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Abstract

In this paper we prove the existence of an optimal transport map on non-compact man-
ifolds for a large class of cost functions that includes the case c(x, y) = d(x, y), under the
only hypothesis that the source measure is absolutely continuous with respect to the volume
measure. In particular, we assume compactness neither of the support of the source measure
nor of that of the target measure.

1 Introduction

Monge transportation problem consists in moving a distribution of mass into another one in
an optimal way, that is minimizing a given cost of transport. In a mathematical language, the
problem can be stated as follows: given two probability distributions µ and ν, with respective
support in measurable spaces X and Y , find a measurable map T : X → Y such that

T]µ = ν, (1)

i.e.
ν(A) = µ

(
T−1(A)

) ∀A ⊂ Y measurable,

and in such a way that T minimizes the transportation cost, that is
∫

X
c(x, T (x)) dµ(x) = min

S]µ=ν

{∫

X
c(x, S(x)) dµ(x)

}
,

where c : X × Y → R is a given cost function. When condition (1) is satisfied, we say that
T is a transport map, and if T minimizes also the cost we call it optimal transport map. The
difficulties in solving such problem even in an Euclidean setting motived Kantorovich to find a
relaxed formulation (see [11], [12]). He suggested to look for plans instead of transport maps,
that is probability measures γ in X × Y whose marginals are µ and ν, i.e.

(πX)]γ = µ and (πY )]γ = ν,

∗a.figalli@sns.it

1



where πX : X×Y → X and πY : X×Y → Y are the canonical projections. Denoting by Π(µ, ν)
the class of plans, the new minimization problem becomes then the following:

min
γ∈Π(µ,ν)

{∫

X
c(x, y) dγ(x, y)

}
. (2)

If γ is a minimizer for the Kantorovich formulation, we say that it is an optimal plan. Using
weak topologies, the existence of solutions to (2) becames simple under the assumption that X
and Y are Polish spaces and c is lower semicontinuous (see [15, Chapter 1]). The connection
between the formulation of Kantorovich and that of Monge can be seen by noticing that any
transport map T induces the plan defined by (Id× T )]µ which is concentrated on the graph ot
T .
In a forthcoming paper with Fathi [8], we prove that, in the case X = Y = M with M a smooth
manifold, if µ gives zero mass to sets of dimension at most n−1 and the cost function is induced
by a C2 Lagrangian that verifies some reasonable assumptions, then the Monge problem has
a unique solution and this coincide with the solution of the Kantorovich problem, which turns
out to be unique. In particular, this result covers all the cases c(x, y) = d(x, y)p for p > 1, but
not the limit case p = 1. So this paper arises as an extension to non-compact manifolds of the
results of Bernard and Buffoni proved in [5], where the authors showed the existence of optimal
transport maps for a large class of costs (that includes in particular the case c(x, y) = d(x, y)) on
compact manifolds without boundary. The existence of an optimal transport maps in the case
c(x, y) = d(x, y) on non-compact manifolds has also been proved in [10] under the assumption
of compactness of the supports of the two measures (see the references in [10] for earlier works
in the same spirit). In the present paper we extend this result at the case of non-compactly
supported measures and, more generally, we prove the existence of an optimal transport for a
larger class of cost functions, which is the class of Mañé potentials associated to a supercritical
Lagrangian, using in particolar results on weak KAM theory on non-compact manifolds (see
[9]).
We remark that we do not assume, as usual in the standard theory of optimal trasportation, that
the cost function is bounded by below. In fact such assumption would be quite nonnatural for
a Mañé potential and, also in particular cases, it would not be simple to check its validity. So,
in order to apply the standard duality result that gives us an optimal pair for the dual problem,
the idea will be to add to our cost a null-Lagrangian, so that the cost becomes nonnegative and
still satisfies the triangle inequality, and the minimization problem does not change (see Section
2.2).

1.1 The main result

Let M be a smooth n−dimensional manifold, g a complete Riemannian metric on M . We fix
L : TM → R a C2 Lagrangian on M , that satisfies the following hypotheses:

(L1) C2-strict convexity: ∀(x, v) ∈ TM , the second derivative along the fibers ∇2
vL(x, v) is

positive strictly definite;
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(L2) uniform superlinearity: for every K ≥ 0 there exists a finite constant C(K) such that

∀(x, v) ∈ TM, L(x, v) ≥ K‖v‖x + C(K),

where ‖·‖x is the norm on TxM induced by g;

(L3) uniform boundedness in the fibers: for every R ≥ 0, we have

A(R) := sup
x∈M

{L(x, v) | ‖v‖x ≤ R} < +∞.

We define the cost function

cT (x, y) := inf
γ(0)=x, γ(T )=y

∫ T

0
L(γ(t), γ̇(t), t) dt.

The assumptions on the Lagrangian ensure that the inf in the definition of cT (x, y) is attained
by a curve of class C2. We now define the cost

c(x, y) := inf
T
cT (x, y).

In the theory of Lagrangian Dynamics, this function is usually called Mañé potential. We now
make the last assumption on L:

(L4) supercriticality: for each x 6= y ∈M , we have c(x, y) + c(y, x) > 0.

This assumption ensures that also the inf in the definition of c(x, y) is attained by a curve of
class C2. We will consider the Monge transportation problem for the cost c. Our main result is
the following:

Theorem 1.1. Assume that c is the cost function associated to a supercritical Lagrangian that
satisfies all the assumption above. Suppose that

∫

M×M
d(x, y) dµ(x) dν(y) < +∞,

where d is the distance associated to the Riemannian metric. If µ is absolutely continuous with
respect to the volume measure, then there exists an optimal transport map T : M → M for
the Monge transportation problem between µ and ν. This map turns out to be optimal for the
Kantorovich problem. More precisely, the plan associated to this map is the unique minimizer
of the secondary variational problem

min
∫

M×M

√
1 + (c(x, y)− U(y) + U(x))2 dγ(x, y)

among all optimal plans for (2), where U is a strict subsolution of the Hamilton Jacobi equation
(see Proposition 2.2).
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We recall that the idea of using a secondary variational problem in order to select a “good”
optimal plan was first used in [2] and refined in [3].

Remark 1.2. We observe that, by the triangle inequality for the distance, the condition
∫

M×M
d(x, y) dµ(x) dν(y) < +∞

is equivalent to the existence of a point x0 ∈M such that
∫

M
d(x, x0) dµ(x) < +∞,

∫

M
d(y, x0) dν(y) < +∞.

In fact, fixed x0, x1 ∈M , since d(x, x0)− d(x0, x1) ≤ d(x, x1) ≤ d(x, x0) + d(x0, x1),

x 7→ d(x, x0) is integrable if and only if x 7→ d(x, x1) is integrable.

In particular all Lipschitz functions on M are integrable with respect to both µ and ν.

We remark that the Lagrangian

L(x, v) =
1 + ‖v‖2

x

2

satisfies all the hypotheses of the above theorem and, in this case, we obtain

c(x, y) = d(x, y).

2 Definitions and preliminary results

2.1 Preliminaries in Lagrangian Dynamics

We recall some results of Lagrangian Dynamics that will be useful in the sequel (see [6], [7],
[13]) and that shows the naturality of the supercriticality assumption.

Proposition 2.1. Let L be a Lagrangian that satisfies assumption (L1), (L2) and (L3). For
k ∈ R, let us define ck the Mañé potential associated to the Lagrangian L+k. Then there exists
a constant k0 such that

(i) for k < k0, then ck ≡ −∞ and the Lagrangian is called subcritical;

(ii) for k ≥ k0, ck is locally Lipschitz on M ×M and satisfies the triangle inequality

ck(x, z) ≤ ck(x, y) + ck(y, z) ∀x, y, z ∈M ;

in addition ck(x, x) = 0 ∀x ∈M ;
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(iii) for k > k0, the Lagrangian L is supercritical, that is c(x, y)+c(y, x) > 0 for each x 6= y ∈M .

The following proposition is a simple corollary of the results proved in [9]:

Proposition 2.2. The Lagrangian L is supercritical if and only if there exist δ > 0 and a C∞

function U such that
H(x, dxU) ≤ −δ, ∀x ∈M,

or equivalently
L(x, v)− dxU(v) ≥ δ, ∀(x, v) ∈ TM,

where H is the Hamiltonian associated to the Lagrangian L, that is

∀(x, p) ∈ T ∗M, H(x, p) := sup
v∈TxM

{〈p, v〉 − L(x, v)}.

Proof. The value k0 is the so called critical value of L, and is the smallest value for which there
exists a global C1 subsolution of

H(x, dxu) = k

(under the assumptions made on the Lagrangian, this value exists and is unique). Then it
suffices to apply the following approximation result, also proven in [9]:

Theorem 2.3. If u : M → R is locally Lipschitz, with its derivative dxu satisfyingH(x, dxu) ≤ k
almost everywhere, then for each ε > 0 there exists a C∞ function uε : M → R such that
H(x, dxuε) ≤ k + ε and |u(x)− uε(x)| ≤ ε for each x ∈M .

In fact, if L is supercritical, then k0 is strictly negative, and it suffices to use the theorem
above with ε = |k0|

2 . On the other hand, the inverse implication follows by the caracterization
of ck0 made above. ¤

We observe that, in the case L(x, v) = 1
2

(
1 + ‖v‖2

x

)
, it suffices to take U ≡ 0, δ = 1

2 .

2.2 Duality and Kantorovich potential

It is well-known that a linear minimization problem with convex constraints, like (2), admits a
dual formulation. Before stating the duality formula, we recall the definition of c-transform (see
[2], [4], [5], [8], [15], [16]).

Definition 2.4 (c-transform). Given a pair of Borel functions ϕ : X → R ∪ {−∞}, ψ : Y →
R ∪ {+∞}, with ∫

X
|ϕ| dµ < +∞ and

∫

Y
|ψ| dν < +∞,

we say that ψ is the c-transform of ϕ if

∀(x, y) ∈ X × Y, ψ(y) = sup
x∈M

ϕ(x)− c(x, y),

and we write ψ = ϕc.
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Observe that, if ψ = ϕc, then one obviously has ϕ(x)−ψ(y) ≤ c(x, y) for all (x, y) ∈ X ×Y .
Integrating this inequality on the product X × Y , one obtains

∀γ ∈ Π(µ, ν),
∫

X
ϕdµ−

∫

Y
ψ dν =

∫

X×Y
(ϕ(x)− ψ(y)) dγ(x, y)

≤
∫

X×Y
c(x, y) dγ(x, y).

Theorem 2.5 (Duality formula). Let X and Y be Polish spaces equipped with probability
measures µ and ν respectively, c : X × Y → R a lower semicontinuous cost function bounded
from below such that ∫

X×Y
c(x, y) dµ(x) dν(y) < +∞.

Then

min
γ∈Π(µ,ν)

{∫

X×Y
c(x, y) dγ(x, y)

}
= max

(ϕ,ψ)∈L1(µ)×L1(ν)

{∫

X
ϕdµ−

∫

Y
ψ dν | ψ = ϕc

}
.

For a proof of this theorem see [1, Theorem 6.1.5], [2, Theorems 3.1 and 3.2], [16, Theorem
5.9].
We now consider a cost function c(x, y) as in Theorem 1.1. By hypothesis (L3), c is Lipschitz. In
fact, given x, y ∈M , we consider a geodesic γx,y : [0, d(x, y)] →M from x to y with ‖γ̇x,y‖ = 1.
Then

c(x, y) ≤
∫ d(x,y)

0
L(γx,y(t), γ̇x,y(t)) dt ≤ A(1)d(x, y),

and so we have

|c(x, y)− c(z, w)| ≤ |c(x, y)− c(z, y)|+ |c(z, y)− c(z, w)|
≤ max{|c(x, z)|, |c(z, x)|}+ max{|c(y, w)|, |c(w, y)|}
≤ A(1)[d(x, z) + d(y, w)].

Moreover c satisfies c(x, x) ≡ 0 and the triangle inequality

c(x, z) ≤ c(x, y) + c(y, z)

(see Proposition 2.1). Fix now z ∈M and consider the auxiliar cost

c(x, y) := c(x, y) + a(y)− a(x),

with a(x) := c(x, z). Obviously c still satisfies the triangle inequality. Moreover, since c is
Lipschitz and satisfies the triangle inequality, we have

0 ≤ c(x, y) ≤ c(x, y) + c(y, x) ≤ 2A(1)d(x, y). (3)

Thus c(x, y) is integrable with respect to µ⊗ ν if so it is d(x, y), and in this case we can apply
Theorem 2.5 to prove the following:
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Theorem 2.6. Given two probability measures µ and ν on M such that
∫

M×M
d(x, y) dµ(x) dν(y) < +∞,

let c be a cost function as above. Then there exists a Lipschitz function u : M → R that satisfies

u(y)− u(x) ≤ c(x, y) ∀x, y ∈M
and ∫

M
u d(ν − µ) =

∫

M×M
c dγ

for each γ optimal transport plan between µ and ν. In particular, this implies

u(y)− u(x) = c(x, y) for γ-a.e. (x, y) ∈M ×M,

that is
(u− a)(y)− (u− a)(x) = c(x, y) for γ-a.e. (x, y) ∈M ×M,

The Lipschitz function u := u− a is called a Kantorovich potential.

Proof. Let (ϕ,ψ) ∈ L1(µ) × L1(ν) be a pair that realizes the maximum in the dual problem,
with ψ = ϕc. We want to prove that it suffices to take u = −ψ.
Fix x, y ∈M . Since ψ = ϕc and c satisfies the triangle inequality, we have

ψ(x) = sup
z∈M

ϕ(z)− c(x, z) ≤ sup
z∈M

ψ(y) + c(z, y)− c(x, z) ≤ ψ(y) + c(x, y).

Let now x0 be a point of M such that ψ(x0) ∈ R (such a point exists, being ψ ∈ L1). Choosing
in the inequality above first x = x0 and after y = x0, we obtain that ψ is finite everywhere. So
we can subtract ψ(y) to the two sides, obtaining

(−ψ)(y)− (−ψ)(x) ≤ c(x, y).

Thus, if we define u := −ψ, by (3) we have

u(y)− u(x) ≤ c(x, y) ≤ 2A(1)d(x, y) ∀x, y ∈M.

This inequality tells us that u is 2A(1)-Lipschitz, and so, by Remark 1.2, u ∈ L1(µ) ∩ L1(ν).
Observe now that

0 = c(x, x) ≥ ϕ(x)− ψ(x) ⇒ −u(x) ≥ ϕ(x).

Thus, if γ is an optimal transport plan between µ and ν, we have
∫

M×M
c(x, y) dγ(x, y) ≥

∫

M×M
(u(y)− u(x)) dγ(x, y)

=
∫

M
u d(ν − µ) ≥

∫

M
ϕdµ−

∫

M
ψ dν =

∫

M×M
c(x, y) dγ(x, y),

as wanted. ¤
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2.3 Calibrated curves

Fix a C∞ function U and a δ > 0 given by Proposition 2.2, and a Kantorovich potential u given
by Theorem 2.6. Following [5], we recall some useful definitions.

Definition 2.7 (u-calibrated curve). We say that a continuous piecewise differentiable curve
γ : I →M is u-calibrated if

u(γ(t))− u(γ(s)) =
∫ t

s
L (γ(τ), γ̇(τ)) dτ = c(γ(s), γ(t)) ∀s ≤ t ∈ I,

where I ⊂ R is a nonempty interval of R (possibly a point). A u-calibrated curve is called
non-trivial if I has non-empty interior.

Obviously a non-trivial u-calibrated curve is a minimizing extremal of L, and hence is of
class C2. In addition, we observe that each u-calibrated curve γ can be extended to a maximal
one, that is a curve γ̃ that can’t be extended on an interval that strictly contains I without
losing the calibration property (this follows by the fact that, fixed the initials position and the
velocity, the minimizer is unique; thus, if two u-calibrated curves locally coincide, they must
coincide in the intersection of their domains of definition, and so one can use this fact to find
an unique maximal extension of γ). We observe that, if γ is maximal, then I must be closed.
In the sequel, also in the case I = R, I = [a,+∞) or (−∞, b], for simplicity of notation we will
always write the interval on which a maximal curve is defined as [a, b].

Definition 2.8 (transport ray). A transport ray is the image of a non-trivial u-calibrated curve.

In [7], it is proved that Kantorovich potentials are viscosity subsolutions of the Hamilton-
Jacobi equation, that is equivalent to say that u is locally Lipschitz and satisfies

H(x, dxu) ≤ 0, for a.e. x ∈M,

or equivalently
L(x, v)− dxu(v) ≥ 0, for a.e. x ∈M, ∀v ∈ TxM.

We recall that, if γ : [a, b] → R is a u-calibrated curve, then for all t ∈ (a, b) the function u is
differentable at γ(t) (see [7]). Then we have the following:

Lemma 2.9. Let γ : [a, b] → R be a u-calibrated curve. Then for all t ∈ (a, b) the function u is
differentable at γ(t) and we have

dγ(t)(u− U)(γ̇(t)) ≥ δ,

where U and δ are given by Proposition 2.2. This implies that γ is an embedding and transport
rays are non-trivial embedded arcs.

Proof. As γ(t) is u-calibrated, we have

u(γ(t))− u(γ(s)) =
∫ t

s
L (γ(τ), γ̇(τ)) dτ ∀s ≤ t, s, t ∈ [a, b],
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that implies, recalling Proposition 2.2,

u(γ(t))− u(γ(s))
t− s

=
1

t− s

∫ t

s
L (γ(τ), γ̇(τ)) dτ

⇒ dγ(t)u(γ̇(t)) = L (γ(t), γ̇(t)) ≥ dγ(t)U(γ̇(t)) + δ.

¤
We now define the functions α : M → R and β : M → R as follows:

- α(x) is the supremum of all times T ≥ 0 such that there exists a u-calibrated curve
γ : [−T, 0] →M such that γ(0) = x;

- β(x) is the supremum of all times T ≥ 0 such that there exists a u-calibrated curve
γ : [0, T ] →M such that γ(0) = x.

Lemma 2.10. α and β are Borel functions.

Proof. Let Ki ⊂ M be a countable increasing sequence of compact set such that ∪iKi = M .
Then we can define the auxiliary functions αi(x) as the supremum of all times T ≥ 0 such that
there exists a u-calibrated curve γ : [−T, 0] →M such that γ(0) = x and γ(−T ) ∈ Ki. We will
prove that αi is upper semicontinuous for each i, and this will implies the measurability of α as
α(x) = supi αi(x) for all x ∈M (the case of β is analogous).
Fix i ∈ N and let (xj) ⊂M be a sequence converging to a limit x ∈M such that αi(xj) ≥ T for
all j. Then we know that there exists a sequence γj : [−T, 0] → M of u-calibrated curves such
that γj(0) = xj and γj(−T ) ∈ Ki. As γj(−T ) ∈ Ki, we know that there exists a constant A such
that ‖γ̇j(0)‖γj(0) ≤ A for all j (see for example the Appendix in [8]). Then, taking a subsequence
if necessary, we can assume that γj converges uniformly on [−T, 0] to a curve γ : [−T, 0] → M
which is still u-calibrated, as it is easy to see, and satisfies γ(0) = x, γ(−T ) ∈ Ki. Then
αi(x) ≥ T . ¤

We now can define the following Borel sets:

Definition 2.11. We define the set T given by the union of all the transport rays as

T := {x ∈M | α(x) + β(x) > 0}.
For ε ≥ 0, we define the sets

Tε := {x ∈M | α(x) > ε, β(x) > ε}.
Clearly Tε ⊂ T for all ε ≥ 0 and the set E := T − T0 is the set of ray ends.

We now recall the following:

Theorem 2.12. The function u is differentiable at each point of T0. For each point x ∈ T0,
there exists a unique maximal u-calibrated curve

γx : [−α(x), β(x)] →M
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such that γ(0) = x. This curve satisfies the relations

dxu = ∇vL(x, γ̇x(0))

or equivalently
γ̇x(0) = ∇pH(x, dxu).

For each ε > 0, the differential x 7→ dxu is locally Lipschitz on Tε, or equivalently the map
x 7→ γ̇x(0) is locally Lipschitz on Tε.

For a proof see [7].

Definition 2.13. For x ∈M , we will denote by Rx the union of the transport rays containing
x. We also denote

R+
x := {y ∈M | u(y)− u(x) = c(x, y)}.

We observe that Rx = γx([−α(x), β(x)]) for all x ∈ T0.

In order to conclude this section, we recall two results of [5].

Lemma 2.14. We have

R+
x =

{
γx([0, β(x)]) if x ∈ T0,
{x} if x ∈M \ T ,

where γx is given by Theorem 2.12.

Proof. Let x be a point of T0. By the calibration property of γx, we have

u(γx(t))− u(γx(0)) = c(γx(0), γx(t)) ∀t ∈ [0, β(x)],

that is
γx(t) ∈ R+

x ∀t ∈ [0, β(x)],

and so we have γx([0, β(x)]) ⊂ R+
x . Conversely, let us fix x ∈ M , y ∈ R+

x . Then we know that
there exists a u-calibrated curve γ : [0, T ] →M such that

∫ T

0
L (γ(t), γ̇(t)) dt = c(x, y) = u(y)− u(x), γ(0) = x, γ(T ) = y.

So, if x ∈ T0, by Theorem 2.12 γ = γx|[0,T ] and hence y = γ(T ) = γx(T ) ∈ γx([0, β(x)]), while,
if x 6∈ T , there is no non-trivial u-calibrated curve and then we must have y = x in the above
discussion, that implies R+

x = {x}. ¤

Proposition 2.15. A transport plan γ is optimal for the cost c if and only if it is supported on
the closed set ⋃

x∈M
{x} ×R+

x = {(x, y) ∈M ×M | c(x, y) = u(y)− u(x)}.

Proof. By Theorem 2.6, γ is optimal if and only if
∫

M×M
c(x, y) dγ(x, y) =

∫

M
u(x) d(ν − µ)(x) =

∫

M×M
(u(y)− u(x)) dγ(x, y).

The conclusion follows observing that c(x, y) ≥ u(y)− u(x) for all x, y ∈M . ¤
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3 Proof of the main theorem

The line of the proof is essentially the same as in [5], where the authors, using ideas of Lagrangian
Dynamics, extend to a Riemannian setting the results obtained in the Euclidean case in [2].
As before, we fix a C∞ function U and a δ > 0 given by Proposition 2.2, and then fix a
Kantorovich potential u given by Theorem 2.6 (see Sections 2.2, 2.3). We now define the second
cost function

c̃(x, y) := φ(c(x, y)− U(y) + U(x)),

with φ(t) :=
√

1 + t2. Consider the secondary variational problem

min
γ∈O

∫

M×M
c̃(x, y) dγ(x, y), (4)

where O is the set of optimal transport plan, and select a minimizer γ0 of this secondary
variational problem. We now want to prove that it is supported on a graph.
The idea is the following: first one sees that the measure γ0 is concentrated on a σ-compact set
Γ ⊂ ∪x∈M{x} × R+

x which is c̃-cyclically monotone in a weak sense that we will define later in
the proof. Then one considers the set on which the transport plan is not a graph, that is

Λ := {x ∈M | #(Γx) ≥ 2},

where Γx := {y ∈ M | (x, y) ∈ Γ} and # denotes the cardinality of the set. In this way,
intersecting Λ with a transport ray R, thanks to the monotonicity of Λ ∩ R it is simple to see
that Λ ∩ R is at most countable. Finally Theorem 2.12 allows us to parametrize the transport
rays in a locally Lipschitz way. This and the fact that Λ ∩ R has zero H 1-measure for each
transport ray R (where H k denote the k-dimensional Hausdorff measure) imply that Λ has null
volume measure, and so µ(Λ) = 0 as wanted.
We divide the proof in many steps, in order to make the overall strategy more clear.

Step 1: the construction of Γ.

First we observe that c̃ is integrable with respect to µ⊗ ν. Indeed, since φ has linear growth, it
suffices to prove that

c(x, y) := c(x, y)− U(y) + U(x)

is µ⊗ν-integrable. The uniform boundedness in the fiber of L(x, v) implies that the Hamiltonian
H(x, p) is uniformly superlinear. By this and the inequality H(x, dxU) ≤ 0, we get that the
gradient of U is uniformly bounded, which implies that U is Lipschitz, that is

|U(y)− U(x)| ≤ Cd(x, y) ∀x, y ∈M.

So we have
0 ≤ c(x, y) ≤ (C +A(1))d(x, y),
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and then c(x, y) is integrable with respect to µ⊗ ν, since so is d(x, y) by assumption.
Let us consider the lower semicontinuous function ζ : M ×M → [0,+∞] given by

ζ(x, y) =
{
c̃(x, y) if u(y)− u(x) = c(x, y),
+∞ otherwise.

Note that, as γ0({(x, y) ∈M ×M | u(y)− u(x) = c(x, y)}) = 1,∫

M×M
ζ(x, y) dγ0(x, y) =

∫

M×M
c̃(x, y) dγ0(x, y) < +∞

and, thanks to Proposition 2.15, we have that γ0 is a minimizer for the Kantorovich problem

min
γ∈Π(µ,ν)

{∫

X
ζ(x, y) dγ(x, y)

}
.

It is then a standard result that γ0 is concentrated on a set Γ̃ that is ζ-ciclically monotone, that
is if

(
(xi, yi)

)
1≤i≤l is a finite family of points of Γ̃ and σ(i) is a permutation, we have

l∑

i=1

ζ(xi, yσ(i)) ≥
l∑

i=1

ζ(xi, yi)

(for a proof see, for example, [2, Theorem 3.2]). By the definition of ζ this implies the following
monotonicity property of Γ̃:
if

(
(xi, yi)

)
1≤i≤l is a finite family of points of Γ̃ and σ(i) is a permutation such that

(
(xi, yσ(i))

)
1≤i≤l

is still contained in Γ̃, then
l∑

i=1

c̃(xi, yσ(i)) ≥
l∑

i=1

c̃(xi, yi).

By inner regularity of the Borel measure γ0, there exists a σ-compact subset Γ ⊂ Γ̃ on which γ0

is concentrated. Obviously Γ is still monotone in the sense defined above.

Step 2: Λ is a Borel set and Λ ⊂ T .

Now that we have constructed Γ, we define

Λ := {x ∈M | #Γx ≥ 2},
where Γx := {y ∈ M | (x, y) ∈ Γ}. Let Ki be an countable increasing sequence of compact set
such that Γ = ∪iKi (we recall that Γ is σ-compact). For each x ∈M , we consider the compact
set Ki

x := {y ∈M | (x, y) ∈ Ki} and we define the upper semicontinuous function

δi(x) := diam(Ki
x),

where diam denotes the diameter of the set. Then δ(x) := supi δi(x) = diam(Γx) is a Borel
function and so

Λ = {x ∈M | δ(x) > 0}
is a Borel subset of M .
Let us now show that Λ ⊂ T . If x 6∈ T , then, by Lemma 2.14, R+

x = {x}. Hence, as Γx ⊂ R+
x

(see Proposition 2.15), Γx ⊂ {x} and x 6∈ Λ.
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Step 3: Λ ∩R is at most countable for each transport ray R.

We fix a transport ray, that is the image of a non-trivial maximal u-calibrated curve γ : [a, b] →
M , and we consider the stricly increasing function f : [a, b] → R defined by f = (u−U) ◦ γ (see
Lemma 2.9). We observe that

c̃(γ(s), γ(t)) = φ(f(t)− f(s)) ∀s ≤ t, s, t ∈ [a, b].

In view of the monotonicity of Γ we have

φ(f(t)− f(s)) + φ(f(t′)− f(s′)) ≤ φ(f(t′)− f(s)) + φ(f(t)− f(s′))

whenever (γ(s), γ(t)) ∈ Γ, (γ(s′), γ(t′)) ∈ Γ, s ≤ t′, s′ ≤ t. Now, following [2], we show the
implication

(γ(s), γ(t)) ∈ Γ, (γ(s′), γ(t′)) ∈ Γ, s < s′ ⇒ t ≤ t′. (5)

Assume by contradiction that t > t′. Since s ≤ t and s′ ≤ t′, we have s < s′ ≤ t′ < t. In this
case, setting a = f(s′)− f(s), b = f(t′)− f(s′), c = f(t)− f(t′), we have

φ(a+ b+ c) + φ(b) ≤ φ(a+ b) + φ(b+ c).

On the other hand, since c > 0, the strictly convexity of φ gives

φ(a+ b+ c)− φ(b+ c) > φ(a+ b)− φ(b),

and therefore we have a contradiction. By (5), we obtain that the vertical sections Γx of Γ are
ordered along a transport ray, i.e.

∀y1 ∈ Γx1 , ∀y2 ∈ Γx2 , y1 ≤ y2 whenever x1 = γ(s1), x2 = γ(s2), s1 < s2.

As a consequence, the set of all x ∈ R such that Γx is not a singleton is at most countable, since,
if for such x we consider Ix the smallest open interval such that γ

(
Īx

) ⊃ Γx, we obtain a family
of pairwise disjoints open intervals of R.

Step 4: covering the set Λ.

As Λ ⊂ T , we will cover T with a countable family of, so called, transport beams.

Definition 3.1. We call transport beam a couple (B,χ) where B ⊂ Rn is a Borel subset and
χ : B →M is a locally Lipschitz map such that:

- there exist a bounded Borel set Ω ⊂ Rn−1 and two Borel functions a < b : Ω → R such
that

B = {(ω, s) ∈ Ω× R | a(ω) ≤ s ≤ b(ω)} ⊂ Rn = Rn−1 × R;

- for each ω ∈ Ω, the curve χω : [a(ω), b(ω)] →M given by χω(s) = χ(ω, s) is u-calibrated.

We remark that we do not assume that χ is injective.

13



We now want to prove that there exists a countable family (Bj,k, χj,k)j,k∈N of transport
beams such that the images χj,k(Bj,k) cover the set T .
So let take D ⊂ Rn−1 the closed unit ball and let ψj : D → M , j ∈ N, be a family of smooth
embeddings such that, for each maximal u-calibrated curve γ : [a, b] → R, the embedded arc
γ((a, b)) intersect transversally the image of ψj for some j ∈ N. Indeed, in order to construct
such embeddings, it suffices to take a countable atlas (Ui, θi)i∈N such that θi(Ui) = B2(0) ⊂
Rn (where Br(0) denote the n-dimensional ball of radius r centered at the origin) and that
satisfies ∪i∈N θ−1

i (B1(0)) = M , and to consider the image by θ−1
i of the countable family

(Dl,q)1≤l≤n, q∈Q∩[−1,1] of (n− 1)-dimensional balls of radius 1 defined by

Dl,q :=
{

(x1, . . . , xn) | xl = q,
∑

m6=l
|xm|2 ≤ 1

}
.

For each (j, k) ∈ N2 let us consider the set Ωj,k = D ∩ ψ−1
j (T 1

k
). Let us define

aj,k(ω) := −α ◦ ψj : Ωj,k → R,

bj,k(ω) := β ◦ ψj : Ωj,k → R,

where α and β were defined in section 2.3. We observe that, by Lemma 2.10, aj,k and bj,k are
Borel functions. We can now define the Borel sets

Bj,k := {(ω, s) ∈ Ωj,k × R | aj,k(ω) ≤ s ≤ bj,k(ω)}.

Finally, we define on Bj,k the map

χj,k(ω, s) := γψj(ω)(s).

We now observe that χj,k is locally Lipschitz. In fact, we can write an extremal using the Euler-
Lagrange flow fs : TM → TM , which is complete because of the energy conservation. Thanks
to the hypotheses made on L, the map

(s, x, v) 7→ fs(x, v)

is of class C1. As we have

χj,k(ω, s) := πM ◦ fs(ψj(ω), γ̇ψj(ω)(0)),

where πM : TM →M is the canonical projection, in view of Theorem 2.12 we deduce that this
map is locally Lipschitz. It is clear that, for each transport ray R, there exist j, k ∈ N such that
R is contained in χj,k(Bj,k).
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Step 5: µ(Λ) = 0.

In order to conclude that µ(Λ) = 0, it suffices to prove that, if (B,χ) is a transport beam, then
the set Λ ∩ χ(B) is negligible with respect to the volume measure.
We recall that, for each ω ∈ Ω, the curve χω is a locally bilipschitz homeomorphism onto its
image, and so, as we know that the set Λ∩χ({ω}× [a(ω), b(ω)]) is countable, the set χ−1(Λ)∩B
intersects each vertical line ω × R along a countable set, and so in particular has zero H 1-
measure. Then, by Fubini’s theorem, χ−1(Λ) ∩ B has zero H n-measure in Rn, and so, since
locally Lipschitz maps send H n-null sets into H n-null sets, we get

H n(Λ ∩ χ(B)) ≤ H n(χ(χ−1(Λ) ∩B)) = 0,

that implies that Λ ∩ χ(B) is negligible with respect to the volume measure.

Step 6: uniqueness.

We now prove that the transport plan selected with the secondary variational problem is unique.
Let γ0, γ1 be two optimal transport plans, which are optimal also for the secondary variational
problem. By what we proved above, we know that they are induced by two transport maps
t0 : M → M and t1 : M → M , respectively. Let us now consider γ := γ0+γ1

2 . By the linear
structure of the two variational problems (2) and (4), γ is still optimal for both, and so it is
induced by a transport map t. This implies that both γ0 and γ1 are concentrated on the graph
of t, and so t0 = t1 µ-a.e.

Remark 3.2. We observe that exactly this argument shows also that the set E of ray ends is
negligible with respect to the volume measure.
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2005.

[2] L.Ambrosio & A.Pratelli: Existence and stability results in the L1 theory of optimal
transportation. Lectures notes in Mathematics, 1813, Springer Verlag, 2003, 123-160.

[3] L.Ambrosio, B.Kirchheim & A.Pratelli: Existence of optimal transport maps for
crystalline norms. Duke Math. J., 125 (2004), no. 2, 207-241.

[4] P.Bernard & B.Buffoni: Optimal mass transportation and Mather theory. Preprint,
2004, to appear on the Journal of the European Mathematical Society.

15



[5] P.Bernard & B.Buffoni: The Monge problem for supercritical Mañé potential on com-
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