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Abstract

We study points of density 1/2 of sets of finite perimeter in infinite-dimensional
Gaussian spaces and prove that, as in the finite-dimensional theory, the surface
measure is concentrated on this class of points. Here density 1/2 is formulated in
terms of the pointwise behaviour of the Ornstein-Uhlembeck semigroup.

Dans cet article nous étudions la structure de ’ensemble des points avec densité
1/2 pour les ensemble de périmetre fini dans un espace gaussien infini-dimensionnel.
Nous démontrons que, comme dans le cas de dimension finie, la mesure de surface
est concentrée sur cet ensemble de points. Ici, la définition de points avec densité
1/2 est donnée en utilisant le comportement ponctuel du semigroupe de Ornstein-
Uhlembeck.

1 Introduction

The theory of sets of finite perimeter and BV functions in Wiener spaces, i.e., Ba-
nach spaces endowed with a Gaussian Borel probability measure «, has been initiated
by Fukushima and Hino in [14, 15, 16]. More recently, some basic questions of the theory
have been investigated in [17] and in [3, 5] (see also [4] for a slightly different frame-
work). One motivation for this theory is the development of Gauss-Green formulas in
infinite-dimensional domains; as in the finite-dimensional theory, it turns out that for
nonsmooth domains the surface measure might be supported in a set much smaller than
the topological boundary (see also the precise analysis made in [22], in a particular class
of infinite-dimensional domains).
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The basic question we would like to consider is the research of infinite-dimensional
analogues of the classical fine properties of BV functions and sets of finite perimeter in
finite-dimensional (Gaussian) spaces.

For this reason we start first with a discussion of the finite-dimensional theory, referring
to [11] and [2] for much more on this subject. Recall that a Borel set £ C R™ is said to

be of finite perimeter if there exists a vector valued measure Dxg = (DiXEg,- .., DmXE)
with finite total variation in R™ satisfying the integration by parts formula:
8¢ . 1impm
dr = — ¢dDixp  Vi=1,...,m, V¢ € C.(R™). (1)
E 81‘1 Rm™

De Giorgi proved in [9] a deep result on the structure of Dyg. First of all he identified
a set FE, called by him reduced boundary, on which |Dyg| is concentrated, and defined
a pointwise inner normal vg(x) = (Vg 1(z),...,vEm(z)) (see (49)); then, through a suit-
able blow-up procedure, he proved that FE is countably rectifiable (more precisely, it is
contained in the union of countably many graphs of Lipschitz functions defined on hy-
perplanes of R™); finally, he proved the representation formula Dyg = v 'L FE,
where ™! is the (m — 1)-dimensional spherical Hausdorff measure in R™. In light of
these results, the integration by parts formula reads

9¢

E Ox;

do = —/ v ds™ Vi=1,...m, Vo€ CLR™).
FE

A few years later, Federer proved in [10] that the same representation result of Dy g holds
for another concept of boundary, called essential boundary:

‘. m . L™ (B, (x) N E) . LB, (x) \ E)
O'F = {x eR™: hn:lsoup Zm(B,(x)) > 0, hn:lsoup Zn(B,(1) > O},

where Z™ is the m—dimensional Lebesgue measure (this corresponds to points neither of
density 0, nor of density 1). Indeed, a consequence of the De Giorgi’s blow-up procedure
is that FE C 0*F (because tangent sets to £ at all points in the reduced boundary are
halfspaces, whose density at the origin is 1/2), and in [10] it is shown that /™ 1 (0*E \
FE) = 0. Since the set E'/2 of points of density 1/2

ZL"(B.(x) N E) 1}

BY? = R™ : i =
{“ W 2m(B,@) 2

is in between the two, one can also use it as a good definition of boundary.

When looking for the counterpart of De Giorgi’s and Federer’s results in infinite-
dimensional spaces, one can consider a suitable notion of “distributional derivative” along
Cameron-Martin directions D.xp and surface measure |D,xg|. But, several difficulties
arise:



(i) The classical concept of Lebesgue approximate continuity, underlying also the defini-
tion of essential boundary, seems to fail or seems to be not reproducible in Gaussian
spaces (X, ). For instance, in [20] it is shown that in general the balls of X cannot
be used, and in any case the norm of X is not natural from the point of view of
the calculus in Wiener spaces, where no intrinsic metric structure exists and the
“differentiable” structure is induced by H.

(ii) Suitable notions of codimension-1 Hausdorff measure, of rectifiability and of essen-
tial /reduced boundary have to be devised.

Nevertheless, some relevant progresses have been obtained by Feyel-De la Pradelle in [12],
by Hino in [17] and, on the rectifiability issue, by the first author, Miranda and Pallara
in [5]. In [12] a family of spherical Hausdorff pre-measures .#2°"! has been introduced
by looking at the factorization X = Ker(Ilp) ® F, with I’ m-dimensional subspace of
H, considering the measures .#™~! on the m-dimensional fibers of the decomposition. A
crucial monotonicity property of these pre-measures with respect to F' allows to define
S5 (here, FDP stands for Feyel-De la Pradelle) as limp .#2°"", the limit being taken
in the sense of directed sets. This Hausdorff measure, when restricted to the boundary of
a “nice” set (in the sense of Malliavin calculus) is then shown to be consistent with the
surface measure defined in [1]. In [17] this approach has been used to build a Borel set
03 E, called cylindrical essential boundary, for which the representation formula

Doxel = #FLOLE 2)

holds. Here F = {F,},>1 is an nondecreasing family of finite-dimensional subspaces of
H (see (8) for the definition of H) whose union is dense in H and .72~! = lim,, I
Notice that, while the left hand side in the representation formula is independent of the
choice of F, both the cylindrical essential boundary and Yﬁo_l a priori depend on F
(see Remark 2.6 for a more detailed discussion). The problem of getting a representation
formula in terms of a coordinate-free measure .1 is strongly related to the problem
of finding coordinate-free definitions of reduced /essential boundary.

In this paper, answering in part to questions raised in [17] and in [5], we propose an
infinite-dimensional counterpart of E'/2 and use it to provide a coordinate-free version of
(2).

In view of the quite general convergence results illustrated in [21] it is natural, in this
context, to think of the Ornstein-Uhlenbeck semigroup 7} x g starting from x g, for small ¢,
as an analog of the mean value of xz on small “balls”. Also, it is already known starting
from [8] (see also [15, 16, 3, 19]) that surfaces measures are intimately connected to the
behavior of Tyxg for small . Our first main result provides strong convergence of T;xg
as t | 0, if we take the surface measure as reference measure:



Theorem 1.1. Let E be a Borel set of finite perimeter in (X,v). Then
im [ [Tove — <[2d|Dyxs| = 0
tlf(rjl ; tXE 9 vXE|l = U.

Since |D.xpg| is orthogonal w.r.t. =, it is crucial for the validity of the result that
T, x g is not understood in a functional way (i.e., as an element of L>*(X,~)), but really
in a pointwise way through Mehler’s formula (10). In this respect, the choice of a Borel
representative is important, see also Proposition 2.2 and (14).

The proof of Theorem 1.1 is based on two results: first, by a soft argument based
on the product rule for weak derivatives, we show the weak® convergence of Tyxg to
1/2 in L>(X,|D,xg|). Then, by a quite delicate finite-dimensional approximation and
factorization of the OU semigroup, we show the apriori estimate

‘ 1
hmsup/ I Toxel? dIDyxel” < <|Dyxe|(X).
tl0 X 4

Notice that in finite dimensions Theorem 1.1 is easy to show, using the fact that sets of
finite perimeter are, for |D.,xg|-a.e. z, close to halfspaces on small balls centered at x
(see the proof of Proposition 3.1 and also Remark 4.2).

Thanks to Theorem 1.1, we can choose an infinitesimal sequence (t;) | 0 such that

1
S [ Tixe = 1Dyl <o, @

This choice of (t;) ensures in particular the convergence of T}, xg to 1/2 |D,xg|-a.e. in
X, and motivates the next definition:

Definition 1.2 (Points of density 1/2). Let (t;) | 0 be such that Y, \/t; < co and (3)
holds. We denote by EY/? the set

1
EY? .= {x € X : lim Ty xp(r) = —} : (4)

1— 00 2

Notice that |D.xg| is concentrated on E/2. With this definition, and defining .#/>°*
as the supremum of .2~ among all finite-dimensional subspaces of H, we can prove our
second main result:

Theorem 1.3. Let (t;) | 0 be such that ., /t; < oo and (3) holds. Then the set E'/*
defined in (4) has finite #*~'-measure and

|Dxp| =L 'LEY2. (5)



As we said, an advantage of (5) is its coordinate-free character, see also Remark 2.6
for a more detailed comparison with Hino’s cylindrical definition of essential boundary. A
drawback is its dependence on (t;); however, this dependence enters only in the definition
of /2, and not in the one of .7~ Moreover, it readily follows from Theorem 1.3 that
E'/2 is uniquely determined up to .~ '-negligible sets (i.e., different sequences produce
equivalent sets). We consider merely as a (quite) technical issue the replacement of .#>°~!
with the larger measure .72, (defined considering all finite-dimensional subspaces of H)
in (5), for the reasons explained in Remark 2.4.

As an example of application of the structure result for |D,xg| provided by (5), we
can provide a precise formula for the distributional derivative of the union of two disjoints
sets of finite perimeter. Given a set E of finite perimeter, write D, xr = vg|D,xg|, with
vp : X — H a Borel vectorfield satisfying |vg|g = 1 |D,xgl-a.e. in X. With this notation
we have:

Corollary 1.4. Let E and F be sets of finite perimeter with v(ENF) =0. Then EUF
has finite perimeter,

vpup V(B U F)Y? = pp. > L L(EY2\ FY2) 4 vp. s L L(FY2\ EY?),  (6)
and vg(z) = —vp(z) at S -a.e. v € EV2 N FV2,

An important feature in the above result is that, since (E U F)Y2, E'Y2 and F'/?
are uniquely determined up to .#*°~l-negligible sets, one does not have to specify which
sequences (t;) one uses to define the sets (and the sequences could all be different). On the
other hand, if one would try to deduce the analogous result stated in terms of cylindrical
boundaries, it seems to us that one would be obliged to choose the same family F =
{F,}n>1 for all the three sets (see Remark 2.6).

Let us conclude this introduction pointing out that our results can be considered as
the analogous of Federer’s result to an infinite dimensional setting. In [5, Section 7],
the authors gave a list of some open problems related to the rectifiability result, and
gave potential alternative definitions of essential and reduced boundary. As we will show
in the appendix, the approach used in Proposition 4.3 to prove the weak* convergence
of Tixg to 1/2 in L>(X,|D,xg|) is flexible enough to give a “weak form” of the fact
that |D,xg| is concentrated also on a kind of reduced boundary. Apart from this, many
other natural questions remain open. In particular, the main open problem is still to find
some analogous of De Giorgi’s blow-up theorem (i.e., understanding in which sense, for
|D,xk|-a.e. € X, the blow-up of E around z converges to an half-space, see the proof
of Proposition 3.1).
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2 Notation and preliminary results

We assume that (X, || -||) is a separable Banach space and v is a Gaussian probability
measure on the Borel o-algebra of X. We shall always assume that ~ is nondegenerate
(i-e., all closed proper subspaces of X are y-negligible) and centered (i.e., [, xdy = 0).
We denote by H the Cameron-Martin subspace of X, that is

H:= {/Xf(x)xdv(x) fe Lz(X,v)},

and, for h € H, we denote by h the corresponding element in L?(X,~); it can be charac-
terized as the Fomin derivative of v along h, namely

/X Oy = — /X hé dry (7)

for all ¢ € C}(X). Here and in the sequel C}(X) denotes the space of continuously
differentiable cylindrical functions in X, bounded and with a bounded gradient. The
space H can be endowed with an Hilbertian norm | - | that makes the map h — h an
isometry; furthermore, the injection of (H, |- |g) into (X, | - ||) is compact.

We shall denote by H C H the subset of vectors of the form

/){(x*,:c}:c dy(z), e X*. (8)

This is a dense (even w.r.t. to the Hilbertian norm) subspace of H. Furthermore, for
h € H the function h(z) is precisely (z*, z) (and so, it is continuous).

Given a m-dimensional subspace F' C H we shall frequently consider an orthonormal
basis {h1,...,hy} of F' and the factorization X = F @Y, where Y is the kernel of the

continuous linear map
re X lp(x):= Zﬁz(x)h, e F. 9)
i=1

The decomposition z = Hp(z) + (x — Ip(z)) is well defined, thanks to the fact that
Iy ollp =1y and so & — Ig(z) € Y; in turn this follows by h;(h;) = (hi, hj) 2 = 6;;.

Thanks to the fact that |h;|g = 1, this induces a factorization v = yr®~y, with g the
standard Gaussian in F' (endowed with the metric inherited from H) and 7y Gaussian in
(Y, ]| -1]). Furthermore, the orthogonal complement F* of F in H is the Cameron-Martin
space of (Y, ~y).



2.1 BV functions and Sobolev spaces

Here we present the definitions of Sobolev and BV spaces. Since we will consider bounded
functions only, we shall restrict to this class for ease of exposition.

Let u : X — R be a bounded Borel function. Motivated by (7), we say that u €
WX, ~) if there exists a (unique) H-valued function, denoted by Vu, with |Vu|y €
LY(X,v) and

/Xui?hgbdyz—/X(MVu, h)Hd7+/)(u¢izd7

for all ¢ € C}(X) and h € H.
Analogously, following [15, 16], we say that u € BV(X,~) if there exists a (unique)
H-valued Borel measure D.u with finite total variation in X satisfying

/Xuahqﬁdfy:—/Xd)dw,yu,h)HJr/Xuqﬁﬁdy

for all ¢ € C}(X) and h € H.

In the sequel, shall mostly consider the case when u = xgp : X — {0,1} is the
characteristic function of a set E, although some statements are more natural in the
general BV context. Notice the inclusion W1 (X, ~) € BV(X,7), given by the identity
Dyu = Vuy.

2.2 The OU semigroup and Mehler’s formula

In this paper, the Ornstein-Uhlenbeck semigroup 7T; f will always be understood as defined
by the pointwise formula

T.f(z) = /X fle e+ VT = ey dy(y) (10)

which makes sense whenever f is bounded and Borel. This convention will be important
when integrating T f against potentially singular measures, see for instance (14).

We shall also use the dual OU semigroup 7}, mapping signed measures into signed
measures, defined by the formula

(T} 1, @) == / Tipdu ¢ bounded Borel. (11)
X
In the next proposition we collect a few properties of the OU semigroup needed in the

sequel (see for instance [7] for the Sobolev case and [5] for the BV case).

Proposition 2.1. Letu : X — R be bounded and Borel andt > 0. Then Tyu € WH(X, )
and:



(a) if u € WYX, v) then, componentwise, it holds VTyu = e 'TyVu;
(b) if ue BV (X,v) then, componentwise, it holds VT,uy = e T} (D u).

The next result is basically contained in [7, Proposition 5.4.8|, we state and prove it
because we want to emphasize that the regular version of the restriction of T, f to y + F,
y € Y, provided by the Proposition, is for vy-a.e. y precisely the one pointwise defined
in Mehler’s formula.

Proposition 2.2. Let u be a bounded Borel function and t > 0. With the above notation,
for yy-a.e. y €Y the map z — Tyu(z,y) is smooth in F.

Proof. Let us prove, for the sake of simplicity, Lipschitz continuity (in fact, the only
property we shall need) for yy-a.e. y, with a bound on the Lipschitz constant depending
only on ¢t and on the supremum of |u|. We use the formula

OnTyu() ez +V1—eyh(y)dy(y) heH

- i o

for the weak derivative and notice that, if u is cylindrical, this provides also the classical
derivative. On the other hand, the formula provides also the uniform bound sup |0, Tiu| <
c(t)|h|g sup |u]. The uniform bound and Fubini’s theorem ensure that the class of func-
tions for which the stated property is true contains all cylindrical functions and it stable
under pointwise equibounded limits. By the monotone class theorem, the stated property
holds for all bounded Borel functions. O

The next lemma provides a rate of convergence of T;u to u when u belongs to BV (X, 7);
the proof follows the lines of the proof of Poincaré inequalities, see [7, Theorem 5.5.11].

Lemma 2.3. Let u € BV (X,~). Then

[ 12—l < e Dyl ()
X

with ¢; = \/gfot\/%ds, e ~2\/t/mast | 0.

Proof. 1t obviously suffices to bound with ¢;|Du|(X) the expression
[ o) = ate a4 VI=ET dr @) ) (12)
x Jx

Standard cylindrical approximation arguments reduce the proof to the case when w is
smooth, X is finite-dimensional and ~ is the standard Gaussian. Since

1
d
u(e e+ VIZeTy) —ule) = [ Sule o+ VIZ ey dr
0

dr
—2tT

1
_ _ € Yy
= t V(e x4+ V1 —e2try) - (—e tTaH——) dr
/0 ( y) A /1 _ 6—2t7’

8



we can estimate the expression in (12) with

/ W//Wu (e e+ V1= e27y) - (—V1 — e 27z 4 e7'Ty)| dy(a)dr (y)dr.

Now, for 7 fixed we can perform the “Gaussian rotation”

(2,y) — (e Tz +VI—e By, —/1— e 27p 4 ¢'7y)
to get

¢ / 1\/% / / V() - w] dy(w)dy (v)dr.

Eventually we use the fact that [, |- w|dy(w) = \/2/7[¢] to get

t\/g/ol\/le__—;;%dT/)JVqu)dv(v)

A change of variables leads to the desired expression of ¢;. O]

Notice that the proof of the lemma provides the slightly stronger information
| [ 1)~ e s e VIZET | dr@)tn ) < clDul(x). (13
x Jx
This more precise formulation will be crucial in the proof of Proposition 4.1.

2.3 Product rule

In the proof of Proposition 4.3 we shall use the product rule

D,(xev) = xeVvy +vD,xE

for v € W (X,v) and E with finite perimeter. In general the proof of this property is
delicate, even in finite-dimensional spaces, since a precise representative of v should be
used to make sense of the product vD,xg. However, in the special case when v = Tif
with ¢ > 0 and f bounded Borel, the product rule, namely

D, (xeTif) = xeVTify + Tif DXk (14)

holds provided we understand T; f as pointwise defined in Mehler’s formula. The argument
goes by pointwise approximation by better maps, very much as in Proposition 2.2, and
we shall not repeat it.



2.4 Factorization of 7; and D.u

Let us consider the decomposition X = FF@ Y, with F' C H finite-dimensional. Denoting
by T and TY the OU semigroups in F and Y respectively, it is easy to check (for instance
first on products of cylindrical functions on F' and Y, and then by linearity and density)
that also the action of T; can be “factorized” in the coordinates = = (z,y) € F X Y as
follows:

Tf(zy) =T, (w T/ (- w)(2)) (y) (15)
for any bounded Borel function f.
Let us discuss, now, the factorization properties of D.,u. Let us write Dyu = v,|Du|

with v, : X — H Borel vectorfield with |v,|g = 1 |D,u|-a.e. Moreover, given a Borel set
B, define

B,:={z€ F: (z,y) € B}, B, ={yeY: (z,y) € B}.
The identity

/B 7 ()| d| D] = /Y D, u(-9)|(B,) dw(y) B Bordl (16)

is proved in [5, Theorem 44.2] (see also [3, 17] for analogous results), where 7p : H — F
is the orthogonal projection. Along the similar lines, one can also show the identity

[ el dDul = [ Dyt )|(B) drez) B Bore an
B F
with mp + mp1 = Id. In the particular case u = xg, with the notation

E,={z€F: (z,y) € £}, E.={yeY: (z,y) € £} (18)

the identities (16) and (17) read respectively as

[ metve)diDoxel = [ |Doxs|(B) div(y) B Borel, (19)
B Y

[ ol dDoxel = [ Dyxel(B)drez) BBl (20
B F

with D xg = vg|D,xE|.

Remark 2.4. Having in mind (19) and (20), it is tempting to think that the formula
holds for any orthogonal decomposition of H (so, not only when F' C H ), or even when
none of the parts if finite-dimensional. In order to avoid merely technical complications
we shall not treat this issue here because, in this more general situation, the “projection
maps” z — y and z — 2z are no longer continuous. The problem can be solved removing
sets of small capacity, see for instance [12] for a more detailed discussion.

10



As a corollary of the above formulas, we can prove the following important semicon-
tinuity result for open sets:

Proposition 2.5. For any open set A C X the map
u — |Dyul(A)
is lower semicontinuous in BV (X;~) with respect to the L*(X,~) convergence.

Proof. Let u, — wu in LY(X,7). It suffices to prove the result under the additional

assumption that
Z/ |u, — u| dy < 0. (21)
o Jx

Let F' C H be a finite dimensional subspace, let X = F'xY be the associated factorization,
and use coordinates © = (z,y) € F' x Y as before.

Thanks to (21) and Fubini’s theorem, uy (-, y) — u(-,y) in L'(F,~vr) for yy-a.e. y €Y.
Hence, by the lower semicontinuity of the total variation in finite dimensional spaces (see
for instance [2, Remark 3.5] for a proof when « is replaced by the Lebesgue measure) we
obtain

Dl 9)l(4,) < liminf D (- 9)[(4,)  foray-ac. y €Y,

where A, = {z € F: (z,y) € A}. Integrating with respect to 7y and using Fatou’s
lemma we get

[ 1Dl oy, < timint [ D)l (A) oy
Y —0 Y

which together with (16) gives
/ ()| d| Dy <l nd / 7] d] D] < liminf | D, (4)
A — 00 A — 00

(recall that |v,|g = 1). Since |mp(vy)| T 1 as F increases to a dense subspace of H, we
conclude by the monotone convergence theorem. O]

2.5 Finite-codimension Hausdorff measures

We start by introducing, following [12], pre-Hausdorff measures which, roughly speaking,
play the same role of the pre-Hausdorft measures .#;" in the finite-dimensional theory.

Let F C H be finite-dimensional, m > k > 0 and, with the notation of the previous
section, define

S2kK(B) = / GmdS™ " dyy(y) B Borel (22)

vy JB,

11



where m = dim(F) and G,, is the standard Gaussian density in F (so that .Z27° = 7).
It is proved in [12] that y +— fo G, dS™F is yy-measurable whenever B is Suslin
(so, in particular, when B is Borel), therefore the integral makes sense. The first key
monotonicity property noticed in [12], based on [10, 2.10.27], is

SMB) < S7H(B) whenever F € G ¢ H

provided .#™* in (22) is understood as the spherical Hausdorff measure of dimension
m — k in F. This naturally leads to the definition

S7k(B) = sup 27 ¥(B) B Borel, (23)

where the supremum runs among all finite-dimensional subspaces F of H. Notice, how-
ever, that strictly speaking the measure defined in (23) does not coincide with the one
in [12], since all finite-dimensional subspaces of H are considered therein. We make the
restriction to finite-dimensional subspaces of H for the reasons explained in Remark 2.4.
However, still .#>°7% is defined in a coordinate-free fashion.

These measures have been related for the first time to the perimeter measure D, xg in
[17]. Hino defined the F-essential boundaries (obtained collecting the essential boundaries
of the finite-dimensional sections E, C F' x {y})

OpE ={(z,y): z€ JE,} (24)
and noticed another key monotonicity property (see also [5, Theorem 5.2])
SN ORE\OE) =0  whenever F C G C H. (25)

Then, choosing a sequence F = {Fy, Fy, ...} of finite-dimensional subspaces of H whose
union is dense he defined
S i=sup ST, OpE :=liminf 0y, B (26)

and proved that
D, xe| = L2 'LORE. (27)

Remark 2.6. If we compare (27) with (5), we see that both the measure and the set
are defined in (5) in a coordinate-free fashion, using on one hand all finite-dimensional
subspaces of H, on the other hand the OU semigroup. In this respect, it seems to us
particularly difficult to compare null sets w.r.t. 5”;0_1 and Yﬁ?_l when F # F'; so, even
though the left hand side in (27) is coordinate-free, it seems difficult to extract from this
information a “universal” set. On the other hand, combining (5) and (27) we obtain that
E'Y2 is equivalent to 9%E, up to Yf’l—null sets (observe that, on the other hand, it is
not even clear that 9% F has .*°~! finite measure). So, in some sense, £/? is “minimal”
against the “maximal” measure .#>~7!,

12



3 Finite-dimensional facts

Throughout this section we assume that (X,~) is a finite-dimensional Gaussian space,
with the associated OU semigroup 7;. We assume that the norm of X is equal to the
Cameron-Martin norm, so that we can occasionally identify X with R™, m = dim X, and
identify ~ with the product G,,-Z™ of m standard Gaussians. Give a Borel set F, we shall
denote by E' (resp. E°) the set of density points of E (resp. rarefaction points) with
respect to the Lebesgue measure (it would be the same to consider v, since this measure
is locally comparable to .Z™).

In this finite dimensional setting, the first result is that the statement of Theorem 1.1
can be improved, getting pointwise convergence up to |D.x g|-negligible sets:

Proposition 3.1. Let E C X be with finite y-perimeter. Then, ast | 0, Tyxg — 1/2
|DxEl|-a.e. in X.

Proof. In this proof we identify X with R™. Since |D,xg| = G,n|Dxg|, we know that £
has locally finite Euclidean perimeter. Hence, the finite-dimensional theory ensures that
|Dx g|-almost every point x the rescaled and translated sets (E — x)/r locally converge
in measure as r | 0 to an halfspace passing through the origin (see for instance [2,
Theorem 3.59(a)]). We obtain that for | D, x g|-almost every point = the sets

E—elx

E,=—

locally converge in measure as ¢t | 0 to an halfspace (here we use the fact that translating
by e 'z instead of z is asymptotically the same, since 1 —e™" = o(v/1 —e~%) as t | 0).
Hence, it suffices to show that Tyxg(xr) — 1/2 at all points x where this convergence
holds. We compute:

Tixe(r) = (27)_m/2/ Xp(e ™z + VT — e 2y)e W2 dy

— ()2 / o2 gy
Et,z

Taking the limit as ¢ | 0 yields (27)~"/2 Ju e~ 1v*/2 qu for some halfspace H with 0 € 9H.
By rotation invariance the value of the limit equals 1/2. [

In the next proposition we carefully estimate the blow-up rate of the density of T u
as t | 0 when p is a codimension one Hausdorff measure on a “nice” hypersurface.

Proposition 3.2. Let K C R™ be a Borel set contained in the union of finitely many
C! compact hypersurfaces. Then, for all € > 0, there exist K, C K and t. > 0 such that
SN K\ K.) <¢e and

VT (G ™ LK) <~ Ve (0,t.).
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Proof. We can assume with no loss of generality that 1 + 2 < 2r. For any y € K, let
ry > 0 be a radius such that:

- KN B,,(y) is contained inside a C' submanifold Sy;

- there exists an orthogonal transformation @, : R™ — R™ such that Q,(5,) is
contained inside the graph of a Lipschitz function u,, : ny“l Cc R™ 1 - R;

- the Lipschitz constant of u, is bounded by ¢.

By compactness, there exists a finite set of points 1, ..., yx such that

N
K c | JB., (v).

i=1

Let us define the disjoints family of sets Ay = KN B,, (y1), Ai :== KN B, (y:) \ (Ui'4))
for i =2,..., N. For any given € > 0, we can find compact sets B; C A; such that

N
Z&”m_l(Ai \ E;) < ¢, min dist(E;, E;) =:2§ > 0.

- 1<i#j<N
i=1

Let us set K. := UY | E;, and let R > 0 be sufficiently large so that K. C Br. Thanks to
Lemma 3.3 below applied with I' = Q,,(E;) for i =1..., N, since G,, is invariant under
orthogonal transformations there exists ¢; > 0 such that

2
Vit o) < [T o st B ) e
m

This implies that, for 0 < t < min, ¢;,

VAT (G ™ 'L K. \/ e ZQmR dlst i)/\ﬁ)v

Recalling that dist(E;, Ej) > 26 > 0 for i # j, for all z € R™ it holds dist(x, £;) > ¢ for
all 7 with at most one exception. Hence, since €2, g < 1 and Q,, g(s) — 0 as s — 400,
we get

e ;52 écmﬂ (dist(-,E,)/x/%) <y/2 ;52 (1 + (N = 1)Qur (5/\/%)) <1

for ¢ sufficiently small, which concludes the proof. O
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Lemma 3.3. Let A C R™! be a bounded Borel set, let v : A R be a Lipschitz function
with Lipschitz constant ¢, and let T := {(z,u(2)) : z € A} be the graph of u. Assume that
I' C Bg for some R > 0. Then, there exist a continuous function 0, g : [0, +00) — [0, 1],
depending only on m and R, and t > 0, such that Q, g(s) — 0 as s — 400, and

2
VT (Gp?™ LT < ,/%Qmﬁ (dist(x,F) /\/E) v Vte (0,1).

Proof. Let us first observe that, given a test function f : R"™ — R, it holds

/ AT (G LT = /F T, f (5)Con() 7™ (1)

_leTte2—2etaytlety|?

= [ 10 [ a7 ) o)

Hence, we have to show that, for any » = (2, x,,) € R™™! x R, the expression

_ \eitx\2—267tx-y+|efty|2

2(1—e—21) _leTta—y)?
Vi / - ( G (y) d-™ " (y) = V! / e 2T A (y)
r r

1 — e—2t)m/2 (27T>m/2(1 _ 6—2t)m/2

is bounded by 1;“7f2 Qg (dist(z,T')/+/t) for ¢ sufficiently small (independent of z), with

Q.1 as in the statement.
Thanks to the area formula and the bound on the Lipschitz constant, we can write

Vit B
(2m)m/2(1 — e—2t)m/2 /Fe 0= dS T (y)
Vit _letel 2 e tem )
T (@m)m(l - e 2ym /Ae e BT L [Vu(y)? dy
V 1 + €2ﬁ / _ \e_trlfyl\Q \e_tacmfu(y’)\z
e

2(1—e=2%) o 2(1-e-2t)  Jq/.
(271—>m/2(1 _ eth)m/2 € Yy

Now, since t < 1 — e~? for ¢ small, we can bound the above expression by

/1 + (2 1 ety 2 e tem—u()2
(1—e—2t) (1—e—2t) ’
2 (271-)(771—1)/2(1 _ 6_2t)(m—1)/2 /Ae 2(1 e 2(1 dy ) (28)

First of all we observe that, since

—t ./ y/2

et — |

1 Tor1_.—2t\ / /
(2m)(m=D/2(1 — e=2t)(m-1)/2 /Ae =70 dy' = Tyxa(a') <1,
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the quantity in (28) is trivially bounded by (1 + ¢%)/(27).
To show the existence of a function €2, r as in the statement of the lemma, we split
the integral over A into the one over A\ Byig(s,r)/2(2"), and the one over AN Bigy(z,r)/2(2").
To estimate the first integral, we bound e~l¢” " #m—u@)*/20="*)] by 1 Moreover, we
observe that

1 _|eitx/—y/\2
T, . s < 2070 dyf
tXA\Bdlst(z,F)/2( )< ) - (27T)(m—1)/2(1 — 6_2t)(m_1)/2 \/]Rm_l\Bdist(z,F)/2(x/) € y
1 _\eitx/—:c’—\/ 155_2t2/|2 d ,
— - @ e 2(1—e—4t) z
(271-)(771—1)/2/]1%

-1
" \Bdist(z,l")/[Q\/lfe*Qt]
’ i—e—t 2
| e
= [ 2
R

(2m)m=1)/2

/
VAN

-1
" \Bdist(z,F)/[Q\/lfe*mf]

We now remark that —|a + 0> < —|a]?/2 + |b]* for all a,b € R™™!, 1 — e < 2¢, and

;z: <t for t small. Hence, the above expression is bounded from above by

1 /
m—1)/2
(27)( )/ R N\B it (2,1)/ (2v/30)

Since I' C Bpg, for some R, it holds |2/| < |z| < R + dist(z,I"), and so the above quantity
can be bounded from above by

1 2 41 2 2
etR 6tdlst(x,F) e—\z| /4 dz'
(2m)(m=1)/2 Rm—1\B

\ dist(x,I) /(2v/2t)

o)
mw 2 q; 2 - —
m R edlSt(:D,F) /100t/ e T /47_m ldT
d

S -
(2m)(m=1)/2 ist(2,7)/(4v/%)

oI P/ 22 g

for ¢ small (here w,, denotes the measure of the unit ball in R™).
To control the second integral over A N Byst(z,1)/2(2"), we bound TtXAﬂBdist(x,r)/z(x’)(x/>
by 1 and we estimate from above, uniformly for ¢ € Byisi(a,r)/2(2'), the quantity

_leTtem—u@)?

e 2(1—e—21)

We proceed as follows: for 3 € Byst(z,r)/2(2"), by the definition of dist(x,I"), we have
dla’ —y'|? < dist(z, 1) < |2" = y'[* + |2 — u(y)]*,

which implies 3|z’ — ¢/|* < |z, — u(y')|?, and so dist(z,T)? < 4|z, — u(y’)|*/3. Thus,

using again the estimate —|a — b|? < —|a|?/2 + |b|?, for ¢ small enough we obtain

le tom—u(y))|? _lem—u@))? a—e=H2 a2

e 2(1—e—21) S e 4(1—e—2ty) e (1—e—20) S efdist(z,F)Q/(lﬁt)€t|zm|2'
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Since |z,,| < |z] < R+ dist(z,I"), we conclude that

le"tem —u(y")|?

e 20-e2) < 6R26—dist(x,1“)2/(20t) Vy' c Bdist(x,f‘)/?('r,)

for ¢ small enough.
Hence, it suffices to define

Qpn r(s) = min {1, %e e 2/100/ e A rm=1 g o €R26—52/20}
(27T) " s/4

(recall that f;f; e A dr ~ ene /0452 a5 s — 400) to conclude the proof. [

The next lemma is stated with outer integrals fy*, this suffices for our purposes and
avoids the difficulty of proving that the measures o, we will dealing with have a measurable
dependence w.r.t. y.

Lemma 3.4. Let (Y, F, u) be a probability space and, fort >0 andy €Y, let g1,y : X —
[0,1] be Borel maps. Assume also that:

(a) {oy,}yey are positive finite Borel measures in X, with f; o,(X) du(y) finite;
(b) o, =G LT, for p-a.e. y, with Ty countably /™ -rectifiable.
Then

sy [ [ Tigny (o) doy (0)duty) < timsup - = 7 [ [ @ awi.

10 t]0
Proof. We prove first the lemma under the stronger assumption that, for y-a.e. y € Y,

there exists ¢, > 0 such that

) 1
Tioy < %7 vt € (0,1y).

Fix ¢ > 0 small, and set Y. := {y € Y : t, > 0}, where § = §(¢) > 0 is chosen sufficiently
small in such a way that f;g [ Tegry doydp(y)+e > [1 [ Tty doydp(y) (this is possible,
by the continuity properties of the upper integral). For ¢ € (0,4) we estimate the integrals
in (29) with Y, in place of Y:

/ / T;fgt Y daydﬂ / / Gty dT O-yd//“ / / Gty d’ydﬂ

Hence, letting ¢ | 0 yields (29) with an extra summand ¢ in the right hand side. Since
is arbitrary we conclude.
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Finally, in the general case when T, is countably ™ !-rectifiable we can find for
any € > 0 sets I, C Iy contained in the union of finitely many hypersurfaces such that
o, ([y\I',) < &/2 and then, thanks to Proposition 3.2, sets Iy C I') with ay(T%\Tg) <e/2
in such a way that the estimate (29) holds when o, is replaced by G, LT Since
Tig: < 1 we can let € | 0 to obtain (29). O

In the proof of Theorem 1.3 we need a Poincaré inequality involving capacities. Recall
that the 1-dimensional capacity ¢;(G) of a Borel set G can be defined as:

a1(G) = inf {|Du|(R™) : u € L™m=D(@Rm™ G C int({u > 1})}

(see [23, §5.12]; other equivalent definitions involve the Bessel capacity). The following
result is known (see for instance [23, Theorem 5.13.3]) but we reproduce it for the reader’s
convenience in the simplified case when v is continuous.

Lemma 3.5. Let v € WH(B,) N C(B,) and let G C B, be a Borel set with ¢,(G) > 0.
Then, for some dimensional constant k, it holds

1 K
doe < ——— d
" /T|v| r < (G /BT|VU| T

whenever v vanishes ¢i-a.e. on G.

Proof. By a scaling argument, suffices to consider the case r = 1. By a truncation
argument (i.e., first considering the positive and negative parts and then replacing v by
min{v,n} with n € N) we can also assume that v is nonnegative and bounded. By
homogeneity of both sides, suffices to consider the case 0 < v < 1. In this case the
statement follows by applying the inequality

K

LB < 1

|Dxg|(B1) whenever F is open and G C F (30)
with F' = {v < t}, t € (0,1), and then integrating both sides with respect to ¢ and using
the coarea formula. Hence, we are led to the proof of (30). Now, if Z"(E) > w,,/2 we
can apply the relative isoperimetric inequality in B; to get

K

LB\ B) < el Dxel (B) < s

| Dxz|(By)

provided we choose k so large that x > ¢1(Bj)cy, (observe that ¢ (G) < ¢1(By)). On the
other hand, if Z™(FE) < w,,/2 then we estimate £ (B, \ E) from above with w,, and it
suffices to show that |Dxg|(B1) > ¢1(G)wn/k for K = k(m) large enough. In this case we
can find a compactly supported BV function u coinciding with yg on B; with

| Dul(R™) < ¢, (|Dxe|(B1) + £™(E N By)) < ¢, (1+ )| Dxel(B1)
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(see for instance [2, Proposition 3.21] for the existence of a continuous linear extension
operator from BV(B;) to BV(R™)). It follows that ¢;(G) < ¢, (1 + ¢m)|Dxe|(B1), so
suffices to take x such that k/w,, > ¢, (14 ¢y). O

In the sequel we shall extensively use the following identity between null sets w.r.t.
¢; and null sets w.r.t. to codimension one Hausdorff measure, see for instance [23,
Lemma 5.12.3]:

c(G)=0 = S HG) = 0. (31)
Lemma 3.6. Let G C R™ be a Borel set. Then
B,
limsupw >0 for ci-a.e. x € G.
rl0

Proof. Let L C G be the Borel set of points where the limsup is null and assume by
contradiction that ¢;(L) > 0. Then (31) yields ™ (L) > 0 as well and we can find,
thanks to [6], a compact subset L' with 0 < .™ !(L’) < co. We will prove that

L=
lim inf a(L'0 Bi(x))

A >0  for ™ lae xel 32
"o #m-L(L N B, (x)) o e (32)

Combining this information with the well-know fact (see for instance [2, (2.43)])

YL A Bo())

lim sup : >0 for ™ lae vl (33)
r]0 rme
we obtain o
L'N B,
lim sup il - (z)) >0 for /™ ae x e L,
rl0 rme

in contradiction with the inclusion L' C L and the fact that ™ (L") > 0.

To conclude the proof, we check (32). Let L” C L’ be the Borel set of points where
the liminf in (32) is null; for all € > 0 we can find, thanks to Vitali covering theorem,
a disjoint cover of .#™ -almost all of L” by disjoint closed balls {B,,(z;)}ics satisfying
ci(L' N B, (7)) < e Y(L' N B,,(x;)). Thanks to (31) the balls cover also ¢;-almost all
of L”, so the countable subadditivity of capacity yields ¢;(L") < ™! (L’). Since ¢ is
arbitrary we conclude that ¢; (L") = 0, whence .#™ (L") = 0 by (31). O

Proposition 3.7. Let (u,) C WYX, v) N C(X) be convergent in L*(X,~) to xg, with
E of finite perimeter, and satisfying

limsup/ |Vu,|dy < |Dyxe|(X). (34)
b

n—oo
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Then .
L= {:c o lim uy(x) = 5}

is contained, up to ™ -negligible sets, in the essential boundary of E.

Proof. Possibly passing to the smaller sets

LﬂO%{mGX:MW@—éS%})

which monotonically converge to L as m — oo, we can assume with no loss of generality
that |u, —1/2| <1/4 on L.

Let us prove, first, that (34) yields the weak* convergence in the duality with Cp(X)
of |Vu,|vy to |D,xg|. It suffices to apply the lower semicontinuity of the total variation
in open sets (see Proposition 2.5) to get

liminf [ |Vu,|dy > |D,xg|(A) for all A C X open
A

n—oo

and then to apply [2, Proposition 1.80].

Denoting by E' the set of density points of F, it suffices to show that ¢;(L N E') = 0;
indeed, the same property with the complement of F and 1 — u,, gives c¢;(L N E°%) = 0,
where E is the set of rarefaction points of £, and since £° U E* is the complement of the
essential boundary of £ we conclude thanks to (31).

We now assume by contradiction that G := LN E* has strictly positive capacity. Since
|DxE|(B-(y)) = o(r™ ') for ™ l-a.e. y € E' and thanks to Lemma 3.6, we find a point
r € G and radii r; | 0 such that lim;c¢;(G N B,,(z))/r™ ' > 0 and |Dxg|(B,,(z)) =
o(r™1). Let ¢ : [0,1] — [0, 1] be the piecewise affine function identically equal to 1/2 on
[1/4,3/4] and with derivative equal to 2 on (0,1/4) U (3/4,1). Since ¢ o u,, are identically
equal to 1/2 on L D G, we can apply Lemma 3.5 to 1/2 — ¢ o u,, in the ball B,,(x) to get

1 2Kw
rym ¢ ou, — =|dy < - / (V| dy.
/Brl(x) 2 C1 (G N BH‘ (xl)) By, ()

Since ¢(0) = 0 and ¢(1) = 1, passing to the limit as n — oo and using the weak*
convergence of |Vu,|y to |D,xg| yields

1 2KWyy, / 1
" —5ldy < ——d|D-xz)-
' /Bri(x) bxe 2| Y= (@GN B, (1) By, (x) Gm D x|

Since " /¢ (G N B, (x;)) is uniformly bounded as i — oo and |Dxg|(B,,(z)) = o(r!
we conclude that

1
nm/ Ixe —zldy—0 asr; |0,
By, (z) 2

contradicting the fact that x € E*. O
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4 Convergence of Tyxp to 1/2

In this section we shall prove Theorem 1.1. By a well-known convergence criterion in L2,
the stated convergence will be a consequence of the weak* convergence of Tyxp to 1/2 in
L>(X,|D,xEgl|), that we shall prove in Proposition 4.3, and the following apriori estimate
(see also Remark 4.2):

Proposition 4.1. For any set E with finite perimeter in (X, ) it holds
. 1
hmsup/ Tixe|>d|Dyxe| < Z‘D’YXEKX)' (35)
o Jx
Proof. In this proof we shall use the simpler notation

Tof(z) = / F ()i (. dy)

for the action of the OU semigroup. Comparing with Mehler’s formula (10), we see that
the measure p;X(z,-) is nothing but the law of y — e~ 'z + /1 — e 2y under v (not
absolutely continuous w.r.t. v if £ > 0 and X is infinite-dimensional).

Let f; = Tyxg and write, as in (15),

filz,y) = /Y /F Xz, (2')pf (2,d2")p} (y, dy')

where H = F @ F* is an orthogonal decomposition of H, F C H is finite-dimensional,
X =F@Y and v = v ® 7y are the corresponding decompositions of X and v and
E,={z € F:(z,y) € E}. Then Hélder’s inequality yields

O ( /

so that it suffices to estimate from above the upper limits of the integrals

ATV

ast | 0, with |D,xg|(X)/4. First of all, we notice that the quantity in square parentheses
is less than 1; hence, since (19) ensures that the measures in X

pf<z,dz'>) o (4, dy), (36)

y/

pf<z,dz'>) o <y,dy'>] 41D, x5 () (37)

y/

|DrpXE, | (d2) @ vy (dy)
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monotonically converge to |D.xg| as F' | H (more precisely, as F' increases to a vector
space dense in H), it suffices to estimate with |D,xg[(X)/4 the upper limit as ¢t | 0 of

the integrals
LU |, ) 6 )] 1D ) 53)

Now, if in (38) we replace the innermost integral on F,, with an integral on E,,, thanks to
Fatou’s lemma and Proposition 3.1 (observe that |’ B, pF(z,d2") < 1) we get immediately

lirrtll%up / / ( /E y i (27dzl))zd‘DWFXEyl(Z>d7Y<y)
//hntll%up(/ (Z,dZ/))Qd\DwXEyKZ)d’YY(y)

< 1/ IDexnl(F) o)

Since the quantity above is less than |D,xg|(X)/4, we are led to show that the limsup
as t | 0 of the expressions

1(/ y, pf<z,dz’>)2 -(/ y pf<z,dz’>)2

can be made arbitrarily small, choosing F' large enough. To this aim, bounding the differ-
ence of the squared integrals with twice their difference, using again that [ 5, pf(z,d2') <1

IN

pi (y,dy") d| Do x| (2)dyy (y)

it suffices to estimate the simpler expressions

1(/ A - /E (i)

We can now estimate (39) from above with

/ / 7 guy(2) d| Doy, | (2)d e (),

where T denotes the OU semigroup in (F,~yr) and

Gry(2 / Xz, (2) = x&,(2)|p) (y,dy).

pi (v, dy') d|Dy,xg, | (2)dvy (y).  (39)

Keeping y fixed, by applying Lemma 3.4 with o, = |D,,xg,| we get that the limsup as
t | 0 of the expression in (39) is bounded above by

imsup - / / g1y () dye(2)dry (9). (40)
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Since we can also write g;,(2) = fy}XEz (y) — XE. (y’)‘pf(y, dy'), by (13) we get

/Y guy(2) dyy (4) = / /Y X () — Xe. ()10 (4, dy) dvy (4) < x| Doy x| (Y),

so that an integration w.r.t. z and Fubini’s theorem give that the limsup in (40) is
bounded above by (taking also into account that ¢; ~ 24/t/7)

% / 1Dy x| (V) e (2).

But, according to (20), we can represent the expression above as

2
ﬁ/x |7TFL(VE)’d\D~yXE|-

Since |mpi(vg)| | 0 as F increases to a dense subspace of H, we conclude. O

Remark 4.2. In the previous proof we used that the statement is true in finite dimensions,
see Proposition 3.1. But actually Proposition 3.1 provides also a stronger information,
and the proof above could be slightly modified to obtain directly Theorem 1.1 from this
stronger information. However, we prefer to emphasize a softer and surely more elemen-
tary proof of the weak* convergence of T;. Indeed, we believe that the softer argument
below (based just on the product rule (14) and some elementary arguments) has an in-
terest in his own. In particular, a variant of this argument allows to prove that |D.,xg| is
also concentrated on a kind of reduced boundary (see the Appendix).

Proposition 4.3. Ast | 0, Tyxg weak® converge to 1/2 in L>(X, |D,xE|)-

Proof. Let t; | 0 be such that f; := T}, xg weak™ converge to some function f as i — oo.
It suffices to show that f > 1/2 up to |D.,xg|-negligible sets. Indeed, the same property
applied to X \ E yields 1 — f > 1/2 up to |D,xx\g|-negligible sets, and since the surface
measures of F and X \ E are the same we obtain that f =1/2 in L>(X,|D,xgl|). Since
Tixg is uniformly bounded in L*>(X,|D,xgl|), from the arbitrariness of (¢;) the stated
convergence property as t | 0 follows.

By approximation, it suffices to show that

2 [ £diD,xel = 1D, xel(1) (41)
A
for any open set A C X; by inner approximation with smaller open sets whose boundary

is | D, xg|-negligible, we can also assume in the proof of (41) that |D.,xg|(0A) = 0. We
use the product rule (14) to obtain
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Then, we use the relations VT,u = e "T}D,v (see Proposition 2.1(b)) and |VTv| <
e "I} |Dv| with v = xg and t = t; to get

|D,(fixe)|l < filDyxe| + Ttt|D7XE|-
Let us now evaluate both measures on A:

D, (fcm)|(A) < / fd|Dyxe] + / Tyxans d| Do)
X

Since Ty, X anp < min{ f;, Ty, xa} we can further estimate
D, (el ) <2 [ Dol + [ | Tioxad Dl
A X\A

Finally, since fixg — xz in L'(X,~), it suffices to use the fact that Tyx4 — 0 pointwise
on X \ A and the lower semicontinuity of the total variation in open sets (see Proposition
2.5) to get (41). O

5 Representation of the perimeter measure

In this section we shall prove Theorem 1.3. We fix an orthogonal decomposition X =
FaoFLof H, with F C H finite-dimensional, and denote by X = F@Y the corresponding
decomposition of X. We define E,, y € Y, as in (18) and, correspondingly, the essential
boundary 0% F as in (24).

Our main goal will be to show that the set £'/2? (as defined in Definition 1.2), namely

1
{x € X: lim T}, xp(z) = 5}

is contained in 95 FE up to .#2° -negligible sets, i.e.,
SEYEY?\ 9LE) = 0. (42)

Proof of (42). Let f;,(z) = Ty, xe(z,y). Since Y. /t; < 0o we can use the estimates

L3 [ 1= xmldvedw) = 3 [ 1B = xeldy < 1Dl Y,
Yy 5 JF i JX i

with ¢; as in Lemma 2.3, to obtain that f;, — xg, in L'(yp) for yy-a.e. y € Y. Our first
task will be to show the existence of a subsequence #;(;) such that

i / Vefinalde = Doy [(F)  for vy-ae. y € Y. (43)
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To this aim, we first show that

/Y ( /F !vai,y|dvF) dyy < /Y Dy |(F) dy. (44)

In order to prove (44) we use Proposition 2.1(b) to get |V fi|y < T} |np(DyxEg)|, hence

/X Vi fiul dy < mp(Dyxs)|(X)

and using (19) we conclude that (44) holds.

Condition (43) now follows by the L' (Y, ~y) convergence of [, [V f;y| dvp to |Dy . x g, |(F);
in turn, applying a convergence criterion (see for instance [2, Exercise 1.19]) this follows
by the liminf inequality

liminf [ |Vpfiyldyr > |DyxE, |(F) for yy-a.e. y €Y.
F

71— 00

(a consequence of the lower semicontinuity of total variation) together with convergence
of the L' norms ensured by (44).
Now, we fix y such that all functions f;, are continuous and both conditions

lim [ |fi, —xg,|dyr =0, jlim / \VEfigyl dyve = |DaypXe, | (F)
71— 00 F — 00 F

hold and apply Proposition 3.7 to obtain that the y section of EY/2, contained in

) 1
{z e F: jlglolo fithw(2) = 5}

is also contained, up to ™ -negligible sets, in 9*E,. Since Proposition 2.2 and (43)
ensure that the set of exceptional y’s is 7y-negligible, the definition of 5’;"_1 yields
(42). m

Having achieved (42) we can now prove Theorem 1.3. To this aim, we fix a nondecreas-
ing family F = {Fy, Fy, ...} of finite-dimensional subspaces of H whose union is dense in
H and, using (42) in conjunction with (25), for n < m we get

SN EV\ () 0RE) = 0.

Letting m — oo it follows that .77°~'(EY? \ 03E) = 0, and since n is arbitrary this
proves that
S HEY2\ 03E) = 0. (45)
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Now, we know that | D, xg| = .2 ' L 93 F, hence evaluating both measures on 95 E\ E/2
and using the fact that |D, x| is concentrated on E/? we get

SN OB\ EY?) = 0. (46)
The combination of (45) and (46) gives
|D,xE| = 72 LEY2

But, since F is arbitrary, this yields that £'/2 has finite .*~'-measure and (5), conclud-
ing the proof.

6 Derivative of the union of disjoint sets

In this section we prove Corollary 1.4. Let us remark that, although the result is stan-
dard in finite dimensions and could be proved in different ways (for instance, using De
Giorgi’s rectifiability theorem), the argument below is very elementary. Although the
proof is more or less the same as the one in [13, Lemma 2.2] (where the authors are
dealing with the classical notion of perimeter in R™), we believe it is worth to repeat the
argument for reader’s convenience, and for underlying the importance of the fact that in
our representation formula (5) the measure .#°°~! is universal.

Proof of Corollary 1.4. The fact that EU F has finite perimeter follows immediately from
the definition.

Since the sets (E U F)Y2, EY2 F1/2 are .#°°~!-uniquely determined, we can assume
that they all have been defined using the same sequence (t;).

As v(ENF) =0 we have xgur = Xg + XF, so that by (5)

vpur ' L(EU F)1/2 = Dyxeur = Dyxeg + Dyxr
= vp. S LEY? fup s L FY2 (47)

Since EY2 N FY2 C {x € X : lim; oo Ty, xpur(7) = 1} we have

(EUR)Y2NEYV2NFY? =), (48)
so (6) follows from (47). Moreover, by (47) and (48), for every Borel set C C EY/2n F/2
we have
/VE—FVdeOO_l:/ VEUpdyoo_lzo,
C CN(EUF)1/2
which implies that vy = —vp at .#>® -a.e. point in EY/2 N FY2, as desired. O
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7 Appendix: The reduced boundary

The classical finite-dimensional definition of reduced boundary [9] is based on the require-
ments of existence of the limit

vp(z) = lim Dxs(B,(z))

8 (Dl (B, (x) (49)

and modulus of the limit vg(z) equal to 1. It is not hard to show that points in the
reduced boundary are Lebesgue points for the vector field vg, relative to | Dy g|, hence the
proof that |Dxg|-almost every point z is in the reduced boundary is based on Besicovitch
covering theorem, a result not available in infinite dimensions.

In [5, Definition 7.2], the authors proposed the following definition of reduced boundary
based on the OU semigroup:

Definition 7.1 (Gaussian Reduced Boundary). Let E be a Borel set of finite perimeter
in (X,v). We denote by FE the set of points x € X where the limit

1 Tt*D'yXE

exists and satisfies |vg(x)| = 1.

As observed in [5, Section 7], a natural open problem is to prove that | D, x| is concen-
trated on FE. Here, we show how the soft argument used in the proof of Proposition 4.3
allows to prove easily the weaker result

. ’T;t*D’YXE’

= = 51
1D xe) (51

l}lr(r)lﬂht =1 in L'(X,|D,x&|) with hy :
In particular, we deduce that along any subsequence (¢;) | 0 such that

> [ b, = 1dIDoxe] < o0
— Jx

it holds
lim 73,

1—00

(|TZ§D7XE\

" x)=1 for |D.xgl|-a.e x € X.
s ) @) D el

Proof of (51). Set f; := Tyxg. Arguing as in the proof of Proposition 4.3, the product
rule (14) yields

D (o) (X) < / f,d| Dy + / haxe dTY| Dy x|
X X
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Replacing E by X \ F and and f; by 1 — f;, we also have

1D, ((1 = fi)xx\p)|(X) < /X(l — fo) d[Dyxe| + /X he(1 — xp) dI;| Dy XEl.
Adding together the two inequalities above, we obtain
1Dy (fexe)|(X) + D (1 = fi)xxe)[(X) < [Dyxel(X) +/Xht dT;| Dy x|
= IDel(X) + [ Tl
By lower semicontinuity of the total variation (see Proposition 2.5), letting ¢ | 0 we get
2|Dxel(X) < 1iI£ll(i)Hf(|D7(ftXE)|(X) + 1D, ((1 — ft)XX\E)|(X)>
< |Dyxe|(X) +hl?ui)nf/XTtht d|D,xEl,

so that
|Dyxe|(X) < liminf/ Tihy d| D x|
10 Jy

This, combined with the fact that 0 < T;h, <1 (as 0 < hy < 1) proves that

/|Ttht—1|d|D7XE|:/(1—Ttht)d|D7XE|—>0 ast |0,
X X

as desired. O

References

[1] H. Airault and P. Malliavin, Intégration géométrique sur l’espace de Wiener, Bull.
des Sciences Math., 112 (1988), 25-74.

[2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of bounded variation and free
discontinuity problems”, Oxford Mathematical Monographs, 2000.

[3] L. Ambrosio, S. Maniglia, M. Miranda Jr. and D. Pallara, BV functions in abstract
Wiener spaces, J. Funct. Anal., 258 (2010), 785-813.

[4] L. Ambrosio, G. Da Prato and D. Pallara, BV functions in a
Hilbert space with respect to a Gaussian measure, Preprint,  (2009),
http://cvgmt.sns.it/cgi/get.cgi/papers/ambdappal /

28



[5]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

L. Ambrosio, M. Miranda and D. Pallara, Sets with finite perimeter in Wiener
spaces, perimeter measure and boundary rectifiability, Discrete Contin. Dyn. Syst.
Series A, 28 (2010), 591-606.

A.P. Besicovitch, On the existence of subsets of finite measure of sets of infinite
measure, Indag. Math., 14 (1952), 339-344.

V.I. Bogachev, “Gaussian Measures”, American Mathematical Society, 1998.

E. De Giorgi, Definizione ed espressione analitica del perimetro di un insieme, Atti
Accad. Naz. Lincei ClL. Sci. Fis. Mat. Nat., 8 (1953), 390-393.

E. De Giorgi, Su una teoria generale della misura (r —1)-dimensionale in uno spazio
ad r dimensioni, Ann. Mat. Pura Appl., 4 (1954), 191-213.

H. Federer, A note on the Gauss—Green theorem, Proc. Amer. Math. Soc., 9 (1958),
447-451.

H. Federer, “Geometric measure theory”, Springer, 1969.

D. Feyel and A. De la Pradelle, Hausdorff measures on the Wiener space, Potential
Anal., 1 (1992), 177-189.

A. Figalli, F. Maggi and A. Pratelli, A mass transportation approach to quantitative
isoperimetric inequalities, Invent. Math., 182 (2010), 167-211.

M. Fukushima, On semimartingale characterization of functionals of symmetric
Markov processes, Electron J. Probab., 4 (1999), 1-32.

M. Fukushima, BV functions and distorted Ornstein-Uhlenbeck processes over the
abstract Wiener space, J. Funct. Anal., 174 (2000), 227-249.

M. Fukushima and M. Hino, On the space of BV functions and a related stochastic
calculus in infinite dimensions, J. Funct. Anal., 183 (2001), 245-268.

M. Hino, Sets of finite perimeter and the Hausdorff-Gauss measure on the Wiener
space, J. Funct. Anal., 258 (2010), 1656-1681.

M. Ledoux, Isoperimetry and Gaussian analysis, in ”Lectures on Probability Theory
and Statistics“, Saint Flour, 1994 Lecture Notes in Mathematics, 1648, Springer,
1996.

M. Ledoux, Semigroup proof of the isoperimetric inequaliy in Euclidean and Gaussian
spaces, Bull. Sci. Math., 118 (1994), 485-510.

29



[20] D. Preiss, Gaussian measures and the density theorem, Comment. Math. Univ.
Carolin., 22 (1981), 181-193.

[21] E.M. Stein, “Topics in Harmonic Analysis related to the Littlewood-Paley theory”,
Annals of Mathematics Studies 63, Princeton University Press, 1970.

[22] L. Zambotti, Integration by parts formulae on convex sets of paths and applications
to SPDEs with reflection, Probab. Theory Relat. Fields, 123 (2002), 579-600.

[23] W.P. Ziemer, “Weakly differentiable functions”, Graduate Texts in Mathematics,
Springer, 1989.

30



