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1 Introduction

The aim of this paper is the extension to an infinite-dimensional framework of the theory of flows
associated to weakly differentiable (with respect to the spatial variable ) vector fields b(¢,x).
Starting from the seminal paper [30], the finite-dimensional theory had in recent times many
developments, with applications to fluid dynamics [40], [41], [26], to the theory of conservation
laws [5], [3], and it covers by now Sobolev and even bounded variation [1] vectorfields, under
suitable bounds on the distributional divergence of b;(x) := b(t,z). Furthermore, in the case
of Wﬁ)f vector fields with p > 1, even quantitative error estimates have been found in [22]; we
refer to the Lecture Notes [2] and [6], and to the bibliographies therein, for the most recent
developments on this subject. Our paper fills the gap, pointed out in [2], between this family
of results and those available in infinite-dimensional spaces, where only exponential integrability
assumptions on Vb, have been considered so far.

Before passing to the description of our results in Wiener spaces, we briefly illustrate the
heuristic ideas underlying the above-mentioned finite-dimensional results. The first basic idea is
not to look for pointwise uniqueness statements, but rather to the family of solutions to the ODE
as a whole. This leads to the concept of flow map X (¢, z) associated to b i.e. a map satisfying
X (0,2) = = and X (t,2) = by(X(t,2)). It is easily seen that this is not an invariant concept,
under modification of b in negligible sets. This leads to the concept of L"-regular flow: we give
here the definition adopted in this paper when (E,|| - ||) is a separable Banach space endowed
with a Gaussian measure 7; in the finite-dimensional theory (E = R¥) other reference measures
v could be considered as well (for instance the Lebesgue measure [30], [1]).

Definition 1.1 (L"-regular b-flow). Let b : (0,T) x E — E be a Borel vector field. If X :
[0,T] x E — E is Borel and 1 < r < 0o, we say that X is a L"-regular flow associated to b if
the following two conditions hold:
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(i) for y-a.e. x € X the map t — ||by(X (t,7))|| belongs to L'(0,T) and

X(t,x):$+/oth(X(T,$))dT Vte[0,T]. (1)

(1) for allt € [0,T) the law of X (t,-) under v is absolutely continuous with respect to y, with
a density py in L"(7), and sup,cpo 71 || ptllr < o0,

In (1), the integral is understood in Bochner’s sense, namely
t
(e*", X (t,x) —x) = / (e*,b.(X(1,2)))dr Ve € E™.
0

It is not hard to show that (see Remark 4.2), because of condition (ii), this concept is indeed
invariant under modifications of b, and so it is appropriate to deal with vector fields belonging
to LP spaces. On the other hand, condition (ii) involves all trajectories X (-, ) up to y-neglibigle
sets, so the best we can hope for, using this concept, is existence and uniqueness of X (-, z) up
to y-negligible sets.

The second basic idea is the the concept of flow is directly linked, via the theory of charac-
teristics, to the transport equation

d
%f(svx) + <bs(x)7 sz(S,J?)) =0 (2)
and to the continuity equation
d .
Tl + div(bpue) = 0. (3)

The first link has been exploited in [30] to transfer well-posedness results from the transport
equation to the ODE, getting uniqueness of L*°-regular (with respect to Lebesgue measure) b-
flows in RY (see [19] for the generalization of this approch to the case of a Gaussian measure).
This is possible because the flow maps (s,z) — X (t,s,x) (here we made also explicit the
dependence on the initial time s, that we kept equal to 0 in Definition 1.1) solve (2) for all
te[0,7T].

Here, in analogy with the approach initiated in [1] (see also [33] for a stochastic counterpart
of it, where (3) becomes the forward Kolmogorov equation), we prefer to deal with the continuity
equation, which seems to be more natural in a probabilistic framework. The link between the
ODE and (3) is based on the fact that any positive finite measure n in C([0,T]; E) concentrated
on solutions to the ODE is expected to give rise to a weak solution to (3) (if the divergence
operator is properly understood), with p; given by the marginals of n at time ¢: indeed, (3)
describes the evolution of a probability density under the action of the “velocity field” b. We
shall call these measures n generalized b-flows. Our goal will be, as in [1], [33], to transfer
well-posedness informations from the continuity equation to the ODE, getting existence and
uniqueness results of the L"-regular b-flows, under suitable assumptions on b.

We have to take into account an intrinsic limitation of the theory of L"-regular b-flows that
is typical of infinite-dimensional spaces (see for instance [47]): even if b(¢,x) = v were constant,



the flow map X (¢,z) = x + tv would not leave v quasi-invariant, unless v belongs to a particular
subspace of E, the so-called Cameron-Martin space H of (E,~), see (7) for its precise definition.
So, from now on we shall assume that b takes its values in H. However, thanks to a suitable
change of variable, we will treat also some non H-valued vector fields, in the same spirit as in
[43], [13] (see also [35], [47]).

We recall that H can be endowed with a canonical Hilbertian structure (-, -)3 that makes the
inclusion of H in F compact; we fix an orthonormal basis (e;) of H and we shall denote by b’
the components of b relative to this basis (however, all our results are independent of the choice
of (e;)).

With this choice of the range of b, whenever p; = uy7y the equation (3) can be written in the
weak sense as

d
dt/Eutdyz/Ewt,qu)Hutdfy V¢ e Cyl(E,7), (4)

where Cyl(E,~) is a suitable space of cylindrical functions induced by (e;) (see Definition 2.3).
Furthermore, a Gaussian divergence operator div,c can be defined as the adjoint in L?(7) of the
gradient along H:

[teVomar = - [[sdvedr o onE)
E E

Another typical feature of our Gaussian framework is that L°°-bounds on div, do not seem
natural, unlike those on the Euclidean divergence in R when the reference measure is the
Lebesgue measure: indeed, even if b(t, z) = c(x), with ¢ : RY — RY smooth and with bounded
derivatives, we have divyc = dive — (¢, ) which is unbounded, but exponentially integrable with
respect to 7.

We can now state the main result of this paper:

Theorem 1.2 (Existence and uniqueness of L"-regular b-flows). Letp, ¢ > 1 and let b: (0,T) x
E — H be satisfying:

(i) bell € L*((0,T); LP(7)) 5
(i) for a.e. t € (0,T) we have by € LDJ (v H) with

/ ' ( w80 @)l dv(w)>1/th < oo, (5)

and divyb; € L*((0,T); L9(v));
(i) exp(c[div,by] ™) € L=((0,T); L (7)) for some ¢ > 0.

If r == max{p’,¢'} and ¢ > rT, then the L"-regular flow ewists and is unique in the following
sense: any two L"-reqular flows X and X satisfy

X(,z)=X(,z) inl0,T], for y-a.e. z € E.



Furthermore, X is L*-regular for all s € [1, &] and the density u; of the law of X (t,-) under v
satisfies
c

1, —|.
VSG[,T]

[y ar<

/ exp(T's[divyby] ™) dvy
E L= (0,T)
In particular, if exp(c[div,bs] ™) € LOO((O, T); Ll(’y)) for all ¢ > 0, then the L"-reqular flow exists
globally in time, and is L®-regular for all s € [1,00).

The symmetric matrix (Vby)™™, whose Hilbert-Schmidt norm appears in (5), corresponds
to the symmetric part of the derivative of b;, defined in a weak sense by (22): notice that, in
analogy with the finite dimensional result [18], no condition is imposed on the antisymmetric part
of the derivative, which need not be given by a function; this leads to a particular function space
LD4(y;H) (well studied in linear elasticity in finite dimensions, see [46]) which is for instance
larger than the Sobolev space W#q('y; H), see Definitions 2.4 and 2.6. Also, we will prove that
uniqueness of X holds even within the larger class of generalized b-flows.

Let us explain first the main differences between our strategy and the techniques used in [23],
[24], [25], [43], [13] for autonomous (i.e. time independent) vector fields in infinite-dimensional
spaces. The standard approach for the existence of a flow consists in approximating the vector
field b with finite-dimensional vector fields by, constructing a finite-dimensional flow Xy, and
then passing to the limit as N — oo. This part of the proof requires quite strong a-priori
estimates on the flows to have enough compactness to pass to the limit. To get these a-priori
estimates, the assumptions on the vector field, instead of the hypotheses (i)-(iii) in Theorem 1.2,

are:
Iblxe () LX),
p€E[1,00)

exp(c||Vb| cxmy) € L'(v) for all ¢ > 0,
exp(c|div,b|) € L'(v) for some ¢ > 0,

where [|Vb|| £(3,7) denotes the operator norm of Vb from H to H. So, apart from the minor fact
that we allow a measurable time dependence of b, the main difference between these results and
ours is that we replace exponential integrability of the operator norm of Vb by g-integrability of
the (stronger) Hilbert-Schmidt norm of Vb, (or, as we said, of its symmetric part).

Let us remark for instance that, just for the existence part of a generalized b-flow, the
hypothesis on div, b could be relaxed to a one sided bound, as we did. Indeed, this assumption
allows to prove uniform estimates on the density of the approximating flows, see for instance
Theorem 6.1. On the other hand, the proof of the uniqueness of the flow strongly relies on the
fact that one can use the approximating flows X y also for negative times.

Our strategy is quite different from the above one: the existence and uniqueness of a regular
flow will be proved at once in the following way. First of all, the existence of a generalized b-flow
n, even without the regularity assumption (5), can be obtained thanks to a tightness argument for
measures in C([O, TY; E) and proving uniform estimates on the density of the finite-dimensional
approximating flows. Then we prove uniqueness in the class of generalized b-flows. This implies
as a byproduct that 7 is induced by a “deterministic” X, thus providing the desired existence and



uniqueness result. Moreover the flexibility of this approach allows us to prove the stability of the
L"-regular flow under smooth approximations of the vector field, and thanks to the uniqueness
we can also easily deduce the semigroup property.

The main part of the paper is therefore devoted to the proof of uniqueness. As we already
said, this depends on the well-posedness of the continuity equation (4). Specifically, we will
show uniqueness of solutions u; in the class L>((0,7); L"(v)). The key point, as in the finite-
dimensional theory, is to pass from (4) to

(Z/Eﬁ(ut> dy = /E<bt7 V¢>'Hﬁ(ut) dy + /E[ﬁ(Ut> - Utﬁ,(ut)]div,ybt dry Vo e Cyl(E,w), (6)

for all 3 € C(R) with 3'(z) and 23'(z) — 3(z) bounded, and then to choose as function 3 suitable
C' approximations of the positive or of the negative part, to show that the equation preserves
the sign of the initial condition. The passage from (4) to (6) can be formally justified using the
rule

div, (ve) = vdivye + (Vv, e)y

and the chain rule V3(u) = f/'(u)Vu, but it is not always possible. It is precisely at this place that
the regularity assumptions on b; enter. The finite-dimensional strategy involves a regularization
argument (in the space variable only) and a careful analysis of the “commutators” (with v = u,
C = bt>

r¢(c,v) = e*(c, VIv)y — T:(div,(ve)),

where ¢ is the regularization parameter and 77 is the regularizing operator. Already in the finite-
dimensional theory (see [30], [1]) a careful estimate of ¢ is needed, taking into account some
cancellation effects. These effects become even more important in this framework, where we
use as a regularizing operator the Ornstein-Uhlenbeck operator (32) (in particular the semigroup
property and the fact that Tj is self-adjoint from L?(v) to L¥ () will play an important role). The
core of our proof is indeed Section 6.2, where we obtain commutator estimates in R independent
of N, and therefore suitable for an extension, via the canonical cylindrical approximation, to F.

The paper is structured as follows: first we recall the main notation needed in the paper. In
Section 3 we prove the well-posedness of the continuity equation, while in Section 4 we prove
existence, uniqueness and stability of regular flows. The results of both sections rely on some
finite dimensional a-priori estimates that we postpone to Section 6. Finally, to apply our results
also in more general situations, in Section 5 we see how our results can be extended to the case
non H-valued vector fields.

2 Main notation and preliminary results

Measure-theoretic notation. All measures considered in this paper are positive, finite and
defined on the Borel o-algebra. Given f : E — F Borel and a measure p in F, we denote by fuu
the push-forward measure in F, i.e. the law of f under u. We denote by x4 the characteristic
function of a set A, equal to 1 on A, and equal to 0 on its complement.



We consider a separable Banach space (E, || - ||) endowed with a Gaussian measure 7, i.e.
(€*)x7 is a Gaussian measure in R for all e* € E*. We shall assume that 7 is centered and
non-degenerate, i.e. that fE:zrd'y($) = 0 and v is not supported in a proper subspace of E.
We recall (see [38]) that, by Fernique’s theorem, [, exp(c||z||?)dy(z) < oo, whenever 2¢ <
supjje= <1 [1{€* ) || L2 ()

Cameron-Martin space. We shall denote by H C F the Cameron Martin space associated to
(E,7v). It can be defined [12, 38| as

i { [ s@etria) : oe 2o | 7)

The non-degeneracy assumption assumption on v easily implies that H is a dense subset of E.
If we denote by i : L*(y) — H C E the map ¢ — [ ¢(x)zdy(z), and by K the kernel of i, we
can define the Cameron-Martin norm

1i(0)lle = min {lé = vl 2y),
whose induced scalar product (-, )y satisfies
(@)io)n = [ ovdy Yo IG), voe K. 8
Notice also that i({e*,x)) € K= for all e* € E*, because

/ (" 2y () dy() = (", / rp(z)dy(z) =0 Ve K.
E E

Since ¢ is not injective in general, it is often more convenient to work with the map j : E* — H,
dual of the inclusion map of H in E (i.e. j(e*) is defined by (j(e*), h)n = (e*, h) for all h € H).
The set j(E*) is obviously dense in H (for the norm || - ||%), and j is injective thanks to the
density of H in E; furthermore, choosing ¢(z) = (e*,z) in (8), we see that i((e*,x)) = j(e¥).
As a consequence the vector space {{e*,z) : e* € E*} is dense in K*. Since ||i({e*, )| <
([ l=)? d'y)l/2||<e*,x>||L2(7) = |li({e*, z))||#, the inclusion of H in E is continuous, and it is not
hard to show that it is also compact (see [12, Corollary 3.2.4]).
This setup becomes much simpler when (E, || - ||) is an Hilbert space:

Remark 2.1 (The Hilbert case). Assume that (£, ||-||) is an Hilbert space. Then, after choosing
an orthonormal basis in which the covariance operator (z,y) — [5(z,2)(y, z) dy(z) is diagonal,
we can identify E with £2, endowed with the canonical basis €;, and the coordinates z; of x € £2
relative to ¢; are independent, Gaussian and with variance )\12 (with A; > 0 by the non-degeneracy
assumption). Then, the integrability of ||z|? implies that >, A? is convergent, e} = ¢; (here we
are using the Riesz isomorphism to identify ¢? with its dual), e; = \;e; and the Cameron-Martin

space is
0 (.02
H::{xE£2 : Z(ig <oo}.

=1

The map j : (2 — H is given by (z;) — (\iz;).



Let us remark that, although we constructed H starting from F, it is indeed H which plays
a central role in our results; according to the Gross viewpoint, this space might have been taken
as the starting point, see [12, §3.9] and Section 4.4 for a discussion of this fact.
Finite-dimensional projections. The above-mentioned properties of j allow the choice of
(er) C E* such that (j(e})) is a complete orthonormal system in H. Then, setting e, := j(e}),
we can define the continuous linear projections wy : E — H by

N

N
mn(x) = Z(e}g,x)ek (: Z(ek, x)ner for x € H). (9)

k=1 k=1

The term “projection” is justified by the fact that, by the second equality in (9), 7y |z is indeed
the orthogonal projection on
Hy := span (el,...,eN). (10)

From now such a basis (e;) of H will be fixed, and we shall denote by v’ the components of
v € H relative to this basis. Also, for a given Borel function v : £ — R, we shall denote by Exu
the conditional expectation of u relative to the o-algebra generated by (e}, z),..., (e}, x). The
following result follows by martingale convergence theorems, because the o—-algebra generated
by (e}, x) is the Borel o-algebra (see also [12, Corollary 3.5.2]):

Lemma 2.2. For all p € [1,00) and u € LP(y) we have Eyu — u y-a.e. and in LP(7).

According to these projections, we can define the space Cyl(E,~) of smooth cylindrical func-
tions (notice that this definition depends on the choice of the basis (e,)).

Definition 2.3 (Smooth cylindrical functions). Let Cl;’o(RN) be the space of smooth functions
in RN, bounded together with all their derivatives. We say that ¢ : E — R is cylindrical if

¢(x) = p((el, 7)., (en, 7)) (11)
for some integer N and some v € C°(RY).

Ifv € Fand ¢ : E — R we shall denote by 0,¢ the partial derivative of ¢ along v,
wherever this exists. Obviously, cylindrical functions are differentiable infinitely many times in
all directions: if ¢ is as in (11), the first order derivative is given by

N

a¢ * * *
8v¢($) = £(<6171‘>,...,<€N,$>)<6i,1}>. (12)
i=1
If v € H the above formula becomes
N
o, «
8U¢(ﬂf) = £(<€1,IE>,...,<€N7$>)<€i,U>H,
i=1

and this allows to define the gradient of ¢ as an element of H:

Vo) = 9 (.2, e a))er € H.



Gaussian divergence and differentiability along H. Let b: E — H be a vector field with
bl € L(7y); we say that a function div,b € L'(v) is the Gaussian divergence of b (see for
instance [12, §5.8]) if

/(w, by dy = —/ odivybdy V¢ € Cyl(E, ). (13)
E E

In the finite-dimensional space F = RY endowed with the standard Gaussian we have, by an
integration by parts,
divyb =divb — (b, x). (14)

We recall the integration by parts formula
/ Dj(enyp dy —/ ple*, x) dy V¢ e Cyl(E,v), Ve* € E*. (15)
E E

This motivates the following definitions: if both w(x) and u(z)(e*, z) belong to L'(v), we call
weak derivative of u along j(e*) the linear functional on Cyl(E,~)

¢»—>—/Eu8j(e*)d>d7+/Eu¢<e*,w> dry. (16)

As in the classical finite-dimensional theory, we can define Sobolev spaces by requiring that
these functionals are representable by L?(v) functions, see Chapter 5 of [12] for a more complete
discussion of this topic.

Definition 2.4 (Sobolev space W;{’q(y)). If 1 < q < oo, we say that u € L'(y) belongs to
W#q(E,’y) if u(z)(e*, ) € LY(v) for all e* € E* and there exists g € LI(y; H) satisfying

/u5j<e*>¢dv+/ ?{g, (")) m d7=/ up(e”, x) dy Ve* € E*, Vo € Cyl(E,~). (17)
E E E

The condition u(z){e*,z) € L'(v) is automatically satisfied whenever u € LP(7y) for some
p > 1, thanks to the fact that the law of (e*,z) under v is Gaussian, so that (e*,z) € L"(v) for
all » < oc.

We shall denote, as usual, the (unique) weak derivative g by Vu and its components (g, e;)x
by O;u, so that (17) becomes

/ udip dry + / $0hu dry = / wplet,a)dy Vi1, Ve Cyl(E,).  (18)
E E E

We recall that a continuous linear operator L : H — H is said to be Hilbert-Schmidt if || L| s,
defined as the square root of the trace of L'L, is finite. Accordingly, if L;; = (L(e;), e;)% is the
symmetric matrix representing L : H — H in the basis (e;), we have that L is of Hilbert-Schmidt
class if and only if Zij L?j is convergent, and

ILllas = > L% (19)
ij

8



The following proposition shows that bounded continuous operators from E to H are of
Hilbert-Schmidt class, when restricted to H. In particular our results apply under p-integrability
assumptions on Vb; when the operator norm between E and H is used.

Proposition 2.5. Let L : E — H be a linear continuous operator. Then the restriction of L to
H is of Hilbert-Schmidt class and ||L||gs < C||L||z(gn), with C depending only on E and ~.

Proof. By [12, Theorem 3.5.10] we can find a complete orthonormal system (f,,) of H such that
> 1f2l> =: C < +00. Denoting by ||L|| the operator norm of L from E to H, we have then

IZIEs = > (L), fin ZHL )l < IIL]* leszQ ClIL*.

i7j
O

From now on, we shall denote by LP(+;H) the space of Borel maps ¢ : E — H such that
el € LP(7). Given the basis (e;) of H, we shall denote by ¢’ the components of ¢ relative to
this basis.

Definition 2.6 (The space LD(y;H)). If 1 < q < oo, we say that ¢ € L'(v;H) belongs to
LDY(v;H) if:

(a) for all h = j(e*) € H, the function (¢, h)x has a weak derivative in LI(vy) along h, that we
shall denote by Oy (c, h)y, namely

/<Ca h>H6h¢d’Y+/ $Oh(c, h)Hd’Y—/@,h)H(ﬁ(e*,@ dy Vo e Cyl(E,v); (20)
E E

E

(b) the symmetric matrices

(Vo)™ (z) ==

g [Oerten) (€ + &) (@) = ey ey (¢ — &)(@)] (21)

1
4
satisfy

L1ty < .
E

If all components ¢ of ¢ belongs to W#q(’y) then the function (Vc)ijm in (21) really corre-
sponds to the symmetric part of (Ve);; = ﬁjci, and this explains our choice of notation. However,
according to our definition of LDY(vy;H), the vector fields ¢ in this space need not have compo-
nents ¢’ in Wé’q(v). Moreover, from (21) we obtain that (8;¢’ + d;¢')/2 are representable by the
L%(v) functions (Ve);7™, namely

| 300 +dosars [(ovoytar= [ S+l aedr  Voe ()



Remark 2.7 (Density of cylindrical functions). We recall that Cyl(E,~y) is dense in all spaces
Wé’p('y), 1 < p < co. More precisely, if 1 < p,q < oo, any function u € Wé’p('y) N Li(~y) can
be approximated in L4() by cylindrical functions w, with Vu, — Vu strongly in LP(v;H). In
the case p = oo, convergence of the gradients occurs in the weak™ topology of L (vy;H). These
density results can be proved first in the finite-dimensional case and then, thanks to Lemma 2.2,
in the general case.

Remark 2.8. In the sequel we shall use the simple rule
divy (bu) = udivyb + (b, Vu)y,

valid whenever div,b € LP(7), u € LP'(y), b € L(y;H) and u € W;{’ql (7). The proof is a direct
consequence of Remark 2.7.

Remark 2.9 (Invariance of div,, W#q(v), LD4()). The definitions of Gaussian divergence,
Sobolev space and LD space, as given, involve the space Cyl(F,~), which depends on the choice
of the complete orthonormal basis (e;). However, an equivalent formulation could be given
using the space Cl}(E,’y) of functions that are Frechet differentiable along all directions in H,
with a bounded continuous gradient: indeed, cylindrical functions belong to C’l}(E, 7v), and since
CL(E,~) is contained in W#OO('y), thanks to Remark 2.7 the functions in this space can be
well approximated (in all spaces LP(y) with p < oo, and with weak® convergence in L*>(y) of
gradients) by cylindrical functions. A similar remark applies to the continuity equation, discussed
in the next section.

3 Well posedness of the continuity equation

Let I C R be an open interval. In this section we shall consider the continuity equation in I X E,
possibly with a source term f, i.e.

%(ut’y) + div, (byusy) = fr. (23)

This equation has to be understood in the weak sense, namely we require that ¢ — fE urp dry is
absolutely continuous in I and

d
G Luodr= [ ouVopairs [ fod  aemIvoecyBa) 20

The minimal requirement necessary to give a meaning to (24) is that u, f and |u|||b||3 belong to
L' (I; Ll('y)), and we shall always make assumptions on u, f and b to ensure that these properties
are satisfied.

Sometimes, to simplify our notation, with a slight abuse we drop 7 and write (23) just as

d .
&ut + div, (byu) = f.

10



However, we always have in mind the weak formulation (24), and we shall always assume that
fe LY (L; L (y)).

Since we are, in particular, requiring all maps t — f g ut® dvy to be uniformly continuous in I,
the map ¢ +— u; is weakly continuous in I, with respect to the duality of L!(y) with Cyl(E,~).
Therefore, if I = (0,7, it makes sense to say that a solution u; of the continuity equation starts
from u € L'(v) at t = 0:

lim/ u@d')fz/ﬂgbdﬁ Vu e Cyl(E,~). (25)
tlo JE E

Theorem 3.1 (Well-posedness of the continuity equation). (Ewzistence) Let b: (0,T) x E — H
be satisfying
|bellne € LH((0,T); LP (7)) for some p > 1 (26)

and

exp(c[div,b] ™) € L>°((0,T); L* (7)) for some ¢ > Tp'. (27)

Then, for any nonnegative u € L>(7), the continuity equation has a nonnegative solution u; with
up = u satisfying (as a byproduct of its construction)

/(ut)r dy < [l o) /Eexp(Tr[divA,bt])d’y vrel Sl e (29

L>=(0,T)

(Uniqueness) Let b: (0,T) x E — H be satisfying (26), by € LDI(v;H) for a.e. t € (0,T) with

AT(AgKvmeW%Swolmdp<m) (29)

div,b; € L' ((0,7); L(7)). (30)

for some ¢ > 1, and
Then, setting r = max{p’,¢'}, if ¢ > Tr the continuity equation (23) in (0,T) X E has at most
one solution in the function space L>((0,T); L"(v)).

Definition 3.2 (Renormalized solutions). We say that a solution u; of (23) in I x E is renor-
malized if

() + dive (By(u)) = [5(ue) — ()}l by + £ () (1)
in the sense of distributions in I x E, for all 3 € C1(R) with 3'(2) and 28'(z) — B(2) bounded.

In the sequel we shall often use the Ornstein-Uhlenbeck operator T}, defined for u € L'(v)
by Mehler’s formula

Tiu(w) = [ ulea+ V1= ) dy(s). (32)

In the next proposition we summarize the main properties of the OU operator used in this
paper, see Theorem 1.4.1, Theorem 2.9.1 and Proposition 5.4.8 of [12].
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Proposition 3.3 (Properties of the OU semigroup). Let T; be as in (32).

(i) I Toullrryy < llullzeqyy for all w € LP(y), p € [1,00], t > 0, and equality holds if u is
nonnegative and p = 1.

(ii) Ty is self-adjoint in L?(v) for all t > 0. More generally, if 1 < p < 0o, we have

/ vTiudy = / uTyv dry Vue LP(y), Yv e LP (v). (33)
E E

(i1i) For all p € (1,00), t >0 and u € LP(y) we have Tiu € W}i’p(v) and

IVTiull Lo (viry < C o, 0)[ull e (- (34)

(iv) For all p € [1,00] and u € W;{’p(v) we have VTyu = e Ty Vu.
(v) Ty maps Cyl(E,~y) in Cyl(E,v) and Tyw — w in LP(~y) ast | 0 for allu € LP(y), 1 < p < oo.

In the same spirit of (16), we can now extend the action of the semigroup from L!(v) to
elements £ in the algebraic dual of Cyl(E,~) as follows:

This is an extension, because if ¢ is induced by some function v € L'(v), i.e. ((,¢) = [, dudy
for all ¢ € Cyl(E,~), then because of (33) Ty/ is induced by Tyu, i.e. (Til,¢) = [ ¢Tyudy for
all ¢ € Cyl(E, ). In general we shall say that T3/ is a function whenever there exists (a unique)
v € L'(v) such that (T, ¢) = [, vpdy for all ¢ € Cyl(E,~).

In the next lemma we will use this concept when ¢ is the Gaussian divergence of a vector
field ¢: indeed, ¢ can be thought via the formula — fE<c, V)i dy as an element of the dual
of Cyl(E,~). Our first proposition provides a sufficient condition ensuring that 73(div,c) is a
function.

Lemma 3.4. Assume that r € (1,00) and ¢ € L"(v;H). Then Ty(divyc) is a function in L"(7)
for allt > 0.

Proof. We use Proposition 3.3(iii) to obtain

[(Ti(divye), ¢)| = [(divye, Tig)| < /E lellmlIVTiglln dy < Clg, t)llellr o 191 )

for all ¢ € Cyl(E,~), and we conclude. O

In the sequel we shall denote by (A(p))? the p-th moment of the standard Gaussian in R, i.e.

A(p) = ((27r)_1/2/R]x\p€_|$2/2 dx>1/p. (35)
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Proposition 3.5 (Commutator estimate). Let ¢ € LP(y;H) N LDY(v;H) for some p > 1,
1 < q <2, with divye € LU(y). Let r = max{p’,q'} and set

r* =71°(v,¢) = e*(c, VI, (v)) — Tc(div,(ve)). (36)
Then, for e >0 and v € L"(y) we have

A(p)e
171 L1y < lvllzr iy N

Finally, —r¢ — vdiv,c in L'(y) ase | 0.

lelle(yir + V20divael pae) + 201 (V¥ I msll oy |- (37)

Proof. The a-priori estimate (37), which is indeed the main technical point of this paper, will
be proved in the Section 6 in finite-dimensional spaces. Here we will just mention how the
finite-dimensional approximation can be performed.

Let us first assume that v € L. Since ve € LP(vy;H), the previous lemma ensures that ¢
is a function. Keeping c fixed, we see that if v, — v strongly in L"(y) then r¢(v,, c) — r*(v, )
in the duality with Cyl(E,), and since the L!(y) norm is lower semicontinuous with respect to
convergence in this duality, thanks to the density of cylindrical functions we see that it suffices
to prove (37) when v is cylindrical. Keeping now v € Cyl(F,~) fixed, we consider the vector
fields

N
cy = g Enxcle;.
i=1

We observe that (13) gives divoey = En(divyc), while (22) gives (Ven)™™ = En(Ve)™™.
Thus, by Jensen’s inequality for conditional expectations we obtain |len | zo(y) < [lellLo(ysm)
and

/ divyen|?dy < / divyel? dv, / (Ve ™ 4 g dy < / 1(Ve)™™ 1% o dv.
E FE FE FE

x), if we choose a cylindrical test function

Now, assuming that v depends only on (e}, z), ..., (e},
> M (with no loss of generality, because v is

¢ depending only on (e}, z),...,(ey, ), with N
fixed), we get

/ (0, )b dy = / (v, ex)édy < sup |9 / v (v, ex)| d
E E E

A
sup [¢|[[v]l L (7 [%
Ap)e

sup [¢l[|v]|Lr () {m

This means that, once we know (37) in finite-dimensional spaces, we obtain that the same
inequality holds in all Wiener spaces for all v € L*(v). Finally, to remove also this restriction
on v, we consider a sequence (v,,) C L*(y) converging in L"(vy) to v and we notice that, because
of (37), 7°(vn, ¢) is a Cauchy sequence in L! converging in the duality with Cyl(E,~¥) to r¢(v, ¢).

IN

lenll Lo + V2Ildivaen|lzagy) + 2H||(VCN)Sym||HSHLq(7)]

IN

lell zrre + VI divyel o + 2Hu<vfz>symuﬂsumm}.
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The strong convergence of ¢ can be achieved by a density argument. More precisely, if ¢ > 1
(so that r < 00), since (v, ¢) = r°(v — ¢, ¢) + r°(¢, ¢), by (37) and the density of cylindrical
functions in L" (), we need only to consider the case when v = ¢ is cylindrical. In this case

¢ = (¢, T.V¢) — T (¢pdiv,c + (c, Vo))

and its convergence to —¢div,c is an obvious consequence of the continuity properties of 1%.

In the case ¢ = 1 (that is 7 = 00), the approximation argument is a bit more involved. Since
we will never consider L*>-regular flows, we give here just a sketch of the proof. We argue as in
[41]: we write r°(v,¢) = r°(v,c — €) + (v — 0, &) + r°(0, &), with 0 and ¢ smooth and bounded
with all their derivatives. Using (37) twice, we first choose ¢ so that (v, c—¢) is small uniformly
in €, and then, since now ¢ is smooth with bounded derivatives, it suffices to choose v close to v
in L® for some s > 1 to make 7°(v — 0, €) small. We can now conclude as above. O

The following lemma is standard (both properties can be proved by a smoothing argument;
for the second one, see [12, Corollary 5.4.3|):

Lemma 3.6 (Chain rules). Let 3 € CY(R) with 8 bounded.

(i) Ifu, f € L'(I; L' (7)) satisfy %u = f in the weak sense, then %ﬁ(u) = B'(u)f, stil in the
weak sense.

(ii) If u e WoP(y) then B(u) € WP (v) and VB(u) = ' (u)Vu.

Theorem 3.7 (Renormalization property). Let b : I x E — H be satisfying the assumptions
of the uniqueness part of Theorem 3.1, with I in place of (0,T). Then any solution u; of the
continuity equation (23) in L>(I; L"(v)), with r = max{p', ¢'}, is renormalized.

Proof. In the first step we prove the renormalized property assuming that u; € W}f () for a.e.
¢, and that both u; and ||V belong to L>(I;L"(7)). Under this assumption, Remark 2.8
gives that divy(byu;) = uedivy by + (by, Vug)y, therefore

d
Ut = —uydivyby + (b, Vg )y € Ll(ﬂ L'(y)).

Now, using Lemma 3.6 and Remark 2.8 again, we get

d .
aﬂ(ut) = —ﬂ/(ut)utdlvq,bt — ﬂ/(ut)<bt, Vut>'}—{
[ﬂ(ut) — ﬁ/(ut)ut]divvbt - ﬁ(ut)divvbt - <bt, Vﬁ(ut»H
= [ﬂ(ut) - ﬁ’(ut)ut]divvbt — dlvy(btﬁ(ut))
Now we prove the renormalization property in the general case. Let us define u§ := e T, (uy);
since T} is self-adjoint in the sense of Proposition 3.3(ii) and 7, maps cylindrical functions into

cylindrical functions, the continuity equation %ut + div, (byuy) = 0 gives, still in the weak sense
of duality with cylindrical functions,

d
%uf + e T, [div, (byus)] = 0.
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Recalling the definition (36), we may write

d

%uf + div, (byu;) = e °r® + ugdiv, by.

Denoting by f¢ the right hand side, we know from Proposition 3.5 that f¢ — 0in L! ((0, T); LY(v)).
Taking into account that u§ and ||Vu||» belong to L>(I; L™y)) (by Proposition 3.3(iii)), from
the first step we obtain

%ﬂ(lﬁ) + divy (b B(uf)) = [B(uf) — ug B (up)]divaby + B'(uf) £

for all 3 € CY(R) with 8'(z) and 23'(z) — B(z) bounded. So, passing to the limit as ¢ | 0 we
obtain that u; is a renormalized solution. O

Proof of Theorem 3.1. (Existence) It can be obtained as a byproduct of the results in
Section 4: Theorem 4.5 provides a generalized flow, i.e. a positive finite measure 1 in the space
of paths Q(F), whose marginals (e;)xm at all times have a density uniformly bounded in L"(v),
and (ep)xn = wy. Then, denoting by u; the density of (e;)xm with respect to ~, Proposition 4.8
shows that u; solve the continuity equation.

(Uniqueness) By the linearity of the equation, it suffices to show that « = 0 implies uy < 0
for all ¢ € [0,T] for all solutions u € L>((0,T); L"(7)). We extend w; and by to the interval
I := (—1,T) by setting us = @ and b; = 0 for all ¢ € (—1,0], and it is easy to check that this
extension preserves the validity of the continuity equation (still in the weak form).

We choose, as a C'! approximation of the positive part, the functions 3:(z) equal to V22 + £2—
e for z > 0, and null for z < 0. Thanks to Theorem 3.7, we can apply (31) with 8 = (., with
the test function ¢ = 1, to obtain

d
dt/Eﬁs(Ut)dV = /E[ﬁs(ut) — w Bl (ug)|divy by dy < 5/E[div'ybt]_d/7>

where we used the fact that —e < (.(2)—z0L(z) < 0. Letting £ | 0 we obtain that % puy dy <0
in (—1,7T) in the sense of distributions. But since u; = 0 for all ¢+ € (—1,0), we obtain u = 0
for all t € [0, 7).

4 [Existence, uniqueness and stability of the flow

In this section we discuss the problems of existence and uniqueness of a flow associated to
b:[0,T] x E — H, and we discuss its main properties.

4.1 Existence of a generalized b-flow

It will be useful, in order to establish our first existence result, a definition of flow more general
than Definition 1.1. In the sequel we shall denote by Q(FE) the space of continuous maps from
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[0,T] to E, endowed with the sup norm. Since E is separable, Q(FE) is complete and separable.
We shall denote by
e QE) — E, er(w) == w(t)

the evaluation maps at time t € [0, T7.
If 1 < a < oo, we shall also denote by ACY(E) C Q(F) the subspace of functions w satisfying

w(t) = w(0) —i—/o g(s)ds  Vtel0,T] (38)

for some g € L*((0,T); E). The function g, that we shall denote by w, is uniquely determined
up to negligible sets by (38): indeed, if ¢ is a Lebesgue point of g then (e*, g(t)) coincides with
the derivative at t = ¢ of the real-valued absolutely continuous function t — (e*,w(t)), for all
e* e B,

Definition 4.1 (Generalized b-flows and L"-regularity). If b : [0,T] x E — E, we say that a
probability measure n in Q(E) is a flow associated to b if:

(i) m is concentrated on maps w € ACY(E) satisfying the ODE & = b(t,w) in the integral
sense, namely

w(t) = w(0) +/0 br(w(r))dr  Vte|0,T]; (39)

(i) (eo)yn = -

If in addition there exists 1 < r < oo such that, for all t € [0,T], the image measures (e;)um
are absolutely continuous with respect to v with a density in L"(7y), then we say that the flow is
L"-reqular.

Remark 4.2 (Invariance of b-flows). Assume that 7 is a generalized L'-regular b-flow and b is a
modification of b, i.e., for a.e. t € (0,T) the set Ny := {b; # b;} is v-negligible. Then, because of
L'-regularity we know that, for a.e. t € (0,T), w(t) ¢ Ny n-almost surely. By Fubini’s theorem,
we obtain that, for p-a.e. w, the set of times ¢ such that w(t) € Ny is negligible in (0,7"). As a
consequence 1) is a b-flow as well.

Remark 4.3 (Martingale solutions of ODEs). We remark that the notion of generalized flow
coincides with the Stroock-Varadhan’s notion of martingale solutions for stochastic differential
equations in the particular case when there is no noise (so that the stochastic differential equation
reduces to an ordinary differential equations), see for instance [45] and [33, Lemma 3.8].

From now on, we shall adopt the convention ||v|y = 400 for v € E'\ H.

Proposition 4.4 (Compactness). Let K C E be a compact set, C > 0, a € (1,00) and let
F C AC*(E) be the family defined by:

T
F = {w € ACY(E) : w(0) € K, / |w||5y dt < C}.
0
Then F is compact in Q(E).
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Proof. Let us fix an integer h, and split [0,7] in the h equal intervals I; := [iT/h, (i + 1)T/h],
i =0,...,~h — 1. We consider the family F}, obtained by replacing each curve w(t) in F with
the continuous “piecewise affine” curve wy, coinciding with w at the endpoints of the intervals I;
and with constant derivative, equal to L [, w(t)dt, in all intervals (iT'/h, (i + 1)T/h). We will
check that each family F}, is relatively com[;act, and that sup |w —wp| — 0 as h — oo, uniformly
with respect to w € F. These two facts obviously imply, by a diagonal argument, the relative
compactness of F.

The family Fy is easily seen to be relatively compact: indeed, the initial points of the curve lie
in the compact set K, and since { [ I w(t) dt},er is uniformly bounded in H, the compactness of
the embedding of H in E shows that also the family of points {wp,(T/h) },eF is relatively compact;
continuing in this way, we prove that all families of points {wp(iT/h)}wer, i =0,...,h—1, and
therefore the family F},, are relatively compact.

Fix w € F; denoting by L the norm of the embedding of H in F, we have

t t T 1-1/«
o) —an®l < [ Natr) —an@lldr <22 [ Jomlhedr < 2Lcl/a<)
iT/h iT/h h

for all t € [iT/h, (i + 1)T'/h]. This proves the uniform convergence of wy, to w as h — oo, as w
varies in F.

Finally, we have to check that F is closed. The stability of the condition w(0) € K under
uniform convergence is obvious. The stability of the second condition can be easily obtained
thanks to the reflexivity of the space L*((0,T);H). O

Theorem 4.5 (Existence of L"-regular generalized b-flows). Let b : [0,T] x E — H be satisfying
the assumptions of the existence part of Theorem 3.1. Then there exists a generalized b-flow n,
L"-regular for all r € [1,¢/T). In addition, the density u: of (er)un with respect to vy satisfies

/(ut)T dy < H/exp(Tr[div,ybt}—) dry vVt e [0,T]. (40)

L>°(0,T)

Proof. Step 1. (finite-dimensional approximation) Let by : [0,7] x B — Hy be defined by
Zfil ‘vei, where ' '
by (t,-) := Enbi, 1<i<N, tel0,T].

Arguing as in the proof of Proposition 3.5, we have the estimates

/OT</EH(bN)t|’%d’Y(x)>l/pdtS/OT(/EHbt]%dﬂy(x))l/pdt, (41)

[ esplclaiv, o)) data) 42)

By applying Theorem 6.1 to the finite-dimensional fields by given by the restriction of by
to [0,7] x Hy, we obtain a generalized flow on in Hy (i.e. a positive finite measure in Q(Hy))

S ‘

/ exp(c[divyby] ™) dy(x)
E

L>°(0,T) L>°(0,T)
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associated to BN. Using the inclusion map iy of Hy in H we obtain a generalized flow np =
(in)40 N associated to by. In addition, (42) and the finite-dimensional estimate (57) give

: (43)
L>=(0,T)

/ exp(Tr[div,by]”) dvy
E

sup sup / (WY dy < sy
te[0,7] N>1JE

with uf¥ equal to the density of (e;)4my with respect to 7.

Step 2. (Tightness and limit flow n). We call coercive a functional ¥ if its sublevel sets {¥ < C'}
are compact. Since (Enxuy) is a tight family of measures, by Prokhorov theorem we can find (see
for instance [45]) a coercive functional ®; : E — [0, +00) such that supy [, ®1Eytdy < co. We
choose a € (1, p) such that (p/a) < ¢/T (this is possible because we are assuming that p'T < c)
and consider the functional

O(w) := {@1(00(0)) + foT lw(®)|g dt if we ACP(E);

‘ (44)
+oo if w e QE)\ ACY(E).

Thanks to Proposition 4.4 and the coercivity of ®;, ® is a coercive functional in Q(E). Since

T
/Q L i) = /E By () Ea() dy(z) + /0 /Q o N )

T
_ [E By (2)Eyvi(r) dy(z) + / [E (o )e (@) 150 () dy ()

we can apply Holder inequality with the exponents p/a and (p/a)’, (41), (42) and (43) to obtain
that [ ®dny is uniformly bounded. So, we can apply again Prokhorov theorem to obtain that
(ny) is tight in Q(F). Therefore we can find a positive finite measure i in Q(FE) and a family
of integers N; — oo such that ny, — 1 weakly, in the duality with C’b(Q(E)). In the sequel, to
simplify our notation, we shall assume that convergence occurs as N — co. Obviously, because
of (43), m is L"-regular and, more precisely, (40) holds.

Step 3. (n is a b-flow). It suffices to show that

/ LA [lw(t) —w(0) — / bs(w(s)) ds||dn =0 (45)
Q(E) 0

for any ¢ € [0,T]. The technical difficulty is the integrand in (45), due to the lack of regularity
of b, is not continuous in Q(F); the truncation with the constant 1 is used to have a bounded
integrand. To this aim, we prove first that

t T
/Q PREECRROR /0 ea(w(s)) ds] dn < /0 /E 1ba(z) — ex(a)|ua(z) dy(z) ds  (46)

for any bounded continuous function e. Then, choosing a sequence (¢,) converging to b in
L'((0,T); LP(v; E)), and noticing that

T T
/Q(E)/O [bs(w(s)) — (en)s(w(s))| dsdn = /0 /E 165 (2) — (cn)s(x)||us(z) dy(z) ds — 0,
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we can pass to the limit in (46) with ¢ = ¢, to obtain (45).
It remains to show (46). This is a limiting argument based on the fact that (45) holds for

bN; UNg

/| RIVEORROR | et dsian

= Jm [ e ) - | et sl amy
= g [ 1l | )steto) - entwls) sl amy
T T
i N = —cs(x)||us(x x)ds.
< tmswp [ [ o) — @)l @ st ds = [ [ ) e uste) dr (@) d

In order to obtain the last equality we added and subtracted ||bs — c;||ul, and we used the

strong convergence of by to b in L'((0,T); LP(v; E)) and the weak* convergence of ulY to us in
L=((0,T); LV (v; B)). O

4.2 Uniqueness of the b-flow

The following lemma provides a simple characterization of Dirac masses (i.e. measures concen-
trated at a single point), for measures in Q(F) and for families of measures in E.

Lemma 4.6. Let o be a positive finite measure in Q(E). Then o is a Dirac mass if and only if
(et)#0 is a Dirac mass for allt € QN [0,T].

A Borel family {vy}zer of positive finite measures in E (i.e. x +— vy(A) is Borel in E for all
A C E Borel) is made, for v-a.e. z, by Dirac masses if and only if

Vp(A1)vg(A2) =0 v-a.e. in E, for all disjoint Borel sets A1, Ay C E. (47)

Proof. The first statement is a direct consequence of the fact that all elements of Q(E) are
continuous maps, which are uniquely determined on Q N [0,7]. In order to prove the second
statement, let us fix an integer k > 1 and a countable partition (A4;) of Borel sets with diam(A4;) <
1/k (its existence is ensured by the separability of E). By (47) we obtain a 7y-negligible Borel
set Ny, satisfying v, (A;)vy(A;) = 0 for all z € E'\ Nj. As a consequence, the support of each of
the measures v,, as x varies in E \ N, is contained in the closure of one of the sets A;, which
has diameter less than 1/k. It follows that v, is a Dirac mass for all z € E'\ |, Nk. O

Theorem 4.7 (Uniqueness of L"-regular generalized b-flows). Let b: [0, T]x E — H be satisfying
the assumptions of the uniqueness part of Theorem 3.1, let r = max{p’,q'} and assume that
c>rT. Let m be a L"-reqular generalized b-flow. Then:

(i) for v-a.e. x € E, the measures E(n|w(0) = x) are Dirac masses in Q(FE), and setting

the map X (t,z) is a L"-regqular b-flow, according to Definition 1.1.

19



(1) Any other L"-reqular generalized b-flow coincides with n. In particular X is the unique
L"-reqular b-flow.

Proof. (i) We set 1, :== E(n|w(0) = x). Taking into account the first statement in Lemma 4.6, it
suffices to show that, for t € QN [0,77] fixed, the measures v, := E((ef) xn|w(0) = x) = (ef)xn,
are Dirac masses for y-a.e. « € E. Still using Lemma 4.6, we will check the validity of (47).
Since v, = 0, when t = 0, we shall assume that ¢ > 0.

Let us argue by contradiction, assuming the existence of a Borel set L C E with y(L) > 0
and disjoint Borel sets A, Ay C E such that both v,(A4;) and v;(A2) are positive for z € L.
We will get a contradiction with Theorem 3.1, building two distinct solutions of the continuity
equation with the same initial condition @ € L*°(v). With no loss of generality, possibly passing
to a smaller set L still with positive y-measure, we can assume that the quotient B(z) :=
vy (A1) /vz(A2) is uniformly bounded in L. Let ©; C Q(F) be the set of trajectories w which
belong to A; at time #; obviously ;1 N Qs = () and we can define positive finite measures n; in
Q(E) by

M :=/L><szmmdv(w)7 up :Z/Lﬂ(w)mmxdv(x).

By Proposition 4.8, both 1; and 7, induce, via the identity uiy = (e;)xm;, a solution to the
continuity equation which is uniformly bounded (just by comparison with the one induced by 1)
in L"(y). Moreover, both solutions start from the same initial condition u(x) = v, (A1)xL(x).
On the other hand, by the definition of €2;, u%’y is concentrated in Ay while utg’y is concentrated
in Ag, therefore u% # utg So, uniqueness of solutions to the continuity equation is violated.

(ii) If o is any other L"-regular generalized b-flow, we may apply statement (i) to the flows o,
to obtain that for y-a.e. z also the measures E(o|w(0) = x) are Dirac masses; but since the
property of being a generalized flow is stable under convex combinations, also the measures

n+o
2

%E(?ﬂw(O) =)+ %E(alw(O) =z) = E( [w(0) = z)

must be Dirac masses for y-a.e. x. This can happen only if E(n|w(0) = z) = E(o|w(0) = ) for
y-a.e. . O]

The connection between solutions to the ODE X = b;(X) and the continuity equation is
classical: in the next proposition we present it under natural regularity assumptions in this
setting.

Proposition 4.8. Let n be a positive finite measure in Q(E) satisfying:

(a) m is concentrated on paths w € ACY(E) such that w(t) = w(0) + fg bs(w(s))ds for all
t € [0,77];

(6) J3 Jom €@l dn(w) dt < oo.

Then the measures iy = (e;)4m satisfy %Mt +div.y (b)) =0 in (0,T) X E in the weak sense.
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Proof. Let ¢(z) = ¥((e],z),..., (e}, x)) be cylindrical. By (a) and Fubini’s theorem, for a.e.
t the following property holds: the maps (ef,w(t)), 1 < i < N, are differentiable at ¢, with
derivative equal to (e}, b (w(t))), for n-a.e. w. Taking (12) into account, for a.e. ¢t we have

i/ﬁd’“ - % Q(E)Wiw(t)%---><e7v,w<t>>>dn

- Z [ B0 ()50

B Z/Q(E 0z ((e1,w(®))s - .-, (en, w(t))){ei, br(w(t)))r dn

= / (V¢, bt>'H dut
E

In the previous identity we used, to pass to the limit under the integral sign, the property

lim (¢ w(t+h) —w(t)

pm e N Y= (ef,w(t)) in L'(m), for 1 <i< N,

whose validity for a.e. t is justified by assumption (b). The same assumption also guaranteees
(see for instance [2, §3] for a detailed proof) that ¢ — [ ¢ dpu, is absolutely continuous, so its
pointwise a.e. derivative coincides with the distributional derivative. O

4.3 Stability of the b-flow and semigroup property

The methods we used to show existence and uniqueness of the flow also yield stability of the flow
with respect to approximations (not necessarily finite-dimensional ones) of the vector field. In
the proof we shall use the following simple lemma (see for instance Lemma 22 of [2] for a proof),
where we use the notation id x f for the map = — (z, f(x)).

Lemma 4.9 (Convergence in law and in probability). Let F' be a metric space and let fp, f :
E — F be Borel maps. Then f, — f in y-probability if and only if id X f, — id x f in law.

Theorem 4.10 (Stability of L"-regular b-flows). Let p, ¢ > 1, r = max{p’,¢'} and let b,, b :
(0,T) x E — H be satisfying:

(i) by — b in L1((0,T); LP (v H));
(i) for a.e. t € (0,T) we have (by)s, by € LD, (v; H) with

sup | ' ( JRLCONETTE dv<x>) < o0 (49)

and divy(by); and div,b; belong to L' ((0,T); L1(v));

(iti) exp(c[divy(bn)] ™) are uniformly bounded in L>((0,T); L'(v)) for some ¢ > Tr.
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Then, denoting by X, (resp. X ) the unique L" reqular b,-flows (resp. b-flow) we have

lim [ sup | Xn(,z) — X(-,2)||dy(z) = 0. (50)
n—o0 JE [0,T)

Proof. Let us denote the generalized b,-flows 7n,, induced by X,, namely the law under -~
of x — X,(-,z). The uniform estimates (iii), together with the boundedness of |b,||# in
L'((0,T); LP(7)) imply, in view of (40),

< oo Vit e [0,T], (51)

sup / (uf)" dy < sup
L>=(0,T)

neN neN

/ exp(Tr[div,b}] ™) dvy

where uj is the density of (e;)xm, = X(t, )7y with respect to 7. In addition, by the same
argument used in Step 2 of the proof of Theorem 4.5 we have

sup / B(w) dn, (w) < oo,
neNJQ(E)

where @ is defined as in (44), with « € (1,p) and ®; : E — [0, 00) ~-integrable and coercive.

This estimate implies the tightness of (n,,). If n is a limit point, in the duality with Cy(Q2(E)),
of m,,, the same argument used in Step 3 of the proof of Theorem 4.5 gives that 1 is a generalized
b-flow. In addition, the uniform estimates (51) imply that n is L"-regular. As a consequence we
can apply Theorem 4.7 to obtain that m is the law of the Q(FE)-valued map = — X (-,z), and
more precisely that E(n|w(0) = x) = dx(. 4 for y-a.e. x. Therefore, by the uniqueness of X, the
whole sequence (n,,) converges to i and X, converge in law to X.

In order to obtain that = — X, (-,x) converge in 7-probability to x +— X(-,x) we use
Lemma 4.9 with F' = Q(F), so we have to show that id x X, (-, z) converge in law to id x X (-, x).
For all ¥ € Cy(E x Q(E)) we have

/E $ X)) = [ bleof), ) dn,

QE

leo(w),w) dn = / (e, X (- 2)) dr(a),
) E

B

and this proves the convergence in law.

Finally, by adding and subtracting =, we can prove (50) provided we show that supyg 7 | X (-, 7)—
x| € LY(y) and supjo, 71| X n(+, ) — x| are equi-integrable in L(v). We prove the second property
only, because the proof of the first one is analogous. Starting from the integral formulation of
the ODE, Jensen’s inequality gives supy 7 [ X (-, 2) — 2|* < Tt fOT |b-(X (7, x))|| dT and by
integrating both sides with respect to 7y, Fubini’s theorem gives

T
/Sup|Xn(',x)—x|ad’y(x)§T°‘1// /\bTHauﬁd’ydT.
E 0,7 eJo JE

Choosing « > 1 such that (p/a) < ¢/T (this is possible because we are assuming that ¢ >
p'T) and applying the Holder inequality with the exponents p/a and (p/«)’ we obtain that
supjo 7] | Xn (- z) — 2| are equibounded in L*(7). O
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Under the same assumptions of Theorem 4.7, for all s € [0,7] also a unique L"-regular flow
X?:[s,T] x E — E exists, characterized by the properties that 7 +— X°(7,z) is an absolutely
continuous map in [s, T satisfying

X3(t,z) =+ /t b (X°(r,z))dr  Vtels,T] (52)

for y-a.e. x € E, and the regularity condition X°(7,-)xy = fr7v, with f; € L"(~y) uniformly for
T € [s,T]. This family of flow maps satisfies the semigroup property:

Proposition 4.11 (Semigroup property). Under the same assumptions of Theorem 4.7, the
unique L"-reqular flows X° starting at time s satisfy the semigroup property

X (t, X" (s,x)) = X"(t,z) for v-a.e. t€ E,VO<r<s<t<T. (53)

Proof. Let r, s, t be fixed. By combining the finite-dimensional projection argument of Step
1 of the proof of Theorem 4.5, with the smoothing argument used in Step 2 of the proof of
Theorem 6.1 we can find a family of vector fields b, converging to b in L' ((0,7T); LP(v; H)) and
satisfying the uniform bounds of Theorem 4.10, whose (classical) flows X, satisfy the semigroup
property (see (62))

X5 (t, X7 (s,x)) = X (t,x) for y-a.e. x € E,V0<r<s<t<T. (54)

We will pass to the limit in (54), to obtain (53). To this aim, notice that (50) of Theorem 4.10
immediately provides the convergence in L!(7) of the right hand sides, so that we need just
to show convergence in vy-measure of the left hand sides. Notice first that the convergence
in -measure of X7 (s,-) to X" (s,-) implies the convergence in y-measure of (X7 (s,-)) to
(X" (s,-)) for any Borel function ¢ : E — R (this is a simple consequence of the fact that,
by Lusin’s theorem, we can find a nondecreasing sequence of compact sets K,, C E such that
Y|k, is uniformly continuous and v(F \ K,) | 0, and of the fact that the laws of X7 (s,-) are
uniformly bounded in L"(7)), so that choosing 1(z) := X?*(¢,2), and adding and subtracting
X?(t, X, (s,x)), the convergence in y-measure of the right hand sides of (54) to X* (¢, X" (s,x))
follows by the convergence in y-measure to 0 of

sz (ta X;(S, :E)) - X° (ta X;(S, :E)) :

Denoting by py,, the density of the law of X7 (s,-), we have

/MHXZ(thZ(Sax))—Xs(thZ(Sax))Hd’V(w)=/ LAIXG(Ey) = X2(8 ) llpa(y) dy(y),
E E

and the right hand side tends to 0 thanks to (50) and to the equi-integrability of (py,). O

The semigroup property allows also to construct a unique family of flows X* : [s,T] X E x E
even in the case when the assumption (27) is replaced by

exp(c[divyb] ™) € L>((0,T); L' (7)) for some ¢ > 0.
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The idea is to compose the flows defined on sufficiently short intervals, with length 7" satisfying
¢ > rT’. Tt is easy to check that this family of flow maps is uniquely determined by the semigroup
property (53) and by the local regularity property

X°(t,-) 4y < v with a density in L"(y) for all t € [s,min{s +T",T'}], s € [0, T).
Globally in time, the only property retained is X*(t,-)xy < v for all t € [s, 7.

4.4 Convergence of finite-dimensional flows

Assume that we are given vector fields by : [0,7] x RY — R¥ satisfying, for some p, ¢ > 1 the
assumptions (i), (ii), (iii) of Theorem 1.2 (with E = H = RY) relative to the standard Gaussian
vn in RV, with norms uniformly bounded by constants independent of N. Let us assume that
by is a consistent family, namely the conditional expectation of the projection of (byy1): on
RV, given x',..., 2", is (by);. Let X : [0,7] x RV — RY be the associated by-flows.

In this section we briefly illustrate how the stability results of this paper can be used to prove
the convergence of X y and to characterize their limit.

To this aim, let us denote by =, the product of standard Gaussians in the countable product
R, and notice that the comnsistency assumption provides us with a unique vector field b :
[0,T] x R® — R* such that, denoting by Ex the conditional expectation with respect to
z',...,2" and by my : R® — RY the canonical projections, the identities Exmnb; = (bn);
hold. In order to recover a Wiener space we fix a sequence ()\;) € £? and define

E = {(mz) : i)\f(ﬂ)Q < oo}.
i=1

The space E can be endowed with the canonical scalar product, and obviously 7,(E) = 1, so
that b can be also viewed as a vector field in E and the induced measure v in E is Gaussian.
According to Remark 2.1, its Cameron-Martin space H can be identified with #2. Then, we can
apply the stability Theorem 4.10 (viewing, with a slight abuse, by as vector fields in E and,
consequently, their flows X y as flows in E which leave 2V 2N+2 | fixed) to obtain that X y
converge to the flow X relative to b in L!(v; E). It follows that

lim ZA?\XﬁV(t, z) — Xt x)2dyp(z) =0  Vte[0,T], V(\) € 2 (55)
Ree\ =1

N—oo

Finally, notice that also X could be defined without an explicit mention to E, working in (R>°, ~;)
in place of (E, 7). According to this viewpoint, E plays just the role of an auxiliary space, and
deliberately we wrote (55) without an explicit mention to it.

5 An extension to non H-valued vector fields

In [43], [13], the authors consider the following equation:

X(t2) = O + /0 Q1_bs(X (s, 2)) ds. (56)
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Here (Q¢)ter is a strongly continuous group of orthogonal operator on H, and Q. : E — E denotes
the measurable linear extension of @ to E (which always exists and preserves the measure ~,
see for instance [36]). Observe that, thanks to the Duhamel formula, (56) formally corresponds
to the equation

X (t,z) = LX (t,x) + by(X (t,2)),

where L denotes the generator of the group (i.e. Q; = LQ;).

The definition of L"-regular flow can be extended in the obvious way to (56). Let us now see
how our results allow to prove existence and uniqueness of L"-regular flows under the assumptions
of Theorem 1.2 (observe that this forces in particular r > 1).

Let X (t,) be a solution of (56), and define Y (t,x) := Q_; X (t, ). Then we have

Y(tz) = m+/0 Q_sby(X (s, 7)) ds
= :U+/O Q_sbs(QsY (s,)) ds.

Therefore Y is a flow associated to the vector field ¢;(z) := Q_;by(Qyx). Moreover Y is still
a L"-regular flow. Indeed, if uy € L"(7y) denotes the density of the law of X (¢,-), then, for all
¢ € Cyl(E, ), we have

/¢>(Y(t,:r))dv(:x) = /gb Q_ X (t,x)) dy(x /qs O_z)ug(z) dy(z)
< Hut”Lr(V)HQZ)OQtHLT/(y) = HUtHLT(y)H(f’HLr'm-

Since r > 1, this implies that Y is L"-regular. On the other hand we remark that, using the same
argument, one obtains that, if Y is a L"-regular flow associated to ¢, then X (¢, ) := Q;Y (¢, )
is a L"-regular flow for (56).

We have therefore shown that there is a one-to-one correspondence between L"-regular flows
for (56) and L"-regular flows associated to e¢. To conclude the existence and uniqueness of L'-
regular flows for (56), it suffices to observe that, thanks to the orthogonality of @Q; and the
measure-preserving property of Qy, if b satisfies all the assumptions in Theorem 1.2, then so does
c thanks to the identities [|c,(x)[l3 = [|be(Qt) [l [|(Ver)¥™ (@) || s = (V)™ (Qiz)| s, and
divy ¢(z) = divy by(Qy).

Indeed, let us check the formula for the symmetric part of the derivative, the proof of the
one concerning the divergence being similar and even simpler. Let h = j(e*) € H and notice
that Q:h = j(f*), where (f*,y) = (e*,Q_;(y)). Using Remark 2.9 and the fact that ¢ — ¢ o Q;
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maps Cyl(E,~) into C}(E,~), for ¢ € Cyl(E,~) we get

/ (e B> dy — / (b(Ge), Qi () dy ()
E E

_ /E (be(y), Qeh) (D) 0 O—o(y) dr(y) = /E (be(y), Qeh)rdoun(6 0 O—1) () d(y)
=~ [ BaatbQuisdo Grdr() + [ (i), Qb 0 Q- 0} ()

FE FE
- / Boun (b, Qul)r] o Qupdr(z) + / (ex(z), Ryndle®, z) dy(z).

FE E

This proves that Oy (ce, h)n = 0g,n(be, Qih)1 o Qq, and using the fact that Q; maps orthonormal
bases of H in orthonormal bases of H we get [[(Ve)™™ || ns = ||[(Vb)™™| ms © Q.

6 Finite-dimensional estimates

This section is devoted to the proof of the crucial a-priori bounds (28) and (37) in finite-
dimensional Wiener spaces. So, we shall assume that £ = H = R and, only in this section,
denote by z -y the scalar product in RY, and by |z| the Euclidean norm (corresponding to the
norm of the Cameron-Martin space). Also, only in this section we shall denote by 7 the standard
Gaussian in RY, product of N standard Gaussians in R, and by | integrals on the whole of RN
%he sums ), (resp. ), ;) will always be understood with ¢ (resp. ¢ and j) running from 1 to

6.1 Upper bounds on the flow density

In this subsection we show the existence part of Theorem 3.1 in finite-dimensional Wiener spaces
E=H=RN.

Theorem 6.1. Let b : (0,7) x RV — RN be satisfying the assumptions of the existence part
of Theorem 3.1. Then, for any r € [1,¢/T| there exists a generalized L"-reqular b-flow n. Its
density u; satisfies also

/ ()" dy < H / exp(Tr[div,b,]") dy vt e [0,7]. (57)

L5°(0,T)

Proof. Step 1. Here we consider first the case when b; are smooth, with fOT [Vt oo () dt finite

for all bounded open sets B C RY. Under this assumption, for all z € RY the unique solution
X (-,x) to the ODE X (t,x) = by(X (t,x)), with the initial condition X (0,z) = z, is defined
until some maximal time 7(z) € (0,7]. Obviously, by the maximality of 7(z), if

lim sup | X (¢, z)| < 400
tT7(z)

then 7(z) = T and the solution is continuous in [0, 7.
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Let us fix s € [0,T"). We denote Ey the set {7 > s} and notice that standard stability results
for ODE’s with a locally Lipschitz vector field ensure that E5 is open and that = — X (t,z) is
smooth in Fj for t € [0, s]. Furthermore, from the identity V, X (t,z) = Vb (X (t,2)) V. X (t, ),
obtained by spatial differentiation of the ODE (see [2] for details), one obtains

JX (t,x) = divb, (X (t,2))J X (t,z) xz € E,, te0,s], (58)

where JX (¢, x) is the determinant of VX (¢, x).

We first compute a pointwise expression for the measure X (¢, -)#(xg,7) for t € [0, s]. By the
change of variables formula, the density p§ of X (¢,-)4(xg,7) with respect to £ is linked to
the initial density p° by

pX (k) = SR

where p°(y) := xE, (y)e_|y|2/2. Denoting by uj the density of X (t,-)4(xg,v) with respect to v,
we get

uf (X (t,2)) = %elxﬁvx)l?ﬂ. (59)

So, taking the identity (58) into account, we obtain

d . ﬁs($) z)|? : S

pn uf (X (t,z)) = —divyb (X (t,2)) mep{(t’ I/ = —divy b (X (t,2))uf (X (t,2)).
By integrating the ODE, for ¢ € [0, s] we get

uf(X(t,x)) = xg.(z)exp

-/ div, by (X (,2)) dT>
/O i by (X (7, )] dT>.

< XE(z)exp

We can now estimate ||uf||z-(y) as follows:

Jurar = [ < few(-1 [@b (X)) dr)xe @b

[ o
[

Now, set A(t fo lus]l - () @7 and apply the Hélder inequality to get

< exp (r —1)[div,b, (X(T, x))]_) drxg,(x)dy(x)

—

/,
/ t(r —D[divybr (X (7, 2))]7) xp, (#) dy () dr
/

SR SES S

< exp (T (r — 1)[divyb-(y)] ") ui(y) dy(y) dr.

t 1/r
N < 1( /0 / exp(Tr[div by (4)] ) dv(y) dT) A7) (60)
< Ktl/r’flAl/rOf) _ thl/rAl/r(t)’
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with K := || [ exp(Tr[div,b;] ™) d’y”}:/oz o) An integration of this differential inequality yields

A(t) < K"'t, which inserted into (60) gives

/(uf)rdfy < H/exp(Tr[divybt]_) dy Vtelo,s], Vs e [0,T). (61)

Lo(0,T)

Now, let us prove that the flow is globally defined in [0, 7] for v-a.e. x: we have indeed

7(x)
/sup X (t,2) — 2| dy(z) < // 1be(X (¢, 2))] dt dr(x / / Bu(X (¢, 2))| dr(z) dt
[0,7(x)) E;

= / /|bt|u§d'ydt.
0

Using (61) with s = t, we obtain that [ sup |X(¢,z)— z|dy(z) is finite, so that 7(z) =T and
(0,7(x))
X (-, z) is continuous up to t = T for y-a.e. z. Letting s T T in (61) we obtain (57).
Denoting as in (52) by X° the flow starting at time s, we also notice (this is useful in
the proof, by approximation, of the semigroup property in Proposition 4.11) that the pointwise
uniqueness of the flow implies the semigroup property

X5 (t,X"(s,z)) = X"(t,x) VO<r<s<t<T (62)

for all x where X" (-, z) is globally defined in [r, T).

Step 2. In this step we remove the regularity assumptions made on b, considering the vector
fields b, defined by b (t,-) := T:bt. Tt is immediate to check that the fields b, satisfy the regularity
assumptions made in Step 1, so the existence of a L"-regular b.-flow n, satisfying

[y ar < | [ exp(ria, @) (63)

L50(0,T)
is ensured by Step 1. In (63) the functions uj are, as usual, the densities of (e;)xmn, with respect

to . Now, since divy((b.);) = e *T.(div,b;), we may apply Jensen’s inequality to get

/ (W) dy < H / exp (e~ Tr[div,b;] ™) dy (64)

Lo>=(0,T)

/{)T</Hbe(t,x)\’%d’y)l/pdtS/OT</\b(t,x)”%dfy)l/pdt,

the same tightness argument used in the proof of Theorem 4.5 to pass from finitely many to
infinitely many dimensions provides us with a b-flow n satisfying (57): any weak limit point n
ofm.ase | 0. O

Since
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6.2 Commutator estimate

This subsection is entirely devoted to the proof of the commutator estimate (37) in finite-
dimensional Wiener spaces.
We will often use the “Gaussian rotations”

(z,y) = (z,w) = (e z + V1—e 2y —\/1—e 2z + e y), (65)

mapping the product measure y(dz) x v(dy) into v(dz) x y(dw). Indeed, the transformations
above preserve the Lebesgue measure in RY x RY (being their Jacobian identically equal to 1)
and |z[? + [y[* = [2* + |w/*.

We now state two elementary Gaussian estimates. The first one

(fu- w|pdv<w>)1/p ~ 11 ( [ tual dv<w>)1/p _A@II VIERY,  (66)

with A depending only on p, is a simple consequence of the rotation invariance of ~.

Lemma 6.2. Let A : RN — RY be a linear map and ¢ € R. Then, if ¢ < 2, we have

1/q
(/‘(Aw,w> —c|? dv(w)) < V2| AV s + |tr A — ¢ (67)

Proof. Obviously we can assume that A is symmetric. By rotation invariance, we can also assume
that A is diagonal, and denote by Aq,..., Ay its eigenvalues. We have then

/|Z N(wh)? = o) dy(w) = /[Z A (0 () = 2037 Aw)? + c2] dy(w)
= 3D N4> AN -2 N+

1#] i

= 2> A+ AN -2 N+
% i 4
= 22/\?—1—(2/\1'—0)2.

If ¢ = 2 we take the square roots of both sides and we conclude; if ¢ < 2 we apply the Holder
inequality. O

Henceforth, a vector field ¢ € LP(v;RY) N LD (v;RY) and a function v € L"(y) will be
fixed, with r = max{p’,¢'} and p > 1, 1 < ¢ < 2. Our goal is to prove the estimate

A p)E / . / sym
17011 < Mol | Aae el iy + 27 ivelun) + 244 VAT ™ sl |
(68)
where
r® :=¢ec - Vv, — Te(divw(vc)). (69)
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Since 21/7 < /2, this yields the finite-dimensional version of (37).
In this setup the Ornstein-Uhlenbeck operator v. := T, v takes the explicit form

vela) = [ vle o+ V1= eEY dr(y) = [ vl v

with

' 1 le=¢z — z|? | 2|2

pe(a,2) = (e =2 eXP(—m) exp(5-)
1 le=*x|? — 267z - 2 + |e 2|2
- —2e\N/2 exp(— _ p—2¢ )
(1 — e 2e)N/ 2(1 —e2%)
This implies that
. [efx—=z
Vo) = [0(@Vapele ) dr(z) =~ [ EE el ) ()
= ef/v(egx +V1- e_%y)ﬁ dy(y). (70)

Let us look for a more explicit expression of the commutator in (69). To this aim, we show first
that T;(div,(vec)) is a function, and

T. (div, (ve))(z) = / (ve)(e™“w+ V1= 2y) e dr(y) = Tz v)(a). ()

If ¢ and v are smooth, this is immediate to check: indeed, thanks to (14), we need only to show
that

T.(dv (ve)) @) = [ (ve)(ea V1= ey) - L ().

The latter is a direct consequence of (70) (with v replaced by ve?) and of the relation 9,7 (vc') =
e ¢T.(0;(ve?)). If v and ¢ are not smooth, we argue by approximation.
Therefore, taking (70) and (71) into account, we have that r¢(x) is given by

)=o)

+ /v(e_ew +V1—e2y)ele “x+V1—e2y) (e fx+ V1—e2y)dy(y)

_/v(e‘ax—l—my)
- Vie®

Now, using the abbreviations a.(z,y) := v(e *x + V1 — e~2y), . := /1 — =%, we interpo-

/v(e_am + V1 — e 2%y)

{c(w) y—cle Tz H V1 —e%y) - (e Fy —e V1 - 6‘2%)} dy(y).
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late and write —r¢(x) as

1
\/17 / ac(z,y) / cle Pz + V1 —e2ty) - (7 ¥y — e V1 — e~2ex) dt dy(y)
= ﬂa/aa(x,y) (72)

! —2te
Oy (e~ + VT ey ety T et — e eyt - )
—3te
+ Cile P r + /1 — e 2eq)[(e /1 —e-2te — & i _9o=2e, >] dtd
> (e ol ) )] dt v

= Be/ae(xa Y)(Ac(z,y) + Be(z,9)) dv(y), (73)
where, adding and subtracting
. . 6—2155 e )
i(,—te =2t —te, i o —2te, b
E c'e“z++V1-e Ey)i1 — (e7z" + V1 —e2tey’),

we have set

—2te
_ _ — . _ . _ . e .
Ac(z,y) / < E 0; cile ™ x + /1 — e 2ey)[etey/1 — e2eg? — e 2ty [e o) — T e_ﬂgyﬂ
e—Qts

— Z c"(e*t‘sx + V1 - e—%‘fy)i(e*tgwi +v1- e—QtSyi)> dt,
, 1—e 2
(A

1
B.(z,y) = /0 Z (ci(e*tsx + V1 — e 2tey)e ¥[\/1 — e~ 2tegt — e*tsy"]> dt.

Let us estimate §; [ [ |a.B:| dydy first: the change of variables (65) and Fubini’s theorem give

e / / lae B| dy(z) dy(y) < fe /0 1 e et / / |U(Z)|‘Zci(z)wi‘d7(z) dry(w) dt.

Using (66) with f = ¢(z), we get
| dy(2) dy(w) < BeAD)lell om0l 1o ()

5. [ [lacsd i@ i < . [ [l
(7

Now, we estimate 8. [ [ |a:-Ac| dvydy; again, we use the change of variables (65) to write

(2)w’

. 9 . . . e_2t€ . e_ta .
e—ta /1 — e 2tept _ o tayz — _e—tawz’ 6_t81’j _ y] — w’.
v/ 1 — e—2te V1 — e—2te
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Therefore we get

5. [ [locadldn@) anty
<ﬁs/ [ [
//v Z@c Yw'w! — Zc

where we used the identity

,2{/5 —2te

i, j i € i
Z@ c' Nisre 2tsw w! — Z c (z)mz dvy(z) dy(w) dt

z) dy(w),

1 —2te -2
e 1 —e%¢
/ 7dt:7:ﬂ€_1.
0 1 — e—2te £

Eventually we use (67) with A = Ve(z) and ¢ = ¢(z) - z to obtain

) o ) ) 1/q
Ba//|a€A5]d7(x)d7(y) < HUHLq/W)(//‘Zajcl(z)wle—Zcz(z)zllqd’y(w)d'y(zo
i )
1-1 q : /e
< 2l ([ VENTE sl + aivseltan o)
< 274 o]| g (\6”|(V0)Sym”HSHLq(v)+‘diVWCHLq(y))- (75)

Combining (72), (74) and (75), we have proved (68).
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