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Abstract. We prove that, in the optimal transportation problem with general costs and
positive continuous densities, the potential function is always of class W 2,p

loc for any p ≥ 1

outside of a closed singular set of measure zero. We also establish global W 2,p estimates
when the cost is a small perturbation of the quadratic cost. The latter result is new even
when the cost is exactly the quadratic cost.

1. Introduction

Regularity of optimal transport maps is a very important problem that has been studied
extensively in the recent years. For the special case when the cost function is given by
c(x, y) = 1

2 |x − y|2 (or equivalently c(x, y) = −x · y, see the discussion in [13, Section
3.1]), Caffarelli [1, 2, 3, 4, 5] developed a deep regularity theory. However, for general
costs functions the situation was much more complicated. A major breakthrough happened
in 2005 when Ma, Trudinger, and Wang [34] introduced a fourth order condition on the
cost function (now known as MTW condition) that guarantees the smoothness of optimal
transport map under suitable global assumptions on the data. Later, it was shown by
Loeper [31] that the MTW condition is actually a necessary condition. Motivated by these
results, a lot of efforts have been devoted to understanding the regularity properties of
optimal map under the MTW condition, see for instance [20, 28, 37, 38, 21, 32, 33, 29, 30,
22, 27, 24, 23, 18, 19].

Unfortunately, as observed by Loeper in [31] and further noticed in many subsequent
works, the MTW condition is extremely restrictive and many interesting costs do not satisfy
this condition. Hence, a natural and important question became the following: What can
we say about the regularity of optimal transport maps when the MTW condition fails? A
first major answer was given by De Philippis and Figalli [12]: there, the authors proved
that, without assuming neither the MTW condition nor any convexity on the domains, for
the optimal transport problem with positive continuous (resp. positive smooth) densities,

the potential function is always C1,α
loc (resp. smooth) outside a closed singular set of measure

zero. In a related direction, Caffarelli, Gonzáles, and Nguyen [7] obtained an interior C2,α
loc

regularity result of optimal transport problem when the densities are Cα and the cost
function is of the form c(x, y) = 1

p |x− y|
p with 2 < p < 2 + ε for some ε� 1 (or, p > 1 and

the distance between source and target is sufficiently large). This interior regularity result
was later extended by us to a global one [10].
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The aim of this work is to further develop the techniques introduced in [10, 11, 12] and
prove a partialW 2,p regularity result. More precisely we show that, for the optimal transport
problem with positive continuous densities, there exists a closed singular set of measure zero
outside which the potential function is of class W 2,p

loc for any p > 1 (in particular, the singular
set is independent of the exponent p). As a corollary of our techniques together with an
argument due to Savin [36], we are able to obtain global W 2,p estimates when the domains
are convex and the cost function is C2-close to −x · y.

The paper is organized as follows. In section 2 we introduce some notation and state our
main results. Then, in section 3 we prove our key Proposition 2.4, and finally in the last
section we prove our main results.

2. Preliminaries and main results

First, we introduce some conditions which should be satisfied by the cost. Let X and Y
be two bounded open subsets of Rn.

(C0) The cost function c : X × Y → R is of class C3, with ‖c‖C2,1(X×Y ) <∞.
(C1) For any x ∈ X, the map Y 3 y 7→ Dxc(x, y) ∈ Rn is injective.
(C2) For any y ∈ Y , the map X 3 x 7→ Dyc(x, y) ∈ Rn is injective.
(C3) det(Dxyc)(x, y) 6= 0 for all (x, y) ∈ X × Y.

A function u : X → R is said c-convex if it can be written as

(2.1) u(x) = sup
y∈Y
{−c(x, y) + λy}

for some family of constants {λy}y∈Y ⊂ R. Note that (C0) and (2.1) imply that a c-convex
function is semiconvex, namely, there exists a constant K depending only on ‖c‖C1,1(X×Y )

such that u + K|x|2 is convex. One immediate consequence of the semiconvexity is that u
is twice differentiable almost everywhere.

Thanks to (C0) and (C1) it is well known (see for instance [40, Chapter 10]) that there
exists a unique optimal transport map. Also, there exists a c-convex function u such that
the optimal map is a.e. uniquely characterized in terms of u (and for this reason we denote
it by Tu) via the relation

(2.2) −Dxc(x, Tu(x)) = ∇u(x) for a.e. x.

As explained for instance in [12, Section 2] (see also [13]), the transport condition (Tu)#f =
g implies that u solves at almost every point the Monge-Ampère type equation
(2.3)

det
(
D2u(x)+Dxxc

(
x, c-expx(∇u(x))

))
=
∣∣det

(
Dxyc

(
x, c-expx(∇u(x))

))∣∣ f(x)

g(c-expx(∇u(x)))
,

where c-exp denotes the c-exponential map defined as

(2.4) for any x ∈ X, y ∈ Y , p ∈ Rn, c-expx(p) = y ⇔ p = −Dxc(x, y).

Notice that, with this notation, Tu(x) = c-expx(∇u(x)).
For a c-convex function, in analogy with the subdifferential for convex functions, we can

talk about its c-subdifferential: If u : X → R is a c-convex function, the c-subdifferential of
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u at x is the (nonempty) set

∂cu(x) :=
{
y ∈ Y : u(z) ≥ −c(z, y) + c(x, y) + u(x) ∀ z ∈ X

}
.

We also define Frechet subdifferential of u at x as

∂−u(x) :=
{
p ∈ Rn : u(z) ≥ u(x) + p · (z − x) + o(|z − x|)

}
.

It is easy to check that

(2.5) y ∈ ∂cu(x) =⇒ −Dxc(x, y) ∈ ∂−u(x).

Also, it is a well-known fact (see for instance [40, Chapter 10]) that the transport map Tu
and the c-subdifferential ∂cu are related by the inclusion

Tu(x) ∈ ∂cu(x).

In particular, since ∂cu(x) is a singleton at every differentiability point of u (this follows by
(2.5)), we deduce that

(2.6) ∂cu(x) = {Tu(x)} whenever u is differentiable at x.

The analogue of sublevels of a convex functions is played by the sections: given y0 ∈ ∂cu(x0),
we define

S(x0, y0, u, h) := {x : u(x) ≤ −c(x, y0) + c(x0, y0) + c(x0, y0) + u(x0) + h}.
Note that, whenever u is differentiable at x0 then y0 = Tu(x0). To simplicity the notation,
we will use Sh(x0) to denote S(x0, y0, u, h) when no confusion arises.

Finally, we recall that given u c-convex, its c-transform uc is defined as

uc(y) := sup
x∈X
{−c(x, y)− u(x)}.

With this definition, uc plays the role of u for the transportation problem from g to f .

Our first main result states that, if f and g are positive continuous densities, then u is
of class W 2,p

loc for any p ≥ 1 outside a closed set of measure zero. A crucial fact in our proof
is to show that the singular set Σ is independent of p.

Theorem 2.1. Let u be the potential function for the optimal transport problem from (X, f)
to (Y, g) with cost c satisfying (C0)-(C3). Suppose f : X → R+ and g : Y → R+ are
positive continuous densities. Then there exists a closed set Σ ⊂ X of measure zero such
that u ∈W 2,p

loc (X \ Σ) for any p ≥ 1.

By a localization argument, the above theorem yields the following:

Corollary 2.2. Let (M,G) be a smooth closed Riemannian manifold, and denote by d the
Riemannian distance induced by G. Let f and g be two positive continuous densities, and let

T be the optimal transport map for the cost c = d2

2 sending f onto g. Then there exist two
closed sets Σ1,Σ2 ⊂M of measure zero, such that T : M \Σ1 →M \Σ2 is a diffeomorphism

of class W 1,p
loc for any p ≥ 1.

In the next result we show that if the cost function is sufficiently close to the “quadratic”
cost −x · y (recall that this cost is equivalent to 1

2 |x− y|
2), then the potential is W 2,p up to

the boundary. Observe that the smallness parameter δ̂ is independent of p, and that this
result is new even in the case c(x, y) = −x · y.
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Theorem 2.3. Suppose X and Y are two C2 uniformly convex bounded domains in Rn.
Assume f : X → R+ and g : Y → R+ are two continuous positive densities, and let u be
the c-convex function associated to the optimal transport problem between f and g with cost
c(x, y). Suppose c satisfies (C0)-(C3) and

(2.7) ‖c+ x · y‖C1,1(X×Y ) ≤ δ.

Then there exists δ̂ > 0, depending only on n, the modulus of continuity of f and g, and the
uniform convexity and C2-smoothness of X, and Y , such that u ∈ W 2,p(X) for any p ≥ 1

provided δ ≤ δ̂.

The proof of above results is based on the following proposition.

Proposition 2.4. Let f and g be two densities supported in B1/K ⊂ C1 ⊂ BK and B1/K ⊂
C2 ⊂ BK , respectively. Suppose that C2 is convex,

(2.8) ‖f − 1‖L∞(C1) + ‖g − 1‖L∞(C2) ≤ δ,

and

(2.9) ‖c(x, y) + x · y‖C1,1(BK×BK) ≤ δ.

Then, for any p ≥ 1 there exists δ̄ > 0, depending only on n, K, ‖c‖C2,1 , and p, such that
u ∈W 2,p(B 1

4K
) provided δ ≤ δ̄.

Note that, in the result above, the smallness of the parameter δ depends on p. So, for the
proof of Theorems 2.1 and 2.3 and Corollary 2.2, it will be crucial to prove that actually δ
can be chosen independently of p (see Lemma 4.1). Also, as explained in Section 3.2 below,
to prove Proposition 2.4 we shall first approximate u with smooth solutions and then obtain
W 2,p a priori estimates that are independent of the regularization. We note that, in this
context, such a regularization procedure is nontrivial and require some attention.

Remark 2.5. As we shall also observe later, the condition “C2 is convex” in Proposition 2.4
can be replaced by the assumption∥∥∥∥u− 1

2
|x|2
∥∥∥∥
L∞(Bη0 )

≤ δ

for some fixed η0 ≤ 1/K. Under this assumption, for any p ≥ 1 there exists δ̄ > 0, depending
only on n, K, η0, and p, such that u ∈ W 2,p(B 1

2
η0

) provided δ ≤ δ̄. Moreover, in the

above condition, the function 1
2 |x|

2 can be replaced by a C2 convex function v such that
1
M Id ≤ D2v ≤ M Id, in which case δ̄ depends also on M and the modulus of continuity of

D2v .

3. Proof of Proposition 2.4

We begin by observing that, under our assumptions, it follows by [12, Theorem 4.3] and
the argument in the proof of [10, Theorem 2.1] that u ∈ C1,α(B 1

2K
) for some α > 0. Hence,

up to replace K by 2K, we can assume that u ∈ C1,α(B1/K). In particular it follows
by (2.6) that S(x0, y0, u, h) = S(x0, Tu(x0), u, h), and we can use the notation Sh(x0) =
S(x0, Tu(x0), u, h).
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3.1. Engulfing property of sections. The first step consists in establish the engulfing
property for sections of u, which is stated as the following lemma.

Lemma 3.1 (Engulfing property). There exist universal constants r0 > 0 and C > 1 such
that, for h ≤ r0 and x0 ∈ B 2

3K
,

x1 ∈ Sh(x0) =⇒ Sh(x0) ⊂ SCh(x1).

Proof. Without loss of generality we may assume x0 = 0, y0 = Tu(x0) = 0, and u(0) = 0.
Up to performing the transformations

c(x, y) 7→ c̃(x, y) := c(x, y)− c(x, 0)− c(0, y) + c(0, 0), u(x) 7→ ũ(x) := u(x) + c(x, 0),

we may assume

(3.1) c(x, y) = −x · y +O(|x|2|y|+ |x||y|2).

Set ρ :=
(
|C1|
|C2|

)1/n
so that |ρC2| = |C1|, and let v be a convex function satisfying (∇v)]1C1 =

1ρC2 with v(0) = 0 (we note that ∇v is the optimal transport map from 1
|C1|1C1 to 1

|C2|1C2
for the quadratic cost). By a compactness argument similar to the proof of [12, Lemma 4.1]
we have

(3.2) ‖u− v‖L∞(B 1
K

) ≤ ω(δ),

where ω : R+ → R+ satisfies ω(r)→ 0 as r → 0. Also, since ρC2 is convex, it follows by [4]
that v is smooth and uniformly convex in B 3

4K
.

Thanks to (2.8), (2.9), and (3.2), we can follow the proof of [12, Theorem 4.3] to show
that, for small h, there exists an affine transform A such that

(3.3) A(B 1
3

√
h) ⊂ Sh ⊂ A(B3

√
h),

(3.4) A′−1(B 1
3

√
h) ⊂ Tu(Sh) ⊂ A′−1(B3

√
h)

and

(3.5)

∣∣∣∣u(Ax)− 1

2
|x|2
∣∣∣∣ ≤ ηh in B3

√
h

with

(3.6) ‖A‖, ‖A−1‖ ≤ h−θ,
where A′ denotes the transpose of A, and η, θ > 0 can be as small as we want, provided
δ is sufficiently small. Note that (3.2) plays the same role as the fact that u is close to
a quadratic function, which is used in the proof of [12, Theorem 4.3]. Furthermore, (3.4)

and (3.6) imply that diam(Sh(x)) ≤ Ch
1
2
−θ. Hence, if we choose r0 small enough so that

Cr
1
2
−θ

0 ≤ 1
4K , we see that for h ≤ r0 and x ∈ B 2

3K
we have Sh(x) ⊂ B 3

4K
.

Now we perform the transformations c1(x, y) := c(Ax,A′−1y) and u1(x) := u(Ax), and
we use the notation S1

h = S(0, 0, u1, h). By (3.3) and (3.4) we have

(3.7) B 1
3

√
h ⊂ S

1
h ⊂ B3

√
h
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and

(3.8) B 1
3

√
h ⊂ Tu1(S1

h) ⊂ B3
√
h.

Note that

(3.9) 0 ≤ u1(x) + c1(x, 0)− c1(0, 0)− u1(0) ≤ h for any x ∈ S1
h.

Also, by (3.1) and (3.6) we see that ‖c1‖C1,1(B3
√
h×B3

√
h) ≤ C for some universal constant

C. Therefore, thanks to (3.8) and (3.10), for any x, x1 ∈ S1
h and y1 = Tu1(x1) ∈ Tu1(S1

h),

|c1(x, y1)− c1(x1, y1) + c1(x1, 0)− c1(x, 0)| ≤ ‖Dxyc1‖C0(B3
√
h×B3

√
h)|x1 − x| |y1| ≤ C1h

for some universal constant C1. Hence, by (3.9) applied to both x and x1 we get

u1(x) + c1(x, y1)− c1(x1, y1)− u1(x1) = u1(x) + c1(x, 0)− c1(0, 0)− u1(0)

−(u1(x1) + c1(x1, 0)− c1(0, 0)− u1(0))

+c1(x, y1)− c1(x1, y1) + c1(x1, 0)− c1(x, 0)

≤ h+ C1h.

Since x ∈ S1
h = S(0, 0, u1, h) was arbitrary, this proves that S(0, 0, u1, h) ⊂ S(x1, y1, u1, (1+

C1)h). Recalling the relation between u1 and u, this proves the desired result. �

As a consequence of this result, one gets the following:

Corollary 3.2. There exists a small constant r1 such that for h ≤ r1 and x, y ∈ B 1
2K

the

following holds: suppose Sh(x) ∩ St(y) 6= ∅, t ≤ h. Then there exists an universal constant
C ′ such that St(y) ⊂ SC′h(x).

Proof. Fix z ∈ Sh(x) ∩ St(y). By Lemma 3.1 we have that

St(y) ⊂ SCh(z) and x ∈ Sh(x) ⊂ SCh(z)

for some universal constant C. Also, by the argument in the proof of Lemma 3.1, z ∈ B 2
3K

for h small enough. Hence, using Lemma 3.1 again we have SCh(z) ⊂ SC2h(x), thus St(y) ⊂
SC′h(x) with C ′ := C2. �

It is well known that the property of sections stated in Corollary 3.2 implies the following
Vitali covering lemma (see for instance [16, Lemma 4.6.2] for a proof):

Lemma 3.3 (Vitali covering). Under the assumptions of Proposition 2.4, let D be a compact
subset of B 1

2K
, and let {Shx(x)}x∈D be a family of sections with hx ≤ r1. Then, there exists

a finite number of sections {Shxi (xi)}i=1,...,m such that

D ⊂
m⋃
i=1

Shxi (xi)

with {Sσhxi (xi)}i=1,...,m disjoint, where σ > 0 is a universal constant.
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3.2. Approximation argument. In the next sections we will prove our W 2,p estimates
by controlling the measure of the super-level sets of the Hessian of u. Because we shall need
to use the pointwise value of D2u, we need an approximation argument in order to work
with C2 convex functions. Since in this setting this is not a standard procedure, we now
provide the details.

Given u as in Proposition 2.4, we set ρ :=
(
|C1|
|C2|

)1/n
so that |ρC2| = |C1|, and let v be a

convex function satisfying (∇v)]1C1 = 1ρC2 with v(0) = 0. Since

‖u− v‖L∞(B 1
K

) → 0 as δ → 0

(see (3.2)), as in the proof of Lemma 3.1 we can choose δ small enough so that, for any
x ∈ B 1

2K
and h > 0 small but universal, the section Sh(x) satisfies (3.3), (3.4), (3.5), and

(3.6).
We now consider fε : C1 → R and gε : C2 → R as sequence of C∞ densities that

approximate f and g respectively, and denote by uε the potential function for the optimal
transport problem from fε to gε with cost c. Without loss of generality, we can assume that
uε(0) = u(0).

Then, by a compactness argument it follows that

‖uε − u‖L∞(B 1
K

) → 0 as ε→ 0

Since u is strictly convex, choosing ε sufficiently small we see that the sections Sεh(x) =
S(x, Tuε(x), uε, h) satisfy (3.3), (3.4), (3.5), and (3.6) with bounds independent of ε.

In particular, assuming δ is small enough, by [12, Theorem 4.3] applied to 1
huε(A

√
hx)

we deduce that uε is of class C1,6/7 in A(B 1
4

√
h). By duality, similarly we also have that its

c-transform ucε is of class C1,6/7 inside A′−1(B 1
4

√
h). Hence, by [11, Theorem 2.3] we deduce

that uε is of class C2 in a neighborhood of x. Since x ∈ B 1
2K

was arbitrary, this proves that

uε ∈ C2(B 1
2K

) for any ε > 0 small enough.

Hence, up to proving our W 2,p estimates with uε in place of u and then letting ε→ 0, in
the next sections we shall directly assume that u ∈ C2.

3.3. Density estimates. The goal here is to show that, given a section Sh(x) ⊂ B 1
2K
, the

density of “bad points” where the Hessian of u is large has measure that goes to zero as
δ → 0.

Fix x0 ∈ B 1
2K
, and let y0 = Tu(x0). Without loss of generality, we may assume x0 = y0 =

0. Also, as in the proof of Lemma 3.1 we can assume that (3.1) holds. In this way it follows
that, for h small, (3.3), (3.4), (3.5), and (3.6) hold.

Perform the transformations

c(x, y) 7→ c̄(x, y) :=
1

h
c(
√
hAx,

√
hA′−1y);

u(x) 7→ ū(x) :=
1

h
u(
√
hAx);

f(x) 7→ f̄(x) := f(
√
hAx), g(y) 7→ ḡ(y) = g(

√
hA′−1y).
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Note that, by (3.1) and (3.6), we have

(3.10) ‖c̄+ x · y‖C1,1(B8×B8) ≤ δ

provided h is sufficiently small. Also, it follows by (3.3), (3.4), and (3.5) that

(3.11) B 1
3
⊂ S(0, 0, ū, 1) ⊂ B3,

(3.12) B 1
3
⊂ Tū(S(0, 0, ū, 1)) ⊂ B3,

and

(3.13)

∥∥∥∥ū(x)− 1

2
|x|2
∥∥∥∥
L∞(B3)

≤ η.

We now construct a smooth function w that well approximates ū. Denote X1 := S(0, 0, ū, h)
and Y1 := Tū(S(0, 0, ū, h)).

Lemma 3.4. Set ρ :=
(
|X1|
|Y1|

)1/n
, and let w be a convex function such that (∇w)]1X1 = 1ρY1

and w(0) = u(0). Then, for any γ > 0, there exist δγ , ηγ > 0 such that

(3.14) ‖ū− w‖L∞(B1/4) ≤ γ

and

(3.15) ‖w‖C2,1(B1/6) ≤ C

provided δ ≤ δγ and η ≤ ηγ , where C is a universal constant.

Proof. The bound (3.14) follows from a compactness argument similar to the proof of [12,
Lemma 4.1]. Also, taking γ ≤ η, (3.13) and (3.14) imply that

(3.16)

∥∥∥∥w(x)− 1

2
|x|2
∥∥∥∥
L∞(B1/4)

≤ 2η.

Thanks to (3.16), as in the proof of Lemma 3.1 (see also Step 1 in the proof of [12, Theorem
4.3]) we can apply [4] to deduce that ‖w‖C2,1(B1/6) ≤ C for some universal constant C. �

Let L be the operator defined by

Lū(x) := D2ū(x) +Dxxc̄
(
x, Tū(x)

)
.

By (2.8) and (3.10), we have

(3.17) det(Lū(x)) =
∣∣det

(
Dxy c̄

(
x, Tū(x)

))∣∣ f̄(x)

ḡ(Tū(x))
= 1 +O(δ).

We now follow the argument in [2] to establish the density estimate. Since the argument
is rather standard, we shall just emphasize the main points, referring to [2] or [16, Chapter
4.7] for more details.

Lemma 3.5. Let ū, w be as above, and denote by Γ
(
ū− w

2

)
the convex envelope of ū− w

2 .
Then, for any Borel set E ⊂ B1/6, we have

(3.18)

∣∣∣∣∇Γ
(
ū− w

2

)
(E)

∣∣∣∣ ≤ ( 1

2n
+O(δ)

)∣∣∣∣E ∩{Γ
(
ū− w

2

)
= ū− w

2

}∣∣∣∣
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Proof. Noticing that detD2w = 1, detD2ū = 1 + O(δ), and Dxxc̄ = O(δ), since w is
uniformly convex and detD2Γ(ū − w

2 ) is a measure supported on {Γ(ū − w
2 ) = ū − w

2 }, it
follows by the Area Formula (see for instance [16, Proposition A.4.19]) that∣∣∣∣∇Γ

(
ū− w

2

)
(E)

∣∣∣∣ =

∫
E∩{Γ(ū−w

2
)=ū−w

2
}

detD2
(
ū− w

2

)
=

∫
E∩{Γ(ū−w

2
)=ū−w

2
}

det

[
Lū−

(
D2w

2
+Dxxc̄

(
x, Tūx

))]
≤

∫
E∩{Γ(ū−w

2
)=ū−w

2
}

(
det(Lū)1/n − det

[(
D2w

2
+O(δ)

)]1/n
)n

≤
∫
E∩{Γ(ū−w

2
)=ū−w

2
}

(
1 +O(δ)−

(1

2
(detD2w)1/n −O(δ)

))n
≤

(
1

2
+O(δ)

)n∣∣∣∣E ∩{Γ
(
ū− w

2

)
= ū− w

2

}∣∣∣∣,
where we used the inequality

[det(A+B)]1/n ≥ (detA)1/n + (detB)1/n ∀A,B symmetric, nonnegative definite

(see for instance [16, Lemma A.1.3] for a proof). �

By using Lemma 3.5, we can follow the lines of proof of [2, Lemma 6] (see also the proof
of [16, Lemma 4.7.1]) to establish the estimate

|{Γ(ū− w
2 ) = ū− w

2 } ∩B1/8|
|B1/8|

≥ 1− Cδ1/2,

from which one immediately obtain the following bound (see [2, Corollary 1] or Step 6 in
the proof of [16, Lemma 4.7.1]):

Lemma 3.6 (Density estimate). Let ū be as above. Then there exist universal constants
N > 1, η > 0 such that

(3.19)
∣∣{x ∈ Sūh0

(0) : ‖D2ū(x)‖ ≥ N
}∣∣ ≤ Nδ1/2

∣∣Sūh0
(0)
∣∣

for h0 ∈ ( 1
16 ,

1
10).

3.4. W 2,p estimate. We now prove our W 2,p interior estimates. Recall that we are assum-
ing that u ∈ C2.

As in the proof of Lemma 3.1, for any x ∈ B 1
2K

and h > 0 small enough, there exists an

affine transformation A with detA = 1 such that

(3.20) A(B 1
3

√
h) ⊂ Sh(x) ⊂ A(B3

√
h).

We define the normalized size of the section Sh(x) as

(3.21) a(Sh(x)) := ‖A−1‖2.
Although A is not unique, if A1 and A2 are two affine transformations that satisfy (3.20)
then both ‖A−1

1 A2‖ and ‖A−1
2 A1‖ are universally bounded, thus the normalized size is well

defined up to universal constants.
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With the notation from the previous section, we see that the estimate (3.19) can be
rewritten in terms of u and becomes

(3.22)
∣∣Sh(x) ∩

{
‖D2u‖ ≥ Na

(
Sh(x)

)}∣∣ ≤ Cδ1/2|Sh(x)|
for any h small enough. Also, since detLū = 1 +O(δ), it follows that

‖D2u‖ ≤ N =⇒ D2u ≥ 1

2Nn−1
Id.

Thus, up to enlarging N and using Lemma 3.6 again, we deduce that

|Sh(u)| ≤ C
∣∣∣∣Sσh ∩{a

(
Sh(x)

)
N

≤ ‖D2u‖ ≤ Na
(
Sh(x)

)}∣∣∣∣,
that combined with (3.22) yields
(3.23)∣∣Sh(x) ∩

{
‖D2u‖ ≥ Na

(
Sh(x)

)}∣∣ ≤ Cδ1/2

∣∣∣∣Sσh ∩{a
(
Sh(x)

)
N

≤ ‖D2u‖ ≤ Na
(
Sh(x)

)}∣∣∣∣.
Also, by (3.6) we have

(3.24) diam(Sh(x)) ≤ Ch1/2‖A‖ ≤ Ch1/2−θ ≤ Ĉa
(
Sh(x)

)−β
,

where β := 1
4θ −

1
2 .

Let M � 1 to be fixed later, set ρ0 := 1
2K , and for m ≥ 1 we define ρm inductively by

(3.25) ρm := ρm−1 − ĈM−mβ,

where the constants Ĉ, β are as those in (3.24). Note that, by taking M large enough so
that

∞∑
m=1

ĈM−mβ <
1

4K
,

we can ensure that ρm ≥ 1
4K for all m ≥ 1.

Now, for k ≥ 0 we set Dk := {x ∈ Bρk : ‖D2u‖ ≥ Mk}. We shall prove the following
lemma.

Lemma 3.7. |Dk+1| ≤ Nδ1/2|Dk|.

Proof. Let M � N to be chosen later, and for any x ∈ Dk+1 choose a section Shx(x) such
that

(3.26) a(Shx(x)) = NMk.

Such a section always exists because a(Sh) ≈ 1 < NMk when h = h0 is a small but fixed
universal constant, while

a(Sh) ≈ ‖D2u(x)‖ ≥Mk+1 > NMk as h→ 0

(the estimate a(Sh) ≈ ‖D2u(x)‖ follows by a simple Taylor expansion, see for instance [16,
Remark 4.7.5]). Hence, by continuity there exists hx ∈ (0, h0) such that (3.26) holds.

Now, by Lemma 3.3, we can find a finite number of sections {Shxi (xi)}i=1,...,m covering

Dk+1 such that {Sσhxi (xi)}i=1,...,m are disjoint. Then, it follows by (3.23) that

(3.27)
∣∣Shi(xi) ∩ {‖D2u‖ ≥ N2Mk

}∣∣ ≤ Nδ1/2
∣∣Sσhi(xi) ∩ {Mk ≤ ‖D2u‖ ≤ N2Mk

}∣∣.
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Hence, recalling (3.24) and (3.25), we obtain

|Dk+1| ≤
m∑
i=1

∣∣Shi(xi) ∩ {‖D2u‖ ≥ N2Mk
}∣∣

≤ Nδ1/2
m∑
i=1

∣∣Sσhi(xi) ∩ {Mk ≤ ‖D2u‖ ≤ N2Mk
}∣∣

≤ Nδ1/2|Dk|

provided M ≥ N2. �

Proof of Proposition 2.4. Thanks to Lemma 3.7, we have

|Dk| ≤ (Nδ1/2)k|D0| ≤
1

Mk(p+1)
|B 1

2K
|

provided δ ≤ 1
N2M2(p+1) . Therefore∫

B 1
4K

‖D2u‖p = p

∫
B 1

4K

tp−1|B 1
4K
∩ {‖D2u‖ ≥ t}|

≤ C

∞∑
k=1

Mkp|Dk| ≤ C,

as desired.
�

4. Proof of Theorem 2.1 and Corollary 2.2

4.1. Proof of Theorem 2.1. By the argument in [12, Section 3], we only need to estab-
lish the following result, which is a strengthened version of Proposition 2.4 for continuous
densities. Indeed, the lemma shows that the exponent p in the W 2,p estimate is indepen-
dent of the parameter δ. This is crucial in showing that the singular set Σ can be chosen
independently of p.

Lemma 4.1. Let f, g be two continuous densities supported in B1/K ⊂ X1 ⊂ BK and
B1/K ⊂ Y1 ⊂ BK respectively. Suppose that

(4.1) ‖f − 1‖L∞(X1) + ‖g − 1‖L∞(Y1) ≤ δ,

(4.2)

∥∥∥∥u− 1

2
|x|2
∥∥∥∥
L∞(BK)

≤ δ

and

(4.3) ‖c(x, y) + x · y‖C1,1(BK×BK ) ≤ δ.

Then there exists δ̄ > 0, depending only on n and K, such that u ∈ W 2,p(B 1
2K

) for any

p ≥ 1 provided δ ≤ δ̄.
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Proof. Fix x0 ∈ B 1
2K
, and without loss of generality assume x0 = 0, Tu(x0) = 0, and u(x0) =

0. For small h, similarly to the proof of Lemma 3.1, there exists an affine transformation A
with detA = 1, ‖A‖, ‖A−1‖ ≤ h−θ, such that (3.3), (3.4), and (3.6) hold, where θ can be as
small as we want provided δ is sufficiently small. Also, we may assume (3.1) holds.

Given a set E, let [E] denote its convex hull. By [10, Lemma 3.2] we have that

(4.4) dist(Sh, [Sh]) ≤ Ch1−6θ.

Also, by C1,α regularity of u (hence, C0,α regularity of Tu), we have

(4.5) dist
(
Tu(Sh), Tu([Sh])

)
≤ Ch(1−6θ)α.

Perform the transformations

u(x) 7→ 1

h
u(
√
hA−1x) := u1(x);

c(x, y) 7→ 1

h
c(
√
hA−1x,

√
hA′y) := c1(x, y);

f(x) 7→ f1(x) := f(
√
hA−1x), g(y) 7→ g1(y) := g(

√
hA′y);

Sh 7→ S̃ :=
1√
h
A(Sh).

Also, set C1 := [S̃], C2 := Tu1([S̃]), f̄ := f11C1 , and ḡ := g11C2 .
By (3.3), (3.4), (4.4), (4.5) we have

B 1
4
⊂ C1 ⊂ B4;

B 1
4
⊂ C2 ⊂ B4;

‖f̄ − 1C1‖L∞(B4) = o(1), ‖ḡ − 1C2‖L∞(B4) = o(1)→ 0 as h→ 0.

It is also easy to check that

‖c1 + x · y‖C1,1(B4×B4) = o(1)→ 0 as h→ 0,

Since C1 is convex, we can apply Proposition 2.4 (switch the role of x and y) to deduce
that, given any p ≥ 1, we can choose h small enough so that uc1, the c-transform of u1,
belongs to W 2,p(B 1

8
) provided h is sufficiently small. Note that ‖c1‖C2,1 ≤ C for some

constant depending only on ‖c‖C2,1 . Indeed, since ‖A‖, ‖A−1‖ ≤ h−θ (take θ < 1/6), we

have that ‖D3c1‖L∞ ≤ 1
hh

3
2
−3θ‖D3c‖L∞ = h

1
2
−3θ‖D3c‖L∞ → 0 as h → 0. On the other

hand, by (3.1) (we can always perform changes to c to have this expansion), we have

that ‖c1‖L∞ ≤ ‖x · y‖B4×B4 + ‖D3c‖h
1
2
−3θ ≤ C1 for h < 1, where C1 depends only on

‖c‖C2,1 . By interpolation inequalities we have that ‖c1‖C2,1 ≤ C, where C is a constant
depending only on ‖c‖C2,1 . By a symmetric argument (or using that D2u and D2uc are
related), one gets that, given any p ≥ 1, u1 ∈ W 2,p(B 1

8
) provided h is sufficiently small.

Rescaling back to u this proves that, given p ≥ 1, u ∈W 2,p(Br) provided r is small enough
(the smallness depending on h). Thanks to this fact, Lemma 4.1 follows from a standard
covering argument.

�

Proof of Theorem 2.1. Theorem 2.1 is an easy consequence of Lemma 4.1, following the
argument in [12, Section 3]. �



PARTIAL W 2,p REGULARITY 13

Proof of Corollary 2.2. Corollary 2.2 follows by the same reasoning as the proof of [12,
Theorem 1.4]. �

5. Proof of Theorem 2.3

Since interior W 2,p estimates follows from Lemma 4.1 and [11, Lemma 3.11], we focus on
the estimate near the boundary.

Under the assumptions of Theorem 2.3, it is proved in [9] that, for any α < 1, there exists
δ̄ > 0 such that u ∈ C1,α(X̄) provided δ ≤ δ̄. Let

h̄(x) := max{h > 0 : Sh(x) ⊂ X},

and set Sx := Sh̄(x)(x). As in the proof of Lemma 3.1, there exists an affine transformation

A with detA = 1, ‖A‖, ‖A−1‖ ≤ h̄(x)−θ, such that

(5.1) B 1
3

√
h̄(x)
⊂ A(Sx) ⊂ B

3
√
h̄(x)

.

Hence, since ‖A‖, ‖A−1‖ ≤ h̄(x)−θ, it follows by (5.1) and the definition of h̄(x) that

dist(x, ∂X) ≤ Ch̄(x)
1
2
−θ,

which proves that

(5.2) Sx ⊂ X
Ch̄(x)

1
2−θ

:=
{
z ∈ X : dist(z, ∂X) ≤ Ch̄(x)

1
2
−θ
}
.

Fix h0 > 0 small but universal. Similarly to the proof of Lemma 3.1, we can find a Vitali
covering of Xh0 , denoted by {Sh̄(xi)

(xi)}, such that the sections {Sσh̄(xi)
(xi)} are disjoint.

Now, fix x0 ∈ Xh0 a point close to ∂X. Without loss of generality we may assume x0 = 0,
Tu(x0) = 0, and u(x0) = 0. Consider the section Sh̄ := S(0, 0, u, h̄(0)). As in the proof
Lemma 4.1, we perform the transformations (3.20), (3.21), (3.22), and (3.23), and we set

C1 := [S̃], C2 := Tu1([S̃]), f̄ := f11C1 , and ḡ := g11C2 , so that

B 1
4
⊂ C1 ⊂ B4;

B 1
4
⊂ C2 ⊂ B4;

‖f̄ − 1C1‖L∞(B4) = o(1), ‖ḡ − 1C2‖L∞(B4) = o(1)→ 0 as h̄, δ → 0;

‖c1 + x · y‖C1,1(B4×B4) = o(1)→ 0 as h̄, δ → 0.

Note that, by (3.5), u1 is arbitrarily close to the function 1
2 |x|

2. Let v be the convex function

solving (∇v)]1C1 = 1ρC2 with v(0) = u(0) and ρ :=
(
|C1|
|C2|

)1/n
. By a compactness argument

we have that

‖u1 − v‖L∞(B 1
4

) ≤ ω(δ),

where ω : R+ → R+ satisfies ω(r)→ 0 as r → 0. This implies that also v is uniformly close
to the function 1

2 |x|
2 inside B 1

4
, hence [4] yields that ‖v‖C3(B 1

5
) ≤ C for some universal

constant C, and that v is uniformly convex in B 1
5
. Thus, if we set S1

t := S(0, 0, u1, t), we

can apply Proposition 2.4 to deduce that ‖u1‖W 2,p(S
u1
t ) ≤ C for some universal constants

t, C,.
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Rescaling back to u, this proves that

(5.3)

∫
Sth̄(x0)

‖D2u‖p ≤ Ch̄(x0)−2pθ|Sσh̄(x0)|.

Now, consider the family of sections Fk := {Sh̄(xi)
(xi) : h02−k−1 ≤ h̄(xi) ≤ h02−k}.

Then, since |Xr| ≈ r for r small and the sections {Sσh̄(xi)
(xi)} are disjoint, it follows by

(5.3) and (5.2) that∑
Sh̄(xi)

(xi)∈Fk

∫
Sh̄(xi)

(xi)
‖D2u‖p ≤ C

∑
Sh̄(xi)

(xi)∈Fk

h̄(xi)
−2pθ|Sσh̄(xi)

|

≤ C22kpθ|X
C(h02−k)

1
2−θ
|

≤ C22kpθ(h02−k)
1
2
−θ

≤ C2−k( 1
2
−3pθ)

Choosing θ small enough so that 3pθ ≤ 1
4 , we can sum the above estimate with respect to

k to get ∫
Xh0

‖D2u‖p ≤ C.

Since
∫
X\Xh0

‖D2u‖p ≤ C by interior regularity, this concludes the proof. �
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