’s Theorem. Consider now
a partition Q of Θ made by closed cubes with mutually disjoint interior and side δ = δ(Q) = εζ ,
and let Q be one of these cubes. Set

(20) β = ε2/δ2 = ε2−2ζ ,

and fix a generic ϑQ ∈ Q, then define the β-Fisher box of radius ε and center ϑQ as

Boxβ,ε(ϑQ) =
{
ϑ ∈ Θ : [ϑ− ϑQ]Fβ(ϑQ) < ε

}
.

Let SQ be the Euclidean ball circumscribed to Q. Consider a partition of Rd by means of
translated copies of Boxβ,ε(ϑQ), then the minimum number of such boxes that have a nonempty

intersection with Q is bounded from above by the number k̃ = k̃(Q, β, ε) of boxes that have a
nonempty intersection with SQ. The volume of each copy of Boxβ,ε(ϑQ) is given by

|Boxβ,ε(ϑQ)| =
d∏
i=1

2ε√
λi,β(ϑQ)

.

At the same time, the union of the covering boxes is contained in SQ + B2ε
√
d/
√
β, i.e., in a

Euclidean ball BR with

(21) R =
√
d

(
δ

2
+ 2

ε√
β

)
=

5

2

√
dδ ,
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hence its volume is bounded from above by |BR| = αdR
d, where αd = πd/2/Γ(d/2 + 1) is the

volume of an Euclidean ball of radius 1 in Rd, and Γ(·) is Euler’s Gamma function. Therefore

we can estimate k̃ from above by the ratio between the upper bound on the volume of the union
of the boxes and the volume of a single box. We obtain

k̃ ≤ |BR|
|Boxβ,ε(ϑQ)|

=
αd

(√
d(δ/2 + 2ε/

√
β)
)d

∏d
i=1

2ε√
λi,β(ϑQ)

=
αd

(
5/2
√
dδ
)d

∏d
i=1

2ε√
λi,β(ϑQ)

≤ cd
d∏
i=1


√
λi,β(ϑQ)

β

 = cd

d∏
i=1

⌈√
λi(ϑQ)

β

⌉
,

where we have used the special rounding function

dxe = min{k ∈ N : k ≥ max(x, 1)}
(note that dxe ≥ 1 for all x), and where cd = αd(5/4)ddd/2. Note that, by Stirling’s formula

Γ(x+1) ∼
√

2πx(x/e)x valid as x→ +∞, we deduce that cd ≤ 4(25/8πe)d/2 for d large enough.
Now we notice that for all ϑ ∈ Sε the translated copy of Bβ,ε(ϑQ) centered in ϑ is contained

in Bβ,ε′(ϑ), with

ε′ = ε

√
1 + ωβ(5

√
dδ) .

Indeed, let ϑ be the center of the translated copy B̃ox of Boxβ,ε(ϑQ), then for each ξ ∈ SQ∩ B̃ox
one has by definition [ξ−ϑ]Fβ(ϑQ) < ε. Consequently, by Lemma B.1 and by the fact that both
ϑ and ϑQ are contained in BR, one gets

[ξ − ϑ]Fβ(ϑ) ≤ [ξ − ϑ]Fβ(ϑQ)

√
1 + ωβ(|ϑ− ϑQ|)

≤ ε
√

1 + ωβ(|ϑ− ϑQ|)

≤ ε
√

1 + ωβ(5
√
dδ) .

The previous estimate shows that there exists a covering of Q by means of at most kQ boxes of
the form Boxj = Boxβ,ε′(ϑj), with j = 1, . . . , kQ, with

kQ ≤ k̃

≤ cd
d∏
i=1

⌈√
δ2(1 + ωβ(5

√
dδ))λi(ϑQ)/(ε′)2

⌉

≤ cd(1 + ωβ(5
√
dδ))

d
2 |Q|

d∏
i=1

(
ε−1
√
λi(ϑQ) + δ−1

)
,

and where we have used that dxye ≤ xy+ 1 for all x, y ≥ 0. If now we assume ζ ≥ 2/3, we have

ωβ(5
√
dδ) = 5

√
d(2µ+ 1)Lε3ζ−2 ≤ 5

√
d(2µ+ 1)L ,

therefore we conclude

kQ ≤ Cd ε−ζd|Q|
d∏
i=1

(
1 + εζ−1

√
λi(ϑQ)

)
= Cd ε

−ζd|Q| det
(
I + εζ−1F (ϑQ)

1
2

)
,

where Cd = 5
√
dcd(2µ+ 1)L. Finally, if we denote by k(ε) the cardinality of the least number

of Fisher boxes of size ε that are needed to cover Θ, by summing over Q and choosing ϑQ as a

minimum point for det(I + εζ−1F (ϑ)
1
2 ) when ϑ ∈ Q, we obtain

k(ε) ≤ Cd ε−ζd
ˆ

Θ
det
(
I + εζ−1F (ϑ)

1
2
)
dϑ = Cd ε

−dζ(ε) ,

as wanted. �
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The following result exploits the link between the generalization bound and the covering
bound proved in Lemma B.2.

Lemma B.3. Under the assumption of Theorem 4.1, there exist ε0, C,K > 0 such that for all
ε ∈ (0, ε0) we have

(22) IP

{
sup
ϑ∈Θ
|R(ϑ)−Rn(ϑ)| ≥ Cε

}
≤ 4 k(ε) exp

(
−Knε8/3

)
,

where k(ε) is a bound on the cardinality of a covering by βε-Fisher boxes of radius ε, with
βε = ε2−2ζ (see Lemma B.2).

Proof. As a first step, we need to “discretize” the estimate of the left-hand side of (22) at the
micro-scale ε, using the β-Fisher box covering from Lemma B.2, with β = ε2−2ζ . Recalling that
Sn(ϑ) = R(ϑ)−Rn(ϑ), for all ϑ1, ϑ2 ∈ Θ such that |ϑ1 − ϑ2| < 2R (where R is defined in (21))
we have

(23) |Sn(ϑ1)− Sn(ϑ2)| ≤ |R(ϑ1)−R(ϑ2)|+ |Rn(ϑ1)−Rn(ϑ2)| .

Now we estimate each term in the right-hand side of (23). We set ϑ(t) = tϑ1 + (1 − t)ϑ2 for
t ∈ [0, 1], and we estimate the first term:

|R(ϑ1)−R(ϑ2)| ≤
ˆ
X×Y

|L(pϑ1(y|x))− L(pϑ2(y|x))| p(dx, dy)

≤
ˆ
X×Y

∣∣L(pϑ(0)(y|x))− L(pϑ(1)(y|x))
∣∣ p(dx, dy)

=

ˆ
X×Y

∣∣∣∣ˆ 1

0
∂1L(pϑ(t)(y|x), p(y|x))

〈
∇ϑpϑ(t)(y|x), ϑ2 − ϑ1

〉
dt

∣∣∣∣ p(dx, dy)

≤
ˆ 1

0

ˆ
X×Y

∣∣∂1L(pϑ(t)(y|x), p(y|x))
∣∣ ∣∣∣〈∇ϑpϑ(t)(y|x), ϑ2 − ϑ1

〉∣∣∣ p(dx, dy)dt

≤ Λ

ˆ 1

0

ˆ
X×Y

∣∣∣〈∇ϑpϑ(t)(x, y), ϑ2 − ϑ1

〉∣∣∣ p(dx, dy) dt

= Λ

ˆ 1

0

ˆ
X×Y

∣∣∣〈∇ϑ log pϑ(t)(x, y), ϑ2 − ϑ1

〉∣∣∣ pϑ(t)(x, y) p(dx, dy) dt

= Λ

ˆ 1

0

ˆ
X×Y

∣∣∣〈∇ϑ log pϑ(t)(x, y), ϑ2 − ϑ1

〉∣∣∣ p(x, y) pϑ(t)(dx, dy) dt ,

where we have used the fundamental theorem of calculus, Fubini’s theorem, the Λ-Lipschitzianity
of L, and the fact that ∇ϑ log pϑ(y|x) = ∇ϑ log pϑ(x, y). Then, by Cauchy-Schwarz inequality,
we obtain for all β > 0:

|R(ϑ1)−R(ϑ2)| ≤ Λ

ˆ 1

0
Epϑ(t)

[p2(x, y)]1/2 ·
〈
F (ϑ(t))(ϑ2 − ϑ1), ϑ2 − ϑ1

〉1/2
dt

≤ Λ

ˆ 1

0
Epϑ(t)

[p2(x, y)]1/2 ·
〈
Fβ(ϑ(t))(ϑ2 − ϑ1), ϑ2 − ϑ1

〉1/2
dt

≤ ΛC1

ˆ 1

0

〈
Fβ(ϑ(t))(ϑ2 − ϑ1), ϑ2 − ϑ1

〉1/2
dt ,

for some constant C1 > 0 depending on α1, α2, thanks to hypothesis (ii). Now, Lemma B.1
implies that

(24)
〈
Fβ(ϑ(t))(ϑ2 − ϑ1), ϑ2 − ϑ1

〉
≤ d
(
1 + ωβ(t|ϑ2 − ϑ1|)

)
[ϑ2 − ϑ1]Fβ(ϑ1) .
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By (24) we conclude that

|R(ϑ1)−R(ϑ2)| ≤ ΛC1d

ˆ 1

0

(
1 + ωβ(t|ϑ2 − ϑ1|)

)1/2
dt [ϑ2 − ϑ1]Fβ(ϑ1)

≤ C2[ϑ2 − ϑ1]Fβ(ϑ1) ,(25)

where C2 is a constant depending only on Λ, C1 and the dimension d. Indeed, we observe that
the assumptions β = ε2−2ζ and ζ ≥ 2/3, coupled with |ϑ1 − ϑ2| ≤ 2R, imply that

(26) ωβ(t|ϑ2 − ϑ1|) ≤ 5(2µ+ 1)L
√
dε3ζ−2 ≤ 5(2µ+ 1)L

√
d .

Now we estimate the second term in the r.h.s. of (23). By a similar computation we obtain

|Rn(ϑ1)−Rn(ϑ2)| ≤ Λ

ˆ 1

0

(
1

n

n∑
i=1

〈
∇ log pϑ(t)(Xi, Yi), ϑ2 − ϑ1

〉2 pϑ(t)(Xi, Yi)

p(Xi, Yi)

)1/2

·

(
1

n

n∑
i=1

pϑ(t)(Xi, Yi)p(Xi, Yi)

)1/2

dt

≤ α2

ˆ 1

0

(
1

n

n∑
i=1

〈
∇ log pϑ(t)(Xi, Yi), ϑ2 − ϑ1

〉2 pϑ(t)(Xi, Yi)

p(Xi, Yi)

)1/2

dt .(27)

Let us set

Zi(t) :=
〈
∇ log pϑ(t)(Xi, Yi), ϑ2 − ϑ1

〉2 pϑ(t)(Xi, Yi)

p(Xi, Yi)

and

T := sup
pϑ(x, y)

p(x, y)
|∇ϑ log pϑ(x, y)|2 ,

where the supremum is computed w.r.t (x, y) ∈ X × Y and ϑ ∈ Θ. By (i) and (ii) we obtain

T ≤ B sup |∇ϑ log pϑ(x, y)|2 <∞ ,

where B = α2/α1. Thus we also get

0 ≤ Zi(t) ≤ T |ϑ2 − ϑ1|2 .

The expectation of Zi(t) is

Zi(t) = E(x,y)∼p[Zi(t)] =

ˆ 〈
∇ log pϑ(t)(x, y), ϑ2 − ϑ1

〉2 pϑ(t)(x, y)

p(x, y)
p(dx, dy)

=

ˆ 〈
∇ log pϑ(t)(x, y), ϑ2 − ϑ1

〉2
pϑ(t)(dx, dy)

=
〈
F (ϑ(t))(ϑ2 − ϑ1), ϑ2 − ϑ1

〉
hence also 1

n

∑n
i=1 Zi(t) has the same expectation, by independence of the Zi(t).

Now, from Lemma B.2 we know that Θ can be covered with k = k(ε) ≤ Cdε
−dζ(ε) Fisher

boxes Box1, . . . ,Boxk of size ε. Let now η = Cε for some C > 0 to be chosen later, and evaluate

IP

{
sup
ϑ∈Θ
|Sn(ϑ)| ≥ η

}
≤ IP


k⋃
j=1

sup
ϑ∈Boxj

|Sn(ϑ)| ≥ η

 ≤
k∑
j=1

IP

{
sup

ϑ∈Boxj

|Sn(ϑ)| ≥ η

}
.

Now for all j = 1, . . . , k we bound the probability of an event involving the computation of the
supremum of |Sn(ϑ)| over Boxj with another one involving only the pointwise evaluation of Sn
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at the center ϑj of Boxj . Indeed by (25) and (27), and with ϑ, ϑj respectively replacing ϑ2, ϑ1,
we deduce

IP

{
sup

ϑ∈Boxj

|Sn(ϑ)| ≥ η

}

≤ IP

{
|Sn(ϑj)|+ sup

ϑ∈Boxj

(
|Sn(ϑ)− Sn(ϑj)|

)
≥ η

}

≤ IP

|Sn(ϑj)|+ sup
ϑ∈Boxj

C2[ϑ− ϑj ]Fβ(ϑj) + α2

ˆ 1

0

(
1

n

n∑
i=1

Zi(t)

)1/2

dt

 ≥ η


≤ IP
{
|Sn(ϑj)| ≥

η

2

}
+ IP

{
∃ t ∈ [0, 1] :

1

n

n∑
i=1

Zi(t) ≥
η2

16α2
2

}
,

where in the last inequality we have used [ϑ− ϑj ]Fβ(ϑj) < ε = η
C and required C ≥ 4C2. Owing

to Lemma B.4 and (v), we get

(28) IP
(
|Sn(ϑj)| ≥

η

2

)
= IP

(
|Rn(ϑj)−R(ϑj)| ≥

η

2

)
≤ 2 exp

(
−nη

2

2b2

)
.

and

(29) IP

{∣∣∣∣∣ 1n
n∑
i=1

Zi(t)−
〈
F (ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉∣∣∣∣∣ ≥ ξ
}
≤ 2 exp

(
− 2nξ2

T 2|ϑ− ϑj |2

)
.

By (29) we find

IP

{
∃ t ∈ [0, 1] :

1

n

n∑
i=1

Zi(t) ≥
η2

16α2
2

}
≤ IP

{〈
F (ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
≥ η2

32α2
2

}
+ IP

{
1

n

n∑
i=1

Zi(t)−
〈
F (ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
≥ η2

32α2
2

}
≤ IP

{〈
Fβ(ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
≥ η2

32α2
2

}
+ 2 exp

(
− nη4

29 α4
2T

2|ϑ− ϑj |2

)
≤ 2 exp

(
−C4nη

4−2ζ
)
,(30)

where

C4 =
C2ζ

2

3229−2ζα4
2T

2d
19



and where the last inequality follows from the impossibility of the first event, up to a further
update of the constant C, that we shall explain hereafter. Indeed, using Lemma B.1:〈
Fβ(ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
≤
〈
Fβ(ϑj)(ϑ− ϑj), ϑ− ϑj

〉
+
〈

(Fβ(ϑ(t))− Fβ(ϑj))(ϑ− ϑj), ϑ− ϑj
〉

≤
〈
Fβ(ϑj)(ϑ− ϑj), ϑ− ϑj

〉
+
∣∣∣〈(Fβ(ϑ(t))− Fβ(ϑj))(ϑ− ϑj), ϑ− ϑj

〉∣∣∣
≤ d

(
[ϑ− ϑ]2Fβ(ϑj)

+
∣∣∣[ϑ− ϑj ]2Fβ(ϑj)

− [ϑ− ϑj ]2Fβ(ϑ)

∣∣∣)
≤ d([ϑ− ϑ]2Fβ(ϑj)

+ ωβ(t|ϑ− ϑj |)[ϑ− ϑ]2Fβ(ϑj)
)

= d(1 + ωβ(t|ϑ− ϑj |))[ϑ− ϑ]2Fβ(ϑj)

≤ d
(
1 + ωβ(t|ϑ− ϑj |)

)
ε2 ≤ d(5(2µ+ 1)L

√
dε3ζ + ε2)

≤ d2 + 5(2µ+ 1)L
√
d

2C2
η2 ,

where the last two inequalities follow from (26) and (v). Therefore, if we choose C such that

d(2 + 5(2µ+ 1)L
√
d) <

C2

16α2
2

,

we obtain 〈
Fβ(ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
<

η2

32α2
2

and thus we enforce, as claimed, the impossibility of the event〈
Fβ(ϑ(t))(ϑ− ϑj), ϑ− ϑj

〉
≥ η2

32α2
2

,

which completes the proof of (30).
Finally by (28) and (30), and observing that the second exponential represents the leading

term, we get

IP

(
sup
ϑ∈Θ
|Sn(ϑ)| ≥ η

)
≤

k∑
i=1

IP

(
sup

ϑ∈Boxi

|Sn(ϑ)| ≥ η
)

≤ 2 k(ε)

[
exp

(
−nη

2

2b2

)
+ exp

(
−C4nη

4−2ζ
)]

≤ 4 k(ε) exp
(
−C5nη

8/3
)
,

where C5 = min(C4, (2b
2)−1) (and since 4− 2ζ < 3 by our assumption on ζ). In conclusion we

obtain (22) with K = C5C
8/3. �

Proof of Theorem 4.1. We choose γ > 0, and let εn =
(

logn
γn

)3/8
and K be as in Lemma B.3.

By combining Lemma B.2 with Lemma B.3 we obtain

IP

(
sup
ϑ∈Θ
|R(ϑ)−Rn(ϑ)| ≥ Cεn

)
≤ 4 k(εn) exp

(
−K log n

γ

)
≤ Hε−dζ(εn)

n n
−K
γ ,

where C is as in Lemma B.3 and H = 4Cd. �

We can now explain Remark 4.2 by noting that, if we choose

(31) 0 < γ < γ0 :=
8K

3d(1 + log(1 + µ1/2))
,
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with K as in Lemma B.3, then the generalization bound becomes infinitesimal as n → +∞.
Indeed, by the upper estimate (13) we have

dζ(ε) ≤ ζd+ r̂

(
1− ζ +

log(1 + µ1/2)

| log(ε)|

)
≤ d(1 + log(1 + µ1/2)) =: d̄ ,

whenever ε < exp(−1), so that

(32) ε
−dζ(εn)
n n

−K
γ =

(
γn

log n

)3dζ(εn)/8

n
−K
γ ≤ γ3d̄/8n3d̄/8−K/γ .

Hence, the infinitesimality of the generalization bound as n→∞ follows from 3d̄/8−K/γ < 0,
as wanted.

We recall Hoeffding’s estimate, which is used in the proof of Lemma B.3.

Lemma B.4 (Hoeffding’s estimate). Let Zi, i = 1, . . . , n, be independent random variables,
such that Zi ∈ [a, b] almost surely. Define Vn = 1

n

∑n
i=1 Zi and take ε > 0, then

IP
(∣∣Vn − E[Vn]

∣∣ ≥ ε) ≤ 2 exp

(
− 2nε2

(b− a)2

)
.

Appendix C. Figures

The appendix contains a comprehensive collection of figures and tables that complement and
enhance the understanding of the main content presented in this document. These figures pro-
vide visual representations the results related to the experiments section discussed in the main
part of the paper.

Model Number of Parameters

CNN 7-5|10-50-34-10 4493
CNN 5-7|10-50-34-10 4753
CNN 5-4-3|10-50-34-10 4985
CNN 3-2-3-4|10-50-34-10 5749
CNN 3-4-3-2|10-50-34-10 5749

Table 2. Number of parameters of CNNs
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Email address: massimiliano.datres@unitn.it
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Figure 3. Figure (a) and Figure (b) show that the impact of σ2 on dζ and dζ is
negligible both for MLPs and CNNs.
(a) 2sED of MLP 54-16-7 with fixed seed varying σ2; (b) Lower 2sED of CNN 5-
7—10-50-34-10 with fixed seed varying σ2
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Figure 4. These experiments confirms the stability of the lower 2sED with respect to
the number of points (and the points themself) used in the Monte Carlo approximation.
(a) Estimated lower 2sED of MLPs using 100 Covertype samples and 100 parametriza-
tion with error margin; (b) Estimated lower 2sED of MLPs using 1000 Covertype sam-
ples and 1000 parametrization with error margin; (c) Estimated lower 2sED of CNNs
using 100 MNIST samples and 100 parametrization with error margin; (d) Estimated
lower 2sED of CNNs using 500 MNIST samples and 100 parametrization with error
margin;
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Figure 5. This figures show that the relation between the lower 2sED and the training
curves does not depend on the choices of batch size and learning rate.
(a) Lower 2sED of CNNs using 100 MNIST samples and 100 parametrization; (b)
Training loss plots of CNNs on MNIST using Adam with learning rate 1e−3 and a batch
size 256; (c) Training loss plots of CNNs on MNIST using Adam with learning rate
1e−3 and a batch size 512;(d) Training loss plots of CNNs on MNIST using Adam with
learning rate 1e−3 and a batch size 2048;
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