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Abstract

The main goal of this work is to prove two recently published theorems by Antonio Alarcón, Franc
Forstneric and Francisco López regarding the existence of holomorphic legendrian curves. To that end, we
define and develop the concepts of Riemann surfaces and holomorphic contact manifolds and explain the
techniques of holomorphic approximation necessary for the proofs.
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Resumen

El objetivo principal de este trabajo es demostrar dos teoremas recientemente publicados por Antonio
Alarcón, Franc Forstneric y Francisco López sobre la existencia de curvas legendrianas holomorfas. Para
ello, definimos y desarrollamos los conceptos de superficie de Riemann y variedad de contacto holomorfa y
explicamos las técnicas de aproximación holomorfa necesarias para las demostraciones.
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Introduction and main results

The original Bachelor’s Project "Curvas holomorfas" was presented in the 14 of July of 2021 in Complutense
University of Madrid, being awarded a full mark and a honorific mention. The project was presented in
Spanish. This is a translation, carried out by the author, of the original work.

The study of symplectic and contact smooth manifolds appears naturally to formalise diverse problems
from classical mechanics. Its study during the past century has been a fruitful are of research, with important
consequences in both Physics and Geometry.

A symplectic manifolds is a smooth manifoldsM of even dimension 2n together with a closed, nondegenerate
2-form ω. A symplectic manifolds (M,ω) together with a function H : M → R form a hamiltonian contact
system and represents the phase space of a conservative mechanical system.
The most paradigmatic example of these manifolds is the cotangent space of a smooth manifold T ∗M . In
canonical coordinates, (xj , yj) the symplectic form is given by

∑
j dx

j ∧ dyj .
Immersed submanifolds f : N → M such that f∗ω = 0 are of special interest, and are known as isotropic
submanifolds. Among them, the ones with maximal dimension, which is n since ω is non degenerate are
named lagrangian submanifolds and play an important role in diverse theorems of symplectic geometry such
as the Arnold-Liouville Theorem or Weinstein’s Tubular Neighbourhood Theorem. For example, a section
s : M → T ∗M is a closed differential form if and only if it is a legendrian immersion.

Contact manifolds are the odd-dimensional analog of symplectic manifolds. A contact structure on a
2n + 1-dimensional manifold M is a subbundle Ψ of the tangent bundle of codimension 1, which is given
locally as the kernel of a 1-form α such that α∧ (dα)n ̸= 0. Given a smooth manifolds M , the space of 1-jets,
which is isomorphic to T ∗M ×R, te projectivised cotantent bundle P(T ∗M) or the unit cotangent bundle in
case M is given a metric are examples of contact manifolds, among others.

Now, if M is as above, an immersion f : N → M is said to be isotropic if f∗(TN) ⊂ Ψ. The condition
α∧(dα)n ̸= 0 and Frobenius Integrability Theorem imply that n is the maximum dimension that N can have,
and in that case the immersion is said to be legendrian. Legendrian submanifolds are of special interest:

• Legendrian embeddings of S1 into a contact 3-dimensional manifold are called legendrian knots. Two
legendrian knots K,K ′ ⊂ R3 with the standard contact form given by the kernel of α = dz − xdy are
contact-isotopic (this is, there exists a continuous family of legendrian knots ϕt such that ϕ0 = K,
ϕ1 = K ′) if and only if their projections onto the xy-plane can be related by a series of elementary
moves, which correspond to the movements one can do to untie the knot. A proof of this can be foun
in [Swi92].

• In his famous book [Gro86], Gromov proves using convex integration that any continuous path γ :
[0, 1] → (M,Ψ), where Ψ is a contact structure, can be approximated by isotropic embeddings.

Contact and symplectic manifolds enjoy similar or analog properties. For instance, both satisfy the Darboux
Theorems, which basically show that locally, any sympletcic or contact manifold is equivalent toR2n,

n∑
j=1

dxj ∧ dyj

 R2n+1, ker(dz −
∑

j

xjdyj)

 ,

respectively. This is why these two strutures are known as the standard symplectic and contact structures
in affine space.
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Aitor Iribar López

The definitions that we have in smooth manifolds can be generalised to complex manifolds without
problem, and the resulting structures are known as holomorphic symplectic and contact structures. Isotropic,
lagrangian and legendrian submanifolds can also be define in an analogous way and therefore one may wonder
which theorems about real geometry can be extended to complex manifolds.
In [Bry82], R. Bryant proved that every compact Riemann Surface can be embedded in CP3 as a legendrian
submanifold, with the standard contact structure in projective space.
The problem was unsolved for open Riemann surfaces until A. Alarcón, F. Fonstneric y F. López proved
in 2017, using techniques of holomorphic approximation, an analogue of Bryant’s result. More precisely, in
[AFL17] they prove the following stronger statements:

Theorem 1. Let X be a Riemann surface and let f : Y → C2n+1 be an isotropic holomorphic map1, where
Y ⊂⊂ X is a Runge open set. Then f can be approximated uniformly over Y by isotropic, proper embeddings
f : X → C2n+1 with the standard contact structure of affine space.

Theorem 2. Let X be a compact, bordered Riemann surface, and let (M,Ψ) be a holomorphic, contact
manifold of dimension 2n+ 1. Then there exists an isotropic embedding of X into M .

The objective of this work is to give a complete, rigorous proof of these two Theorems in the case n = 1,
illustrating the main ideas that the authors use for generic n.

In the first part, we will define complex manifolds and in particular, Riemann surfaces. Contrary to the
usual treatment given in some books like [For81] or [GR65], we will avoid the introduction of sheaves and
sheaf cohomology, since we will be focusing on open Riemann surfaces and a sistematic study of their sheaves
woould exceed the limits of this work. Following the ideas in [Var11], we will instead use Green functions to
prove analogues of the well known Cauchy formulas in arbitrary Riemann surfaces, which will be useful to
prove the classical theorems of Runge and Weierstrass.
The main feature of open Riemann surfaces for holomorphic approximation is Mergelyan-Bishop’s Theorem.
To prove it, we will explain the ideas in [Sak72].
Finally, we will explain what holomorphic symplectic and contact structures are, giving simple proofs of
the holomorphic Darboux Theorems, which were not found in the references, adapting the proof of the real
Darboux Theorems in [Lee12].

The second part is devoted to the proof of the two results and a systematic approach to some of the
techniques in holomorphic approximation. This techniques have been exploited by the authors in other
similar articles like [AFL17] or [AFL16].
To do so, we start with an exposition of the recurring ideas that appear in the proofs of the two theorems, and
we will also formalise some results that the authors use in an implicit way. In particular, propositions 2.1.1,
2.1.2 and 2.1.3 have not been found in any of the references or other articles by the authors, and therefore
their proof is original. We will exemplify the use of these ideas to strengthen Mergelyan Theorem and prove
a classical result by R. Gunning and M. Narasimhan about the existence of immersions of Riemann surfaces
in C, originally proved in [GN67]. The remaining part is rather technical and it’s dedicated to the proof of
theorems 1 and 2.

Although this project is mostly self contained (based on the Bachelor’s knowledge), we will use some ideas
from functional analysis to prove Runge and Mergelyan Theorems, and an argument using transversality
appears in the proof of 2.3.2. This two topics are treated in a succinct way in the Appendices.

1We will see that it is necessary that f is isotropic
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Part 1

Riemann surfaces and holomorphic
contact structures

1.1 Functions of several complex variables. Complex manifolds
First we will develop the local theory of holomorphic functions.

Definition 1.1.1. Let Ω an open subset of Cm. A continuous function f : Ω → C is holomorphic if it
is holomorphic in each variable (as functions between open subsets of C). A function f : Ω → Cm is
holomorphic if all of its components are holomorphic

A smooth function f = u+ iv is holomorphic precisely when, for each j, the Cauchy-Riemann equations
hold:

∂u

∂xj
= − ∂v

∂yj

∂u

∂xj
= ∂v

∂yj
.

It is convenient to use the Wirtinger derivatives

∂

∂zj
:= 1

2

(
∂

∂xj
− i

∂

∂yj

)
∂

∂z̄j
:= 1

2

(
∂

∂xj
+ i

∂

∂yj

)
and then, the Cauchy-Riemann equations are equivalent to ∂f

∂zj = 0 for all j. To do calculus on complex
manifolds, we will follow the standard notation for indices up and down, as well as multi-index notation.
Einstein summation is not necessary since the formulas that will appear are small. An immediate consequence
of the usual Cauchy Formula is the following:

Lemma 1.1.2. Let f : Ω → C holomorphic. Then for any z ∈ Ω,

f(z) = 1
(2πi)n

∫
|η1|=r1

. . .

∫
|ηn|=rn

f(η1, . . . , ηn)
(η1 − z1) . . . (ηn − zn)dηn . . . dη1

Proof. Using Cauchy formula for the first variable, one gets

f(z) = 1
2πi

∫
|η1|=r1

f(η1, z2, . . . , zn)
(η1 − z1) dη1.

If one applies the theorem again, inside the integral,

f(z) = 1
(2πi)2

∫
|η1|=r1

∫
|η2|=r2

f(η1, η2, . . . , zn)
(η1 − z1)(η2 − z2)dη1dη2.

And one can continue like this to get the desired formula.

Corollary 1.1.3. Every holomorphic function is smooth, and the following formula holds

∂|α|

∂zα
f(z) = α!

(2πi)n

∫
|η1|=r1

. . .

∫
|ηn|=rn

f(η1, . . . , ηn)
(η1 − z1)α1+1 . . . (ηn − zn)αn+1 dηn . . . dη1
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Corollary 1.1.4. If a sequence of holomorphic functions fn converges uniformly on compact sets to f , then
f is holomorphic and for any multi-index α, ∂|α|

∂zα fn converges uniformly over compact subsets to ∂|α|

∂zα f .

The classical theorems of calculus can be easily generalised; for that purpose, the following lemma will
be necessary. We don’t prove it but not that it is a direct consequence of the chain rule and the definitions
of ∂

∂zj and ∂
∂z̄j .

Lemma 1.1.5. If f and g are functions between open subsets of complex affine space whose composition
makes sense, then

∂

∂zk
(f ◦ g) =

∑
j

∂f

∂wj

∂gj

∂zk
+ ∂f

∂w̄j

∂ḡj

∂zk
,

∂

∂z̄j
(f ◦ g) =

∑
j

∂f

∂wj

∂gj

∂z̄k
+ ∂f

∂w̄j

∂ḡj

∂z̄k
.

Corollary 1.1.6. The composition of two holomorphic functions is again holomorphic, and

∂

∂zk
(f ◦ g) =

∑
j

∂f

∂wj

∂gj

∂zk
.

If a holomorphic functions between open sets of equal dimension has regular derivative

∂f

∂z
=
(
∂fk

∂zj

)
k,j

in a point a, then on a neighbourhood of a, the function is invertible and its inverse is holomorphic. If a
holomorphic function F = F (z, w) between open subsets of Cq+n and Cn verifies that ∂F

∂w (a, b) is invertible
and F (a, b) = 0, then there exists a holomorphic function g such that g(a) = b and F (t, g(t)) = 0.

Proof. These theorems follow from the usual chain rule and inverse function theorem and the formulas in
the previous lemma.

With all these tools, one can replicate the same process one would follow to define a smooth manifold to
define a complex manifold. It can be seen in full details in [GR65], so we will do it quickly.

Definition 1.1.7. A complex manifold of dimension n es a topological space X locally homeomorphic to Cn,
Hausdorff and second countable, together with a (maximal) atlas of charts {(Uj , zj)j∈I} such that zj : Uj →
Cn is a homeomorphism onto its image and zj ◦ (zk)−1 is holomorphic, with holomorphic inverse whenever
Uj ∩ Uk is nonempty.

As it was already noted, under the natural identification Cn = R2n, detR
(

∂f
∂(x,y)

)
=
∣∣∣detC

(
∂f
∂z

)∣∣∣2 and
thus, in particular, holomorphic change of coordinates have positive jacobian so a complex manifold is
orientable

Example 1.1.8.

a) Every open subset Ω ⊂ Cn is a complex manifold.

b) Projective spaces CPn are n-dimensional complex manifolds of with charts (Uj , uj), where Uj is given
by zj ̸= 0 and uj([z0 : . . . : zn]) =

(
z0
zj
, . . . , zn

zj

)
, omitting the j-th coordinate.

c) If z, w are two complex numbers that are not collinear with 0, the set L = zZ + wZ forms a lattice in
C and the quotient C/L, homeomorphic to a torus inherits a complex structure in a natural way.

d) Although this is not a trivial fact, every orientable real surface X has a structure of 1-complex manifold,
also known as Riemann surface. The idea is to endow the surface with a metric and finding local
coordinates around each point such that g12 = 0 y g11 = g12. Using the orientability of X, these
coordinates can be assumed to verify g11 > 0 and they constitute a holomorphic atlas.

e) Not every even dimensional smooth manifold has a complex structure. Orientability is one of the
requisites and, contrary to what the previous example shows, in higher dimensions there are more
requisites. For example, as it can be seen in [BS53], Sn is not a complex manifold if n ̸= 2, 6, and the
case n = 6 is an open problem.
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Holomorphic curves

A continuous function f : X → C is said to be holomorphic if f ◦z−1 is holomorphic for each chart (U, z),
and a function f : X → Y between two complex manifolds is holomorphic if for any pair or charts (U, z) in
Y and (V,w) in X, z ◦ f ◦ w−1 is holomorphic.
As it is usual to see in the literature, if Y ⊂ X is an open set, O(Y ) and C∞(Y ) represent the spaces of
holomorphic and smooth functions, respectively, in Y .

Definition 1.1.9. The tangent space to a complex manifold is the complexification of its tangent space as
a smooth manifold, that is to say, TCX is a vector bundle with fibers (TCX)p = TXp ⊗R C, and inherits a
natural structure of complex manifold in such a way that π : TCX → X is holomorphic.

Since TXp ⊗ C is a complex vector space in a natural way, given holomorphic coordinates z = x + iy,
it makes sense to define in TCX the vectors ∂

∂zj and ∂
∂z̄j using the same formulas as in Cn. The interesting

phenomena is that these vectors depend of the coordinates one takes, but the subspaces generated by the
∂

∂zj and the ∂
∂z̄j are invariant. We prove it in the following way::

For any p in X, given holomorphic coordinates z = x+ iy around p, we define a linear map Jp : TXp → TXp

in a basis as
Jp

(
∂

∂xj

)
= ∂

∂yj
y Jp

(
∂

∂yj

)
= − ∂

∂xj
.

Jp can be extended to TXp ⊗ C by the formula Jp(v ⊗ α) = Jp(v) ⊗ α. Since J2
p = −1, and Jp is C-linear,

Jp can be diagonalised. The vectors ∂
∂zj have i as eigenvalue, while the vectors ∂

∂z̄j
have −i. Therefore, it

is sufficient to prove that Jp is independent of the holomorphic coordinates taken.
If w = u+ iv are another holomorphic coordinates, and Ĵp is the map defined if we started with w, the chain
rule 1.1.5 shows that

∂

∂zj
= ∂wl

∂zj

∂

∂wl

∂

∂z̄j
= ∂w̄l

∂z̄j

∂

∂w̄l
,

and therefore, Ĵp

(
∂

∂zj

)
= i ∂

∂zj and Ĵp

(
∂

∂z̄j

)
= −i ∂

∂z̄j for all j. Since these form a basis of TXp ⊗C, Jp = Ĵp.1
It makes sense to make the following definition:

Definition 1.1.10. T 1,0X is the subbundle generated by ∂
∂zj and T 0,1X is the subbundle generated by ∂

∂z̄j .
They are also complex manifolds in a natural way. In particular, holomorphic section of T 1,0X are what
we will refer to as holomorphic vector fields, since in local coordinates they can be expressed as X = Xj ∂

∂zj

where Xj : X → C is holomorphic.

The space of alternating tensors are defined in the same way as in the smooth case, that is to say,
EnX = ∧n(TCX∗), where ∗ denotes the dual. To the basis formed by ∂

∂zj
, ∂

∂z̄j
correspond the dual basis

dzj , dz̄j of TCX∗, where
dzj = dxj + idyj and dz̄j = dxj + idyj .

The decomposition TX = T 1,0X ⊕ T 0,1X gives raise to a decomposition

EkX =
⊕

p+q=r

Ep,qX :=
⊕

p+q=r

(∧pT
1,0X∗) ∧ (∧qT

0,1X∗).

The space Ep,q is called the space of (p, q)−forms, and are the ones that can be expressed in local coordinates
as

ω =
∑

|I|=p,|J|=q

fIJdz
I ∧ dz̄J .

The exterior derivative d also decomposes. If πp,q : Ep+q → Ep,q is the projection, we have d =
∑

r+s=p+q+1 πr,s◦

d, seeing d : Ep,q → Ep+q+1. However, most of these terms are 0:

Proposition 1.1.11. With the previous notation, in a complex manifold X all the projections πr,s ◦d vanish
except when (r, s) = (p+ 1, q) and (r, s) = (p, q + 1).

Proof. Let ω ∈ Ep,q, and write it in local coordinates as

ω =
∑

|I|=p,|J|=q

fI,Jdz
I ∧ dz̄J .

1The vector bundle isomorphism J is usually called an almost complex structure in X.
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Then, using the elementary properties of d,

dω =

 ∑
|I|=p,|J|=q

n∑
k=1

∂fI,J

∂zk
dzk ∧ dzI ∧ dz̄J

+

 ∑
|I|=p,|J|=q

n∑
k=1

∂fI,J

∂z̄k
dz̄k ∧ dzI ∧ dz̄J

 ∈ Ep+1,q ⊕ Ep,q+1.

Definition 1.1.12. We define the operators

∂ = πp+1,q ◦ d : Ep,q → Ep+1,q, ∂̄ = πp,q+1 ◦ d : Ep,q → Ep,q+1.

From the equalities d2 = 0 and d = ∂ + ∂̄ one deduces that ∂2 + ∂∂̄ + ∂̄∂ + ∂̄2 = 0, but this equality
occurs in different spaces of forms, so actually

∂2 = ∂̄2 = ∂∂̄ + ∂̄∂ = 0.

From the formula in last proposition one gets the coordinate formulas of these operators. In particular,
a function f is holomorphic precisely when ∂̄f = 0. A naive definition of a holomorphic form would be
something that can be expressed as

∑
I fIdz

I where fI is holomorphic. With these operators we can give
an invariant definition:

Definition 1.1.13. A form ω is holomorphic if it is a (k, 0)-form and ∂̄ω = 0. The set of holomorphic
k-forms is denoted by Ek

hol(X).

We finish this section with a result about smooth manifolds that we are not going to prove, but it will
be necessary in the future. It is a classical result in riemannian geometry and differential topology, and can
be easily proved taking a riemannian metric and using a covering of the manifold with geodesic balls.

Theorem 1.1.14 (Existence of good coverings). Let X be a smooth manifold, and let U be an open covering
of X. Then there exists a refinement V = {Vj}j∈I of U such that all the sets Vj and their finite intersections
are contractible.
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Holomorphic curves

1.2 Riemann surfaces
A Riemann surface is simply a 1-dimensional complex manifold. Unless the contrary is said, Riemann
surfaces are assumed to be connected. For the purpose of this work, we are interested in non-compact
Riemann surfaces, and we refer to them as open Riemann surfaces. The differences between the compact
case and the open case are abysmal; for instance, a compact Riemann surface does not admit non constant
holomorphic functions, but an open Riemann surface admits plenty of them. A complete study of compact
Riemann surfaces can be found in [For81].

We will use the term bordered Riemann surface to refer to an open, relatively compact subset of a
Riemann surface with smooth boundary or to refer to the closure of such an open set, but it will be clear
by the context which one are we talking about. The notation Y ⊂⊂ X says that Y is a relatively compact
subset of X.
for instance, the unit disk is a bordered Riemann surface but the complex plane is not. BY a holomorphic
curve we mean a holomorphic map f : X → CN when X is an open Riemann surface. The second most
important Riemann surface after open subsets of C is the Riemann sphere, C∞ = CP1 = C ∪ {∞}. Indeed,
we can define meromorphic functions using it:

Definition 1.2.1. A meromorphic function on X is a holomorphic map f : X → C∞. If f is meromorphic
and p ∈ X, the order of f at p is the order of f ◦ z−1 : Ω ⊂ C → C∞ at z(p), where (U, z) are holomorphic
coordinates around p. We denote it by ordp(f) and it is of course well defined.

In the same way we can define meromorphic forms:

Definition 1.2.2. A meromorphic form on a Riemann surface X is a holomorphic form ω ∈ E1
hol(X ∖A),

where A is a discrete subset of X, such that for every p ∈ X there are holomorphic coordinates (U, z) and a
meromorphic form f such that ω = f dz. In that situation, we define the order of ω in p to be the order f
at p.

Again, one can prove that these are well defined ideas. Most theorems of complex analysis have their
analogues in Riemann surfaces:

Theorem 1.2.3 (Identity principle). Let f, g be meromorphic functions in a Riemann surface X. If there
is a subset A with an accumulation point where f = g, then f = g in the whole of X.
Let α, β be two meromorphic forms in X. If there is a subset A having an accumulation point where α = β,
then α = β in the whole X.

Theorem 1.2.4 (Maximum principle). If f : X → C is holomorphic and |f | attains an extreme value then
f is constant

In particular, the only holomorphic functions on a compact Riemann surface are the constants, as we
claimed before.

The notions of exact and closed differential forms can be defined in a Riemann surface, and one can also
integrate complex valued differential forms: if ω = α+ iβ is a k-form , where α and β are real-valued, then
the integral of ω along a k-submanifold Y where ω has compact support is just∫

Y

ω =
∫

Y

α|Y + i

∫
Y

β|Y

and one can easily check that Stokes theorem can be applied. In particular, Stokes theorem can be used to
define the De Rham map dR : H1(X) → HomZ(H1(X,Z),C)

dR(ω)(n1γ1 + . . .+ nkγk) = n1

∫
γ1

ω + . . .+ nk

∫
γk

ω,

where we are thinking of H1(X,Z) as the set of linear combinations of smooth paths in X modulo the paths
that are the boundary of some open. The fact that dR is well defined and in fact is an isomorphism can be
seen in [For81].

Example 1.2.5. Every holomorphic 1-form is closed in a Riemann surface, since if can be written locally
as fdz, with f holomorphic, and then

d(fdz) = df ∧ dz = ∂f

∂z
dz ∧ dz + ∂f

∂z̄
dz̄ ∧ dz = 0.
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However, they are not exact in general. If X = C∖ {0} and ω = dz
z , ω but its integral along a circle centred

at 0 is ±2πi, by Cauchy formula, so it is not exact.

IN the complex plane, one has

∆ = ∂2

∂x2 + ∂2

∂y2 = 4 ∂
∂z

∂

∂z̄
.

So a smooth function f is harmonic if and only if

∂∂̄f = ∂2f

∂z∂z̄
dz ∧ dz̄ = 0.

This motivated the following definition:

Definition 1.2.6. The Laplacian operator in a Riemann surface is ∆ = ∂∂̄. A smooth function f is said
to be harmonic if ∆f = 0.

We would like to define subharmonic functions also, but we will do it in other way for two reasons: first,
because it is difficult to make sense to the formula ∆f ≥ 0 in an abstract surface and second because we
will need a weaker notion of subharmonic function, allowing singularities. To motivate the definition, let U
be an open subset of C and u : U → R a continuous function such that ∆u ≥ 0 in U . If

f(r) = 1
2π

∫ 2π

0
u(z0 + reit)dt

then by the divergence theorem,

f ′(r) =
∫ 2π

0
eit∇u(z0 + reit)dt = 1

2πr

∫
bD(z0,r)

∇u(z) ·N(z) = 1
2πr

∫
D(z0,r)

∆u(z) ≥ 0

so f is increasing. Also, limr→0 f(r) = u(z0), so

u(z0) ≤ 1
2π

∫ 2π

0
u(z0 + reit)dt.

If u attained its maximum in a point z0 ∈ U and we take r such that bD(z0, r) ∩ bU ̸= ∅, then

0 ≤ 1
2π

∫ 2π

0

[
u(z0 + reit) − u(z0)

]
dt,

but u(z0 + reit) − u(z0) ≤ 0. The only possible option is that u(z0) = u(z0 + reit) for all t and in particular,
u(z) = u(z0) for some z in bU . Therefore we obtain the weak maximum principle: If u is subharmonic, v is
harmonic and both are continuous in U and U is bounded, then if v ≥ u in bU then v ≥ u in U .

Definition 1.2.7. Let X be a Riemann surface and u : X → R∪{−∞} an upper-semicontinuous function.2
We say u is subharmonic if whenever K is compact and v : K → R is continuous in K and subharmonic in
its interior, if v ≥ u en bK, then v ≥ u in K.

Despite this strange definition, subharmonic functions enjoy some nice properties: if u, v : X → R∪{−∞},
then

a) If u and v are subharmonic, u+ v and max(u, v) also are.

b) If u is locally subharmonic, then it is subharmonic.

c) If u is subharmonic, v is continuous in a compact K, harmonic in its interior and u = v en bK, then
the function defined as

u#v(z) =
{
v(z) if z ∈ K

u(z) si z ∈ X ∖K

is subharmonic.
2ie, u−1([−∞, y)) is open for all y ∈ R

14
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d) If f : Y → X is holomorphic and u is subharmonic, so is u ◦ f .

e) If f : X → C holomorphic, log |f |2 is subharmonic.

f) (The maximum principle) If K is compact, u is continuous in K and subharmonic in its interior,

sup
bK

u = sup
K
u.

We will use Perron method to obtain Green functions.

Definition 1.2.8. A family of subharmonic functions F in a Riemann surface X is a Perron family when:

1. If u, v ∈ F , max(u, v) ∈ F .

2. If u ∈ F , v : K → R is continuous in a compact K, harmonic in its interior that agrees with u on its
boundary, then u#v ∈ F .

And the main result we will need is the following:

Theorem 1.2.9 (Perron). Let F be a Perron family in a Riemann surface X. If

v(z) = sup
u∈F

u(z),

then either v(z) = +∞ for all z or v is harmonic in X.

Proof. We refer to the proof in p. 180 of [For81].

Our first application will be to solve the Dirichlet problem, which consists in the following:
Given an open Y ⊂ X and a continuous function f : bY → R, we seek a continuous function Y , harmonic in
its interior that agrees with f in the border. We have to impose some conditions to f and to the boundary
of Y , as the following example shows:

Example 1.2.10. There is no continuous function u in D(0, 1), harmonic in D(0, 1)∖{0} such that u(0) = 0
and u(z) = 1 whenever |z| = 1. To see this, define

ϕ(r, s) = 1
2π

∫
bA(s,1)

u(rz)dz,

where A(s, 1) is the annulus {w ∈ C : s ≤ |w| ≤ 1}. Then, by the divergence theorem, ∂
∂rϕ(r, s) = 0 if

s, r > 0, but ϕ is continuous in r, so for all s > 0,

0 = ϕ(0, s) = ϕ(1, s) = 1
2π

[∫
|w|=1

u(w)dw −
∫

|w|=s

u(w)dw
]

= 1 − 1
2π

∫
|w|=s

u(w)dw

But ϕ is also continuous in s, so

1 = lim
s→0

1
2π

∫
|w|=s

u(w)dw = lim
s→0

1
2π

∫ 2π

0
u(seit)seitdt = 0,

a contradiction.

Definition 1.2.11. Let Y ⊂ X be open. We say x ∈ bY is regular for the Dirichlet problem if there is a
neighbourhood U of x and a continuous function β : Y ∩ U → R such that

1. β is subharmonic in Y ∩ U .

2. β ≤ 0, with equality just in x.

Such a function is a barrier in x. Most open subsets of C have regular boundary, as the following example
shows:

15
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Example 1.2.12. If Y ⊂ C, x ∈ bY and there is a disk D = D(a, r) such that x ∈ bD and Y ∩ D = ∅.
Then

β(z) = log r

|2z − x− a|
is a barrier in x.

Figure 1: Situation of example 1.2.12

Using this, one can easily prove that

Lemma 1.2.13. If Y ⊂⊂ Z ⊆ X are open sets, where Y . Then there is an open set W such that Y ⊂⊂
W ⊂⊂ Z and the boundary of W is smooth and regular for Dirichlet problem.

If Y ⊂⊂ X y f : bY → R is continuous and Pf is the set of continuous functions u : Y → R that are
subharmonic in Y and less than f in bY . Pf is nonempty because it contains constant functions and is
clearly a Perron family. By Perron method,

Bf = sup
u∈Pf

u

is harmonic in Y , but we have to check if it extends continuously to the boundary.

Proposition 1.2.14. If x is a regular point in bY for Dirichlet problem, where Y ⊂⊂ X, and f : bY → R
is continuous,

lim
y→x

Bf (y) = f(x).

Proof. It can be found in p. 183 of [For81].

So we see that if Y has regular boundary, one can always find a solution for Dirichlet problem. We now
turn to our main objective, which is to find Green functions in Riemann surfaces.

Definition 1.2.15. Let X be a Riemann surface and let Y ⊆ X be an open subset. A Green function in Y
with singularity in x is a function Gx : Y → [−∞, 0] that is continuous in Y ∖ {x} and verifies:

(G1) Gx is subharmonic in Y and harmonic in Y ∖ {x}.

(G2) If (U, z) are coordinates around x such that z(x) = 0, Gx − log |z|2 es is harmonic in U .

(G3) If H is another continuous function satisfying G1 and G2, then Gx ≥ H.

Last property guarantees that Gx is unique, so we can refer to it as the Green function in Y with
singularity in x. Not all Riemann surfaces have Green functions, but the ones that we will need to do
approximation do:

Theorem 1.2.16. If X is a Riemann surface and Y ⊂⊂ X is an open set, with regular boundary, then Y
has a Green function with singularity in all of its points.
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Proof. We use Perron method. Let G be the set of restrictions to Y ∖ {x} of functions u : Y ∖ {x} → [0,∞)
with compact support and contained in Y , that are subharmonic in Y ∖ {x} and such that u(z) + log |z|2
can be extended in a subharmonic way to x whenever z are coordinates around p with z(x) = 0.
It is clear that G is nonempty because

g0(z) =
{

− log |z|2 if |z| < 1
0 in other case

for a chart (U, z) around x where z(U) = D(0, 2), which will remain fixed for the rest of the proof, belongs
to G.
The conditions of a Perron family are automatically satisfied. It is enough to take into account that if
u+ log |z|2 and v + log |z|2 extend to 0 in a subharmonic way, its maximum, which is

max{u+ log |z|2, v + log |z|2} = max{u, v} + log |z|2,

can also be extended and that, if K is a compact contained in Y ∖ {x}, x and bY are closed and disjoint
from K, so u♯v is still in G.
Let 0 < r < 1 be fixed, and consider the harmonic function ωr in Y ∖ z−1(D(0, r)) which is 0 in bY and 1 if
|z| = r, whose existence is granted by the solution to Dirichlet theorem. For any u ∈ G, define also

ar = sup
|z|=1

ωr(z), br = sup
|z|=r

u(z).

Then, u− brωr is subharmonic, 0 in bY and is less than br − br = 0 in |z| = r. By the maximum principle,
u− brωr ≤ 0 if |z| = 1. Together with the fact that u+ log z2 is subharmonic in D(0, 2), we get that

br + log r2 = max
|z|=r

(u+ log |z|2) ≤ max
|z|=1

(u+ log |z|2) = max
|z|=1

u ≤ max
|z|=1

brωr = brar,

so br ≤ − log r2

1−ar
. From here it follows, by the maximum principle again, that since u has compact support,

sup
Y ∖z−1(D(0,r))

u = sup
|z|=r

u = br ≤ − log r2

1 − ar
< +∞, (1)

sup
|z|≤r

u+ log |z|2 ≤ br + log r2 ≤ − log r2

1 − ar
+ log r2 = −ar log r2

1 − ar
< +∞. (2)

But these bounds do not depend on u, so from (1) one deduces that

U = sup
u∈G

u

is harmonic in Y ∖ {x} by Perron method. Let Gx = −U . By (2), U(z) + log |z|2 = supu∈G(u + log |z|2)
is harmonic since it is the supremum of a bounded Perron family, so Gx − log |z|2 is harmonic. If H
satisfies (G1) and (G2), and u ∈ G, then u + H is subharmonic in Y (it is subharmonic in x because
u+H = u+ log |z|2 +H− log |z|2). Since H is negative and u has compact support, u+H ≤ 0 in Y . Taking
the supremum among all u, U +H ≤ 0. In other words, Gx ≥ H.

We will denote the Green function in Y with pole in x by GX(x, ·).

Example 1.2.17. The Green function for the unit disk is G(x, y) = log
∣∣∣ 1−ȳx

x−y

∣∣∣2, since it clearly verifies
(G1) y (G2), and since it is 0 in the boundary, (G3) follows from the maximum principle.
However, the complex plane does not have a Green function in 0, since it would have the form G(0, y) =
H(y) + log |y|2 for some harmonic harmonic H. If f is holomorphic with ℜf = H, since G ≤ 0 we would
have ∣∣∣ef(y)

∣∣∣ = eℜf(y) ≤ e
log 1

|y|2 ≤ 1
|y|2

,

so ef is bounded, But by Liouville Theorem, it is constant and therefore so is f and as a consequence, H,
but log |y|2 → ∞ as y → ∞ so G cannot be non-negative.
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Theorem 1.2.18. [Properties of Green functions] Let X be a Riemann surface and Y ⊂⊂ X an open subset
with smooth and regular boundary. Then:

a) GY (x, y) = 0 for all y ∈ bY .

b) GY (x, y) = GY (y, x).

c) For all p there is a neighbourhood U of (p, p) in X ×X and holomorphic coordinates (x, y) in U such
that x(p) = y(p) = 0 and

GY (x, y) = H(x, y) + log |x− y|2

for some continuous function H, harmonic in each variable.

Proof. Going through the proof of 1.2.16, one can see that GY is the supremum of some functions that are
0 in bY , and this proves a).
b) Let Z be a bordered, compact Riemann surface u, v smooth functions in Z. By Stokes theorem, we have
the first Green identities:∫

Z

v∂∂̄u+
∫

Z

∂v ∧ ∂̄u =
∫

bZ

v∂̄u

∫
Z

u∂̄∂v +
∫

Z

∂̄u ∧ ∂v =
∫

bZ

u∂v

and adding them we get the second Green identity:∫
Z

v∂∂̄u− u∂∂̄v =
∫

bZ

v∂̄u+ u∂v

Now let ξ1, ξ2 different points in Y . Let z1, z2 two charts around them, with zj(ξj) = 0. Let Dj be the disk
defined by |zj | = ε and assume they don’t intersect. Define gj(z) = GY (ξj , z). Applying the second Green
identity Z = Y ∖ (D1 ∪D2) to g1, g2. They are harmonic and by a) they vanish in the boundary of Y , so

0 =
∫

bD1∪bD2

g1∂̄g2 + g2∂g1

Now we write g1 = G1 + log |z1|2 where G1 is harmonic, and so∫
bD1

g1∂̄g2 + g2∂g1 =
∫

bD1

G1∂̄g2 + g2∂G1 + log |z1|2∂g2 +
∫

bD1

g2∂ log |z1|2.

Since |z1| = ε is constant along the path, by Stokes Theorem the first integral is 0, since g2 and G1 are
harmonic,

d(G1∂̄g2 + g2∂G1 + log ε2∂g2) = ∂G1 ∧ ∂̄g2 + ∂̄g2 ∧ g1 +G1∂∂̄g2 + g2∂̄∂G1 + log ε2∂̄∂g2 = 0

while the second integral is∫
bD1

g2∂ log |z1|2 =
∫

|z1|=ε

g2(z1)
z1

dz1 = i

∫ 2π

0
g(ξ1 + εeit) = 2iπg2(ξ1)

Similarly, ∫
bD2

g1∂̄g2 + g2∂g1 = −2iπg1(ξ2)

and therefore, g1(ξ2) − g2(ξ1) = 0, proving c)
c) Take a chart (U, z), and for each q ∈ U , let zq be defined as zq(r) = z(r) − z(q). Then by property (G2),
for each q there is a harmonic function Hq such that

GY (q, r) = Hq(zq(r)) + log |zq(r)|2 = Hq(zq(r)) + log |z(r) − z(q)|2

so Hq(zq(r)) = GY (q, r) − log |z(r) − z(q)|2 = Hr(zr(q)) by the symmetry of Green function, so Hq is
harmonic in q and in particular continuous.
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By an abuse of notation, we will denote∫
X

ω = lim
t→0

∫
X∖B(t)

ω

when ω is a compactly supported form with a singularity in x, where B(t) family of neighbourhoods of x
that decreases uniformly to x. Generally we will take B(t) = z−1(D(z(x), t)) where z is some x. We will
often say that the integral is in an improper sense.
We can now prove the Cauchy-Green formulas:

Proposition 1.2.19 (Cauchy-Green formulas). Let Y ⊂⊂ Z ⊂⊂ X be open subsets of a Riemann surface
where Y has smooth, regular border X, and Z has regular border. If f : Y → C is smooth, then

f(x) = 1
2πi

∫
y∈bY

f(y)∂yGZ(x, y) + 1
2πi

∫
y∈Y

∂yGZ(x, y) ∧ ∂̄yf(y),

where the second integral is improper. In particular, if f is holomorphic in a neighbourhood of Y , then

f(x) = 1
2πi

∫
y∈bY

f(y)∂yGZ(x, y),

whereas if f vanishes in the boundary of Y ,

f(x) = 1
2πi

∫
y∈Y

∂yGZ(x, y) ∧ ∂̄yf(y).

Proof. For a fixed x, if (z, U) s a chart around x with z(x) = 0 and if B(ε) = z−1(B(0, ε)), the first Green
identity tells us that: ∫

bM

u∂v =
∫

M

∂̄u ∧ ∂v + u∂̄∂v,

so if we apply it to f and GZ(x, ·) we obtain that∫
y∈b(Y ∖B(ε))

f(y)∂yGZ(x, y) =
∫

y∈Y ∖B(ε)

[
∂̄yf(y) ∧ ∂yGZ(x, y) + f(y)∂̄y∂yGZ(x, y)

]
.

Since G is harmonic, ∂̄y∂yGZ(x, y) = 0, and after reordering,∫
y∈bY

f(y)∂yGZ(x, y) +
∫

y∈Y ∖B(ε)
∂yGZ(x, y) ∧ ∂̄yf(y) =

∫
|z|=ε

f(z)∂GZ(x, z)
∂z

dz,

but by property (G2), GZ(x, z) = log |z|2 +H(z) with H continuous. Therefore,∫
|z|=ε

f(z)∂GZ(x, z)
∂z

dz =
∫

|z|=ε

[
f(z)
z

+ f(z)∂H(z)
∂z

]
dz = i

∫ 2π

0
f(εeit)dt+O(ε).

So after letting ε → 0 we obtain the first formula, and the other two follow from it.

This formula should be reminiscent of the well-known Cauchy-Pompeiu formula, which is used to solve
the equation ∂

∂z f = g; following the same ideas, we can prove an analogous result, that will be improved in
1.3.10, concerning the solution of ∂̄f = α.

Proposition 1.2.20. Let X be an open Riemann surface, Y ⊂⊂ X an open subset with smooth, regular
boundary, and let α ∈ E0,1(X). Then there exists f ∈ C∞(Y ) such that ∂̄f = α.

Proof. We can assume that α has compact support, contained in Y , because if Z is an open set with smooth
boundary such that Y ⊂⊂ Z ⊂⊂ X, and ξ is a bump function with support in Z which is 1 in Y , then a
solution to ∂̄f = (ξα) in Z is a solution for ∂̄f = α en Y .
The last formula in 1.2.19 suggests defining

f(x) = 1
2πi

∫
y∈Y

∂yGY (x, y) ∧ α(y),
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but f does not necessarily have compact support even if α does3. S slight modification is enough. We define

f(x) = 1
2πi

∫
y∈Y

∂y(GY (x, y)α(y)),

in the improper sense. Since α is a (0, 1)-form, ∂̄y(GY (x, y)α(y)) = 0 so by Stokes Theorem, for fixed x0,

f(x0) =
∫

y∈Y

dy(GY (x0, y)α(y)) =
∫

y∈bY

GY (x0, y)α(y)−lim
t→0

∫
bB(t)

GY (x0, y)α(y) = − lim
t→0

∫
bB(t)

GY (x0, y)α(y).

We take holomorphic coordinates (η, ξ) as in b) from 1.2.18. We also write α = hdξ̄, and let B(ε) =
η−1(D(0, ε) for 0 < ε < M , and we have

f(x) = lim
ε→0

−1
2πi

∫
|ξ|=ε

GY (x0, ξ)h(ξ)dξ̄,

But this works for fixed x0. However, if |η(x) − ξ(x)| ≤ M/2, (η, ξ) is also a holomorphic chart for x, and so
in a neighbourhood of x0,

f(η) = lim
ε→0

−1
2πi

∫
|η−ξ|=ε

GY (η, ξ)h(ξ)dξ̄ = lim
ε→0

1
2πi

∫
|ζ|=ε

GY (η, η − ζ)h(η − ζ)dζ̄.

We derive under the integral sign and undo the change of variables to get

∂f

∂η̄
(η) = −1

2πi lim
ε→0

∫
|ξ|=ε

[(
∂GY

∂η̄
+ ∂GY

∂ξ̄

)
(η, ξ)h(ξ) +GY (η, ξ)∂h

∂ξ̄
(ξ)
]
dξ̄.

After reordering the terms,

∂f

∂η̄
(0) = −1

2πi lim
ε→0

∫
|ξ|=ε

[
∂GY

∂η̄
(0, ξ)h(ξ) + ∂

∂ξ̄
(GY (0, ξ)h(ξ))

]
dξ̄,

and finally, using that GY (x, y) = H(x, y) − log |x− y|2 where H is continuous,

∂GY

∂η̄
(0, ξ) = ∂H

∂η̄
(0, ξ) + 1

η̄
y GY (0, ξ) = H(0, ξ) − log ε2.

Substitution of this in the previous equation yields∫
|ξ|=ε

[
∂GY

∂η̄
(0, ξ)h(ξ) + ∂

∂ξ̄
(GY (0, ξ)h(ξ))

]
dξ̄ =

∫
|ξ|=ε

h(ξ)dξ̄
ξ̄

+O(ε) = −i
∫ 2π

0
h(εeit)dt+O(ε),

so ∂f
∂η̄ (0) = h(0), proving ∂̄xf(x0) = α(x0), and since x0 was arbitrary, that ∂̄f = α.

3for instance, if g : C → C is formed by gluing 1
z

and z̄ with bump functions, ∂̄g has compact support, and all functions h

such that ∂̄h = ∂̄g are of the form g + f with f holomorphic in C, but there is no f giving a compactly supported function
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1.3 The theorems of Runge and Weierstrass
The classical Runge theorem in the complex plane says the following.

Theorem 1.3.1 (Runge theorem in C). If K ⊂ C is a compact whose complement is connected, Ω is an
open subset containing K and f : Ω → C is a holomorphic function, then there is a sequence of polynomials
that converge to f uniformly in K.

Its proof can be found in page 342 from [Gam01] or in page 270 from [Rud86]. In order to extend this
result to arbitrary Riemann surfaces, we need to change the assumption on K, and have a notion of what
it means "not to have holes". If Y ⊆ X, h(Y ) a la is the union of Y with all the connected components of
X ∖ Y whose closure (in X) is compact. We say that Y is Runge (en X) if h(Y ) = Y .

Example 1.3.2. The definition depends strongly in the ambient space X, so if it is not clear by the context
we will use hX(Y ) . For instance, if Y = {z ∈ C : |z| = 1}, hC(Y ) is the closed unit disk, although Y is
Runge en C∖ {0}.

Before heading to Runge theorem, we start by looking at some properties of the operator h.

Proposition 1.3.3. Let X be a Riemann surface, Y,Z subsets of X.

a) h(h(Y )) = h(Y ) and h(Y ) ⊂ h(Z) if Y ⊂ Z.

b) If Y ⊂ Z ⊂ X, where Z is open in X and hX(Y ) = Y then hZ(Y ) = Y .

c) If Y is compact, h(Y ) is compact.

d) If Y ⊂⊂ X is an open set with smooth boundary, Y is Runge if and only if Y is.

e) If Y ⊂ X is an open, Runge subset, all of its connected components are also Runge.

Proof. It can be found along pages 187-189 of [For81]

We can also characterise Runge subsets using algebraic topology. This will be more useful in the second
part, but it clarifies why Runge means "no holes"

Proposition 1.3.4. An open Y ⊂ X is Runge if and only if the natural map H1(Y,Z) → H1(X,Z) is
injective.

Proof. By Poincaré duality it is enough to check when the natural map H1
c (Y,Z) → H1

c (X,Z) is injective.
However, there is a long exact sequence, whose proof can be found in [Bre97]

H0
c (X,Z) → H0

c (X ∖ Y,Z) → H1
c (Y,Z) → H1

c (X,Z)

But since X is non compact, H0
c (X,Z) = 0 so the map is injective if and only if H0

c (X ∖ Y,Z) = 0, which is
again equivalent to the definition of Y being Runge in X.

We want to use Runge compacts to do induction in a Riemann surface. IN order to do so, we will need
to use exhaustions by compact, Runge sets:

Theorem 1.3.5. [Existence of good exhaustions from outside] If Y ⊂⊂ X is open, there is a sequence of
Runge open sets such that Yj

a) Y ⊂ Yk ⊂⊂ Yk+1

b) Yk has smooth, regular boundary for all k ≥ 0.

c) Any compact in X is contained in some Yk.

d) If Y is Runge and has smooth, regular boundary, we can assume Y0 = Y

Proof. This is in p. 189 of [For81].

Proposition 1.3.6 (Existence of good exhaustions from inside). Let Y ⊂⊂ X be a Runge open set. Then
there are open sets with smooth, regular boundary Wk such that
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a) Wk ⊂⊂ Wk+1.

b) W k is Runge in X.

c) Any compact set in Y is contained in some Wk.

Proof. This can be easily proven using Lemma 23.7 in p. 188 of [For81].

Examples of such exhaustions can be seen in Figure 2

Figure 2: Exhaustions by Runge, compact sets

The proof of the theorems of Runge and Mergelyan use tools from functional analysis that can be found
in the appendix. If K is a compact in a Riemann surface, the space of all continuous functions f : K → C,
that we will denote by C(K) is a Banach space with the sup norm:

∥f∥K = sup
z∈K

|f(z)|.

If
∫

K
gdµ = 0 for all g ∈ F , we will say that µ is orthogonal to F . Combining Riesz representation theorem

A.2 and Hahn-Banach theorem A.1, we see that if F ⊂ C(K) is a family of functions, f ∈ C(K) belongs to
the closure of F (in other works, there exists a sequence of functions fn of F converging uniformly to f) if
and only if given a Borel measure µ in K orthogonal to F ,

∫
K
fdµ = 0.

It is convenient to define the following subspaces of C(K): If Y is an open subset containing K, O(Y )|K are
the restrictions to K of the holomorphic functions in Y , and O(K) denotes the set of all functions that are
holomorphic in some neighbourhood of K; in other words,

O(K) =
⋃

K⊂Y

O(Y )|K .

We start proving a relative version or Runge theorem, from which the Runge theorems immediately follow.

Proposition 1.3.7. Let X be a Riemann surface and let K ⊂ Y ⊂⊂ Z ⊂⊂ X, where K is a Runge compact
in X and Y , Z are open sets. Let f : Y → C be a holomorphic function. Then f can be approximated
uniformly in K by holomorphic functions defined in the whole Z.

Proof. In light of the previous discussion, we take a complex Borel measure µ with support K such that∫
K
gdµ = 0 for all g ∈ O(Z)|K . Using 1.2.20, we define a linear functional S assigning to each (0, 1)-form

α ∈ E0,1(Z) with compact support the number

S(α) =
∫

Y

fdµ, where ∂̄f = α en Z

S is well defined precisely because µ is orthogonal to the holomorphic functions in Z. It is adequate to use

σ(y) =
∫

Y

GZ(x, y)dµ(x)

(which is well defined log |z|2 is locally integrable). By the properties of Green functions 1.2.18 (in particular,
its symmetry and behaviour in the boundary), σ is harmonic in Z ∖K, and 0 in bZ. Therefore, σ is also 0
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in all the non-compact connected components of Z ∖K; this is, σ is 0 en Z ∖ hZ(K) = Z ∖K, since K is
Runge.
If f is holomorphic in Y , and h is a smooth extension of f to Y that vanishes outside Z, ∂̄h = 0 in K.
Therefore, by Fubini theorem and the explicit solution to ∂̄f = α that we obtained 1.2.20, S(θ) =

∫
Z
∂(σθ),

and therefore ∫
K

fdµ =
∫

Y

hdµ = S(∂̄h) =
∫

Z

∂(σ∂̄h) =
∫

Z

∂(0) = 0.

In other words, f can be approximated uniformly in K by holomorphic functions in Z.

Theorem 1.3.8 (Runge theorem for compact sets). If X is a Riemann surface and K is a compact, Runge
subset, then every holomorphic function in a neighbourhood of K can be approximated uniformly in K by
holomorphic functions defined in X.

Proof. Let f : Y → C holomorphic, with K ⊂ Y . Since K is Runge, we can assume, after restricting f , that
Y is also Runge. We take an exhaustion of Y by compact Runge subsets Yk. We apply the relative version
of Runge theorem 1.3.7 successive times. Let ε > 0, and we start with a function f1 holomorphic in Y1 such
that

∥f − f1∥K ≤ ε

2 .

We get, inductively, holomorphic functions fn : Yn → C such that

∥fn − fn−1∥Y n−2
≤ ε

2n
.

The sequence fn is then uniformly convergent to some F , which will be holomorphic in X and ∥f − F∥K ≤
ε.

Theorem 1.3.9 (Runge theorem for open sets). Let Y ⊂ X be a Runge open subset. Then every holomorphic
function in Y can be approximated by holomorphic functions in X, uniformly over the compact subsets of Y .

Proof. Let Wn be an exhaustion of Y by compact Runge subsets of X as in 1.3.6, and let f be holomorphic
in Y . For each n, we take fn : X → C holomorphic and such that

∥fn − f∥Wn
≤ 1
n
.

Then the sequence fn converges to f uniformly over the compact subsets of Y , since every compact of Y is
contained in some Wn.

Now we can prove the non-relative version of 1.2.20:

Proposition 1.3.10. Let X be an open Riemann surface, α ∈ E0,1(X). Then there exists a smooth function
f such that ∂̄f = α.

Proof. Take an exhaustion of X by open Runge subsets Y0 ⊂ Y1 ⊂ . . .. Let f1 ∈ C∞(Y1) be a solution in Y0
of ∂̄f1 = α, which exists due to 1.2.20. We construct in a recursive way functions fk ∈ C∞(Yk) such that

∂̄fk = α in Yk−1 y ∥fk − fk−1∥Yk−1 ≤ 1
2k
.

To construct fk+1, we start with a solution uk+1 of ∂̄uk+1 = α in Yk. Since uk+1 − fk is holomorphic in
Yk−1, we can find a function gk holomorphic in Yk as close to is as we wish, and define fk+1 = uk+1 − gk. It
is clear that fk+1 meets the requirements. Now, since fk+1 − fk is holomorphic in Yk and is bounded by 1

2k ,
the series

∞∑
k=n

(fk+1 − fk)

converges to a holomorphic hn, and
hn + fn = lim

k→∞
fk

uniformly on compact subsets of Yk. Therefore {fn} converges in X to a smooth function f , and ∂̄f = α in
Yk for all k.
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This is the point where we will use the existence of good coverings. The following theorem can be seen
as a generalisation of the classical factorisation theorem.

Theorem 1.3.11 (Weierstrass theorem). Let X be an open Riemann surface and m : X → Z a function that
is supported in a discrete set. Then there is a meromorphic function s defined in X such that ordp(s) = m(p)
for all p.

Proof. We cover X by charts (Uj , zj). Using the existence of good coverings as in 1.1.14, after refining the
covering we can assume that all Uj and Uj ∩Uk are simply connected and relatively compact. Let A be the
support of m. Since Uj is relatively compact, A ∩Uj is finite, and using quotients of polynomials we obtain
functions, gj : Uj → C such that ordp(gj) = m(p) for all p ∈ Uj . The functions gj

gk
do not vanish in Uj ∩Uk,

and since Uj ∩ Uk is simply connected, there exist holomorphic functions pjk such that

epjk = gj

gk
en Uj ∩ Uk.

Let ξk be a partition of unity subordinate to the covering {Uk}, and we consider the smooth functions
f̂j =

∑
k ξkpjk. Since pjk − pkl + plj = pkj − pjk = 0 for any indices,

f̂j − f̂k =
∑

l

ξl(pjl − pkl) =
∑

l

ξlpjk = pjk

∑
l

ξl = pjk

in Uj ∩ Uk and in particular, ∂̄f̂j = ∂̄f̂k and therefore ∂̄f̂j ranging over all j defines a (0, 1)-form α in X. If
f is such that ∂̄f = α, and we define

fj = f̂j − f,

then it clear that fj is holomorphic, but still satisfies fj − fk = pjk. Then, the functions

hj = gj

efj

are holomorphic in Uj and agree in the overlaps, so they define a meromorphic function h in X such that
ordp(h) = m(p).

Corollary 1.3.12. If X is an open Riemann surface, there is a holomorphic 1-form that does not vanish in
any point.

Proof. Let f be a non-constant holomorphic function X (to show that such an f exists, it suffices to apply
Runge theorem to a chart defined in a Runge open set),and let α = df . Since α is not 0, by the identity
principle 1.2.3, its zeros are isolated. BY Weierstrass theorem there is s ∈ M(X) such that ordp(s) =
−ordp(α) for all p and so sα is the desired form.

The theorems of Runge and Weierstrass prove that in an open Riemann surface X there are plenty of
holomorphic functions. In particular, that:

• If p, q are distinct points then there is some f ∈ O(X) such that f(p) = f(q).

• If K ⊂ X is compact, its holomorphic envelope

K̂ = {p ∈ X : |f(z)| ≤ ∥f∥K for all f ∈ O(X)}

is compact.

The first one is immediate and the second one follows after proving that K̂ = h(K) and recalling the
properties of h.
A complex manifold of any dimension with these two properties is a Stein manifold. It can be seen in [GR65]
that any Stein manifold of dimension n can be embedded in C2n+1 and in particular, Riemann surfaces can
be embedded in C3.
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1.4 Mergelyan Theorem
In Runge theorem for compact sets the hypotheses are slightly stronger than necessary, as the following
example shows:

Example 1.4.1. The series
∞∑

n=0

zn!

n!

converges uniformly if |z| ≤ 1, because
∑

n

∣∣∣ zn!

n!

∣∣∣ ≤
∑

n
1
n! < ∞ and therefore it defines a function in D(0, 1)

as the limit of entire functions. However, the radius of convergence of this series is 1, so it does not have
any analytic extension to any open subset containing the closed disk.

In general, if fn is a sequence of holomorphic functions in X that converge uniformly on a compact K to
f , it follows that f is continuous in K and holomorphic in its interior. Mergelyan theorem proves that these
conditions are also sufficient for f to be approximated by holomorphic functions in X. There are very few
proofs of Mergelyan theorem for Riemann surfaces. We show here how its proof can be reduced to the proof
of a lemma, known as Bishop localisation lemma. We start with Mergelyan theorem in the complex plane:

Theorem 1.4.2. If f : K → C is continuous and holomorphic in the interior of K, K is compact and
C∖K is connected, then f can be approximated uniformly on K by polynomials.

Proof. It can be found in chapter 20 of [Rud86].

After seeing Runge theorem, it should not be surprising that its generalisation to Riemann surfaces is
the following:

Theorem 1.4.3 (Mergelyan-Bishop theorem). Let X be a Riemann surface, K ⊂ X a compact set such
that h(K) = K and let f : K → X be a continuous function in K, holomorphic in its interior. Then there
is a sequence of holomorphic functions in X that approximate f uniformly in K.

From Mergelyan theorem in the complex plane one can derive a local Mergelyan theorem in a Riemann
surface: If (V, z) is a chart such that z(V ) = D(0, 2), then the complement in C of z(K) ∩ D(0, 1) is
connected, so we can apply Mergelyan theorem: if U = z−1(D(0, 1), f can be approximated in K ∩ U by
holomorphic functions in a neighbourhood of such set. In view of Runge theorem 1.3.8, it is sufficient to
prove the following

Proposition 1.4.4 (Bishop localisation lemma). If K is a compact subset of X, covered by a finite number
of charts U1, . . . , Uk such that for all j, f can be approximated in U j ∩ K by holomorphic functions in a
neighbourhood of U j ∩K, then f can be approximated in K by holomorphic functions in a neighbourhood of
K.

We will explain the proof in [Sak72] of this lemma. Using the same ideas from functional analysis that
we used to prove Runge theorem (A.1 and A.2), Bishop localisation lemma follows from the following:

Proposition 1.4.5. If K is a compact in X, covered by a finite number of charts U1, . . . , Uk and µ is a
Borel measure in K orthogonal to O(K), then there are Borel measures µj in U j for all j that are orthogonal
to O(K ∩ U j) and such that µ = µ1 + . . .+ µk.

To carry out the proof of this statement, we will use elementary differentials, whose existence was proven
in [BS47] by Behnke and Stein. They are very related to Green functions: If K ⊂ Y where Y is a relatively
compact open set that we will keep fixed, having Green function G, and ω(x, y) = ∂yG(x, y), then the
Cauchy equations 1.2.19 read

f(x) = 1
2πi

∫
y∈bZ

f(y)ω(x, y) + 1
2πi

∫
y∈Z

ω(x, y) ∧ ∂̄f(y) (1)

In particular, with f = 1,
∫

bW
ω(x, y) = 2πi, so ω(x, y) has residue 1. However, ω is not holomorphic in x,

it is only harmonic.
An elementary differential is a holomorphic form ω ∈ Ω1(Y × Y ∖ DY ), where DY is the diagonal, such
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that for fixed x, is a meromorphic form in y, with a unique pole in y = x and residue 1, and for fixed y, is
meromorphic in x with a unique pole in x = y. If (U, z) are some coordinates, we can write

ω(x, z) = k(x, z)dz

where k is meromorphic and has residue 1 and therefore, for fixed x, if z(x) = 0, k(x, z) = 1
z + g(z), and so∫

U

|k(x, y)||dz ∧ dz| ≤
∫

U

|g(z)||dz ∧ dz| +
∫

U

|dz ∧ dz|
|z|

< ∞.

Elementary differentials still verify the Cauchy formula in (1)We will also use the following formula: If (U, z)
are some coordinates and p, q are different,

1
2πi

∫
x∈Y

k(x, p)∂̄h(x) ∧ ω(q, x) = 1
2πi lim

ε→0

∫
x∈Y ∖D(p,ε)∪D(q,ε)

k(x, p)∂̄h(x) ∧ ω(q, x) =

= − lim
ε→0

(
1

2πi

∫
|x−p|=ε

k(x, p)h(x) ∧ ω(q, x) + 1
2πi

∫
|x−q|=ε

k(x, p)h(x) ∧ ω(q, x)
)

= (2)

= [h(p) − h(q)]k(q, p).
If µ is a compactly supported measure in Y , fixed, we define the (1, 0)-form

Tµ(y) =
∫

x∈Y

ω(x, y)dµ(x).

In local coordinates,
Tµ(z) =

(∫
x∈Y

k(x, z)dµ(x)
)
dz.

Since x 7→
∫

z∈U
|k(x, z)||dz∧dz| is continuous (because it is bounded as was seen before), ω(x, ·), and µ have

compact support, so by Fubini theorem,∫
(z,x)∈U×Y

|k(x, y)|d|µ|(x)|dz ∧ dz| =
∫

x∈Y

(∫
z∈U

|k(x, z)||dz ∧ dz|
)
d|µ|(x) < ∞,

and in particular by Fubini theorem again, except on a measure 0 set A (with respect to |dz ∧ dz̄|),∫
x∈Y

|k(x, z)|d|µ|(x) < ∞, (3)

so Tµ(z) is defined.
Lemma 1.4.6. If Tµ(y) = 0 for almost all y in Y , then µ = 0.

Proof. By Cauchy formula (1), if g is smooth and has has compact support contained in some Z ⊂⊂ Y ,∫
x∈Y

g(x)dµ(x) =
∫

x∈Y

∫
y∈Z

ω(x, y) ∧ ∂̄yg(y)dµ(x) =
∫

y∈Z

Tµ(y) ∧ ∂̄yg(y) = 0.

Since these functions are dense in the space of compactly supported continuous maps, µ = 0.

Lemma 1.4.7. If µ has compact support contained in K, then µ is orthogonal to O(K) if and only if
Tµ(y) = 0 for all y ∈ Y ∖K.

Proof. If µ is orthogonal to O(K) and y ̸∈ K, ω(x, y) is holomorphic in x, on a neighbourhood of K not
containing y, so Tµ(y) = 0.
If Tµ(y) = 0 for all y ∈ X ∖K. Then by Cauchy formula (1), if f is holomorphic in some Z ⊂⊂ Y gives

f(x) = 1
2πi

∫
y∈bZ

ω(x, y)f(y).

So, if f ∈ O(K), we can take bZ ⊂ Y ∖K and so by Fubini theorem,∫
x∈Y

f(x)dµ(x) =
∫

x∈X

∫
y∈bY

f(y)∂yG(x, y)dµ(y) =
∫

y∈bY

f(y)Tµ(y) = 0.
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If h is continuous, for any y ∈ Y ∖A, where (3) happens, if z = z(y)∫
x∈Y

|k(x, z)|d|hµ|(x) =
∫

x∈Y

|k(x, z)||h|d|µ|(x) ≤ ∥h∥K

∫
x∈Y

|k(x, z)|d|µ|(x) < ∞,

so T (hµ)(y) is also defined.

Lemma 1.4.8. If U is a coordinate, relatively compact domain, h is smooth with compact support contained
in U and µ is a compactly supported measure in U , there is a compactly supported measure µ1 in U such
that

hTµ(y) = Tµ1(y)

for almost all y

Proof. Let ν be defined by dν = ∂̄h ∧ Tµ, which has compact support in U . By equation (2),

Tν(y) =
∫

x∈Y

∫
z∈Y ∖A

ω(x, y)∂̄h(x) ∧ ω(z, x)dµ(z) =
∫

z∈Z∖A

[∫
x∈Y

k(x, y)∂̄h(x) ∧ ω(z, x)
]
dµ(z)dy =

= 2πi
∫

z∈Y ∖A

[h(y) − h(z)]k(y, z)dµ(z)dy = 2πih(y)Tµ(y) − 2πiT (hµ)(y).

So µ1 = hµ+ ν
2πi is the desired measure.

Finally we can prove 1.4.5:

Proof of 1.4.5. Let hj be a partition of unity subordinate to the Uj . By 1.4.8, there are measures µj ,
supported in Uj , such that Tµj = hjTµ. Since hj is 0 outside Uj , and Tµ also vanishes outside K, we have
Tµj(y) = 0 if y ̸∈ K ∩ U j , so, by 1.4.7 µj is orthogonal to O(U j ∩K).
Since the hj sum up to 1, T (µ−

∑
µj) = 0 and finally, using 1.4.6 we obtain the result.

We will use Mergelyan theorem repeatedly in the second part of this work, as well as the following version:

Theorem 1.4.9 (Mergelyan Theorem with fixed points). Let X be a Riemann surface, K ⊂ X a compact
such that h(K) = K and f : K → X a continuous function in K, holomorphic in its interior. Let A be
a finite set disjoint from K and m : A → N a function. Then f can be approximated uniformly in K by
holomorphic functions in X having zeros of order at least m(a) in each a ∈ A.

It is clear that it is sufficient to prove the following:

Lemma 1.4.10. If K is a compact, Runge subset of X and x1, . . . , xr ∈ X ∖K, then for each ε there is a
holomorphic function h in X such that h(xj) = 0 y |h(x) − 1| < ε.

Proof. For any δ > 0, by Mergelyan theorem 1.4.3, applied to K ∪ {xj}, and the function that is 1 in K and
0 in the xj , there are holomorphic functions hj : X → C such that |hj(x) − 1| < δ and |hj(xj) < δ. If we
define

h(x) =
r∏

j=1
(hj(x) − hj(xj))

Then for any ε > 0, we can choose δ such that h verifies |h(x)| < εby the continuity of a product.
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1.5 Holomorphic contact structures
Let X be a complex manifold of odd dimension 2n + 1. A contact structure in X is a holomorphic
subbundle Ψ of the holomorphic tangent bundle T 1,0X of complex codimension 1 such that for all p there is
a neighbourhood U of p and a holomorphic 1-form α in U such that:

a) Ψ|U = kerα

b) α ∧ (dα)n ̸= 0

Such a form is a said to be a contact form for Ψ|U . The pair (X,Ψ) is a contact holomorphic manifold. If α
works for all X, we will say also that (X,α) is a contact manifold and α is a contact form.
Real contact structures are the odd dimensional analogue of symplectic structures. There is a notion of
holomorphic symplectic structures:
If X is a complex manifold of even dimension 2n, a holomorphic, symplectic form is a holomorphic, closed
2-form such that ωn ̸= 0. The pair (X,ω) is a holomorphic symplectic manifold.

The following are the usual examples of holomorphic symplectic and contact structures:

Example 1.5.1.

a) In C2n, with its usual (complex) coordinates x1, y1, . . . , xn, yn, the standard symplectic form is

ω =
∑

j

dxj ∧ dyj .

Since in the expansion of ωn all products vanish excepting the ones that involve all the coordinates,
ωn = n!dx1 ∧ dy1 ∧ . . . ∧ dxn ∧ dyn.

b) In C2n+1, with usual coordinates z, x1, y1, . . . , xn, yn, the standard contact structure is defined globally
by the contact form

η = dz −
∑

j

xjdyj .

Since dη = −
∑

j dx
j ∧ dyj, using the same calculation as above η ∧ (dη)n = (−1)nn!dz ∧ dx1 ∧ dy1 ∧

. . . ∧ dxn ∧ dyn ̸= 0.

c) If X is an n-dimensional complex manifold, its holomorphic cotangent bundle T ∗X = E1,0X = T 1,0X∗,
which is 2n-dimensional, has a canonical symplectic form: If (U, z) are coordinates for X, they can be
extended to T ∗U by

z̃(p, ω) =
(
zj(p), ω

(
∂

∂zj

))
= (x(p, ω), y(p, ω))j

and then, α =
∑

j yjdx
j, is independent of the coordinates z, is holomorphic and therefore dα = ω is

closed, holomorphic and ωn ̸= 0. by the same calculation as in a).

d) If X is a complex manifold of dimension n > 1, we consider the projectivised cotangent bundle P(T ∗X).
These are equivalence classes (p, [θ]) with θ ∈ T 1,0

p X∗ ∖ {0} con (p, [θ1]) = (p, [θ2]). The tautological
form is not invariant under this equivalence relation, but since it is homogeneous, its kernel gives rise
to a subbundle Ψ of codimension 1 of T 1,0P(T ∗X). If (xj , yj) are coordinates as in c), y k is fixed, we
have coordinates for P(T ∗X)

(p, [y1dx
1 + . . .+ yndx

n]) 7→
(
z(p), y1

yk
, . . . ,

yn

yk

)
,

where yk is omitted, and so Ψ is given as the kernel of

β = dxk +
∑
j ̸=k

yjdx
j

which is holomorphic and β ∧ (dβ)n ̸= 0 as in b).
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e) Using the same ideas, considering the form∑
j

zjdwj − wjdzj

in C2n+2, one can form projective space CP2n+1 as a quotient of C2n+2, and the kernel of this form
gives a subbundle Ψ of codimension 1 in T 1,0CP2n+1 which is given by the kernel of

β = dwk +
∑
j ̸=k

zjdwj − wjdzj

when zk ̸= 0, so a similar calculation as in b) shows that β ∧ (dβ)n ̸= 0.

In the examples d) and e) it can be seen that there is no global contact form, but locally all the contact
forms were as in b). This is the case always, as the Darboux theorems prove.

The proofs that we present are adaptations of the ones given in [Lee12] for real contact and symplectic
structures. We should point out that all the constructions in real manifolds extend to complex manifolds
by C-linearity. For instance, the notions of Lie bracket, Lie derivative, the interior product ⌟ or the flux
associated to a vector field make sense in a complex manifold.

Lemma 1.5.2. Let Vt, t ∈ [0, 1] be a time dependent holomorphic vector field in X and let φt = φt,0 be its
associated flux . Then, wherever φt is defined, it is a holomorphic function.

Proof. Let F = φt and take holomorphic coordinates (z, U) and (w,W ) around p and F (p). We can write

Vt =
∑

j

V j
t

∂

∂zj
,

where V j
t is holomorphic. Then it is clear by the properties of Lie brackets that [Vt,

∂
∂z̄j ] = 0 for all j and

therefore the vectors ∂
∂z̄j are invariant under F , but this implies ∂F k

∂z̄j = 0 for all k, j, so F is holomorphic.

We can now prove the Darboux theorems:

Theorem 1.5.3 (Symplectic Darboux Theorem). Let (X,ω) be a holomorphic symplectic manifold and let
p ∈ X. There are holomorphic coordinates (x1, y1, . . . , xn, yn) around p such that ω =

∑
j d x

j ∧ d yj

Proof. For any non-degenerate skew-symmetric bilinear form in an even dimensional topological space thee
is a basis (Xj , Yj), with dual basis (φj , ξj) such that the bilinear form is

∑
j φ

j ∧ ξj . The proof can be done
by induction in the dimension of the vector space. We can assume X is the ball B(0, 1) in C2n, p = 0 and
that in the natural coordinates (zj , wj), ω agrees with ω0 :=

∑
j dz

j ∧ dwj in 0.
Let ωt = tω + (1 − t)ω0. If we found a time dependent holomorphic vector field Vt such that

ϕ∗
tωt = ω0

Where ϕt is the associated flux, we would have finished by 1.5.2. Since the equation before works for t = 0,
it is sufficient to prove that the derivatives of both sides agree. We use the formulas

d

dt
(ϕ∗

tωt) = ϕ∗
t

(
LVt

ωt + dωt

dt

)
LVt

ωt = d(Vt ⌟ ωt) + Vt ⌟ dωt,

one can prove these following the proofs given in [Lee12] for 14.35 and 22.14. Since ω is closed, by Poincaré
lemma, ω − ω0 = −dα for a holomorphic 1-form α, so

d

dt
(ϕ∗

tωt) = ϕ∗
t

(
LVt

ωt + dωt

dt

)
= ϕ∗ (d(Vt ⌟ ωt) + Vt ⌟ dωt + ω − ω0) = ϕ∗

t ◦ d(Vt ⌟ ωt − α)

and then it is sufficient to define Vt in such a way that Vt ⌟ ωt = α. The can be done because ωt is non
degenerate, and Vt is holomorphic because α and ωt are.
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Theorem 1.5.4 (Contact Darboux theorem). Let (X,Ψ) be a holomorphic contact manifold and p ∈ X.
Then there are holomorphic coordinates (z, x1, y1, . . . , xn, yn) around p such that

dz −
∑

j

xj dyj

is a contact form for Ψ in a neighbourhood of p.

Proof. As before, we can assume that X is the ball B(0, 1) in C2n+1, that p = 0 and Ψ is defined by a
contact form α. We consider the Reeb vector field Rα : X → T 1,0X which is the only vector field such that

α(Rα) = 1 , Rα ⌟ dα = 0.

Because α is holomorphic, one can easily see that Rα is holomorphic too. Let (U, uj) be a chart around
p such that Rα = ∂

∂u1 , and let Y ⊂ U be defined as u1 = 0. Since ∂
∂u1 is not tangent in any point of Y ,

α( ∂
∂u1 ) = 1 and α ∧ (dα)n ̸= 0, dα|Y is non-degenerate, and therefore it is a symplectic form. By Darboux

theorem, there are holomorphic coordinates (xj , yj) for a neighbourhood of p in Y where dα =
∑

j dx
j ∧dyj .

These can be extended to coordinates in a neighbourhood V of p in U , asking them to be constant along
the integral curves of ∂

∂u1 .
Let η be the 1-form

∑
j y

jdxj en V . Then dη|Y + dα|Y = 0 in V , but since Rα ⌟ dα = Rα ⌟ dη = 0, we have
dη + dα = 0 in all points of Y . Also, LRαη = LRαα = 0 by Cartan magic formula, so α y η are the same
along the integral curves of Rα, and we obtain dα + dη = 0 in the whole V . By Poincaré lemma there is a
holomorphic function z such that dz = α+ η. In other words,

α = dz −
∑

j

xjdyj .

Since 0 ̸= α ∧ (dα)n = (−1)ndz ∧ dx1 ∧ dy1 . . . ∧ dxn ∧ dyn dz, dxj , dyj form a basis in the cotangent space
to 0 and therefore are holomorphic coordinates in a neighbourhood of 0.

The result that concerns us is about legendrian subvarieties of complex manifolds.

Definition 1.5.5. Let (X,Ψ) be a (2n+1)-dimensional holomorphic contact manifold and let Y a k-dimensional
complex manifold. If F : Y → X is holomorphic, we will say it is isotropic if

F∗(T 1,0Y ) ⊂ Ψ.

and if k = n and it is an immersion, we will say it is legendrian.

It is clear that if α is a contact form for Ψ, then F is isotropic if and only if F ∗α = 0. With some abuse of
notation, an isotropic function from a Riemann surface to the complex affine space with its standard contact
structure is said to be a legendrian curve.
If F is a legendrian immersion, k = n is the maximum one can get since, being an immersion implies it is
a local (in the domain) embedding and it is well known (lemma 8.32 in [Lee12]) that the lie bracket of two
vector fields that are tangent to a submanifold is again tangent to the submanifold. Therefore, if V,W are
tangent to F (Y ), [V,W ] ⊂ Ψ, so if α is a contact form for Ψ,

dα(V,W ) = Xα(Y ) − Y α(X) − α([X,Y ]) = 0,

but since α ∧ (dα)n ̸= 0, dαp is a non-degenerate 2-form in Ψp, which has dimension 2n and the maximum
dimension of a subspace E ⊂ Ψp such that dα|E = 0 is n.
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Part 2

Legendrian embeddings of curves

2.1 Main ideas in the proofs
The proof in this second part will make repeated use of several ideas that we state here:

Idea 1. Refined exhaustions by compact sets

AS in the proof of Runge theorem, it is easier to obtain legendrian functions on compact subsets. We
can refine the exhaustion given in 1.3.5 to see that given a relatively compact, Runge open subset M0 with
smooth boundary, there is a sequence of open subsets

M0 ⊂⊂ M1 ⊂⊂ M2 ⊂⊂ . . . ⊂ X

such that Mk has smooth boundary, is Runge in X, all compact subsets of X are contained in some Mk and
for each k one of the following two things happen (there are pictures of this in Figure 3):

(A1.1) Mk is a deformation retract of Mk+1.

(A1.2) There is a smooth arc αk : [0, 1] → Mk+1 such that αk(0), αk(1) ∈ Mk, αk((0, 1)) ⊂ int(Mk+1) ∖Mk

and Mk ∪ αk is a deformation retract of Mk+1.

We will not give a rigorous proof of this, but note that starting from the exhaustion in 1.3.5, in each step
Km ⊂ Km+1, by the classification of compact bordered surfaces, Km+1 is diffeomorphic to a sphere with
handles and holes. Since Km is Runge in Km+1, Km must be a compact subset containing a certain number
of these holes and handles, but no more holes. Therefore we can add arcs and compacts as in Figure 3 to
obtain the sequence of Mk. A proof can be found in the article [FMM12].

Idea 2. Metrics in Riemann surface and the Cauchy estimates

We will assume there is a riemannian metric g in X, and we use it to measure lengths of curves of
differential forms: if γ : [a, b] → X is piecewise smooth, its length is defined to be

l(γ) =
∫ b

a

g(γ′(t), γ′(t)) 1
2 dt,

and the distance between two points d(p, q) is the infimum of the length of curves joining p and q. It is a
standard result (Theorem 2.55 in [Lee18]) that d is a metric and induces the natural topology in X.
If ω, η are smooth, real 1-forms, we define their scalar product pointwise, (or using coordinates) as

⟨ω, η⟩p = gp(ω♯
p, η

♯
p) = ωj(p)ηk(p)gjk(p).

On each tangent space, one can extend this inner product to complex differential forms, asking the inner
product to be hermitic; this is, to be C-lineal in its first entry, and conjugate-symmetric. With this, one can
define the norm of a 1-form ω to be |ω| = ⟨ω, ω⟩1/2 and it is easy to check that

|fω| = |f ||ω|, |ω + η| ≤ |ω| + |η|, |ω|p = 0 implies ω(p) = 0,
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Figure 3: Open sets of the form (A1.1) and (A1.2)

and the inequality that we will use the most, which is that∣∣∣∣∫
γ

ω

∣∣∣∣ ≤ l(γ) · sup
p∈γ

|ω(p)|. (A2)

As with functions, we use the notation ∥ω∥K = supz∈K |w|z, and we use the supremum norm for maps
F : X → CN :

|dF (p)| = sup
j=1,...,N

{|dFj(p)|}, ∥dF∥K = sup
j=1,...,N

{∥dFj∥K}.

Now we can prove the Cauchy estimates in abstract Riemann surfaces.

Proposition 2.1.1 (Cauchy estimates). Let X be a Riemann surface, Y ⊂⊂ Z ⊂⊂ X open subsets with
smooth boundary. Then there is a constant M such that, for any holomorphic function f in X,

∥df∥Y ≤ M∥f∥Z .

Proof. Let W be an open subset, properly contained in Y and Z. By the Cauchy-Green formulas in 1.2.19,
we have

f(x) = 1
2πi

∫
y∈bW

f(y)∂yGZ(x, y).

We cover Y by a finite number of open sets Vj which are again properly contained in (Uj , zj) (by this we
mean, Vj ⊂⊂ Uj). The sets V j ∩ Y and bW are disjoint and therefore the form ∂y

∂
∂zj

GZ(zj(p), y) does not
have singularities if (p, y) ∈ V j ∩ Y × bW , which is a compact set, so there is a bound Mj for such form.
Therefore, if x ∈ Vj ∩ Y ,

|df(x)| =
∣∣∣∣ ∂f∂dzj

(x)dzj(x)
∣∣∣∣ =

∣∣∣∣ 1
2πi

∫
y∈bW

f(y)∂y
∂

∂zj
GZ(zj(x), y)dzj

∣∣∣∣ ≤
l(bW ) · ∥f∥bWMj∥dzj∥Vj

2π ,

And we deduce the proposition.

As a direct corollary, we see that if fn converges uniformly over compact subsets of X to f , then dfn

converges uniformly over compacts of X to df , generalising 1.1.4 to Riemann surfaces. In particular, the
uniform limit of legendrian maps is again legendrian, showing that the conditions in Theorem 1 are necessary
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Idea 3. Injective maps and the map of differences.

Let f : A → Cn a smooth function between manifolds. By the inverse function theorem, if f is an
immersion, it is locally injective. On the other hand, f is an embedding when it is a diffeomorphism onto
its image, but it is a simple result in topology that it is enough for f to be an injective, proper immersion.
If A is compact, any continuous f is proper.
It is convenient to use the difference map δf : A×A → Cn, given by

δf(a, a′) = f(a) − f(a′). (A3)

Then f is injective if and only if f−1({0}) is the diagonal of A× A. If we start with an immersion,there is
an open neighbourhood U of the diagonal in A×A such that f−1({0}) ∩ U is the diagonal.

Idea 4. Uniformity of holomorphic immersions and embeddings

We will use the Cauchy estimates 2.1.1 to prove two surprising results, that fail in the smooth case. The
proofs are original.

Proposition 2.1.2. Let Y ⊂⊂ Z ⊂⊂ X, and let F : X → CN be a smooth map which is a holomorphic
immersion in Y . Then there is an ε > 0 and an r > 0 such that, if G : X → CN is holomorphic and
∥F −G∥Z ≤ ε then G is an immersion and if 0 < d(x, y) < r then G(x) ̸= G(y).

Proof. Let M be the constant from the Cauchy inequalities for the pair Y ⊂⊂ Z. Let c = ∥dF∥Y > 0 and
take p ∈ Y and a chart (U, z) around it. The function ∂F

∂z and since z is a chart, dz ̸= 0 so we can take a
disk V ⊂⊂ U centred in p such that∣∣∣∣∂F∂z (q) − ∂F

∂z
(p)
∣∣∣∣ ≤ c

6|dz(p)| if q ∈ V.

We cover Y by a finite number of Vj as above, j = 1, . . . , n. Again, since zj is a chart, dzj is nonzero, and
Vj is relatively compact, so we take ε > 0 such that

ε ≤ cM

6 y ε ≤ |dzj(p)|c
6M infq∈V j

|dzj(q)| , j = 1, . . . , n.

Finally, if W =
⋃n

j=1 Vj × Vj , W is an open neighbourhood of the diagonal

{(x, y) ∈ X : x = y ∈ Y }

so there is an r > 0 such that d(x, y) ≤ r whenever (x, y) ∈ W .
If ∥G− F∥Z ≤ ε and G is holomorphic, ∥dG∥Y ≥ ∥dF∥Y − ∥d(G− F )∥Y ≥ c

2 so G is an immersion. If p is
the centre of Vj and |dFk(p)| ≥ c then | ∂Gk

∂dzj
(p)|dzj(p) = |dGk(p)| ≥ c

2 . By the triangle inequality and the
choice of ε,∣∣∣∣ ∂Gk

∂dzj
(p) − ∂Gk

∂dzj
(q)
∣∣∣∣ ≤

∣∣∣∣ ∂Gk

∂dzj
(p) − ∂Fk

∂dzj
(p)
∣∣∣∣+∣∣∣∣ ∂Fk

∂dzj
(p) − ∂Fk

∂dzj
(q)
∣∣∣∣+∣∣∣∣ ∂Fk

∂dzj
(q) − ∂Gk

∂dzj
(q)
∣∣∣∣ ≤ c

2|dzj(p)| =
∣∣∣∣ ∂Gk

∂dzj
(p)
∣∣∣∣

for all q ∈ Vj . If we let h = Gk ◦ z−1
j , we will have that if q, r ∈ Vj are different points and γ is the segment

joining them

|h(q)−h(r)| =
∣∣∣∣∫

γ

[h′(z) − h′(p) + h′(p)]dz
∣∣∣∣ ≥

∣∣∣∣∫
γ

h′(p)dz
∣∣∣∣−∣∣∣∣∫

γ

[h′(z) − h′(p)]dz
∣∣∣∣ > |h′(a)||q−r|−|h′(a)|q−r| ≥ 0.

And so Gk, and therefore G, is injective in Vj , but this happens for all j, so we get the desired result.

We can deduce immediately that

Corollary 2.1.3. Let Y ⊂⊂ Z ⊂⊂ X, and F : X → CN a holomorphic map which is an embedding in Y .
Then there is an ε > 0 such that, if G : X → CN is holomorphic and ∥F −G∥Z ≤ ε then G is an embedding
in Y
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Proof. Let ε and r as before. Since Y is compact,

c = inf{|δF (x, y)| : x, y ∈ Y , d(x, y) ≥ r} > 0.

If ε1 = min{ε, c
3 }. Then, if ∥G− F∥Z ≤ ε1 we can use the previous proposition, but also, if d(x, y) ≥ r,

|G(x) −G(y)| ≥ |F (x) − F (y)| − |G(x) − F (x)| − |G(y) − F (y)| ≥ c

3

So G is an injective immersion on a compact space, and therefore an embedding.

Idea 5. Holomorphic sprays

We will distinguish between discrete and continue sprays. Let V,W be complex manifolds and let U be
an open set in CN containing 0.
A discrete spray of holomorphic functions is a sequence of holomorphic maps fn : V → W converging
uniformly on compact subsets of U to a holomorphic map f , which we will refer to as the core of the spray.
The spray is said to be dominant at p ∈ V if f is regular in p.
A continuous spray is a family of maps Fu : V → W parametrised by v ∈ V such that the induced map
F : V ×U → W is holomorphic. Its core is F0, and we say that the spray is dominant in p ∈ V if u → F (p, u)
is a regular map in u = 0.
The two following results manifest the similarities between these two concepts:

Proposition 2.1.4. Let fn be a discrete spray with core f . If the pray is dominant in p and f(p) = b. Then
for any neighbourhood of p there is an N as big as wished and a z in this neighbourhood such that fN (z) = b.

Proof. We can assume that W = Cn, b = 0 and ∂f
∂z (0) is the identity matrix. We will use the following

lemma (1.3. in chapter 14 of [Lan93]):

Lemma 2.1.5. If φ : Cn → Cn verifies φ(0) = 0, ∂φ
∂z (0) = id and there are R, s such that ∥ ∂φ

∂s (x)− ∂φ
∂s (y)∥ ≤

s whenever x, y ∈ B(0, R)then, for if |z| ≤ R(1 − s), there is a unique w ∈ B(0, R) such that φ(w) = z.

Proof. If hz(w) = w + ϕ(w) − z, then the bounds in the lemma and the mean value theorem prove that
hz : B(0, R) → B(0, R) is contractive and therefore has a (unique) fixed point, corresponding to a solution
of φ(w) = z

Since the function appearing are holomorphic, ∂fn

∂z converges uniformly over compact sets, so the family
of functions ∂fn

∂z : is equicontinuous. Let δ > 0 be such that if |x− y| ≤ δ,∥∥∥∥∂fn

∂z
(x) − ∂fn

∂z
(y)
∥∥∥∥ ≤ 1

3

Now define An =
(

∂fn

∂z (0)
)−1

and gn = fn ◦ An − fn(0). Since An → id, from some N0 onwards ∥An∥ ≤ 2.
If ε ≤ δ is arbitrary, and |fn(0)| ≤ ε

12 whenever n > N1. If n ≥ N0, N1, we have gn(0) = 0, ∂gn

∂s (0) = id, and
if x, y ∈ B(0, ε

4 ), then ∥Anx−Any∥ ≤ ε < δ so∥∥∥∥∂gn

∂z
(x) − ∂gn

∂z
(y)
∥∥∥∥ =

∥∥∥∥∂f∂z (Anx)An − ∂f

∂z
(Any)An

∥∥∥∥ ≤ ∥An∥
3 ≤ 2

3

Since | − fn(0)| ≤ ε
12 = ε

4 (1 − 2
3 ), we can apply the lemma so there is some z ∈ B(0, ε

4 ) such that gn(z) =
−fn(0). If w = Anz ∈ B(0, ε

2 ), fn(w) = 0 as desired.

Proposition 2.1.6. Let F be a continuous spray which is dominant in p, having f as core and let b = f(x).
Then for any y in a neighbourhood of x there is some z such that Fz(y) = b and z depends of y in a
holomorphic way, and converges to 0 if y converges to x

Proof. this is the implicit function theorem for holomorphic functions in 1.1.6.

Idea 6. The third component in a legendrian map to C3
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Let f : (x, y, z) : X → C3 be a holomorphic map. The standard contact form in C3 says that f is
Legendrian if dz = xdy, or, in other words, if xdy is exact and z is a primitive for it. Therefore we can
reduce the problem of finding legendrian maps from X to C3 can be reduced to finding pairs of holomorphic
functions (x, y) such that xdy is exact, and then define

z(p) =
∫

γp

xdy + C, (A4)

where γp is any path joining a fixed p0 with p, and C ∈ C is a constant. By deRham theorem (section 1.2),
this integral is independent of the path taken, and by Stokes theorem, if dw = xdy, z(p) = w(p) −w(p0) +C
so dz = xdy.
If Y ⊂⊂ X, and we start with a legendrian f = (x, y, z) and functions xn, yn in a neighbourhood of Y such
that xn → x, dyn → dy uniformly in Y and xndyn is exact for all n, defining zn as in (A4) with C = z(p0),
since Y is compact, the path joining p0 to p has bounded length L.
Then, by Stokes’ theorem:

|z(p) − zn(p)| =
∣∣∣∣∣
∫

γp

(x− xn)dy + xn(dy − dyn)
∣∣∣∣∣ ≤ L

(
∥xn − x∥Y ∥dy∥Y + ∥xn∥Y ∥dy − dyn∥Y

)
→ 0

uniformly in p ∈ Y .

Idea 7. Symmetry of the first and second coordinates

The equation xdy = dz does not appear to be symmetric in x and y. However, the map

Φ(x, y, z) = (x′, y′, z′) = (x,−y, z − xy) (A5)

is involutive, and x′dy′ − dz′ = ydx− dz so the roles of x and y can be exchanged.

Idea 8. The period map

By deRham Theorem, to check if a differential form is exact in an open set Y it is enough to check that
t is closed and its integral along any path in H1(Y,Z) is 0. If Y is relatively compact in X, this is a free
abelian group of finite rank generated by simple paths (this can be found along the pages of [Hat01]). After
choosing a basis γj for it, we will consider the period map

P(x, y) =
(∫

γj

xdy

)
∈ Cdim H1(Y,Z) (A4)

and make modifications to x and y that don’t alter the value of this period map. IN order to combine
holomorphic sprays and period maps, we will use this lemma repeated times:

Lemma 2.1.7. Let f : [0, 1] → C continuous, with a finite number of zeros and let c ∈ C. There is a smooth
function g : [0, 1] → C with compact support in (0, 1) such that∫ 1

0
f(x)eg(x)d x = c and

∫ 1

0
f(x)g(x)eg(x)d x ̸= 0.

Proof. We can take a simple function satisfying this (this is, a linear combination of characteristic functions
of some intervals) g with these properties. If gn is a sequence of smooth maps vanishing outside some
compact and that converge uniformly to g, and we consider the discrete spray

φn(s) =
∫ 1

0
f(x)esgn(x))

with core φ(s) =
∫ 1

0 f(x)esg(x), we have φ(1) = c and ∂
∂sφ(s) ̸= 0 so, by 2.1.4, we can find sn ̸= 0 and define

h = sngn so

c = φn(sn) =
∫ 1

0
f(x)eh(x) 0 ̸= ∂

∂s
φn(sn) = 1

sn

∫ 1

0
f(x)h(x)eh(x).
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Idea 9. Admissible sets

Given a Riemann surface X, an admissible set is a set S of the form S = K ∪ Γ where K is the closure of
a relatively compact open subset of X with smooth boundary and Γ is the union of some pairwise disjoint,
embedded, smooth curves that intersect K only in its endpoints, and transversely, as in Figure 4.
If W is an open set with smooth boundary containing S such that S is a deformation retract of it, W is
Runge if and only if S is, because there is a commutative diagram

H1(S,Z) H1(X,Z)

H1(W,Z)

j

where j is an isomorphism, so 1.3.4 proves the claim.
The classification of compact, bordered surfaces can be used to prove the following

Lemma 2.1.8. Given an admissible set S there is a set of curves γj that intersect each other in finitely
many points and can be taken to avoid any finite set, forming a basis of H1(S,Z).
If S is Runge in X, the γj can be taken in such a way that any union of the γj is Runge in X.

If γ is an embedded curve inX,the inclusion Tγ ⊂ TX induces a natural inclusion TCγ = C⊗RTγ → TCX.
There is not an intrinsic decomposition of TCγ as in 1.1.10.

Figure 4: Admissible set

If S = K ∪ Γ = Y ∪ Γ, we say that a function f : S → C is of class Cr if f|K and f|γj
are of class Cr for

any curve γj in Γ, and the derivative of f in Γ and K agree up to order r in the endpoints of the paths.
The C1 norm is ∥f∥S + ∥df∥S , with respect to some metric g. Also, a map f = (x, y, z) of class C1 is a
generalised legendrian curve in S if it is legendrian in K and for any parametrisation γof the curves in Γ,

x ◦ γ(t) · (y ◦ γ)′(t) = (z ◦ γ)′(t),

although it is clear that it is enough to check for one such parametrisation.
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2.2 First examples of holomorphic approximation
We start by proving a classic result by R. Gunning and M. Narashiman, concerning the existence of exact
holomorphic forms with prescribed zeros, presented in [GN67] in 1967, but using the ideas mentioned above,
as well as an improved version of Mergelyan theorem in admissible sets.

As usual, we start with a relative version first

Proposition 2.2.1. Let X be a Riemann surface and Y ⊂ Z be Runge open sets with smooth boundary of
the form (A1.1) or (A1.2) and let ω be a holomorphic 1-form in X such that

∫
γ
ω = 0 for all closed paths

γ ⊂ Y .
Then, for any ε > 0 there is a holomorphic function g in X such that |g| < ε en Y and

∫
γ
egω = 0 for all

closed curves γ ⊂ Z.

Proof. If ω is 0 or if the compacts are of the form (A1.1), we my take g constant, so assume they are of the
form (A1.2) and let γ1, . . . , γp, γp+1 be paths forming a basis for H1(Y ∪ α,Z) as in 2.1.8. Since the zeros
of ω are isolated and γj is compact, we can use 2.1.7 with f(t) = ω(γ′

j(t)) to get continuous functions gj

defined in γ1 ∪ . . . ∪ γp+1 such that the support of gj is contained in γj and∫
γp+1

egp+1ω = 0,
∫

γj

gp+1e
gp+1ω ̸= 0 y

∫
γj

gjω ̸= 0para 1 ≤ j ≤ p (1)

In fact, since γp+1 only intersects bY in a finite number of points, we can also assume that gp+1 is defined
and equals 0 in Y . We consider the period map Q : O(X) → Cp+1 defined by

Q(g) =
(∫

γj

gω

)
1≤j≤p+1

from which we obtain the following holomorphic map:

φ : Cp+1 → Cp+1

(s1, . . . , sq) 7→ Q (es1u1+...+sp+1up+1)

If a = (0, . . . , 0, 1), the conditions (1) imply that φ(a) = 0 and ∂φ
∂s (a) is invertible. The sets γ1 ∪ . . . ∪ γp+1

and Y ∪ γp+1 are Runge compacts by 2.1.8 and the homological characterisation of admissible sets. We use
Mergelyan theorem to obtain holomorphic functions g(m)

j in X converging uniformly to gj in γ1 ∪ . . .∪ γp+1

for 1 ≤ j ≤ p, and in Y ∪ γp+1 for j = p+ 1. We consider the sequence

φm(s) = Q
(
es1v

(m)
1 +...+spv(m)

p +sp+1up+1
)
.

Which converges to φ uniformly on compact sets, and since a has zeros in its first entries, φm(a) = 0 for all
m. We can also find µ = m such that φµ is regular in a. Let hj = u

(µ)
j for j = 1, . . . , p.

The discrete spray
ψn(s) = Q

(
es1h1+...+sphp+sp+1g

(n)
p+1

)
has φµ as core, so it is dominant in a. By 2.1.4, for any δ there is some N0 from which we can find s(n) at
distance at most δ from a such that ψ(n)(s(n)) = 0.
Let C be a common bound for the functions w1, . . . , wp in Y . Since g(n)

p+1 converges uniformly in Y to 0,
there is some N1 such that ∥g(n)

p+1∥Y ≤ ε
2q whenever n > N1. Finally, if δ ≤ min

{
1, ε

nC

}
, any s such that

|s− a| ≤ δ verifies
∥s1h1 + . . .+ sphp + sp+1g

(n)
p+1∥K ≤ ε,

and therefore ,f = s
(n)
1 w1 + . . . + s

(n)
p wp + s

(n)
p+1v

(n)
p+1 is the desired function if |s(n) − a| ≤ δ and n >

max{N1, N0}.

Theorem 2.2.2 (Gunning-Narashiman). Let X be an open Riemann surface and let ω be a holomorphic
1-form. Then there is a function F ∈ O(X) such that eFω is exact.

37



Aitor Iribar López

Proof. Recall that holomorphic forms are closed, as we noted in 1.2.5, and take an exhaustion by compact
sets of X as in Idea 1 such that M0 is a disk. Since in a disk closed forms are exact,

∫
γ
ω = 0 for all paths

γ ⊂ M0, we define f0 : X → C to be 0. Using the previous lemma 2.2.1 in an inductive way, we can find
holomorphic functions fn : X → C such that:

a)
∫

γ
ef0+...+fnω = 0 for all γ ⊂ Mn

b) |fn(p)| < 1
2n for all p ∈ Kn−1

The second condition ensures that
∑∞

n=0 fn converges uniformly over compact subsets ofX to some holomorphic
F . For each path γ in X, γ is contained in some Mn, so taking limits in the first condition,

∫
γ
eFω = 0.

Since eFω is closed because it is holomorphic, and all of its periods are 0,it is exact

In the language of immersions, we obtain the following corollary

Corollary 2.2.3. If X is an open Riemann surface, there is a holomorphic immersion of X in C

Proof. By 1.3.12, there is a nonvanishing holomorphic form ω, and by 2.2.2, efω = dg for some g (g is
holomorphic because d = ∂ + ∂̄ and efω ∈ Ω1,0). Since dg is nowhere vanishing, g : X → C is an
immersion.

However, these immersions are not dense in O(X). This is due to a well known theorem of Hurwitz that
can be found in p. 231 of [Gam01] which, among other things implies that a sequence of immersions into C
can only converge to a constant function or to an immersion.
However, immersions of Riemann surfaces in higher dimensional affine spaces are dense, and we can prove
it easily:

Proposition 2.2.4. Let X be an open Riemann surface. Any holomorphic map from X to CN can be
approximated uniformly on compact sets by immersions with non-constant component functions.

Proof. It is enough to prove it for N = 2. Write f = (x, y). If f is constant, take functions g, h : X → C
that are immersions and consider the sequence

fn =
(
x+ 1

n
g, y + 1

n
h

)
.

If y is constant but x is not, and h : X → C is any immersion, the sequence

fn =
(
x,

1
n
h+ y

)
is sufficient. In the remaining situation, let u1, u2, . . . be the zeros of dy. Using 1.3.12, there is a holomorphic
form ω having zeros precisely in the uj such that dx(uj) ̸= 0. By 2.2.2, we can assume that ω is exact. If
ω = dh, h is holomorphic and we can take

fn =
(
x+ 1

n
h, y

)
.

Now we prove a version of Mergelyan theorem for approximations of class C1. It can be done for functions
of class Cr by induction but we have not defined the Cr norm and we don’t need this generalisation.

Theorem 2.2.5 (Mergelyan Theorem with approximation up to order 1). Let X be an open Riemann
surface and S = K ∪ S ⊂ X an admissible, Runge subset. If f : S → C is of class C1 and holomorphic in
the interior of S then it can be approximated uniformly in S by holomorphic functions in X in the C1 norm.

Proof. Let Y ⊂⊂ X be an open set containing S, which is still Runge of whom S is a deformation retract.
Let γj be a basis for H1(Y,Z) (j = 1, . . . , q) contained in S and θ a nowhere vanishing 1-form as in 1.3.12.
Using 2.1.7 we find continuous functions gk defined in the paths γj such that∫

γj

gkθ = δj,k
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We consider the period map Q(g) =
(∫

γj
gθ
)

j=1,...,q
.

The usual Mergelyan theorem, applied to the functions gkyields holomorphic functions hk in X, such that
the matrix

(∫
γj
hkθ
)

j,k
is invertible. If F = df

θ , F continuous in S and holomorphic in its interior. By
Mergelyan theorem we find a sequence Fn converging to F uniformly on S.
For these reasons, the discrete spray

φ(n)(s) = Q

(
Fn +

∑
k

skhk

)

has φ(s) = Q(F +
∑q

k=1 skhk)θ) as core, is dominant in 0 and φ(0) =
∫

γj
Fθ =

∫
γj
df = 0. By 2.1.4, for all

n there is s(n) such that if

F̃n = Fn +
q∑

k=1
s

(n)
k g′

k,

these functions converge uniformly to h, s(n) converges to 0 and F̃nθ is exact in Y , so if

fn(z) = f(p0) +
∫ z

p0

F̃nθ z ∈ Y,

fn is holomorphic in Y and for all p ∈ S,

fn(z) − f(z) =
∫ z

p0

(Fn − F )df dfn(z) − df(z) = [Fn(z) − F (z)]θ(z).

Since all paths can be taken of finite length because Y ⊂⊂ X, fn approximates f in C1-norm. Finally,
by Runge theorem applied to each Fn we obtain a sequence of holomorphic functions converging to Fn

uniformly over compact subsets of Y . By the Cauchy estimates, dGnk also converges to dFn, so it is enough
to approximate f by the sequence Gnn.
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2.3 Legendrian embeddings in bordered surfaces
We are now going to prove the main result to get holomorphic embeddings of bordered Riemann surfaces,
which in fact strengthens Theorem 2. We will need a theorem about transversality B.2 which can be found
in the Appendix. In all the proofs of this sections we will use the period map

P(x, y) =
(∫

γj

xdy

)
j

that we introduced in (A4).
First, we explain how to get immersions:

Proposition 2.3.1. If X is an open Riemann surface and f : X → C3 a Legendrian map, Y ⊂⊂ X a
smoothly bounded domain that is a deformation retract of X. Then f can be approximated uniformly over
Y legendrian maps in X, which are immersions in Y , and do not have constant component functions.

Proof. Write f = (x, y, z). If both x and y are constants, z is also constant. If h : X → C is an immersion
and g : X → C is a non-constant function such that dg vanishes at some point

yn = y + h

n
zn = z + g

n2 + xh

n
xn = dzn

dyn
= 1
n

dg

dh
+ x

y fn = (xn, yn, zn).
If one of x, y is non-constant, using the involution in (A5), we can assume that y is the non-constant function
and u1, . . . , ul are the points where dy vanishes in Y . Let γ1, . . . , γq be a basis for H1(Y,C), and let’s assume
that no such path contains any if the uj , and such that γ1 ∪ . . . ∪ γq is Runge.
If (xn, y) is the sequence of immersion approximating (x, y) given by 2.2.4, and g1, . . . , gq are continuous
functions defined in γ1 ∪ . . . ∪ γq such that ∫

γj

gkdy = δj,k

(this can be done thanks to 2.1.7). Using Mergelyan theorem with fixed points 1.4.9, there are holomorphic
functions hk in X such that

det
(∫

γj

hkdy

)
j,k

̸= 0 and dhk(um) = 0 for all m, k.

We consider now the discrete spray

φn(s) = P(xn + s1h1 + . . .+ sqhq, yn),

with core
φ(s) = P(x+ s1h1 + . . .+ sqhq, y)

Since f is legendrian, φ(0) = 0 and by the way we chose the hj , the spray is dominant in 0. We can apply
2.1.4, and thus from some N0 and onwards, we can find s(n) such that φn(s(n)) = 0 and the points s(n)

converge to 0. Let x̃n = xn + s
(n)
1 h1 + . . .+ s

(n)
q hq, ỹn = yn = y and z̃n defined as in (A3) with C = z(p0).

It can be well-defined in the whole X precisely because Y is a deformation retract of X and so γ1, . . . , γq is
a basis of H1(X,Z) also. Now let

fn = (x̃n, ỹn, z̃n) .

Since d(x̃n)(uj) = dxn(uj) ̸= 0 for all j, the maps fn are immersions in Y ; they are clearly legendrian and
approximate f because, since s(n) → 0 if n → ∞,x̃n → x uniformly on Y and it is clear that dỹn → dy, so
by the argument in Idea 6, we also have that z̃n converges to z uniformly over Y .

Recall that on a compact manifold, an injective immersion is an embedding. This is how we will obtain
embeddings:
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Theorem 2.3.2. Let Y ⊂⊂ X be an open, Runge subset with smooth boundary of an open Riemann surface
X which, at the same time is a deformation retract of Y . If f : X → C3 is a legendrian map, then it can
be approximated uniformly in Y by legendrian curves defined in X without constant components that are
embeddings in Y .

Proof. In light of 2.3.1, we may assume that f is an immersion without constant components. We divide
the proof into various steps:

Step 1: Given p ̸= q ∈ Y , and a legendrian map g : X → C3 without constant components, we seek a
holomorphic family of maps H : X × C3 → C3 such that:

a) H(·, 0) = g.

b) H(·, ξ) is a legendrian map without constant component functions for all ξ ∈ B(0, r), for some r.

c) δH(p, q, ·) : C3 → C3 is a submersion in 0.

Write g = (x, y, z). If γ1, . . . , γq is a basis for H1(X,Z), we look for functions of the form

x(·, ξ, s) = x+ ξ1h1 + ξ3h2 +
∑

k

gksk, y(·, ξ) = y + ξ2h1,

in such a way that the spray
(ξ, s) 7→ P((x(·, ξ, s)), y(·, ξ))

is dominant in ξ = 0. Let µ > 0. Since

∂

∂s
P(x(·, ξ, s), y(ξ))

∣∣∣∣
ξ=s=0

=
(∫

γk

gjdy

)
This can be achieved if

i)
∣∣∣∫γk

gjdy − δj,k

∣∣∣ < µ

and µ is sufficiently small. In this case, using 2.1.6 we can solve s = ρ(ξ) in such a way that x(·, ξ, ρ(ξ))dy(·, ξ))
is exact and therefore we define z(·, ξ) as in (A4) with C = z(p0) and

H(u, ξ) = (x(u, ξ, ρ(ξ)), y(u, ξ), z(u, ξ)) .

Clearly H satisfies a) y b) because H(u, ξ) converges to g if ξ → 0 and g does not have constant component
functions. We are left condition. Note that, if Γ is a segment joining p with q, then

δz(p, q, ξ) =
∫

Γ
x(z, ξ, ρ(ξ))dy(z, ξ) =

∫
Γ
ξ3h2dy(·, ξ) +

[
x+ ξ1h1 +

∑
k

gkρk(ξ)
]
d(y + ξ2h1)

So using the definitions of x(·, ξ, ρ(ξ)) e y(·, ξ), we obtain the formulas

∂

∂ξj
δx(p, q, ξ, ρ(ξ))

∣∣∣∣
ξ=0

= δ1,jδh1(p, q) + δ3,jδh2(p, q) +
∑

k

∂ρk(ξ)
∂ξj

∣∣∣∣
ξ=0

(gk(p) − gk(q)).

∂

∂ξj
δy(p, q, ξ)

∣∣∣∣
ξ=0

= δ2,jδh1(p, q).

∂

∂ξ3
δz(p, q, ξ)

∣∣∣∣
ξ=0

=
∫

Γ
h2dy +

∫
Γ

∑
k

∂ρk(ξ)
∂ξ3

∣∣∣∣
ξ=0

gkdy.

Conditions

ii) h1(p) = 1, h1(q) = 0.

iii) |h2(p)|, |h2(q)| < µ.

iv)
∣∣1 −

∫
Γ h2dy

∣∣ < µ.
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Ensure that δh1(p, q) = 1,
∫

Γ h2dy = 1 + O(µ) and δh2(p, q) = 0 + O(µ). On the other hand, to bound
∂ρk(0)

∂ξj
, we derive with respect to ξ the equality P(x(·, ξ, ρ(ξ), y(·, ξ)) = 0 to obtain:

∂ρ(0)
∂ξ

= −

[
∂

∂s
P(x(·, ξ, s), y(ξ))

∣∣∣∣
ξ=s=0

]−1

· ∂

∂ξ
P(x(·, ξ, s), y(ξ))

∣∣∣∣
ξ=s=0

.

If in condition i) the approximation is strong enough, the first matrix is close to the identity, and the second
one is the matrix (∫

γk

h1dy,

∫
γk

dh1,

∫
γk

h2dy

)
k

.

If we can take h2 in such a way that

v)
∣∣∣∫γk

h2dy
∣∣∣ < µ along the paths γk,

then, if we previously fix h1 we have

∂ρ(0)
∂ξ1

= ∂ρ(0)
∂ξ2

= O(1) ∂ρ(0)
∂ξ3

= O(µ)

and thanks to the formulas for ∂
∂ξ δH(p, q, 0) that we obtained before,

vi)
∣∣∫

Γ gkdy
∣∣ < 1 en Γ

vii) |gk(p) − gk(q)| < µ

then
∂

∂ξ
δH(p, q, ξ)

∣∣∣∣
ξ=0

=

 1 0 0
0 1 0
· · 1

+O(µ) (2)

and so if µ is small enough, H satisfies c). It is therefore enough to check that the functions hj , gk can
indeed be chosen to satisfy properties i)-iv). To do so, one starts selecting the paths in such a way that Γ is
disjoint from the γk, and γ1 ∪ . . . ∪ γq ∪ Γ is Runge.
Then we find a holomorphic function h1 that satisfies ii) (which can be done, for instance, by Weierstrass
theorem 1.3.11) and we let it be fixed. there is some µ0 such that if µ < 0, condition i) ensures that the
matrix

∫
γk
gjdy has norm between 1/2 and 2. BY successive uses of 2.1.8, we find continuous functions in

γ1 ∪ . . . ∪ γq ∪ Γ that verify conditions i), iii)-vii). Since these conditions are of open nature, by Mergelyan
theorem we may assume that such functions are holomorphic in X, and since the bound O(µ) that appears
only depends on g and its differential, h1 and of the length of Γ if µ < µ0, they don’t change after using
Mergelyan theorem. Finally, letting µ → 0, we can ensure condition c). Step 2: We can assume that there is
an open set Z ⊂⊂ X containing Y such that f is a legendrian immersion in Z, without constant component
functions.
We are going to improve condition c) in Step 1. Let Hp,q

g be the family of function obtained before, given
p, q ∈ Y and g : X → C3 legendrian and without constant component functions. Since the submersion is an
open condition, there is a neighbourhood Vp,q ⊂ X × X such that δHp,q

f (a, b, ·) is a submersion in 0 for all
(a, b) ∈ Vp,q. Thanks to 2.1.2 we find a neighbourhood U (which we can assume has smooth boundary) of
the diagonal

DY = {(x, x) : x ∈ Y } ⊂ X ×X

and an ε > 0 such that

if ∥f − g∥Z ≤ ε then g is an immersion in Y and
δg only takes the value 0 in U in the points of the diagonal. (∗)

The set Y 2∖U is compact, so it can be covered by finitely many Vp,q, which we name Vp1,q1 , . . . , VpN ,qN
. Now

we construct functions Hk : X × B(0, rk) → C3, where B(0, rk) ⊂ C3k, in an inductive way for 1 ≤ k ≤ N
as follows:

H1(u, η1) = Hp1,q1
f (u, η1)
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Hk(u, η1, . . . , ηk) = Hpk,qk

Hk−1(·,η1,...,ηk−1)(u, ηk),

where ηj ∈ C3. Note that Hk is legendrian in u by construction and that Hk(·, η1, . . . , ηk) approximates f
uniformly in Y and |η|, so for small enough η, Hk(·, η) has non-constant component function and therefore
we can carry on the construction of the previous step. On top of that, Hk(·, 0, . . . , 0) = f by construction,
so for all j,

HN (u, 0, . . . , ηj , . . . , 0) = HpN ,qN

HN−1(·,0,...,ηj ,...,0)(u, 0) = HN−1(u, 0, . . . , ηj , . . . , 0) =

= H
pN−1,qN−1
HN−2(·,0,...,ηj ,...,0)(u, 0) = HN−2(u, 0, . . . , ηj , . . . , 0) =

= . . . =
= Hj(u, 0, . . . , ηj) = H

pj ,qj

Hj(·,0,...,0)(u, ηj) = H
pj ,qj

f (u, ηj),

and so

∂

∂ηj
δHN (a, b, η1, . . . , ηn)

∣∣∣∣
η=0

= ∂

∂ηj
δHN (a, b, 0, . . . , ηj , . . . , 0)

∣∣∣∣
ηj=0

= ∂

∂ηj
δH

pj ,qj

f (a, b, ηj)
∣∣∣∣
ηj=0

which has range 3 if (a, b) ∈ Vpj ,qj
. Since the Vpj ,qj

cover Y 2 ∖ U , and H = HN , we will have found a
holomorphic map H : X ×B(0, r) → C3, where B(0, r) ⊂ C3N , such that

a) H(·, 0) = f .

b) H(·, η) is a legendrian immersion in Y without constant component functions, for all η

c) δH(a, b, ·) : B(0, r) → C3 is a submersion in 0 for all a, b ∈ Y × Y ∖ U

As before, H(·, η) converges to f uniformly in Z and |η| a f , so condition b) is ensured after reducing r, due
to (∗).

Step 3: Since the submersion condition is of open nature, for all (p, q, 0) ∈ X × C3N we can find a
neighbourhood V of it such that δH(a, b, ·) is a submersion in η, if (a, b, η) ∈ V . Since Y ×Y ∖U is compact,
finitely many of them cover it, so we can find an r′ < r such that the modified condition

c’) δH(a, b, ·) : C3N → C3 is a submersion in η if (a, b, η) ∈ (Y 2 ∖ U) ×B(0, r′)

holds. If M = (Y 2 ∖ U), M is a smooth manifold with boundary, and δH : M × B(0, r′) → C3 and
bδH : bM ×B(0, r′) → C3 are transverse to any submanifold of C3 (because the differential is surjective onto
C3). In particular, they are transverse to 0, so using B.2, for generic points η ∈ B(0, r′), the map

Gη = δH(·, ·, η) : M → C3

is transverse to 0, but in these cases, counting dimensions with B.1,

dim(M) − dim(G−1
η ({0})) = dim(C3) − dim({0}) = 3.

However, dim(M) = 2, so δH(·, ·, η) has to omit 0. If H(·, η) is the corresponding map and η is small enough
so that ∥H(·, η) − f∥Z ≤ ε, where ε is the one (∗), then δH(·, η) omits 0 in Y

2 ∖ DY also, so H(·, η) is
injective in Y . Since η can be taken as small as one wishes, f can be approximated uniformly in Y by
legendrian embeddings without constant component functions
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2.4 Legendrian approximation in admissible sets
We will prove now two result which will be the crucial for the recursive step in the proof of Theorem 1. We
start proving how to approximate generalised legendrian curve by ordinary legendrian curves:

Theorem 2.4.1. Let X be a Riemann surface, Y ⊂⊂ X an open, connected open set and S ⊂ Y an
admissible subset which is a deformation retract of Y . Any generalised legendrian curve f : S → C3can
be approximated uniformly in S by legendrian curves defined in Y , having no constant component function.
Furthermore, if f = (x, y, z) and x (resp. y) is non-constant, and holomorphic in a neighbourhood of Y , we
can assume that the first (resp. second) component of the functions approximating f is in fact x (resp. y).

Proof. Since Y is connected, S = K ∪ Γ is also connected. In a similar way to 2.1.8, we can find paths
γ1, . . . , γq contained in S, whose union is Runge in Y and that have a subarc contained in int(K).

If f is non-constant, since it s legendrian and int(K) is nonempty, using the involution (A5) we can
assume that y is non-constant in the interior of K, so dy is not identically 0 in some subarc of the γj .
Therefore we can apply 2.1.7 to get continuous functions gj in γ1 ∪ . . .∪ γq with compact support such that∫

γj

gkdy = δj,k.

We use Mergelyan theorem with approximation up to order 1 to obtain sequences x(n), y(n) of holomorphic
functions in Y that converge to x and y in the C1-norm, and the usual Mergelyan theorem to approximate
gj in γ1 ∪ . . . ∪ γq by holomorphic functions g(n) defined in Y . Let

P(a, b) =
(∫

γj

adb

)
j=1,...,q

Since we have approximation of order 1, the spray

φn(s) = P

(
x(n) +

q∑
k=1

skg
(n)
k , y(n)

)

has φ(s) = P (x+
∑q

k=1 skgk, y) as core, is dominant in 0by the choice of the gk and φ(0) = 0 because f a
generalised legendrian curve. Therefore, by 2.1.4 we can find for all n a s(n) close to 0 sch that φn(s(n)) = 0
and so, since γ1, . . . , γq form a basis of H1(Y,Z), the maps(

x(n) +
q∑

k=1
s

(n)
k g

(n)
k , y(n), z(p0) +

∫ ·

p0

[
x(n) +

q∑
k=1

s
(n)
k g

(n)
k

]
dy(n)

)

can be defined in the whole Y , are holomorphic and approximate (x, y, z) in S because we are using
C1-approximation and using the argument in Idea 6.
If y is already holomorphic and non-constant we can take y(n) = y for all n. If x is holomorphic, we use the
involution in (A5).
If f is constant, we can repeat the argument in the beginning of 2.3.1.

The following theorem is an analogue of the theorem by Gromov in [Gro86] that continuous real curves
in R3 can be approximated uniformly by legendrian curves. We will adapt the proof of the result by Gromov
given in [HMW17] to the complex case to obtain our lemma:

Lemma 2.4.2. Any smooth curve γ = (x, y, z) : [0, 1] → C3 can be approximated in [0, 1] by embedded
legendrian curves λ : [0, 1] → C3 such that λ(0) = γ(0) and λ(1) = γ(1).
In fact, if γ′(0), γ′(1) ∈ Ψ, where Pif = ker(xdy − dz), we can assume that λ′(0), λ′(1) ∈ Ψ.

Proof. Let
Rt,ε = {(u, v) ∈ C2 : |v − x(t)u| ≤ εmax{|u|, |u2|}}.
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If we can find a curve (b, c) : [0, 1] → C2 such that (b′(t), c′(t)) ∈ Rt,ε then, defining a(t) = c′(t)
b′(t) we

would have ∥a − x∥[0,1] ≤ ε. To show that we can do so, we reduce again to finding a family of functions
γ(t, s) : [0, 1] × R/Z → C2 such that γ(t, ·) ∈ Rt,ε, because we can then define

(b(t), c(t)) = (y(0), z(0)) +
∫ t

0
γ(u, nu)du. (2.1)

If we also have ∫
R/Z

γ(t, s)ds = (y′(t), z′(t)) (2.2)

Then as n → ∞, (b, c) approximates (y, z), because, by the periodicity of γ in its second variable, the change
v = nu+ (k − 1), and the mean value theorem,

|(b(t), c(t)) − (y(t), z(t))| =
∣∣∣∣∫ t

0

[
γ(u, nu) −

∫ 1

0
γ(u, v)dv

]
du

∣∣∣∣ =

=

∣∣∣∣∣∣
⌊tn⌋∑
k=1

∫ k/n

(k−1)/n

γ(u, nu) −
[∫ 1

0
γ(u, v)dv

]
du+

∫ t

⌊tn⌋/n

∫ 1

0
γ(u, nu) − γ(u, v)dvdu

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
⌊tn⌋∑
k=1

1
n

∫ 1

0
γ(v + k − 1

n
, v)dv −

∫ k/n

(k−1)/n

∫ 1

0
γ(u, v)dvdu

∣∣∣∣∣∣+ (t− ⌊tn⌋ /n)∥γ∥[0,1]×R/Z =

=

∣∣∣∣∣∣
⌊tn⌋∑
k=1

∫ k/n

(k−1)/n

∫ 1

0

[
γ(v + k − 1

n
, v) − γ(u, v)

]
dvdu

∣∣∣∣∣∣+ (t− ⌊tn⌋ /n)∥γ∥[0,1]×R/Z ≤

≤ ∥ ∂
∂t
γ(·, ·)∥[0,1]×R/Z

⌊tn⌋
n2 + (t− ⌊tn⌋ /n)∥γ∥[0,1]×R/Z,

which converges to 0 if n → ∞, uniformly in t.
Conditions (1) y (2) can be attained because the convex envelope Rt,ε is C2, although in this case we can
find an explicit formula for γ:

γ(t, s) =
(
r sin 2πs+ y′(t), (r sin 2πs+ y′(t))

[
x(t) + 2(z′(t) − x(t)y′(t))

r2 + 2x′(t)2 (r sin 2πs+ y′(t))
])

For r big enough, also, if (x, y, z) was legendrian inn 0 y 1, we have

(b′(0), c′(0)) = γ(0, 0) = (y′(0), z′(0))

(a(0), b(0), c(0)) =
(
z′(0)
y′(0) , y(0), z(0)

)
= (x(0), y(0), z(0))

(b′(1), c′(1)) = γ(1, n) = (y′(1), z′(1))

(a(1), b(1), c(1)) =
(
z′(1)
y′(1) , (y(0), z(0)) +

∫ 1

0
γ(u, nu)du

)
= (x(1), y(1), z(1))

and we can carry out the calculations for a′(0) and a′(1).

We note that this is an instance of the h-principle, and the fact that Rt,ε has C2 as convex envelope would
let us use the theorem of convex integration in [EM02], so the h-principle is true in all of its versions. In
particular, in its relative version, and from this version follows our lemma. However, we prefer not to prove
the result this way, as the machinery necessary to understand the h-principle exceeds by far the objectives
and extension of this work.

The following result is the one requiring the most technical difficulty but it ensures that we can control
the behaviour of our legendrian curves so they don’t fold. In order to visualise the proof it is convenient to
remember that if Y ⊂⊂ Z and Z is a deformation retract of Y , Z ∖ Y is a finite union of rings.
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Theorem 2.4.3. Let Y ⊂⊂ Z ⊂⊂ X be open subsets with smooth boundary of an open Riemann surface X,
such that Y is a deformation retract of Z. If f = (x, y, z) is a legendrian map defined in some neighbourhood
of Y such that

max{|x|, |y|} > µ en bY

for some µ > 0. Then f can be approximated uniformly in Y by legendrian maps f̃ = (x̃, ỹ, z̃) defined in a
neighbourhood of Z such that

i) max{|x̃|, |ỹ|} > µ+ 1 en bZ.

ii) max{|x̃|, |ỹ|} > µ en Z ∖ Y .

Proof. Lets assume, in order to simplify the notation, that A = Z ∖ Y consists of only one ring. Only in
this proof we will use subindices to denote the components of a function: F = (F1, F2, F3) : X → C3. Let Ψ
be the standard contact structure in C3.
The hypotheses of the theorem and compactness of bY allows us to find points p1, . . . , pn such that there
are arcs α1, . . . , αn such that pk is an extreme point for αk and αk−1, where integers are taken modulo n,
and such that

|x| > µ
|y| > µ

}
en αk if

{
k is odd
k is even (1)

Note that if |y| > µ in α we can reduce to the case n = 1 using the involution in (A5). On the other hand,
since pk is both in αk and αk−1,

max{|x(pk)|, |y(pk)|} > µ if n > 1 (2)

We take points qk ∈ bZ and paths γk : [0, 1] → Z ∖ Y joining pk with qk. AS before, the points qk divide β
into subarcs βk, and we can decompose

A =
n⋃

k=1
Ωk =

n⋃
k=1

Ωk ∪ αk ∪ βk ∪ γk

Where Ωk is the open set limited by αk, βk, γk, γk−1. (See Figure 5).

Figure 5: Sets in the proof of 2.4.3

We look for smooth paths rk : γk → C3 such that rk(pk) = f(pk), r′
k(pk) = f∗(γ′(pk)), r′

k(qk) ∈ Ψrk(qk),

rk(γk) ⊂ {(x, y, z) ∈ C3 : min{|x|, |y|} > µ}
(
resp r1(γ1) ⊂ {(x, y, z) ∈ C3 : |x| > µ} if n = 1

)
,

rk(qk) ∈ {(x, y, z) ∈ C3 : min{|x|, |y|} > µ+ 1}
(
resp r1(γ1) ∈ {(x, y, z) ∈ C3 : |x| > µ+ 1} if n = 1

)
.
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This can be done because the sets appearing are open subsets of C3 and by condition (1). Now, after using
2.4.2 we can assume that the paths rk are indeed legendrian so we have a generalised legendrian map defined
in the admissible set

S = Y ∪ γ1 ∪ . . . ∪ γn

that can be seen in Figure 5. Using the theorem of approximation over admissible sets 2.4.1, we get a
legendrian map g = (g1, g2, g3) without constant components, defined in a neighbourhood of Z such that

(B1) g approximates f uniformly in Y

(B2’) min{|g1(qk)|, |g2(qk)|} > µ+ 1 for all k (resp. |g1(q1)| > µ+ 1 if n = 1)

(B3’) min{|g1(u)|, |g2(u)|} > µ for all u ∈ γk and for all k (resp. |g1(u)| > µ+ 1 for all u ∈ γ1 if n = 1)

(B4’) |gj(u)| > µ if u ∈ αk, j ∈ {1, 2} and j, k share parity

The function g is continuous and conditions B2’, B3’, B4’ are of open nature, so they occur in open
neighbourhoods of the sets appearing. Therefore, there are sets Tk, Rk, λk (see Figure 6) such that
Ωk = Rk ∪ T k and λk = Rk ∩ βk, and we have the improved conditions

(B2) min{|g1(u)|, |g2(u)|} > µ+ 1 if u ∈ λk, (resp. |g1(u)| > µ+ 1ifu ∈ λ1 when n = 1)

(B3) |gj(u)| > µ if u ∈ Rk, j ∈ {1, 2} and j, k share parity.

Let δk be paths joining Tk con αk

Figure 6: Sets in the proof of 2.4.3

We distinguish two cases:
If n = 1, we consider the set

S′ = Y ∪ δ1 ∪ T 1,

which is admissible, and the map ĝ = (ĝ1, ĝ2, ĝ3) : S′ → C3 given by

ĝ1 = g1 (3.1)

ĝ2 =

 g2 in Y
Any holomorphic function with |ĝ2(u)| > µ+ 1 in T1
Any smooth function making ĝ2 of class C1 in δ1

(3.2)

ĝ3 = g3(p0) +
∫ p

p0

ĝ1dĝ2 (3.3)
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Where p0 ∈ Y is any point. The integral is independent of the path because in Y , ĝ1dĝ2 = g1dg2 so ĝ3 = g3,
and any curve joining p0 with δ1 ∪ T1 has to go through p1 = δ1 ∩ α1. Since δ1 ∪ T1 is simply connected, we
conclude that the integral is independent of the path. Therefore, ĝ is a generalised legendrian map and g1
is holomorphic and non-constant in a neighbourhood of Z.
Since S′ is a deformation retract of Z and so of some neighbourhood of it, by 2.4.1 there is a map h =
(h1, h2, h3) in a neighbourhood of Z such that

(C1) h1 = ĝ1.

(C2) h approximates ĝ in S′.

In this case, (B3) and (C1) prove that |h1| > µ in R1; (B2) and (C1) prove that |h1| > µ + 1 in λ1;if the
approximation in (C2) is string enough, the way we chose ĝ2 in (3.2) proves that |h2| > µ + 1 in T 2; and
finally, (C2), (B1) and the fact that ĝ = g in Y prove that h approximates f , so it is enough to take f̃ = h.

If n > 1, let’s suppose that k walks through odd indices and j through even ones. We consider the
admissible set

S1 = Y ∪
⋃
k

(
T k ∪ δk

)
∪
⋃
j

Ωj

and construct the function ĝ : S1 → C3 given by

ĝ1 = g1. (4.1)

ĝ2 =


g2 in Y ∪

⋃
j Ωj

Any holomorphic function |ĝ2(u)| > µ+ 1 in
⋃

k Tk

Any smooth function making ĝ2 of class C1 in
⋃

k δk

. (4.2)

ĝ3 = g3(p0) +
∫ p

p0

ĝ1dĝ2. (4.3)

In an analogous way to the constructions in (3.1), (3.2) and (3.3), conditions (4.1), (4.2) y (4.3) make ĝ a
generalised legendrian map with non-constant first component and so, using 2.4.1, we find a legendrian map
with non-constant components h in a neighbourhood of Z such that

(D1) h1 = ĝ1.

(D2) h approximates ĝ in S1.

We repeat this construction exchanging S1 with

S2 = Y ∪
⋃
j

(
T j ∪ δj

)
∪
⋃
k

Ωk,

and the definitions (4.1), (4.2), (4.3) with

ĥ1 =


h1 in Y ∪

⋃
k Ωk

Any holomorphic function such that |ĥ1(u)| > µ+ 1 en
⋃

j Tj

Any smooth function making ĥ1 of class C1 in
⋃

j δj

. (5.1)

ĥ2 = h2. (5.2)

ĥ3 = h3(p0) +
∫ p

p0

ĥ1dĥ2. (5.3)

We use again 2.4.1 to obtain a legendrian map b defined in a neighbourhood of Z such that

(E1) b2 = ĥ2.

(E2) b approximates ĥ in S2.
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Recapitulating everything,

|b2| E1= |ĥ2| 5.2= |h2|
D2
≈ |ĝ2| 4.2= |g2|

B2
> µ+ 1 in λj ,

|b1|
E2
≈ |ĥ1| 5.1= |h1| D1= |ĝ1| 4.1= |g1|

B2
> µ+ 1 in λk.

|b2| E1= |ĥ2| 5.2= |h2|
D2
≈ |ĝ2|

4.2
> µ+ 1 in T k,

|b1|
E2
≈ |ĥ1|

5.1
> µ+ 1 in T j ,

|b2| E1= |ĥ2| 5.2= |h2|
D2
≈ |ĝ2| 4.2= |g2|

B3
> µ in Rj ,

|b1|
E2
≈ |ĥ1| 5.1= |h1| D1= |ĝ1| 4.1= |g1|

B3
> µ in Rk,

so taking into account (as can be seen in Figure 6) that,

bZ ⊂
n⋃

m=1
λm ∪ Tm Z ∖ Y ⊂

n⋃
m=1

Rm ∪ Tm

if the approximations (B1), (D2), (E2) are strong enough, we can take f̃ = b.
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2.5 Proof of Theorems 1 and 2
Using all the ideas and results in the last three sections, we can prove Theorems 1 and 2. In fact, we prove
stronger versions of both:

Theorem 2.5.1 (Alarcón-Fonstneric-López). If X is an open Riemann surface, S ⊂ X is an admissible
Runge set and f : S → C3 a generalised legendrian map, f can be approximated uniformly in S by legendrian,
proper embeddings without constant component g = (x, y, z) such that (x, y) : X → C2 is also proper.

Proof. By 2.4.1 and 2.3.2, there is an open set M0 with smooth boundary of which S is a deformation retract
and we can approximate f in S by a legendrian embedding f0 without constant components, defined in a
neighbourhood of M0. Since the component maps are non-constant, their zeros are isolated so after a slight
edition of the boundary of M0, we can assume that there is a µ > 0 such that max{|x0|, |y0|} ≥ µ in bM0.
Note that M0 is Runge
Let Mk be an exhaustion by open sets with smooth boundary as in Idea 1. This is:

a) Mk is Runge in X

b) Mk ⊂⊂ Mk+1

c) Mk is a deformation retract of Mk+1 or Mk ∪αk is a deformation retract of Mk+1 where αk is a curve
with endpoints in Mk.

Given ε > 0, with ε < µ
2 , we will construct inductively holomorphic maps fk defined in some neighbourhood

of Mk and an εk in such a way that:

(1k) ∥fk − fk−1∥Mk−1
≤ 1

2k min{ε, ε0, , . . . , εk−2}.

(2k) fk is an embedding in Mk and if ∥g − fk∥Mk−1
≤ εk then g is an embedding in Mk−2.

(3k) max{|xk|, |yk|} > µ+ k in bMk.

(4k) max{|xk|, |yk|} > µ+ k − 1 in Mk ∖Mk−1.

The map f0 already satisfies the conditions, so we prove the inductive step, considering two cases:
If Mk is a deformation retract of Mk+1, we use, in this order, theorems 2.4.3, 2.3.1 and 2.3.2, we obtain an

embedding fk+1 approximating fk in Mk. If the approximation given by 2.3.2 and 2.3.1 are strong enough,
the conclusions i) y ii) of 2.4.3 are still preserved and therefore fk+1 can be taken to satisfy (3k+1) and
(4k+1). Since fk+1 approximates fk, we also obtain (1k).

If Mk ∪ αk is a deformation retract of Mk+1 and p, q are the endpoints of α, by (4k) we have

fk(p), fk(q) ∈ {(x, y, z) : |x| > µ+ k o |y| > µ+ k},

which is open and connected so they can be joined by a smooth map which is legendrian in these two points,
so by 2.4.2, we can extend fk to Mk ∪αk, which is admissible. If we use 2.4.1 in Mk+1, we obtain a legendrian
map f̃k+1 defined in Mk+1 that approximates fk in Mk and verifies

max{|x̃|, |ỹ|} > µ+ k en bMk ∪ αk.

Since this it is a continuous map, there is an open set W such that Mk ∪ αk ⊂ W , W is a deformation
retract of Mk+1 and the previous inequality also occurs in bW . As before, if we use 2.4.3, 2.3.1 and 2.3.2 in
the given order, we obtain the desired legendrian map fk+1a.
Note that in both cases, εk is the one given by 2.1.3.

By (1k), the sequence fk converges uniformly over compact subsets of X to a holomorphic map f . Since
dfk converges to df by 2.1.1, f is legendrian. Furthermore,

∥f − fk+1∥Mk
≤ ∥

∞∑
j=k+1

fj+1 − fj∥Mk
≤

∞∑
j=k+1

εk

2j+1 ≤ εk
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So, due to (2k+1), f is a legendrian embedding in Mk−1, for all k. Since X is the union of all the Mk, it
follows that f is an injective, legendrian immersion. Finally, by (1k)

∥f − fk∥Mk
≤

∞∑
j=k

∥fj+1 − fj∥Mj
≤ ε ≤ µ

2 ,

and thus, using (4k),

max{|x|, |y|} ≥ max{|xk|, |yk|} − µ

2 ≥ k − 1 + µ

2 ≥ k − 1 en Mk ∖Mk−1

for all k. In particular, if |x(p)|, |y(p)| ≤ N , p ∈ MN , which proves that (x, y) is a proper map and so is f
then. Since it is a proper, injective, holomorphic immersion it is an embedding (as can be seen in proposition
4.22 in [Lee12]).
Finally, ∥F − f0∥M0

≤ ε, which was arbitrary, so since f0 approximates f , F does so.

As a corollary, we have an analogue of Whitney embedding theorem:

Corollary 2.5.2. Any open Riemann surface can be properly embedded in C3.

The proof of 2 follows from 2.3.2 and the Darboux theorems:

Theorem 2.5.3. If X is a bordered Riemann surface, (M,Ψ) is a complex, contact manifold of dimension
3, then there is a legendrian embedding of X en M .

Proof. Let R be a Riemann surface such that X ⊂⊂ R with smooth boundary. The function (0, 0, 0) is
legendrian and therefore there is a legendrian embedding f = (x, y, z) : X → C3 by 2.3.2. Since X is
compact, f(X) is bounded. By 1.5.4, we can find an open set U ⊂ M and Darboux coordinates G : U → C3.
After changing G by λG if necessary, we can assume that f(X) ⊂ G(U) and therefore, G−1 ◦ f : X → M is
a legendrian embedding.

We note that one cannot aim to embed any Riemann surface in any contact manifold. For example, if
M ⊂ C3 is a bounded open set with the standard contact structure, we cannot embed C in M because the
component functions would be holomorphic an bounded, and therefore constant by Liouville theorem.

51



Aitor Iribar López

52



Appendix A

Functional analysis

A complex Banach space is a vector space E over the complex numbers, equipped with a norm ∥.∥ : E →
[0,+∞) that makes it a complete metric space.
The prototype of a Banach space is C(K), the space of continuous functions f : K → C,with the norm

∥f∥K = sup{|f(x)| : x ∈ K}.

Other examples are the spaces Cr([0, 1]) of continuous, complex functions with contiunuous derivatives up
to order r in [0, 1], with the norm

∥f∥Cr = ∥f∥[0,1] + ∥f ′∥[0,1] + . . .+ ∥fr)∥[0,1]

although [0, 1] can be substituted by any compact domain in Rn with smooth boundary.
A linear map T : E → C is said to be a functional. We will say that it is bounded if there is some C > 0
such that

|Tx| ≤ C∥x∥,

and the infumum of such C is the norm of T . The set of bounded functionals in E forms the dual space E′.
The celebrated theorem of Hahn-Banach allows us to obtain linear functionals with diverse properties:

Theorem A.1 (Hahn-Banach theorem). Let M ⊂ E be a linear subspace and T ∈ M ′. There is a functional
R ∈ E′ extending T and such that ∥R∥ = ∥T∥.

A simple argument that can be found after the proof of the Hahn-Banach theorem in [Rud86] gives the
following useful criterion
If E is a Banach space and M ⊂ E is a subspace, then x ∈ M if an only if for all T ∈ E′ such that T (M) = 0,
T (x) = 0.
In particular, if M ⊂ C(K), f is a uniform limit of functions of the family M if and only if for all T in C(K)′

such that T (M) = 0, we have T (f) = 0.
Is there a way to characterise C(K)′? The answer is yes, and it is known as Riesz representation theorem

Theorem A.2 (Riesz representation Theorem). If K is a compact Hausdorff space, any linear functional
in T ∈ C(K)′ is represented by a unique regular complex Borel measure µ in K, in the sense that∫

K

fdµ = T (f)

for all f : K → C.

Recall that a measure µ is said to be orthogonal to a subset S of C(K) if
∫

K
fdµ = 0 for all f ∈ S. With

A.2 and A.1 in hand, and taking int account what was commented earlier, we obtain the following principle,
which we use in the proof of 1.3.7:

If F ⊂ C(K) is a family of functions, then f ∈ C(K) belongs to
the closure of F (in other words, there is a sequence fn contained

in F converging uniformly to f) if and only if for any Borel
complex regular measure µ in K which is orthogonal to F ,

∫
K
fdµ = 0.
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A complex measure in K is a function µ : M → C, where M ⊂ P(K) is a σ-algebra, which is countably
additive for absolutely convergent sums. If µ(M) ⊂ [0,+∞), µ is said to be positive. Given a complex
measure, it is always possible ot find a positive measure |µ| such that |µ|(A) ≥ |µ(A)|, called the total
variation of µ.
There is a reasonable way to define the integral of a measurable function f : X → C with respect to a
complex measure, but we do not describe it. It can be found in [Rud86].

If K is a topological space, we say that a measure µ is a Borel measure if M is the smallest σ-algebra
containing the open sets. In this case, continuous functions are measurable, so

f 7→
∫

K

fdµ

defines a bounded linear functional in C(K). We say that µ is regular if

|µ|(A) = inf{|µ|(V ) : A ⊂ V, V open} |µ|(B) = sup{|µ|(K) : K ⊂ B,K compact},

for all A ∈ M and all open B. Complex measures can be added and multiplied by scalars or by bounded
functions to obtain new complex measure, as we do in the proof of Mergelyan theorem.
A common example of a Borel measures arises when K is a compact submanifold of a Riemann surface
and µ is given by the integration with respect to a (1, 1)-form . We use the theorem of Fubini in repeated
occasions. Recall that a function is in L1(µ) if

∫
X

|f |d|µ| < ∞.

Theorem A.3 (Fubini Theorem). Let µ y λ be Borel measures in the compact spaces X and Y . If µ× λ is
its product measure (which is again a Borel measure), f : X × Y → C is measurable, and we define

fx(y) = f(x, y) fy(x) = f(x, y),

then

a) |µ× λ| = |µ| × |λ|

b) If f , λ, µ are positive, and we define

G(x) =
∫

Y

fx(y)dµ(y) and H(y) =
∫

Y

fy(x)dλ(x),

G and H are measurable and∫
X×Y

fd(µ× λ) =
∫

X

G(x)dµ(x) =
∫

Y

H(y)dλ(y).

c) If f ∈ L1(µ × λ) then the functions G and H exist almost everywhere, are in L1(µ) and L1(λ)
respectively, and ∫

X×Y

fd(µ× λ) =
∫

X

G(x)dµ(x) =
∫

Y

H(y)dλ(y).

The proofs of all of these results can be found along chapters 1,2,5,6,7 and 8 of [Rud86], as well as a
great amount of important theorems about measure theory which can be used in complex analysis.
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Transversality

Let X, Y be smooth manifolds without border n y m, respectively, and let Z ⊂ Y be a submanifold of
dimension k.
A smooth map F : X → Y is said to be traversal to Z if for all p ∈ X one of the following two things happen:

• F (p) ̸∈ Z.

• F (p) ∈ Z y TF (p)Y = DpF (TpX) ⊕ TF (p)Z.

Informally, F is transversal if F (X) intersects Z "not tangently". For example, if f, g : R → R2 are given by

f(t) = (t, sin t) y g(t) = (t, t2)

then f is transverse to R × {0} but g is not. On the other hand, submersions are always transverse to any
submanifold of Y . The reason why transversality is a desirable property is the following proposition:

Proposition B.1. If X is allowed to have boundary and both iF : int(X) → Y and bF : bX → Y are
transverse to Z and F−1(Z) is nonempty, F−1(Z) is a submanifold of X with codimension m − k having
f−1(Z) ∩ bX as boundary.

Proof. This is a direct consequence of the regular value theorem.

The key to finding transverse maps is the following theorem:

Theorem B.2. [Parametric transversality] If A is a smooth manifold without border, we let X to have
border and F : X ×A → Y is smooth and both , then for almost all s ∈ B, iFs = iF (·, s) and bFs = bF (·, s)
are transverse to Z, and in particular B.1 applies

Here, almost all is in the sense of measure theory. We recall that it makes sense to speak about sets of
measure 0, as it is explained in [Lee12]. IN particular, measure 0 sets have empty interior, so the conclusions
of the previous theorem happen in a dense subset of A. The proof of this theorem uses Sard’s theorem and
can be found in [ORR20], or in [Lee12] in the particular case when X does not have boundary. The first
reference also contain numerous examples, applications and generalisations of the theorem. In [EM02], this
theorem is used to prove theorems concerning holonomic approximation and the h-principle.
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