
SOBOLEV REGULARITY FOR MONGE-AMPÈRE TYPE EQUATIONS

GUIDO DE PHILIPPIS AND ALESSIO FIGALLI

Abstract. In this note we prove that, if the cost function satisfies some necessary structural con-
ditions and the densities are bounded away from zero and infinity, then strictly c-convex potentials
arising in optimal transportation belong to W 2,1+κ

loc for some κ > 0. This generalizes some re-
cents results [10, 11, 24] concerning the regularity of strictly convex Alexandrov solutions of the
Monge-Ampère equation with right hand side bounded away from zero and infinity.

1. Introduction

Let Ω ⊂ Rn be a bounded open set. We want to investigate the regularity of solutions to
Monge-Ampère type equations of the form

(1.1) det
(
D2u−A(x,Du)

)
= f in Ω,

where f ≥ 0 and A(x, p) is a n× n symmetric matrix.
This class of equations naturally arises in optimal transportation (see for instance [23]). There,

the matrix A and the right hand side f are given by

A(x,Du(x)) = −Dxxc(x, Tu(x)), f(x) =
∣∣det

(
Dxyc(x, Tu(x))

)∣∣ ρ0(x)

ρ1(Tu(x))
,

where c(x, y) represents the cost function, ρ0 and ρ1 are probability densities, and Tu is the optimal
transport map sending ρ0 onto ρ1. Under a twist assumption on the cost (see (C2) below), the
map Tu is uniquely determined through the relation

−Dxc(x, Tu(x)) = Du(x).

Moreover, when A ≡ 0 the above equation reduces to the classical Monge-Ampère equation.
The regularity for the above class of equations has received a lot of attention in the last years

[12, 13, 18, 19, 21, 23, 25, 26]. In particular, under some necessary structural conditions on A
(see (C1) below), one can show that if f is smooth then u is smooth as well [19, 23, 25, 26].
In addition, it is proved in [12] that solutions are locally C1,α when f is merely bounded away

from zero and infinity (see also [13, 18]). Futhermore, if f is close to a constant, then W 2,p
loc esti-

mates are proved in [4] for the classical Monge-Ampère equation (i.e., when A ≡ 0), and in [20]
under some stronger conditions on A (namely, the inequality in (1.6) should be strict when ξ, η 6= 0).

Recently, the authors introduced new techniques to address the Sobolev regularity of u when
A ≡ 0 and f is only bounded away from zero and infinity: more precisely, it is proved in [10] that
D2u ∈ L logLloc(Ω), and with a variant of the same techniques this result has been improved in

[11] to u ∈ W 2,1+κ
loc (Ω) for some κ > 0 (see also [24]). Let us mention that these results played a

crucial role in [1, 2] to show the existence of distributional solutions to the semi-geostrophic system.

The aim of this paper is to extend the W 2,1+κ
loc regularity to the general class of Monge-Ampère

equations in (1.1). Apart from its own interest, because of several regularity results for the squared

1



2 G. DE PHILIPPIS AND A. FIGALLI

distance function on the sphere and its perturbations [8, 9, 14, 15, 22], it looks plausible to us that,
at least in some particular regimes, this result may have applications in the study of generalized
semi-geostrophic system on the sphere [7].

In order to describe our result, we need to introduce some more notation and the main assump-
tions on the cost functions.

Let X ⊂ Rn be an open set, and u : X → R be a c-convex function, i.e., u can be written as

(1.2) u(x) = max
y∈Y
{−c(x, y) + λy}

for some open set Y ⊂ Rn, and λy ∈ R for all y ∈ Y . We are going to assume that u is an
Alexandrov solution of (1.1) inside some open set Ω ⊂ X, i.e.,

|∂cu(E)| =
∫
E
f for all E ⊂ Ω Borel,

where

∂cu(E) :=
⋃
x∈E

∂cu(x), ∂cu(x) := {y ∈ Y : u(x) = −c(x, y) + λy},

and |F | denotes the Lebesgue measure of a set F . It is well-known that, in order to prove some
regularity results, (1.1) needs to be coupled with some boundary conditions: for instance, when
A ≡ 0 and f ≡ 1, solutions are smooth whenever they are strictly convex, and to obtain strict
convexity some suitable boundary conditions are needed [3, 6].

For the general case in (1.1), let u be a c-convex function associated to an optimal transport
problem, and for any y ∈ Y define the contact set

Λy := {x ∈ X : u(x) = −c(x, y) + λy}.

Under some structural assumptions on the cost functions (which we shall describe below) and some
convexity hypotheses on the supports of the source and target measure, it has been proved in
[12] that u is an Alexandrov solution of (1.1) inside X, and it is strictly c-convex (i.e., for any
y ∈ ∂cu(X) the contact set Λy reduces to one point) provided f is bounded away from zero and
infinity.

Here, since we want to investigate the interior regularity of u, instead of assuming that u comes
from an optimal transportation problem where the supports of the source and target measure
enjoy some global “c-convexity” property, we work assuming directly that u is a strictly c-convex
Alexandrov solution near some point x̄ ∈ X, and we prove regularity of u in a neighborhood
of x̄. This has the advantage of making our result more general and flexible for possible future
applications.

Hence, we assume that there exist (x̄, ȳ) ∈ X×Y such that Λȳ = {x̄}, we consider a neighborhood
Ω of x̄ given by

(1.3) Ω := {x ∈ X : u(z) < −c(x, ȳ) + λy + δ},

where δ > 0 is a small constant chosen so that Ω ⊂⊂ X and ∂cu(Ω) ⊂⊂ Y (such a constant δ exists
because Λȳ := {x̄}). Also, we assume that u is an Alexandrov solution of

(1.4)

{
det
(
D2u−A(x,Du)

)
= f in Ω,

u = −c(·, ȳ) + const on ∂Ω.
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Before stating our result, let us introduce the main conditions on the cost function: let Ω be as
above, and let O ⊂⊂ Y be an open neighborhood of ∂cu(Ω). We define

(1.5) |||c||| := ‖c‖C3(Ω×O) + ‖Dxxyyc‖L∞(Ω×O) + ‖log |detDxyc|‖L∞(Ω×O) ,

and assume that the following hold:

(C0) |||c||| <∞.
(C1) For every x ∈ Ω and p := −Dxc(x, y) with y ∈ O, it holds

(1.6) Dpkp`Aij(x, p)ξiξjηkη` ≥ 0, ∀ ξ, η ∈ Rn, ξ · η = 0,

where A is defined through c by Aij(x, p) := −Dxixjc(x, y), and we use the summation
convention over repeated indices.

Let us point out that, up to reduce the size of Ω and O (this is possible because Ω → {x̄}
and ∂cu(Ω) → {ȳ} as δ → 0), as a consequence of (C0) (more precisely, from the fact that
detDxyc(x̄, ȳ) 6= 0 and by the implicit function theorem) we can assume that the following holds:

(C2) For every (x, y) ∈ Ω × O, the maps x ∈ Ω 7→ −Dyc(x, y) and y ∈ O 7→ −Dxc(x, y) are
diffeomorphisms on their respective ranges.

We also notice that, because of the boundary condition u = −c(·, ȳ) + const on ∂Ω, if f is
bounded away from zero and infinity inside Ω, then any c-convex Alexandrox solution of (1.4) is
strictly c-convex inside Ω (this is an immediate consequence of [12, Remark 7.2]). Here is our result:

Theorem 1.1. Let u : Ω→ R be a c-convex Alexandrov solution of (1.4). Assume that c satisfies

conditions (C0)-(C2), and that 0 < λ ≤ f ≤ 1/λ. Then u ∈W 2,1+κ
loc (Ω) for some κ > 0 depending

only on n, λ, and |||c|||.

Theorem 1.1 generalizes the corresponding result for the classical Monge-Ampère equation to
the wider class of equations considered here. With respect to the arguments in [10, 11], additional
complications arise from the fact that, in contrast with the classical Monge-Ampère equation, in
general (1.1) is not affinely invariant.

Acknowledgements: AF is partially supported by NSF Grant DMS-0969962. Both authors ac-
knowledge the support of the ERC ADG Grant GeMeThNES. The first author thanks the hos-
pitality of the Mathematics Department at the University of Texas at Austin, where part of this
work has been done.

2. Notation and preliminary results

Through all the paper, we call universal any constant which depends only on the data, i.e., on
n, λ, and |||c|||. We use C to denote a universal constant larger than 1 whose value may change from
line to line, and we use the notation a ≈ b to indicate that the ratio a/b is bounded from above
and below by positive universal constants.

An immediate consequence of the definition of c-convexity (1.2) is that, for any x0 ∈ X, there
exists y0 ∈ Y such that

u(x) ≥ −c(x, y0) + u(x0) + c(x0, y0) ∀x ∈ X,
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and in this case y0 ∈ ∂cu(x0). If in addition u ∈ C2, then it is easily seen that Du(x0) =
−Dxc(x0, y0) and D2u(x0) ≥ −Dxxc(x0, y0) = A(x0, Du(x0)), where A is defined in (C1) above.
In particular equation (1.4) is degenerate elliptic when restricted to c-convex function.

It has been discovered independently in [12] and [18] that, because of (C1), for any x0 ∈ Ω and
y0 ∈ ∂cu(x0), through the change of variables x 7→ q(x) := −Dyc(x, y0) the function

(2.1) ū(q) := u(x(q)) + c(x(q), y0)− u(x0)− c(x0, y0)

has convex level sets inside Ω (here and in the sequel x(q) denotes the inverse of q(x), which is well
defined because of (C2)). Moreover ū is c̄-convex, where

(2.2) c̄(q, y) := c(x(q), y)− c(x(q), y0),

see [12, Theorem 4.3].
Since u solves (1.4) one can check by a direct computation that ū solves

(2.3) det
(
D2ū− B(q,Dū)

)
= g,

with

(2.4) Bij(q, ,Dū(q)) = −Dqiqj c̄(q, Tū(q)) and g(q) = f(x(q)) [detDxyc(x(q), Tū(q))]−2 ,

where Tū is the map uniquely identified by the relation Dū(q) = −Dq c̄(q, Tū(q)). Moreover it holds

(2.5) Bij(·, 0) ≡ 0, DpBij(·, 0) ≡ 0,

so using Taylor’s formula we can write

(2.6) Bij(q,Dū) = Bij,k`(q,Dū)∂kū∂lū

where

(2.7) Bij,k`(q,Dū(q)) :=

∫ 1

0
Dpkp`Bij(q, τDū(q)) dτ.

In addition, since condition (C1) is tensorial [23, 21, 17] and |||c||| involves only mixed fourth
derivative, it is easily seen that |||c̄||| ≈ |||c||| and B satisfies the same assumptions as A. In particular
(C1) and (2.7) imply that

(2.8) Bij,k`ξiξjηkη` ≥ 0 ∀ ξ · η = 0.

Given a C1 c-convex function as above, for any x0 ∈ Ω, y0 = Tu(x0), and h ∈ R+, we define the
section centered at x0 of height h as

Suh(x0) := {x ∈ Ω : u(x) ≤ −c(x, y0) + u(x0) + c(x0, y0) + h}.
Assuming that Suh(x0) ⊂ Ω, through the change of variables x 7→ q(x) := −Dyc(x, y0) this section
is transformed into the convex set

Qūh(q0) := −Dyc(S
u
h(x0), y0) = {q : ū(q) ≤ h}.

When no confusion arises, we will often abbreviate Sh(x0) and Qh(q0) for Suh(x0) and Qūh(q0).
We also recall [16] that, given an open bounded convex set Q, there exists an ellipsoid E such

that

(2.9) E ⊂ Q ⊂ nE,
where the dilation is done with respect to the center of E. We refer to it as the John ellipsoid of
Q, and we say that Q is normalized if E = B(0, 1). An immediate consequence of (2.9) is that
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any open bounded convex set Q admits an affine transformation L such that L(Q) is normalized.
Hence, given u and Suh(x0) as above, we can consider ū, its section Qūh(q0), and the normalizing
affine transformation L. Then we define w̄ : L(Qh)→ R as

(2.10) w̄(q′) := (detL)2/nū(q), q′ := Lq.

It is easy to check that w̄ solves

(2.11) det
(
D2w̄(q′)− C(q′, Dw̄(q′))

)
= g(L−1q′),

where

C(q′, Dw̄(q′)) := (detL)2/n(L∗)−1B
(
L−1q′, (detL)−2/nL∗Dw̄(q′)

)
L−1

Up to an isometry, we can assume that

E =

{
q :

n∑
i=1

q2
i

r2
i

≤ 1

}
,

with r1 ≤ . . . ≤ rn. Then L−1 = diag(r1, . . . , rn), and

(2.12) Cij(q′, Dw̄(q′)) = Cij,k`(q′, Dw̄(q′))∂kw̄∂`w̄

with

(2.13) Cij,k`(q′, Dw̄(q′)) = (r1 . . . rn)2/n rirj
rkr`
Bij,k`(q,Dū(q)),

see (2.7). Moreover, by (2.8) (or again because of the tensorial nature of condition (C1))

(2.14) Cij,k`ξiξjηkη` ≥ 0 ∀ ξ · η = 0.

Still with the same notation as above, we also define the normalized size of a section Sh(x0) as

(2.15) α(Sh(x0)) = α(Qh(q0)) :=
|L|2

(detL)2/n
.

Notice that, even if L may not be unique, α is well defined up to universal constants. In case u
is C2 in a neighborhood of x0, by a simple Taylor expansion of ū around q0 it is easy to see that
there exists h(x0) > 0 small such that

(2.16) α(Sh(x0)) = α(Qh(q0)) ≈ |D2ū(q0)| ∀h ≤ h(x0),

where q0 := q(x0). Since u and ū are related by a diffeomorphism, the following lemma holds:

Lemma 2.1. Let Ω′ ⊂ Ω, and u ∈ C2(Ω′) be a strictly c-convex function such that ‖Du‖L∞(Ω′) is
universally bounded. Then there exists a universal constants M1 such that the following holds: For
every x0 ∈ Ω′ there exists a height h̄(x0) > 0 such that if |D2u(x0)| ≥M1, then

(2.17) |D2u(x0)| ≈ α(Sh(x0)) ∀h ≤ h̄(x0).

Proof. Differentiating twice the relation (2.1) we obtain

∂qiqj ū = ∂qix
k∂qjx

l∂xkxlu+ ∂qiqjx
k∂xku+ ∂qix

k∂qjx
l∂xkxlc+ ∂qiqjx

k∂xkc,

where we have used the summation convention over repeated indices. The above equation implies
that

(2.18) ν|D2ū(q0)| − C
(
1 + |Du(x0)|

)
≤ |D2u(x0)| ≤ 1

ν
|D2ū(q0)|+ C

(
1 + |Du(x0)|

)
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for some universal constants ν, C > 0. Since by assumption Du is universally bounded inside Ω′,
(2.17) follows by (2.18) and (2.16), provided M1 is sufficiently large. �

We show now some geometric properties of sections and some estimates for solutions of (1.4)
which will play a major role in the sequel. Here, the dilation of a section Sh(x) is intended with
respect to x.

Proposition 2.2 (Properties of section). Let u be a c-convex Aleksandrov solution of (1.4) with
0 < λ ≤ f ≤ 1/λ. Then, for any Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω, there exists a positive constant ρ = ρ(Ω′,Ω′′)
such that the following properties hold:

(i) Suh(x) ⊂ Ω′′ for any x ∈ Ω′, 0 ≤ h ≤ 4ρ.
(ii) There exist 0 < α1 < α2 universal such that for all µ ∈ (0, 1)

µα2Suh(x) ⊂ Suµh(x) ⊂ µα1Suh(x)

for any x ∈ Ω′, 0 ≤ 2h ≤ ρ.
(iii) There exists a universal constant σ < 1 such that, if Suh(x) ∩ Suh(y) 6= ∅, then Suh(y) ⊂

Suh/σ(x) for any x, y ∈ Ω′, 0 ≤ h ≤ σρ.

(iv) diam(Suρ (x)) ≤ 1 and ∩0<h≤ρS
u
h(x) = {x}.

Proof. Points (i) and (iv) follow from the strict c-convexity of u shown in [12, section 7], and the fact
that the modulus of strict c-convexity is universal (this last fact follows by a simple compactness
argument in the spirit of [5, Theorem 1’]).

Point (iii) corresponds the engulfing property of sections proved in [12, Theorem 9.3].
The second inclusion in point (ii) follows from [12, Lemma 9.2]1. For the first one, it is enough

to show that there exists a universal constant s̄ ∈ (0, 1) such that

(2.19) s̄Qūh(q̄) ⊂ Qūh/2(q̄)

and then iterate this estimate (here ū is defined as in (2.1), and q̄ := q(x)). To prove (2.19), let
E2h be the John ellipsoid associated to Qū2h(q̄), and assume without loss of generality that E2h is
centered at the origin. By convexity of the sections in this new variables,

s̄(Qūh(q̄)− q̄) + q̄ ⊂ Qūh(q̄) ⊂ Qū2h(q̄) ⊂ nE2h ∀ s̄ ∈ (0, 1).

Observe now that, for any q ∈ Qūh(q̄), we have (recall that ū(q̄) = 0)

(2.20) ū(s̄(q − q̄) + q̄) = s̄

∫ 1

0
Dū((1− ts̄)q̄ + ts̄q) · (q − q̄) dt.

Since q, q̄ ∈ nE2h we have q − q̄ ∈ 2nE2h, hence

(2.21) (q − q̄)/2n ∈ E2h ⊂ Q2h(q̄).

Moreover, by convexity of Q2h(q̄), (1 − ts̄)q̄ + ts̄q ∈ Qh(q̄) ⊂ τ0Q2h(q̄) for some universal τ0 < 1
(see [12, Lemma 9.2]). Defining the “dual norm” ‖ · ‖∗K associated to a convex set K as

‖a‖∗K := sup
ξ∈K

a · ξ,

it follows from [12, Lemma 6.3] that

(2.22) ‖Dū(q)‖∗Q2h(q̄) = ‖ −Dq c̄(q, Tū(q))‖∗Qū2h(q̄) ≤ Ch ∀ q ∈ Qūh(q̄).

1To be precise, in [12] the dilation is done with respect to the center of the John ellipsoid, and not with respect
to the “center” x of the section. However, it is easy to see that the same statement holds also in this case.
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Thus, thanks to (2.20) and (2.21) we get

ū(s̄(q − q̄) + q̄) = 2ns̄

∫ 1

0
Dū((1− ts̄)q̄ + ts̄q) · (q − q̄)

2n
dt

≤ 2ns̄

∫ 1

0
‖Dū((1− ts̄)q̄ + ts̄q))‖∗Q2h(q̄)dt ≤ 2ns̄Ch ≤ h/2,

provided s̄ is small enough. This proves the desired inclusion. �

As shown for instance in [11], an easy consequence of property (iii) is the following Vitali-type
covering theorem.

Proposition 2.3 (Vitali covering theorem). Let u, f,Ω′,Ω′′, ρ, σ be as in Proposition (2.2), let D
be a compact subset of Ω′, and let {Shx(x)}x∈D be a family of sections with hx ≤ ρ. Then we can
find a finite number of these sections {Shxi (xi)}i=1,...,m such that

D ⊂
m⋃
i=1

Shxi (xi), with {Sσhxi (xi)}i=1,...,m disjoint.

We now want to show that sections at the same height have a comparable shape. For this, we
first recall the following estimate from [12]:

Proposition 2.4 (Aleksandrov estimates). Let u, f,Ω′,Ω′′, ρ be be as in Proposition (2.2), and let
Sh(x) be a section of u for some x ∈ Ω′ and h ≤ ρ. Then

(2.23) |Sh(x0)| ≈ hn/2.

Remark 2.5. Estimates (2.22) and (2.23) have the following important consequence: consider
the function ū defined in (2.1), fix one of its sections Qh such that Q2h ⊂ Ω′′ with Ω′′ as above,
normalize Qh using its corresponding John’s transformation L, and define w̄ as in (2.10). Since

(detL)−2/n ≈ |Eh|2/n ≈ oscQh ū ≈ oscQ2h
ū (by (2.23)) and Eh ⊂ Q2h, we deduce the universal

gradient bound

sup
L(Qh)

|Dw̄| = (detL)2/n sup
Qh

|(L∗)−1Dū|

≤ C(detL)2/n sup
Qh

‖Dū‖∗Eh

≤ C(detL)2/n sup
Qh

‖Dū‖∗Q2h

≤ C(detL)2/n osc
Q2h

ū ≤ C.

(2.24)

Lemma 2.6. Let u, f,Ω′,Ω′′, ρ be as in Proposition 2.2, and let be ū as in (2.1). Then for any
0 ≤ h ≤ ρ there exist two radii r = r(h) and R = R(h) such that the following holds: for every
x0 ∈ Ω′, if E is the John ellipsoid associated to the section Qūh(q0), q0 := q(x0), then, up to a
translation,

Br(0) ⊂ E ⊂ BR(0).

Proof. Let r1 ≤ . . . ≤ rn be the axes of E. Since rn ≤ diam(E) ≤ C (see Proposition 2.2(iv)) and
by (2.23)

hn/2 ≈ |E| ≈ r1 · . . . · rn ≤ diam(E)n−1r1,

we obtain the desired lower bound on r1. �
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Obviously analogous properties holds for the section Qūh(q0).

Remark 2.7. Notice that Proposition 2.2(ii) applied to the (convex) sections of ū implies the
following: given x ∈ Ω′′ and h ≤ ρ, let r1 ≤ . . . ≤ rn denote the axes of the John ellipsoid
associated to Qh(x). Then

(2.25) rn ≤ Crα3
1

for some universal exponent α3 < 1 and a constant C(Ω′,Ω′′).
To see this just normalizeQρ(x) using L and notice that, by [12, Theorem 6.11] , dist

(
x, ∂

(
L(Qρ(x)

))
≥

1/C for some universal constant C. Thus, up to enlarge C,(
h

Cρ

)α2

B1(x) ⊂ L(Qh) ⊂

(
Ch

ρ

)α1

B1(x).

Since, by Lemma 2.6, sections of height ρ have bounded eccentricity (i.e., |L| ≈ C(Ω′,Ω′′)), this
implies the claim with α3 := α1/α2.

We now observe that α(Qh) ≈ r2
n/(r1 . . . rn)2/n, from which we deduce that

r2
1 ≤ C

r2
n

α(Qh)
.

In particular, this and (2.25) imply

rn ≤ Crα3
1 ≤ C

rα3
n

α(Qh)α3/2
,

that is

rn ≤
C

α(Sh)β
, with β :=

α3

2− 2α3
.

Hence, since Sh is linked to Qh by a diffeomorphism with universal C1 norm, and diam(Sh) ≤
diam(nEh) = 2nrn, we get

(2.26) diam(Sh) ≤ C̄

α(Sh)β
, β, C̄ > 0 universal.

3. W 2,1+κ estimates

Applying first a large dilation to Ω we can assume that B(0, 1) ⊂ Ω, and by a standard covering
argument (see for instance [10, Section 3]) it suffices to prove the W 2,1+κ regularity of u inside
B(0, 1/2). Also, by an approximation argument2, it is enough to prove the result when u ∈ C2.
Hence Theorem 1.1 is a consequence of the following:

Theorem 3.1. Let u ∈ C2 be a c-convex solution of (1.4) with Ω ⊃ B(0, 1). Then there exist
universal constants κ and C such that

(3.1)

∫
B(0,1/2)

|D2u|1+κ ≤ C.

We start with the following lemma:

2To approximate our solution with smooth ones, it suffices to regularize the data and then:
- either apply [19, Remark 4.1] (notice that, by Proposition 2.2(iv) and [12, Theorem 8.2], u is strictly c-convex and
of class C1 inside Ω);
- or approximate our cost c with cost functions satisfying the strong version of (C1) and apply [19, Theorem 1.1].
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Lemma 3.2. Let u be as above, x0 ∈ B(0, 3/4), and h > 0 such that S2h(x0) ⊂ B(0, 5/6). Consider
the function ū as in (2.1), its section Qh = Qh(q0) with q0 := q(x0), and (up to a rotation)
let Eh =

{∑
x2
i /r

2
i ≤ 1

}
be the John ellipsoid associated to Qh(q0). Denote by L be the affine

transformation that normalizes Qh, and define w̄ and Cij,k` as in (2.10) and (2.13) respectively.
Then

(3.2)

∫
L(Qh)

∣∣∂ijw̄ − Cij,k`∂kw̄ ∂`w̄∣∣ ≤ C
for some universal constant C.

Proof. Since, by the c-convexity of u (which is preserved under change of variables), the matrix(
∂ijw̄ − Cij,k`∂kw̄ ∂`w̄

)
i,j=1,...,n

is non-negative definite, it is enough to estimate∫
L(Qh)

n∑
i=1

(
∂iiw̄ − Cii,kl∂kw̄ ∂lw̄

)
from above.

Using the bounds Hn−1
(
∂
(
L(Qh)

))
≤ C(n) (since L(Qh) is a normalized convex set) and |Dw̄| ≤

C (see (2.24)), we see that first term is controlled from above by

(3.3)

∫
L(Qh)

∆w̄ =

∫
∂(L(Qh))

Dw̄ · ν ≤ Hn−1
(
∂
(
L(Qh)

))
sup
L(Qh)

|Dw̄| ≤ C.

For the second term, we claim the following: there exists a universal constant C such that

(3.4) inf
L(Qh)

n∑
i=1

Cii,k`∂kw̄ ∂`w̄ ≥ −C

To see this we write
n∑
i=1

Cii,k`∂kw̄ ∂`w̄ =

n∑
i=1

∑
k, 6̀=i
Cii,k`∂kw̄ ∂`w̄ + 2

n∑
i=1

∑
k 6=i
Cii,ik∂iw̄ ∂kw̄ +

n∑
i=1

Cii,ii∂iw̄ ∂iw̄.

We first observe that, since for any i = 1, . . . , n the vector (∂1w̄, . . . , ∂i−1w̄, 0, ∂i+1w̄, . . . , ∂nw̄) is
orthogonal to coordinate vector ei, the first term in the right hand side is non-negative by condition
(C1).

Concerning the second and the third term, taking into account the definition of Cij,k` in (2.13)
we can rewrite them as

(3.5) 2

n∑
i=1

∑
k 6=i

(r1 . . . rn)2/n ri
rk
Bii,ik∂iw̄ ∂kw̄ +

n∑
i=1

(r1 . . . rn)2/nBii,ii∂iw̄ ∂iw̄.

Observe that, by (2.23),

(3.6) (r1 . . . rn)2/n ≈ h.
In addition, by the Lipschitz regularity of ū (which is simply a consequence of the fact that u is
locally Lipschitz inside Ω),

(3.7) h/rk ≤ C ∀ k = 1, . . . , n.

Since ‖Dw̄‖∞ ≤ C (see (2.24)) and the size of B is controlled by |||c̄||| ≈ |||c|||, by (3.6) and (3.7) we
see that the expression in (3.5) is universally bounded.

This proves (3.4), which combined with (3.3) concludes the proof. �
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Lemma 3.3. With the same notation and hypotheses as in Lemma 3.2, let σ be as in Proposition
2.3. Then there exists a universal constant C such that

(3.8)
∣∣{q̃ ∈ L(Qσh) : Id/C ≤ ∂ijw̄ − Cij,k`∂kw̄ ∂`w̄ ≤ C Id}

∣∣ ≥ 1

C
.

Proof. Since σ is universal and L(Qh) is normalized, by Proposition 2.2(ii) we get

|L(Qσh)| ≈ |L(Qh)| ≈ 1.

So, using Lemma 3.2 and Chebychev inequality, we deduce the existence of a universal constant C
such that

|{q̃ ∈ L(Qσh) : ∂ijw̄ − Cij,k`∂kw̄ ∂`w̄ ≤ C Id}| ≥ 1

C
.

Since by (2.11) the product of the eigenvalues of the matrix
(
∂ijw̄ − Cij,k`∂kw̄

)
i,j=1,...,n

is of order

one, whenever the eigenvalues are universally bounded from above, they also have to be universally
bounded also from below. Hence, up to enlarging the value of C, this proves (3.8). �

Remark 3.4. Recalling the definition (2.15) of α(Qh) = α(Sh), we can rewrite both (3.2) and
(3.8) in terms of ū and Qh = Qh(q0), obtaining that∫

Qh

∣∣∂ij ū− Bij,k`∂kū ∂lū∣∣ ≤ Cα(Qh)
∣∣∣{x ∈ Qσh : α(Qh)/C ≤

∣∣∂ij ū− Bij,k`∂kū ∂lū∣∣ ≤ Cα(Qh)
}∣∣∣

(see for instance the proof of [11, Lemma 3.2]). In terms of u, this estimate becomes

(3.9)

∫
Sh

|D2u−A(x,Du)| ≤ C0α(Sh)
∣∣∣{x ∈ Sσh : α(Sh)/C0 ≤ |D2u−A(x,Du)| ≤ C0α(Sh)

}∣∣∣,
where Sh = Sh(x0) with x0 an arbitrary point inside B(0, 3/4), and C0 is universal.

Proof of Theorem 3.1. Let M � 1 to be fixed later, set R0 := 3/4, and for all m ≥ 1 define

(3.10) Rm := Rm−1 − C̄M−β.

with C̄ and β as in (2.26). Let us denote B(0, Rm) by BRm , set

(3.11) F (x) :=
∣∣D2u(x)−A(x,Du(x))

∣∣,
and define

(3.12) Dm := {x ∈ BRm : F (x) ≥Mm} .

Thanks to Proposition 2.2, there exists ρ > 0 universal such that Sh(x) ⊂ B(0, 5/6) for any
x ∈ B(0, 3/4) and h ≤ 2ρ, and by Lemma 2.6 applied with h = ρ we get α(Sρ(x)) ≈ 1. In
addition, since (C0) implies that |A(x,Du)| ≤ C1 inside B(0, 1) for some C1 universal, we see that∣∣|D2u| − F

∣∣ ≤ C1. Hence, using Lemma 2.1, we deduce that if M � M1 + C1 then there exists a
small universal constant ν > 0 such that

α(Sh(x)) ≥ νMm ∀x ∈ Dm, h ≤ min{h̄(x), ρ}, m ≥ 1.

So, by choosing M ≥ max{1/ν4,M1} (so that νMm+1 ≥Mm+1/2/ν), by continuity we obtain that,
for every point in Dm+1, there exists hx ∈ (0,min{h̄(x), ρ}) such that

(3.13) α(Shx) ∈ (νMm+1/2,Mm+1/2/ν).
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In particular, by (2.26) we have diam(Shx) ≤ C̄M−β, which implies that (recall (3.10))

(3.14)
⋃

x∈Dm+1

Shx ⊂ B
(

0, Rm+1 + C̄M−β
)

= BRm .

According to Proposition 2.3, we can cover Dm+1 with finitely many sections {Shxj }xj∈Dm+1 such

that Sσhxj are disjoint. Then (3.13) and (3.9) imply (recall (3.11))∫
Dm+1

F ≤
∑
j

∫
Shxj

F ≤
∑
j

C0 α(Shxj )|{x ∈ Sσhxj : α(Shxj )/C0 ≤ F ≤ C0α(Shxj )}|

≤
∑
j

C0

ν
Mm+1/2|{x ∈ Sσhxj : νMm+1/2/C0 ≤ F ≤ C0M

m+1/2/ν}|.

Assuming now that
√
M ≥ C0/ν and recalling (3.14), we obtain

∫
Dm+1

F ≤
∑
j

∫
Shxj

F ≤
∑
j

C0

ν
Mm+1/2|{x ∈ Sσhxj : νMm+1/2/C0 ≤ F ≤ C0M

m+1/2/ν}|

≤
∑
j

C0

ν
Mm+1/2|{x ∈ Sσhxj : Mm ≤ F ≤Mm+1}|

=
∑
j

C0

ν
Mm+1/2|{x ∈ Sσhxj : Mm ≤ F ≤Mm+1} ∩BRm |

≤ C0

√
M

ν

∫
Dm\Dm+1

F.

(3.15)

Adding C0

√
M

ν

∫
Dm+1

F to both sides of the previous inequality, we obtain(
1 +

C0

√
M

ν

)∫
Dm+1

F ≤ C0

√
M

ν

∫
Dm

F.

which implies ∫
Dm+1

F ≤ (1− τ)

∫
Dm

F

for some small constant τ = τ(M) > 0. We finally fix M so that it also satisfies

(3.16)
∑
m≥1

C̄M−mβ ≤ 1

4
.

In this way Rm ≥ 1/2 for all m ≥ 1, so that the above inequalities and the definition of Rm imply∫
{F≥Mm}∩B(0,1/2)

F ≤
∫
Dm

F ≤ (1− τ)m
∫
D0

F ≤ C(1− τ)m

(here we used that
∫
B(0,3/4) F ≤ C, which can be easily proved arguing as in the proof of Lemma

3.2). Thus, choosing κ > 0 such that 1− τ = M−2κ, we deduce that

|{F ≥ t} ∩B(0, 1/2)| ≤ 1

t

∫
{F≥t}∩B(0,1/2)

F ≤ Ct−1−2κ
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for some C > 0 universal, which implies that F ∈ L1+κ(B(0, 1/2)). Recalling the definition of F
(see (3.11)) and that |A(x,Du)| ≤ C inside B(0, 1) (by (C0)), this concludes the proof. �
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