
WKB ANALYSIS OF BOHMIAN DYNAMICS

ABSTRACT. We consider a semi-classically scaled Schrödinger equation with
WKB initial data. We prove that in the classical limit the corresponding Bohmian
trajectories converge (locally in measure) to the classical trajectories before the
appearance of the first caustic. In a second step we show that after caustic onset
this convergence in general no longer holds. In addition, we provide numeri-
cal simulations of the Bohmian trajectories in the semiclassical regime which
illustrate the above results.

1. INTRODUCTION

1.1. Bohmian trajectories and Bohmian measures. Bohmian mechanics was
developed by D. Bohm in 1952, cf. [11, 12], as an alternative to the usual the-
ory of quantum mechanics (for a broader introduction and a historic overview of
the subject we refer to [8, 13, 22]). To this end, Bohmian mechanics is based on the
dynamics of point particles, in d ∈ N spatial dimension, whose motion is guided
by Schrödinger’s wave function ψε(t, ·) ∈ L2(Rd ;C). The dynamics of the latter,
is, as usual, governed by the Schrödinger equation, which in the following will be
written as

iε∂tψ
ε =−ε2

2
∆ψ

ε +V (x)ψε , ψ
ε |t=0 = ψ

ε
0 , (1)

where x ∈ Rd , t ∈ R+, and V (x) ∈ R denotes a given external potential (satisfying
some regularity assumptions to be specified below). In (1), we assume that we
have already rescaled the equation in dimensionless form such that only one semi-
classical parameter 0 < ε� 1 remains. In other words, ε plays the role of a scaled
Planck’s constant h̄. It is by now a classical (and well studied) problem of quantum
mechanics to understand the emergence of classical physics from (1) in the limit
ε ' h̄→ 0, see, e.g., [45, 48] for a general introduction. In the following we shall
be interested in this question from the point of view of Bohmian dynamics.

To this end, we first recall that to any sufficiently regular wave function ψε ∈
H1(Rd ;C) one can associate two basic real-valued densities. Namely, the position
and the current-density, defined by

ρ
ε(t,x) = |ψε(t,x)|2, Jε(t,x) = εIm

(
ψε(t,x)∇ψ

ε(t,x)
)
, (2)

and which satisfy the conservation law

∂tρ
ε +divx Jε = 0.

These two quantities play an important role in Bohmian mechanics. Namely, given
any ψε(t,x), one defines ε-dependent particle-trajectories Xε

t : y 7→ Xε(t,y) ∈ Rd ,
via the following differential equation

Ẋε(t,y) = uε(t,Xε(t,y)), Xε(0,y) = y ∈ Rd ,

where uε denotes the quantum mechanical velocity field, (formally) given by

uε(t,x) :=
Jε(t,x)
ρε(t,x)

= εIm
(

∇ψε(t,x)
ψε(t,x)

)
. (3)
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In addition, one assumes that the initial position y ∈ Rd is distributed according to
the measure ρε

0 ≡ |ψε
0 |2 ∈ L1

+(Rd). The latter can be seen as a reflection of Born’s
statistical law of quantum randomness [14].

Although the interpretation of Xε
t as particle trajectories remains controversial

from the physics point of view (see, e.g., [37]), its mathematical foundation is solid.
Indeed, it was rigorously proved in [9, 51] that, even though uε is not necessarily
continuous, the Bohmian flow y 7→ Xε(t,y) is well-defined ρε

0 −a.e. for all t ∈ R+

(provided some mild assumptions on the potential V ). In addition, it was shown
that, for all times t ∈R+, the position density ρε(t,x) is given by the push-forward
of the initial density ρε

0 (x) under the mapping Xε
t , i.e., for any non-negative Borel

function σ : Rd → [0,+∞] it holds:∫
Rd

σ(x)ρε(t,x)dx =
∫
Rd

σ(Xε(t,y))ρε
0 (y)dy. (4)

More recently, a phase space description of Bohmian mechanics was rigorously
introduced in [43] through the definition of the following class of non-negative
phase space measures:

Definition 1.1 (Bohmian measures). Let ε > 0 be a given scale and ψε ∈ H1
ε (Rd)

be a sequence of wave functions with corresponding densities ρε , Jε . Then, the
associated Bohmian measure β ε ≡ β ε [ψε ] ∈M+(Rd

x ×Rd
p) is given by

〈β ε ,ϕ〉 :=
∫
Rd

ρ
ε(x)ϕ

(
x,

Jε(x)
ρε(x)

)
dx, ∀ϕ ∈C0(Rd

x ×Rd
p).

Here and in the following, M+ denotes the set of non-negative Borel mea-
sures on phase-space. Moreover, 〈·, ·〉 denotes the corresponding duality bracket
between M+(Rd

x ×Rd
p) and C0(Rd

x ×Rd
p), where C0 is the closure (with respect

to the uniform norm) of the set of continuous functions with compact support. In
other words, the Bohmian measure β ε associated to ρε ,Jε is given by

β
ε(t,x, p) := ρ

ε(t,x)δ (p−uε(t,x)), (5)

where uε is defined by (3) and δ (p− ·) denotes the d-dimensional delta distribution
with respect to the momentum variable p ∈ Rd . Note that even though uε is not
well defined at points where ρε(t,x) = 0, the Bohmian measure β ε is. Moreover,
from (5) it immediately follows, that the zeroth and first moment of β ε with respect
to p ∈ Rd yield the quantum mechanical particle and current densities, i.e.,

ρ
ε(t,x) =

∫
Rd

β
ε(t,x,d p), Jε(t,x) =

∫
Rd

pβ
ε(t,x,d p),

Concerning the dynamics of β ε is was shown in [43] that the results of [9, 51]
can be transferred into phase space. More precisely, [43, Lemma 2.5] states that
for all t ∈ R+, the measure β ε(t,x, p) is given by the push-forward of the initial
measure

β
ε
0 (y, p) = ρ

ε
0 (y)δ (p−uε

0(y)),

under the following ε-dependent phase-space flow (defined β ε
0 −a.e.):{

Ẋε(t,y) = Pε(t,y), Xε(0,y) = y,

Ṗε(t,y) =−∇V (Xε(t,y))−∇V ε
B (t,X

ε(t,y)), Pε(0,y) = uε
0(y),

(6)
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where V ε
B (t,x), denotes the Bohm potential [22, 53]:

V ε
B :=− ε2

2
√

ρε
∆
√

ρε . (7)

Thus, for any non-negative Borel function ϕ : Rd
x ×Rd

p→ [0,+∞] it holds∫∫
R2d

x,p

ϕ(x, p)β ε(t,dx,d p) =
∫
Rd

y

ϕ(Xε(t,y),Pε(t,y))ρε
0 (y)dy. (8)

Note that (6) is the characteristic flow of the following perturbed Burgers’ type
equation

∂tuε +(uε ·∇)uε +∇V =
ε2

2
√

ρε
∆
√

ρε , uε |t=0 = uε
0,

which allows us to identify Ẋε(t,y) = Pε(t,y) = uε(t,Xε(t,y)).
The system (6) can be interpreted as a perturbation of the classical Hamiltonian

equations of motion for classical point particles, cf. [4], which are formally ob-
tained from (6) by letting ε→ 0+. Obviously, this corresponds to a highly singular
limiting procedure which is by no means straightforward. In order to gain more
insight, we shall in the next subsection recall some, by now classical, material on
the asymptotic analysis of ψε .

1.2. WKB asymptotics. A possible way to describe these asymptotics of the semi-
classical wave function ψε as ε→ 0+ is based on the time-dependent WKB method,
cf. [15, 45, 48] for a general introduction. One thereby makes the ansatz [40]

ψ
ε(t,x) = aε(t,x)eiS(t,x)/ε (9)

for some ε-independent (real-valued) phase function S(t,x) ∈R and an (in general
complex valued) amplitude aε(t,x) ∈ C satisfying

aε ∼ a+ εa1 + ε
2a2 + . . . ,

in the sense of asymptotic expansions. Assuming for the moment that aε and S are
sufficiently smooth, one can plug (9) into (1) and compare equal powers of ε in the
resulting expression. This yields a Hamilton-Jacobi equation for the phase, see,
e.g., [16, 40, 45]:

∂tS+
1
2
|∇S|2 +V (x) = 0, S|t=0 = S0, (10)

and a transport equation for the leading order amplitude

∂ta+∇a ·∇S+
a
2

∆S = 0, a|t=0 = a0. (11)

Note that the latter can be rewritten in the form of a conservation law for the leading
order particle density ρ := |a|2, i.e.,

∂tρ +div(ρ∇S) = 0. (12)

The main problem of the WKB approach is that (10) in general does not admit
unique smooth solutions for all times. This can be seen, from the method of char-
acteristics (see, e.g., [23]), where one needs to solve the following Hamiltonian
system: {

Ẋ(t,y) = P(t,y), X(0,y) = y,

Ṗ(t,y) =−∇V (X(t,y)), P(0,y) = ∇S0(y).
(13)
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By the Cauchy-Lipschitz theorem, this system of ordinary differential equations
can be solved at least locally in-time, which yields a flow map Xt : y 7→ X(t,y). If
we denote the corresponding inverse mapping by Yt : x 7→ Y (t,x), i.e., Yt ◦Xt = id,
then the phase function S satisfying (10) is found to be [16, 23]

S(t,x) = S0(Y (t,x))+
∫ t

0

(
1
2
|P(τ,y)|2−V (X(τ,y))

)
dτ
∣∣
y=Y (t,x). (14)

Given such a smooth phase function S, one can, in a second step, integrate the
amplitude equation (11) along the flow Xt to obtain the amplitude in the following
form [16, 45]:

a(t,x) =
a0(Y (t,x))√

Jt(Y (t,x))
, (15)

where Jt(y) := det∇yX(t,y) is the Jacobian determinant of the map y 7→ X(t,y).
Under the assumptions of our paper (to be stated later on), the flow Xt indeed exists
globally in-time. The problem, however, is that in general there is a (possibly, very
short) time T ∗ > 0 at which the flow Xt ceases to be one-to-one. Points x ∈ Rd at
which this happens are caustic points and T ∗ is called the caustic onset time [32].
More precisely, let

Ct = {x ∈ Rd : there is y ∈ Rd such that x = X(t,y) and Jt(y) = 0},

then the caustic set is defined by C := {(x, t) : x ∈ Ct} and the caustic onset time is

T ∗ := inf{t ∈ R+ : Ct 6= /0}.

For t > T ∗ the solution of (10), obtained by the method of characteristics, typically
becomes multi-valued due to the possibility of crossing trajectories, see Fig. 1.
On the other hand, weak solutions to (10), which can be uniquely defined (for
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FIGURE 1. Classical trajectories for initial data ∇S0(x) =
− tanh(5x− 5

2)

example, by invoking the Lax-Olejnik formula [23]) are not smooth in general and
thus plugging (9) into (1) is no longer justified. From the physical point of view
T ∗ marks the generation of new frequencies within ψε not captured by the simple
one phase WKB ansatz (9). Indeed, it is well known that for t > T ∗ one generically
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requires a multi-phase WKB ansatz to correctly describe the asymptotic behavior
of ψε , see [32, 45, 48] and Section 5 for more details.

Coming back to Bohmian dynamics, we note that for wave functions ψε given
in WKB form (9), it holds Jε = |aε |2∇S and thus, the quantum mechanical velocity
field is given by

uε(t,x) =
Jε(t,x)
ρε(t,x)

= ∇S(t,x).

Identifying u0(y) = ∇S0(y), one may regard the system (6) as a nonlinear pertur-
bation of the Hamiltonian system (13) and one consequently expects the Bohmian
trajectories (Xε ,Pε) to converge to the corresponding classical Hamiltonian flow
(X ,P), in the limit ε → 0+. One of the main results of this paper is, that, at least
before caustic onset, this convergence indeed holds true (in a sense to be made
precise, see Theorem 3.1). After caustic onset, however, the situation in general
is much more complicated in view of Fig. 1. Indeed, as a second main result of
our work, we shall show that in general one cannot expect the Bohmian trajectories
to converge to the (multi-valued) classical flow, see Theorem 5.4. The problem of
giving a precise description of the classical limit of the Bohmian trajectories Xε ,Pε

after caustic onset therefore remains largely open.
The situation concerning the classical (weak) limit of the Bohmian measure β ε

as ε → 0+ is slightly better, though. In particular, by invoking some well-known
results from Fourier integral operators, we will show how to compute the clas-
sical limit of β ε , even after caustic onset. The latter will be compared with the
well-known form of the Wigner measure associated to ψε . The Wigner measure
(also called semi-classical defect measure) is a well established tool in semiclas-
sical analysis, which allows to efficiently describe the classical limit of quantum
mechanical observables, cf. [2, 24, 27, 41, 49]. For completeness, the definition
of the Wigner measure and its main properties will be recalled in Section 4.2. We
will show that, even though the two limiting measures in general do not coincide,
their zeroth and first moment (yielding the classical limit of ρε and Jε ) always do1.

The rest of the paper is organized as follows: In Section 2 we describe some gen-
eral properties of Bohmian dynamics and of the Young measures associated to the
Bohmian trajectories. These properties will be used in Section 3 to prove that the
Bohmian trajectories converge to the classical ones before caustic onset. In Sec-
tion 4 we prove a general result about Bohmian measures associated to multi-phase
WKB states. This result is then used in Section 5 to show that, even in the free case
(where V (x)≡ 0), the Bohmian measure may differ from the Wigner measure, and
that in general the Bohmian trajectories do not converge to the Hamiltonian ones
after caustics. Finally, in Section 6 we present numerical simulations of Bohmian
trajectories in the regime 0 < ε � 1.

2. MATHEMATICAL PRELIMINARIES

In the following subsection, we shall impose assumptions on the potential V
and the initial data ψε

0 which will allow us to retain some basic results of [43],
guaranteeing the existence of a weak limit of β ε , as ε→ 0+. An extension of these

1A more detailed study of the connection between Bohmian measures and Wigner measures can
be found in [43]. In the current paper, we use the Wigner measure only as a way of shedding
some light onto the classical limit of the Bohmian measure after caustic onset and to prove the
aforementioned fact on the particle and current densities.
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earlier results will be the proof of a certain a-priori estimate for Pε . The latter will
be used in Subsection 2.2 to infer an important new property of the Young measure
associated to the Bohmian flow.

2.1. Basic a-priori estimates and existence of a limiting measure. From now
on the potential V will satisfy the following assumptions.

Assumption 2.1. The potential V ∈C∞(Rd ;R) is assumed to be bounded below and
sub-quadratic, i.e.,

∂
k
x V ∈ L∞(Rd) , ∀k ∈ Nd such that |k|> 2.

Since V is bounded below, without loss of generality we can assume V (x) >
0. Assumption 2.1 is (by far) sufficient to guarantee the existence of a unique
strong solution ψε ∈C(Rd ;L2(Rd)) to (1), satisfying two basic conservation laws
of quantum mechanics. Namely, conservation of the total mass

Mε(t) :=
∫
Rd
|ψε(t,x)|2dx = Mε(0), (16)

and the total energy

Eε(t) :=
ε2

2

∫
Rd
|∇ψ

ε(t,x)|2dx+
∫
Rd

V (x)|ψε(t,x)|2dx = Eε(0). (17)

Note that the kinetic energy of ψε can be written in terms of ρε and uε as

Ekin(t) :=
ε2

2

∫
Rd
|∇ψ

ε(t,x)|2dx

=
1
2

∫
Rd
|uε(t,x)|2ρ

ε(t,x)dx+
ε2

2

∫
Rd
|∇
√

ρε(t,x)|2dx,
(18)

which allows to define uε ∈ L2(Rd ;ρεdx), for any ψε with finite kinetic energy.
A direct consequence of these conservation laws is the following a-priori esti-

mate which we shall use in the proof of Proposition 2.4 below.

Lemma 2.1. Let V satisfy Assumption 2.1, ψε
0 ∈ H1(Rd), and let Pε be as in (6).

Then, it holds:∫ T

0

∫
Rd
|Pε(t,y)|2ρ

ε
0 (y)dydt 6 T Eε(0), ∀T ∈ R+.

Proof. Let us recall that ρε(t,x) is the push forward of ρε
0 under the mapping Xε

t ,
i.e., identity (4) holds true for all t ∈R+. Using this identity with σ(·) = |Pε(t, ·)|2
and recalling that Pε(t,y) = Ẋε(t,y) = uε(t,Xε(t,y)), we find∫ T

0

∫
Rd
|Pε(t,y)|2ρ

ε
0 (y)dydt =

∫ T

0

∫
Rd
|uε(t,Xε(t,y))|2ρ

ε
0 (y)dydt

=
∫ T

0

∫
Rd
|uε(t,y)|2ρ

ε(t,y)dydt.

In view of energy conservation, the last term on the right hand side is bounded by∫ T

0

∫
Rd
|uε(t,y)|2ρ

ε(t,y)dydt 6
∫ T

0
Eε(t)dt = T Eε(0),

as desired. �

In addition to Assumption 2.1, we require the following basic properties for the
initial datum ψε

0 .
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Assumption 2.2. The initial data of (1) satisfy Mε(0) ≡ ‖ψε
0‖2

L2 = 1, and there
exists C0 > 0 such that

sup
0<ε61

Eε(0)6C0.

Remark 2.2. The normalization ‖ψε
0‖2

L2 = 1 is imposed for the sake of mathe-
matical convenience. From a physical point of view, it is required for the usual
probabilistic interpretation of quantum mechanics in which ρε = |ψε |2 denotes the
probability measure of finding the particle within a certain spatial region Ω⊆ Rd .

Assumption 2.2, together with conservation of mass and energy and the fact that
V (x)> 0, implies that for all t ∈ R+:

sup
0<ε61

(‖ψε(t)‖L2 +‖ε∇ψ
ε(t)‖L2)<+∞. (19)

In other words, ψε(t) is ε–oscillatory and we are in the framework of [43]. Indeed,
it was shown in [43, Lemma 3.1] that (19) implies the existence of a limiting mea-
sure β (t) ∈M+(Rd

x ×Rd
p) such that, up to extraction of a subsequence, it holds:

β
ε ε→0+−→ β , in L∞(Rt ;M+(Rd

x ×Rd
p))weak−∗, (20)

and we also have

ρ
ε(t,x)

ε→0+−→
∫
Rd

β (t,x,d p), Jε(t,x)
ε→0+−→

∫
Rd

pβ (t,x,d p), (21)

where the limits have to be understood in L∞(Rt ;M+(Rd
x ))weak−∗.

2.2. Young measures of Bohmian trajectories. The limiting Bohmian measure
β is intrinsically connected to the Young measure (or parametrized measure) of the
Bohmian dynamics. To this end, we first note that Φε(t,y)≡ (Xε(t,y),Pε(t,y)) is
measurable in t,y and thus, there exists an associated Young measure

ϒt,y : Rt ×Rd
y →M+(Rd

y ×Rd
p) : (t,y) 7→ ϒt,y(dx,d p),

which is defined through the following limit (see [6, 34, 47]): for any test function
σ ∈ L1(Rt ×Rd

y ;C0(R2d)),

lim
ε→0

∫∫
R×Rd

σ(t,y,Φε(t,y))dydt =
∫∫

R×Rd

∫∫
R2d

σ(t,y,x, p)ϒt,y(dx,d p)dydt.

Having in mind (8), if we assume in addition that

ρ
ε
0

ε→0+−→ ρ0, strongly in L1
+(Rd),

we easily get the following identity:

β (t,x, p) =
∫
Rd

y

ϒt,y(x, p)ρ0(y)dy. (22)

Here, β is the limiting Bohmian measure obtained in (20) for a specific subse-
quence. The relation (22) has already been observed in [43] and can be used to
infer the following a-priori estimate on ϒt,y.

Lemma 2.3. Let Assumptions 2.1 and 2.2 hold, and assume in addition that ρε
0

ε→0+−→
ρ0 strongly in L1

+(Rd). Then, for any T ∈ R+, there exists a C = C(T ) > 0 such
that ∫ T

0

∫∫∫
R2d×Rd

|p|2ρ0(y)ϒt,y(dx,d p)dydt 6C(T ).
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Proof. Using (22) we see that∫∫∫
R2d×Rd

|p|2ρ0(y)ϒt,y(dx,d p)dy =
∫∫

R2d
|p|2β (t,dx,d p).

Now we recall that, by definition,

β
ε(t,x, p) = ρ

ε(t,x)δ (p−uε(t,x))

and hence∫∫
R2d
|p|2β

ε(t,dx,d p) =
∫
Rd
|uε(t,x)|2ρ

ε(t,x)dx6 2Eε
kin(t)6C(T ),

in view of (18) and energy conservation. This uniform (in ε) bound together with
Fatou’s lemma implies ∫∫

R2d
|p|2β (t,dx,d p)6C(T ),

and the assertion is proved. �

Lemma 2.3 together with Lemma 2.1 will be used to prove the following impor-
tant property for the zeroth moment of ϒt,y.

Proposition 2.4. Let Assumptions 2.1 and 2.2 hold, and assume in addition that

ρε
0

ε→0+−→ ρ0 strongly in L1
+(Rd). Denote

υt,y(x) :=
∫
Rd

ϒt,y(x,d p).

Then υt,y ∈M+(Rd
x ) solves, a.e. with respect to the measure ρ0(y), the following

transport equation

∂tυt,y +divx

(∫
Rd

pϒt,y(x,d p)
)
= 0, υt=0,y(x) = δ (x− y),

in the sense of distributions on D ′(Rt ×Rd
x ).

This transport equation will play a crucial role in the convergence proof of
Bohmian trajectories before caustic onset.

Proof. As a first, preparatory step we shall prove that, for all test functions ζ ∈
C0(Rt ×Rd

y ), σ ∈C0(Rd
x ):

lim
ε→0+

∫ T

0

∫
Rd

Pε(t,y)ζ (t,y)σ(Xε(t,y))ρε
0 (y)dydt =∫ T

0
ζ (t,y)

∫∫
R2d

pσ(x)ϒt,y(dx, p)ρ0(y)dydt,
(23)

To this end, let K > 0 and χK ∈C∞
c (Rd) be such that and χK(p) = 1 for |p| 6 K,

and χK(p) = 0 for |p|> K +1. Then, by writing Pε = χK(Pε)+(1− χK(Pε)) we
can decompose∫ T

0

∫
Rd

ζ (t,y)σ(Xε(t,y))Pε(t,y)ρε
0 (y)dydt = Iε,K

1 + Iε,K
2 .

Because of the strong convergence of ρε
0 , the first term on the right hand side has

the following limit:

Iε,K
1

ε→0+−→
∫ T

0
ζ (t,y)

∫∫
R2d

σ(x)χK(p)ϒt,y(dx,d p)ρ0(y)dydt,
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On the other hand, by having in mind the result of Lemma 2.1, the second term on
the right hand side can be estimated by

|Iε,K
2 |6C

∫ T

0

∫
|Pε |>K

|Pε(t,y)|ρε
0 (y)dy, dt

6
C
K

∫ T

0

∫
Rd
|Pε(t,y)|2ρ

ε
0 (y)dy, dt 6

CT
K

Eε(0).

In view of Lemma 2.3 we can let K → +∞, which yields |Iε,K
2 |

K→+∞−→ 0 and the
validity of (23).

With (23) in hand, we shall now show that υt,y indeed obeys the transport equa-
tion given above. Let ζ ,ϕ ∈ C∞

c (Rd), σ ∈ C∞
c [0,∞), be smooth compactly sup-

ported test functions. Then by (23) we get∫
∞

0

∫∫
R2d

(
∂tσ(t)ϕ(x)+σ(t)p ·∇xϕ(x)ζ (y)

)
ϒy,t(x,d p)ρ0(y)dydt

= lim
ε→0+

∫
∞

0

∫
Rd

(
∂tσ(t)ϕ(Xε(t,y))+σ(t)Pε(t,y) ·∇xϕ(Xε(t,y))ζ (y)

)
ρ0(dy)dt.

Recalling that Pε(t,y) = Ẋε(t,y), which implies that

Pε(t,y) ·∇xϕ(Xε(t,y)) =
d
dt

ϕ(Xε(t,y)),

we obtain∫
∞

0

∫
Rd

(
∂tσ(t)ϕ(Xε(t,y))+σ(t)Pε(t,y) ·∇xϕ(Xε(t,y))ζ (y)

)
ρ0(dy)dt

=
∫

∞

0

∫
Rd

(
∂tσ(t)ϕ(Xε(t,y))+σ(t)

d
dt

ϕ(Xε(t,y))ζ (y)
)

ρ0(y)dydt

=
∫
Rd

σ(0)ϕ(Xε(0,y))ζ (y)ρ0(y)dy

=
∫
Rd

σ(0)ϕ(y)ζ (y)ρ0(y)dy.

where in going from the second to the third we have integrated by parts with re-
spect to time, and from the third to the forth line we have used that Xε(0,y) = y
by definition. The obtained expression in the last line is nothing but the initial
condition, since∫∫

Rd
ϕ(y)ζ (y)ρ0(y)dy =

∫∫
R2d

ϕ(x)ϒ0,y(x,d p)ζ (y)ρ0(y)dy,

is equivalent to saying that

υ0,y(x)≡
∫
Rd

ϒ0,y(x,d p) = δ (x− y), ρ0(dy)−a.e.

�

Having collected all necessary properties of ϒt,y we shall prove the convergence
of Bohmian trajectories (before caustic onset) in the next section.

Remark 2.5. For completeness, we want to mention that ϒt,y is indeed a probability
measure on Rd

x ×Rd
p for a.e. y, t, provided the sequence {ψε}0<ε61 is compact at

infinity (tight), i.e.,

lim
R→∞

limsup
ε→0+

∫
|x|>R
|ψε(t,x)|2 dx = 0.
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Indeed if the latter holds true, it was shown in [43, Lemma 3.2] that

lim
ε→0+

Mε(t)≡ lim
ε→0+

∫∫
R2d

β
ε(t,dx,d p) =

∫∫
R2d

β (t,dx,d p),

and having in mind our normalization Mε(t) = 1, we conclude

1 =
∫∫

R2d
β (t,dx,d p) =

∫∫∫
R2d×Rd

ρ0(y)ϒt,y(dx,d p)dy,

in view of (22). Define

αt,y :=
∫∫

R2d
ϒt,y(dx,d p)6 1.

Then, since
∫
Rd ρ0(dy) = 1, we conclude αy,t = 1 a.e.. However, we shall not use

this property in the following.

3. CONVERGENCE OF BOHMIAN TRAJECTORIES BEFORE CAUSTIC ONSET

So far we have not specified the initial data ψε
0 to be of WKB form. By doing so,

we can state the first main result of our work (recall the definition of sub-quadratic,
given in Assumption 2.1).

Theorem 3.1. Let Assumptions 2.1 hold, and let ψε
0 be given in WKB form

ψ
ε
0 (x) = a0(x)eiS0(x)/ε , (24)

with amplitude a0 ∈ S (Rd ;C) and sub-quadratic phase S0 ∈ C∞(Rd ;R). Then,
there exists a caustic onset time 0 < T ∗ 6 ∞ such that:

(i) For all compact time-intervals It ⊂ [0,T ∗), the Bohmian measure β ε associ-
ated to ρε ,Jε satisfies

β
ε ε→0+−→ ρ(t,x)δ (p−∇S(t,x)), in L∞(It ;M+(Rd

x ×Rd
p))weak−∗,

where ρ ∈C∞(It ;S (Rd)) and S ∈C∞(It ×Rd) solve the WKB system (12), (10).
(ii) The corresponding Bohmian trajectories satisfy

Xε ε→0+−→ X , Pε ε→0+−→ P

locally in measure on {It × suppρ0} ⊆ Rt ×Rd
x , where ρ0 = |a0|2, and (X ,P) are

as in (13). More precisely, for every δ > 0 and every Borel set Ω⊆ {It × suppρ0}
with finite Lebesgue measure L d+1, it holds

lim
ε→0

L d+1({(t,y) ∈Ω : |(Xε(t,y),Pε(t,y))− (X(t,y),P(t,y))|> δ}
)
= 0.

Assertion (i) is classical in term of Wigner measures, cf. [26, 49]. For Bohmian
measures, the same result has been proved more recently in [43]. Of course, both
results are themselves a consequence of the validity of the WKB expansion before
caustic onset, cf. [16, 40]. Since the obtained (mono-kinetic) form of the limiting
measure will be used to show Assertion (ii), we shall recall the proof of (i) for the
sake of completeness.

Assertion (ii) shows, that before caustic onset, the Bohmian trajectories con-
verge locally in measure to the corresponding classical flow. Clearly, if a0(x) > 0
for all x ∈ Rd , and thus suppρ0 = Rd , we obtain local in measure convergence
of the Bohmian trajectories on all of It ×Rd

x . After selecting an appropriate sub-
sequence {εn}n∈N this also implies (see, e.g., [10]) almost everywhere convergence
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on any finite subset of It×Rd
x . Moreover, since, by definition, Ẋε = Pε , the conver-

gence in measure of Pε to P combined with the L2 bound from Lemma 2.1 implies
that, for L d-a.e. y, the curves Xε(·,y) converge uniformly to X(·,y) on the time
interval It .

Proof of Theorem 3.1. We first note that (24) implies

Eε(0) =
1
2

∫
Rd
|a0|2|∇S|2dx+

ε2

2

∫
Rd
|∇a0|2dx+

∫
Rd

V (x)|a0|2dx.

Since a0 ∈S (Rd), we see that Assumption 2.2 is satisfied and thus all the results
established in Section 2 apply. In particular, we have the existence of a limiting
Bohmian measure β ∈L∞(Rt ;M+(Rd

x×Rd
p))weak−∗. In order to prove Assertion

(i) we need to show that before caustic onset, this limiting measure is given by a
mono-kinetic phase space distribution, i.e.,

β (t,x, p) = ρ(t,x)δ (p−∇S(t,x)). (25)

In [43] sufficient conditions for β being mono-kinetic have been derived. In partic-
ular, it is proved in there that (25) holds as soon as one has strong L1 convergence
of ρε and Jε in the limit ε → 0+. To show that this is indeed the case, we shall
rely on the so-called modified WKB approximation introduced in [31] and further
developed in [15]: Define a complex-valued amplitude aε by setting

aε(t,x) = ψ
ε(t,x)e−iS(t,x)/ε , (26)

where ψε solves (1) and S is a smooth solution of the Hamilton-Jacobi equation
(10). Next, we recall that the results of [15] (see also [16]) ensure that under
our assumptions there is a time T ∗ > 0, independent of x ∈ Rd , such that, for
all compact subsets It ⊂ [0,T ∗), the Hamiltonian flow (13) is well-defined, and
there exists a unique (sub-quadratic) phase function S ∈ C∞(It ×Rd), given by
(14). Consequently, this also ensures the existence of a smooth amplitude a ∈
C∞(It ;S (Rd)) given by (15).

With this result in hand, a straightforward computation shows that aε , defined in
(26), solves

∂taε +∇aε ·∇S+
aε

2
∆S = i

ε

2
∆aε , aε(0,x) = a0(x). (27)

This equation can be considered as a perturbation of (11). Indeed, if we denote the
difference by wε := aε −a, then wε satisfies

∂twε +∇wε ·∇S+
wε

2
∆S = i

ε

2
∆aε , wε(0,x) = 0,

where the source term on the right hand side is formally of order O(ε). Invoking en-
ergy estimates, one can prove (see [15, Proposition 3.1]) that for any time-interval
It ⊂ [0,T ∗), there exists a unique solution aε ∈C(It ;Hs(Rd)) of (27), and that

‖wε‖L∞(It ;Hs(Rd)) ≡ ‖aε −a‖L∞(It ;Hs(Rd)) = O(ε), ∀s> 0.

Writing the mass and current densities as

ρ
ε = |ψε |2 = |aε |2, Jε = εIm

(
ψε∇ψ

ε
)
= |aε |2∇S+ εIm

(
aε∇aε

)
,

and using the fact that Hs(Rd) ↪→ L∞(Rd) for s > d/2, this consequently implies

ρ
ε ε→0+−→ ρ, in L∞(It ;L1(Rd)) strongly,
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and
Jε ε→0+−→ ρu, in L∞(It ;L1

loc(Rd)d) strongly,

where ρ = |a|2 and u = ∇S are smooth solutions of the WKB system:

∂tρ +divx(ρu) = 0, ρ(0,x) = |a0(x)|2,
∂tu+u ·∇u+∇V (x) = 0, u(0,x) = ∇S0(x).

In particular, we infer that P(t,y) = ∇S(t,X(t,y)) = u(t,X(t,y)) and, in view of
(15), we also have that the density ρ = |a|2 is given by

ρ(t,x) =
ρ0(Y (t,x))
Jt(Y (t,x))

, t ∈ [0,T ∗). (28)

The strong convergence of ρε ,Jε together with [43, Theorem 3.6] then directly
imply that the limiting measure β is given by (25) and thus Assertion (i) is proved.

In order to prove (ii) we first note that for every fixed t ∈ [0,T ∗), the limiting
measure β (t) is carried by the set

Gt = {(x, p) ∈ R2d : p = u(t,x)}.

The identity (22) then implies that a.e. in y the measure ϒt,y is also carried by the
same set and we consequently infer

ϒt,y(x, p) = µt,y(x)δ (p−u(t,x)),

where µt,y is the Young measure associated to Xε(t,y).
By taking the zeroth moment of ϒt,y with respect to p∈Rd we realize that indeed

µt,y = υt,y, with υt,y defined in Proposition 2.4. We thus find that µt,y solves, in the
sense of distributions:

∂t µt,y +divx (u µt,y) = 0, µt=0,y(x) = δ (x− y),

a.e. with respect to the measure ρ0(y). In other words, µt,y(x) solves the same
transport equation as the limiting density ρ(t,x) does. In view of (28), we therefore
conclude that, before caustic onset, µt,y is given by

µt,y(x) =
1

Jt(Y (t,x))
δ (Y (t,x)− y), ρ0−a.e..

Multiplying by a test function ϕ ∈ C0(Rd
x ×Rd

y ) and performing the change of
variable x = Y (t,x), we consequently find

〈µt,y,ϕ〉=
∫∫

R2d

1
Jt(Y (t,x))

δ (Y (t,x)− y)ϕ(x,y)dxdy =
∫
Rd

ϕ(X(t,y),y)dy,

and thus we can also express µt,y = δ (x−X(t,y)). In summary we obtain that

ϒt,y(x, p) = δ (x−X(t,y))δ (p−u(t,X(t,y))).

a.e. on suppρ0 ⊆ Rd . In other words, the Young measure ϒt,y is supported in
a single point (on phase space). By a well known result in measure theory, cf.
[34, Proposition 1], this is equivalent to the local in-measure convergence of the
associated family of trajectories Xε ,Pε and we are done. �

The proof in particular shows, that, at least before caustic onset, the Young
measure ϒt,y is independent of the choice of ρε

0 , even though the Bohmian flow Xε

is not.
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Remark 3.2. It is certainly possible to obtain Theorem 3.1 under weaker regularity
assumption on V,aε

0, and S0, which are imposed here only for the sake of simplic-
ity. The assumption of V and S0 being sub-quadratic, however, cannot be relaxed,
if one wants to guarantee the existence of a non-zero caustic onset time T ∗ > 0
uniformly in x ∈ Rd , see, e.g., [15] for a counter-example. Explicit examples of
initial phases S0, for which T ∗ =+∞ (i.e., no caustic) are easily found in the case
V (x) ≡ 0. Namely, either plane waves: S0(x) = k · x, where k ∈ Rd is a given
wave vector, or S0(x) = −|x|2, yielding a rarefaction wave for t ∈ R+, see [26].
In these situations, we obtain in-measure convergence of the Bohmian trajectories
(Xε ,Pε), and consequently also uniform convergence of Xε , locally on every Borel
set Ω⊆ {Rt × suppρ0} with finite Lebesgue measure.

4. SUPERPOSITION OF WKB STATES AND BOHMIAN MEASURES

4.1. Bohmian measure for multi-phase WKB states. In view of Fig. 1, we ex-
pect that for |t|> T ∗, i.e., after caustic onset, the correct asymptotic description of
ψε is given by a superposition of WKB states, also known as multi-phase ansatz.
In order to gain more insight into situations where this is indeed the case we shall,
as a first step, study the classical limit of the corresponding Bohmian measure. To
this end, let Ω ⊂ Rt ×Rd

x be some open set and consider ψε to be given in the
following form:

ψ
ε(t,x) =

N

∑
j=1

b j(t,x)eiS j(t,x)/ε + rε(t,x), (29)

where b j ∈C∞(Ω;C) are some smooth amplitudes and the real-valued phases S j ∈
C∞(Ω;R) locally solve

∂tS j +
1
2
|∇S j|2 +V (x) = 0 for all j = 1, . . . ,N, (30)

In addition, rε denotes a possible remainder term (the assumptions on which will
be made precise in the theorem below).

Remark 4.1. As we shall see in Section 5, the multi-phase WKB form (29) can
be rigorously established, locally on every connected component of (Rt×Rd

x )\C ,
i.e., locally away from caustics.

The second main result of this work establishes an explicit formula for the lim-
iting Bohmian measure β associated to a wave function of the form (29). More
precisely we prove the following:

Theorem 4.2. Let ψε be as in (29), with b j ∈ C∞(Ω;C), S j ∈ C∞(Ω;R), for all
j = 1, . . . ,N, where Ω⊂ [0,T ]×Rd denotes some open set. Assume, in addition,

∇S j 6= ∇Sk for all j 6= k ∈ {1, . . . ,N}, (31)

and that the remainder rε(t,x) satisfies

‖rε‖L2
loc(Ω) = o(1), ‖ε∇rε‖L2

loc(Ω) = o(1) as ε → 0+. (32)

Then
β

ε ε→0+−→ β (t,x, p), in L∞([0,T ];M+(Rd
x ×Rd

p))weak−∗,
where β is given by

β (t,x, p) =
∫
TN

Γ(t,x,θ)δ

(
p−

∑
N
j,k=1 ∇S j(t,x)Γ j,k(t,x,θ)

Γ(t,x,θ)

)
dθ .



14 WKB ANALYSIS OF BOHMIAN DYNAMICS

with θ = (θ1, . . . ,θN) ∈ TN , and

Γ(t,x,θ) :=
∣∣∣∣ N

∑
j=1

b j(t,x)eiθ j

∣∣∣∣2, Γ j,k(t,x,θ) := Re
(

b jb̄kei(θ j−θk)
)
. (33)

The above formula for β generalizes equation (6.6) given in [43] and states that
β in general is a diffuse measure in the momentum variable p ∈ Rd , unless all but
one b j = 0. Note that, in the case where N = 1, β simplifies to a mono-kinetic
phase space measure, i.e.,

β (t,x, p) = |b(t,x)|2δ (p−∇S(t,x)).

We already know from Assertion (i) of Theorem 3.1 that this holds for |t| < T ∗,
i.e., before caustic onset.

Proof. By our assumptions, it is easy to check that ρε = |ψε |2 = ρ̃ε + r1,ε and
Jε = εIm

(
ψε(t,x)∇ψε(t,x)

)
= J̃ε + r2,ε , where

ρ̃
ε :=

N

∑
j,k=1

b jb̄kei(S j−Sk)/ε , J̃ε :=
N

∑
j,k=1

∇S j Re
(

b jb̄kei(S j−Sk)/ε

)
.

and
‖r1,ε‖L1

loc(Ω) = o(1), ‖r2,ε‖L1
loc(Ω) = o(1).

In order to derive the classical limit as ε → 0+ of the Bohmian measure β ε , we
need to compute the limit of expressions of the following form∫∫

Ω

σ(t,x)ρε(t,x)ϕ
(

t,
Jε(t,x)
ρε(t,x)

)
dxdt, (34)

where ϕ,σ ∈C∞
c ([0,T ]×Rd ;R) are smooth and compactly supported. To this end,

we first note that, because ϕ is smooth and compactly supported, the map

R+×Rd 3 (s,v) 7→ sϕ

(
t,

v
s

)
is Lipschitz (uniformly with respect to t), which implies∥∥∥∥ρ

ε
ϕ

(
t,

Jε

ρε

)
− ρ̃

ε
ϕ

(
t,

J̃ε

ρ̃ε

)∥∥∥∥
L1

loc(Ω)

6C
(
‖r1,ε‖L1

loc(Ω)+‖r2,ε‖L1
loc(Ω)

)
= o(1).

In particular, to compute the limit as ε→ 0+ of the expression in (34) it suffices to
consider ∫∫

Ω

σ(t,x)ρ̃ε(t,x)ϕ
(

t,
J̃ε(t,x)
ρ̃ε(t,x)

)
dxdt. (35)

We now use the following result, whose proof is postponed to the end.

Lemma 4.3. There exists a set Σ ⊂ Ω of L d+1-measure zero such that, for all
j,k, ` ∈ {1, . . . ,N} with k 6= `,

S j(t,x)−Sk(t,x)
S j(t,x)−S`(t,x)

6∈Q for all (t,x) ∈Ω\Σ.

Using this lemma, we deduce that for L d+1−a.e. (t,x), the frequencies

S1(t,x)−Sk(t,x)
ε

, k = 2, . . . ,N,
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are all rationally independent, which implies that the “trajectories”

ε 7→
(

cos
(S2−S1

ε

)
, . . . ,cos

(SN−S1

ε

))
and

ε 7→
(

sin
(S2−S1

ε

)
, . . . ,sin

(SN−S1

ε

))
are both dense on the (N − 1)-dimensional torus TN−1. By standard results on
two-scale convergence (see for instance [1]), we consequently obtain that for any
continuous and compactly supported test function ϑ : Ω×CN−1→ R,∫

Ω

ϑ

(
t,x,ei(S2−S1)/ε , . . . ,ei(SN−S1)/ε

)
dxdt

ε→0+−→
∫

Ω

∫
TN−1

ϑ

(
t,x,eiθ1 , . . . ,eiθN−1

)
dθ1 . . .dθN−1 dxdt.

Moreover, we observe that for any j,k we can write
S j−Sk

ε
=

S j−S1

ε
+

S1−Sk

ε
.

Hence the expression in (35) converges to∫∫
Ω

σ(t,x)
∫
TN−1

N

∑
j,k=1

b jb̄kei(θ j−1−θk−1)

ϕ

(
t,

∑
N
j,k=1 ∇S j Re

(
b jb̄kei(θ j−1−θk−1)

)
∑

N
j,k=1 b jb̄kei(θ j−1−θk−1)

)
dθ1 . . .dθN−1 dxdt,

where by convention θ0 ≡ 0. Finally, let us observe that one can also rewrite the
obtained expression in a more symmetric form by performing the change of vari-
ables θ j−1↔ θ j−θ1, and it is immediate to check that under this transformation
the above expression is equal to∫∫

Ω

σ(t,x)
∫
TN

Γ(t,x,θ)ϕ

(
t,

∑
N
j,k=1 ∇S jΓ j,k(t,x,θ)

Γ(t,x,θ)

)
dθ dxdt,

where θ = (θ1, . . . ,θN), and Γ and Γ j,k are defined in (33). By the arbitrariness of
ϕ and σ , this proves the desired result. �

We are now left with the proof of Lemma 4.3.

Proof of Lemma 4.3. The set Σ can be described as⋃
j,k,`,k 6=`

⋃
m 6=n∈Z

Sm,n
j,k,`,

where

Sm,n
j,k,` :=

{
(t,x) ∈Ω : m[S j(t,x)−Sk(t,x)]+n[S j(t,x)−S`(t,x)] = 0

}
.

We now claim that each Sm,n
j,k,` is a smooth hypersurface in Ω, which implies in

particular that Sm,n
j,k,` (and so also Σ) has measure zero. To prove that this is indeed

the case, it suffices to check, in view of the implicit function theorem, that the
gradient of the function

(t,x) 7→ m[S j(t,x)−Sk(t,x)]+n[S j(t,x)−S`(t,x)]
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is nowhere zero. Assume by contradiction that this is not the case, i.e., there exists
a point (t,x) ∈Ω where

(m+n)∂tS j(t,x) = m∂tSk(t,x)+n∂tS`(t,x),

(m+n)∇S j(t,x) = m∇Sk(t,x)+n∇S`(t,x).
By (30), the first equation above becomes

(m+n)|∇S j(t,x)|2 = m|∇Sk(t,x)|2 +n|∇S`(t,x)|2,
which combined with the second equation gives

(m+n)
∣∣∣∣ m
m+n

∇Sk(t,x)+
n

m+n
∇S`(t,x)

∣∣∣∣2 = m|∇Sk(t,x)|2 +n|∇S`(t,x)|2.

By strict convexity of | · |2, the above relation is possible if and only if ∇Sk(t,x) =
∇S`(t,x), which contradicts (31) and concludes the proof. �

4.2. Comparison to Wigner measures. An important consequence of Theorem
4.2 concerns the connection between the limiting Bohmian measure β and the
Wigner measure w ∈M+(Rd

x ×Rd
p) associated to ψε . To this end, let us first

recall the definition of the ε-scaled Wigner transform wε given in [3, 27, 41]:

wε(t,x, p) :=
1

(2π)d

∫
Rd

ψ
ε

(
t,x− ε

2
η

)
ψε

(
t,x+

ε

2
η

)
eiη ·p dη .

Provided ψε(t) is uniformly bounded in L2 with respect to ε , it is well known that,
cf. [27, 41] there exists a limit w(t,x, p) such that

wε ε→0+−→ w, in L∞(Rt ;M+(Rd
x ×Rd

p))weak−∗.

In addition, one finds w(t) ∈M+(Rd
x ×Rd

p), usually called Wigner measure (or
semi-classical defect measure). The latter is known to give the possibility to com-
pute the classical limit of all expectation values of physical observables via

lim
ε→0
〈ψε(t),Opε(a)ψε(t)〉L2(Rd) =

∫∫
R2d

x,p

a(x, p)w(t,x, p)dxd p,

where the Opε(a) is a self-adjoint operator obtained by Weyl-quantization of the
corresponding classical symbol a ∈S (Rd

x ×Rd
p), see [27, 49] for a precise defini-

tion. In addition, if ψε(t) is ε-oscillatory, i.e., satisfies (19), we also have that the
zeroth and first p-moment of w yield the classical limit of ρε and Jε , i.e.,

ρ
ε(t,x)

ε→0+−→
∫
Rd

w(t,x,d p), Jε(t,x)
ε→0+−→

∫
Rd

pw(t,x,d p),

where the limits have to be understood in L∞(Rt ;M+(Rd
x ))weak−∗. Note that this

is indeed analogous to (21).
For a given superposition of WKB states such as (29), the associated Wigner

measure has been computed in [41] (see also [49]): under the same assumption on
the phases, i.e., ∇S j 6= ∇Sk for all j 6= k, one explicitly finds

w(t,x, p) =
N

∑
j=1
|b j(t,x)|2δ (p−∇S j(t,x)). (36)

From this explicit formula we immediately conclude the following important corol-
lary.
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Corollary 4.4. Let b j 6= 0. Then, under the same assumptions as in Theorem 4.2
we have that, in the sense of measures, β = w if and only if N = 1.

Proof. For b j 6= 0 and N > 1 we see from Theorem 4.2 that β is a diffuse measure
in the momentum variable p ∈ Rd , and thus β 6= w in view of (36). On the other
hand, if N = 1 then, both w and β simplify to the same mono-kinetic phase space
distribution. �

In view of Assertion (i) of Theorem 3.1 we conclude that before caustic onset,
the classical limit of all physical observables can be computed by taking moments
of the limiting Bohmian measure, since in fact β = w for |t| < T ∗. After caustic
onset, however, this is in general no longer the case (see Section 5).

Still, we do know (by weak compactness arguments) that the zeroth and first mo-
ments w.r.t. p ∈ Rd of β and w are the same for all times t ∈ R. For completeness,
we check this explicitly in the case of multi-phase WKB states: using the fact that∫

T
cos(θ) dθ =

∫
T

sin(θ) dθ = 0,

we compute∫
Rd

β (t,x,d p) =
N

∑
j,k=1

b j(t,x)b̄k(t,x)
∫
TN

ei(θ j−θk) dθ1 . . .dθN

=
N

∑
j=1
|b j(t,x)|2 =

∫
Rd

w(t,x,d p).

Moreover∫
Rd

pβ (t,x,d p) =
N

∑
j,k=1

∇S j(t,x)
∫
TN

Re
(

b j(t,x)b̄k(t,x)ei(θ j−θk)
)

dθ1 . . .dθN

=
N

∑
j=1

∇S j(t,x)|b j(t,x)|2 =
∫
Rd

pw(t,x,d p).

In other words, in the case of multi-phase WKB states, the difference between w
and β can only manifest itself in p-moments of order two or higher.

5. A COMPLETE DESCRIPTION IN THE FREE CASE AND POSSIBLE EXTENSIONS

In this section we shall give a (fairly) complete description of the classical limit
of Bohmian dynamics in the case of the free Schrödinger equation corresponding
to V = 0. The proof will rely on classical stationary phase techniques. For the case
V 6= 0 decisively more complicated methods based on Fourier integral operators
have to be employed, as will be discussed in Section 5.3.

5.1. Multi-phase WKB for vanishing potential. Consider the free Schrödinger
equation with WKB initial data:

iε∂tψ
ε +

ε2

2
∆ψ

ε = 0, ψ
ε |t=0 = a0(x)eiS0(x)/ε , (37)

In this case, we find the free Hamilton-Jacobi equation, which is obviously given
by

∂tS+
1
2
|∇S|2 = 0, S|t=0 = S0, (38)
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and the corresponding classical Hamiltonian equations (13) simplify to{
Ẋ(t,y) = P(t,y), X(0,y) = y,

Ṗ(t,y) = 0, P(0,y) = ∇S0(y).
(39)

This implies that, for all t ∈ R+, P(t,y) = ∇S0(y) and

X(t,y) = y+ t∇S0(y). (40)

Consequently, the caustic set is given by Cfree = {(x, t) : x ∈ C free
t } where for x ≡

X(t,y) we set:

C free
t =

{
x ∈ Rd : ∃ y ∈ Rd satisfying (40) and det(Id+ t∇2S0(y)) = 0

}
.

In particular, we see that in the free case, the caustic onset time T ∗ > 0 is solely
determined by the (sub-quadratic) initial phase S0(y). In order to proceed we need
to slightly strengthen our assumption on the initial phase S0.

Assumption 5.1. The initial phase S0 ∈C∞(Rd ;R) is assumed to be sub-quadratic
and

lim
|y|→∞

|∇S0(y)|
|y|

= 0.

In other words we need that S0 grows strictly less than quadratically at infinity.
This is the same assumption as in [7], guaranteeing that the map y 7→ X(t,y) is
proper and onto.

In the following we shall denote by x 7→ y ≡ Y (t,x) the inverse mapping of
(40). Clearly, for |t| > T ∗ this inverse will not be unique in general, i.e., for each
fixed (t,x) ∈ Rt ×Rd

x there is N(t,x) ∈ N and corresponding Yj(t,x), with j =
1, . . . ,N(t,x), satisfying the implicit relation

Yj(t,x)+ t∇S0(Yj(t,x)) = x. (41)

Assumption 5.1 guarantees that in each connected component of (Rt ×Rd)\Cfree
there are only finitely many {Yj(t,x)}. (This follows by properness of the charac-
teristic map and the implicit function theorem, see [7, Lemma 1.1].) In addition,
in each such connected component N(t,x) = const. Moreover, under the same as-
sumptions on S0, we already know that the caustic onset time T ∗ is positive, and
thus there is exactly one connected component Ω0 of (Rt ×Rd)\Cfree containing
{t = 0}.

In order to proceed further, we also recall that the solution of (37) admits an
explicit representation in the form of an ε-oscillatory integral

ψ
ε(t,x) =

(
1√

2πiεt

)d ∫
Rd

a0(y)eiΦ(t,x,y)/ε dy, (42)

where the phase is given by

Φ(t,x,y) := S0(y)+
|x− y|2

2t
. (43)

It is well known that, for ε→ 0+, the representation formula (42) can be treated by
the stationary phase techniques (see, e.g., Theorem 7.7.6. of [32]) and we conse-
quently obtain the following lemma.
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Lemma 5.1. Let a0 ∈ S (Rd ;C) and S0 satisfy Assumption 5.1. Then, for all
(t,x) ∈ (Rt ×Rd)\Cfree the solution of (37) satisfies

ψ
ε(t,x)

ε→0+
=

N(t,x)

∑
j=1

a j(t,x)eiπκ j(t,x)/4 eiΦ(t,x,Yj(t,x))/ε + rε(t,x), (44)

where Φ(t,x,y) is given by (43), κ j(t,x) ∈ N denotes the Maslov factor, and

a j(t,x) =
a0(Yj(t,x))

|det(Id+ t∇2S0(Yj(t,x)))|1/2 . (45)

In addition, the remainder rε satisfies

‖rε‖C0(Ω) = O(ε), ‖rε‖C1(Ω) = O(1) as ε → 0+, (46)

uniformly on compact subsets Ω⊂ (Rt ×Rd)\Cfree.

Remark 5.2. The first remainder estimate ‖rε‖C0(Ω) = O(ε) is classical, whereas
the second one can be obtained by noticing that the operator ∇ commutes with
the free Schrödinger equation (37). Thus, we find that ∇ψε satisfies an integral
representation analogous to (42), i.e.,

∇ψ
ε(t,x) =

(
1√

2πiεt

)d ∫
Rd

ei|x−y|2/(2tε)
∇ψ

ε
0 (y)dy.

By applying the stationary phase lemma to this oscillatory integral one readily
infers the estimate ‖rε‖C1(Ω) = O(1).

Next, we note that, in view of (43) and (41), we explicitly have

Φ(t,x,Yj(t,x))≡ S0(Yj(t,x))+
1
2t
|x−Yj(t,x)|2

= S0(Yj(t,x))+
t
2
|∇S0(Yj(t,x)|2.

(47)

On the other hand, since for V (x) = 0 it holds that P(t,y) = ∇S0(y) (i.e., P is
constant along the characteristics), the solution formula (14) yields, for all j =
1, . . . ,N:

S j(t,x) = S0(Yj(t,x))+
∫ t

0

1
2
|P(τ,y)|2 dτ

∣∣
y=Y j(t,x)

= S0(Yj(t,x))+
t
2
|∇S0(Yj(t,x)|2.

(48)

We consequently infer that Φ(t,x,Yj(t,x)) ≡ S j(t,x) is a smooth solution of the
free Hamilton-Jacobi equation (38) for all j = 1, . . . ,N(t,x). Obviously, we also
have that a j given by (45) solves the corresponding transport equation (15) with
S≡ S j.

Remark 5.3. An alternative way of showing that Φ(t,x,Yj(t,x)) solves the free
Hamilton-Jacobi equation is to plug (47) into (38) and use (41) to implicitly dif-
ferentiate with respect to t and x. A lengthy but straightforward computation then
yields the desired result.

For completeness we also recall that the Maslov factor is explicitly given by [32]

N 3 κ j(t,x) = m+
j (t,x)−m−j (t,x),
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where m±(t,x)∈N denotes, respectively, the number of positive or negative eigen-
values of the matrix Id+ t∇2S0(Yj(t,x)). Note that κ j can also be written in the
form

κ j(t,x) = d−2m−j (t,x).

By the implicit function theorem, κ(t,x) = const. in every connected component
of (Rt ×Rd

x )\Cfree, see, e.g., [7].

5.2. WKB analysis of Bohmian dynamics in the free case. From what is said
above, we infer that in each connected component Ω of (Rt×Rd

x )\Cfree, the solu-
tion ψε admits the approximation (44), so Theorem 4.2 can be applied after iden-
tifying

b j(t,x) = a j(t,x)eiπκ j(t,x)/4 ≡ a j(t,x)eiπκΩ/4, j = 1, . . . ,N(t,x)≡ NΩ,

where κΩ ∈ R and NΩ ∈ N are constants depending only on Ω. Consequently, we
obtain the following result.

Theorem 5.4. Let a0 ∈S (Rd ;C) and S0 satisfy Assumption 5.1. Denote by Ω0
the connected component of (Rt ×Rd

x )\Cfree containing {t = 0}. Then it holds:
(i) The limiting Bohmian measure satisfies

β (t,x, p) = w(t,x, p) = ρ(t,x)δ (p−u(t,x)), ∀(t,x) ∈Ω0,

and the Bohmian trajectories converge

Xε(t,y)
ε→0+−→ y+ t∇S0(y), Pε(t,y)

ε→0+−→ ∇S0(y),

locally in measure on Ω0∩{Rt × suppρ0}.
(ii) Outside of Ω0 there are regions Ω⊆ (Rt×Rd

x )\Cfree where β 6=w and where
the Bohmian momentum Pε does not converge locally in-measure to the classical
momentum P.

(iii) There exist initial data a0 such that, outside of Ω0, there are regions Ω̃ ⊆
(Rt ×Rd

x ) \Cfree in which both Xε and Pε = Ẋε do not converge to the classical
flow.

Note that Assertion (i) is slightly stronger than Theorem 3.1 (i) in the sense that
Ω0 is strictly larger than [0,T ∗)×Rd

x . The proof shows that if |a0| > 0 on all of
Rd , Assertion (ii) holds for any connected component Ω 6= Ω0 whose boundary
intersects the boundary of Ω0.

Proof. We first note that for all (t,x) ∈Ω0 it holds N(t,x) = 1 and κ j(t,x) = 0. In
view of the remainder estimates stated in Lemma 5.1 we thus can apply Theorem
4.2 with N = 1 to obtain

β (t,x, p) = ρ(t,x)δ (p−∇S(t,x)),

where ρ = |a|2. With this in mind, the result on the convergence of the Bohmian
trajectoriess follows verbatim from the proof of Theorem 3.1 (ii). This proves the
first assertion.

In order to prove Assertion (ii), we first note that outside of Ω0 we have (in
general) more than one branch, i.e., N(t,x)> 1. For instance, assume that |a0|> 0
on Rd , and let Ω 6= Ω0 be a connected component whose boundary intersects the
boundary of Ω0. Then it is not difficult to see that NΩ 6= 1, as otherwise one could
show that no caustics can occur on ∂Ω0 ∩ ∂Ω. Next, we recall that in each con-
nected component Ω of (Rt ×Rd) \Cfree the phase Φ(t,x,Yj(t,x)) ≡ S j(t,x) is a
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smooth solution of the Hamilton-Jacobi equation (10). By the method of charac-
teristics we have that

∇Φ(t,x,Yj(t,x))≡ ∇S j(t,x) = P(t,Yj(t,x)) = ∇S0(Yj(t,x)),

since P(t,y) is constant along characteristics (recall that V (x) = 0). Hence, assum-
ing by contradiction that ∇S j = ∇Sk for some j 6= k , the above identity together
with (40) yields Yj(t,x) = Yk(t,x), which is impossible by construction. This im-
plies that in each connected component Ω we can apply Theorem 4.2 to conclude
that β in general is a diffuse measure in p ∈ Rd , unless all but one of the a j = 0
in Ω. In view of (45), the latter cannot be the case if |a0| > 0 on Rd . Corollary
4.4 then immediately implies β 6= w. On the other hand, since for WKB initial
data we have that ρε

0 is indeed ε-independent, we can apply (22) in Ω to infer that
the Young measure ϒt,y is diffusive in p (since β is). This, however, prohibits the
convergence of Pε locally in measure, since the latter is equivalent to ϒt,y being
concentrated in a single point.

The result in (ii) may still give some hopes for the convergence of Xε to X , since
the fact that Ẋε = Pε gives more compactness for the curves in the x-variables.
However, we shall see that this is not the case.

Consider indeed the example described in Fig. 1 and Fig. 7 (so d = 1). These
figures suggest that for ψε

0 as in (56) convergence should not hold. To show this
rigorously, we begin by observing that ρ(t,x) > 0 on Rt ×Rx (this follows from
the explicit formula for ρ = |a|2, but it can also be seen from Fig. 1 observing
there only the trajectories starting inside [0,1] are plotted). Since ρ is smooth, this
implies that for R,T > 0 there exists a positive constant cR,T such that

ρ(t,x)> cR,T for (t,x) ∈ [0,T ]× [−R,R].

In particular, since ψε is given by (44) with rε small in C0, see (46), it follows that

ρ
ε(t,x)>

cR,T

2
for (t,x) ∈ [0,T ]× [−R,R] (49)

for all ε > 0 sufficiently small (the smallness depending on T and R). Recalling
that

Ẋε = uε(t,Xε(t,x)), uε =
Jε

ρε
,

and that Jε and ρε are both smooth, it follows from (49) that uε is smooth as
well inside [0,T ]× [−R,R]. In particular, by the Cauchy-Lipschitz theorem, the
Bohmian trajectories Xε can never cross inside [0,T ]× [−R,R]. Since by symmetry
Xε(t,1/2) = 1/2 for all t > 0 (see Fig. 1 and Fig. 7), this implies in particular that,
for all t ∈ [0,T ]:

Xε(t,x)> 1/2 ∀x> 1/2, Xε(t,x)6 1/2 ∀x6 1/2.

Letting ε → 0 we deduce that Xε does not converge to X (locally) in measure on
Ω̃≡ [0,T ]× [−R,R], since otherwise the above property would give

X(t,x)> 1/2 ∀x> 1/2, X(t,x)6 1/2 ∀x6 1/2

for all t > 0, which is not the case (see Fig. 1). This proves Assertion (iii). �

Remark 5.5. Note that for |t|> T ∗, i.e., after caustic onset, the Wigner measure is
given by (36) for all (t,x) ∈ (Rt ×Rd

x ) \Cfree. In particular, this shows that w is
insensitive to the Maslov phase shifts, since |a j|2 = |b j|2 for all j = 1, . . . ,N(t,x).
The limiting Bohmian measure β , however, incorporates these phase shifts in view



22 WKB ANALYSIS OF BOHMIAN DYNAMICS

of the formula given in Theorem 4.2. However, as we have seen in Section 4.2 these
phase shift do not enter in the classical limit of ρε and Jε .

5.3. Extension to the non-zero potential case. In the case where V (x) 6= 0 the sit-
uation becomes considerably more complicated, due to a lack of an explicit integral
representation for the exact solution ψε of (1). The only exception therefrom is the
case of a polynomial V (x) of degree (at most) two, in which case one has Mehler’s
formula replacing (42), see, e.g., [33]. In order to proceed further in situations
where V is a more general (sub-quadratic) potential, one needs to approximate the
full Schrödinger propagator

Uε(t) = e−iHε t , with Hε =−ε2

2
∆+V (x),

for 0 < ε � 1 by a semi-classical Fourier integral operator [20, 48]. Early re-
sults on this can be found in [18, 25], where the occurrence of caustics makes the
approximation valid only locally in-time. This problem can be overcome, by con-
sidering a class of Fourier integral operators whose Schwartz kernel furnishes an
ε-oscillatory integral with complex phase and quadratic imaginary part, see [39,
Theorem 2.1] for a precise definition. Using this, the authors of [39] construct a
global in-time approximation of Uε(t) for potentials satisfying V ∈ C∞

b (Rd), i.e.,
smooth and bounded together with all derivatives (see also [29, 35] for closely re-
lated results with slightly different assumptions). By applying the stationary phase
lemma to this type of (global) Fourier integral operator, one infers the following
result, as a slight generalization of [39, Theorem 5.1]:

Fix a point (t0,x0)∈ (Rt×Rd
x )\C , i.e., away from caustics, and as before denote

by Yj(t,x) and j = 1, . . . ,N = N(t,x) ∈N, the solutions of the equation x = X(t,y),
where t 7→ X(t,y) is the classical flow map induced by (13). Let {y∈Rd : |a0(y)|>
0}, be a sufficiently small neighborhood of

{Y1(t0,x0), . . . ,YN(t0,x0)} ⊂ Rd , (50)

i.e., the points obtained by tracing back the classical trajectories intersecting in
(t0,x0) ∈ (Rt ×Rd

x ) \C . Then the solution of (1) at t = t0 admits the following
approximative behavior:

ψ
ε(t0,x)

ε→0+
=

N(t,x)

∑
j=1

a j(t0,x)eiπ(m+
j (t0,x)−m−j (t0,x))/4 eiS j(t0,x)/ε + rε(t0,x), (51)

where the amplitudes a j and the (real-valued) phases S j are, respectively, given by
(15) and (14) with Y replaced by Yj(t0,x), and m+

j (t0,x) (resp. m−j (t0,x)) is the
number of positive (resp. negative) eigenvalues of the matrix ∇yXt(Yj(t0,x)). In
addition, the remainder rε satisfies

‖rε(t0, ·)‖L2(Λ) = O(ε),

where x ∈ Λ ⊂ Rd is a sufficiently small neighborhood of x0 ∈ Rd . The above
result (the proof of which can be found in [7]) replaces Lemma 5.1, valid in the
free case. Note however, that one only infers a local result in some sufficiently
small neighborhood of x0 ∈ Rd , provided the initial amplitude a0 is sufficiently
concentrated on (50). In order to obtain an estimate for ε∇rε , we note that by
applying the Hamiltonian Hε to (1), and having in mind that V ∈ L∞(Rd), we infer

sup
0<ε61

‖ε2
∆ψ

ε(t, ·)‖L2 6C, ∀t ∈ R+,
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where C > 0 is independent of ε . In view of (51), we consequently obtain that
‖ε2∆rε‖L2 is uniformly bounded w.r.t. ε and hence we can interpolate

‖ε∇rε‖2
L2 6C‖rε‖L2 ‖ε2

∆rε‖L2 = O(ε),

to obtain ‖ε∇rε‖L2 = O(
√

ε) = o(1), as required in Theorem 4.2. In order to
apply the latter we also require ∇S j 6= ∇Sk for j 6= k ∈ {1, . . . ,N}. This follows,
from similar arguments as has been done in the free case. Indeed, if the gradients
were the same, by following backward the Hamiltonian flow we would get that the
curves were starting from the same point, which is a contradiction.

Thus, after using appropriate localization arguments, the multi-phase form (51)
combined with Theorem 4.2 allows to infer the same qualitative picture for the
classical limit of Bohmian dynamics in the case V 6= 0, as we showed above for the
free case. Using the same notation as above, we can summarize our discussion as
follows.

Proposition 5.6. Let V ∈ C∞
b (Rd) and S0 satisfy Assumption 5.1. Let (t0,x0) ∈

(Rt×Rd
x )\C , and assume that {y ∈Rd : |a0(y)|> 0} is a sufficiently small neigh-

borhood of {Y1(t0,x0), . . . ,YN(t0,x0)}. Then there exists a small neighborhood
U ⊂Rt×Rd

x of (t0,x0) such that β 6= w inside U ×Rd
p. In particular, the Bohmian

trajectories (Xε ,Pε) do not converge locally in measure to the classical Hamilton-
ian flow.

6. NUMERICAL SIMULATION OF BOHMIAN TRAJECTORIES

In this section we shall numerically study the behavior of Bohmian trajecto-
ries, mainly in the semiclassical regime 0 < ε � 1 and in particular in situations
where caustics appear in the corresponding classical limit. Let us remark that the
numerical implementation of Bohmian trajectories is used in applications of quan-
tum chemistry, cf. [19, 28, 46], in particular in molecular dynamics, where the
use of Bohmian trajectories allows for a unified approach in the computation of
multi-particle systems. Indeed, it is an important challenge in quantum chemistry
to model and to numerically solve processes in which some particles are rather
heavy and thus behave essentially classically (e.g., the atomic nuclei of molecules),
whereas others are very light and thus require a quantum mechanical treatment (e.g.
the electrons). From the numerical point of view, the main problem is to compute
the Bohm potential V ε

B in an efficient and accurate manner, in particular in higher
dimensions. In order to do so, Lagrangian schemes are often used, for which the
authors of [46] propose the implementation of a Delaunay tesselation in order to
be able to accurately compute Bohmian trajectories in two and three spatial dimen-
sions. For a broader introduction to this subject we refer to [53].

6.1. Description of the numerical method. For the numerical tracking of Bohmian
trajectories (Xε ,Pε) it is necessary to solve the system (6) for a given solution
ψε(t,x) of the Schrödinger equation (1). To this end, we will always consider
initial data ψε

0 ∈ S (Rd), i.e., rapidly decreasing functions. This allows to nu-
merically approximate the solution ψε through a truncated Fourier series in the
spatial coordinates by choosing the computational domain Ωcom sufficiently large,
i.e., such that |ψε | is smaller than machine precision at the ∂Ωcom (we use double
precision which is roughly equivalent to 10−16). Thus the function can be period-
ically continued as a smooth function with maximal numerical precision. In our



24 WKB ANALYSIS OF BOHMIAN DYNAMICS

numerical examples, we shall concentrate on the case of d = 1 spatial dimension.
The x-dependence of ψε is consequently treated with a discrete Fourier transfor-
mation realized via a Fast Fourier Transform (FFT) in Matlab. We thereby always
choose the resolution large enough so that the modulus of the Fourier coefficients
decreases to machine precision which is achieved in the studied examples for 210

to 214 Fourier modes. This resolution enables high precision interpolation from x
to Xε (see below).

For the time-integration of the Schrödinger equation we shall rely on a time-
splitting method. The basic idea underlying these splitting methods is the Trotter-
Kato formula [52], i.e.,

lim
n→∞

(
e−tA/ne−tB/n

)n
= e−t(A+B) (52)

where A and B are certain unbounded linear operators, for details see [36]. In
particular this includes the cases studied by Bagrinovskii and Godunov in [5] and
by Strang [50]. The formula (52) allows to solve an evolutionary equation

∂tu = (A+B)u, u|t=0 = u0,

in the following form

u(t) = ec1∆tAed1∆tBec2∆tAed2∆tB · · ·eck∆tAedk∆tBu0,

where (c1, . . . ,ck) and (d1, . . . ,dk) are sets of real numbers that represent fractional
time steps. In the numerical treatment of (1) we shall use a second order Strang
splitting, i.e., ci = di = 1 for all i except for c1 = dk = 1/2. The Schrödinger
equation is consequently split into the following system:

iε∂tu+
ε2

2
∂xxu = 0, iε∂tu =V (x)u.

The first equation can then be explicitly integrated in Fourier space, using two
FFT’s. The second equation can explicitly be solved (in physical space) in the
form

u(t,x) = e−itV (x)/εu0.

Next, in order to solve the Bohmian equations of motion (6) for a given ψε(t,x),
we need to interpolate between the coordinate x, in which ψε is given, and the
coordinate Xε . For this we use that the x-dependence of ψε is treated by Fourier
spectral methods. Thus we can apply the representation of ψε in terms of trun-
cated Fourier series not only at the collocation points for which the formulae for
the discrete Fourier transform hold, but at general intermediate points. The main
drawback is that for such points there is no FFT algorithm known and the transfor-
mation is thus computationally more expensive. But since we only need to track
a limited number of trajectories Xε and since this interpolation method is of high
accuracy, our approach is more efficient than, say, a low order polynomial (spline)
interpolation (as used, e.g., in [19]). In order to obtain the Bohmian momentum
Pε we interpolate x↔ Xε within ψε(t,x) and ∂xψε(t,x), for fixed time t ∈ R. To
this end, we note that the latter is of course determined in Fourier space. We con-
sequently compute Pε through

Pε(t,Xε) = εIm
(

∂xψε(t,Xε)

ψε(t,Xε)

)
.
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We test the accuracy of the interpolation by comparing different numbers of Fourier
modes for the solution of the Schrödinger equation for a given set of computed
trajectories. Once machine precision is assured for ψε (i.e., the modulus of the
Fourier coefficients decreases below 10−12, in our case), the difference between
different interpolates can be shown to be of the same order. Thus we can conclude
that the spatial resolution of the trajectories is of the order of 10−12, much better
than plotting accuracy.

The time integration of the first equation of the system (6) is performed with an
explicit scheme (here, we shall use a standard fourth order Runge-Kutta method).
This allows to compute the right-hand side of this equation with the already known
values for Xε at the previous time step. Note that we compute the solution to the
Schrödinger equation either exactly in time (if V (x) = 0) or with second order time
splitting for each stage of the Runge-Kutta scheme (whenever V (x) 6= 0). We shall
test the accuracy of the time integration scheme by assuring that the difference of
the numerical solution for Nt time steps to the solution for 2Nt time steps is smaller
that 10−4 and thus much smaller than plotting accuracy. Typically we use Nt = 104.
In addition the accuracy of the splitting scheme is tested as in [38] by tracing the
numerically computed energy Eε

num(t) which due to unavoidable numerical errors
is indeed a function of time. In our examples, the relative conservation of Eε

num(t)
is ensured to better than 10−7 implying again an accuracy of more than 10−5.

Remark 6.1. For efficiency reasons, the computation of the trajectories Xε is done
at the same time for all Xε . Thus, in principle, it could happen that the identifica-
tion of the trajectories in the examples below do not reflect the actual dynamics. By
tracing also individual trajectories, i.e., by computing just one Xε per run, we nev-
ertheless are able to ensure that this is not the case and that the shown trajectories
are indeed the correct ones. In particular our numerical code captures the physi-
cally important property that Bohmian trajectories do not cross, see, e.g., [19] (see
also the proof of Theorem 5.4 (iii)). This is indeed a delicate issue in other numer-
ical approaches where the system (13) is numerically integrated with (10) and (11)
instead of (1), and where different interpolation techniques are used. The latter
have to be chosen in a way to avoid the crossing of the trajectories (see Section
6.2.1 below).

6.2. Case studies. In the following we shall illustrate our analytical results by
numerical examples. We shall first consider some test cases which will show that
our algorithm is indeed trustworthy even for small 0 < ε� 1, before we eventually
study the case for WKB initial data leading to caustics.

6.2.1. Vortices. Before studying the semiclassical regime we shall show that our
numerics displays the important non-crossing property of Bohmian trajectories,
which we have seen to be the main obstacle for convergence (as ε → 0+) towards
the multi-valued classical flow after caustic onset. For ε > 0, the only possibility
for the crossing of Bohmian trajectories stems form nodes of the wave function,
i.e., points at which ψε vanishes. Due to the superfluid property of ψε such nodes
are physically interpreted as quantum mechanical vortices. In the following, we
shall numerically study the example given in [9]. More precisely, ψε is given by
the superposition of the ground state and the second excited state of the harmonic
oscillator (we also put ε = 1 in this example), i.e.,

ψ(t,x) =
(
1+(1−2x2)e−2it)e−x2−it/2.
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This wave function vanishes for x = 0 and for all times t = (2k + 1)π/2, with
k ∈Z. To treat the limit ‘0/0’ numerically, we add some quantity of the order of the
rounding error to the wave function which will consequently provide the limit with
an error of the order of the unavoidable numerical error. The resulting trajectories
can be seen in Fig. 2. Note that, indeed, all trajectories avoid the vortices at t = π/2
and t = 3π/2, only the trajectory for x = 0 passes through these nodes.
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FIGURE 2. Bohmian trajectories for ε = 1 in a harmonic oscillator
potential V (x) = 1

2 x2 with ψ given as a superposition of the ground
state and the second excited state.

6.2.2. Semiclassical wave packets. Before numerically studying the semiclassical
limit of Xε

t for WKB initial data, we shall test our algorithm in a slightly different
situation, which is known to be better behaved as ε → 0+. Indeed, it has been
proved in [44] that for the case of semiclassical wave-packets, convergence of the
Bohmian flow to its corresponding classical counterpart holds in some appropriate
topology (see also [21] for a closely related study). At t = 0 a semiclassical wave
packet is of the form

ψ
ε
0 (x) = ε

−d/4 a0

(
x− x0√

ε

)
eik·(x−x0)/ε , a0 ∈S (Rd ;C). (53)

The main differences between WKB states and semiclassical wave packets are that
for the latter, the particle density concentrates in a point, i.e.,

ρ
ε
0 (x)

ε→0+−→ δ (x− x0), in D ′(Rd),

and that the corresponding classical phase space flow does not exhibit caustics, cf.
[17] for more details. This in particular implies that for semiclassical wave packets
one can prove convergence of the Bohmian trajectories on any finite time-interval
[44]. An example for such a situation (with k0 = 0) can be seen in Fig. 3. The
corresponding classical trajectories would be just lines parallel to the t-axis. Since
these data do not lead to a caustic, there is just a slight defocusing effect to be seen
with respect to the classical trajectories.
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FIGURE 3. Bohmian trajectories for wave packet initial data of
the form (53) with k0 = 0, x0 = 1/2, a0(z) = e−z2

and ε = 10−3.

6.2.3. Caustics. In this last subsection we shall, finally, present examples for WKB
initial data exhibiting caustics in the classical limit. To this end, we shall first study
the case where the caustic is just one single point, i.e., a situation in which all clas-
sical trajectories X(t,y) cross at (x∗,T ∗) ∈ Rt ×Rx. As a particular example, we
shall consider the harmonic oscillator with potential

V (x) =
1
2

(
x− 1

2

)2

, (54)

and an initial data in the form

ψ
ε
0 (x) = e−25(x−1/2)2

, (55)

i.e., a WKB state with Gaussian amplitude and S0(x) = 0. Then, the classical
trajectories X(t,y) all intersect in one point as can be seen in Fig. 4.
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FIGURE 4. Classical trajectories X(t,y) for the harmonic oscilla-
tor potential (54) and ψε

0 given by (55).

The same situation for the Bohmian trajectories Xε(t,y) and ε = 10−3 can be
seen in Fig. 5. The closeup of the region of intersection when ε = 0 clearly shows
that the trajectories come close to x∗, but keep a finite distance from it except for
the one trajectory which is parallel to the t-axis and goes straight through x∗. The
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FIGURE 5. Left: Bohmian trajectories Xε(t,y) for the harmonic
oscillator potential (54) and ψε

0 given by (55). Right: A closeup
of the central region near x∗.

solution ψε is periodic in time and shows a breather-type behavior with a large
|ψε | at the caustic. We show only a half-period of this periodic motion.

Next, we consider the case V (x) = 0 with WKB initial data

ψ0(x) = e−25(x−1/2)2
eiS0(x)/ε , S0(x) =−

1
5

lncosh
(

5x− 5
2

)
(56)

as in [42], i.e., the same amplitude as before but with nonzero initial phase. The
time dependence of the density ρ shows a strong maximum followed by a zone
of oscillation inside a break-up zone as can be seen in Fig. 6. In this case, the
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FIGURE 6. Density ρ = |ψε |2 for V (x) = 0 and ψε
0 given by (56).
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classical trajectories X(t,y) will lead to a diffuse caustic as depicted in Fig. 1. For
finite ε , the Bohmian trajectories Xε(t,y) obviously do not cross, but there are rapid
oscillations within the caustic region as can be seen in Fig. 7.
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FIGURE 7. Left: Bohmian trajectories Xε(t,y) for V (x) = 0 and
ψε

0 given by (56). Right: A closeup of the central region.

However, oscillations do not only appear in the trajectories, but also in the mo-
mentum Pε(t,y) = uε(t,Xε(t,y)) along any trajectory Xε which is “deflected” at
the caustic region. This can be clearly seen in Fig. 8 where several Pε are plotted
along the corresponding trajectories Xε . The oscillations within Pε are reminiscent
of so-called dispersive shocks, as observed, e.g., in the Korteweg-de Vries equa-
tion with small dispersion, see for instance [30] and references therein. This is even
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FIGURE 8. The quantity Pε(t,y) along the Bohmian trajectories
Xε(t,y) given Fig. 7.
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more visible in Fig. 9 where the oscillations on the left most trajectory in Fig. 8 are
shown in dependence of t, thus in a projection onto the t-axis.
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FIGURE 9. The quantity Pε(t,y) along the left most trajectory in
Fig. 8 in dependence of t.

Figures 5 and 7 suggest the existence of a well defined limiting flow, which can
be seen as the dispersive limit (for ε → 0+) of the Bohmian flow Xε

t . Presum-
ably, the classical limit of Bohmian measures (which can be computed even after
caustics, see Theorem 4.2) is then given as the push forward under this limiting
flow. Unfortunately, at this point we do not have the tools necessary to describe the
limiting flow after caustic onset.
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