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Chapter 1

Introduction

Hilbert’s Nullstellensatz sweeps under the rug the complicated structure of non-reduced

schemes. For finite schemes, for instance, reduced schemes over an algebraically closed

field are unions of Spec k, but a non-reduced scheme will look like Z = SpecB where B

is a finite dimensional k-algebra, whose dimension is the degree of Z, deg(Z).

Any possibility of classification breaks down when dimk B > 6. For that reason, it is

more interesting to study finite schemes embedded into other varieties, usually Pn.

Such an embedding makes allows us to write Z = ProjA where A is a graded k-algebra.

The dimension of the d-th graded part of A is given by the Hilbert function of A, denoted

by HA. This function is strictly increasing until it reaches the value deg(Z). There is in

fact a full characterisation of what functions can appear as the Hilbert function of such

algebras.

However, this is almost everything we are certain about. If we write A = k[x0, . . . , xn]/I,

we have

HA(d) =

(
d + n

d

)
− dimk Id,

so HA gives information on the space of degree d- linear forms that contain SpecA. This

is directly related to several interpolation problems. For example, if

I = ⟨x2
1, x2⟩ ∩ ⟨x2

2, x0x2, x
2
0⟩,

dimk Id is the number of linearly independent, degree d curves that go through (1 : 0 : 0)

with tangent line V(x2), and are singular at (0 : 1 : 0). One wonders:

• What is the smallest d such that dimk Id > 0? (this is denoted by α(Z))

• What is the smallest d such that dimk Id is expected

dimk Id =

(
d + n

d

)
− deg(Z)

(this is denoted by reg(Z)).
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The answer to both questions is unknown in general, but when the ideal I is of the form

Im1
1 ∩ . . . ∩ Ims

s (in which case Z is said to be a fat-point scheme) tight bounds for both

constants have been found, and it is conjectured that the expected function

d 7→ min

{(
d + n

d

)
, deg(Z)

}
is indeed the function of A for generic fat points if n = 2. This is the Segre-Harbourne-

Gimigliano-Hirschowitz conjecture (SHGH).

A somewhat different approach is to study flat families of finite schemes. For example,

we might want so see how the coefficients reg(Z) and α(Z) vary inside such families.

In this context the next class of schemes containing reduced schemes are the ones that

can be obtained as a limit of such. These are the smoothable schemes.

It turns out that a family like that is the same as a morphism into the Hilbert scheme

of r points, which is a projective variety that parametrizes all finite subschemes Z ⊂ Pn

with deg(Z) = r, and for instance, the smoothability of finite points translates into the

study of the irreducible components of the Hilbert scheme.

The dissertation is structured as follows: In the second chapter the main tools, which

are Hilbert functions, Hilbert polynomials, flat families, as well as some theory of mono-

mial ideals are introduced. In the third chapter the main structural results about the

Hilbert function of a finite scheme are explained and, in particular, the characterisation

mentioned earlier is proved, in a direct way, for subschemes of P2. Moreover, the proofs

of some bounds of reg(Z) for some classes of fat point schemes that are given in the

literature are simplified after reinterpreting reg(Z). In the fourth chapter the Hilbert

scheme is introduced, as well as how it is related to smoothability. A simple proof of

a classical theorem of Fogarty, which says that the Hilbert scheme of r points in P2 is

smooth and irreducible is presented here. This implies that all subschemes of P2 are

in fact smoothable. Finally, the statement of the SHGH is explained, and a flat family

parametrizing fat point schemes, together with Fogarty’s theorem, is used to give an

argument motivating the conjecture.

It should also be noted that all schemes are assumed to be separated, of finite type

and Noetherian, and the main reference for facts about schemes is Hartshorne’s book

[Har77], Chapters II, III and V. The main references followed were [CH13] for fat points

and the SHGH conjecture, and [Mac07] for Hilbert schemes.
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Chapter 2

Hilbert polynomials and other tools

2.1 Hilbert functions

Let’s fix some notation first; If R is a graded ring and M a graded R-module, Md denotes

the subgroup of degree d elements in M , and M [n] is the same module with the grading

given by M(n)d = Md+n. We will say that R is a standard k-algebra if R0 = k, and R is

finitely generated over k by elements in R1. In this case, R is Noetherian (Proposition

10.7 in [AM69]).

On the other hand, if X is a scheme over a field, L is a very ample line bundle on X and

F any coherent sheaf on X, F(d) = F ⊗ L⊗n. Note that if X = ProjR, M is a graded

R-module, R is a standard k-algebra and L = O(1) = R(1)∼, then M∼(d) = M(d)∼.

Definition 2.1. Let X be a projective scheme over a field k, F be a coherent sheaf on

X and L a very ample line bundle on X. The Hilbert function of F relative to L is

hF(d) = h0(X,F(d)).

Note that hF(d) < ∞ because X is projective (see Serre’s Theorem on the next page).

If F = OX , we will say that hF is the Hilbert function of X (relative to L) and

denote it by hX

Despite its simple definition, the Hilbert function is very hard to compute. This is

because, even if X = ProjR and F = M∼, the natural map Md 7→ H0(X,M(d)) need

not be injective nor surjective. For example, if Md = Nd for d > d0, the sheaves M∼

and N∼ are isomorphic, and therefore H0(X,M∼(d)) = H0(X,N∼(d)) for all d, even

d ≤ d0.
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Proposition 2.2. [Ex. II.5.19 in [Har77]] Suppose X = ProjR, where R is a standard

k-algebra. Then the functors

F 7→
⊕
d

H0(X,F(d)) M 7→ M∼

give an equivalence of categories between coherent sheaves on X and finitely generated,

graded R-modules up to torsion (M = N up to torsion if Md = Nd for large d).

Therefore, if F = M∼ is a coherent sheaf on X, then hF(d) = dimMd d >> 0.

Moreover, suppose 0 → F ′ → F → F ′′ → 0 is exact. Then 0 → F ′(d) → F(d) →
F ′′(d) → 0 is exact for all d because L is invertible, but H0(X, ·) is only left exact so the

Hilbert function is not in general an additive function. In fact, we obtain a sequence

0 → H0(X,F ′(d)) → H0(X,F(d)) → H0(X,F ′′(d)) → H1(X,F ′(d)) → . . .

and, if we recall Serre’s Theorem:

Theorem 2.3. [Theorem II.5.2 in [Har77]] Let X be a projective scheme and L a very

ample line bundle on X. Then for any coherent sheaf F :

a) H i(X,F) is a finite dimensional k-vector space for all i, whose dimension is

hi(X,F).

b) There exists some d0 such that H i(X,F(d)) = 0 for all i > 0 and d ≥ d0.

We see that, H1(X,F ′(d)) = 0 for d >> 0, so the Hilbert function if we twist by L
enough times.

These two examples show that the long-term behaviour of the Hilbert function appears

to behave nicely. This long-term behaviour is encoded in the Hilbert polynomial.

Definition 2.4. Let X be a projective scheme over a field k, F a coherent sheaf on X

and L a very ample sheaf on X. The Hilbert polynomial of F is

pF(d) =
∞∑
i=0

(−1)ihi(X,F(d)).

Note that pF(d) is finite thanks to Serre’s Theorem a) and Grothendieck’s Vanishing

Theorem (Theorem II.2.7 in [Har77]), which says that all cohomology groups vanish for

i > dim(X). pOX
is also denoted pX .
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Theorem 2.5. Let X and L be as above.

a) If 0 → F ′ → F → F ′′ → 0 is an exact sequence of coherent sheaves, then pF =

pF ′ + pF ′′.

b) pF(0), the Euler characteristic of F , does not depend on L.

c) pF(d) = hF(d) for all large d.

d) pF is a polynomial of degree dimF .

Proof. a) follows from the long exact sequence in cohomology and the definition of p.

b) is because pF(0) does not depend on any twisting. c) is a consequence of Serre’s

Theorem.

For d) we induct in dimF . We can assume that k is infinite using a base change. If

dimF = 0, F then for all p ∈ X, F(d)p = Fp ⊗ Op = Fp because L is invertible, and

so F(d) is a skyscraper sheaf for all d. In particular, it is acyclic and its global sections

are the direct sum of its stalks, so pF is constant.

Now let dimF ≥ 1 and suppose we have an embedding X → Pn
k relative to L. Then,

since the associated points of F are a finite set, there is a hyperplane h in Pn not

going through them (this is the same as having a hyperplane that intersects transversely

SuppF). The restriction of h to X gives a section of L and so we have an exact sequence

0 → F(−1)
·h→ F → G → 0,

where injectivity follows form the choice of h. Furthermore, SuppG = SuppF ∩V(h), so

by Krull’s Haupiensatz (Corollary 11.17 in [AM69]), dimG = dimF − 1, and we finish

the induction step because if f, g : Z → Z, g comes form a polynomial of degree d and

f(x + 1) − f(x) = g(x) then f comes from a polynomial of degree d + 1.

Even though pF only attains integer values, it will often have rational coefficients.

Such polynomials are called numerical polynomials. Since d 7→
(
d
0

)
, . . . , d 7→

(
d
n

)
forms a

basis over Z of the numerical polynomials of degree ≤ n we see that if f(d) = ann
d + . . .,

then n!an ∈ Z. If f = pOX
, n!an is the degree of X. Since pOX

(d) = hX(d) for large d,

deg(X) > 0.
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Example 2.6.

a) If R = k[x0, . . . , xn], and X = ProjR = Pn
k then (Prop. 5.13 in [Har77]) Sd →

H0(X,OX(d)) is an isomorphism for all d, so hPn(d) =
(
n+d
d

)
= pPn(d) is already

a numerical polynomial, so degPn = 1.

b) If now X = Pn is embedded in PN via the v-th Veronese embedding, L = O(k) so

hX(d) = dimk H
0(X,OX(vd)) =

(
n+vd
n

)
and degX = vn.

c) Suppose i : X → Pn is a closed embedding and L = i∗O(1). Then thanks to the

projection formula,

H0 (Pn, i∗F ⊗OPn(d)) = H0 (Pn, i∗(F ⊗ i∗OPn(d))) = H0
(
X,F ⊗ L⊗d

)
,

the Hilbert function of F in X is the same as the Hilbert function of i∗F in Pn,

and so the Hilbert polynomials also agree. This allows one to compute pX using

the classical short exact sequence:

0 → IX → OPn → i∗OX → 0

and additivity of the hilbert polynomial, getting pX(d) =
(
n+d
n

)
− pIX (d).

d) If i : X = V (f) → Pn, where f ∈ R has degree r. Then the earlier formula says

that pX(d) =
(
n+d
n

)
−
(
n+d−r

n

)
so deg(X) = r.

e) If Z → Pn is a 0-dimensional scheme, deg(Z) does not depend on the embedding.

This is because, being a 0-dimensional scheme, pZ is constant, but pZ(0) does

not depend on the embedding of Z. In fact, we can write Z = SpecB for a 0-

dimensional k-algebra B, and so deg(Z) = h0(Z,OZ) = dimk(B).

Corolary 2.7. [Bezout’s Theorem, 18.6.K in [Vak17]] Suppose X → Pn is an pro-

jective variety of positive dimension m and H is a hypersurface of Pn not containing

any associated points of X. If X ∩ H → Pn is their scheme theoretic intersection,

deg(X ∩H) = deg(X) deg(H)

Proof. Let a = degX, b = degH and form the fibre square

X ∩H H

X Pn

l

k j

i

.
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If we go back to the proof of 2.5, we are in the same situation, with F = OX . If we

write H = V(f) for a homogeneous polynomial of degree b we obtain the exact sequence

0 OX(−b) OX i∗j∗OH 0

k∗OX∩H

·f

.

Therefore, identifying pX∩H with pk∗OZ∩H
as in 2.6

pX∩H(d) = pX(d) − pX(d− b) =

=
a

m!
dm + cdn−1 + . . .−

[ a

m!
(d− a)m + c(d− a)n−1 + . . .

]
=

abn

n!
dn−1 + . . .

.

We will also work with Hilbert functions of graded rings and modules.

Definition 2.8. Suppose R is a standard k-algebra and M is a finitely generated, graded

R-module. The Hilbert function of M is HM(d) = dimk Md.

The Hilbert function on modules behaves better than on sheaves, because taking the

d-th graded part is exact. On top of that, we have:

Theorem 2.9. [Hilbert] Let M be a finitely generated, graded module over a standard

algebra R. Then HM is a polynomial for d >> 0.

Proof. If F = M∼ in X = ProjR, then by 2.2, for large d, HM(d) = hF(d) but the

latter is also a polynomial for large d by 2.5.

Are the Hilbert functions of M and F the same? The answer in general is not. It is

equivalent to asking when the functor

Γ∗(F) =
⊕
n

H0(X,F(d))

from 2.2 is the inverse of ∼ without needing torsion. It turns out that this is simple to

characterise for the ideal sheaves of projective space:

Definition 2.10. Let I ⊂ R = k[x0, . . . , xn] be a homogeneous ideal. Its saturation is

defined to be the set of all polynomials f such that for all j, xN
j f ∈ I for N big enough,

and is denoted by Isat. Equivalently, if R+ = ⟨x0, . . . , xn⟩,

Isat =
⋃
n>0

(I : Rn
+).

We say that I is saturated if I = Isat.
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Proposition 2.11. [Problem II.5.9 in [Har77]] Let X = Pn. Then:

a) Γ∗(OX) = k[x0, . . . , xn].

b) Γ∗(I
∼), as a submodule of Γ∗(OX), is Isat.

c) There is an equivalence between closed subschemes of X and saturated ideals of

k[x0, . . . , xn].

In particular, if I is a saturated ideal and I = I∼, HI = hI , as we desired.

Remark 2.12. Let Z be a 0-dimensional subscheme of Pn, corresponding to the homo-

geneous ideal I. Then we have two associated Hilbert functions, hZ and HR/I , which

are in general different but eventually equal the Hilbert polynomial of Z. This makes

sense, since hZ only depends on L but HR/I depends on the surjection On+1
Z → L we

choose for the embedding into Pn. In fact, hZ = pZ is constant because Z is finite, so

HR/I is more interesting to study. We will denote it by HZ .

2.2 Flatness

Hilbert polynomials turn out to have a strong relationship with ”good” families of

schemes. The make sense of the term ”good” one has to introduce flatness:

Definition 2.13. Let ϕ : Y → S be a morphism of schemes and F a quasi-coherent

sheaf on Y . We say that F is flat (relative to ϕ) if for all x ∈ X, Fx is a flat OS,ϕ(x)-

module. We say that ϕ is flat if OY is flat.

A family of projective schemes over S is a flat and projective 1 morphism ϕ : Y → S.

It is a standard fact from commutative algebra that if M is an A-module, M is flat

if and only if Mp is flat over each Ap.

We think of a morphism as a good family of schemes (the fibres Ys = Y ×S k(s))

parametrized by the points of S. If Y → S is projective, each fibre Ys embeds into Pr
k(s)

so we for the Hilbert polynomials:

p(Fs, d) := pFs(d), p(Ys, d) := pOYs
(d).

The semicontinuity theorem is the main reason why we desire flat families.

1in the sense of [Har77], i.e., it factors through a closed immersion Y → Pr
S
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Theorem 2.14. [Theorem III.12.8 in [Har77]] Let ϕ : Y → S be a projective morphism,

and F a coherent sheaf on Y , flat over S. Then for all i ≥ 0, the function

s 7→ dimk(s)H
i(Ys,Fs)

is upper-semicontinuous on S.

Hilbert polynomials turn out to be very useful to characterise flat families:

Theorem 2.15. [Theorem III.9.9 in [Har77]] Let ϕ : Y → S be a projective morphism,

where S is connected and reduced, and F a coherent sheaf on Y . Then F is flat over S

if and only if p(Fs, ·) is independent of s.

In particular, the degree of the embedding Ys → Pr
k(s) is independent of s if Y → S

is flat.

2.3 Monomial ideals

Monomial ideals turn out to be very useful to do computations and combinatorial ar-

guments. Throughout this section, S denotes k[x1, . . . , xn] or k[x0, . . . , xn]. Note that

all the arguments preserve the grading. A monomial ideal is an ideal I ⊂ S that can

be generated (and therefore finitely generated) by monomials. Any monomial is written

as xc1
1 . . . xcn

n , notation that we will simplify as xc, where c = (c1, . . . , cn) ∈ Nn. In this

way, the set of all monomial ideals is in bijection with Nn

Definition 2.16. A monomial order is an well- order < in the set of all monomials,

having 1 as its smallest element, such that m < m′ implies mn < m′n for all monomials

n.

If f =
∑

c acx
c is any polynomial, and < is a monomial order, in<(f) is defined to be

ac∗x
c∗, where c∗ is the biggest such that ac is nonzero. If I is any ideal, its initial ideal

with respect to < is defined to be in<(I) = ⟨in<(f) : f ∈ I⟩

Example 2.17.

a) If we prescribe and ordering xa(1) > . . . > xa(n), then the lex order with respect

to the function a is the one in which xc <lex xc′ if for the smallest i such that

ca(i) ̸= ca(i), ca(i) > ca(i).

9



b) If λ : Nn → N is a linear function (given by the dot product with some vector

v ∈ Nn), then we can define the partial order <λ declaring that xc <λ xc′ if

λ(c) < λ(c′). This, however, is not a well-order, but it will be useful. It can be

corrected with some of the lex orderings, saying that xc <λ,lex xc′ if λ(c) < λ(c′)

or if λ(c) = λ(c′) and xc <lex xc′

If I is any ideal of S, since monomials spam S/I, some subset of them will be a basis

for it as a k-vector space, but more can be said:

Theorem 2.18. [Macaulay] If > is a monomial order and I is any ideal in S, the set

of monomial ideals not in in<(I) forms a basis for S/I.

Proof. If mi are monomials and
∑

aimi ∈ I, then in<(
∑

aimi) ∈ in>(I) so one of them

has to be in in>(I).

If J is the linear spam of the set of monomials not in in<(I), if J + I ̸= S, there is a

polynomial f not in J + I with minimal initial term, but this is a contradiction because

its initial term bust be in J or be the initial term of some polynomial in I, so it can be

substracted, contradicting minimality.

On the other hand, we also have:

Proposition 2.19. If B is a set of monomials such that m ∈ B and n | m implies

n ∈ B, and I is the monomial ideal generated by all the monomials not in B, then B is

a basis for S/I over k.

Proof. It is clear that B is a generating set for the quotient ring. If
∑

i aimi ∈ I, since I is

a monomial ideal, each mi with ai ̸= 0 belongs to I, so B is also linearly independent.

A finite generating system for a monomial ideal is minimal if no element of the

generating set is divisible by the others. It is clear that such generating systems exist

and are unique for any monomial ideal.

Remark 2.20. When working with monomial ideals in k[x, y] it is convenient to use box

diagrams. More concretely, there is a bijection between the set of all monomial ideals

and all the unions of boxes in a lattice N2 such that whenever one box is, its adjacent

boxes on the left and bottom are also, which we will refer to as a box diagram. The

minimal generators of the ideal can be read off the corners of the diagram, the monomials

not in the ideal are the cones contained in the boxes and the Hilbert function of k[x, y]/I

counts the number of elements of each diagonal that are in the interior of the diagram.

See Figure 2.1.
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Definition 2.21. A generating set g1, . . . , gs of an ideal I in S is said to be a Grobner

basis with respect to a monomial ordering < if in<(g1), . . . ,∈< (gs) forms a generating

set of in<(I).

Grobner basis always exist by the Hilbert basis theorem. In fact, any set whose

initial terms generate in<(I) generate I, as a consequence of the following lemma:

Lemma 2.22. If I ⊂ J are ideals such that in<(I) = in<(J) for some monomial order

<, we must have I = J .

Proof. It is clear considering f ∈ J ∖ I such that in<(f) is minimal.

Figure 2.1: Box diagram associated to the ideal ⟨y3, x2y2, x3, x4⟩.

Remark 2.23. There are, in fact, algorithms to compute Grobner basis that do not

involve the Hilbert basis theorem, but we are not interested in them in this project.

Remark 2.24. The notions of initial terms, initial ideals, or Grobner bases can be

defined in an analogue way if < is not a well-ordering but instead a weighted ordering:

we define

inλ

(∑
c

acx
c

)
=

∑
λ(c)=t∗

acx
c, where d∗ = max{d : λ(c) = d and ac ̸= 0}

and the initial ideal in a similar fashion.

Initial ideals over weighted can be used to obtain initial ideals with respect to mono-

mial orders:

11



Proposition 2.25. [Proposition 15.16 in [Eis95]] If > is a monomial order and g1, . . . , gs

a Grobner basis for I with respect to λ, there is always a linear function λ : Nn → N
such that the gi also form a Grobner basis for I with respect to >λ and in>(I) = inλ(I).

The reason why weighted orderings are useful is because they allow for a nice family

of ideals:

If f =
∑

c acx
c, let f̂ =

∑
c acx

ctd−λ(c), and define Î = ⟨f̂ : f ∈ I⟩ as an ideal of S[t],

and so Spec(S[t]/Î) (resp. Proj(S[t]/Î)) gives a family over A1.

Proposition 2.26. [Theorem 15.17 in [Eis95]] For any ideal, S[t]/Î is a free k[t]-module

and

S[t]/Î ⊗k[t] k[t, t−1] ∼= S/I[t, t−1]

S[t]/Î ⊗k[t] k[t]/(t) ∼= S/inλ(I)

In particular, the families described above are flat over A1.

Definition 2.27. If we choose λ as in 2.25, then such a family is called a Grobner

degeneration from I to in<(I).
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Chapter 3

Hilbert functions and regularity

3.1 The Hilbert function of a 0-dimensional scheme

Throughout this section, Z will be a closed, 0-dimensional subscheme of Pn, correspond-

ing to the saturated ideal I ⊂ k[x0, . . . , xn] =: R where Id = H0(Pn, IZ(d)). By 2.12, we

are interested in the Hilbert function of the ring R/I, which we will denote by HR/I or

HZ . The degree of Z will be denoted by deg(Z). And we have an exact sequence

0 → I → R → R/I → 0,

which implies that
(
n+d
d

)
= HR(d) = HI(d) + HR/I(d).

Proposition 3.1. HR/I is a strictly increasing function until it reaches deg(Z).

Proof. Consider a linear form f of Pn not vanishing through any point of Z, and form

the exact sequence

0 −→ R

I

·f−→ R

I
(1) −→ R

I + ⟨f⟩
(1) −→ 0,

where right exactness occurs because f does not go through any of the associated primes

of R/I. Therefore,

HR/I(d + 1) −HR/I(d) = HR/I+⟨f⟩(d) ≥ 0,

But R/I + ⟨f⟩ is a standard k-algebra, so any element of degree d + 1 can be recovered

as sums of products of elements of degree 1 and degree d. Therefore, if HR/(I,f)(d) = 0,

HR/I+⟨f⟩(d + 1) = 0. The result follows because for large d we know that HR/I(d) =

deg(Z)

There is an old theorem by Macaulay which completely characterises which functions

H : N → N appear as Hilbert functions of graded algebras:
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Definition 3.2. If h, d ∈ N, there are unique md ≥ md−1 ≥ . . . ≥ mj ≥ j such that

h =
d∑

i=j

(
mi

i

)
,

and this is called the d-nomial expansion of h. To obtain them, one chooses the biggest

element of the form
(
m
d

)
that is less than h, subtract it of h and repeat for d− 1. If

h⟨d⟩ =
d∑

i=j

(
mi + 1

i + 1

)
,

a sequence hd is said to be an O-sequence if h0 = 1 and hd+1 ≤ h
⟨d⟩
d for all d ≥ 0.

Example 3.3.

a) If hd = d+1 then hd+1 ≤ d+2: In this case, hd =
(
d+1
d

)
is the d-nomial expression,

so h
⟨d⟩
d =

(
d+2
d+1

)
= d + 2.

b) If hd ≤ d for some d, then hd+1 ≤ hd: In this case, hd =
(
d
d

)
+ . . . +

(
j
j

)
is the

d-nomial expression, so h
⟨d⟩
d =

(
d+1
d+1

)
+ . . . +

(
j+1
j+1

)
= hd.

Theorem 3.4. [Theorem 2.2. in [Sta78]] For a function H : N → N, the following are

equivalent:

a) H = HA for some standard k-algebra A.

b) {H(d)}d≥0 is an O-sequence.

Proof. Suppose we write A = R/I. Let < be a monomial order and let B be the set of

monomials of R not contained in in<(I). By 2.18, we have that the images of B in A

for a k-basis for A. Also, we proved in 2.19 that such sets B are characterised by the

property that m ∈ B and m′ | mB implies m′ ∈ B.

Therefore, we have to prove that {H(d)}d≥0 is an O-sequence if and only if there is a

set of monomials B with the above property, such that H(d) = card(B ∩ {degm = d}).

The difficult part is the ”if” part (see [Sta75]); for the ”only if” part, let n + 1 = H(1),

and let Bd be the first (in lexicographic order) H(d) monomials in x0, . . . , xn of degree d

. Then a counting argument shows that H(d + 1) ≤ H(d)⟨d⟩ implies that all monomials

of degree d dividing monomials in Bd+1 must be in Bd.

Remark 3.5. In the language of box diagrams, the above proof is equivalent to showing

that, if we choose the first H(d) points (starting form below) in in the d-th diagonal, we

obtain a box diagram if and only if H(d + 1) ≤ H(d)⟨d⟩. See Figure 3.1.
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If {hd} is an O-sequence, by 2.5 it will agree with some polynomial for large d, and

the degree of such polynomial is said to be the dimension of the sequence.

Example 3.6. Consider the 0-dimensional O-sequence {1, 2, 3, 2, 2, . . .}. Using the con-

struction in the proof of 3.4, we find that it correspond to the ideal (x3, x2y). This ideal

is, of course, non-saturated, because the sequence is not increasing. In particular, the

saturation of (x3, x2y) is (x2).

Figure 3.1: Box diagram associated to the Hilbert function {1, 2, 3, 2, 2, . . .}
.

Example 3.7. [Closed subschemes of P1] (Assuming k = k) Any 0-dimensional sub-

scheme of P1 is the one corresponding to the ideal

I =
s⋂

i=1

Imi
Pi

,

where IPi
is the ideal of a closed point Pi ∈ P1 and mi is its multiplicity. In other words,

if Pi = (ai : bi), IPi
= ⟨x0bi − x1ai⟩. In this case, if r =

∑
mi,

HR/I(d) =

{
d if d < r
r if d ≥ r

The proof is simple: after removing a point not in Z, one has to classify subschemes

of A1, which is a simple task because k[A1] is a PID. Then, if ⟨f⟩ is the affine ideal of Z

in k[x], f is a polynomial of degree l and HR/I(d) is equal to the number of polynomials

in k[x]/⟨f⟩ of degree ≤ d.

In higher dimensions, however, the coordinate ring is not a PID, and so the picture

gets more complicated. The analogue subschemes to the ones of this example are called

fat point schemes.
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Definition 3.8. A fat point scheme Z = m1P1+. . .+msPs ⊂ Pn is the closed subscheme

corresponding to the (saturated) ideal

IZ =
s⋂

i=1

Imi
Pi

,

where IPi
is the homogeneous prime ideal corresponding to the point Pi. Note that its

degree is

deg(Z) =
s∑

i=1

(
mi + n− 1

n

)
.

We want to characterise the sequences coming from 0-dimensional subschemes. To

do so, if one goes back to the proof of 3.1, we have that

∆HR/I(d) := HR/I(d + 1) −HR/I(d) = HR/I+⟨f⟩(d)

is the Hilbert function of a standard k-algebra, so it is an O-sequence. The converse is

also true, as a consequence of the following result:

Theorem 3.9. [Theorem 3.2 in [GMR83]] A sequence hd is the Hilbert function of some

d-dimensional subscheme of Pn if and only if it is a d-dimensional O-sequence such that

its first difference (∆h)d = hd − hd−1 is also a O-sequence and h1 ≤ n + 1. In fact, one

can pick a reduced scheme for any such sequence.

We can prove this directly for d = 0 and n = 2. In this case, e = ∆h starts with

{1, 2, . . .}. I claim that if e is a 0-dimensional sequence, e is strictly increasing, with

difference 1, and then decreases (non-strictly) until it reaches 0. This is a consequence

of what was said in example 3.3. Therefore, the following theorem suffices:

Theorem 3.10. [Problem 5.3. in [CH13]] Let r1 > . . . > rs > 0 and pick s distinct lines

in P2. Then choose ri distinct points in line i, which do not lie on the other lines. If Z

be the subscheme of P2 consisting of those points, with ideal I, ∆HR/I(d) is the sequence

{1, . . . , (s− 1), s, . . . s︸ ︷︷ ︸
rs times

, (s− 1), . . . , (s− 1)︸ ︷︷ ︸
rs−rs−1−1 times

, (s− 2), . . . , (s− 2)︸ ︷︷ ︸
rs−1−rs−2−1 times

, . . . , 0, 0, . . .}.

Proof. Let Lk = V(fk) be the lines, and define inductively Z0 = Z, Zk = Zk−1 ∖ Lk

until Zs+1 = ∅. Let Ik be the corresponding ideals and Ik the ideal sheaves. Note that

Ik+1 = Ik : ⟨fk+1⟩ = Ik ∩ ⟨fk+1⟩, so for each k we form an exact sequence

0 −→ Ik+1
·fk+1−→ Ik −→

Ik
Ik ∩ ⟨fk+1⟩

−→ 0.
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If we sheafify the inclusion fkIk+1 ⊂ Ik we obtain Ik+1(−1) ⊂ Ik, so Ik/Ik+1(−1) is the

sheafification of Ik/fk+1Ik+1 = Ik/Ik∩⟨fk+1⟩ = Ik + ⟨fk+1⟩/⟨fk+1⟩, which is the inclusion

of IZk∩Lk,Lk
. Therefore, we obtain short exact sequences:

0 −→ Ik+1(t− 1)
·fk−→ Ik(t) −→ i∗IZk∩Lk+1,Lk+1

(t) −→ 0. (Eq. 1)

For any t and k. For k = n, they look like

0 −→ OP2(t− 1) −→ Is−1(t) −→ i∗IZk∩Ls,Ls(t) −→ 0. (Eq. 2)

Note that IZk∩Lk+1,Lk+1
(t) is the ideal corresponding to rk+1 different points of the line

Lk+1, so it is isomorphic to OP1(t− rk+1)

h0(P2, i∗IZk∩Lk+1,Lk+1
(t)) =

{
0 if t < rk+1

t− rk+1 + 1 if t ≥ rk+1

= max{0, t− rk+1 + 1}.

Therefore, by taking global sections in (Eq. 1) and (Eq. 2) repeatedly, for t = d, d −
1, . . . , d− s we see that

h0(P2, Ik(d)) ≤ h0(P2,OP2(d− (s + 1))) +
s−1∑
k=0

h0(P2, i∗IZk∩Lk+1,Lk+1
(d− k)),

so

HZ(d) ≥
(
d + 2

2

)
−
(
d− s + 2

2

)
−

s−1∑
k=0

h0(P2, i∗IZk∩Lk+1,Lk+1
(d− k)).

Since
(
a
2

)
−
(
b
2

)
is the sum of all positive integers between b and a−1, the last expression

reduces to
s−1∑
k=0

max{0, d− k + 1} − max{0, d− k − rk+1 + 1}.

Each summand can be expressed as
0 if d− k < 0

d− k + 1 if 0 ≥ d− k < rk+1 − 1

rk+1 if rk+1 − 1 ≥ d− k

,

and so its difference function is the characteristic function of the set {k, . . . , k+rk+1−1}.

The sum of all these is precisely the sequence in the statement of the theorem, so it is

enough to show that taking global sections in the equations (Eq 1.) and (Eq 2.) is

right exact when t = d − k − 1. Part of the long exact sequences of homomology from
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equations with t = d− k (Eq 1.) and (Eq 2.) are

H0(P2, i∗OP1(d− k − rk+1)) H1(P2, Ik+1(d− k − 1))

H1(P2, Ik(d− k)) H1(P2, i∗OP1(d− k − rk+1))

αk

(Eq. 3)

for k < s− 1 and

H0(P2, i∗OP1(d + 1 − s− rs+1)) H1(P2,OP2(d− s)

H1(P2, Is−1(d− s + 1)) H1(P2, i∗OP1(d + 1 − s− rs))

αs−1

(Eq. 4)

for k = s − 1. Using the cohomology of OP1(l) (Theorem 5.1. in [Har77]), if k be the

smallest such that H0(P2, i∗OP1(d − k − rk+1)) is not 0. Then d − k − rk+1 ≥ 0, so if

j > k, d − j − rj+1 ≥ −1 because the sequence r1, r2, . . . is strictly increasing and thus

H1(P2, i∗OP1(d− j − rj+1)) = 0. Not only that, but also H1(P2,OP2(d− s)) = 0, so by

exactness of (Eq. 4) we have H1(P2, Is−1(d− s+ 1), and then by successive applications

of exactness of (Eq. 3), H1(P2, Ij(d − j) = 0 for all j > k. Therefore, αj is surjective

for all j ≥ k, and if j < k, by the choice of k, H0(P2, i∗OP1(d − j − rj+1)) = 0 so αj is

clearly surjective.

3.2 Regularity of fat points

If A is a standard 1-dimensional k-algebra the regularity index of A, reg(A) is the

smallest d after which HA(d) becomes constant. If Z is a finite subscheme of Pn with

ideal I, its regularity index is defined as the regularity index of R/I.

By proposition 3.1, it follows that HR/I(d) = deg(Z) for all d ≥ reg(Z). The regularity

index is easier to calculate than the whole Hilbert function, but still has a relationship

with other geometrical properties:

Example 3.11. For any Z, reg(Z) ≤ deg(Z)− 1, and equality holds if and only if Z is

reduced and lies on a line.

Proof. The Hilbert function of Z strictly increases until it reaches deg(Z). Therefore,

reg(Z) ≤ deg(Z) − 1, with equality if and only if its Hilbert function is

{1, 2, . . . , deg(Z), deg(Z), . . .}.
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Note that HR/I(1) = 2 if and only if I contains n−1 linearly independent 1-forms. This

shows that Z is contained in a line, so it must be also reduced. The result follows from

3.7.

It is easy to see that reg(Z ′) ≥ reg(Z) if Z ⊂ Z ′. This indicates that the more points

of Z that lie on a small linear subvariety, the higher the regularity of Z will be:

Definition 3.12. Let Z = m1P1 + . . . + msPs be a fat point scheme in Pn. The Segre

bound of Z is

Seg(Z) =

{⌊
dimL− 2 +

∑
Pi∈L mi

dimL

⌋
: L ⊂ Pn linear and dimL > 0

}
.

The fact that reg(Z) ≤ Seg(Z) was proven 5 years ago in [NT16], but the methods

escape the scope of this work. We will present the proofs of this result in two particular

cases: When n = 2 and when n is arbitrary but the points are in general position.

3.3 Linear systems and separating directions

We will reinterpret regularity in terms of linear systems first. This point of view has will

allow us to give original but simple proofs of the Segre bound in the cases mentioned

above.

If Z = m1P1 + . . . + msPs, H
0(Pn, IZ(d)) is the set of all d-linear forms that vanish

at the points Pi to order mi − 1. In a more concrete way, if the linear for is F and

Pi = (1 : 0 : . . . : 0), after dehomogeneizing with respect to x0, we are asking that all

the terms of F of order at most mi − 1 vanish.

Taking global sections in the short exact sequence 0 → IZ → OPn → i ∗ OZ → 0 and

using the projection formula, we obtain an injection

αZ :
H0(Pn,OPn(d))

H0(Pn, IZ(d))
−→ H0(Z, i∗OPn(d)).

Note that the dimension of the LHS is the Hilbert function HZ(d), whereas the dimension

of the RHS is deg(Z) because Z is finite. Thus, d ≥ reg(Z) if and only if αZ is surjective.

Note that

i∗OPn(d) ∼=
⊔
i

Spec
k[y1, . . . , yn]

⟨y1, . . . , yn⟩mi
,

where the isomorphism is obtained after dehomogeneizing with respect to some linear

form not containing Pi, for each Pi separately. For example, if P = (1 : 0 : . . . : 0), for

any homogeneous f ∈ k[x0, . . . , xn], αZ(f) gives a section

αZ(f) : {P1, . . . , Ps} −→
⊕
i

k[y1, . . . , yn]

⟨y1, . . . , yn⟩mi
,

19



whose restriction to P1 is obtained setting x0 = 1 and then reducing modulo ⟨x1, . . . , xn⟩m1 .

We say that forms of degree d separate directions of Z at P1 if for any monomial m of

degree < m1 there is some f of degree d such that the restriction of αZ(f) to P1 de-

scribed above yields m, and its restriction to the rest of the Pi is 0 (or, in other words,

it vanishes to order mi at each different Pi). Similarly one can define what separating

directions at Pi means (and it does not depend on the choice of a dehomogeneization).

Finding the regularity of Z is therefore related to the interpolation problem:

Proposition 3.13. d ≥ reg(Z) if and only if forms of degree d separate directions of Z

at each Pi.

In particular, if mi = 1 for all i, d ≥ reg(Z) if and only if for any Pi there is a form of

degree d vanishing at all Pj except at Pi

If Z ′ is a subscheme of Z, and j : Z ′ → Pn, from the exact diagram

0 0

0 H0(Pn, IZ(d)) H0(Pn,OPn(d)) H0(Z, i∗OPn(d))

0 H0(Pn, IZ′(d)) H0(Pn,OPn(d)) H0(Z ′, j∗OPn(d))

id

we form
0

0
H0(Pn,IZ′ (d))
H0(Pn,IZ(d))

H0(Z, IZ′/Z(d))

0 H0(Pn,OPn (d))
H0(Pn,IZ(d))

H0(Z, i∗OPn(d))

0 H0(Pn,OPn (d))
H0(Pn,IZ′ (d))

H0(Z ′, j∗OPn(d))

0 0

β

αZ

αZ′

where β is the restriction of αZ . Now, by the Snake lemma, αZ is surjective if and only

if αZ′ and β is. If Z = m1P1 + . . . + msPs + (a + 1)P , Z ′ = m1P1 + . . . + msPs + aP ,

then the group H0(Z, IZ′/Z(d)) can be identified as before with monomials of degree a

in x1, . . . , xn.
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We are now ready to prove the Segre bound:

Proposition 3.14. [Proposition 5 in [CTV93]] Let P1, . . . , Ps, P be different points of Pn

in general position, and let Z = m1P1+. . .+msPs+(a+1)P , Z ′ = m1P1+. . .+msPs+aP .

If d ≥ m2 + m1 − 1 and nd ≥ a +
∑

i mi and d ≥ reg(Z ′), then d ≥ reg(Z).

Proof. We may assume P = (1 : 0 : . . . : 0), P1 = (0 : 1 : 0 : . . . : 0), . . . Pn = (0 : . . . : 1)

because the points are in general position. If s ≤ n, and m is a monomial of order a in

x1, . . . xn, since d ≥ m1 + a, f := xm1
0 xd−a−m1

0 m is a form of degree d that vanishes to

order m1 ≥ mi at each Pi, so it is in IZ′(d) and αZ(f) = m.

If s > n, let m = xc1
1 . . . xncn with c1 + . . .+cn = a. Note that m vanishes to order m−ci

at each Pi for i ≤ n, so if t = d− a, it is enough to show that We can find t linear forms

fi not vanishing at P , but vanishing to order mi + ci− a and to order mi at Pi for i ≤ n

and i > n, respectively, for then f := f1 . . . flm is in IZ′(d) and αZ(f) = m. Note that

n(t + a) ≥ a +
∑

mi and l + a ≥ m1 + m2 − 1,

so

nt ≥ (n− 1)a +
∑

mi =
∑
i≤n

(mi + ci − a) +
∑
i>n

mi and l ≥ m1.

Therefore it is enough to show that

Lemma 3.15. [Lemma 4 in [CTV93]] If a1 ≥ . . . ≥ as and P1, . . . , Ps, P are different

points in general position in Pn, there exist t linear forms vanishing to order ai at each

Pi and not vanishing at P if nt ≥
∑

i ai and t ≥ a1.

Proof of the lemma. This is trivial if s ≤ n. If s > n, since nt ≥ a1 + . . . + an+1 ≥
(n + 1)an+1, and t ≥ a1,

t− 1 ≥ max{a1 − 1, . . . , an − 1, an+1, . . . , as},

and it is clear that n(t− 1) ≥ (a1 − 1) + . . .+ (an − 1) + an+1 + . . .+ as so we can argue

by induction, using a linear form vanishing at the points P1, . . . , Pn.

In the proof of this proposition we only used that the points are in general position

for the lemma. For the case of points in P2 that are not in general position, we have an

analogue:

Lemma 3.16. [Lemma 3 in [Thi99]] If a1 ≥ . . . ≥ as and P1, . . . , Ps, P are different

points in P2, there exist t linear forms vanishing to order ai at each Pi and not vanishing

at P if 2t ≥
∑

i ai, t ≥
∑

Pi∈L ai for all lines L containing P .
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Proof. If all the points are on a line L, there is noting to prove by 3.11.

Now let L1, . . . , Lk be all the lines and let bj =
∑

Pi∈Lj
ai, and assume b1 ≥ b2 ≥ . . ..

Note that
∑

i ai =
∑

j bj.

If we pick different points Pi1 , Pi2 from lines L1 and L2 respectively, then:

• If 2b1 ≥
∑

bi (so t ≥ b1) then b3 < b1, so t− 1 ≥ max{b1− 1, b2− 1, b3, . . . , bk} and

clearly 2(t− 1) ≥ (b1 − 1) + (b2 − 2) + b3 . . . + bk.

• If
∑

bi ≥ 2b1, then t ≥ 2b1, and so t− 1 ≥ b1 ≥ max{b1 − 1, b2 − 1, b3, . . . , bk}, and

again clearly 2(t− 1) ≥ (b1 − 1) + (b2 − 2) + b3 . . . + bk

So in both cases we can apply induction using a linear form vanishing at Pi1 and Pi2 .

Proposition 3.17. [Lemma 4 in [Thi99]] Let P1, . . . , Ps, P be different points of P2 and

Z = m1P1 + . . .+msPs + (a+ 1)P , Z ′ = m1P1 + . . .+msPs + aP . If d ≥ a+
∑

Pi∈Lmi

whenever L is a line through P , 2d ≥ a +
∑

imi and d ≥ reg(Z ′), then d ≥ reg(Z).

Proof. If all the points are on a line then this is trivial by 3.11.

If not, we may assume P = (1 : 0 : 0), P1 = (0 : 1 : 0), P2 = (0 : 0 : 1). As in the proof

of 3.14, it is enough to show that, if c1 + c2 = a, there are d− a linear forms vanishing

to order m1 − c2 at P1, m2 − c1 at P2 and mi at Pi for the rest of the points. This can

be done using the lemma because d− a ≥
∑

Pi∈L mi and

2d ≥ a + m1 + . . . + ms = 2a + (m1 − c2) + (m2 − c1) + . . . + ms.

Theorem 3.18. If Z = m1P1 + . . .+msPs ⊂ Pn and the points are in general position,

or if n = 2, then reg(Z) ≤ Seg(Z).

Proof. This follows from repeated applications of the previous propositions and using

the fact that ⌊
q + n− 1

n

⌋
= min{d | nd ≥ q}.

In fact, the Segre bound is attained:

Proposition 3.19. [Proposition 7 in [CTV93]] If the points Pi lie on a rational normal

curve X (and therefore are in general position), and if Z = m1P1 + . . . + msPs with

m1 ≥ . . . ≥ ms, then

reg(Z) = max

{
m1 + m2 − 1,

⌊
n− 2 +

∑
mi

n

⌋}
= Seg(Z).
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Proof. First of all, the fact that max
{
m1 + m2 − 1,

⌊
n−2+

∑
mi

n

⌋}
= Seg(Z) follows be-

cause the points are in general position, and so for any k-plane can contain at most k

points, and −1 + m1 + . . . + mk ≤ k(m1 + m2 − 1).

It is not difficult to see that if Z ′ = m1P1 + m2P2, reg(Z) ≥ m1 + m2 − 1, so we may

assume that Seg(Z) =
⌊
n−2+

∑
mi

n

⌋
.

Suppose that X is given by the n-th Veronese embedding and that Ps = (1 : 0 : . . . : 0)

Suppose that d ≥ reg(Z), so there is a hypersurface H of degree d such that αZ(H)

is xms−1
1 at Ps and 0 at the other points. By Bezout theorem 2.7, if X and H meet

transversely, −1 +
∑

i mi ≤ deg(X ∩ H) = dn, so we must have d ≥ Seg(Z) or X is

contained in H. H can be written as xd−ms−1
0 xms−1

1 + F , so

0 = H(1 : a : . . . : an) = ams−1 + F (1 : a : . . . : an).

But F vanishes to order ms at Ps, so F (1 : a : . . . : an) is divisible by ams , a contradiction.
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Chapter 4

Families of zero-dimensional
schemes

4.1 The Hilbert scheme

The Hilbert scheme is the standard technique to deal with families of schemes in great

generality. Note that we will be mainly interested in the case X = Pn.

Definition 4.1. Let X be any scheme. The Hilbert scheme of r points on X is a scheme

Hilbr(X) such that morphisms S → Hilbr(X) are in a natural correspondence with closed

subschemes of X × S such that the projection onto S is flat and the fibers are all finite

schemes of degree r.

Note that Hilbr(X), if it exists, is unique up to isomorphism.

Example 4.2.

a) Taking S = Spec k in the definition, we see that k-points of Hilbr(X) are in cor-

respondence with finite subschemes of X. If Z ⊂ X is a finite scheme, the corre-

sponding scheme in the Hilbert scheme is denoted by [Z].

b) Taking S = Hilbr(X), there is a subscheme Ur ⊂ Hilbr(X) × X, corresponding

to the identity, which we call the universal family. Note that the fibre of Ur →
Hilbr(X) over [Z] is Z.

Theorem 4.3. [Theorem 3.2 in [Gro61]] If X is (quasi-)projective over a field k, Hilbr(X)

exists and is also (quasi-)projective over k.

Any finite scheme Z ⊂ X of degree r a union of schemes Z1, . . . , Zl supported at

different points P1, . . . , Pl with degrees d1, . . . , dl, such that r = d1+ . . .+dl, so we might
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want to associate to Y the uple

(P1, . . . , P1︸ ︷︷ ︸
d1 times

, P2, . . . , P2︸ ︷︷ ︸
d2 times

, . . . , Pl, . . . , Pl︸ ︷︷ ︸
dl times

) ∈ Xr

but this is only well defined up to permutation of the entries. This suggests the intro-

duction of the ”quotient” of Xr by the natural action of Sr, X
(r), and we will call it the

r-th symmetric product of X. By a quotient we mean the following:

Definition 4.4. If X is a variety and G is a finite group acting on X, the quotient X/G

is a scheme with a projection X → X/G such that points of X/G correspond to orbits

of the action and any G-invariant morphism X → X ′ factors through X/G.

Proposition 4.5. [Lecture 10 in [Har92]] The r-th symmetric product of X exists, it

is a projective variety of dimension nr and its k-points are in correspondence with the

0-cycles r1P1 + . . .+ rsPs where the Pi ∈ X are all distinct and r1 + . . .+ rs = r (not to

be confused with fat points).

One can then define the Hilbert-Chow map

ρ : Hilbr(X)red → X(r),

sending Z to the 0-cycle
∑

P h0(Z,OZ,P )P , but the fact that ρ is actually a morphism

of varieties is non-trivial (see Section 5.4 in [MF82]).

If U ⊂ Xr is the open subset consisting of different points, then U is Sr-invariant,

and so U/G is an open subset of X(r). Its preimage under the Hilbert-Chow morphism,

which is denoted by Hilb◦
r(X), is formed by all the points [Z] such that Z is reduced,

and ρ is an isomorphism when restricted to Hilb◦
r(X).

Definition 4.6. The smooth locus of degree r is Hilb◦
r(X), and Hilbsm

r (X) = Hilb◦
r(X)

with the reduced induced structure, is called the smoothable component.

Since U is irreducible of dimension nr, the same is true for Hilbsm
r (X).

4.2 Smoothability

We will use the notion of smooth morphism given in Chapter III.10 [Har77], and will

assume that k is algebraically closed to simplify the arguments.

Therefore, in light of Example III.10.0.3 and Theorem III.10.2 in [Har77], X is smooth

over k if X is regular and has constant dimension, and a morphism X → Y is smooth

if and only if it is flat and all the fibres have the same dimension and are non-singular.
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In particular, a finite scheme is smooth if and only if it is reduced.

Since the localization of a regular ring is again regular, we see that smoothness is an open

condition: If ϕ : X → Y and all the fibres have the same dimension, Xy non-singular is

equivalent to the existence of an open neighbourhood U of y such that ϕ : ϕ−1(U) → U

is smooth.

Definition 4.7. Let Z be a finite scheme over k. An abstract smoothing of Z is a flat

family ϕ : Y → T of schemes over k such that:

1. T is irreducible with generic point η.

2. Yη is smooth over k (or equivalently there is an open subset U ⊂ T such that

ϕ|ϕ−1(U) is smooth).

3. There is a k-rational point t such that Yt
∼= Z.

If Z is embedded in Pn, such a family will be said to be an embedded smoothing if Y is

a closed subscheme of Pn × T , ϕ is the projection and the isomorphism in 3. is induced

by the morphism X → Pn × T .

The first thing to be noted is that, since Pn is smooth, the notions of abstract and

embedded smoothings are equivalent (Theorem 3.16 in [BJ17]), so we will just refer to

them as smoothings, and a scheme Z for which a smoothing exists as smoothable.

It is easy to see that if Z = Z1 ⊔Z2 then X is smoothable if and only if both Z1 and Z2

are (Corollary 3.14 in [BJ17]), so smoothability only depends on the local properties of

Z and not on the configuration of the points that form Z, contrary to what happened

in the previous chapter.

Proposition 4.8. [Proposition 5.6. in [BJ17]] A finite scheme Z ⊂ Pn of degree r is

smoothable if and only if [Z] lies on the smoothable component of Hilbr(Pn).

Proof. An embedded smoothing Y ⊂ Pn × T , with notation as in the definition of

smoothing corresponds, via the universal property of the Hilbert scheme, to a morphism

ϕ : T → Hilbr(Z) such that the image of some k-point s is a k-point representing a

smooth scheme and the image of t is [Z]. Since T is irreducible, ϕ(s) and [Z] must lie

on the same connected component.

On the other hand, if [Z] ∈ Hilbsm
r (Pn), then the restriction of the universal family

Ur ⊂ Hilbr(Pn) × Pn to Hilbsm
r (Pn) × Pn is still a flat family over Hilbsm

r (Pn),which is

irreducible, having Z as some fibre and smooth over the smooth locus defined in 4.6, so

it gives a smoothing of Z.

26



Remark 4.9. We have reduced the study of smoothability to the geometry of the Hilbert

scheme. However, if dim(Pn) is greater than 2, the Hilbert scheme will be in general non-

reduced and reducible. Not only that, but dim(Hilbr(P3)) = O(r4/3) (See [BI78]). Since

the smoothable component has dimension 3r, we see that for large r the smoothable

component is a very tiny part of the Hilbert scheme, and so most subschemes of P3 are

not smoothable.

4.3 Fogarty’s Theorem

We now give a complete proof of the fact that Hilbr(P2) is smooth of dimension 2r

using monomial ideals and Serre duality. To do so, we will first show that Hilbr(P2) is

connected, and then compute the dimension of the tangent space at its closed points.

4.3.1 Connectedness

To obtain connectedness, we have to show that one can get from any finite scheme to

another using these flat families over irreducible schemes.

We will use Grobner degenerations, which, as we already showed, are flat families over

A1. We can assume that our subschemes are in A2 and therefore identify them with their

ideal in k[x, y]. Since any ideal has a Grobner basis, it can be connected to a monomial

ideal. We also have:

Proposition 4.10. [Section 4.1. in [Mac07]] Any monomial ideal representing a finite

scheme of degree d can be connected to ⟨xd, y⟩ using Grobner degenerations.

Proof. Since it represents a finite scheme, the ideal I must have the form

⟨xu1 , xu2yv2 , . . . , xul−1yvl−1 , yul⟩,

where the generators are minimal. Consider the box diagram associated to it, which is

represented in Figure 4.1

If I is not ⟨xd, y⟩, then there must be some corner xa+1yb+1 with b > 0 such that

xa+1yb, xayb+1 are in I but xayb is not. We define

J = ⟨xayb − xu1 , xu2yv2 , . . . , xul−1yvl−1 , yul⟩

If we consider the lexicographic order where x > y, it is clear then that, since ul ≥ ui

for all i, I is the initial ideal of J with respect to this ordering. In particular, R/J has

length d.
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Figure 4.1: The algorithm in 4.10

On the other hand, if we consider the lexicographic order where y > x, we will have

that xayb and all the monomials xuiyvi for i ≥ 2 are in the initial ideal of I. Also, by

the way we chose a and b, xa+1yb is in the ideal generated by the xuiyvi for i ≥ 2 and

therefore in J , but then xul+1 = xa+1yb − x(xayb − xul) is also in the initial ideal of J .

Note that the ideal generated by xayb, xul+1 and the xuiyvi for i ≥ 2 has length d and

is contained in the initial ideal of J . therefore it is the initial ideal of J with respect to

this ordering.

As a conclusion, we have seen that I can be connected with Grobner degenerations

with an ideal I ′ with the same form but with u′
l > ul. In Figure 4.1, the box diagram

for I ′ is obtained removing the red box and adding the grey box to the box diagram of

I.

Since any monomial ideal of degree d having xd as a minimal generator has to be ⟨xd, y⟩.

Corolary 4.11. [Theorem 5.8 in [Har66]] Hilbr(P2) is connected.

4.3.2 Tangent space

Proposition 4.12. The tangent space of Hilbr(X) at [Z] is naturally isomorphic to

HomOX
(IZ , i∗OZ), where i : Z → X is the inclusion.

Sketch of a proof. By the universal property of the Hilbert scheme, a tangent vector at

[Z] is equivalent to a closed subscheme W ⊂ X⊗k[ε]/(ε2) that is flat over k[ε]/(ε2) and

reduces to Z over ε = 0. We can work locally becasue Z is finite. If X = SpecA and I
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is the ideal of Z then we want to fit an ideal J in the following diagram

0 0 0

0 I J I 0

0 A A[ε] A 0

0 A/I B A/I 0

0 0 0

·ε

·ε

·ε

such that B is flat over k[ε]. But flatness of B is equivalent to injectivity of the ·ε map

(because (ε) is the only ideal in k[ε]/(ε2)), and implies that the map I → J is also

injective. In this situation, to have commutativity on the left, the image of J in A[ε]

is completely determined by the image of J/εI in A[ε]/εI = A + εA/I, and to have

commutativity on the right the first component of this map has to be the inclusion.

Therefore all the freedom lies in the choice of an A-homomorphiusm I → A/I.

Proposition 4.13. If Z ⊂ P2, is a finite scheme then T[Z] Hilbr(P2) has dimension at

most 2 deg(Z).

Proof. The long exact sequence we get when applying HomOP2
(−, i∗OX) to 0 → IZ →

OP2 → i∗OZ → 0 is

0 → Hom(i∗OZ , i∗OZ)
α→ Hom(OP2 , i∗OZ) → Hom(IZ , i∗OZ)

β→ Ext1(i∗OZ , i∗OZ)

Note that α is surjective because i∗OZ is a sum of skyscraper sheaves, so β is injective.

For any pair of sheaves F ,G on P2, let χ(F ,G) =
∑∞

i=0 dimk Exti(F ,G). If KP2 is the

canonical sheaf, by Serre duality

χ(i∗OZ , i∗OZ) = dim Hom(OZ ,OZ) + dim Ext1(i∗OZ , i∗OZ) + dimH0(P2, i∗OZ ⊗KP2)′ =

= 2n− dim Ext1(i∗OZ , i∗OZ),

So it suffices to show that χ(i∗OZ , i∗OZ) = 0. Since χ is clearly additive on short exact

sequences on its first entry, taking a resolution of i∗OZ by locally free sheaves:

0 → E2 → E1 → E0 → i∗OX → 0,
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it will be enough to compute χ(E , i∗OZ). Note that, by Proposition III.6.9 in [Har77]

we can calculate Exti(E , i∗OZ(d)) as the global sections of Ext i(E , i∗OZ(d)) for d >> 0,

and by Proposition III.6.5. in [Har77], Ext i(E ,G) = 0 for any G and any i > 0. Since

i∗OZ(d) ∼= i∗OZ because Z is finite, we conclude that χ(E , i∗OZ) = dim Hom(E , i ∗ OZ)

and, because E is locally free, this is deg(Z) rank(E). Finally, since Z is finite, looking

at the stalks at some point we have rank(E0) − rank(E1) + rank(E2) = 0.

4.3.3 Proof of the theorem and generalisations

Theorem 4.14. [Theorem 2.4 in [Fog68]] Hilbr(P2) is smooth, irreducible of dimension

2r.

Proof. Hilbsm
r (P2) is an irreducible component of dimension 2r, by 4.5. If there were

more irreducible components, by connectedness, some of them would have to intersect

Hilbsm
r (P2) at some [Z], but then dimT[Z] Hilbr(P2) > 2r, contradicting 4.13. Therefore

Hilbr(P2) = Hilbsm
r (P2) is irreducible and has dimension 2r. Since the tangent space has

dimension at most 2r, it is also smooth.

Corolary 4.15. Any finite scheme that can be embedded in P2 is smoothable.

Remark 4.16. The proof of conectedness of Hilbr(P2) that we gave in 4.10 can be

quickly generalised to show that Hilbr(Pn) is connected.

The fibre of the Hilbert-Chow morphism over a closed point of X(n) represented

by the 0-cycle n1P1 + . . . + nsPs is isomorphic to the product of the Hilbert schemes

Hilbni
(niPi) (here, niPi is a fat point scheme). If X is smooth of dimension n, then the

schemes nP is isomorphic to n0 ⊂ An.

In the proof we gave in 4.10, all the ideals were contained in ⟨xr, . . . , yr⟩. It shows that

the Hilbert schemes Hilbr(r0) are connected.

Theorem 4.17. If X is a non-singular, connected projective variety, Hilbr(X) is con-

nected.

Proof. Since X is connected, so is X(n). The fibres of the Hilbert-Chow morphism at

closed points are also connected by the discussion above. We conclude using the well

known fact that if S → T , T is connected and the fibres of the morphism are connected,

so is S.
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Remark 4.18. We have showed that if A = k[x1, . . . , xn]/⟨x1, . . . , xn⟩r, Hilbr(SpecA) is

connected, but it is in fact connected for any connected local ring A of finite dimension

(Theorem 2.2 in [Fog68]). This shows that for any connected X, Hilbr(X) is connected.

Remark 4.19. In fact, Fogarty proved theorem [Fog68] with P2 replaced by a smooth

surface X. By theorem 4.17, we know that Hilbr(X) is connected, and the proof of 4.13

can be done on any smooth, projective surface replacing P2, so the same argument given

in 4.14 shows that Hilbr(X) is smooth of dimension 2r whenever X is a smooth surface.

4.4 The SHGH conjecture

4.4.1 Families of fat points

Is there a similar tool to the Hilbert scheme for fat points? It turns out that the answer

is yes.

Theorem 4.20. [Theorem 1 in [Pax91]] Let k = k and m1, . . . ,ms, n be fixed positive

integers, there is a family of projective schemes f : Y → S such that S is a smooth, irre-

ducible variety and the fibres Ys, where s varies through the closed points of S parametrize

all fat point schemes in Pn
k of the form m1P1 + . . . + msPs.

Proof. The choice of S is very natural. If D ⊂ (Pn)s is the closed subset consisting

of uples with some repeated point, we let S be its complement. Clearly S is quasi-

projective, integral and smooth, and since any set of s points is not contained in some

hyperplane, it can be covered by open sets isomorphic to (An)s.

If Ij is the ideal of the closed subset of S × Pn given by the equality of the j-th and

the last coordinate, we let Y ⊂ Pn
S be the closed subset associated to the ideal sheaf

J = Im1
1 ∩ . . .∩Ims

s , and let f : Y ⊂ Pn
S → S be the projection. Since S is locally (An)s,

the morphism

Pn
k(s) = Pn × S ×S Spec k(s) → Pn × S

is locally given by the natural ring homomorphism

k[y1, . . . , yn, x11, . . . , xsn] → k[y1, . . . , yn] ⊗k
k[x11, . . . , xsn]p

p
= k[y1, . . . , yn] ⊗k k(s)

The ideal corresponding to J in the left hand side is⋂
i

(y1 − xi1, . . . , yn − xin)mi
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And its extension (which is the ideal corresponding to Ys) is the ideal corresponding to

the fat point scheme m1Q1 + . . . + msQs in An
k(s) ⊂ Pn

k(s), where Qi = (xi1, . . . , xin).

From this we deduce from 2.15 that the family is flat, since all fat point schemes m1Q1 +

. . . + msQs have the same degree independently of the ground field.

If s = (P1, . . . , Pn) is a closed point, then k(s) = k because k is algebraically closed, and

the xij correspond to the coordinates of the Pi, so Ys ⊂ An is precisely m1P1 + . . . +

msPs.

Remark 4.21. Since Y → S is a flat family of projective schemes, it gives natu-

rally a morphism ϕ : S → Hilbr(Pn). A priori, the image of ϕ, which we denote by

Fat(m1, . . . ,ms) is constructible by Chevalley’s theorem (Problem II.3.19 in [Har77]),

but in fact, ϕ(S) is locally closed in Hilbr(Pn) (see [Cop93]).

Corolary 4.22. [Propositions 1 and 2 in [Pax91]] With notation as in the previous

theorem,

a) For each d, s 7→ HYs(d) is lower-semicontinuous.

b) s 7→ reg(Ys) is upper-semicontinuous.

c) There is an open, dense subset W ⊂ S such that reg(Ys) is minimal whenever

s ∈ W .

d) There is an open, dense subset V ⊂ S such that for all d, HYs(d) is maximal

whenever s ∈ V . Moreover, V ⊂ W .

Proof. Note that, for big d, HIYs (d) = HPn(d) − deg(Ys) does not depend on d, so by

2.15, I is flat and so d 7→ HIYs (d) i upper-semicontinuous. Then a) follows form the

equality HYs(d) = HPn(d) −HIYs (d).

By a), if HYs(d) < deg(Ys), then HYs′
(d) < deg(Ys′) for all s′ in a neighbourhood of s.

Therefore, reg(Ys) > d implies reg(Ys′ > d on a neighbourhood of s. In other words,

reg(Y·) is upper-semicontinuous.

c) follows immediately because r is clearly bounded below and therefore attains a mini-

mum, and the fact that W is dense follows form the irreducibility of S.

For d), note that

W =
⋂
d

{s : HYs(d) is maximal}

is an intersection of open sets, but since HYs(d) is constant for all d > m1 + . . .+ms−1,

this is a finite intersection of open sets. All of them are nonempty because HYs(d) ≤
deg(Ys), so for fixed d, HYs(d) attains its maximum. Since S is irreducible, all of them

intersect in a nonempty open set, W , and it is clear that W ⊆ V .
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This gives another proof of the Segre bound:

Corolary 4.23. With notation as in the previous corollary, for a generic choice of s

(more concretely, for any s ∈ V ), reg(Ys) ≤ Seg(Ys).

Proof. By 3.19, we know that if the Ys = m1P1 + . . .+msPs and the Pi lie on a rational

normal curve, r(Ys) = Seg(Ys), so the minimal value of r must be at most Seg(Ys).

Remark 4.24. It is known that for large values of mi, w(Xs) is not the optimal bound

for r(Ys) (see Theorem 3.1. in [Tru94]).

Note that part d) of 4.22 says that for any given mi, n, there is a Hilbert function

Fm1,...ms,n such that for a generic choice of points Pi ∈ Pn, Z = m1P1 + . . . + msPs will

have Fm1,...ms,n as its Hilbert function. Since

HZ(d) =

(
n + d + 1

d

)
−HIZ (d) and HZ(d) =

∑
i

(
mi + n + 1

n

)
for d >> 0,

The candidate to being the largest Hilbert function is what we will call the expected

dimension function:

E(d) = max

{(
n + d + 1

d

)
, deg(Z)

}
.

More arguments supporting this claim for n = 2 come from using the flat Ur →
Hilbr(P2) instead of Y → S in 4.22. Note that the expected dimension function is an

O-sequence such that its first difference function is again a O-sequence. Therefore, by

3.10, there is at least one closed subscheme having E as its Hilbert function. Since

Hilbr(P2) is irreducible by Fogarty’s theorem, this implies the following:

Proposition 4.25. For a generic choice of [Z] ∈ Hilbr(P2), HZ(d) = E(d).

Corolary 4.26. For a generic choice of [Z] ∈ Hilbr(P2), reg(Z) = min
(
d :
(
n+d+1

d

)
≥ r
)
.

Therefore, the question of when is Fm1,...ms,n = E is equivalent to asking when

Fat(m1, . . . ,ms), which is locally closed, intersects U .

This, among other reasons, suggests that the failure of the equality HZ = E whenever Z

is a fat point in P2 is special in some way that we will make precise in the next section:
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4.4.2 The rational surface

Consider the fat point scheme Z = m1P1 + . . .+msPs ⊂ P2. The equality HZ(d) = E(d)

is equivalent to saying that

h0(P2, IZ(d)) = min

{
0,

(
n + d + 1

d

)
− deg(Z)

}
.

Now let Y be the rational surface obtained by blowing up the points P1, . . . , Ps.

Cl denotes the group of Weil divisors modulo linear equivalence. An example of such

a divisor is the pullback of a line in P2, which we denote by E0, or the exceptional divisor

Ei arising from each blowup. After repeated applications of Proposition V.3.2 in [Har77]

we see that Cl(Y ) is freely generated over Z by the E0, . . . , Es. The connection between

divisors and Hilbert functions is given by:

Proposition 4.27. [Proposition IV.1.1. in [Har10]] In the above situation, for any

mi ≥ 0, let D = dE0 − m1E1 − . . . − msEs, and let OY (D) be the invertible sheaf

associated to D. There is a natural isomorphism

HZ(d) ∼= H0(Y,OY (D)).

Therefore we can use the theory of surfaces to understand the Hilbert function of Z.

The main tool is Riemann Roch Theorem:

Theorem 4.28. [Theorem V.1.6 in [Har77]] If Y is a smooth rational surface, there is

a bilinear form in Cl(Y ), usually denoted by ., such that for any divisor C,

h0(Y,OY (D)) − h1(Y,OY (D)) + h2(Y,OY (D)) =
D.D −D.KY

2
+ 1,

where KY is the canonical divisor.

In our case the canonical divisor is KY = −3E0+E1+ . . .+Es by several applications

of Proposition V.3.3 in [Har77], and the intersection product is given by Proposition

V.2.2. in [Har77]:

Ei.Ej =


0 if i ̸= j

−1 if i = j ̸= 0

1 if i = j = 0

.

If C and D are effective divisors that intersect properly, C.D is the degree of their

intersection, so it has to be ≥ 0.

By Serre duality, h2(Y,OY (D)) = h0(Y,OY (KY −D)) = 0 if D is as in 4.27, and so

h0(Y,OY (D)) − h1(Y,OY (D)) =

(
d + 2

2

)
−
∑(

mi + 1

2

)
is the expected value of h0(Y,OY (D)).
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Proposition 4.29. With notation as in 4.27, if D.D−D.KY

2
+ 1 ≥ 0 but there is some

prime divisor C such that C.D = −m < −1 and C.C = C.KY = −1 then The Hilbert

function of m1P1 + . . . + msPs is not the expected dimension function E(d).

Proof. Let F = D − mC We use that PH0(Y,OY (D)) is in bijection to the set of

effective divisors linearly equivalent to D (Proposition II.7.7. in [Har77]). If F ≡ B

then clearly D ≡ mC + E, but on the other hand, if D ≡ B and B is effective,

B.C = −m so B contains m copies of C and therefore B = mC + B′. Therefore,

h0(Y,OY (D)) = h0(Y,OY (F )), but then, by the Riemann-Roch theorem,

h0(Y,OY (D)) = h0(Y,OY (F )) ≥ F.F − F.KY

2
+ 1 =

=
D.D −KY .D

2
+ 1 − m2 −m

2
>

D.D −KY .D

2
+ 1 = E(d).

Such a curve is called an exceptional curve of the linear system OX(D). The SHGH

conjecture states that the existence of these exceptional curves is the only way that the

Hilbert function can not be the expected one:

Conjecture 4.30. Let D = dE0−m1E1− . . .−msEs be a divisor in the rational surface

Y , obtained after blowing up P2 at s different points. Then

h0(Y,OY (D)) ̸= max

{
0,

(
d + 2

2

)
−
∑
i

(
mi + 1

2

)}

if and only if there is an exceptional curve C.

Remark 4.31. Proposition 4.27 also explains why fat points are of special interest

among all finite schemes, since they are the ones whose Hilbert functions give information

about the geometry of rational surfaces.

Remark 4.32. There are numerous conjectures under the name of SHGH, and they are

all equivalent, and they are true for s ≤ 9 (Theorem 9 in [Nag60]).
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