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Abstract
We examine the construction of variable importance measures for multivariate responses
using the theory of optimal transport. We start with the classical optimal transport for-
mulation. We show that the resulting sensitivity indices are well-defined under input
dependence, are equal to zero under statistical independence, and are maximal under
fully functional dependence. Also, they satisfy a continuity property for information re-
finements. We show that the new indices encompass Wagner’s variance-based sensitivity
measures. Moreover, they provide deeper insights into the effect of an input’s uncertainty,
quantifying its impact on the output mean, variance, and higher-order moments. We
then consider the entropic formulation of the optimal transport problem and show that
the resulting global sensitivity measures satisfy the same properties, with the exception
that, under statistical independence, they are minimal but not necessarily equal to zero.
We prove the consistency of a given-data estimation strategy and test the feasibility of
algorithmic implementations based on alternative optimal transport solvers. Application
to the assemble-to-order simulator reveals a significant difference in the key drivers of
uncertainty between the case in which the quantity of interest is profit (univariate) or
inventory (multivariate). The new importance measures contribute to meeting the in-
creasing demand for methods that make black-box models more transparent to analysts
and decision-makers.
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†Department of Mathematics, ETH Zürich, 8092 Zürich, Switzerland alessio.figalli@math.ethz.ch
‡Institute of Disposal Research, Clausthal University of Technology, 38678 Clausthal-Zellerfeld, Germany

elmar.plischke@tu-clausthal.de
§Department of Decision Sciences, Bocconi University, 20136 Milan, Italy giuseppe.savare@unibocconi.it

1

mailto:emanuele.borgonovo@unibocconi.it
mailto: alessio.figalli@math.ethz.ch
mailto:elmar.plischke@tu-clausthal.de
mailto:giuseppe.savare@unibocconi.it


1. Introduction
Managerial decision-making is increasingly informed by forecasts produced by mathemat-
ical models. In many instances, these models calculate multiple quantities of interest:
Future CO2 emissions, temperature changes, and carbon prices are outputs of well-known
integrated assessment models (Hu et al. 2012, Nordhaus 2017); the number of infected,
hospitalized, or deceased individuals as well as policy-relevant economic quantities are
simultaneously calculated by epidemiological models (Berger et al. 2022, Du et al. 2022).

The complexity of the problems and the large amount of data, however, often force
analysts to implement sophisticated software architectures that make the resulting simu-
lator black-boxes, with little hope of obtaining insights from intuition. Analysts should
then transparently assess the stability of the simulator response and its sensitivity to the
uncertain inputs (Kleijnen 2010, Barton 2016, Saltelli et al. 2020), before communicat-
ing results to stakeholders. Feature importance, that is, the understanding of the factors
that drive a simulator behavior, becomes an essential insight for result explanation and
communication. While there is a well-established set of methods for analyzing univariate
responses, identifying key drivers for multivariate responses is an active area of research.
For instance, well-known methods such as the variance-based approach of Wagner (1995)
or the moment-independent approach of Baucells and Borgonovo (2013) are devised for
the single output context.

We propose a novel approach to the global sensitivity analysis of multivariate responses
grounded in the theory of optimal transport (OT) (Figalli and Glaudo 2021). We consider
two classes of global sensitivity measures, based on the classical and the entropic formula-
tion. We prove that indices based on the classical formulation possess key properties that
ease their interpretation: They are equal to zero if and only if the (multivariate) output
is independent of the input of interest and they are maximal if and only if the output is
a deterministic function of the inputs. We also derive a monotonicity result according to
which the value of the sensitivity index decreases if less refined information on the input
is received. A key role in obtaining these properties is played not only by the convexity of
the OT cost functional, but also, and far less obviously, by its strict-convexity on Dirac-δ
measures.

We then study global sensitivity indices based on the entropic OT formulation (Cuturi
2013). The interest is twofold. On the one hand, the entropic formulation is often used
as a substitute for the classical one because it allows for fast algorithmic implementations
and, under mild conditions, the solution of the entropic problem approximates the classical
solution well. On the other hand, due to its wide applicability, there is growing interest
in studying the entropic formulation per se, independently of its use for approximating
the classical problem (Genevay et al. 2018, Chen et al. 2021). However, the geometric
properties of the entropic OT formulation are less known. We contribute by proving that
the entropic cost functional is convex and, surprisingly, strictly convex on Dirac-δ masses.
Then, entropic OT-based sensitivity indices are monotonically increasing for information
refinements and maximal in the presence of a noiseless input-output dependence. They
also attain their minimum value under independence, although the minimum may not
necessarily be zero. They reach the same maximum value as sensitivity measures based
on the classical OT formulation. However, as the value of the entropic regularization
parameter increases, they tend to the maximum value for all inputs, thereby confounding
the relative input importance.
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We then focus on indices based on the 2-Wasserstein squared distance. We show that the
corresponding indices allow for a transparent interpretation of the sensitivity measures.
One can decompose them exactly into three terms. The first term and second terms
account, respectively, for differences in the means and variance-covariance matrices of the
model output. The third term is residual and is present when the effect of fixing an
input impacts more than the first two moments of the output. In addition, we prove that
the first term is the sum of the univariate variance-based sensitivity measures proposed
by Wagner (1995) for the dependent as well as independent input cases and that, under
input independence, it coincides with the multivariate indices proposed by Lamboni et al.
(2011) and Gamboa et al. (2014).

To enable computation for realistic applications, we study an estimation design based
on Pearson’s given-data intuition (Pearson 1905), which makes the calculation cost linear
in the sample size. We prove that the estimators are asymptotically unbiased and the
estimates converge from below. The estimation design involves the solution of a series
of data-driven OT problems. Here our work intersects with the fast-growing literature
on efficient algorithmic solutions to OT problems, nowadays a topical research subject in
machine learning (Altschuler et al. 2019, Janati et al. 2020). We implement and com-
pare estimators with solvers that rely on alternative principles, namely, on the network
simplex approach (Kuhn 1955), the partial orderings approach of Puccetti (2017), the
Sinkhorn-based approach of Cuturi (2013), as well as algebraic estimators based on the
Wasserstein-Bures approximation (Givens and Shortt 1984). Our goal is not to single out
“a” (or the) best algorithm, but to assess whether numerical quantification is feasible in
an amount of time that makes the method suitable for realistic applications. We evaluate
the insights delivered by the new indices and the performance of the proposed estimators
through several experiments. We start with the well-known Ishigami model and continue
with a new univariate case in which dimensionality is increased up to about 10, 000 inputs.
We then consider a multivariate normal test case, for which closed-form expressions of the
OT-based sensitivity measures are available. Findings indicate that all the employed algo-
rithms yield consistent estimates at reasonable sample sizes and with fast execution times.
Also, their behavior is in line with the theoretical premises, with convergence from below.
We then apply the new sensitivity measures to conduct a global sensitivity analysis of the
well-known assemble-to-order (ATO) simulator of Hong and Nelson (2006). We consider
both the system profit (univariate) and the final inventory (multivariate). The numeri-
cal investigation shows that the new indices yield additional insights, complementary to
the ones produced by variance-based indices both in the univariate and the multivariate
output cases.

2. Background
This section concisely reviews material on the theory of optimal transport (Section 2.1)
and probabilistic sensitivity analysis (Section 2.2).

2.1. Optimal Transport and Wasserstein Distances
Optimal transport (OT, henceforth) is a classical research subject in operations research
(Hitchcock 1940, Hillier and Lieberman 2012), and is actively studied across mathematics,
statistics, and machine learning (Chen et al. 2021). We refer to the monographs of Villani
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(2008), Peyré and Cuturi (2019), Figalli and Glaudo (2021) for a detailed treatment of
theoretical and computational aspects.

Let Y be a random variable on measure space (Ω,B,P), with support Y ⊆ RnY . Let
A be a measurable subset of Y. A marginal probability measure of Y denoted by ν, is
a set function ν(A) = p(Y ∈ A). For instance, if A = {y : y ∈ Y and y ≤ y′}, then
ν(A) = P(Y ≤ y′) = FY (y′), where y 7→ FY (y) is the cumulative distribution function of
Y .

Consider two marginal distributions of Y , ν and ν ′: the optimal transport problem
consists in transferring the first distribution into the second while minimizing a given
cost function. Let π(y, y′) be a transfer plan and Π(ν, ν ′) be the set of all transfer plans.
Formally, an element of Π(ν, ν ′) is a joint probability function whose marginal distributions
are ν and ν ′, respectively. Posed a lower semi-continuous cost function k : Y×Y → [0,+∞],
let K(π) := Eπ[k(Y, Y ′)] =

∫∫
Y×Y k(y, y′)dπ(y, y′) be the integral cost for transferring mass

from ν to ν ′ under plan π. The Kantorovich formulation of the optimal transport problem
consists of finding a transfer plan π ∈ Π(ν, ν ′) that minimizes the integrated cost K, i.e.,
in finding K(ν, ν ′) such that

K(ν, ν ′) = inf
π∈Π(ν,ν′)

K(π). (1)

It can be shown that the Kantorovich problem in (1) has at least one solution if a transfer
plan π ∈ Π(ν, ν ′) with finite cost K(π) < ∞ exists. A sufficient (and often encountered
condition) is that k(y, y′) is bounded by the sum of two nonnegative continuous and
separate cost functions a1(y), and a2(y′) such that E[a1(Y )] < +∞ and E[a2(Y )] < +∞
(bounded separate costs).

If Y and Y ′ are discrete random variables with probability mass functions given by,
respectively, Pr(Y = yi) = si and Pr(Y ′ = y′j) = tj , with si, tj ≥ 0,

∑I
i=1 si =

∑J
j=1 tj =

1, where I and J are natural numbers, then the Kantorovich problem amounts to solving
the linear program

K(ν, ν ′) = min

∑
ij

k(yi, zj)pij : pij ≥ 0,
∑
j

pij = si,
∑
i

pij = tj

 . (2)

When k(y, y′) = dp(y, y′) for a suitable continuous metric d : Y × Y → [0,+∞), the
Kantorovich problem

W p
p (ν, ν ′) = inf

π∈Π(ν,ν′)

∫
dp(y, y′) dπ(y, y′) (3)

defines the p-th power of the so-called Wasserstein distance of order p, Wp (henceforth
Wasserstein distance).

Closed-form expressions for the Wasserstein distance are generally out of reach. How-
ever, in the multivariate case, nY ≥ 2, let ν and ν ′ be two normal distributions with mean
values m, m′ and covariance matrices Σ, Σ′ respectively. Then Givens and Shortt (1984)
show that the squared 2-Wasserstein distance between ν and ν ′ is given by

WB(ν, ν ′) =
∥∥m−m′∥∥2

2 + Tr
(

Σ + Σ′ − 2
(
Σ′1/2ΣΣ′1/2

)1/2
)

, (4)

where Tr(·) denotes the matrix trace and Σ1/2 is the symmetric square root of a symmet-
ric and positive matrix. Equation (4) defines the Wasserstein-Bures semi-metric (Janati
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et al. 2020) (henceforth denoted with WB(�; � 0)). An interesting interpretation arises
from the work of Gelbrich (1990), whose results show that Equation (4) can be inter-
preted as follows. The �rst term, km � m0k2

2 is the minimal cost for moving the dis-
tributions � and � 0 in such a way to match their �rst moments. The second term,

Tr
�

� + � 0� 2
�
� 01=2�� 01=2

� 1=2
�

is the additional minimum cost for matching the sec-

ond moments. In general, because we need to match more then the �rst two moments of
� and � 0, we need to pay an extra cost and it is

W 2
2 (�; � 0) � WB( �; � 0), (5)

that is, the Wasserstein distance between� and � 0 is larger or equal to the Wasserstein-
Bures distance. Here, a fresh look at the proofs of Gelbrich (1990) indicates that such
inequality can be made sharper. In particular, under broad assumptions on� and � 0, it
holds:

W 2
2 (�; � 0) = WB( �; � 0)+�( �; � 0) =


 m � m0 2

2+Tr
�

� + � 0� 2
�
� 01=2�� 01=2

� 1=2
�

+�( �; � 0),

(6)
where �( �; � 0) � 0 is a non-negative residual term. Gelbrich (1990) proves that the residual
term �( �; � 0) is null when � and � 0 are two elliptical distributions with the same character-
istic generator. Within the family of elliptical distributions with the same characteristic
generator, WB(�; � 0) = 0 implies that � and � 0 are the same distribution. Outside this
family, WB( �; � 0) = 0 implies only that they have identical means (m = m0) and variance-
covariance matrices (� = � 0).

In an inuential work, Cuturi (2013) proposes to regularize the Kantorovich problem
through a penalty term based on the Kullback-Leibler entropy of � w.r.t. a suitable
reference probability measure#

KL( � j#) =
Z

log
�

d�
d#

�
d�; (7)

with KL( � j#) = + 1 if � is not absolutely continuous w.r.t. #.
A natural choice is to set # as the product measure# = � � � 0, writing

K " (�; � 0) = inf
� 2 �( �;� 0)

K(� ) + "KL( � j� � � 0); " � 0, (8)

where " � 0 is called regularization parameter. Setting � = 0 recovers the unregular-
ized problem. Problem (8) is referred to as the entropic OT problem. It admits a dual
formulation, which can be expressed as:

K " (�; � 0) = sup
f � ;g� 2 Cb(Y)

E[f � (Y )] + E[g� (Z )]

� "
� ZZ

exp
�

f � (y) + g� (z) � k(y; z)
"

�
d� (y) d� 0(z) � 1

�
;

(9)

wheref � , g� belong to the class of continuous and bounded functions onY. It is possible to
prove that for " ! 0 one regains the solution to the classical (Kantorovich) OT problem.

The results in Cuturi (2013) have paved the way to a ourishing research stream devoted
to the algorithmic solution of problems (1) and (8). With some conceptual simpli�cation,
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one can consider three groups of algorithms, based respectively on linear programming,
sorting and matrix scaling solvers. The �rst group contains algorithms that solve the OT-
linear program through specializations of the simplex method, which comprise variants
of the Hungarian method (Kuhn 1956), the network ow and the transportation simplex
algorithms (Luenberger and Ye 2016). The second group relies on extending the univari-
ate intuition that the one-dimensional Wasserstein distance can be obtained by suitable
reordering of the data realizations. A multivariate algorithm that relies on a bubble-sort
approach is presented in Puccetti (2017). The algorithm makes use of pairwise vector-
comparisons and iterative swaps leading to an approximate solution of the classical OT
problem in (1). These algorithms yield solutions of the Kantorovich problem in (1). The
third class of algorithms solves the entropic problem in (8). Cuturi (2013) revived in-
terest in the Sinkhorn-Knopp method (Knight 2008), yielding a computationally e�cient
�xpoint algorithm (see Peyr�e and Cuturi (2019) for a thorough treatment). Variants are
discussed in articles such as Altschuler et al. (2017). These algorithms provide numerical
solutions for the entropic problem in (8) or (9), which are approximating the solutions of
the classical problem in (1).

Several other works in the management sciences have employed the Wasserstein distance
as a metric. Mohajerin Esfahani and Kuhn (2018), Hanasusanto and Kuhn (2018) (see
also (Chen et al. 2020)) use the Wasserstein distance to de�ne ambiguity sets for robust
optimization problems. Carlsson et al. (2018) and Wang et al. (2020) then apply it in their
works regarding the de�nition and solution of the travelling salesman and the shortest
path problems, respectively. Zhang et al. (2021) and Subramanyam et al. (2021) use
the Wasserstein distance to obtain ambiguity sets for robust vehicle routing data-driven
optimization. Recently, Bertsimas et al. (2022b) and Bertsimas et al. (2022a) employ
the 1 -Wasserstein metric to de�ne ambiguity sets for robust guarantees in two-stage and
multi-stage stochastic optimization. Luo and Mehrotra (2019), Blanchet and Kang (2021)
and Nguyen et al. (2022) use the Wasserstein distance in contexts at the intersection
between optimization and statistical estimation. Luo and Mehrotra (2019) employ this
metric to obtain an algorithm for robust optimization within a class of regression models;
Blanchet and Kang (2021) employ the 2-Wasserstein distance to de�ne a new robust
inference approach called sample-out-of-sample inference; Nguyen et al. (2022) use the
same metric to obtain robust data driven estimators of the inverse covariance matrix. To
our knowledge, this manuscript is the �rst to explore the use of this metric in simulation
experiments.

2.2. Global Sensitivity Analysis

In the management sciences, the term global sensitivity analysis appears for the �rst time
in Wagner (1995). Wagner's approach starts with the generation of an input-output Monte
Carlo sample. The sample is then post-processed via statistical methods and indications
about the importance of the inputs are obtained by estimating variance-based sensitivity
indices. Since then, the family of global sensitivity methods has expanded to include
non-parametric regression approaches (Kleijnen and Helton 1999), moment-independent
approaches (Baucells and Borgonovo 2013), value of information (Felli and Hazen 1998,
Strong and Oakley 2013), Shapley values (Owen 2014) and other methods | See Razavi
et al. (2021) for a perspective. In this section, we review the aspects of the literature that
are most closely related to our work.
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Let Z = ( X; Y ) be a random variable on (
 ; B; P), with support Z := X� Y, with Y and Y
as previously de�ned, andX a random vector on (
 ; B; P), with support X � RnX . Let us
denote with FXY (x; y) = P(X � x; Y � y) the joint cumulative probability distribution
(cdf) function of ( X; Y ) and with � (x), FX (x) the marginal probability measure and
cumulative distribution function of X , respectively. A relevant role is played by the
conditional probability distribution of Y given X . We denote with � x (y) and FY jX (y), the
corresponding probability measure and conditional cumulative distribution function.

Let P (Y) denote the set of all marginal probability distributions of Y . Consider a
mapping � : P (Y) � P (Y) ! [0; + 1 ], whose value quanti�es the discrepancy between
two distributions in P (Y). We say that � (�; �) is a separation measurement, if it is null
when the two marginal distributions are identical, i.e., � (�; �) satis�es � (QY ; QY ) = 0 for
all marginal distributions QY 2 P (Y). Then, we de�ne the global sensitivity index of X
with respect to Y as

� � (Y; X ) := EX

h
� (PY ; PY jX )

i
: (10)

Several global sensitivity measures are written in the form of (10). If the output Y is a
real number, and we select� V (PY ; PY jX ) = ( E[Y ] � E[Y jX ])2 as separation measurement,
we obtain the �rst order variance-based index of Wagner (1995), Sobol' (1993)

� W (Y; X ) = E
h
(E[Y ] � E[Y jX ])2

i
: (11)

Wagner's sensitivity measure � W (Y; X ) represents the expected amount of reduction in
output variance provided that we receive perfect information about X . Alternatively, if
Y is absolutely continuous, one can use theL 1 norm between densities (Borgonovo et al.
2014), writing

� L 1 (Y; X ) = E
�

1
2

Z

Y

�
�
�f Y (y) � f Y jX (y)

�
�
� dy

�
: (12)

Equation (12) is also a representative of the family of global sensitivity measures based
on Csiszar's divergences proposed in Rahman (2016).

With Y = R, setting

� Ku (Y; X ) = E

"

sup
y2 R

f FY (y) � FY jX (y)g � inf
y2 R

f FY (y) � FY jX (y)g

#

, (13)

one obtains the global sensitivity measure introduced in (Baucells and Borgonovo 2013),
in which the separation measurement is the Kuiper distance, a generalization of the
Kolmogorov-Smirnov metric. Gamboa et al. (2018) introduce a family of probabilistic
sensitivity measures based on the Cram�er-von Mises distance, de�ning

� CvM (Y; X ) = E
� Z

Y

�
�
�FY (y) � FY jX (y)

�
�
�
2

dFY (y)
�

. (14)

The probabilistic sensitivity framework of (10) does not require a functional relationship
betweenY and X . However, in simulation and machine learning,Y = ( Y1; Y2; : : : ; YnY ) is
a quantity of interest (usually called output or target) calculated through a mathematical
model, whose input is a random vectorX = ( X 1; X 2; : : : ; X nX ), with X i called input
or feature. Then, we write the simulator input-output mapping that links Y to X as
Y = g(X; E(X; ! )), where g : X ! Y and whereE : X � 
 ! Y is such that, for every value
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of x, E(x) is a random vector on (
 ; B; P). If E(X; ! ) 6= 0 for some ! and X , the model
is stochastic, deterministic otherwise. Then, let � � (1; 2; : : : ; nX ), � = ( i 1; i 2; : : : ; i k )
be a subset of indices and letX � = ( X i 1 ; X i 2 ; : : : ; X i k ) denote the corresponding group
of features. If we are informed that X � = x � , then the model response becomesY =
g(x � ; X � � ; E(x � ; X � � ; ! )), where � � = f 1; 2; : : : ; nyg n � is the complementary set of� .
Clearly, Y and Y jX � = x � have probability measuresPY and PY jX � = x � .

The extension of variance-based indices� W (Y; X ) to the multivariate case has been
addressed in Lamboni et al. (2011) and Gamboa et al. (2014) with the introduction of
generalized variance-based indices. In these works, independence among the inputs is as-

sumed so that� (x) =
nXQ

i =1
� i (x i ). Given X = ( X 1; X 2; : : : ; X nX ) and Y = ( Y1; Y2; : : : ; YnY ),

we can de�ne the variance-based importance measure ofX i with respect to any output Yj ,
i = 1 ; 2; : : : ; nX , j = 1 ; 2; : : : ; nY via (11): � W (Yj ; X i ) = EX i

�
(E[Yj ] � E[Y jX i ])2�

. Then,
let � Y denote the variance-covariance-matrix of the output andV[Y ] denote its trace, that
is, the sum of the diagonal elements of �Y . Assuming that Yj = gj (X 1; X 2; : : : ; X nX ), i.e.,
the input-output mapping is deterministic, let the variance-based importance index of
Lamboni et al. (2011) and Gamboa et al. (2014) be de�ned as

� LG (Y; X i ) := V[Y ]� 1
nYX

t=1

� W (Yt ; X i ): (15)

Thus, � LG (Y; X i ) is the fraction of the trace of the variance-covariance matrix ofY asso-
ciated with X i , when inputs are independent.

The works of Fraiman et al. (2020) and Gamboa et al. (2021) further extend� CvM to
the case in which the output belongs to a Riemannian manifold and to a metric space,
respectively. Fort et al. (2021) address the sensitivity of models with stochastic output
using these indices with the Wasserstein distance as a metric. An approach to create
sensitivity measures for multivariate responses using distances between kernels is proposed
in da Veiga (2021) and Barr and Rabitz (2022). This concise review shows that the
de�nition of indices for vectorial outputs is an active research �eld, motivated also by
industrial and machine learning applications (Marrel et al. 2017).

Recent studies by Chatterjee (2021), Wiesel (2022) and Deb et al. (2020) have refocused
attention on the mathematical guarantees underlying the use of measures of statistical
association. These guarantees include desirable properties such as zero-independence,
max-functionality, and monotonicity. The �rst two properties originate from Postulates
D and E in R�enyi (1959). Postulate D (see also Axiom 1 in M�ori and Sz�ekely (2019))
stipulates that a measure of statistical association is null if and only ifY is statistically
independent of X . This property helps us to avoid the error of dismissing an input as
unimportant when, in fact, it plays a role in the model. Postulate E (max-functionality)
stipulates that the value of a global sensitivity measure is maximal if and only if Y is a
deterministic function of X , i.e., if Y can be expressed asg(X ) for a mapping g : X !
Y. The third property, monotonicity, is associated with the following interpretation in
our context: if we receive less re�ned information about an input, we require that such
information is associated with a lower value of the global sensitivity measure than if we
received more re�ned (or perfect) information on the same input. In the next section,
we de�ne global sensitivity measures based on OT functionals and discuss the conditions
under which they possess these properties.
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3. Global Sensitivity Measures based on Optimal Transport

This section introduces global sensitivity measures based on optimal transport, with the
classical as well as entropic formulation of the cost function. It is structured as follows:
de�nitions and properties are presented in Sections 3.1 and 3.2. Section D discusses in
depth the interpretation of the new indices in light of their mathematical properties.

3.1. A family of OT-based indicators

Given the setup of Section 2.2, assume that the OT-functional in Equation (1) is associated
with a continuous cost function k : Y � Y ! [0; + 1 ] which is null if and only if its two
arguments are equal, that is k(y; y0) = 0 , y = y0.

De�nition 1. Let X; Y be random variables with marginal distributions �; � respectively
and let (� F

x )x2 X be the conditional distribution of Y generated by (X; F ). We call

� K (Y; X jF ) := E[K (PY ; PF
Y jX )] =

Z

X
K (�; � F

x ) d� (x) (16)

the OT-based global sensitivity measure of (X; F ) with respect to Y .

A notable class of OT-based sensitivity measures is obtained using thepth -power of
Kantorovich-Rubinstein-Wasserstein distance Wp in (3) (as usual, we omit F when it
coincides with B (X)):

� W p
p (Y; X ) := E

"

inf
� 2 �( PY ;PY j X )

Z
dp(y; z) d� (y; z)

#

: (17)

In applications, it is often of interest to measure the relevance of a set of features/inputs,
(X 1; X 2; : : : ; X nX ). Ranking them by the magnitude of � K (Y; X i ) means to sort them
based on the expected amount of work needed to optimally pass from the marginal (and
current) probability measure of Y to the conditional (and updated) probability measure
of Y given that we have received perfect information aboutX i .

Remark 2. Equation (16) de�nes a family of global sensitivity measures. To illustrate, the
well-known � L 1 (Y; X ) in Equation (12) can be reinterpreted as an OT-based sensitivity
measure. In fact, if Y is equipped with the discrete metric, i.e., a metric such that for all
y, y0 2 Y, k(y; y0) = 0 if y = y0 and k(y; y0) = 1 if y 6= y0, then, � K (Y; X ) = � L 1 (Y; X )
(see Appendix A for the calculations) | However in this case k is not continuous and the
correspondingK is not strictly convex on Dirac-� masses.

Proposition 3. With the setup in De�nition 1, � K (Y; X ) � 0 and � K (Y; X ) = 0 if and
only if Y and X are statistically independent.

(Please see Appendix A for all proofs).
Thus, the family of OT-based sensitivity measures in (16) possesses the zero-independence

property. Proposition 3 then provides a lower-bound on� K (Y; X ). In order to obtain an
upper bound for � K (Y; X ), we introduce the quantity

MK [Y ] := E[k(Y; Y0)] =
Z

Y2
k(y; y0) d� (y) d� (y0), (18)

9



where Y 0 is an independent replica ofY . Notice that if k is the sum of two separately
bounded cost functions thenMK [Y ] is bounded.

For the next result, we recall that a Dirac measure� y centered at y 2 Y is de�ned by
� y(A) = 1 if y 2 A and � y(A) = 0 if y =2 A for every A � Y. The next Lemma states a
useful property of the optimal transport cost with respect to Dirac measures.

Lemma 4. Let K be the OT-functional in (1) with k continuous and let � 2 P (Y) satisfy
K(� � � ) < + 1 . Then the function K (�; �) satis�es the following strict convexity inequality
between Dirac measures in the support of� :

K (�; (1 � t)� y1 + t� y2 ) < (1 � t)K (�; � y1 ) + tK (�; � y2 ) (19)

for every y1; y2 2 supp(� ), y1 6= y2, t 2 (0; 1).

Theorem 5. Under the same assumptions of Lemma 4, for all random variablesX , Y
and every � -algebraF

� K (Y; X jF ) � MK [Y ]; (20)

so that � K (Y; X jF ) is �nite if MK [Y ] < 1 . Moreover � K (Y; X jF ) = MK [Y ] if and only
if Y is functionally dependent onX , i.e. Y = f (X ) P-a.e. for some F -measurable map
f : X ! Y.

Theorem 5 states that the class of OT-based sensitivity satis�es the max-functionality
property (R�enyi's Postulate E) for a vast class of cost functions.

Remark 6. Equation 17 coincides with the numerator of the Wasserstein correlation coef-
�cient de�ned by Wiesel (2022). Therein, an important result is Theorem 2.2 which shows
that the Wasserstein correlation coe�cient is maximal (equal to unity) in the case X and
Y are related by a functional dependence and zero if they are statistically independent.
Theorem 5 covers a slightly more general situation extending the result to general cost
functionals k and o�ers a di�erent perspective, based on the strict convexity of K (�; �) on
Dirac measures stated in Lemma 4. This new approach allows us to extend this property
to global sensitivity measures based on the entropic formulation of the OT problem.

Remark 7. Regarding the maximum value of (17), whenY = R and p is an even integer,
we have

MK [Y ] =
Z

R2
(y � z)p d� (y) d� (z) =

pX

k=0

(� 1)k

 
p
k

! Z

R2
ykzp� k d� (y) d� (z)

=
pX

k=0

(� 1)k

 
p
k

!

E[Y k ] E[Y p� k ]: (21)

When Y = RnY with nY � 2 and k(y; y0) := ky � y0k2
2, we have

MW 2
2 =

Z

Y2


 y � y0 2

2 d� (y) d� (y0) = 2
Z

Y
ky � E[Y ]k2

2 d� (y) = 2 V[Y ], (22)

where V[Y ] denotes the trace of the variance-covariance matrix ofY .

The next result shows the monotonicity of � K with respect to the information provided
by F and can be applied to the case when we receive perfect information on a random
variable U which is a transformation of X , U = g(X ).
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Theorem 8. For every � -algebraF � B (X) we have

� K (Y; X ) � � K (Y; X jF ): (23)

In particular, if g : X ! U is a Borel map with values in a Polish spaceU, U := g � X ,
and F = � (g) is the � -algebra generated byg, we have

� K (Y; X ) � � K (Y; U) = � K (Y; X jF ), where F = � (g): (24)

Moreover, if g is injective almost everywhere, then� K (Y; X ) = � K (Y; U).

Theorem 8 implies that receiving information in the form U = g(X ) has the same value
as receiving direct information on X if the transformation g is injective. The fact that
� K (Y; X ) is greater than � K (Y; U) otherwise is consistent with the intuition that receiving
direct information on X is more valuable than receiving \indirect" information via a
transformation of X . Starting from Theorem 8, we can obtain an important continuity
property with respect to an increasing family of � -algebras inB (X).

Theorem 9. Let (F n )n2 N be an increasing family of sub-� -algebras inF and let us denote

by F =
1_

n=1

F n the smallest� -algebra containing eachFn . We have

lim
n!1

� K (Y; X jF n ) = � K (Y; X jF ): (25)

Theorem 9 says that if we collect information on X in such a way to progressively
re�ne the associated algebra towardsF , then � K (Y; X jF n ) converges to � K (Y; X jF ).
Also, by Theorem 8, � K (Y; X jF n ) is smaller than � (Y; X jF ) for any value of n, and
thus � K (Y; X jF n ) converges to� K (Y; X jF ) from below. This result is also relevant for
estimation, as discussed in Section 4.

We now consider separation measurements induced by the entropic OT functional (8).
We then investigate whether these have the same properties as indicators based on the
classical OT formulation. The next lemma shows that K " satis�es a property similar to
Lemma 4.

Lemma 10. Let K " be the entropic OT-functional in (8) with k continuous and let � 2
P (Y) satisfy K(� � � ) < + 1 . Then the function K " (�; �) satis�es the following strict
convexity inequality between Dirac measures in the support of� :

K " (�; (1 � t)� y1 + t� y2 ) < (1 � t)K " (�; � y1 ) + tK " (�; � y2 ) (26)

for every y1; y2 2 supp(� ), y1 6= y2, t 2 (0; 1).

The next theorem summarizes results for� K " (Y; X ).

Theorem 11. Let " > 0 and K " be the entropic OT-functional in (8). For all random
variables X; Y the corresponding sensitivity index� K " (Y; X ) satis�es

� K (Y; X jF ) � � K " (Y; X jF ) � MK [Y ], (27)

so that � K " (Y; X jF ) is �nite if MK [Y ] < 1 . Moreover � K " (Y; X jF ) = MK [Y ] if and only
if Y is functionally dependent onX , i.e. Y = f (X ) P-a.e. for some F -measurable map
f : X ! Y. Eventually, � K " (Y; X ) satis�es the same properties stated in Theorems 8, and
9.

11



Notice that (27) yields
� K (X; Y )
MK [Y ]

�
� K " (Y; X )

MK [Y ]
. (28)

This last inequality then allows a direct comparison of sensitivity measures based on
classical and entropic formulations, as they are set on the same scale. Theorem 11 shows
that global sensitivity measures based on the entropic OT,� K � (Y; X ), enjoy properties
similar to those of indices based on the classical OT and stated in Theorems 5, 8, and 9.
However, Proposition 3 does not hold for� K " (Y; X ), since when supp(� ) is not reduced to
a singleton (i.e. � is not a Dirac measure)K " (�; � ) > 0 and K " is not a strict separation
measurement. WhenY and X are independent,� = � x � -a.e., and we have� K " (Y; X ) =
K " (�; � ), which shows that � K " does not possess the zero-independence property. The
next result shows that K " (�; � ) is the minimum value of � K " (Y; X ).

Proposition 12. For every pair of random variablesX; Y and every� -algebraF we have

� K " (Y; X jF ) � K " (�; � ): (29)

Equality in (29) is attained whenY and X are independent.

Notice that K " (�; � ) is a minimum for � K " (Y; X ), but there might exist � 0 for which
K " (�; � 0) < K " (�; � ). Supplementary Appendix B shows that equality in (29) does not
imply that Y and X are independent.

Overall, the above results show that OT-based sensitivity measures (entropic and clas-
sical) possess intuitive properties that ease their interpretation: if Y is independent of
X , information about X is irrelevant and reaches its lowest value (zero in the case of
the classical OT formulation). Conversely, if Y is functionally dependent on X then the
OT-based importance of X is maximal. In all other cases, the value of the OT-based
sensitivity measure is in between these two extremes.

3.2. A Family of Sensitivity Indices

With the assumptions and analysis in the previous section, we can de�ne the following
sensitivity indices.

De�nition 13. If MK [Y ] > 0, we call

�K (Y; X ) =
� K (Y; X )
MK [Y ]

(30)

and

�K � (Y; X ) =
� K � (Y; X )

MK [Y ]
(31)

classical and entropic OT-based sensitivity index ofX with respect to Y , respectively.

Then, by the zero-independence and max-functionality properties, we have 0� �K (Y; X ) �
1. The extreme values�K (Y; X ) = 0 and �K (Y; X ) = 1 indicate statistical independence
and fully functional dependence, respectively. Di�erently, �K � (Y; X ) varies between its
minimum and unity, with unity indicating functional dependence and the minimum being

12



reached whenY and X are independent. In the remainder, we shall focus on the case in
which the cost is associated with the squared 2-Wasserstein distance, letting:

� (Y; X ) = (2 V[Y ]) � 1� W 2
2 (Y; X ). (32)

In general, closed form expressions for� (Y; X ) are out of reach. Nonetheless, a notable ex-
ception appears if the involved distributions are elliptical (Cambanis et al. 1981, Landsman
and Valdez 2003). We say thatZ follows an elliptically contoured distribution if its char-
acteristic function can be represented in the form� (z; � Z ; � �

Z ) = eiz T � �
Z G(zT � �

Z z), where
G : R+ ! R+ is called the characteristic generator (see (Cambanis et al. 1981, Theorem
2) for technical conditions), and � �

Z and � �
Z are called location and dispersion parameters,

respectively. One correspondingly writesZ � EC (� �
Z ; � �

Z ; G) where ECstands for ellipti-
cally contoured, as in Cambanis et al. (1981) | elliptical, for short. Note that, if the �rst
moment, � Z , of Z exists then � Z = � �

Z ; if the second moment exists then the variance-
covariance matrix � Z is related to the dispersion parameter � �

Z as � Z = � 2G0(0+)� �
Z

(Cambanis et al. 1981, Theorem 4), whereG0(0+) is the right derivative of the character-
istic generator at the origin. If a density function for an elliptical family exists, it has the
form (Landsman and Valdez 2003, p. 58)

f Z (z) =
C

q
j� �

Z j
Gd

�
1
2

(z � � �
Z )T (� �

Z ) � 1(z � � �
Z )

�
; (33)

where C is a normalizing constant, j � j stands for determinant and Gd(�) is the density
generator.

Example14. A representative of the family of elliptical distributions is the Gaussian family
obtained with Gd(�) = e� 1

2 (�) . In this case, we also have� �
Z = � Z and � �

Z = � Z and the
density assumes the well-known expression

f Z (z) =
1

(
p

2� )nZ
p

j� Z j
exp

�
�

1
2

(z � � Z )T (� Z ) � 1(z � � Z )
�

; (34)

wherenZ is the cardinality of Z . Other representatives are the Student-t, the logistic, and
the exponential power distributions, which are obtained selecting alternative generators
| please refer to (Landsman and Valdez 2003, p. 58-60) for the detailed expressions of
these densities.

For OT-based sensitivity measures, a notable identity holds when both the marginal
distribution and the conditional distributions of Y given X are elliptical.

Let us consider the global sensitivity index based on the Wasserstein-Bures semi-metric:

i WB (Y; X ) :=
E[WB( PY ; PY jX )]

2V[Y ]
; (35)

where WB(�; �) is given in Equation (4).

Proposition 15. Assume that the second moment ofY is �nite. In general, it holds that

� (Y; X ) = i WB (Y; X ) +
E[�( PY ; PY jX )]

2V[Y ]
; (36)
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so that � (Y; X ) � i WB (Y; X ). If PY and PY jX are elliptical with the same characteristic
generator G for values of X almost everywhere inX then

�(Y; X ) = i WB (Y; X ) = Adv( Y; X ) + Di�( Y; X ); (37)

where

Adv( Y; X ) =
E

�
kE[Y ] � E[Y jX ]k2�

2V[Y ]
, (38)

and

Di�( Y; X ) =
E

�
Tr

�
� Y + � Y jX i � 2

�
� 1=2

Y jX i
� Y � 1=2

Y jX i

� 1=2
��

2V[Y ]
. (39)

Equation (36) indicates that the OT-based sensitivity indices �(Y; X ) can be decomposed
in two terms, the Wasserstein-Bures index in Equation (35) and a residual term given by
(2V[Y ]) � 1E[�( PY ; PY jX )]. By Equations (38) and (39), the Wasserstein-Bures index is, in
turn, the addition of two summands: Adv( Y; X ), that accounts for the di�erence in the
�rst moments of PY and PY jX and Di�( Y; X ) that involves the di�erences in their second
moments (� Y vs � Y jX ). These two terms are the expected optimal cost required for
matching the �rst and second moments ofPY and PY jX . If matching the �rst and second
moment exhausts the transport ofPY into PY jX , then the residual term E[�( PY ; PY jX )] is
null. Moreover, Adv( Y; X ) can be interpreted as an \advective part" that can be identi�ed
as a movement of the center of gravity, and Di�(Y; X ) as a \di�usive part" which leads to
a dispersion (rotation) of the data points. | Supplementary Appendix D o�ers additional
discussion on the interpretation of the advective and di�usive parts.

We also have a direct connection between the advective part of an optimal transport
sensitivity measure and the generalized variance-based sensitivity measures of Lamboni
et al. (2011) and Gamboa et al. (2014).

Proposition 16. For the advective part of the Wasserstein-Bures global sensitivity mea-
sure, i.e. Adv( Y; X ) in (38), it holds:

Adv( Y; X ) = (2 V[Y ]) � 1
nYX

t=1

� W (Yt ; X ); (40)

where � W (Yt ; X ) is Wagner's univariate sensitivity measure of X with respect to Yt in
Equation (11) and � LG (Y; X ). Moreover, if we assume that the inputs are independent
then

Adv( Y; X ) =
1
2

nYX

t=1

S(Y t ; X ) =
1
2

� LG (Y; X ); (41)

whereS(Y t ; X ) =
� W (Y; X )

V[Y ]
is the Sobol' �rst order sensitivity index of X with respect to

the t th component of the output,Y t .

The �rst equality in Proposition 16 does not assume input independence and suggests
that the numerator of the advective part of an OT-based sensitivity measure is the sum of
the Wagner's univariate sensitivity measures of the output componentsY1,. . . , YnY . If, in
addition, we assume input independence, Equation (41) holds and Adv(Y; X ) di�ers only
by a factor 1=2 from the sensitivity measures of Lamboni et al. (2011) and Gamboa et al.
(2014).
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Table 1: � (Y; X i ), and associated decompositions into advective and di�usive parts for the
model in Equation (44).

� (Y; X i ) = �W B (Y; X i ) Adv i Di� i Perc. Adv. � � (Y; X i )
X 1 0.492 0.294 0.198 60% 0.554
X 2 0.507 0.318 0.189 63% 0.575
X 3 0.117 0.107 0.01 91% 0.199

Corollary 17. Let X = ( X 1; X 2; : : : ; X nX ), X � EC (mX ; � �
X ; G), mX = ( m1; m2; : : : ; mnX );

with �nite second moment. If Y = AX + b, whereA is an nY � nX matrix and b 2 RnY , then
the OT-based sensitivity measure betweenY and X i is given by (37) with � Y = A� X AT ,
� Y jX i = A� c

i A
T ,

� c
i = ( � i

t;j )t;j =1 ;2;:::;n X ; � i
t;j = � t;j �

� t;i � � i;j
p � i;i

, (42)

and

mYk jX i =
nXX

j =1

ak;j

 

mj + ( X i � � i )
� i

i;j

� i
i;i

!

; (43)

for k = 1 ; 2; : : : ; nY .

Corollary 17 states that if the model output is a linear transformation of an elliptical
input variable X , then we obtain a closed-form expression for� (Y; X ). This is due to
the fact that all the involved distributions of Y , marginal and conditionals, are elliptical
with the same characteristic generator. For instance, ifX is a multivariate Gaussian or
Student-t or logistic random variable, then all distributions of Y will be, respectively,
Gaussian or Student-t or logistic, with parameters in Equations (42) and (43).

Example 18. Consider the input-output mapping Y = g(X 1; X 2; X 3) given by:
(

Y1 = 4X 1 � 2X 2 + X 3

Y2 = 2X 1 + 5X 2 � X 3,
(44)

with X normally distributed, with mean mX = (1 ; 1; 1), and variance-covariance matrix

� X =

0

B
@

1 0:5 0:5
0:5 1 0:5
0:5 0:5 1

1

C
A . Y is then normal with mean mY = (3 ; 6) and variance-covariance

matrix � Y =

 
15 7:5
7:5 33

!

. In this case, it is � (Y; X i ) = �W B (Y; X i ). The corresponding

advective and di�usive parts are reported in Table 1. The third and fourth columns in
Table 1 show that the advective part amounts at about 60% of the OT-based importance
of X 1 and X 2, and at about 90% of the importance of� (Y; X3). The additional portion
is due to the di�usive part, because all the involved distributions are elliptical. We use
this example to illustrate the relationship between Adv(Y; X ) and Wagner's univariate
sensitivity measures in Proposition 16. We calculate Wagner's variance-based importance
measures forY1 and Y2 separately.

The last column of Table 2 shows that, if we sum the Wagner's importance measures
of the inputs with respect to each output, the sum exceeds the value of the corresponding
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Table 2: Wagner's importance measures for the example.

� W (�; X 1) � W (�; X 2) � W (�; X 3)
3P

i =1
� W (�; X i )

Y1 12:25 0:25 4 16:5
Y2 16 30:25 6:25 42:5
� W (Y1; X i ) + � W (Y2; X i ) 28:5 30:50 10:25

variance for both Y1 and Y2: this occurs because the inputs are not orthogonal. If we sum
across the outputs, we get the values in the third row of Table 2. Dividing these sums by
twice the diagonal of the variance-covariance matrix, we obtain the values of the advective
part of the Wasserstein-Bures importance measure, in accordance with Proposition 16.

According to equation (37), an OT-based importance measure includes extra terms
compared to a generalized variance-based index. Thus, the global impact of an input
on the output distribution is more than just the sum of its individual variance-based
sensitivities. By the properties of the Wasserstein distance, we know that the Wasserstein-
Bures distance between� and � 0 is always lower than or equal to their squared Wasserstein-
2 distance: WB (� 0; � 0) � W 2

2 (� 0; � 0). This inequality yields a corresponding inequality on
the corresponding global sensitivity indices: �W B (Y; X ) � � (Y; X ). As a result, we can
expect that if learning X only a�ects the �rst order moment mY of Y , then the importance
of X is equal to Adv(Y; X ), or the sum of univariate sensitivities. However, if there is also
an impact on the second order moment �Y , then a di�usive component is present. These
two components sum to �W B (Y; X ) and account for the input entire importance when
all the involved distributions are elliptical with the same characteristic generator. The
presence of an additional gap between�W B (Y; X ) and �(Y; X ) suggests that information
about X impacts the distribution of Y beyond its �rst two moments.

A recent result in Janati et al. (2020) allows us to obtain closed form expressions for the
entropic OT-based sensitivity measures when the marginal and conditional distributions
are normal. With the notation of Corollary 17, if X , Y and Y jX are normally distributed,
given " � 0, then the entropic sensitivity index in (31) can be written as

�WB
" (Y; X ) = Adv( Y; X ) +

E[Tr
�
� Y + � Y jX � D "

�
+ L(D " ; " )]

2V[Y ]
, (45)

where D " =
�

4�
1
2
Y � Y jX �

1
2
Y + 1

4"2I
� 1

2
, I is the identity matrix, and

L(D " ; " ) = "
2

�
nY � (1 � log(" )) + log det

�
D " + "

2 I
��

. (46)

The terms D " and L(D " ; " ) appear in � " (Y; X ) rather than in �WB (Y; X ) in (37), as a
consequence of the entropic penalty.

We close the investigation of the properties of OT-based sensitivity measures studying
the behavior of entropic indices for large values of the regularization parameter.

Theorem 19. Given � " (Y; X i ) in Equation (31), we have:

lim
" !1

� " (Y; X ) = 1 (47)

for any X .

16



Theorem 19 implies that the entropic importance of any random variable tends to the
maximum value if the regularization parameter grows. Then, � " (Y; X ) becomes uninfor-
mative for large values of" , as all X i 's are assigned the same value of� " (Y; X ).

Example 20 (Example 18 continued.). The last column of Table 1 reports the values of
the entropic OT-based sensitivity indices � " (Y; X i ) for the same input-output mapping
and input distributions in Example 18. For illustrative purposes, we have set " = 1.
The values in Table 1 indicate that the entropic sensitivity measures are larger than the
classical sensitivity measures for all inputs, in accordance with Theorem 11. The increases
are systematic and the ranking is unchanged. However, there is no reassurance that this is
maintained for any value of the regularization parameter. Increasing its value to" = 10, we
record � "=10 (Y; X1) = 0 :95, � "=10 (Y; X2) = 0 :96, � "=10 (Y; X3) = 0 :89. While the ranking is
maintained, the value of the entropic importance of X 3 increases notably. In agreement
with Theorem 19, for higher values of" we obtain � " (Y; X i ) � 1 for all the three inputs
and we become unable to rank them.

4. Estimation

The estimation of global sensitivity measures in the common rationale of Equation (10) is
widely recognized as a challenging task. Abrute force implementation requires a double-
loop of Monte Carlo simulations: an outer loop in which values ofX are �xed and an inner
loop in which the model is evaluated to obtain the conditional distribution of Y given X .
The computational cost associated with this strategy isCBrute Force = nX Nout N inn model
evaluations, whereNout and N inn are the sample sizes allocated to the outer and inner
loops, respectively. This cost is of the order of the square of the sample size and depends
on the model input dimensionality nX . Nested estimation is widely encountered in the
management sciences. To illustrate, in the pricing of �nancial instruments the outer loop
is needed to generate a set of scenarios in which a number the risk factors are �xed, while
the inner loop calculates the future cash ows conditional on the scenario (Broadie et al.
2011, 2015). Several studies have addressed the reduction of numerical cost in problems
involving nested estimation (see Gordy and Juneja (2010) for a review). Hong et al. (2017)
propose smoothing approaches to reduce the computational burden of the inner conditional
expectation. The same problem has been studied in parallel in the statistical literature
for the estimation of global sensitivity measures, with the pick-and-freeze design as the
�rst successful proposal to decrease the computational cost down to� nX (N + 1) model
runs (Saltelli 2002, Gamboa et al. 2016). On the other hand, given-data (or once-through)
designs bring the number of model evaluations down toN model evaluations, whereN
is the size of a single-loop Monte Carlo sample. The corresponding computational cost
is then independent of the problem dimensionalitynX . Moreover, the design allows the
calculation of global sensitivity measures also when the input-output sample come from
data collection. We follow Pearson's intuition underlying the correlation ratio (Pearson
1905). One considers partitioning the support ofX , X, into H non overlapping subsets,
Xh

i , h = 1 ; 2; : : : ; H . Then, one writes an estimate of a global sensitivity measure in the
common rationale of (10) as

b� (Y; X i ; N; H ) =
1
H

HX

h=1

� (PN
Y ; PN

Y jX i 2 X i
h
); (48)
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Figure 1: Scatterplot partitioning with H = 10 and H = 100 for hypothetical Y and X i .
The upper graphs display the scatterplot and the partitions, the lower graphs
the corresponding empirical distributions (empirical densities are available in
this case).

where� (PN
Y ; PN

Y jX i 2 Xh
i
) is an empirical estimate of the separation between the marginal and

the conditional property of interest required by � (�; �), here denoted byPN
Y and PN

Y jX i 2 Xh
i
,

respectively. In the latter, the point condition X i = x i is replaced by the bin condition
X i 2 Xh

i .
We can implement Equation (48) through the following steps. First, we build the

scatterplot with X i and Y on the horizontal and vertical axis, respectively. Next, we
partition the horizontal axis into H bins Xh

i , h = 1 ; 2; : : : ; H , such that the union of all
bins equalsXi and the intersection of any two bins is empty. Graph (a) in Figure 1 o�ers a
visualization of this partitioning into ten intervals of the horizontal axis of a hypothetical
scatterplot. The third step is to consider the separation between the empirical marginal
distribution PN

Y and the conditional marginal distribution PN
Y jX i 2 Xh

i
, that is, to compute

� (PN
Y ; PN

Y jX i 2 Xh
i
). The estimate b� (Y; X i ; N; H ) is then the average of these values.

Pearson's intuition suggests that, if the partition is su�ciently re�ned, the bin con-
dition bPY jX i 2 Xh

i
tends to the point condition bPY jX i = x i . (Graph (b) in Figure 1 shows a

scatterplot partition with the cardinality increased to H = 100.) Then, if � (PN
Y ; PN

Y jX i 2 Xh
i
)

is an accurate approximation of � (PY ; PY jX i 2 Xh
i
), the value of b� (Y; X i ) should be close to

� (Y; X i ). More precisely, we expect that as the sample sizeN and the cardinality of the
partition tend to in�nity, then b� (Y; X i ) tends to � (Y; X i ). The convergence depends on
the properties of � (bPN

Y ; bPN
Y jX i 2 Xh

i
) and a general proof is nowadays missing.

However, we show in Supplementary Appendix A that if � (bPN
Y ; bPN

Y jX i 2X m
i

) is based on
optimal transport, then

lim
H !1 ;N !1

b� (Y; X i ; N; H ) = � (Y; X i ): (49)

A fundamental role in this result is played by the convexity and monotonicity of the OT
functional in Equation (16). These two properties also imply that for N su�ciently large,
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the estimates b� K (Y; X ; N; H ) approximate the true value � K (Y; X ) from below as the
partition size increases. By Theorem 11, the same holds for the case in which the quantity
to be estimated is an entropic-OT based sensitivity measure.

To complete the estimation procedure, we need an algorithm for solving the data-driven
optimal transport problem between the two empirical distributions bPN

Y and bPN
Y jX i 2 Xh

i
for

h = 1 ; 2; : : : ; H . If the cost function is the squared Wasserstein metric, the problem is:

inf s
NP

k=1

P

j :x j;i 2 Xh
i

sk;j

nYP

t=1
(yk;t � yj;t )2

subject to
NP

k=1
sk;j = 1

N ;
P

j :x j;i 2 Xh
i

sk;j = 1
Nh

; Nh = # f j : x j;i 2 Xh
i g,

(50)

for h = 1 ; 2; : : : ; H (M ), where s is the set of (empirical) couplings, #f�g denotes cardinal-
ity, Nm counts the realizations ofX which are included in Xh

i ; the realizations yk;t follow
PY , while the realizations yj;t follow PY jX 2 Xh

i
:

The algorithm that solves the OT problem in (50) is crucial because the estimation
requires solving a conditional OT-problem in each partition set. However, ifY is univari-
ate (nY = 1), the solution is streamlined by results in works such as Vallender (1974),
Cambanis et al. (1976). Givenu 2 [0; 1] let QY (u) be the uth quantile of Y and QY jX i (u)
the uth quantile of Y given X i . By Cambanis et al. (1976) we can write:

W 2
2 (PY ; PY jX ) =

Z 1

0

�
QY (u) � QY jX i (u)

� 2
du: (51)

Thus, the squared 2-Wasserstein distance can be found by integrating the squared di�er-
ence of the quantile functions. Numerically, it is then enough to reorder the marginal and
conditional quantiles of Y in each partition, calculate their squared di�erences, and take
the average over the partitions.

If nY � 2, our work intersects with the growing body of literature on solvers for the
optimal transport problem. The literature displays two main strategies. We can opt for
an exact solver obtaining the exact value ofK (bPN

Y ; bPN
Y jX 2 Xh

i
). We use an implementation

of the network simplex in our experiments. Alternatively, we can opt for an approximate
solver. The proposal of Cuturi (2013) is to employ the entropic problem in (52), for which
faster solvers are available. The given-data problem is:

inf s"

NP

k=1

P

j :X 2 Xh
i

�
s"

k;j
P nY

t=1 (yk;t � yj;t )2 + " exp
�

�
P n Y

t =1
(yk;t � yj;t )2

"

��

such that
NP

i =1
s"

i;j = 1
N ;

P

j :X 2 Xh
i

s"
i;j = 1

Nh
; Nh = # f j : x j;i 2 Xh

i g,

(52)

Cuturi (2013)'s algorithm based on Sinkhorn iterations yields the solution of Problem
(52) in computationally fast times. For small values of the regularization parameter, the
obtained solution can then be used as a proxy for the solution of the classical given-data
problem in (50). The trade-o� is then between precision and speed. We also implement two
further alternatives: the sorting approach of Puccetti (2017) which provides an approxi-
mate solution to Problem (50), and the Wasserstein-Bures approximation. A given-data
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estimate of the Wasserstein-Bures index is given by

�̂W B (Y; X ) =
1

2bV[Y ]

H (N )X

h=1

Nh

N

 nYX

t=1

(m̂Y;t � m̂Y;tjX 2 Xh
i
)2+

Tr

 
b� Y + b� Y jX 2 Xh

i
� 2

� q
b� Y

b� Y jX 2 Xh
i

q
b� Y

� 1=2
! ! 1

2

; (53)

where m̂Y;t and m̂Y;tjX 2 Xh
i

are empirical means, b� Y and b� Y jX 2 Xh
i

empirical covariance

matrices. It is an immediate corollary of Theorem 21 that �̂W B (Y; X ) is asymptotically
consistent provided that the variance-covariance matrix estimators are. The calculation of
(53) is computationally fast, because it involves only linear algebra operations. However,
when distributions are not elliptical �̂W B (Y; X ) in (53) cannot be regarded as an estimate
of � (Y; X ).

5. Experiments for Univariate and Multivariate Output Test
Cases

This section is divided into two parts. In the �rst part, we discuss experiments for two
univariate test cases. In the second part, we discuss a multivariate output test case
in which it is possible to obtain � (Y; X i ) analytically. All experiments are performed
on a personal PC, with an Intel(R) Core(TM) i7-7700HQ CPU 2.80GHz processor and
64GRAM, subroutines implemented in MatLab .

5.1. Univariate Output Test Cases

Our �rst experiments are based on the well-known Ishigami function (Ishigami and Homma
1990). The input output mapping is given by Y = sin( X 1)(1 + 0 :1X 4

3 ) + 7 sin( X 2)2 with
X 1, X 2 and X 3 independent and uniformly distributed on [� �; � ]. The values of variance-
based sensitivity measures are analytically known, with� W (Y; X3) = 0 :31, � W (Y; X3) =
0:44 and � W (Y; X3) = 0, a false negative. Analytical expressions of� (Y; X i ) are out of
reach, however calculations can be performed numerically. In fact, the Ishigami model
is extremely fast to run, and we can study the estimates for large sample sizes. We
apply the given data strategy with the estimator in Equation (48). Also, because the
output is univariate, we can use the reordering strategy to �nd the Wasserstein-2 distance
between the marginal and conditional distribution of Y in each partition. Figure 2 reports
results for a numerical experiment in which the sample size is increased fromN = 50 to
N = 200000.

Table 2b reports the values of the estimatesb� (Y; X i ), b�W B (Y; X i ) and dAdv( Y; X i ) at
N = 200000. The fourth row shows that twice the values of the estimates of Adv(Y; X i )
coincide with the analytical values of the �rst-order variance-based indices, in agreement
with Equation (41). The values of b�W B (Y; X i ) are greater than the values of dAdv( Y; X i ) for
all three inputs, signaling the presence of a di�usive component. Relying on�W B (Y; X i )
already avoids the false negative forX 3, as b�W B (Y; X3) > 0. The values of b� (Y; X i )
are, in turn, greater than the values of b�W B (Y; X i ) for all three inputs. Because�(Y; X i )
accounts for the complete transport between the marginal and conditional distributions,
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(a) Asymptotic behavior of the estimates of � (Y; X i ) (cir-
cle � ), �WB (Y; X ) (Square � ), Adv( Y; X i ) (diamonds � )
for the Ishigami function. Red, Importance Measures of
X 1; Blue, Importance Measures ofX 2; Black, Importance
Measures ofX 3.

X 1 X 2 X 3

b� (Y; X i ) 0:40 0:55 0:19
b�W B (Y; X i ) 0:36 0:50 0:14

2 � dAdv( Y; X i ) 0:31 0:44 0:00

(b) Estimates of � (Y; X i ),
�W B (Y; X i ) and Adv( Y; X i ) at
N = 200; 000 for the Ishigami
function.

Figure 2: Right graph: Estimates of � (Y; X i ), �W B (Y; X i ) and Adv( Y; X i ) at increasing
sample sizes and varying partitions. Left Table: Values atN = 200000 and
H = 60.

these values indicate that the advective and di�usive parts do not fully explain the change
in distributions for the case of the Ishigami function, in accordance with the fact that the
involved distributions are not normal. Also, the value b� (Y; X3) > 0 con�rms that Y is
statistically dependent on X 3.

In our second test case, we perform experiments to analyze a higher dimensional setting.
We consider a linear input-output mapping, Y = aX T , with the number of inputs equal
to nX = 999 and nX = 9999. We let X be a multivariate normal random vector, with
pairwise correlations � i;j = 0 :5, i; j = 1 ; 2; : : : ; nX (i 6= j ). We then assign the weights
as a = [ a1; a2; : : : ; a999] and X = [ X 1; X 2; : : : ; X 999], with ai = 4 for i = 1 ; 2; : : : ; 333,
ai = � 2 for i = 334; 335; : : : ; 666; ai = 1 for i = 667; 668; : : : ; 999. (A similar 3-groups
split is performed for the 9999 case). Given this assignment,Y is correspondingly normal,
with mean equal to 0 and varianceV[Y ] = 5 :03E5 and to V[Y ] = 1 :10E6, for nX = 999
and NX = 9999, respectively. Because all conditional distributions are normal, for this
test case it is possible to obtain the values of� (Y; X i ) analytically. We calculate the
expressions using the softwareMathcad . The values are�(Y; X i ) = 0 :293, for the �rst
input group, � (Y; X i ) = 0 :289 for the second and�(Y; X i ) = 0 :291 for the third, respectively,
for nX = 999. Thus, the inputs are ranked according to their weight, which is intuitive for
linear models. However, the global sensitivity measures of the three input groups are close.
This e�ect is due to the presence of correlations. For the casenY = 9999, the analytical
calculations yields almost identical values for all three input groups with � (Y; X i ) = 0 :293,
i = 1 ; 2; 3.

Figure 3 reports estimates for samples generated using crude Monte Carlo with sizes
from N = 50 to N = 500000, with 20 replicates at each sample size. As the sample size
increases, we vary the partition cardinality from H = 8 to H = 60. Overall, the analysis
takes 450 seconds in thenX = 999 case and about 8 hours in thenX = 9999 case. Figures
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(a) Correlated normal test case with nX = 999. (b) Correlated normal test case with nX = 9999.

Figure 3: Numerical estimation of probabilistic sensitivity measures for thenX = 999 and
nX = 9999 correlated normal random variables test case. Boxplots represent
variability over 20 replicates. The sample size increases fromN = 50 to N =
500000.

3a and 3b show that the estimates tend to the corresponding analytical values as the
sample size increases.

5.2. Multivariate Normal Output Test Case

We report results of experiments aimed at illustrating Theorems 9 and 11 and the con-
vergence from below of the estimates in Equation (48), for classical as well as entropic-
OT-based global sensitivity indices. Results regarding the computational times needed to
solve the given-data OT problems in Equations (50) and (52) follow. As a benchmark, we
consider the input-output mapping and distributions in Example 18.

We �x the sample size at N = 50000 and implement the estimator in Equation (48) for
partition cardinalities increasing from H = 5 to H = 200. Benchmarks for the numerical
experiments are the analytical values of the sensitivity measures reported in Tables 1.
Figure 4 displays the results.

The graphs in Figure 4 show that the estimatesb� (Y; X i ) and b� � (Y; X i ) tend to the cor-
responding analytical values from below. In fact, re�ning the partition can be interpreted
as obtaining increasingly precise information onX i and therefore as obtaining an algebra
which is getting closer and closer to the algebra generated byX i . We also observe that
the estimates are almost insensitive to choices of the partition sizeH between 80 and 200.
This plateau e�ect is in line with previous experiments on given-data estimators in Strong
and Oakley (2013): For su�ciently large N one �nds a range of values ofH for which
estimates show very little variability. Then, Strong and Oakley (2013) suggest to pick one
of these values for reporting.

Next, we display results for a set of experiments aimed at investigating asymptotic
behavior and run times when alternative algorithmic approaches (Table 3) are used to
solve the given-data OT problem in Equation (50). For the Sinkhorn algorithm, we set
the regularization parameter at " = ` � kQk1 , with ` = 0 :001 and Q is the cost matrix
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Figure 4: Vertical axis: Estimates of � (Y; X i ) ( � ) and � � (Y; X i ) ( � ) for the multivariate-
output analytical test case. Horizontal axis: partition cardinality varies from
H = 5 to H = 200. Dotted lines represent estimates, continuous lines analytical
values (in Table 1).

Table 3: Average computational times (in seconds) for the calculations in Figure 5.
Sample Size N=50 N=100 N=250 N=500 N=1000

Network Simplex 0.0319 0.0441 0.1691 0.6959 2.6304
Sinkhorn 0.0140 0.0014 0.0043 0.0065 0.0123

Swap 0.0089 0.0007 0.0009 0.0034 0.0086
Bures 0.0115 0.0005 0.0001 0.0001 0.0003

whose elements equalQk;j =
nYP

t=1
(yk;t � yj;t )2; k; j = 1 ; 2; : : : ; nX and use the solution

as a proxy for the classical OT-problem. Figure 5 shows results at increasing sample
sizes (horizontal axis), with N = ( 50; 100; 250; 500; 1000) and partitions set at H (N ) =
( 2; 5; 7; 8; 10 ). The �rst, second and third graphs report estimates (dotted lines) obtained
when the OT problem in each partition is solved, respectively, with the network simplex,
the Sinkhorn and the Swap algorithms. The fourth graph reports estimates using (53).
All graphs show that at samples of about 250 realizations the estimates are close to the
analytical values (continuous lines).

Table 3 reports the running times of the algorithms. Notice that at N = 250, with 7
partitions, we register a total of 21 optimization problems of size 250� 35 to be solved,
at N = 1 ; 000 we have 30 problems of size 1000� 100. The numbers in Table 3 show that
the estimator that solves Problem (50) with the simplex algorithm is several times slower
than the remaining algorithms. For instance, at N = 1000 the simplex algorithm takes on
average� 2:6 seconds to solve one instance, the Sinkhorn and the Swap algorithms about
� 0:012 seconds, the estimator in (53) about� 0:0003 seconds.

We conclude by presenting the results of experiments at increasing values of the regu-
larization parameter " in the Sinkhorn approximation. We use a sample size ofN = 1000
and, in addition to ` = 0 :001 adopted in the previous experiments, we consider̀ = 0 :01,
` = 0 :1, ` = 1 and ` = 10. At ` = 0 :01 estimates increase of about 10% for the three
inputs, at ` = 0 :01 they increase of about 65% for the �rst two inputs, and of about 400%
for the third input. At ` = 1 the estimates are close to 0:97 for all three inputs and at
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Figure 5: Estimates of � (Y; X i ) (vertical axis) with four OT-solvers for the model in (44).
Sample sizes (horizontal axis) vary fromN = 50 to N = 1 ; 000.

` = 10, they are almost close to unity. Also these results are in accordance with Theorem
19.

6. Application: The ATO Simulator

Premise: Univariate or Multivariate? The approach we have outlined applies to both
a univariate and a multivariate output setting. While the distinction between the two
settings may not always be clear-cut, it is important to ensure consistency between the
quantity of interest and the decision-making problem at hand. For instance, if the model
has been constructed to forecast thenY attributes of multicriteria utility function U(Y ) =
u(Y1; Y2; : : : ; YnY ) that captures the decision-maker's preferences, thenU(Y) becomes the
univariate output of interest. In this scenario, treating the outputs as a vector would be
inconsistent with the problem setup. Nevertheless, there are situations where the output
is inherently multivariate, as in the case of a vector in which each element is a di�erent
quantity, or a spatially or temporally distributed output, an image, or, in general, a list
of outputs that cannot reasonably be incorporated into a multi-criteria utility function.
In these cases, employing a multivariate sensitivity approach does not conict with the
overall decision-making problem setup. Additionally, the two approaches are not mutually
exclusive, as in the case in which the analyst is interested in examining also the sensitivity
of a speci�c output Yi , for instance to verify the model's response vis-�a-vis an underlying
theory or business intuition.

The ATO Simulator. The theory of assemble-to-order (ATO) systems originates with
Glasserman and Wang (1998), who use stochastic simulations to analyze the trade-o� be-
tween stock reserve costs and service levels. In Hong and Nelson (2006), items (parts) are
ordered and stocked, and products are then assembled based on the available items. Some
of the items are key parts, without which the product cannot be assembled. Orders arrive
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